Clemson University TigerPrints

Chemistry Annual Research Symposium

Student Works

3-2016

Short F…F and F(Cl)…O contacts in fluoroorganic crystals, and short Ag…Ag and Ag…O contacts in silver polyfluoroacetate salts

Xiaolin Liu *Clemson University*

Andrej V. Matsnev Clemson University

Steven P. Belina Clemson University

Colin D. McMillen *Clemson University*

Joseph S. Thrasher *Clemson University*

Follow this and additional works at: https://tigerprints.clemson.edu/cars Part of the <u>Chemistry Commons</u>

Recommended Citation

Liu, Xiaolin; Matsnev, Andrej V.; Belina, Steven P.; McMillen, Colin D.; and Thrasher, Joseph S., "Short F…F and F(Cl)…O contacts in fluoroorganic crystals, and short Ag…Ag and Ag…O contacts in silver polyfluoroacetate salts" (2016). *Chemistry Annual Research Symposium*. 5.

https://tigerprints.clemson.edu/cars/5

This Poster is brought to you for free and open access by the Student Works at TigerPrints. It has been accepted for inclusion in Chemistry Annual Research Symposium by an authorized administrator of TigerPrints. For more information, please contact kokeefe@clemson.edu.

Short F...**F** and **F**(**CI**)...**O** contacts in fluoroorganic crystals, and short Ag...Ag and Ag...O contacts in silver polyfluoroacetate salts

Xiaolin Liu*, Andrej V. Matsnev, Steven P. Belina, Colin D. McMillen, Joseph S. Thrasher**

Departments of Chemistry and Material Science and Engineering, Advanced Materials Research Laboratory, Clemson University, 91 Technology Drive, Anderson, SC 29625, USA

Introduction

The compound 2,2,5,5-tetrafluoro-2,5-dihydrofuran (1) [1] has been synthesized as a candidate monomer for synthesizing amorphous fluoropolymers in our research laboratory. Meanwhile, several crystal structures of products resulting from either new or existing chemistry of this cyclic ether have been solved and will be reported herein. The structures of the tricyclic ether 4 [2], resulting from the photodimerization of 1 in the presence of dry air, as well as perfluorooxodiacetic acid, resulting from the ringopening oxidation of 1 [3], show a variety of short H---F, F---F, and O---F interactions. The crystal structure of 1,1,2,2,3,3,4,4-octafluorobutane-1,4-disulfonyl dichloride (ODD) reveals not only short F...F contacts but also short O...Cl contacts as well. The crystal structures of disilver perfluorooxodiacetate, AgO(O)CCF₂OCF₂C(O)OAg, and silver pentafluorosulfanyldifluoroacetate, AgOC(O)CF₂SF₅, salts prepared from the corresponding acids [4,5], show both short Ag...Ag and Ag...O contacts, where the former argentophilic interactions [6] are as short as 2.8-3.0 Å. Finally, the crystal structures of several other pentafluorosulfanyl derivatives (substituted benzenes and heterocycles) will be discussed in terms of additional examples of short H---F, F---F, and O---F interactions

Synthesis of Compounds

Table 5. Short Contacts of ODD	
Interaction	Hydrogen/halogen bond distance
F1F1	F1F1 = 2.706 Å
CI101	Cl1O1 = 3.226 Å

Figure 6. Crystal Structure of 6.

Table 6. Short Contacts of 6	
Interaction	Hydrogen/halogen bond distance
F5F5	F5F5 = 2.658 Å
F2H7	F2H7 = 2.628 Å
F5H2	F5H2 = 2.659 Å
F5H7	F5H7 = 2.608 Å
H5F4	H5F4 = 2.619 Å

Short Ag...**Ag**/**Ag**...**O Contacts**

Figure 5.1. Electron density contour map of F1---F1 and Cl1---O1 areas for ODD.

Figure 6.1. Electron density contour map of F5---F5 areas for 6.

Short F…F and F/Cl…O Contacts

Figure 1. Crystal structure of 2.

Table 1. Short Contacts of 2		
Interaction	Hydrogen/halogen	
	bond distance	
O2F1	O2F1 = 2.936 Å	
O3F1	O3F1 = 2.999 Å	
O3-H3F1	H3F1 = 2.731 Å	
O3-H3O2	H3O2 = 1.854 Å	
O3-H3O2	H3O2 = 2.902 Å	

Table 2. Short Contacts of 4		
Interaction	Hydrogen/halogen	
	bond distance	

F1---F3

F2---H1B

F1---F3 = 2.984 Å

F2---H1B = 2.649 Å

Table 7. Short Contacts of 3 Hydrogen/halogen bond distance Interaction F7---F2 = 2.866 Å F7---F2 F5---H11A = 2.09 Å F5---H11A F8---O5 = 2.909 Å F8---05 O10---F7 = 2.613 Å O10---F7 07---F6 = 2.718 Å 07---F6 O1---F2 = 2.816 Å 01---F2 O2---F1 = 2.628 Å O2---F1 O4---F3 = 2.687 Å O4---F3 O4---F4 = 2.854 Å O4---F4 Ag2---Ag2 = 2.817 Å Ag2----Ag2 Ag3---Ag3 = 2.975 Å Ag3---Ag3

Figure 8. Crystal structure of 5.

Figure 7.1 Electron density contour map of F7---F2 area for **3**.

Figure 7.2 Electron density contour map of Ag2---Ag2 area for 3.

Table 8. Short Contacts of 5		
Interaction	Hydrogen/halogen bond	
	distance	
F1F3	F1F3 = 2.971 Å	
F1O1	F1O1 = 2.879 Å	
F202	F2Ω2 – 2 845 Å	

Figure 3. Crystal structure of **SF**₅**C**₆**H**₄**NH**₂.

 $\Pi Z^{---} \Gamma 4 = Z.407 A$ H3---F1 = 2.437 Å F2---F3 = 2.932 Å

FZ---UZ 12 - 02 = 2.045 AF2---O1 = 2.644 Å F2---01 F1---O2 = 2.628 Å F1---O2 F4---O2 = 2.988 Å F4---02 O2---F1 = 2.628 Å 02---F1 O4---F3 = 2.687 Å O4---F3 Ag1---Ag1 = 2.960 Å Ag1---Ag1

References

[1] B.V. Kunshenko, L.A. Motnyak, T.A. Neizvestnaya, *Zh. Org. Khim.* **1986**, *22*, 1791-1792. [2] Yu.M. Pustovit, P.I. Ogojko, V.P. Nazaretian, J. Fluorine Chem. 1994, 69, 237-240. [3] W. Dmowski, R.A. Kolinski, R. Wozniacki, Pol. J. Chem. 1978, 52, 1297-1301. [4] R.E. Banks, E.D. Burling, B.A. Dodd, K. Mullen, J. Chem. Soc. (C) 1969, 1706-1709. [5] A.V. Matsnev, S.-Y. Qing, M.A. Stanton, K.A. Berger, G. Haufe, J.S. Thrasher, Org. Lett. 2014, 16, 2402-2405. [6] H. Schmidbauer, A. Schier, Angew. Chem. Int. Ed. 2015, 54, 746-784.

Acknowledgements

Dr. Charles W. Bauknight, Jr., Dr. Richard E. Fernandez, Dr. Iqbal Sharif, Chen Liu, Siyan Qing, Cameron Parrish, Daniel Hercules, and Zhixin Chen. Sponsors: NSF-ICC 1124859, DOE-BES DE-FG02-05ER15718.

