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Abstract

This study investigated the anthropogenic influence on the temporal variability of annual
precipitation for the period 1950-2005 as simulated by the CMIP5 models. The temporal
variability of both annual precipitation amount (PRCPTOT) and intensity (SDII) was first
measured using a metric of statistical dispersion called the Gini coefficient. Comparing
simulations driven by both anthropogenic and natural forcing (ALL) with simulations of
natural forcing only (NAT), we quantified the anthropogenic contributions to the changes in
temporal variability at global, continental and sub-continental scales as a relative difference of
the respective Gini coefficients of ALL and NAT. Over the period of 1950-2005, our results
indicate that anthropogenic forcing have resulted in decreased uniformity (i.e. increase in
unevenness or disparity) in annual precipitation amount and intensity at global as well as
continental scales. In addition, out of the 21 sub-continental regions considered,

14 (PRCPTOT) and 17 (SDII) regions showed significant anthropogenic influences. The
human impacts are generally larger for SDII compared to PRCTOT, indicating that the
temporal variability of precipitation intensity is generally more susceptible to anthropogenic
influence than precipitation amount. The results highlight that anthropogenic activities have
changed not only the trends but also the temporal variability of annual precipitation, which
underscores the need to develop effective adaptation management practices to address the

increased disparity.

1. Introduction

Understanding the anthropogenic contributions to
climate change is an important aspect of climate
science to advance our knowledge of the causes of the
observed climatic trends and changes in extremes.
Previous studies have established the anthropogenic
influence on trends of climate variables, such as,
precipitation (Zhang et al 2007), surface air tempera-
ture (Hegerl et al 1997, Zhang et al 2006), tropopause
height (Santer et al 2003) and ocean heat content
(Barnett et al 2005a, 2005b), among others. Some
studies have highlighted the influence of human
activities on individual extreme events, such as
California’s drought (Williams et al 2015), England’s
flood risk (Pall et al 2011) and European heat waves
(Stott et al 2004, Otto et al 2012, Dole et al 2011) as

well as the concurrence of multiple climate extremes
(Min et al 2011, Angélil et al 2014, Fischer and Knutti
2015). Zhang et al (2013) and Zwiers et al (2011)
identified the contribution of anthropogenic factors
for intensification of precipitation extremes and
prolonging return periods of daily temperature
extremes.

Understanding the changes in annual precipitation
is crucial for water resources planning to sustain
agricultural, ecological and water infrastructure
development in addition to protection of transport
systems, homes and business infrastructure. Long
term trends explain only one aspect of the changes
occurring to annual precipitation. Combining the
inter-annual and inter-decadal variability of precipi-
tation and precipitation trends would give an overall
picture of changes occurring in annual precipitation.

© 2017 IOP Publishing Ltd
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Previous studies established some linkages between
annual and interannual-to-decadal variability of
precipitation over land and natural modes of
variability of the coupled climate system, such as El
Nino—Southern Oscillation (ENSO), Arctic Oscilla-
tion (AO), and North Atlantic Oscillation (NAO),
through teleconnection (Gu and Adler 2004, 2006,
Medvigy et al 2008, Small and Islam 2008, Garreaud
et al 2013). Global warming induced by anthropogenic
forcing may alter the variability of precipitation.
Simple thermodynamical argument in addition to
circulation Changes (Schaller et al 2016) for ‘wet
gets wetter, dry gets drier’ (Held and Soden 2006)
and ‘warm gets drier’ (Xie et al 2010) suggests
an increase in spatial heterogeneity of precipitation, as
the increase in atmospheric precipitable water with
warmer temperatures enhances moisture convergence
or divergence in climatologically wet or dry regions. A
similar heuristic argument would also suggest an
increase in precipitation temporal variability would
indicate an enhanced moisture convergence or
divergence during wet or dry years.

A major source of uncertainty in the simple
arguments used to scale changes in precipitation
variability with warming is that they ignore potential
changes in interannual or decadal modes of variability
with warming and the teleconnection pathways that
linked such changes to precipitation over land. Recent
studies found a projected increase in the frequency of
extreme ENSO event under GHG forcing (Cai et al
2014, 2015, Capotondi 2015), but the projected
changes in spatial structure and amplitude of ENSO
(e.g. Vecchi and Wittenberg 2010) and the precipita-
tion response in the tropics and extra-tropics (Meehl
and Teng 2007, Seager et al 2012) remain largely
uncertain. By decomposing the model projected
precipitation response to a canonical ENSO pattern
of sea surface temperature variability into changes in
the mean state of precipitation and the historical as
well as a future enhancement in precipitation response
to the canonical ENSO pattern, Bonfils et al (2015)
identified regions that will likely experience precipita-
tion anomalies that are without precedent in the
current climate. These studies have provided a strong
motivation to investigate the changes in precipitation
temporal variability due to anthropogenic forcing in
the past and future.

Estimating the changes in temporal variability of
precipitation is complicated by uncertainty in the
model simulations as well as the metrics used to define
variability and detect its changes. This study attempts
to estimate the changes in temporal variability of
precipitation due to human contributions as well as
quantifying its uncertainty. We introduce an index
based on the Gini coefficient to quantify the
anthropogenic influence on temporal variability of
annual precipitation amount and intensity. The Gini
coefficient is a measure of statistical dispersion that has
been widely used in the field of economics as a
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measure of income inequality (Ceriani and Verme
2011). Recently, the Gini coefficient has also been
applied in climate science (Masaki et al 2014, Rajah
et al 2014). Unlike other measures, the Gini coefficient
is not sensitive to the scale and probability distribution
of the data, making it robust and easy to interpret
(Rajah et al 2014, Ceriani and Verme 2011). We
estimated the human contribution to potential
changes in temporal precipitation variability at global
and continental scales and to the Giorgi climate
division (Giorgi 2000). The remainder of the paper is
structured as follows: data description is in section 2,
methods in section 3, and the results are presented in
section 4, with discussions and conclusions provided
in section 5.

2. Data

We utilized 42 realizations from 15 CMIP5 GCM
models (see supplementary table T1 available at stacks.
iop.org/ERL/12/024009/mmedia) to obtain ‘annual
total precipitation (PRCPTOT)” and ‘simple precipi-
tation intensity index (SDII)’ from the CLIMDEX
archive hosted by Canadian Centre for Climate
Modeling and Analysis for the attribution analysis.
PRCPTOT is defined as the total amount of
precipitation on wet days (days with precipitation
>1 mm). SDII is the annual precipitation intensity,
obtained by dividing the total amount of precipitation
in a year by the number of wet days in a year.
PRCPTOT and SDII calculated from model simu-
lations for historical (1950—2005) and historicalNat
(1950-2005) were used to estimate the anthropogenic
contribution to temporal variability. The historical
simulations were driven by both time-dependent
anthropogenic (greenhouse gas concentrations, aero-
sols and ozone and land use) and natural (solar and
volcanic) forcing, while the historicalNat simulations
were run only with the time-dependent natural
forcing, hence providing estimates of the Earth’s
climate without anthropogenic influences. To com-
pare the historical simulations, we utilized the
observed dataset of the same variables obtained from
HADEX2 dataset (Donat et al 2013) of CLIMDEX
archive.

As the spatial resolution of the simulated
precipitation variables from the GCMs varies, we
have interpolated all the data to a common grid of
resolution 2° latitude x 2° longitude using bilinear
interpolation method. For temporal attribution,
numerous studies (Zhang et al 2013, Westra et al
2013, Santer et al 2007) found that the signal-to-noise
ratio of climate variables is enhanced by spatial
averaging, resulting in a more statistically significant
climate signal. Therefore, we used the spatial mean of
the global land, continental land, and the Giorgi
climate division (Giorgi and Francisco 2000) to obtain
a single time series for each specific spatial unit.
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3. Methodology

3.1. Gini coefficient

The Gini coefficient has been recently applied to
quantify uniformity in time series of climate variables
(Masaki et al 2014, Rajah et al 2014) and computed
according to equation (1).

n

Z(n +1-—19)y,
= (1)
Z)’i

1
G=—-|n+1-2
n

In our context, y; indicates the PRCPTOT or SDII
at a particular year i and » indicates the total number
of years. The value of G theoretically varies between 0
and 1, with 0 corresponding to a complete uniformity
(i.e. all the precipitation values are the same) and 1
corresponding to maximal non-uniformity or largest
disparity (i.e. only a single annual precipitation
amount is observed during the entire study period).
So, smaller values of the Gini coefficient signify more
uniformity in the temporal variation of precipitation.
Figure 1 presents a pictorial derivation of the Gini
coefficient. A brief discussion on comparison between
Gini coefficient and traditional methods are provided
in the supplementary information. Other methods like
standard deviation and coefficient of variation are
sensitive to scale and probability distribution of
the data.

We also compared the Gini coefficient of the
observed and simulated PRCPTOT and SDII to
identify regions where there is an agreement
(disagreement) in terms of their temporal variability
(figure 2). The multi model ensemble mean of the Gini
coefficient captures the variability of PRCPTOT in
most regions. However, it underestimates the Gini
coefficients in the Andes Mountain in South America
and Himalayan mountains in Asia, while in the Middle
East and India it is overestimated. Similarly, for SDII,
better performance was observed in Europe, Western
Asia, North America and South Africa. The models
tend to overestimate the Gini coefficient in Middle
Eastern Asia and western part of India. Due to limited
precipitation data in many parts of Africa, Australia,
the Amazon in South America and Greenland, we only
showed the modeled variability in locations with
observations for comparison. However, the supple-
mentary figure S2 includes the coverage of all the land
regions. To sum up, figures 2 and S2 show higher
values of the Gini coefficient in most of the global arid
regions. Overall, the good agreement between the Gini
coefficients from observed and modeled annual
precipitation variability in terms of both magnitude
and intensity supports the use of the CMIP5 model
outputs to quantify the anthropogenic contribution to
changes in the temporal variability of PRCPTOT and
SDII.
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Figure 1. Pictorial explanation of the Gini coefficient for
temporal variability: the annual precipitation amount is first
ranked before being added cumulatively and converted to
percentiles as shown by the red curve. The Gini value is then
estimated as twice the area between the equality line (1 to 1 line)
and the ranked distribution, depicted by the pink shaded area.
Hence, the more pink an area is, the more the variability.

3.2. Relative anthropogenic index

A change between any two scenarios can be detected
by evaluating their difference or the ratio of the
corresponding model outputs. With this conceptual
framework, several studies have evaluated the influ-
ence of greenhouse gases on tropical cyclone
characteristics (Gualdi et al 2007) and tropospheric
sulphate aerosol (Langner et al 1992). More recently,
the fractional attributable risk (FAR) methodology
(Stott et al 2004) based on the relative difference of
probabilities was used to estimate the influence of
anthropogenic forcing on heat waves (Pall et al 2011),
climate extremes (Fischer and Knutti 2015, King et al
2015) and meteorological drought (Gudmundsson
and Seneviratne 2016). This methodology quantifies
the influence of anthropogenic forcing along with its
statistical significance through bootstrapping. Like-
wise, we quantify the anthropogenic influence on
temporal variability of precipitation via a change in the
Gini coefficient. Here we define a Relative Anthropo-
genic Index (RAI) as the relative difference between
the historical and HistoricalNat scenarios as follows:

_ GarL — Guat 2)

RAI
GarL

Where, Ga11, and Guar represent the Gini coefficients
of the anthropogenic plus natural forcing (ALL) and
natural forcing only (NAT) simulations, respectively. A
positive RAI indicates a decrease in annual precipita-
tion variability, whereas a negative RAI indicates an
increase in variability due to anthropogenic forcing. In
the context of resource management, a positive RAI
value implies increased challenges in managing water
resources and ecosystems, whereas a negative value
indicates reduced variability so water resources
are more manageable. Also, as the RAI is a relative
difference metric, a higher difference indicates more
influence in positive as well negative RAI values.
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Figure 2. Comparison between observed (OBS) and multi model ensemble mean (ALL) Gini coefficients for PRCPTOT (mm/year) and
SDII (mm/day) indices. The GCM data is masked to show only those regions where observed data is available for better representation.

We calculated the RAI for a specified spatial unit by
first spatially averaging the gridded Gini coefficients
over the specified region for a particular scenario and
realization. Therefore, each spatial unit has a single
Gini value for each CMIP5 realization separately for
the ALL and NAT scenarios. Then we estimated the
RALI as explained by equation (2) by using the multi
model ensemble means of 42 CMIP5 realizations. In
order to estimate uncertainty in the RAI values, we
used the Bootstrapping resampling procedure (Efron
and Tibshirani 1994) to generate 10 000 sub-samples
from the 42 CMIP5 realizations and ranked them to
extract the 5th percentile and 95th percentile RAI
values. A positive RAI median is statistically significant
if its 5th percentile value is also positive. Similarly, for
negative RAI median to be statistically significant, the
95th percentile value should also be negative (Fischer
and Knutti 2015, King et al 2015). Hence, the RAI
estimates the influence of anthropogenic forcings on
the temporal variation along with its significance. To
further aid the significance of RAL, a two sample t-test
on the Garp and Guar resamples was performed and
reported in the supplementary information.

4. Results

For global land analysis, the Gini coefficients are
calculated separately for the ALL and NAT scenarios

over all the land regions as mentioned in section 3.1
for all the 42 GCM realizations and averaged spatially.
Then through the process of bootstrapping, we
randomly selected GCM models with repetition from
the pool of 42 GCM models considered and computed
their ensemble means. This process was repeated
10000 times to obtain 10000 spatially averaged Gini
coefficients that represent the inter-model variability.
The probability distributions of the globally averaged
bootstrap resampled Gini coefficients derived from the
multi-model ensemble global land means were plotted
in figure 3 (top panel). This represents the inter-model
GCM spread of the estimated global land averaged Gini
coefficients. The RAI was then computed for all the
resampled (shown in the top panel) Gini coefficients
and from its distribution the median and 95th percentile
values were determined as shown in figure 3 (bottom
panel). We used the median RAI value obtained from
this bootstrapped distribution as our best estimate in all
our discussions. There is an increase in RAI for
PRCPTOT (0.11) and SDII (0.14), which indicates
higher temporal variability due to anthropogenic
contributions at global scale. This result indicates a
statistically significant (95% confidence) increase in
non-uniformity of PRCPTOT and SDII by 11% and
14%, respectively due to anthropogenic forcings.
Figure 4 shows the best RAI (i.e. median value)
estimates at continental scale along with their 95% and

4
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Figure 3. The figure on the top panel shows the probability distribution of the resampled global land averaged Gini coefficients for ALL
and NAT scenarios obtained by the bootstrapping procedure explained in section 3.1. The bottom panel represents the distribution of RAI
values for PRCPTOT (mm/year) and SDII (mm/day) as obtained from utilizing the ALL and NAT scenarios from the top panels. The solid

red line indicates the median (best estimate) value of RAI and the dashed line indicates the 95th percentile value.
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Figure 4. The temporal RAI estimates of PRCPTOT (red) and SDII (blue) calculated from spatially averaged over continents. In the
figure, the median (solid dot) represents best estimates derived based on bootstrapping procedure.
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5% limits. The RAI values for all continents except
Australia (AUS) are significantly greater than zero for
both PRCPTOT and SDII. Europe (EU), Asia (AS) and
North America (NA) register higher temporal
variability of SDII and PRCPTOT respectively due
to anthropogenic forcing in comparison to all other
continents. Furthermore, all continents exhibit small
differences in anthropogenic influence on temporal
variability between PRCPTOT and SDII with the
exception of Europe (EU). Australia (AUS) does not
exhibit a statistically significant change in temporal
variability of both PRCPTOT and SDII. The best
estimate RAI value for the African (AF), Asian (AS)
and North American (NA) and South American (SA)
continents indicates that asymmetry has increased in
SDII and PRCPTOT due to anthropogenic forcing by
a factor of 0.04, 0.1, 0.1 and 0.08 (4%, 10%, 10%, 8%
increase) respectively.

Figure 5 shows the best RAI estimates in the Giorgi
regions along with their uncertainty range at 95% and

5% limits. Among all the Giorgi climate divisions, the
GRL region located in North America exhibits higher
anthropogenic influence on the variability of both
PRCPTOT and SDII. The NEU region located in the
European continent exhibits the largest difference of
anthropogenic influence on the variability between
PRCPTOT and SDII. However, EAF, SAF, SAH, SAS
and WNA exhibit statistically insignificant anthropo-
genic influence on PRCPTOT. Similarly, for SDII, the
regions of ENA, WNA and SSA exhibit insignificant
anthropogenic influence. Overall, larger RAI values for
SDII compared to PRCPTOT indicate that the
temporal variability of precipitation intensity is more
susceptible to anthropogenic disturbances than pre-
cipitation amounts. The African continent has more
number of regions with insignificant anthropogenic
induced non-uniformity. Both regions located in
Europe show an average RAI value of 0.11 and 0.7 for
SDII and PRCPTOT, respectively, indicating that
Europe may have higher anthropogenic induced
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non-uniformity among all the continents. Asia and
North America have also exhibited more number of
regions with significant anthropogenic induced
changes in temporal variability.

From a physical perspective, warming in the
historical period could lead to an increase in total
precipitation due to an increased water holding
capacity in the atmosphere. For example, climate
models projected an increase of global mean
precipitation by about 2% per degree warming in
the future (Held and Soden 2006). Regionally,
precipitation changes are more variable. The differ-
ence in the Gini coefficient between the ALL forcing
and NAT forcing simulations could potentially reflect
the trends in response to warming in the ALL forcing
simulations. To investigate if a larger magnitude of
trend increases the Gini value, we calculated the linear
trends of the multi-model ensemble mean for
PRCPTOT and SDII in all 42 historical realizations
for the period 1951 to 2005. The linear trend
magnitude calculated using the absolute value of
Sen’s slope (Sen 1968) and its correlation with the
Gini coefficient are shown in supplementary figure
S3. The coefficient of determination (R?) between the
linear trend magnitudes and the Gini coefficients
is 0.0058 and 0.0067 for PRCTOT and SDII,
respectively. These results indicate that statistically
there is no linear relation between the magnitude of
long-term linear trends and the Gini coefficients,
suggesting that the differences in the Gini coefficients
between the ALL forcing and NAT forcing simu-
lations are not solely reflecting annual precipitation
trends, but also changes in the interannual and/or
interdecadal variability in annual precipitation and
precipitation intensity.

5. Discussion and conclusions

Recognizing that anthropogenic forcing could have a
significant influence on the temporal variability of
precipitation amounts (PRCPTOT) and intensity
(SDII), this study used the Gini coefficient to detect
changes in the temporal variability of annual
precipitation. By comparing CMIP5 simulations with
ALL and NAT forcing, we found a clear signal
indicating a significant anthropogenic influence on the
temporal variability of PRCPTOT and SDII at global
scale. The same is true at continental scale except for
the Australian continent, where natural variability
induced by various teleconnections (Risbey et al 2009,
King et al 2014) is more dominant. Despite the lack of
a signal in temporal variability, the decrease in
Australian precipitation has been attributed to
anthropogenic forcing (Timbal et al 2006 and
Delworth and Zeng 2014), consistent with the
understanding that processes influence the trend
and variability of PRCPTOT and SDII could be very
different.
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Out of the 21 Giorgi regions, we found 14
(PRCPTOT) and 17 (SDII) regions showing signifi-
cant anthropogenic influences. The human impacts
are generally larger for SDII compared to PRCTOT.
This indicates that at regional scale, the temporal
variability of precipitation intensity is generally more
susceptible to anthropogenic influence than precipi-
tation amount. Areas with higher precipitation
magnitude (such as: SEA, AMZ and WAF) and low
precipitation magnitude (such as: SAH, CAS) have
both witnessed an increase in non-uniformity in
temporal variability of annual precipitation due to
anthropogenic forcing. Regions with statistically
insignificant anthropogenic influence on PRCPTOT
are mostly monsoon-dominated regions that exhibit
higher natural variability related to ENSO and other
modes of variability (Wang and Ding 2008, Lee and
Wang 2014). This may be reflecting uncertainties in
model simulations of interannual and decadal modes of
variability as well as how they respond to anthropogenic
forcing, opposing influence of circulation and moisture
changes on precipitation variability, or the precipitation
variability changes due to anthropogenic influences
have not emerged due to small signal-to-noise ratios in
the historical period. This highlights the need for further
investigation on changes in precipitation temporal
variability as anthropogenic forcing continues to
increase in the future.

Overall our results indicate that anthropogenic
emissions have not only influenced the trends of
annual precipitation (Zhang et al 2007), but their
influence can be detected on the temporal variability of
annual precipitation amount as well as intensity. Both
PRCPTOT and SDII have significant implications for
the net primary production of terrestrial ecosystems
(Estiarte et al 2016) and agricultural yields (Thornton
et al 2014). Hence an increased temporal variability in
PRCPTOT and SDII would increase the complexity in
formulating policy for water resources planning and
management.
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