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Evaluating Model Fidelity to Aid Model Selection 

Evan Hybl, Clemson University, 105 Sikes Hall, Clemson, SC 29634 

 

Abstract 
 In simulation, fidelity has become a topic of interest in determining how well a simulation 

is able to represent its referent situation. In many cases, the true referent is the real-world scenario 

in which the system will exist. However, the fidelity of a simulation may be computed in 

comparison to other referents including other simulation models or tests. Several metrics have 

been proposed to evaluate a model based on qualitative or subjective parameters. These proposed 

metrics offer possible solutions for the quantification of model fidelity, however their inability to 

compare features relative importance greatly limits their applicability to models and introduces 

ambiguity in model evaluation. Frist, previously presented metrics are introduced and evaluated. 

A new metric is then proposed to address concerns presented in the existing metric evaluation. The 

proposed metric uses model accuracy to a referent case to both determine feature weights and total 

model fidelity. The proposed metric is then applied to a simulation case and the results are used to 

make model selection decisions given hypothetical application scenarios. The proposed relative 

metric aims to compare similar models’ level of fidelity with the end goal of aiding in model 

selection. By combining the proposed metric with model computational cost, decisions on feature 

fidelity and inclusion can be made to meet the needs of a given simulation’s application.  

1 Introduction 
Simulation is a powerful tool to aid in the design process of ground vehicles. Simulation 

can support early and late stages of design, however the requirements of a simulation’s fidelity, 

accuracy, and cost change depending on a model’s application.  

Fidelity describes how well a simulation can represent a referent situation. In the real world 

every conceivable situation for a given key performance indicator (KPI) cannot be tested; requiring 

a referent to be generated to represent a test case scenario. A referent is an abstraction from reality, 

which is meant to encompass the overarching phenomena in a test case. A model is then made to 

represent the referent situation. One important item of note in this process is that a loss of 

information occurs at every step. This is demonstrated in figure 1 Where oval areas correspond to 

the amount of information encompassed. When a referent is made every phenomenon and situation 

which contributes to the real-world case cannot be considered. When a model is made, often not 

every phenomenon considered in the referent can be included. This leads to the term of fidelity 

which is meant to give a measure of how closely a simulation can represent the phenomena present 

in the referent situation.  



Figure 1. Information Encompassed in KPI Evaluation 

Generally, a higher fidelity model is expected to give a higher accuracy result, as compared 

to a lower fidelity model. This statement is contingent on the fact that phenomena included in a 

model are implemented correctly and relevant to the referent. Another general expectation is that 

a higher fidelity model will also have a higher computational cost and require more input data 

(data hungry). These two drawbacks, with a higher fidelity model, mean that using the highest 

fidelity model for all stages of design does not make sense from a resource and time perspective.  

Accuracy and cost generally do not have a linear relationship. At a certain point adding 

more, and higher fidelity, features to a model will lead to much higher computational costs with 

minimal increase to accuracy. The fidelity of a model was increased through feature inclusion and 

feature refinement (see Figure 2). Each point in the below graph is representative of a different 

model, with varying degrees of fidelity. The higher accuracy models in this figure are associated 

with higher fidelity models.  



Figure 2. Computational Time Vs. Model Accuracy 

Being able to quantify which features should be included in a model and at what level is 

essential to optimizing a model choice for a given application. Understanding how different 

phenomena’s inclusion in a model changes the expected outcome can be vital to making decisions 

on the required features and refinement to reach the desired level of accuracy, at a desirable cost. 

This relationship between model fidelity and cost is generally referred to as utility.  

2 Existing Metrics of Simulation Fidelity 
Several researchers have made efforts to create a metric for model fidelity. These metrics 

differ greatly in their classification methods and are worth mentioning to give background on 

existing solutions.  

2.1 SAE 
One fidelity metric proposed by SAE works based on a level scale to classify level 

refinement. The fidelity scale ranged from level 0 to level 7, shown in Figure 3.  
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Figure 3. SAE Levels of Model Refinement [2] 

The lowest fidelity is level zero (the lowest form of fidelity), which corresponds to a “Null” 

case where no model exists. level 7 (the highest form of fidelity), referred to as the “Vector” case, 

is classified by a model with several connection points with different components in a model. This 

level system attributes a higher fidelity to time variant models as opposed to time invariant models. 

The SAE level system is a step in the right direction and undertakes a large task of creating a metric 

which can be applied to any dynamic model. It considers the type of model, the feedback included 

in model features, along with the complexity of the features within a model.  

One major drawback to this level system is that it looks at models through a black and 

white lens. Oftentimes models contain features which have varying levels of fidelity. Using this 

system, it becomes challenging to identify a model’s fidelity classification if it does not have all 

features included at the same level of fidelity. The SAE level system states that a model’s fidelity 

is determined by its most central feature’s fidelity [2]. This method can become problematic when 

several features contribute significantly to the performance of a model. In this instance determining 

which feature is most central would be challenging and may introduce subjectivity. Additionally, 

if the most central feature has a higher level of refinement than other contributing features, the 

resulting fidelity score could lose its usefulness. Consider two models with their most central 

feature at level 5. One model has all other supporting features at level 3, whereas the other would 



have all other supporting features at level 4. Both models would be given identical fidelity scores 

using this system. This would prevent modelers from distinguishing the higher fidelity variant 

from the two and make model selection problematic.  

 Another pitfall of this metric is that it does not consider how many features are included 

in a model. A time invariant model that contains 90% of the phenomena from the referent would 

be scored with a lower fidelity than a time variant model only containing 10% of the phenomena 

(assuming the central feature was included in both). The metric does not consider supporting 

features inclusion in its fidelity rating. The metric does, however, give some insight into how 

feature fidelity should be evaluated. For this method to overcome these hypothetical situations a 

method needs to be constructed to evaluate feature importance to a model in a non-subjective 

manner.  

2.2 Experimental Frame Metric 
Another metric is proposed by Kim and colleagues [1], referred to henceforth as the Kim 

fidelity metric. This metric uses a model’s inputs and outputs, along with a model’s level of 

abstraction to quantify its fidelity. In this fidelity metric a model which requires more inputs and 

generates more outputs is considered the higher fidelity model. This metric uses inputs as a 

quantifier of feature inclusion. In general, a higher fidelity model with more feature inclusion will 

demand more inputs than a lower fidelity model with less features. Additionally, a higher fidelity 

model will also have the potential to provide more information in the form of an output. If 

evaluating a model’s inputs and outputs cannot discern between two models’ level of fidelity the 

metric, then requires the modeler to evaluate the level of abstraction present. The model with a 

lower level of abstraction is then considered the higher fidelity model.  

 One issue with this proposed metric, in the context of vehicle design, is how an output is 

quantified. Often in vehicle design a model is created to provide a single KPI output to guide a 

design team in a decision. In a higher fidelity model, more outputs could conceivably be extracted 

from the model, however determining this number does introduce ambiguity.  

Another drawback of this metric is that using number of inputs and outputs to determine 

fidelity could be misleading. Consider two simulations which aim to take an input force and predict 

a suspension member’s displacement. Both models would have a single input and a single output, 

however one model would use a linear spring constant, whereas the other would use curve fitting 

to model a nonlinear spring. Evaluating the model with the Kim fidelity metric would lead to both 

models having the same fidelity. However, the nonlinear spring model would have a higher fidelity 

than the linear spring model only using a singular K value. One counterargument to this example 

could be that the nonlinear model would require more data than the linear model in its generation. 

Although this is true, removing hard coded data from a model and expressing it as an input would 

lead to a loss in utility to the modeler as it requires more effort to use. The next option to evaluate 

the model would be to define each model’s level of abstraction. In this example the nonlinear 

model would have a lower level of abstraction than the linear spring constant. The issue with 

relying on level of abstraction to define model fidelity is that its qualitative in nature, and can 

introduce subjectivity.  

Lastly, this proposed metric does not have a way to compare similar models with features 

represented at varying degrees of fidelity without introducing subjectivity. Consider similar 

models with several different phenomena represented at varying levels of refinement. To use this 



metric there would need to be some form of weight factor in determining phenomena’s relative 

level of importance in the referent case. Like the SAE metric, it is missing a method to determine 

individual feature weights.  

2.3 Gross and Friedman 
Gross and Freidman [3] also have proposed a metric to quantify the fidelity of a given 

model. They propose an equation which measures a model fidelity based on the sum of its 

individual features level of importance, multiplied by each individual features level of refinement.  

𝐹 =  ∑ 𝑊𝑖 𝐹𝑖 

𝐹𝑖 = 𝐹𝑖𝑑𝑒𝑙𝑖𝑡𝑦 𝑜𝑓 𝑒𝑎𝑐ℎ 𝑟𝑒𝑓𝑒𝑟𝑛𝑡 𝑝ℎ𝑒𝑛𝑜𝑚𝑒𝑛𝑎  

𝑊𝑖 = 𝐼𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒 𝑟𝑎𝑡𝑒 𝑜𝑓 𝑝ℎ𝑒𝑛𝑜𝑚𝑒𝑛𝑎  

 This metric considers the relative importance of a specific phenomenon in a referent case. 

It also considers the refinement of the represented phenomena. The main issue with the proposed 

metric is determining the values of 𝐹𝑖 and 𝑊𝑖. Gross and Freidman proposed a subjective 

assignment of these values when evaluating a model. If these values are chosen subjectively by 

the creator of a model it could lead to inconsistent fidelity scores between similar models. 

Conceivably the above two metrics could be used to determine the fidelity of each referent 

phenomena, however a method needs to be determined to non-subjectively find the importance 

rate of phenomena.  

3 Proposed Metric 
 To quantify a model’s fidelity, for the purpose of making a design choice, it is important 

that variant models can be compared relative to one another. Trying to quantify models’ fidelity 

which are not meant to measure the same KPI is a task which often leads to ontologies and metrics 

that are far too broad to be useful in model selection. Another challenge is directly measuring 

model fidelity. Directly measuring the fidelity of a model is near impossible without the inclusion 

of subjective or qualitative metrics. One idea is to use model accuracy as an indirect measure of 

model fidelity.  

 To evaluate a model’s fidelity the referent results must be identified to compare model 

results too. The best referent data will generally take the form of real-life test data of the KPI a 

given simulation is meant to output. Oftentimes referent data for a specific KPI cannot be obtained 

or may require experimental testing to attain. Experimental testing can be time intensive and 

expensive, which is often not feasible for model evaluation. The next best option is to define a 

referent model. This referent model will take the form of the highest fidelity model with all 

available referent features included. It would be the highest cost simulation with the highest fidelity 

features included to model the specific situation. Comparing different models, with differing 

phenomena and fidelity representations of those phenomena, to this referent model can be useful 

in determining the relative importance of features in a simulation for specific KPI. This can give a 

way to remove bias and subjectivity from determining a weight value for a specific feature (𝑤𝑖).  

To evaluate similar models’ fidelity relative to a model referent the simplest representation 

of a referent must also be found. This simplest form of a referent should model the base situation, 

with no added features. For example, consider a critical angle of tip simulation. This simulation 



would be designed to determine the angle at which a static vehicle would be expected to roll over. 

The simplest model representation would take the form of a point mass. Features could include 

phenomena such as suspension relaxation of a vehicle on a hill, tire deformation due to normal 

forces, or even fluids shifting in the vehicle body changing its center of gravity. Comparing this 

simplest model to the model referent can give a baseline for the information left to gain through 

feature implementation.  

Figure 4. Referent Model Relationship to True Referent and Simple Model 

This comparison can be done based on model response to a range of input variables. The 

range of input variables can be determined by the modeler, based on the range of input values the 

simulation is being designed to evaluate. Looking at the precent difference between the results of 

the simplest model and the referent model over a range of input values can then give some 

indication of the error that is attributed to a lack of features. Averaging this percent difference, over 

the range of input values for the output of the simplest model compared to the model referent, can 

then give a relative fidelity based on the accuracy of the models. In this comparison it is assumed 

that the model referent has a fidelity of 100%, as it is the highest fidelity representation of the 

situation available to the modeler. Although its actual fidelity is not perfect, this assumption does 

allow for the comparison of models relative to one another. Subtracting this average percent 

difference from the model referent fidelity of 100% can then give the simplest models fidelity 

score (𝐹𝑆𝑀).  

Features  𝑤𝑖 values must then be determined. The features 𝑤𝑖 values are what is left to 

improve accuracy of the simplest model representation. The simplest model must be outfitted with 

individual features to then evaluate an individual features effect on improving the accuracy of a 

model, with respect to the model referent. By evaluating individual model features, their cost and 

contribution to the accuracy of a model can be evaluated.  

Consider, from the example outlined above, a model referent which considers the 

deformation of vehicle tires in addition to the relaxation of suspension members. To evaluate these 

features the modeler should configure the simplest model with an individual feature. Following 

this, the modeler can then compare the results of the simple model with the individual feature 



included to the simplest model’s response. Then, by calculating the percentage difference between 

the simple model and the simple model with an individual feature, a feature weight can be 

computed. This would give an estimate of the improvement in accuracy of the model in getting 

closer to the referent.  

It should be noted that when evaluating the importance rate of a particular phenomenon the 

highest fidelity feature representation should be used. This can give a baseline for the importance 

of the phenomenon’s effect on the simulation results. Evaluating lower fidelity representations of 

the phenomenon can be done in the same way; however, this calculated value will not simply be 

the importance rate of a phenomena (𝑤𝑖). It will be the product of the importance rate of a 

phenomenon and the fidelity score for the representation. The highest fidelity feature is assumed 

to have a fidelity score (𝑓𝑖) of 1.  

The resulting fidelity score can then be computed using the following modified equation:  

Equation 1. 

𝐹 =  ∑ 𝑓𝑖𝑤𝑖 + 𝐹𝑆𝑀 

𝐹 = 𝑇𝑜𝑡𝑎𝑙 𝑚𝑜𝑑𝑒𝑙 𝑓𝑖𝑑𝑒𝑙𝑖𝑡𝑦  

𝐹𝑆𝑀 = 𝑆𝑖𝑚𝑝𝑙𝑒, 𝑧𝑒𝑟𝑜 𝑓𝑒𝑎𝑡𝑢𝑟𝑒, 𝑚𝑜𝑑𝑒𝑙 𝑓𝑖𝑑𝑒𝑙𝑖𝑡𝑦  

𝑓𝑖 = 𝐹𝑖𝑑𝑒𝑙𝑖𝑡𝑦 𝑜𝑓 𝑓𝑒𝑎𝑡𝑢𝑟𝑒 

𝑤𝑖 = 𝐼𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒 𝑟𝑎𝑡𝑒 𝑜𝑓 𝑓𝑒𝑎𝑡𝑢𝑟𝑒  

4 Example Case 
 The critical angle of tip example mentioned above was created using an algebraic 

MATLAB code to model an M1152 HMMVW. A simple model was created which modeled a point 

mass with no suspension or tire deformation phenomena included (see Figure 5).  

Figure 5. Simplest Model Configuration 

Additional variant models were created which included either tire deformation or suspension 

relaxation features (see Figure 6 ).  



Figure 6. Variant Model Configuration 

Two feature variants were created, a low fidelity feature (using a singular k value to represent tire 

deformation and suspension relaxation), and a high-fidelity feature (using a lookup table and a 

spline function to represent the nonlinear behavior of tire deformation and suspension relaxation). 

Finally, a referent model was created which included both tire deformation and suspension 

relaxation (using the highest fidelity feature representations, see Figure 7).  

Figure 7. Referent Model Configuration 



 The different models were then evaluated over a range of CG locations and weights. The 

weights and CG locations were varied by 20% from their original specified values to simulate 

different cargo loading scenarios, and their effects on the CG location and total vehicle weight.  

Figure 8. Critical Angle of Tip Response to Varied CG Horizontal Location 

Figure 9. Critical Angle of Tip Response to Differing CG Vertical Location 
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Figure 10. Critical Angle of Tip Response to Differing Vehicle Weight 

 The results of the simple model, referent model, and model variants were graphed to show 

the response of each model to the varied input parameter (see Figures 8-10). It is important to 

isolate variables in evaluation so that the individual response to the varied parameter can be seen. 

This importance is illustrated in figure 10 where a change to the vehicle weight has no impact on 

the simple model’s output, whereas it does have an impact on the variant cases with tire and 

suspension features. Simple model fidelity, feature importance rates, and feature fidelity metrics 

were then calculated using the methods outlined above. The results are tabulated below.  

 Varied Horizontal 

Location of CG 

Varied Vertical 

Location of CG 

Varied Weight of Vehicle  

𝐹𝑆𝑀 0.955 0.956 0.956 

𝑤𝑖 Suspension Relaxation 0.019 0.018 0.018 

𝑤𝑖Deformable Tire  0.026 0.026 0.026 

𝑓𝑖 Low Fidelity Suspension 1.402 1.413 1.413 

𝑓𝑖 Low Fidelity Deformable 

Tire  

0.258 0.259 0.259 

Table 1. Calculated Fidelity Parameters  

 From the above metrics calculated a few conclusions can be made. Firstly, a deformable 

tire feature is a more important phenomenon to include in a critical angle of tip simulation for an 

M1152 HMMWV. Secondly it can be concluded that the lower fidelity representations of the 

phenomenon lose a significant amount of information from the higher fidelity variants. It should 

be noted that the 𝑓𝑖 value for the suspension does not mean that the lower fidelity feature has a 

fidelity 1.4 times that of the higher fidelity feature. It should be interpreted as having a 

representation that retains 40% of the information of the higher fidelity feature representation. It 

can also be interpreted as an overestimation of the effect of a particular phenomenon.  
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 Another important item of note from the above results is that feature inclusion only 

accounts for approximately 4.5% of this model’s fidelity. This gives a modeler a much more 

concrete understanding of the loss of information that can be expected from neglecting to include 

specific phenomenon in a model. This information, when combined with the computational time 

associated with a particular phenomenon and its complexity in representation, can be helpful in 

determining the requirements of a model for a particular application. The computational time of 

the models and corresponding fidelity is presented in the table 2 below (note: fidelity scores were 

averaged across all input variables).  

 Computational Time [s] Fidelity  

Simple Model  0.009975 0.956037 

Simple Model + Low Fidelity Suspension  0.028187 0.984011 

Simple Model + High Fidelity Suspension  59.201132 0.963097 

Simple Model + Low Fidelity Tire 

Deformation  

0.022711 0.975865 

Simple Model + High Fidelity Tire 

Deformation  

25.89011 0.983298 

Referent Model  84.519834 1 

Table 2. Fidelity Score and Computational Time 

 It can more clearly be seen in Table 2 that as features are included, computational time 

increases. It can also be seen that as feature fidelity increases, so does computational time.  

 From Table 1 theoretical fidelity scores can then be calculated using Equation 1 for 

different configurations of models. Below the predicted fidelity scores are shown for a model using 

all low fidelity features and for a model using only high-fidelity features. These calculations were 

done based on the input parameter of interest. Additionally, these models were constructed in 

MATLAB and evaluated over the same range of input parameters to show how the theoretically 

calculated value compares to the actual.  

 Low Fidelity Features High Fidelity Features 

Predicted 0.989298204 1.001026 

Observed  0.992725448 1 

Table 3. Calculated Fidelity Scores for Changing Horizontal CG Location 

 Low Fidelity Features  High Fidelity Features  

Predicted  0.989774 1.00123 

Observed 0.993002 1 

Table 4.  Calculated Fidelity Scores for Changing Vertical CG Location 

 Low Fidelity Features  High Fidelity Features  

Predicted  0.989705 1.001163 

Observed 0.992916 1 

Table 5. Calculated Fidelity Scores for Changing Vehicle Weight 

 When combining the information from Tables 2 through 4 decisions can be made on which 

features to include and at what level for a particular application. If a modeler wanted to conduct a 

design sweep of variables, running hundreds or thousands of different test cases, it may be 

advantageous to use a model with both features represented at a lower fidelity. From Table 2 one 



could expect approximately 99% accuracy with respect to the referent model. Additionally, they 

could expect a much lower computational cost. If a modeler was using a model for a single case, 

and had a high need for accuracy, they may select the higher fidelity feature model. This would 

trade a high computational cost for a higher level of accuracy and subsequent fidelity.  

5 Metric Limitations 
 Although the proposed metric does offer, in a non-subjective way, a method to compare 

similar models’ fidelity, it is very time intensive to implement. A modeler must configure models 

with individual features and evaluate them over the ranges of input variables that they intend to 

use the model for. This may not be feasible for more complex models with long computational 

times, wide use cases, and uneasily reconfigured features. Additionally, a model evaluated using a 

limited range of use cases may have fidelity scores with limited applicability. If the model is 

needed to be used for a wider range of input values, later in its life, the fidelity scores will need to 

be recalculated over its intended input value range to ensure accuracy. Additionally, dissimilar 

models measuring different KPI’s cannot be compared using this metric. Models designed to 

measure differing KPI’s must go through an evaluation process with isolated KPI’s, which can also 

add to the fidelity evaluation time.  

 Another drawback is the assumptions that this metric uses. One large assumption is that all 

features are implemented correctly. If a modeler makes a mistake in feature implementation it will 

carry over to the referent model leading to fidelity scores which may be misleading. It is also 

assumed that the modeler can identify the highest fidelity feature out of several variant features; 

in some instances, this may not be the case. In these instances, referring to the experimental frame 

analysis fidelity metric or the SAE level system may be helpful in identifying the highest fidelity 

feature variant.   

  This metric also does not produce 100% accurate predictions in generating fidelity scores 

for hypothetical models. It was shown that when predicting theoretical fidelity scores for the high 

fidelity and low fidelity feature cases, presented in tables 3-4, an error of approximately .32% was 

observed in predicted vs actual results. Although the level of error was low for the example 

presented, it may be higher for cases where phenomenon play a larger role in a model’s accuracy 

of results.  

The largest issue with the proposed metric is that it only relies on model accuracy, to a 

model referent, to determine a fidelity score. Fidelity is a concept which describes how well a 

model can represent its referent case. Soley relying on accuracy to determine this has the potential 

to misrepresent this value. Although accuracy and fidelity are generally related, this is not always 

the case. Determining a model’s actual fidelity will likely require a more qualitative metric to be 

used in conjunction with a quantitative one. The methods outlined in this paper in determining 

feature weight could be used in tandem with a qualitative metric (like the SAE levels of refinement) 

to get a more accurate fidelity score.  

6 Future Work 
 Looking to the future it would be advantageous to see how well this metric applies to 

different simulations. The example outlined in this document is a somewhat simple quasi-static 

model, meant to simulate the theoretical critical angle at which a vehicle would experience 

rollover. Applying this metric to more complex simulations, both static and dynamic, and 

evaluating the feasibility of this metric’s implementation would be helpful in determining its true 



scope of application. Additionally, the results of a study on a broader implementation would be 

advantageous in assessing its true ability to aid in model selection.  

 Another potential area of future work would be implementing a qualitative metric, for 

fidelity, in conjunction with the methods outlined above to determine feature weights. This could 

be done by using a level system, like the SAE level of refinement model, in conjunction with 

feature weights to get a more accurate measurement fidelity. This could improve the proposed 

metrics dependents on accuracy of a model to quantify fidelity.  

7 Conclusion 
The proposed metric allows for modelers to evaluate the fidelity of a model based on 

individual feature evaluation. This gives insight into the importance of individual feature inclusion 

in a model without the use of subjective metrics. By comparing individual model features to a 

referent model, a better understanding can be developed of the degree individual phenomena 

contribute to a specific KPI. Additionally, the proposed metric allows the comparison of differing 

fidelity features to a referent feature to better quantify the loss of information associated with them. 

When combined with the computational time (cost) associated with the addition of individual 

features, decisions can be made in determining the ideal model configuration for a given 

application.  
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