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1.  Introduction
Drought is a complex and extreme climatic condition leading to significant impact on water availability, 
socio-economic systems, and environmental sustainability (A. K. Mishra & Singh, 2010; Mukherjee et al., 2018). 
Flash droughts (FDs), unlike slow evolving drought events, are characterized by sudden and rapid intensification 
within a few pentads or weeks. The FD events are generally unforeseen and can cause devastating socio-economic 
impacts quickly (Ford & Labosier,  2017; Jin et  al.,  2019; Lisonbee et  al.,  2021; Mallya et  al.,  2013; Otkin 
et al., 2016). For instance, the inflation-adjusted cost of the 2012 summer flash drought in the US is estimated to 
exceed $30 billion across the nation (https://www.ncdc.noaa.gov/billions/; Chen et al., 2019). The US Drought 
Monitor reported that between April and September 2017, severe flash droughts in North America resulted in 25% 
reduction in cropland evapotranspiration, 6% decrease in crop production, and 11% reduction in solar-induced 
chlorophyll fluorescence productivity over the region relative to the longer (2008–2017) satellite record causing 
massive losses to the agricultural industry (He et al., 2019).

FDs are mainly driven by the co-evolution of low precipitation and high temperature conditions that favors the 
rapid intensification of atmospheric evaporative demand, and soil moisture depletion rates (Apurv & Cai, 2020; 
Mo & Lettenmaier, 2015; Otkin et al., 2018; Pendergrass et al., 2020; Wang et al., 2016). Although a handful of 
scientific literature investigated the occurrence and underlying causes of FDs across various parts of the globe, 
there is limited consensus among them in the way the FD events are defined (Christian et al., 2020; Lisonbee 
et al., 2021; Mahto & Mishra, 2020; Mo & Lettenmaier, 2016; Otkin et al., 2018; Svoboda et al., 2002; L. Wang 
et al., 2016; Yuan et al., 2019). More precisely, the major disparity among these literature is their reliance on 
distinct indicators that define FDs.

So far, FDs have been defined based on several indicators, such as evaporative stress ratio (ESR) (Christian, 
Basara, Otkin, & Hunt, 2019; Christian, Basara, Otkin, Hunt, et al., 2019; Otkin et al., 2018), soil moisture esti-
mates (Mahto & Mishra, 2020; Mukherjee & Mishra, 2022; V. Mishra et al., 2021; Yuan, Zheng, et al., 2019), 
the U.S. Drought Monitor (Chen et al., 2019; Svoboda et al., 2002), Evaporative Demand Drought Index (Parker 
et al., 2021), and Standardized Precipitation Index (Lisonbee et al., 2021; Noguera et al., 2021). In this study, 
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we selected standardized ESR (SESR) and root-zone-soil-moisture (RZSM) to define FDs due to their over-
whelming use in recent years (Lisonbee et al., 2021; Pendergrass et al., 2020). Both SESR and soil-moisture have 
been applied globally for defining FDs (Christian et al., 2021; Koster et al., 2019). ESR directly incorporates 
the near-surface state variables and is relevant for monitoring the direct impact of FD on vegetation (Anderson 
et al., 2016; Otkin et al., 2018; Pendergrass et al., 2020), while soil moisture is an useful indicator for FD fore-
casting (Ford et al., 2015; McColl et al., 2017; Otkin et al., 2016).

Some of the canonical flash drought definitions, applied for specific regions, are found to have some resemblance 
in the spatial coverages, however, these definitions yield substantially disparate results in the assessment of the 
occurrences, duration and timing of notable flash droughts (Osman et  al.,  2020; Yuan, Zheng, et  al.,  2019). 
Furthermore, differences in adopted definition, input variables, and methodologies of flash drought may impact 
the assessment of the effect of climate anomalies and surface energy fluxes that significantly control the hydro-
logical cycle (Beltrami & Kellman, 2003; Entekhabi et al., 1996; Forzieri et al., 2020; Hao et al., 2018; Ionita 
et al., 2017; Konapala et al., 2020). Additionally, the use of different data sets (sources) for deriving ESR and 
soil moisture estimates can lead to significant uncertainties in determining FD characteristics and their potential 
drivers over a given region. Although, ensemble approach using multiple datasets have been implemented for 
assessing global distribution, trends an drivers of FDs (Christian et al., 2021), data related uncertainties remain 
underexplored. In the light of such limitations, it is essential to address such uncertainties arising from both meth-
odological and data-related disparities (Hoffmann et al., 2020).

This study aims to address the uncertainties associated with FD frequency, rate of intensification, and the influ-
ence of climate anomalies and background aridity on FD evolution across the globe using two distinct FD indi-
cators, SESR and root-zone-soil moisture (RZSM). We compared three different reanalysis and model-derived 
datasets for FD characterization. Overall, we aim to answer the following questions.

1.	 �Which regions show higher FD frequency and intensity uncertainties based on two FD indicators (SESR and 
RZSM) derived using the three different data sources, GLEAM, ERA5, and MERRA2?

2.	 �How do the climate control global FD evolution based on two distinct FD indicators and different datasets?
3.	 �What is the effect of background aridity on the relationship between SESR and RZSM specific to the FD 

episodes based on the two different FD indicators.
4.	 �What are the uncertainties associated with the most dominant climate precursors of FD intensity in different 

evaporation regimes of the globe?

This paper is structured as follows. Section 2 describes the datasets used in the study, followed by methodology 
in Section 3. The results are provided in Section 4, and the discussion and conclusion in Section 5.

2.  Data
SESR is derived at pentad scale for the period 1980 to 2018 using daily ESR. The daily values of ESR are 
calculated using global gridded daily actual evapotranspiration (AET) and potential evapotranspiration (PET) 
dataset obtained from the three different data sources, third version of the Global Land and Evaporation Amster-
dam Model (GLEAM v3.3a; Miralles et  al.  (2011)) available at https://www.gleam.eu/, European Centre for 
Medium-Range Weather Forecasts Reanalysis 5 (ERA5), and Modern-Era Retrospective Analysis for Research 
and Applications, Version 2 (MERRA2). Daily RZSM is obtained directly from the three data sources (GLEAM 
v3.3a, ERA5, and MERRA2). The GLEAM v3.3a dataset spans between 1980 and 2018 and is available daily for 
every 0.25° × 0.25° pixels globally. The ERA5 (MERRA2) datasets are available at 0.25° × 0.25° (0.5° × 0.625°) 
pixels. The daily PET dataset, provided by GLEAM, is generated based on the Priestley and Taylor (PT) evap-
oration model. Unlike GLEAM, daily PET data is not available directly from ERA5, and MERRA2. Therefore, 
PET based on ERA5, and MERRA2 data was calculated separately using the Priestley and Taylor (PT) evapora-
tion model (see Text S1 in Supporting Information S1) to maintain consistency with the PET data provided by 
GLEAM.

Global evaporation regimes are identified based on Aridity index (AI) calculated using mean annual precipita-
tion and PET datasets obtained from the ERA5 (see Text S2 in Supporting Information S1). To investigate the 
climate controls of FD frequency, evolution, and intensity, we selected four different climate and hydrological 
variables, such as precipitation (Pr), daily maximum 2-m temperature (tmax), vapor pressure deficit (VPD), and 
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soil-moisture temperature coupling (denoted as pi). The association of FD with these variables were evaluated 
separately using data from two different reanalysis datasets, ERA5, and MERRA2. In addition to exploring data 
related uncertainties, the use of these two reanalysis datasets also meets the need for atmospheric reanalysis, 
which are not available in the dataset provided by GLEAM. A brief discussion on the calculation of VPD, and pi 
is provided in Text S3 and S4 in Supporting Information S1. To maintain consistency, all datasets were regridded 
to a common 0.5° × 0.5° grid resolution using a bilinear interpolation scheme.

3.  Methodology
3.1.  Flash Drought Identification

Flash droughts are characterized by the rapid intensification of drought conditions over a short period. In this 
study, flash drought events are identified based on two different methodologies, (a) based on SESR (FDSESR) 
proposed by Christian, Basara, Otkin, Hunt, et al. (2019) and (b) based on RZSM (FDRZSM) proposed by Yuan, 
Zheng, et al. (2019), as discussed below.

3.1.1.  FDSESR Detection Methodology

This methodology relies upon the concept of evaporative stress ratio (ESR (Anderson et  al.,  2007a,  2007b; 
Christian, Basara, Otkin, & Hunt, 2019; Christian, Basara, Otkin, Hunt, et al., 2019; Christian et al., 2021), which 
is calculated based on the ratio between AET and PET as,

𝐸𝐸𝐸𝐸𝐸𝐸 =
AET

PET
� (1)

where ESR ranges from zero to approximately one, such that ESR approaching zero generally indicates a very 
high atmospheric demand for evaporation that is hardly met by the available soil moisture, thus, implying the 
presence of very high evaporative stress on the environment and vice versa.

The standardized ESR (SESR) values are used to identify flash droughts at the pentad (5-day) scale. Mean pentad 
(or 5-day average) values of ESR were calculated and then standardized for each grid point as (Christian, Basara, 
Otkin, & Hunt, 2019; Christian, Basara, Otkin, Hunt, et al., 2019),

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖𝑖𝑖 =

𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖𝑖𝑖𝑖𝑖 − 𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖𝑖𝑖𝑖𝑖

𝜎𝜎𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖𝑖𝑖𝑖𝑖

� (2)

where 𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖𝑖𝑖𝑖𝑖 (hereafter referred to as SESR) is the z score of the ESR at a specific grid point (i, j) for a specific 

pentad p, 𝐴𝐴 𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖𝑖𝑖𝑖𝑖 is the mean ESR at a particular grid point (i, j) for a specific pentad p for all years available in 
the gridded dataset (here, from 1980 to 2018), and 𝐴𝐴 𝐴𝐴𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖𝑖𝑖𝑖𝑖

 is the standard deviation. Subsequently, the temporal 
change in SESR was calculated and standardized as,

(Δ𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖𝑖𝑖) =

Δ𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖𝑖𝑖 − Δ𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖𝑖𝑖

𝜎𝜎Δ𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖𝑖𝑖

� (3)

where 𝐴𝐴 (Δ𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖𝑖𝑖)𝑧𝑧
 (hereafter referred to as 𝐴𝐴 Δ𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 ) is the z score of the change in SESR at a specific grid 

point (i, j) for a particular pentad p for all years available in the gridded dataset and 𝐴𝐴 𝐴𝐴Δ𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖𝑖𝑖
 is the standard devi-

ation. The SESR and 𝐴𝐴 Δ𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 magnitudes are finally applied to identify the flash drought events following a set 
of criteria and estimate the intensity of those events worldwide. The criteria are summarized as.

1.	 �Flash drought events are required to have a minimum length of five SESR changes 𝐴𝐴 Δ𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 , which is equiv-
alent to a duration of six pentads (30 days).

2.	 �A final SESR value below the twentieth percentile of SESR values.
3.	 �The 𝐴𝐴 Δ𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 value must be at or below the 40th percentile between individual pentads, and no more than one 

𝐴𝐴 Δ𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 above the 40th percentile following a 𝐴𝐴 Δ𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 that meets the former criterion.
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4.	 �The mean change in SESR (𝐴𝐴 Δ𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 ) during the entire duration of the flash drought must be less than the 
25th percentile of the climatological changes in SESR for that grid point and time of year.

A detailed explanation of the methodology adopted for calculating the FDSESR intensity is provided in Text S5 in 
Supporting Information S1. The standardized values, SESR can easily compare the evaporative stress between 
regions as well as evaporation regimes. Besides, SESR can be useful for robust comparison over multiple years 
and during the growing season for agricultural applications. It is further necessary to note that flash droughts 
can be identified in different ways (Otkin et al., 2018; Yuan, Zheng, et al., 2019). The SESR based analysis has a 
key advantage as it directly incorporates the near-surface state variables (e.g., air temperature, wind speed, vapor 
pressure deficit, latent and sensible heat fluxes, soil moisture, precipitation, and shortwave radiation), which are 
crucial for capturing the onset, intensification, and end of flash drought (Christian, Basara, Otkin, & Hunt, 2019; 
Christian, Basara, Otkin, Hunt, et al., 2019; Otkin et al., 2018).

3.1.2.  FDRZSM Detection Methodology

The FDRZSM events are derived based on existing methodology (Yuan, Zheng, et al., 2019) that combines the 
criteria of rapid decline in RZSM and dry persistency. In this methodology, the detection of FDRZSM is employed 
based on the following three criteria (Yuan, Zheng, et al., 2019):

1.	 �The pentad mean RZSM decreases from above 40th percentile to twentieth percentile, with an average decline 
rate of not less than 5% in RZSM percentiles for each pentad.

2.	 �The FD is considered to have terminated if the declined RZSM rises up to twentieth percentile again. These 
two criteria determine a FD onset and termination stages.

3.	 �The drought should last for at least 3 pentads (15 days).

The key advantage of this methodology lies in its ability to capture rapid changes in drying and high sensitivity 
toward the termination of drought events from rain. However, the existing methodology does not provide a metric 
for calculating the FD intensity. The methodology applied to calculate the FDRZSM intensity is discussed in Text 
S5, and Table S1 in Supporting Information S1.

3.2.  Random Forest Algorithm

Random Forest (RF) is a robust Machine Learning algorithm that works on ensemble learning method for clas-
sification and regression trees (Breiman,  2001) and have been extensively used for drought monitoring and 
forecasting studies (Deo et al., 2017; Konapala & Mishra, 2020; Park et al., 2016; Rhee & Im, 2017; Sutanto 
et al., 2019). We used the RF model to evaluate the order of variable importance due to the high accuracy of the 
algorithm and it avoids overfitting and efficiently deals with multicollinearity.

The order of variable importance in a RF model is determined based on the percentage increase in mean squared 
error (%IncMSE) of prediction corresponding to each predictor variable. The %IncMSE is considered as the most 
robust and informative measure for feature selection in a RF model. The number of independent trees (in our Case 
500) are selected based on trace plots (not shown) of the %MSE. In our analysis, the RF model is employed for 
each evaporation regime, separately, with the yearly mean FD intensity (excluding those with zero events) as the 
decision variable and corresponding lagged (0, 1, 2 pentads) yearly mean of standardized anomalies of Pr, Tmax, 
VPD, and pi as the predictors for individual grids The RF model is fitted on yearly values of mean FD intensity 
and the predictor variables pooled together from all grid locations within a regime. This method of pooling data 
together produces enough sample size that facilitates robust predictions and help to represent wholistic dynamics 
of the FD system within the evaporation regimes. Additionally, it is important to note that in the analysis, the 
selection of FD years for a given FD definition and regime is same across all predictor variables among whom 
the prediction efficacies are compared.

4.  Results
4.1.  Uncertainties in Global FDSESR and FDRZSM Characteristics

We investigated the disparities and data-related uncertainties associated with FDSESR and FDRZSM frequency 
and mean intensity across the globe at 0.5° × 0.5° grid resolution. To explore methodological and data-related 
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uncertainties, the FDSESR and FDRZSM frequency and intensity are derived separately for 1980–2018 and compared 
using three different datasets, GLEAM, ERA5, and MERRA2 datasets. A detailed explanation for the procedures 
applied for both FDSESR and FDRZSM event detection, and calculation of event intensity are provided in the Meth-
ods section. Figures 1a–1f illustrates the global distribution of FDSESR and FDRZSM frequency calculated as the 
percentage of years between 1980 and 2018 that witnessed at least one FD event. The disparities associated 
with the frequency exhibited by these two FD indicators are shown in Figures 1g–1i, which is calculated as the 
absolute difference between the FDRZSM and FDSESR frequency based on each of the datasets. The data related 
uncertainties between the MERRA2 and ERA5 are illustrated in Figures 1j and 1k. Similarly, the global distri-
bution of the FDRZSM and FDSESR mean intensity and related uncertainties is depicted in Figure S1 in Supporting 
Information S1.

Substantial disparities can be noted due to methodological differences stemming from two distinct indicators 
(SESR, and RZSM) over the global land areas for any given datasets. For instance, in the GLEAM dataset, 
significant differences can be noted over the US between the FDSESR and FDRZSM occurrences, where FDSESR 
occurrences are found to be 15%–20% higher in the humid southeastern parts of the US (Figure 1g). On the other 
hand, FDRZSM occurrences are found to be 10%–15% higher in the northern parts of Europe, and Asia, some parts 

Figure 1.  (a–k) Spatial maps (a–c) showing the frequency of occurrence of Flash Drought (FDSESR) as percent of years for 1980–2018 period based on (a) Global 
Land and Evaporation Amsterdam Model (GLEAM), (b) Modern-Era Retrospective Analysis for Research and Applications, Version 2, and (c) European Centre for 
Medium-Range Weather Forecasts Reanalysis 5 (ERA5) data set, (d–f) same as in (a–c) but for FDRZSM, (g–i) absolute differences (%) in the frequency of FDSESR and 
FDRZSM occurrences, (j) absolute differences between FDSESR frequency as in MERRA and ERA5 data set, and (k) same as in (j) but for FDRZSM.
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of central Asia, southernmost Africa, and Australia. Similarly, in the MERRA2 data set, while regions like central 
Africa and the northern half of South America exhibit more than 20% higher occurrences of FDSESR events, the 
occurrences of FDRZSM events are found to be more than 20% higher in majority of the global land area, such 
as in the US, central and southern parts of Europe, central Asia, southern parts of South America, Africa, and 
Australia. Even higher disparities between the FDRZSM, and FDSESR occurrences are exhibited in the ERA5 data-
sets. FDRZSM event occurrences are found to be more than 25% higher in the majority of the globe, including entire 
US, Europe, humid regimes of eastern China, Western Asia, and Southern parts of South America, Africa, and 
Australia. In addition to that, striking disparities can be noted between the mean intensity of FDSESR and FDRZSM 
events across the whole globe (Figure S1 in Supporting Information S1).

Although flash drought frequency, particularly in the Great Lakes Region, western North America, and South-
eastern China, matches well with respect to the indicators, such as, ESR, and different soil moisture indices, used 
to capture the regional patterns reported in previous studies (Christian, Basara, Otkin, & Hunt, 2019; Christian, 
Basara, Otkin, Hunt, et al., 2019; Christian et al., 2021; Osman et al., 2020; L. Wang et al., 2016), there are 
substantial data related inconsistencies for a given indicator. Data-related uncertainties can be noted across several 
parts of the globe, mainly corresponding to the FDSESR methodology. The GLEAM data set exhibits  substantially 
higher occurrences and mean intensity of FD events than both ERA5 and MERRA2. On the other hand, such 
uncertainties are relatively lower in the case of FDRZSM, with relatively higher agreement in both FD frequency 
and intensity across the MERRA2 and ERA5 data sets (Figure 1 and S1 in Supporting Information S1). Such 
uncertainties can result from disparities in land-surface models and data assimilation techniques applied in the 
MERRA2 and ERA5 datasets (Hersbach et al., 2020; Martens et al., 2020; Reichle et al., 2017).

Besides, FDSESR, and FDRZSM frequencies show a relatively higher agreement in the GLEAM datasets 
(Figures 1a–1c). Such agreements can be noted for regions located over the west, east, and southern Asia, north-
ern and southern parts of North America, southeastern parts of South America, and majority of the African 
continent. These results also align with the goal of GLEAM project in representing land surface processes more 
accurately as compared to the MERRA2 and ERA5 reanalysis whose primary goal is to represent the atmospheric 
processes more accurately. Therefore, to further investigate the methodological uncertainties associated with 
the climate controls and key drivers of FDSESR and FDRZSM evolution, we use the GLEAM data set as a control 
experiment for deriving the FDSESR and FDRZSM characteristics and derive the climate anomalies from the ERA5 
and MERRA2 datasets.

4.2.  Climate Controls of FDSESR and FDRZSM Evolution

Droughts are primarily triggered by climatic perturbations (Hanel et  al.,  2018; Ionita et  al.,  2017; Konapala 
et al., 2020) and atmospheric evaporative demand (Parker et al., 2021; Vicente-Serrano et al., 2020), causing rapid 
intensification of evaporative stress and soil moisture depletion leading to flash droughts. However, such effects 
can be complex, and their influence can differ, varying from cascading to compounding in nature (Christian 
et al., 2020; Raymond et al., 2020; Zscheischler et al., 2020). We investigate such differences in the influence of 
climate anomalies on SESR, and RZSM depletion rates associated with the evolution of FDs for global land areas 
during the 1980–2018 period.

We selected pentad mean of daily total precipitation (Pr), maximum 2m air temperature (Tmax), vapor pressure 
deficit (VPD), and soil-temperature coupling strength (pi) (Miralles et al., 2012; Seneviratne et al., 2010) up to 
four lagged pentads, and three pentads after the FD onset. All of these climate variables are available and obtained 
from two different reanalysis datasets, ERA5 and MERRA2, to explore the robustness of the results. The stand-
ardized anomalies of each of these variables are derived with respect to their climatological pentad mean (for 
the 1980–2018 period). The procedures followed for calculating VPD and pi are discussed in the supplementary 
(Text S3, and S4 in Supporting Information S1). The FD onset timings are determined using the GLEAM data-
sets as the control experiment to explore the methodological disparities among the influence of these climate 
anomalies on the FDSESR and FDRZSM evolution. The total counts of FDSESR, and FDRZSM events are calculated 
at each pixel (0.5° × 0.5°) and subsequently binned as a function of the standardized anomalies of each variable 
corresponding to the selected pentads as illustrated by 2D-contour plots in Figure 2 and Figure S2 in Support-
ing Information S1 based on ERA5 and MERRA2 datasets, respectively. Furthermore, weighted average of the 
standardized anomalies were calculated based on the event counts (shown by the shadded 2D-contours) for each 
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of the selected pentads to produce a time-series of the hydroclimatic anomalies, as shown in Figure 2 and S2 in 
Supporting Information S1.

The 2D-contour and time-series plots shown in Figure 2 (and Figure S2 in Supporting Information S1) suggest 
distinct types of association between the climate anomalies and FD onset and propagation in the two definitions. 

Figure 2.  (a and b) Contour plots illustrating the total number of (a) Flash Drought (FDSESR) and (b) FDRZSM events binned as a function of standardized Pr anomalies 
(y-axis) in European Centre for Medium-Range Weather Forecasts Reanalysis 5 (ERA5) data set for first, second, third, and fourth pentad before (denoted by −4 to −1 
in the x-axis) and first, second, and third pentad after (denoted by 1–3 in the x-axis) the onset of Flash Drought (FD) events (denoted by 0 in the x-axis), (c) temporal 
evolution of event-count weighted mean of standardized anomalies of Pr corresponding to FDSESR and FDRZSM episodes, (d–f) same as in (a–c) but for standardized 
anomalies of Tmax, (g–i) same as in (a–c) but for standardized anomalies of vapor pressure deficit (VPD), and (j–l) same as in (a–c) but for standardized anomalies 
of  pi.
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While the onset and evolution of FDSESR show simultaneous development with changes in climate anomalies, 
a delayed or cascading effect of such climate anomalies is noted on the onset and evolution of FDRZSM. For 
example, for majority of FDSESR events, the climate anomalies and SESR anomalies intensify at the same time 
as the FD evolves. The magnitude of the anomalies corresponding to the maximum number of (about 5000) 
FDSESR events are observed to increase (or decrease in case of Pr) continuously from one pentad before the FD 
onset and reaches the peak (lowest) magnitude after three pentads from the FD onset. In contrast, the climate 
anomalies corresponding to the majority of the FDRZSM events increase (or decrease in case of Pr) continuously 
two pentads before the FD onset, and reaches the peak (lowest) magnitude after one pentad of the FD onset, and 
thereafter decreases (increases for Pr) again. This behavior is even more prominent in the event weighted mean 
of the standardized anomalies for all the selected climate variables, Pr, Tmax, VPD, and pi, in both ERA5 and 
MERRA2 datasets. These results are consistent with the spatial maps shown in Figure S3–S4 and Figure S5–S6 
in Supporting Information S1 for FDSESR and FDRZSM, respectively.

Overall, our results are in close agreement with regional studies that suggest a similar spatio-temporal pattern 
of climatic forcings specific to FD onset and evolution corresponding to the indicators used (ESR or RZSM) 
(Christian et al., 2020; Ford & Labosier, 2017). This disparate behavior underscores the effect of soil-moisture 
memory, which is why climate anomalies have a delayed or cascading impact on FDRZSM evolution (Hagemann 
& Stacke, 2015; Liang & Yuan, 2021; Seneviratne et al., 2006). On the other hand, the FDSESR events will be 
most likely to occur if there is a quick burst in precipitation that leads to enhanced ET but not enough to provide 
lasting improvement.

4.3.  Effect of Background Aridity on FDSESR and FDRZSM Intensification

The underlying mechanisms and drivers of drought can be complex and are potentially dependent on the back-
ground aridity that regulates the type of control (energy-limited or water-limited) on surface evaporation over a 
region (Forzieri et al., 2020; Mukherjee et al., 2018; Mukherjee & Mishra, 2021; Seneviratne et al., 2010; Su 
et al., 2021). As such, it is essential to understand the effect of background aridity on the (a) association between 
RZSM and ESR specific to all FD episodes and (b) uncertainties associated with the key drivers of FDs, repre-
sented by two distinct FD indicators (ESR and RZSM). In the following sections we explore these associations 
by dividing the global regions into four different evaporation regimes, arid, semi-arid, sub-humid, and humid 
regimes. The evaporation regimes were identified based on the aridity index (AI; see Text S4, Table S2 and 
Figure S7 in Supporting Information S1).

4.3.1.  Sensitivity of ESR and RZSM Relationship to Changes in Background Aridity

Investigating the association between the ESR and RZSM depletion for a given FD definition is necessary to 
understand how these variables interact over time as the FD evolves. More importantly, due to the considera-
ble control of background aridity over drying rates, the association between ESR and RZSM, even for a given 
FD definition, may vary with changes in background aridity. We investigate sensitivity of these associations in 
response to changes in background aridity which is examined based on all FD episodes detected during the period 
1980–2018 for a given FD definition. We select two distinct scenarios, scenario 1: Considering FDSESR episodes, 
and scenario 2: Considering FDRZSM episodes, and explore these relationships independently. The choice of inde-
pendent scenarios makes it possible to investigate the temporal association between ESR and RZSM within a 
given FD definition, even though the duration or pentads of FDs across different definitions may not exactly 
match or coincide at multiple locations (Figure S8 in Supporting Information S1). The FD episodes derived from 
the GLEAM data set are used in this analysis as a baseline for comparison, as they show relatively higher agree-
ment in spatial patterns between FDSESR and FDRZSM frequency as compared to that in the ERA5 and MERRA2 
datasets (Figure 1).

The effect of background aridity on such associations is explored by evaluating the variance explained explicitly 
to the FDSESR and FDRZSM episodes across the globe and over the different climate regimes, selected based on the 
aridity index. For instance, using scenario 1, we evaluate the proportion of variance in ESR explained by RZSM 
specific to the FDSESR episodes which is calculated based on the squared correlation coefficient (R 2). Similarly, 
using scenario 2, we evaluate the proportion of variance in RZSM explained by ESR specific to the FDRZSM 
episodes. By definition, R2 is the percentage of variance in a dependent variable explained by the linear regres-
sion equation (or relationship) between independent and dependent variables. A higher value of R 2 indicates 
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a greater proportion of the variance explained. The R 2 is estimated for every global grid location considering 
pentad-to-pentad values of ESR and RZSM during all FD episodes. For a given grid location, the R 2 value is esti-
mated using the individual pentads within all the flash drought events corresponding to a specific FD definition, 
FDSESR and FDRZSM, represented by two independent scenarios, scenario 1, and scenario 2, respectively. In the 
first scenario, both ESR values and RZSM percentiles were extracted for the FDSESR pentads for the full period, 
1980–2018. The R 2 values were subsequently calculated using a linear regression approach using the extracted 
ESR time-series as the dependent variable and the extracted RZSM time-series as the independent variable. For 
the second scenario, both ESR values and RZSM percentiles were extracted similarly but for the FDRZSM pentads. 
The R 2 values were subsequently calculated based on a linear regression approach using the extracted time-series 
of RZSM as the dependent variable and the extracted time-series of ESR as the independent variable.

Figure 3 demonstrates the statistically significant (at 95% confidence level) R 2 values evaluated based on the 
two scenarios for the whole globe and for the different climate regimes, selected based on the aridity index. 
The spatial map in Figures 3a and 3b suggest that the association between RZSM and ESR for both scenarios 
are sensitive to changes in background aridity. This is explained by the spatial distribution of R 2 values shown 
by boxplots for the climate regimes. The proportions of explained variance are substantially greater in the arid 
regions and gradually decrease in the wetter regimes for both scenarios. For example, the median R 2 value in 
the arid regimes for the scenario 1 (scenario 2) is about 0.6 (0.37), which suggests that the association between 
RZSM and ESR explains 60% (37%) of the variance in ESR (RZSM). On the other hand, the median R 2 in the 
humid regions is less than 0.2. These results are in agreement with the decrease in the number of overlapping 
pentads during the FDSESR and FDRZSM episodes in the humid regions (Figure S8 in Supporting Information S1). 
Overall, these results indicate that the uncertainty in FD detection based on these two indicators is sensitive to the 
background aridity of the region, with a greater uncertainty noted for the humid regions. These associations can 

Figure 3.  (a) Spatial map illustrating the global distribution of statistically significant (at 95% confidence level) R 2 values 
corresponding to the relationship between evaporative stress ratio (ESR) and root-zone soil-moisture (RZSM) specific to 
the FDSESR epsiodes with RZSM as the independent and ESR as the dependent variable in the linear regression (scenario 
1), and boxplots showing the spatial distribution of these R 2 values over the different climate regimes, (b) same as in (a) but 
specific to the FDRZSM epsiodes with ESR as the independent and RZSM as the dependent variable in the linear regression 
(scenario  2).
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be linked to higher initial RZSM conditions and extended memory of soil-moisture in wet (or humid) conditions 
(Liang & Yuan, 2021).

4.3.2.  Key Drivers of FDSESR and FDRZSM Intensification in Different Climate Regimes

We used a machine learning-based random forest (RF) algorithm (Deo et al., 2017; Konapala & Mishra, 2020; 
Park et al., 2016; Rhee & Im, 2017; Sutanto et al., 2019) to determine the key drivers of FDSESR (FDRZSM) inten-
sity in different evaporation regimes (see Methods). The gridded FD intensities within each evaporation regime 
are selected as predictand in the RF model development. The annual time series of mean FD intensity is derived 
for all the individual grids and then pooled together from all the grids within a given evaporation regime to be 
used as the RF model's predictand. The mean FD intensity for both the indicators (SESR, and RZSM) are derived 
using the GLEAM dataset and fixed as a control with respect to which the influence of the climate variables are 
investigated. We include multiple temporal lags to capture the dynamics in the associations between the climate 
variables and FD intensification. For example, standardized anomalies of the climate variables, Pr, Tmax, VPD, 
and pi are derived at zero, 1, and 2 pentad lags (hereafter referred to as L0, L1, and L2) specific to each FD 
event onsets and their annual averages are used as predictors in the RF model. It should be noted that for any 
grid point, years with no FD events are excluded from the anlaysis. The key-drivers of FDRZSM and FDSESR are 
determined based on the importance-score of these predictor variables. The importance-score of these climate 
variables is determined based on the percentage increase in mean squared error (%IncMSE) of prediction of the 
RF model corresponding to each predictor variable (see Methods). A higher magnitude of %IncMSE indicates 
relatively higher importance of the predictor variable. To determine the data-related uncertainties, the %IncMSE 
for all predictor variables is calculated using both ERA5 and MERRA2 datasets corresponding to the FDSESR and 
FDRZSM events, as illustrated in Figure 4.

Substantial disparities arising from using two different datasets and indicators (ESR and RZSM) for a given 
evaporation regime can be noted among the selected key drivers. In the humid regimes, Pr(L1) is the key driver 
influencing the variation of FDSESR intensity, whereas Tmax(L0) is the key driver influencing FDRZSM intensity 
based on both ERA5 and MERRA2 datasets. In the sub-humid regimes, while pi(L1) exhibits the most domi-
nant control on FDSESR intensity based on both the datasets, Pr(L0) and Tmax (L0) are found to show the most 
substantial influence on FDRZSM intensity based on the ERA5, and MERRA2 datasets, respectively. Similarly, 
Pr(L1) exhibits the most dominant control on FDSESR intensity in the semi-arid regimes, while Tmax(L1) shows 
the strongest influence on FDRZSM intensity based on the ERA5 data set. On the other hand, pi(L1) and Tmax(L1) 
show the most dominant effect on FDSESR and FDRZSM intensity in the MERRA2 data set. In the arid regimes, 
while Tmax(L1) exhibits the most dominant control on FDRZSM intensity based on both the datasets, Pr(L2) and 
VPD(L2) is found to show the strongest influence on FDSESR intensity based on the ERA5, and MERRA2 data-
sets, respectively.

Overall, these results suggest a potential effect of background aridity on the uncertainties associated with the use 
of two distinct indicators of FD and the choice of different data sources. These disparities can also be linked to 
the dependence of transferability of soil temperature memory into atmospheric persistence on background arid-
ity (Gerken et al., 2019), which significantly affects drying rates and, thereby, the depletion of ESR and RZSM 
differently.

5.  Discussion and Conclusion
Our analyses provide global evidence that the employment of different flash drought definitions (or indicators) 
and datasets can lead to substantially disparate results associated with the FD characteristics and the key driv-
ers. Climate variables, such as precipitation, temperature, vapor pressure deficit, and soil-moisture temperature 
coupling, exhibit a distinct control over flash drought evolution based on different FD indicators. The association 
between the flash drought indicators is sensitive to background aridity changes. The key drivers influencing the 
flash drought intensification in various climate regimes are found to be substantially different for different data-
sets and flash drought definitions.

The uncertainties associated with the choice of methodology and input data is noted in the FD frequency of 
occurrence and intensity. Using two distinct FD indicators, evaporative stress, and root-zone-soil moisture esti-
mates, we found significant uncertainties associated with FD occurrences and rate of intensification in the humid 
southeastern parts of the US, northern parts of Europe, and Asia, some parts of central Asia, southernmost 
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Africa, and Australia in the GLEAM data set, and in majority of the globe in both MERRA2 and ERA5 data set. 
We found that the control of climate variables on the FD evolution based on these two indicators are also very 
distinct. While the effect of climate variables on rapid intensification of evaporative stress occurs simultaneously, 
a cascading (time-delayed) climatic impact on the RZSM depletion is observed during the evolution of FDs. 
We also found that the uncertainties linked to different indicators are sensitive to the changes in background 
aridity and vary across different climate regimes. The relationship between evaporative stress and root-zone-soil 
moisture fails to explain most of the variance in each of these indicators specific to the flash drought episodes 
in the humid climate regimes. Besides that, the uncertainties associated with the key drivers influencing the FD 
intensification based on the two distinct indicators and different datasets in different climate regimes are found 
to be significant.

Our results suggest that global flash drought characteristics, drivers, and their temporal interactions vary across 
the evaporation regimes. These results reinforce the idea of existing trade-off between water availability and 
energy supply as a limiting factor for regulating evaporation, and site-specific connections of soil-specific water 

Figure 4.  (a–d) bar-plots showing the key drivers influencing the variation of FDSESR, and FDRZSM intensity for the different evaporation regimes. Note that both FDSESR 
and FDRZSM intensity are calculated based on the GLEAM dataset, whereas, the climate anomalies are calculated based on the (a and b) ERA5 and (c and d) MERRA2 
datasets.
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retention capacities that control drying rates across different ecosystems (H. Wang et  al.,  2015). Therefore, 
caution should be exercised while addressing the robustness of the FD characteristics based on a single indicator 
and data set, especially in transitional and humid regimes where drying rates can be primarily driven by initial 
RZSM conditions and more extended memory of soil moisture in deeper (especially up to 1m) layers (Entekhabi 
et al., 1996; Hagemann & Stacke, 2015; Hoffmann et al., 2020; Liang & Yuan, 2021; Seneviratne et al., 2006; 
H. Wang et al., 2015).

Overall, the results from this study will strengthen our perspective on flash droughts by improving our under-
standing of the underlying uncertainties and disparities associated with the use of a FD indicator and choice of 
data set in the context of their physical processes and essential predictors across different ecosystems. These 
results can also be implemented to refine our understanding of how FD hotspots vary across the definition and 
datasets in a multivariate setting (Mukherjee & Mishra, 2022). A key limitation of this study is the conversion of 
the datasets into a common spatial resolution. Although the purpose is to ensure comparability among the data-
sets, some influence of these underlying differences could still impact the results, in particular, for locations with 
varying topography, vegetation types, bodies of water, and along coast lines. In addition, due to limited scope, 
this study only compares two of the many indicators so far used in past studies to define flash drought (Lisonbee 
et al., 2021), which is why more research is needed to compare various other indices for exploring the related 
similarities and discrepancies among them. The findings can be further extended to explore a more robust indica-
tor of flash drought that efficiently couples the rapid soil-moisture depletion rates in deeper layers with changes 
in atmospheric evaporative demand, and develop suitable forecasting tools focused on their direct implication 
on vegetation health (Pendergrass et al., 2020). By comparing two different flash drought definitions and using 
multiple datasets, the results from the study are expected to provide a broad and robust understanding of flash 
drought mechanisms and drivers globally. This is particularly important to highlight the advantages and limita-
tions of the available flash drought definitions used by researchers and stakeholders (Christian, Basara, Otkin, & 
Hunt, 2019; Christian, Basara, Otkin, Hunt, et al., 2019; Christian et al., 2021; Mo & Lettenmaier, 2015, 2016; 
Otkin et al., 2018; L. Wang & Yuan, 2018). The new information gained in this study can be further extended 
to investigate the causal linkages of soil moisture memory length, vegetation fluxes, heatwaves and wildfires 
(Christian et al., 2020), and water use efficiency with FD characteristics across different ecosystems.

Data Availability Statement
We are thankful for the data provided by the Global Land and Evaporation Amsterdam Model (GLEAM 
v3.3a; https://www.gleam.eu/#datasets), European Centre for Medium-Range Weather Forecasts Reanalysis 5 
(https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=form), and Modern-Era 
Retrospective Analysis for Research and Applications, Version 2 available at https://disc.gsfc.nasa.gov/data-
sets/M2SDNXSLV_5.12.4/summary Precipitation and temperature and https://disc.gsfc.nasa.gov/datasets/
M2T1NXLND_5.12.4/summary for root-zone soil moisture and evaporative fluxes.

References
Anderson, M. C., Norman, J. M., Mecikalski, J. R., Otkin, J. A., & Kustas, W. P. (2007a). A climatological study of evapotranspiration and 

moisture stress across the continental United States based on thermal remote sensing: 1. Model formulation. Journal of Geophysical Research, 
112(D10). https://doi.org/10.1029/2006JD007506

Anderson, M. C., Norman, J. M., Mecikalski, J. R., Otkin, J. A., & Kustas, W. P. (2007b). A climatological study of evapotranspiration and 
moisture stress across the continental United States based on thermal remote sensing: 2. Surface moisture climatology. Journal of Geophysical 
Research, 112(D11), D11112. https://doi.org/10.1029/2006JD007507

Anderson, M. C., Zolin, C. A., Sentelhas, P. C., Hain, C. R., Semmens, K., Tugrul Yilmaz, M., et al. (2016). The Evaporative Stress Index as an 
indicator of agricultural drought in Brazil: An assessment based on crop yield impacts. Remote Sensing of Environment, 174, 82–99. https://
doi.org/10.1016/j.rse.2015.11.034

Apurv, T., & Cai, X. (2020). Drought propagation in contiguous US watersheds: A process-based understanding of the role of climate and water-
shed properties. Water Resources Research, 56(9), e2020WR027755. https://doi.org/10.1029/2020WR027755

Beltrami, H., & Kellman, L. (2003). An examination of short- and long-term air–ground temperature coupling. Global and Planetary Change, 
38(3), 291–303. https://doi.org/10.1016/S0921-8181(03)00112-7

Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5–32. https://doi.org/10.1023/a:1010933404324
Chen, L. G., Gottschalck, J., Hartman, A., Miskus, D., Tinker, R., & Artusa, A. (2019). Flash drought characteristics based on U.S. Drought 

monitor. Atmosphere, 10(9), 498. https://doi.org/10.3390/atmos10090498
Christian, J. I., Basara, J. B., Hunt, E. D., Otkin, J. A., Furtado, J. C., Mishra, V., et al. (2021). Global distribution, trends, and drivers of flash 

drought occurrence. Nature Communications, 12(1), 6330. https://doi.org/10.1038/s41467-021-26692-z

Acknowledgments
This study was supported by the National 
Science Foundation (NSF) awards # 
1653841 and 1841629.

 23284277, 2022, 6, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2022E

F002660 by C
lem

son U
niversity L

ibraries, W
iley O

nline L
ibrary on [17/10/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://www.gleam.eu/
https://cds.climate.copernicus.eu/cdsapp
https://disc.gsfc.nasa.gov/datasets/M2SDNXSLV_5.12.4/summary
https://disc.gsfc.nasa.gov/datasets/M2SDNXSLV_5.12.4/summary
https://disc.gsfc.nasa.gov/datasets/M2T1NXLND_5.12.4/summary
https://disc.gsfc.nasa.gov/datasets/M2T1NXLND_5.12.4/summary
https://doi.org/10.1029/2006JD007506
https://doi.org/10.1029/2006JD007507
https://doi.org/10.1016/j.rse.2015.11.034
https://doi.org/10.1016/j.rse.2015.11.034
https://doi.org/10.1029/2020WR027755
https://doi.org/10.1016/S0921-8181(03)00112-7
https://doi.org/10.1023/a:1010933404324
https://doi.org/10.3390/atmos10090498
https://doi.org/10.1038/s41467-021-26692-z


Earth’s Future

MUKHERJEE AND MISHRA

10.1029/2022EF002660

13 of 14

Christian, J. I., Basara, J. B., Hunt, E. D., Otkin, J. A., & Xiao, X. (2020). Flash drought development and cascading impacts associated with the 
2010 Russian heatwave. Environmental Research Letters, 15(9), 094078. https://doi.org/10.1088/1748-9326/ab9faf

Christian, J. I., Basara, J. B., Otkin, J. A., & Hunt, E. D. (2019). Regional characteristics of flash droughts across the United States. Environmental 
Research Communications, 1(12), 125004. https://doi.org/10.1088/2515-7620/ab50ca

Christian, J. I., Basara, J. B., Otkin, J. A., Hunt, E. D., Wakefield, R. A., Flanagan, P. X., & Xiao, X. (2019). A methodology for flash drought 
Identification: Application of flash drought frequency across the United States. Journal of Hydrometeorology, 20(5), 833–846. https://doi.
org/10.1175/JHM-D-18-0198.1

Deo, R. C., Tiwari, M. K., Adamowski, J. F., & Quilty, J. M. (2017). Forecasting effective drought index using a wavelet extreme learning machine 
(W-ELM) model. Stochastic Environmental Research and Risk Assessment, 31(5), 1211–1240. https://doi.org/10.1007/s00477-016-1265-z

Entekhabi, D., Rodriguez-Iturbe, I., & Castelli, F. (1996). Mutual interaction of soil moisture state and atmospheric processes. Journal of Hydrol-
ogy, 184(1), 3–17. https://doi.org/10.1016/0022-1694(95)02965-6

Ford, T. W., & Labosier, C. F. (2017). Meteorological conditions associated with the onset of flash drought in the Eastern United States. Agricul-
tural and Forest Meteorology, 247, 414–423. https://doi.org/10.1016/j.agrformet.2017.08.031

Ford, T. W., McRoberts, D. B., Quiring, S. M., & Hall, R. E. (2015). On the utility of in situ soil moisture observations for flash drought early 
warning in Oklahoma, USA. Geophysical Research Letters, 42(22), 9790–9798. https://doi.org/10.1002/2015GL066600

Forzieri, G., Miralles, D. G., Ciais, P., Alkama, R., Ryu, Y., Duveiller, G., et al. (2020). Increased control of vegetation on global terrestrial energy 
fluxes. Nature Climate Change, 10(4), 356–362. https://doi.org/10.1038/s41558-020-0717-0

Gerken, T., Ruddell, B. L., Yu, R., Stoy, P. C., & Drewry, D. T. (2019). Robust observations of land-to-atmosphere feedbacks using the informa-
tion flows of FLUXNET. Npj Climate and Atmospheric Science, 2(1), 1–10. https://doi.org/10.1038/s41612-019-0094-4

Hagemann, S., & Stacke, T. (2015). Impact of the soil hydrology scheme on simulated soil moisture memory. Climate Dynamics, 44(7), 1731–
1750. https://doi.org/10.1007/s00382-014-2221-6

Hanel, M., Rakovec, O., Markonis, Y., Máca, P., Samaniego, L., Kyselý, J., & Kumar, R. (2018). Revisiting the recent European droughts from a 
long-term perspective. Scientific Reports, 8(1), 9499. https://doi.org/10.1038/s41598-018-27464-4

Hao, Z., Singh, V. P., & Xia, Y. (2018). Seasonal drought prediction: Advances, challenges, and future prospects. Reviews of Geophysics, 56, 
108–141. https://doi.org/10.1002/2016RG000549

He, M., Kimball, J. S., Yi, Y., Running, S., Guan, K., Jensco, K., et al. (2019). Impacts of the 2017 flash drought in the US Northern plains 
informed by satellite-based evapotranspiration and solar-induced fluorescence. Environmental Research Letters, 14(7), 074019. https://doi.
org/10.1088/1748-9326/ab22c3

Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., et al. (2020). The ERA5 global reanalysis. Quarterly Journal 
of the Royal Meteorological Society, 146(730), 1999–2049. https://doi.org/10.1002/qj.3803

Hoffmann, D., Gallant, A. J. E., & Arblaster, J. M. (2020). Uncertainties in drought from index and data selection. Journal of Geophysical 
Research: Atmospheres, 125(18), e2019JD031946. https://doi.org/10.1029/2019JD031946

Ionita, M., Tallaksen, L., Kingston, D., Stagge, J., Laaha, G., Van Lanen, H., et al. (2017). The European 2015 drought from a climatological 
perspective. Hydrology and Earth System Sciences, 21(3), 1397–1419. https://doi.org/10.5194/hess-21-1397-2017

Jin, C., Luo, X., Xiao, X., Dong, J., Li, X., Yang, J., & Zhao, D. (2019). The 2012 flash drought threatened US midwest agroecosystems. Chinese 
Geographical Science, 29(5), 768–783. https://doi.org/10.1007/s11769-019-1066-7

Konapala, G., & Mishra, A. (2020). Quantifying climate and catchment control on hydrological drought in the continental United States. Water 
Resources Research, 56(1), e2018WR024620. https://doi.org/10.1029/2018WR024620

Konapala, G., Mishra, A. K., Wada, Y., & Mann, M. E. (2020). Climate change will affect global water availability through compounding changes 
in seasonal precipitation and evaporation. Nature Communications, 11(1), 3044. https://doi.org/10.1038/s41467-020-16757-w

Koster, R. D., Schubert, S. D., Wang, H., Mahanama, S. P., & DeAngelis, A. M. (2019). Flash drought as captured by reanalysis data: Disentan-
gling the contributions of precipitation deficit and excess evapotranspiration. Journal of Hydrometeorology, 20(6), 1241–1258. https://doi.
org/10.1175/JHM-D-18-0242.1

Liang, M., & Yuan, X. (2021). Critical role of soil moisture memory in predicting the 2012 central United States flash drought. Frontiers of Earth 
Science, 9. https://doi.org/10.3389/feart.2021.615969

Lisonbee, J., Woloszyn, M., & Skumanich, M. (2021). Making sense of flash drought: Definitions, indicators, and where we go from here. Jour-
nal of Applied and Service Climatology, 2021, 1–19. https://doi.org/10.46275/joasc.2021.02.001

Mahto, S. S., & Mishra, V. (2020). Dominance of summer monsoon flash droughts in India. Environmental Research Letters, 15(10), 104061. 
https://doi.org/10.1088/1748-9326/abaf1d

Mallya, G., Zhao, L., Song, X. C., Niyogi, D., & Govindaraju, R. S. (2013). 2012 Midwest drought in the United States. Journal of Hydrologic 
Engineering, 18(7), 737–745. https://doi.org/10.1061/(ASCE)HE.1943-5584.0000786

Martens, B., Schumacher, D. L., Wouters, H., Muñoz-Sabater, J., Verhoest, N. E., & Miralles, D. G. (2020). Evaluating the surface energy parti-
tioning in ERA5. Geoscientific Model Development Discussions, 1–35.

McColl, K. A., Alemohammad, S. H., Akbar, R., Konings, A. G., Yueh, S., & Entekhabi, D. (2017). The global distribution and dynamics of 
surface soil moisture. Nature Geoscience, 10(2), 100–104. https://doi.org/10.1038/ngeo2868

Miralles, D. G., Berg, M. J., van den Teuling, A. J., & de Jeu, R. A. M. (2012). Soil moisture-temperature coupling: A multiscale observational 
analysis. Geophysical Research Letters, 39(21). https://doi.org/10.1029/2012GL053703

Miralles, D. G., Holmes, T. R. H., De Jeu, R. a. M., Gash, J. H., Meesters, A. G. C. A., & Dolman, A. J. (2011). Global land-surface evaporation 
estimated from satellite-based observations. Hydrology and Earth System Sciences, 15(2), 453–469. https://doi.org/10.5194/hess-15-453-2011

Mishra, A. K., & Singh, V. P. (2010). A review of drought concepts. Journal of Hydrology, 391(1), 202–216. https://doi.org/10.1016/j.jhydrol. 
2010.07.012

Mishra, V., Aadhar, S., & Mahto, S. S. (2021). Anthropogenic warming and intraseasonal summer monsoon variability amplify the risk of future 
flash droughts in India. Npj Climate and Atmospheric Science, 4(1), 1–10. https://doi.org/10.1038/s41612-020-00158-3

Mo, K. C., & Lettenmaier, D. P. (2015). Heat wave flash droughts in decline. Geophysical Research Letters, 42(8), 2823–2829. https://doi.
org/10.1002/2015GL064018

Mo, K. C., & Lettenmaier, D. P. (2016). Precipitation deficit flash droughts over the United States. Journal of Hydrometeorology, 17(4), 1169–
1184. https://doi.org/10.1175/JHM-D-15-0158.1

Mukherjee, S., Mishra, A., & Trenberth, K. E. (2018). Climate change and drought: A perspective on drought indices. Current Climate Change 
Reports, 4(2), 145–163. https://doi.org/10.1007/s40641-018-0098-x

Mukherjee, S., & Mishra, A. K. (2021). Increase in compound drought and heatwaves in a warming world. Geophysical Research Letters, 48(1), 
e2020GL090617. https://doi.org/10.1029/2020GL090617

 23284277, 2022, 6, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2022E

F002660 by C
lem

son U
niversity L

ibraries, W
iley O

nline L
ibrary on [17/10/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://doi.org/10.1088/1748-9326/ab9faf
https://doi.org/10.1088/2515-7620/ab50ca
https://doi.org/10.1175/JHM-D-18-0198.1
https://doi.org/10.1175/JHM-D-18-0198.1
https://doi.org/10.1007/s00477-016-1265-z
https://doi.org/10.1016/0022-1694(95)02965-6
https://doi.org/10.1016/j.agrformet.2017.08.031
https://doi.org/10.1002/2015GL066600
https://doi.org/10.1038/s41558-020-0717-0
https://doi.org/10.1038/s41612-019-0094-4
https://doi.org/10.1007/s00382-014-2221-6
https://doi.org/10.1038/s41598-018-27464-4
https://doi.org/10.1002/2016RG000549
https://doi.org/10.1088/1748-9326/ab22c3
https://doi.org/10.1088/1748-9326/ab22c3
https://doi.org/10.1002/qj.3803
https://doi.org/10.1029/2019JD031946
https://doi.org/10.5194/hess-21-1397-2017
https://doi.org/10.1007/s11769-019-1066-7
https://doi.org/10.1029/2018WR024620
https://doi.org/10.1038/s41467-020-16757-w
https://doi.org/10.1175/JHM-D-18-0242.1
https://doi.org/10.1175/JHM-D-18-0242.1
https://doi.org/10.3389/feart.2021.615969
https://doi.org/10.46275/joasc.2021.02.001
https://doi.org/10.1088/1748-9326/abaf1d
https://doi.org/10.1061/(ASCE)HE.1943-5584.0000786
https://doi.org/10.1038/ngeo2868
https://doi.org/10.1029/2012GL053703
https://doi.org/10.5194/hess-15-453-2011
https://doi.org/10.1016/j.jhydrol.2010.07.012
https://doi.org/10.1016/j.jhydrol.2010.07.012
https://doi.org/10.1038/s41612-020-00158-3
https://doi.org/10.1002/2015GL064018
https://doi.org/10.1002/2015GL064018
https://doi.org/10.1175/JHM-D-15-0158.1
https://doi.org/10.1007/s40641-018-0098-x
https://doi.org/10.1029/2020GL090617


Earth’s Future

MUKHERJEE AND MISHRA

10.1029/2022EF002660

14 of 14

Mukherjee, S., & Mishra, A. K. (2022). A multivariate flash drought indicator for identifying global hotspots and associated climate controls. 
Geophysical Research Letters, 49(2), e2021GL096804. https://doi.org/10.1029/2021GL096804

Noguera, I., Domínguez-Castro, F., & Vicente-Serrano, S. M. (2021). Flash drought response to precipitation and atmospheric evaporative 
demand in Spain. Atmosphere, 12(2), 165. https://doi.org/10.3390/atmos12020165

Osman, M., Zaitchik, B. F., Badr, H. S., Christian, J. I., Tadesse, T., Otkin, J. A., & Anderson, M. C. (2020). Flash drought onset over the Contig-
uous United States: Sensitivity of inventories and trends to quantitative definitions. Hydrology and Earth System Sciences Discussions, 1–21. 
https://doi.org/10.5194/hess-2020-385

Otkin, J. A., Anderson, M. C., Hain, C., Svoboda, M., Johnson, D., Mueller, R., et  al. (2016). Assessing the evolution of soil moisture and 
vegetation conditions during the 2012 United States flash drought. Agricultural and Forest Meteorology, 218–219, 230–242. https://doi.
org/10.1016/j.agrformet.2015.12.065

Otkin, J. A., Svoboda, M., Hunt, E. D., Ford, T. W., Anderson, M. C., Hain, C., & Basara, J. B. (2018). Flash droughts: A review and assessment 
of the challenges imposed by rapid-onset droughts in the United States. Bulletin of the American Meteorological Society, 99(5), 911–919. 
https://doi.org/10.1175/BAMS-D-17-0149.1

Park, S., Im, J., Jang, E., & Rhee, J. (2016). Drought assessment and monitoring through blending of multi-sensor indices using machine learning 
approaches for different climate regions. Agricultural and Forest Meteorology, 216, 157–169. https://doi.org/10.1016/j.agrformet.2015.10.011

Parker, T., Gallant, A., Hobbins, M., & Hoffmann, D. (2021). Flash drought in Australia and its relationship to evaporative demand. Environmen-
tal Research Letters, 16(6), 064033. https://doi.org/10.1088/1748-9326/abfe2c

Pendergrass, A. G., Meehl, G. A., Pulwarty, R., Hobbins, M., Hoell, A., AghaKouchak, A., et al. (2020). Flash droughts present a new challenge 
for subseasonal-to-seasonal prediction. Nature Climate Change, 10(3), 191–199. https://doi.org/10.1038/s41558-020-0709-0

Raymond, C., Horton, R. M., Zscheischler, J., Martius, O., AghaKouchak, A., Balch, J., et al. (2020). Understanding and managing connected 
extreme events. Nature Climate Change, 10(7), 611–621. https://doi.org/10.1038/s41558-020-0790-4

Reichle, R. H., Draper, C. S., Liu, Q., Girotto, M., Mahanama, S. P. P., Koster, R. D., & Lannoy, G. J. M. D. (2017). Assessment of MERRA-2 
land surface hydrology estimates. Journal of Climate, 30(8), 2937–2960. https://doi.org/10.1175/JCLI-D-16-0720.1

Rhee, J., & Im, J. (2017). Meteorological drought forecasting for ungauged areas based on machine learning: Using long-range climate forecast 
and remote sensing data. Agricultural and Forest Meteorology, 237, 105–122. https://doi.org/10.1016/j.agrformet.2017.02.011

Seneviratne, S. I., Corti, T., Davin, E. L., Hirschi, M., Jaeger, E. B., Lehner, I., et al. (2010). Investigating soil moisture–climate interactions in a 
changing climate: A review. Earth-Science Reviews, 99(3), 125–161. https://doi.org/10.1016/j.earscirev.2010.02.004

Seneviratne, S. I., Koster, R. D., Guo, Z., Dirmeyer, P. A., Kowalczyk, E., Lawrence, D., et al. (2006). Soil moisture memory in AGCM Simula-
tions: Analysis of global land–atmosphere coupling experiment (GLACE) data. Journal of Hydrometeorology, 7(5), 1090–1112. https://doi.
org/10.1175/JHM533.1

Su, J., Gou, X., HilleRisLambers, J., Deng, Y., Fan, H., Zheng, W., et al. (2021). Increasing climate sensitivity of subtropical conifers along an 
aridity gradient. Forest Ecology and Management, 482, 118841. https://doi.org/10.1016/j.foreco.2020.118841

Sutanto, S. J., van der Weert, M., Wanders, N., Blauhut, V., & Van Lanen, H. A. J. (2019). Moving from drought hazard to impact forecasts. 
Nature Communications, 10(1), 4945. https://doi.org/10.1038/s41467-019-12840-z

Svoboda, M., LeComte, D., Hayes, M., Heim, R., Gleason, K., Angel, J., et al. (2002). The drought MONITOR. Bulletin of the American Mete-
orological Society, 83(8), 1181–1190. https://doi.org/10.1175/1520-0477-83.8.1181

Vicente-Serrano, S. M., McVicar, T. R., Miralles, D. G., Yang, Y., & Tomas-Burguera, M. (2020). Unraveling the influence of atmospheric 
evaporative demand on drought and its response to climate change. WIREs Climate Change, 11(2), e632. https://doi.org/10.1002/wcc.632

Wang, H., Rogers, J. C., & Munroe, D. K. (2015). Commonly used drought indices as indicators of soil moisture in China. Journal of Hydrome-
teorology, 16(3), 1397–1408. https://doi.org/10.1175/jhm-d-14-0076.1

Wang, L., & Yuan, X. (2018). Two types of flash drought and their connections with seasonal drought. Advances in Atmospheric Sciences, 35(12), 
1478–1490. https://doi.org/10.1007/s00376-018-8047-0

Wang, L., Yuan, X., Xie, Z., Wu, P., & Li, Y. (2016). Increasing flash droughts over China during the recent global warming hiatus. Scientific 
Reports, 6(1), 30571. https://doi.org/10.1038/srep30571

Yuan, X., Wang, L., Wu, P., Ji, P., Sheffield, J., & Zhang, M. (2019). Anthropogenic shift towards higher risk of flash drought over China. Nature 
Communications, 10(1), 4661. https://doi.org/10.1038/s41467-019-12692-7

Zscheischler, J., Martius, O., Westra, S., Bevacqua, E., Raymond, C., Horton, R. M., et al. (2020). A typology of compound weather and climate 
events. Nature Reviews Earth & Environment, 1(7), 333–347. https://doi.org/10.1038/s43017-020-0060-z

References From the Supporting Information
Gevaert, A. I., Miralles, D. G., de Jeu, R. A. M., Schellekens, J., & Dolman, A. J. (2018). Soil moisture-temperature coupling in a set of land 

surface models. Journal of Geophysical Research: Atmospheres, 123(3), 1481–1498. https://doi.org/10.1002/2017JD027346
Jia, A., Liang, S., Jiang, B., Zhang, X., & Wang, G. (2018). Comprehensive assessment of global surface Net radiation Products and uncertainty 

analysis. Journal of Geophysical Research: Atmospheres, 123(4), 1970–1989. https://doi.org/10.1002/2017JD027903
Liu, X., He, B., Guo, L., Huang, L., & Chen, D. (2020). Similarities and differences in the mechanisms causing the European summer heatwaves 

in 2003, 2010, and 2018. Earth's Future, 8(4), e2019EF001386. https://doi.org/10.1029/2019EF001386
Lu, J., Sun, G., McNulty, S. G., & Amatya, D. M. (2005). A comparison of six potential evapotranspiration methods for regional Use in the southeast-

ern United States1. JAWRA Journal of the American Water Resources Association, 41(3), 621–633. https://doi.org/10.1111/j.1752-1688.2005.
tb03759.x

Miralles, D. G., van den Berg, M. J., Teuling, A. J., & de.Jeu, R. A. M. (2012). Soil moisture-temperature coupling: A multiscale observational 
analysis. Geophysical Research Letters, 39(21). https://doi.org/10.1029/2012GL053703

Shukla, P., Skeg, J., Buendia, E. C., Masson-Delmotte, V., Pörtner, H.-O., Roberts, D., et al. (2019). Climate change and land: An IPCC special 
report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terres-
trial ecosystems.

Unep, N. M., & Thomas, D. (1992). World atlas of desertification (pp. 15–45). Edward Arnold.
Wang, D., & Tang, Y. (2014). A one-parameter Budyko model for water balance captures emergent behavior in Darwinian hydrologic models. 

Geophysical Research Letters, 41(13), 4569–4577. https://doi.org/10.1002/2014GL060509
Yuan, W., Zheng, Y., Piao, S., Ciais, P., Lombardozzi, D., Wang, Y., et al. (2019). Increased atmospheric vapor pressure deficit reduces global 

vegetation growth. Science Advances, 5(8), eaax1396. https://doi.org/10.1126/sciadv.aax1396

 23284277, 2022, 6, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2022E

F002660 by C
lem

son U
niversity L

ibraries, W
iley O

nline L
ibrary on [17/10/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://doi.org/10.1029/2021GL096804
https://doi.org/10.3390/atmos12020165
https://doi.org/10.5194/hess-2020-385
https://doi.org/10.1016/j.agrformet.2015.12.065
https://doi.org/10.1016/j.agrformet.2015.12.065
https://doi.org/10.1175/BAMS-D-17-0149.1
https://doi.org/10.1016/j.agrformet.2015.10.011
https://doi.org/10.1088/1748-9326/abfe2c
https://doi.org/10.1038/s41558-020-0709-0
https://doi.org/10.1038/s41558-020-0790-4
https://doi.org/10.1175/JCLI-D-16-0720.1
https://doi.org/10.1016/j.agrformet.2017.02.011
https://doi.org/10.1016/j.earscirev.2010.02.004
https://doi.org/10.1175/JHM533.1
https://doi.org/10.1175/JHM533.1
https://doi.org/10.1016/j.foreco.2020.118841
https://doi.org/10.1038/s41467-019-12840-z
https://doi.org/10.1175/1520-0477-83.8.1181
https://doi.org/10.1002/wcc.632
https://doi.org/10.1175/jhm-d-14-0076.1
https://doi.org/10.1007/s00376-018-8047-0
https://doi.org/10.1038/srep30571
https://doi.org/10.1038/s41467-019-12692-7
https://doi.org/10.1038/s43017-020-0060-z
https://doi.org/10.1002/2017JD027346
https://doi.org/10.1002/2017JD027903
https://doi.org/10.1029/2019EF001386
https://doi.org/10.1111/j.1752-1688.2005.tb03759.x
https://doi.org/10.1111/j.1752-1688.2005.tb03759.x
https://doi.org/10.1029/2012GL053703
https://doi.org/10.1002/2014GL060509
https://doi.org/10.1126/sciadv.aax1396

	Global Flash Drought Analysis: Uncertainties From Indicators and Datasets
	Recommended Citation

	Global Flash Drought Analysis: Uncertainties From Indicators and Datasets
	Abstract
	1. Introduction
	2. Data
	3. Methodology
	3.1. Flash Drought Identification
	3.1.1. FDSESR Detection Methodology
	3.1.2. FDRZSM Detection Methodology

	3.2. Random Forest Algorithm

	4. Results
	4.1. Uncertainties in Global FDSESR and FDRZSM Characteristics
	4.2. Climate Controls of FDSESR and FDRZSM Evolution
	4.3. Effect of Background Aridity on FDSESR and FDRZSM Intensification
	4.3.1. Sensitivity of ESR and RZSM Relationship to Changes in Background Aridity
	4.3.2. Key Drivers of FDSESR and FDRZSM Intensification in Different Climate Regimes


	5. Discussion and Conclusion
	[DummyTitle]
	Data Availability Statement
	References
	References From the Supporting Information


