Clemson University TigerPrints

Chemistry Annual Research Symposium

Student Works

3-2016

Understanding the Role of NADH in Cellular Fe2+ Generation of Hydroxyl Radical and the Effects of Polyphenol Antioxidants

Craig Goodman *Clemson University*

Julia L. Brumaghim Clemson University

Follow this and additional works at: https://tigerprints.clemson.edu/cars Part of the <u>Chemistry Commons</u>

Recommended Citation

Goodman, Craig and Brumaghim, Julia L., "Understanding the Role of NADH in Cellular Fe2+ Generation of Hydroxyl Radical and the Effects of Polyphenol Antioxidants" (2016). *Chemistry Annual Research Symposium*. 8. https://tigerprints.clemson.edu/cars/8

This Poster is brought to you for free and open access by the Student Works at TigerPrints. It has been accepted for inclusion in Chemistry Annual Research Symposium by an authorized administrator of TigerPrints. For more information, please contact kokeefe@clemson.edu.

Understanding the Role of NADH in Cellular Fe²⁺ Generation of Hydroxyl Radical and the Effects of Polyphenol Antioxidants Craig Goodman and Julia L. Brumaghim* Department of Chemistry, Clemson University, Clemson, SC 29634-0973, USA

MOTIVATION

NADH as a catalyst for cellular damage. DNA damage caused by the hydroxyl radical (OH) is a primary cause of cell death.¹ This radical is generated via the reaction of Fe²⁺ and hydrogen peroxide:

In cells, iron-mediated hydroxyl radical production is cyclic -NADH can reduce the generated Fe^{3+} . This is the rate-limiting step *in vivo* and increases oxidative damage.²

Antioxidants as a protective measure. Polyphenol

antioxidants in teas, fruits, and vegetables can ameliorate this damage. In vitro studies by our group have shown that these antioxidants protect plasmid DNA from this damage.^{3,4}

Figure 1. Structures of chosen polyphenols. Left: Methyl-3,4-dihydroxybenzoate (MEPCA). Right: Methyl-3,4,5-trihydroxybenzoate (MEGA).

E. coli as a cellular model. A significant body of work exists exploring Fe-mediated oxidative damage in *E. coli*. We chose a mutant strain with excess NADH (SLC22; wild-type parent strain AN387) to explore the effects of the polyphenol antioxidants MEGA and MEPCA (Figure 1).

APPROACH

We explored the interactions among NADH, $Fe^{2+/3+}$, MEGA, and MEPCA in two ways.

UV-Vis kinetics. To assess polyphenol antioxidant affects on the NADH-Fe system, the rate of NADH reduction of Fe³⁺ was monitored in the presence of MEGA and MEPCA. NADH absorbs at 340 nM while NAD+ does not, allowing for straightforward analysis of the rate of NADH consumption.

E. coli antioxidant assays. To explore polyphenol antioxidant effects in *E. coli*, strains AN387 (wild-type) and SLC22 (ndh mutant) were challenged with H_2O_2 (2.5 mM) following incubation with MEGA or MEPCA (30 min). The iron-chelating desferrioxamine B (DFO) was employed as a positive control, since iron chelation prevents cell death upon oxidative challenge. Cellular viability was determined by plating.

What effect do polyphenol antioxidants have on the rate of Fe³⁺ reduction by NADH?

supplemented prior to oxidative challenge?

RESULTS

• UV-vis kinetics experiments explore the role of NADH in an iron- and antioxidant-containing system research in this area does not often account for the presence of NADH.

• Catechol MEPCA inhibits the rate of Fe³⁺ reduction by NADH while the gallol MEGA slightly accelerates it (Figure 3).

• MEGA autoxidizes Fe²⁺ to Fe³⁺ more quickly in air than MEPCA,⁴ potentially regenerating available Fe³⁺ for NADH to reduce.

Figure 3. Comparison of first-order rate constants obtained from UV-vis experiments: pH = 6, $FeCl_3$ (80 μ M), NADH (16 μ M), ethanol (100 mM), and polyphenol (up to 3 molar equivalents relative to Fe³⁺: 80, 160, and 240 µM) were all monitored at 340 nm and 25 °C. Error bars are the standard deviations of at least three trials.

160 µM MEGA

SUMMARY & OUTLOOK

Structurally similar polyphenols have opposite effects on rates of Fe³⁺ reduction by NADH. In future work, we anticipate exploring several avenues:

- What is the role of autoxidation? UV-vis kinetic experiments in an air-free atmosphere should reveal if MEGA is increasing the pool of reducible Fe^{3+} .
- What occurs in the presence of H_2O_2 and/or increased levels of NADH? Mimicking the environment of a stressed cell should yield interesting information about antioxidant activity if the rates change significantly.

Iron-binding polyphenols display an increased lethality in conjunction with H_2O_2 challenge for both wild-type E. coli and the *ndh* mutant. However, iron chelation by DFO was able to rescue a significant amount of H_2O_2 -challenged cells. To better understand polyphenol antioxidant activity in *E*. *coli*, several questions must be answered:

- Is the increased cell death upon polyphenol treatment due to DNA damage? These polyphenols may cause cell death via a pathway separate from iron binding and prevention of DNA damage.
- What is the relative importance of NADH and iron levels in cells with respect to antioxidant function? If ironbinding abilities of polyphenols cannot rescue these *E. coli* strains, it would be interesting to discover their effect in *E*. *coli* mutants that are deficient in ferric uptake regulator protein (fur) with high labile iron pools.

REFERENCES & ACKNOWLEDGEMENTS

- 1. Imlay, J. A.; Linn, S. Science. 1988, 240, 1302~1309.
- 2. Brumaghim, J.L.; Li, Y.; Henle, E.; Linn, S. J. Biol. Chem. 2003, 278, 42495~42504.
- 3. Perron, N.R.; Hodges, J.N.; Jenkins, M.; Brumaghim, J.L. 2008, 47, 6153~6161.
- 4. Angelé-Martínez, C.; Goodman, C.; Brumaghim, J.L. 2014, 6, 1358~1381.

The authors thank NASA, the South Carolina Space Grant, and Clemson University for funding this work.

Contact: steveg@g.clemson.edu

