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Abstract. Species distribution models have been applied across a wide range of spatial scales to generate
information for conservation planning. Understanding how well models transfer through space and time
is important to promote effective species–habitat conservation. Here, we assess model transferability in
coastal tidal marshes of the southeastern United States using count data of a widespread marsh bird: the
Clapper Rail (Rallus crepitans). We developed species–habitat models at a state level in both South Carolina
and Georgia, and then assessed how well top models from each state predicted abundance in the other
state. Internally (locally) validated models performed well with reasonable fit (SC: R2 = 0.35, GA:
R2 = 0.14), and high significance (P = 0.0005); however, both models performed poorly when predicting
abundance from the other state (R2 = 0.03 and 0.003). To assess the consequences of this lack of transfer-
ability, we applied the South Carolina- and Georgia-derived parameter estimates to habitat features in
South Carolina and identified the top 25% of tidal marsh habitat that each model predicted within the
state. There was minimal overlap between model habitat quality predictions (<5%). Our results address the
predictive power and uncertainties that arise from using habitat associations and climate models to predict
species distributions or abundance in locations without training data. We discuss potential reasons model
transferability was not successful and address the need for better regional datasets and the importance of
intraspecific variability in response to environmental gradients.
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INTRODUCTION

Knowledge of species–habitat relationships can
shape management decisions (Pearce and Linden-
mayer 1998, Raxworthy et al. 2003, Engler et al.
2004, Guisan and Thuiller 2005, Guisan et al.
2013) and support conservation planning (Ferrier
2002, Ara�ujo et al. 2004). As landscapes become
altered due to land-use and climate change, there
is a growing need to understand species–habitat

relationships across large regions and model
uncertainty associated with those relationships
(Elith and Leathwick 2009). Statistical assessment
of how well species–habitat models derived in
one region (or time) will transfer to a different
region (or time) is preferable to the assumption
that transferred models will perform well. Failure
to assess transferability of habitat models may
lead to over- or under-predicting habitat and poor
conservation planning (Wenger and Olden 2012).
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There are a number of explanations for why
models of species–habitat associations may fail
to transfer well across a geographic region. Limi-
tations to modeling approaches and lack of
knowledge about how species respond to envi-
ronmental changes can make projections of spe-
cies distributions challenging (Guisan and
Zimmermann 2000, Dormann 2007, Vallecillo
et al. 2009). For instance, species distribution
models assume species are at equilibrium with
their environments and that relevant environ-
mental gradients have been adequately sampled
(Fielding and Haworth 1995, Guisan and Zim-
mermann 2000, Whittingham et al. 2003, Nor-
gues-Bravo 2009); however, many issues such as
species invasions, disturbance, and climate
change represent cases where species records are
unrepresentative of equilibrium conditions (Elith
and Leathwick 2009). Additionally, models may
assume immediate species response to climate
change (Ara�ujo et al. 2005) but in reality disper-
sal limitations and alterations to networks of bio-
tic interactions may prevent rapid evolutionary
adaptations (Loehle and LeBlanc 1996, Pearson
and Dawson 2003). Many current species occur-
rence datasets suffer problems from spatial auto-
correlation, which may reduce the estimated
heterogeneity among the environmental gradi-
ents or populations sampled and can generate
problems in the calibration and validation of
species–habitat models (Ara�ujo et al. 2005). Pre-
vious studies found that when important ecolog-
ical predictors are not included in the modeling
process, transferability may be compromised
(Fielding and Haworth 1995, Graf et al. 2006,
Randin et al. 2006, Varela et al. 2009). In order to
achieve greater transferability, predictor vari-
ables should be ecologically relevant to the target
species and homogenous across predicted areas
(Mac Nally 2000, Peterson and Nakazawa 2008,
R€odder and L€otters 2010).

The ecology of species or populations can pro-
vide insight into model transfer efficiency. For
instance, transferability of distribution models for
widespread plant species was influenced more by
dispersal capability and other ecological factors
than it was by model algorithms (Dobrowski
et al. 2011). Difficulties in transferability can arise
when there are differences in species demograph-
ics and productivity between regions (Gray et al.
2009), or when there are various levels of spatial

heterogeneity among ecological relationships
(Fielding and Haworth 1995). Mismatches bet-
ween model predictions and actual species distri-
butions may arise from localized adaptations to
habitats in one region that were not modeled in
another. Obtaining localized data may be neces-
sary to enact effective conservation measures for a
specific area.
Species distribution models that transfer well

across space or time would be particularly valu-
able to conservation planning and coastal man-
agement in marsh ecosystems where there are
large-scale regional planning efforts in place.
Coastal marsh ecosystems are relatively homoge-
nous in vegetation structure and climate, and face
similar threats (i.e., sea-level rise, coastal develop-
ment, salt water intrusion). In the United States,
these systems are distributed across a wide latitu-
dinal gradient and it remains unevaluated how
well models constructed in one place will predict
species habitat use in other regions. The south-
eastern United States supports ~15,000 km2 of
intact tidal marsh habitat, nearly 15 times that of
the northeast and the pacific coasts combined
(Greenberg et al. 2006). The impending threat of
sea-level rise suggests a need to critically evaluate
species distribution model transferability in
coastal systems in order to help enact effective
coastal wildlife management plans.
Marsh bird populations in North America have

declined from habitat loss and fragmentation; as a
result of sea-level rise, these species are of special
concern in many coastal states (Eddleman et al.
1988, Conway and Sulzman 2007). We selected
the Clapper Rail (Rallus crepitans) as a representa-
tive species for evaluating model transferability in
coastal systems because they are relatively abun-
dant along the Atlantic Coast, where they spend
their entire life cycle in salt marshes, yet selective
in nesting habitat choice (Rush et al. 2010). Clap-
per Rails occupy high trophic levels and their life
history and vulnerability to threats from sea-level
rise make them an indicator of marsh ecosystem
function (Rush et al. 2009). Our main objective
was to assess what environmental variables influ-
enced Clapper Rail abundance in a portion of the
southeastern United States (South Carolina and
Georgia) and determine how well models would
transfer across a region (between these two
states). By collecting data from both South Caro-
lina and Georgia, we expected reasonable
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transferability between the two states because of
their similar landscape features, climates, and spe-
cies. Knowledge of transferability across coastal
systems could reduce uncertainties associated
with conservation planning risks, as well as help
determine suitable habitat for Clapper Rails in the
southeast.

MATERIALS AND METHODS

Study area and site selection
We measured Clapper Rail abundance at 286

sites across coastal tidal marsh in South Carolina
and Georgia (Fig. 1). We assumed Clapper Rail
populations were at equilibrium throughout the
study because patches of surveyed habitat
included established breeding territories, with
little to no prolonged disturbances. There have
been no recent (10 yr) extreme climatic events
(e.g., hurricanes) in this part of the southeast that

would disrupt the equilibrium of this species. We
surveyed points distributed along seven land-
scape gradients (defined below in Environmental
Variables) that we hypothesized would affect
Clapper Rail abundance and be affected by sea-
level rise: patch size (m2), distance to forest and
development (m), elevation (m), proportion of
brackish marsh, proportion of marsh landscape
(brackish + salt marsh), and edge density (selec-
tion of variables described in detail in Hunter
et al. 2017). We surveyed 72 points in South Car-
olina and 214 points in Georgia. Survey points
were located along marsh edge, separated by
400 m. All surveys were conducted as close to
the initial GPS location as possible but always
within 30 m from GPS locale. In South Carolina,
research sites were located within 10-km2 region
on the North Santee River and Winyah Bay and
within 12 km2 of tidal marsh in the Ashepoo–
Combahee–Edisto (ACE) Basin, one of the largest

Fig. 1. Starred locations represent areas where Clapper Rails were surveyed during the 2013 breeding season
in South Carolina and Georgia, United States.
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intact estuaries on the Atlantic Coast. Sites in
Georgia spanned 150 km2 of salt marsh ranging
from Savannah to St. Mary’s rivers (Fig. 1).

Field methods
We used call-playback surveys to collect abun-

dance data. Count surveys were conducted dur-
ing the 2013 Clapper Rail breeding season, from
sunrise to three hours afterward, during three sur-
vey periods: 15 March–15 April, 15 April–15 May,
and 15 May–15 June, with a minimum of 10 days
between consecutive surveys at the same site.
Each site was visited three times by two observers
who collected data independently, which resulted
in a sampling design with six sampling occasions
per site. We broadcasted marsh bird vocalizations
using MP3 players and speakers (Radio Shack
Mini Audio Amplifier 90 db). We derived our
broadcast vocalization sequence from the 2011
Conway Marsh Bird Protocol (Conway 2011). Our
playback sequence consisted of five passive min-
utes followed by three minutes of alternating
vocalizations (30 s) and silence (30 s). We broad-
casted vocalizations from three species through-
out the three-minute call sequence: kik-kee-doo and
growl for Black Rail (Laterallus jamaicensis), tut-tut
and gack-gack for Least Bittern (Ixobrychus exilis),
and clapper, kek, and kek-burr for Clapper Rail. We
included other marsh bird vocalizations in our
playback because Clapper Rails are known to
vocalize in response to heterospecific calls (John-
son and Dinsmore 1986, Allen et al. 2004, Conway
and Nadeau 2010). We used a double observer
method when conducting surveys (Bart et al.
2002); during each survey, two observers indepen-
dently recorded calls and abundance of Clapper
Rails. We recorded vocalization type and Clapper
Rail abundance at varying distances within a
200 m radius from each point. By separating sur-
vey points by 400 m but only recording birds
within a 200-m radius, we minimized detection of
the same bird at adjacent survey points. We
trained surveyors to estimate distances by playing
calls throughout the marsh at various distances
and having each observer estimate the distance to
the playback prior to conducting surveys. During
each site visit, we recorded variables believed to
influence detectability: wind, background noise,
observer, tidal stage, and date. We did not conduct
surveys during periods of sustained rain or when
wind speed was greater than 25 km/h.

Environmental variables
We collected landscape data from the National

Wetlands Inventory (NWI; http://landcover.usgs.
gov/), National Land Cover Dataset (NLCD;
http://landcover.usgs.gov/), and digital elevation
models. Seven landscape variables were mea-
sured for the 200 m radius circle around each site
and were assessed for the combined coverage of
salt (E2EM1N) and brackish (E2EM1P) marsh,
designated by NWI. These variables included
patch size (total area [m2] of the marsh which
contained the sample point), edge density (inter-
face between marsh and any other land cover),
proportion of the landscape that is marsh, pro-
portion of brackish marsh within the 200 m
radius, distance to development (m) and forest
(m), and average elevation above mean sea level
(m) within the 200 m radius. To calculate edge
density and proportion of marsh landscape, we
applied a FRAGSTATS (McGarigal et al. 2012)
analysis with an 8-cell neighborhood rule within
a 200-m moving window. We used the Euclidean
distance tool (m) in ArcGIS 10.2 (ESRI; Redlands,
California, USA) to obtain the closest distance
from the buffers (200 m around survey point) to
developed or forested areas. We downloaded ele-
vation datasets for South Carolina from the
National Elevation Dataset (NED; http://ned.
usgs.gov) with a 1/3-arc second (~10 m) resolu-
tion. For Georgia, we obtained lidar elevation
dataset from the Georgia Department of Natural
Resources at a 4-ft resolution that was aggre-
gated to a 28-m cell size. To obtain elevation, we
used the resample tool to get a mean elevation
within a 200-m buffer of our survey point. To
standardize across both states, all raster files
were set to the same spatial extent and were ana-
lyzed within a 30 9 30 m framework. We
extracted values from the rasters to our survey
points to get individual survey site landscape
information. We standardized all covariates and
tested for collinearity. All variables in the analy-
sis had a Pearson’s r correlation of <0.5 with the
exception of two variables (distance to forest and
development in South Carolina [r = 0.7]).

Data analysis
We used the unmarked package (Fiske and

Chandler 2011) to analyze abundance data using
Program R 3.1.0 statistical software (R Core Team
2015, http://www.r-project.org/). We used the
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unmarked function “p-count” to fit N-mixture
models to spatially and temporally replicated
count data, while accounting for imperfect detec-
tion (Royle 2004). We used generalized linear
models to assess the influence of detection and
landscape covariates on abundance.

We began by assessing the role of five covari-
ates hypothesized to influence detection
probability: wind (none to minimal wind vs.
moderate/high winds), background noise (none/
minimal noise vs. moderate/high noise), obser-
ver, tide type (low vs. high), and date. These ini-
tial models contained no covariates associated
with count data. To identify the most important
detection covariates, we ran all possible itera-
tions of detection models, allowing detection to
vary as a function of one or more of the above
variables. The detection covariates present in
models with a DAICc < 2 were included in sub-
sequent abundance models that focused on habi-
tat factors influencing site abundance (Table 1):
elevation (m), distance to forest and develop-
ment (m), patch area (m2), proportion of brackish
marsh, edge density, and proportion of marsh
landscape. We ran all univariate models examin-
ing count covariates, and retained covariates
with high support (DAICc < 2). We then exam-
ined models that allowed for additive or interac-
tive effects to attain a top overall model.

The top model from each state dataset was
evaluated for fit both internally (within state)
and externally (SC to GA or GA to SC). We
used linear regression to compare the model-
estimated (predicted) abundance to observed
abundance data from the same locations for all
four-model-evaluation scenarios. We accounted

for detection probabilities by inflating our
observed maximum abundance counts at each
site by their respective detection probability deter-
mined by the top detection model.
In order to test the hypothesis that transferabil-

ity across regions is limited by the information
contained in local (state-based) datasets, we com-
bined data from South Carolina and Georgia to
create a combined dataset. We randomly selected
70% of the data to serve as the training dataset.
We followed the same steps for model-ranking
and transferability assessments as in the inde-
pendent state model evaluations outlined in
paragraph 2 of Data analysis. We used our top-
ranked model parameter estimates from our
training dataset to predict Clapper Rail abun-
dance for our test data (i.e., the remaining 30%).
We then assessed overall model quality by com-
paring the predicted abundance to the observed
abundance.
We also tested the hypothesis that variability

between environmental gradients in the different
states lowers transferability. We examined any
discrepancies among the mean values of our top
covariates from South Carolina and Georgia top
models. In order to standardize our ranges
across environmental gradients between the two
regions, we reduced our Georgia dataset by elim-
inating observations where the top covariates
were outside the range of two standard devia-
tions from the mean value of the same covariate
in South Carolina. We then re-ran our analyses to
test the effect on transferability.
Additionally, we predicted suitable habitat for

Clapper Rails in South Carolina using our top
model parameter estimates from each state. Our
intent with this analysis was to assess on-the-
ground consequences of poor transferability (i.e.,
measures of habitat suitability for a species of
management interest). We only evaluated trans-
fer of model parameters from Georgia to South
Carolina because it provided the most conserva-
tive evaluation given the more robust dataset col-
lected along the Georgia coast. We used each
state’s top model as an index for habitat quality
in South Carolina. We then identified high-qual-
ity habitat as the top 25% of tidal marsh habitat
predicted by each model within South Carolina.
Using ArcGIS 10.2, we applied the analysis to the
salt and brackish marsh designated by the initial
NWI land cover in our study region.

Table 1. Mean and standard error values of predictor
variables used in South Carolina (SC) and Georgia
(GA), United States.

Environmental
variables SC mean � SE GA mean � SE

Proportion of brackish
marsh

11.67 � 2.60 43.47 � 3.30

Distance to forest (m) 450.77 � 42.09 644.64 � 36.89
Elevation (m) 0.32 � 0.034 0.29 � 0.0048
Distance to
development (m)

2510 � 219.09 2011 � 106.37

Edge density 86.49 � 3.41 82.01 � 2.11
Patch area (ha) 738.37 � 73.80 910.85 � 40.08
Percent of marsh
landscape

50.49 � 1.97 59.13 � 1.057
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RESULTS

Detection probability and habitat variables
influencing Clapper Rail abundance

Clapper Rails occupied the majority of sites in
both South Carolina and Georgia, and our na€ıve
occupancy estimate was 96% and 88%, respec-
tively. Wind (presence or absence during survey)
was the only parameter that influenced detection
for both South Carolina and Georgia. Detection
probabilities were 0.43 and 0.32 in South Caro-
lina and 0.33 and 0.24 in Georgia with no wind
and wind, respectively. In South Carolina, the
only competitive model (DAICc < 2) was the
interaction between distance to forest and eleva-
tion (Table 2). Distance to forest had a stronger
influence on Clapper Rail abundance at lower
elevations, where Clapper Rail abundance was
generally higher at sites further from forested
areas. In Georgia, the only competitive model
was the interaction between distance to forest
and proportion of brackish marsh (Table 2).
Clapper Rail abundance weakly increased with
area of brackish marsh at sites that were close
to forests; however, for sites that were further
away from forests abundance increased at a stee-
per rate with the proportion of surrounding
brackish marsh.

We internally validated model performance by
predicting abundance for each state using state-
specific top model parameter estimates and
compared them to the observed abundance in
their respective state. Each internal evaluation
was significant (P < 0.0005), although total vari-
ance explained by predicted values was low
(R2 = 0.35 and 0.14 in SC and GA, respectively;
Fig. 2a, d).

Model transferability
Models did not transfer well from one state to

another (Fig. 2b, c); predictions using data from
one state had low R2 values (<0.04) and were not
significant (P = 0.15, 0.42). When data from both
states were combined in a training dataset and then
applied to a randomly selected test data, R2 values
improved to 0.08 (P < 0.05). To evaluate the role of
non-analog environments on transferability, we
used a reduced dataset that eliminated 21 sites from
Georgia where distance to forest values fell outside
two standard deviations from the mean distance to
forest value in South Carolina. After the reduction
of sites, transferability was still poor (R2 = 0.004).
In order to further assess model fit, we evalu-

ated the suitable habitat (to 25% of predicted
tidal marsh habitat) each model predicted in
South Carolina and examined the overlap
between those two habitats. The South Carolina
model identified 73% of the habitat as suitable in
South Carolina, whereas the Georgia model pre-
dicted 77% of the focal region as suitable in
South Carolina. The overlap between the two
model-predicted suitable areas was 2% (Fig. 3).

DISCUSSION

Our results indicate that even in a region where
the landscape is fairly homogenous, local (state)
models of Clapper Rail abundance do not accu-
rately predict Clapper Rail numbers in an adjacent
state. Models derived from the same state where
abundance is being predicted (internal) performed
much better than those models predicting abun-
dance for another state (external). Our top models
for South Carolina and Georgia shared one
variable, but were not identical. One potential

Table 2. Model selection of Clapper Rail abundance models in South Carolina (SC) and Georgia (GA), United
States.†

State Model name DAICc xi K Loglikelihood Beta estimates � SE

SC Distance to forest 9 elevation 0 1 6 �2174 1.51 � 0.17; �1.32 � 1.75
SC Total landscape variable

model (additive)
20.42 3.7E-05 10 �2167 NA

GA Distance to forest 9 proportion
of brackish marsh

0 1 6 �2146 �0.94 � 0.12; �0.30 � 0.11

GA Total landscape variable
model (additive)

50.98 8.5E-12 10 �2167 NA

† Our total landscape variable model was an additive model including all predictor variables measured in our study
(Table 2). Our top detection covariate for all models was the presence or absence of wind. AICc: DAICc for the ith model is com-
puted as AICi – min (AIC), xi is the AIC model weight, K is the number of parameters, beta estimates explain the relationship
between the parameter and Clapper Rail abundance, and only significant relationships are reported.
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explanation for poor transferability is a mismatch
in the range of values for the top environmental
predictors from each state. Nevertheless, when we
eliminated outliers from the Georgia dataset, the
transferability only increased slightly. Because our
results did not show a strong increase in transfer-
ability, Clapper Rails in South Carolina and Geor-
gia may be selecting for different habitats.

Our combined analyses yielded the highest fit
to an external dataset. The top model from our
combined analysis maintained the same parame-
ter as previous models (distance to forest) and
one new parameter (proportion of marsh land-
scape). While every top model for individual anal-
yses was different, distance to forest appeared in
each model as an important parameter. However,
because the other top parameters varied between

states, it is still imperative to consider the local-
scale (in this case at a state level) environmental
variables when predicting abundance for species
in areas with regional differences or varying envi-
ronmental conditions. Lastly, the South Carolina
and Georgia top models did not identify similar
suitable marsh habitat in South Carolina (Fig. 3).
The lack of overlap from the two models demon-
strates that non-transferability can have big conse-
quences; using the Georgia-derived model to
predict suitable habitat for Clapper Rails in South
Carolina would result in poor habitat assessment
for conservation planning.
There are a number of factors that may have

led to the poor transferability we observed
between states. Previous studies have shown
that habitat relationships may exhibit regional

R2 = 0.35
P < 0.005

R2 = 0.003
P < 0.005

R2 = 0.14
P = 0.50

R2 = 0.03
P = 0.15

(a) (b)

(c) (d)
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ed

 C
la

pp
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ai
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Observed Clapper Rail abundance

SC

SC GA

GA

Fig. 2. Comparison of observed and predicted parameter estimates for the top models for Clapper Rail abun-
dance generated in each state. South Carolina estimated abundance (a) significantly predicts observed abun-
dance within South Carolina; however, (b) it does not predict observed abundance in Georgia. Georgia estimated
abundance (c) did not predict observed abundance in South Carolina; however, (d) it did significantly predict
observed abundance within Georgia.
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variation for similar species in fairly homogenous-
seeming landscapes (Whittingham et al. 2007).
Varying management strategies and historical
land uses in each state can create local-scale differ-
ences between the landscapes we examined. For
instance, South Carolina has a highly impounded
coastline (managed wetlands) due to a history of
rice harvest until the early 20th century, whereas
Georgia does not maintain impoundments at such

a high frequency. This variability in local-scale
habitats could influence habitat selection of Clap-
per Rails and drive variability between South
Carolina and Georgia. Model transferability can
also be impaired for logistical reasons. In the
southeastern United States, there are few congru-
ent regional datasets, making it difficult to assess
models across large regions. Additionally, some
datasets in one location may be more current than

Fig. 3. The predicted top 25% suitable Clapper Rail habitat for the top South Carolina and Georgia-derived
models and the overlap between the two.
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others, leading to mismatches in future projec-
tions of habitat models.

Previous studies of model transferability have
had mixed results, and accuracy of model predic-
tions has varied across taxa (McPherson and Jetz
2007, P€oyry et al. 2008, Dobrowski et al. 2011)
and modeling frameworks (Rapacciuolo et al.
2012, Wenger and Olden 2012). Studies using
resource-based models, models incorporating
phenological metrics, and models containing
multi-year data have demonstrated high trans-
ferability (Vanreusel et al. 2007, Tuanmu et al.
2011). Often, the primary reason transferability
efforts fail is due to high variability in relevance
among the environmental predictors (Fielding
and Haworth 1995, Guay et al. 2003, Zharikov
et al. 2007, Gray et al. 2009, Sundblad et al. 2009,
Wenger and Olden 2012). Even when relevant
environmental predictors are used, generalist
species, such as Clapper Rails, pose additional
challenges. Clapper Rails inhabit a wide range of
marsh types across the southeast, which makes
transferability models for these species problem-
atic since either the species has broad habitat tol-
erances or habitat selection varies geographically.

We argue it is important to understand and ade-
quately sample environmental variation across a
region of interest and then assess transferability in
order to enact effective conservation measures
across geographic scales. While our initial models
did not transfer well across space, the information
we gathered can still be useful to local conserva-
tion planners and help reduce uncertainties of spe-
cies response to habitat loss associated with
current and future anthropogenic disturbances. In
the southeastern United States, many federal and
regional wildlife agencies and land managers are
interested in understanding the potential impacts
sea-level rise has on wildlife populations. Sea-level
rise is expected to alter habitats significantly in
South Carolina and Georgia with rapid tidal marsh
loss of 20–45% projected for 2100 (Craft et al. 2009,
Hunter et al. 2015). Evaluating environmental vari-
ables that influence abundance of Clapper Rails in
South Carolina and Georgia provides conservation
planners information on key habitats for monitor-
ing and protection. Species distribution models are
often used in large-scale conservation planning,
but they may not be as effective if the habitat rela-
tionships or predictor variables are not appropri-
ately understood. Transferability will likely be

most effective when the training area is similar to
the test area; however, such conveniences may not
be realistic in the context of real-world conserva-
tion efforts spanning large regions or long time
periods. This study demonstrates that there is a
need to continue monitoring populations at a local
scale because both abundance and habitat–abun-
dance relationships differed in South Carolina and
Georgia. Ecological systems are complex, so in
addition to data collected across broad spatial
scales we will also likely need long-term datasets
to untangle some of those complexities.
Predictive models can be powerful tools for

forecasting species occurrences in poorly docu-
mented areas, selecting sites for species reintro-
duction and preservation, predicting species
responses to environmental changes, and reduc-
ing uncertainties associated with anthropogenic
change (Fielding and Haworth 1995). Few studies
have evaluated relationships of species and envi-
ronments well beyond the areas where training
data were collected (Fielding and Haworth 1995,
Rodr�ıguez and Andren 1999, Morris et al. 2001,
Whittingham et al. 2003). Independent model
transferability should be assessed when there is
an interest in making inferences outside the data
used for fitting (Wenger and Olden 2012). The
ability to use general models when making con-
servation decisions is particularly useful on larger
scales. More statewide cooperation, regionally
standardized protocols, and better regional data-
sets could greatly enhance the ability to more
effectively assess model transferability. In regions
that are particularly susceptible to land-use and
climate impacts, predictive models can have
important management implications, but the
impact of such models will be stronger when
transferability has been robustly assessed.
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