
Clemson University Clemson University 

TigerPrints TigerPrints 

Honors College Theses Student Works 

12-2023 

The Development of a Mobile Ad-Hoc Network Testbed: Modular The Development of a Mobile Ad-Hoc Network Testbed: Modular 

Implementation of Ad-Hoc On-Demand Distance Vector Routing Implementation of Ad-Hoc On-Demand Distance Vector Routing 

Gage Gailbreath 

Andre Koka 

Mohammed Gharib 

Fatemeh Afghah 

Follow this and additional works at: https://tigerprints.clemson.edu/hct 

https://tigerprints.clemson.edu/
https://tigerprints.clemson.edu/hct
https://tigerprints.clemson.edu/student
https://tigerprints.clemson.edu/hct?utm_source=tigerprints.clemson.edu%2Fhct%2F41&utm_medium=PDF&utm_campaign=PDFCoverPages


The Development of a Mobile Ad-Hoc Network
Testbed: Modular Implementation of Ad-Hoc

On-Demand Distance Vector Routing
Gage Gailbreath∗, Andre Koka∗, Mohammed Gharib∗, Fatemeh Afghah∗
∗Electrical and Computer Engineering, Clemson University, Clemson, SC, USA

E-mail:{ggailbr, arkoka, alghari, fafghah}@clemson.edu

Abstract—In communication systems, a Mobile Ad-Hoc Net-
work (MANET) is a communication topology that has no central
infrastructure, in contrast to more common network topologies
such as Wi-fi or cellular towers. MANETs are of particular
interest in the field as Internet-of-Things (IOT) applications and
the push towards 6th-generation (6G) communications continues.
MANET networks provide communication access to all nodes
within the network using peer-to-peer communications, requiring
extensive maintenance and updating of routes within the network
as nodes move around. Routing protocols must be designed and
used for these networks, and are typically complex algorithms
that are difficult to implement on hardware. To combat this,
this work presents a MANET testbed, designed to provide
users with an Application Programming Interface (API) that
separates routing protocol implementation from operating system
functionality. To verify the testbed, this work also presents an
implementation of Ad-Hoc On-Demand Distance Vector Routing
(AODV) that uses the provided API functions. By comparing
simulation results from Network Simulator 3 (NS3), a physical
implementation, and a physical implementation that uses firewall
capabilities to form the network, a full evaluation of AODV and
the MANET testbed is performed.

Index Terms—MANET networks, AODV, routing protocol,
wireless communications, testbed

I. INTRODUCTION

In the field of wireless communications, different network
topologies and communication schemes exist for different
applications. Many common communication systems use a
centralized topology, where there is a single node that facil-
itates the connection to other nodes in the network. Cellular
networks or Wi-fi access points are two prevalent examples
of a centralized topology. However, another topology that
receives considerably less attention is the decentralized net-
work, which has no underlying infrastructure of any kind. The
differences between these networks is shown in Figure 1. The
centralized network contains a clear center point, while users
in the decentralized network must communicate with other
users to form the network.

One type of decentralized network is known as a Mobile
Ad-Hoc Network (MANET), where nodes have complete
freedom to move in 3D space, communicating to all other
nodes in a peer-to-peer fashion. These MANET networks
allow nodes to communicate with each other by passing
messages through other nodes in the network, which requires
the MANET network (and therefore each node within the

Fig. 1. Centralized vs. Decentralized Network Topologies

network) to maintain a database of routes to other nodes.
These routes must update as nodes change positions relative
to one another, requiring constant network monitoring and
complicated routing protocols that must account for changes
in real time.

The complicated algorithms used for MANET routing pro-
tocols are difficult to implement onto a physical system, as
modifications to the networking stack of the node’s underlying
operating system is required to form routes. Different operat-
ing systems, operating system updates, and signal propagation
characteristics make physical implementations of MANET
networks uncommon in wireless communication research.
To combat this, this paper presents a MANET testbed that
has been developed for further physical implementations of
MANET networks. The testbed provides a simple Application
Programming Interface (API) that interfaces with the Linux
operating system entirely from user-space, using the built-
in Linux modules Netfilter and Netlink, as well as Linux
UDP sockets and the command-line utility iptables. By doing
this, the testbed can be used to implement any experimental
routing protocol, allowing researchers to test new protocols on
physical systems and move beyond the realm of simulation.

This API relies heavily on the aforementioned Linux mod-
ules to send, capture, queue, and filter packets, as defined
by the routing protocol. This requires modification of Linux
routing tables and communication between user-space and
kernel-space using Netlink. This paper presents the design of
the MANET testbed, including the API functions and their
capabilities. As early verification of the MANET testbed,
this work also considers an implementation of Ad-Hoc On-



Demand Distance Vector (AODV) routing, developed in par-
allel with the MANET testbed. AODV is a complex MANET
routing protocol that relies heavily on passing control-plane
messages throughout the MANET network, as defined by RFC
3561. While many other MANET routing protocols have been
developed that surpass the performance of AODV, AODV
is still considered a benchmark route discovery algorithm.
Therefore, AODV is used to evaluate the functionality of the
MANET testbed. While more extensive testing is needed in
this area, qualitative results indicate that the testbed is opera-
tional, with a successful implementation of AODV using the
API functions. Further testing will be performed to evaluate
the AODV environment for the Key Performance Metrics
(KPI) throughput and network traffic.

II. RELATED WORKS

Now that 5th-generation (5G) communication systems have
become common practice for applications such as cellular
networks, the research community has turned its focus towards
defining what 6th-generation (6G) communication looks like.
A prevalent vision for 6G communication systems of the
future is the Internet-of-Things (IoT) infrastructure, in which
small electronics are used to connect different objects together,
creating vast networks of interconnected objects. in [1], Zhou
et al. performs an exhaustive study of key technologies that are
required to bring 6G IoT networks into reality. They conclude
that, with so many small devices communicating at all times,
using centralized communication infrastructure becomes im-
practical for a multitude of small, connected devices, making
6G communications a good use-case of MANET networks [1].

In [2], Inzillo and Garompolo investigate efficient routing
protocols for 6G MANET networks by applying a deep
learning approach to establish routes. They propose the Deep
Learning Clustering Beamforming Massive MIMO Routing
Protocol (DLCB) as a new novel routing protocol, concluding
that this protocol achieves better simulated results than other
routing protocols. [2] serves as another example of general
research interest in MANET networks for 6g communication
systems. Figure 2 illustrates the evolution of wireless commu-
nication systems and helps illustrate the ad-hoc nature of 6G
communications. MANETs are expected to be a good option
for IoT applications, but still lack effective implementation
and testing methods.

Fig. 2. Wireless Communication Evolution [3]

From here, we move to related works that investigate
MANET routing protocols, especially their physical imple-
mentations. Erik Nordström is the original creator of AODV-

UU, which is the most popular physical implementation of
AODV for Linux devices. In [4], he provides the source
code and implementation details for AODV-UU, which were
last updated in 2011, and have served as a routing protocol
benchmark for MANET networks ever since [4].

In [5], Sudharsan et al. extend AODV-UU functionality from
Linux kernel 2.6 to Linux kernel 3.8. They update variable
names and resolve Qualcomm driver errors, concluding that
AODV-UU is working successfully on Linux kernel 3.8. In [6],
Jung et al. perform another update of AODV-UU, citing that
it is the most stable, open source implementation of AODV.
In particular, they implement a custom queue structure to
queue packets in absence of a tool like Netfilter Queue, which
was not yet included in the Linux kernel. After conducting
a simple MANET scenario, [6] concludes with a succesful
implementation of AODV-UU on Linux kernel 4.15. There are
also many modifications to AODV, some of which have been
physically implemented. Zola et al. implements AODVv2,
which is a well-known optimization of AODV, on ARM-
based devices in [7]. They found that their implementation
of AODVv2 was fully operational and intend to provide their
code to the research community.

Works featuring the development of a MANET testbed are
less common. Staub, Ott, and Braun present an implementation
of AODV Mulitpath (AODVM) inside a building on Linux
devices in [8]. They evaluate their implementation using an
in-house MANET testbed, concluding that AODVM often
exacerbates poor route choices and requires the use of multi-
channel communication to avoid this weakness. In [9], Lund-
gren et al. create a large-scale testbed for MANET protocol
evaluation, with experiments of up to 37 nodes. After running
tests in routes of up to 8 hops, they conclude that the testbed
succesfully runs reproducible tests for AODV, TORA, and
OLSR, all of which are MANET routing protocols. Finally,
Huang et al. perform a comprehensive survey of several large-
scale Software Defined Networking (SDN) testbeds in [10].
After providing an overview of SDN testbed characteristics,
they conclude that SDN testbeds still require extensive devel-
opment to properly evaluate routing protocols in a reproducible
manner.

A. Contribution
Past literature usually focuses on simulation, or presents

routing protocol implementations and testbeds that have since
become inoperable, especially due to the old age of such
publications. In addition, many implementations of AODV and
other MANET networks use firewalls and packet dropping
rules to manually restrict the connection of nodes in their
testing scenarios, which is typically considered a limitation of
the physical implementation. The contribution of this paper
is the development of a modular, MANET testbed that is
independent of both the routing protocol under test, as well
as the underlying Linux operating system. In addition, this
paper discusses a new implementation of AODV using the
testbed, which is usable for actual node mobility tests, both
with and without manual firewall creation. Finally, this work



lays the groundwork for MANET protocol comparison using
Network Simulator 3 (NS3) and between other MANET
routing protocols.

III. DESIGN AND IMPLEMENTATION

Design of the MANET testbed was influenced by several
factors. Inspiration was drawn from [4] and Erik Nördstrom’s
original implementation of AODV-UU. In addition, this testbed
is the first MANET testbed to be developed on Linux kernel
5.14 or newer, allowing for the use of Linux kernel modules
that were previously not included in the Linux kernel by
default.

A. User-space and Kernel-space

The MANET testbed is implemented entirely in user-space.
There are several advantages to this design decision.

• User-space development allows for the use of common C
libraries and network programming.

• User-space code is significantly easier to debug than
kernel development. This debugging ability was essential
due to lack of experience with kernel or Linux networking
development.

• User-space allows for better portability and the abstrac-
tion of the routing protocol from the operating system it
is running on. This was an important design goal for this
testbed.

• User-space development allows for deployment of code
updates without needing to recompile the Linux kernel
on multiple nodes.

However, developing in user-space has drawbacks as well.
The most notable disadvantage is the need to queue network
traffic, transfer packets to user-space, then wait for a verdict
to be issued for the packet. This manual packet handling is
significantly less efficient than the operating system’s packet
handling capabilities. This leads to a serious limitation of
the testbed: lowered or incorrect performance due to packet
queues reaching their maximum capacity.

B. Linux Modules

Due to MANET testbed development remaining in user-
space, a way to communicate with the Linux kernel was
mandatory. In addition, the MANET testbed needs to perform
actions like modifying routing tables, queuing packets, and
retrieving wireless interface information while still provid-
ing the user control over when these tasks are completed.
To accomplish this, the MANET testbed takes advantage
of several Linux kernel modules that are standard for any
Linux installation of kernel 5.14 or newer. Table I shows the
Linux modules or applications that were used. Each module’s
interaction with the Linux kernel and Linux networking stack
is also shown in Figure 3.

C. Provided Functionality

To use the MANET testbed, the user is provided with a
simple API consisting of 9 currently implemented functions.
While internal implementation of these functions involves the

TABLE I
LINUX KERNEL MODULES REQUIRED FOR MANET TESTBED OPERATION

Linux Module or
Tool Purpose

UDP Sockets
Used to communicate between nodes, allowing

the user to send control plane messages as
needed.

Netlink
Used to communicate between kernel and user
space. Important for retrieving a specific node’s

IPv4 address, or any other wireless interface
information.

RTNetlink An extension of Netlink, used exclusively to
retrieve or modify the kernel routing table.

Netfilter
Used to filter packets and eventually send them
to user-space. To avoid creating a custom queue
structure, the libnetfilter_queue library

was utilized.

iptables Used to establish packet filtering rules and
queue packets as needed by the testbed.

use of smaller helper functions, the entirety of the MANET
testbed’s functionality can be found within the main 9 API
functions. The MANET testbed is designed to abstract the
operating system details away from the user. Therefore, each
API function implements some kind of operating system
communication and completes the appropriate task, with
the user providing nothing but the appropriate inputs. For
example, the implementer of the routing protocol can use
the AddUnicastRoutingEntry() function to modify the
Linux routing table with a new route, rather than creating,
formating, and sending a Netlink message as part of the
routing protocol implementation code. The 9 API functions
each play a pivotal role in providing the testbed with enough
functionality to implement multiple different MANET routing
protocols. These functions are:

• InitializeAPI() - Performs some required setup for the
library, and must be the first function called by the user.

• AddUnicastRoutingEntry() - Adds a unicast route to the
main Linux routing table using Netlink.

• DeleteEntry() - Deletes a route from the main Linux
routing table using Netlink.

• SendUnicast() - Sends a unicast message to a given
destination using Linux User-Datagram Protocol (UDP)
sockets.

• SendBroadcast() - Broadcasts a message to the entire
MANET network using Linux UDP sockets.

• GetInterfaceIP() - Retrieves the Internet Protocol (IP)
address of a particular interface using Netlink.

• RegisterIncomingCallback() - Registers the provided
function as the callback function for queued incoming
packets using Netfilter.

• RegisterOutgoingCallback() - Registers the provided
function as the callback function for queued outgoing
packets using Netfilter.

• RegisterForwardCallback() - Registers the provided
function as the callback function for queued forwarded
packets using Netfilter.

An advantage of using this high-level API is it allows the
routing protocol to be detached from how it interacts with the
hardware. This abstraction allows upgrading and optimization



Fig. 3. MANET Testbed Architecture

independent of each other. A similar API can then be made in
kernel space or in a simulator and the routing protocols would
not need to be adjusted. This benefits future protocols as they
will not need to be rewritten by each researcher and unifies
the platforms they are working with. If a researcher wants to
focus on the optimization of the API, they can use the already
written protocols as a point of comparison. And researchers
for the protocols can compare multiple protocols written using
the same API without having to re-implement it themselves,
unifying the comparisons.

D. Implementation Verification: AODV

AODV is a standard routing protocol that has been used
as a benchmark to evaluate other MANET routing protocols.
Since the inception of AODV, several modifications of AODV,
as well as completely original route discovery algorithms, have
also surfaced. Despite this, AODV was chosen as the baseline
protocol to inform testbed development. To prioritize assessing
the implemented testbed, a stripped version of AODV was
created.

AODV is a reactive routing protocol, meaning it only
performs route discovery when a packet needs to be sent.
When an outgoing packet is received, it is processed in this
order:

1) Check if a current, active route exists for this packet. If
not, proceed with route discovery.

2) Broadcast a Route Request packet (RREQ).
3) Broadcast with increasing Time-To-Live (TTL) until

either maximum attempts are reached or a Route Reply
(RREP) is returned.

4) Drop or send the packet depending on result of route
discovery.

For each node nearby in the network, it will receive the RREQ
and either: forward it if the TTL allows, send back a RREP if
it is the destination, or send back a RREP if it has a valid route
to the destination. This process ensures traffic is only created
when establishing routes and maintaining active routes. Nodes
do not know the whole route themselves, only the next valid
hop towards the destination.

Since thorough explanations of AODV are present in many
papers, the rest of this section will instead address the fea-
tures absent and design choices made to feasibly implement
AODV. First, to store a local routing table, a static array
was used. Knowing the physical limitations of the project,
this would maximize performance and minimize development
time, but this array data structure was still developed in a
modular way such that it can easily be swapped out. Second,
”Hello” messages were chosen as a way of maintaining link
connectivity. The RFC for AODV (RFC 3561) states that these
messages are a way of ensuring connectivity, but they have the
drawback of allowing up to two seconds (depending on the
”Hello” message interval) where potential messages may be
lost. AODV has other methods of checking link connectivity,
but this implementation assumes that the MANET network
is not a highly-dynamic environment, meaning that ”Hello”
messages will suffice. The features missing from AODV are
as follows:

1) Unidirectional Links: Unidirectional link accommoda-
tion was not implemented for this project. The major limitation
was time, but skeleton code was written to allow easy inclusion
in the future.

2) Local Repair: As the focus of this development was on
the MANET testbed and its verification instead of the protocol
itself, local repair was not included as it would require a more



significant topology and testing scenario to be relevant.
3) Actions After Reboot: Similar to local repair, as scenar-

ios and focus of this paper were more limited, implementation
of this feature was not required. If this feature was pursued,
the focus of the project would shift from the physical imple-
mentation to the testing of AODV itself.

4) More than One Interface/Aggregated Networks: Similar
to the previous features, implementation of these aspects
would be an assessment of the routing protocol and not
the testbed itself. The MANET testbed allows for multiple
interfaces and aggregated networks, but it is up to the protocol
and protocol designer to account for them.

Outside of these features, the rest of the operation of AODV
was implemented using III-C. This provides a protocol to
assess the testbed and the performance of its various functions.

IV. RESULTS

With the MANET testbed and AODV implementation com-
pleted, testing was performed by simply running the AODV
implementation, which makes use of all 9 API functions.
Manual inspection of behavior shows that AODV is working
correctly. Figure 4 shows a representation of the AODV
test scenario that was used. This is a 2-hop connection, in
which a source and destination node must communicate with
each other using a single intermediate node. Many such test
scenarios were performed by placing the nodes in different
parts of the building and powering them using portable power
banks.

Fig. 4. Representation of 2-Hop Test Setup

However, while results of the AODV implementation in-
dicate that the MANET testbed is fully operational, there
are not yet many quantitative results that can be used to
categorize the performance of AODV on the MANET testbed.
Qualitatively, the AODV implementation is successful, with
route discovery capabilities according to the AODV protocol
working appropriately. Route requests are properly broadcast
throughout the MANET network, responded appropriately, and
the corresponding routes are installed in each node’s routing
tables as needed. Since this implementation of AODV relies
on all 9 functions of the MANET testbed API, the MANET
testbed is also fully functional.

During the course of testing, the network and the nodes
within it would occasionally exhibit unexpected behavior.
This includes nodes disconnecting randomly, nodes connecting
from too far away, and failure to send packets despite the
successful establishment of a route. Such behavior can be at-
tributed to the testing setup and environment. This is a wireless

communication system, which are heavily affected by physical
obstructions. Walls, people, and other moving obstacles in
the network result in erratic signal propagation characteristics.
In addition, the portable power banks only supply power for
a limited time before needing to be recharged, resulting in
situations where a node is still powered, but not with enough
voltage to guarantee proper operation. Despite these issues,
several tests resulted in proper AODV operation, which was
used to succesfully send files and maintained routes even when
mobility was introduced to the system. Therefore, the MANET
testbed and the AODV implementation that makes use of it are
considered a success.

V. FUTURE WORK

This work can be extending in several ways, but the most
important is to address the weaknesses of the implemented
MANET testbed:

• Queue Status - Implement the ability to check when
packet queues are full. This could potentially be ac-
complished using an nftables TRACE rule to check
when packets are no longer being queued, but remains a
difficult problem with no clear solution.

• Testing Capabilities - Testing capabilities through the
testbed are limited. Currently, timing metrics are included
in the AODV implementation, indicating that the testbed
is not completely abstracted from the routing protocol.

Other than addressing limitations, future work includes im-
plementing more MANET routing protocols with the testbed,
evaluating complex mobility scenarios, and performing com-
parisons between routing protocols and their simulated ver-
sions, through a tool such as NS3.

VI. CONCLUSIONS

This paper presents a MANET testbed, which boasts the
ability to implement any MANET routing protocol on Linux
devices running kernel 5.14 or newer, while abstracting the
operating system details away from the implementer of the
routing protocol. This work also uses a custom implementation
of AODV to evaluate the testbed. Results show that all API
functions are fully operational, but require further development
to include testing metrics and overall more robust capabilities.
In general, this work illustrates the need for further physical
implementations of MANET networks, as implementing and
comparing MANET routing protocols still remains a difficult
task, with no clear standard in the field of communication
systems.

VII. ANDRE’S DISCUSSION OF HIS WORK

I joined Gage on this project after my initial projects that I
started with the lab began to slow down, leading to a lack
of activity for me in the lab. Since then, I have assisted
Gage in designing new parts of the project and implementing
the MANET testbed based on his original design. Over the
summer, I focused on learning Gage’s testbed design and per-
forming some other work with the lab. This semester, testbed
implementation, data collection, and overall verification of the



system became the focus. This was an ambitious project that
required me to think independently and create solutions to
extremely specialized problems. I have gained extensive Linux
kernel knowledge and improved my code-writing abilities,
while learning more about wireless communication systems
and becoming an expert on this topic. I have also gained
significant experience with writing research papers, writing
literature reviews, and presenting my work to others. This
MANET testbed has several limitations, but proved to be an
invaluable experience and an overall successful implementa-
tion of a very difficult task.

VIII. GAGE’S DISCUSSION OF HIS WORK

When I initially started this project last semester, I was the
only student working on it and I did not have any background
in it. My first step was building a large repository of resources
and papers to begin basing my work off of. The initial focus
was to just make and evaluate the testbed, AODV had not yet
been established. By the end of last semester, I had a full plan
of how the testbed can be accomplished in terms of Linux
utilities and interactions. I created figures and organized all of
my resources so they could be handed off to Andre over the
summer. This semester, while Andre finalized the testbed, I
investigated AODV and how to implement it. This ended up
being a large task as you are essentially turning a high-level
26 page technical specification into fully functioning code.
In addition to this, with the testbed not fully completed, the
majority of the code was written untested. Despite this, I was
able to accomplish the stripped down version described in
Section III-D. I then moved onto testing where I first did a
code check through looking for segfaults or other erroneous
behavior. It was during this time that I found some logical
issues with the implementation of the RFC where the behavior
was undefined so I had to think of my own solution. The
final step I am doing is getting preliminary data and metrics
to finalize the project and provide quantifiable results. This
is what I am currently working on and am hoping to finish
the data acquisition for analysis after this semester. Over the
course of this project I learned a lot about routing protocols,
the Linux kernel networking stack, software development
practices, and general networking knowledge. It made me
work with utilities and tools that had not been updated in
years and learn how to adapt my solutions and old knowledge
to the changes in Linux.

IX. ACKNOWLEDGMENT

This study is supported by the Intelligent Systems and
Wireless Networking (IS-WiN) laboratory at Clemson Univer-
sity. Special thanks to Dr. Fatemeh Afghah, Dr. Mohammed
Gharib, the Clemson Electrical and Computer Engineering
department, and the Clemson University Honors College for
making this work possible.

REFERENCES

[1] Y. Zhou, L. Liu, L. Wang, N. Hui, X. Cui, J. Wu, Y. Peng,
Y. Qi, and C. Xing, “Service-aware 6g: An intelligent and
open network based on the convergence of communication,

computing and caching,” Digital Communications and Networks,
vol. 6, no. 3, pp. 253–260, 2020. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S2352864820300237

[2] V. Inzillo and D. Garompolo, “A deep learning clustering beamforming
approach for future 6g mobile ad hoc networks,” 07 2023.

[3] Mar 2023. [Online]. Available:
https://www.geeksforgeeks.org/introduction-of-mobile-ad-hoc-network-
manet/

[4] E. Nordström, “aodv-uu,” https://github.com/erimatnor/aodv-uu, 2011.
[5] V. Kasula, “Implementation of aodv-uu on linux kernel version 3.8,” 04

2014.
[6] S. Jung, B.-S. Kim, K.-I. Kim, B. Roh, and J.-H. Ham, “Implementation

of aodv-uu on linux 4.15 kernel,” in 2019 IEEE 16th International
Conference on Mobile Ad Hoc and Sensor Systems Workshops (MASSW),
2019, pp. 160–161.

[7] E. Zola, I. Martin-Escalona, F. Barceló-Arroyo, and S. Machado,
“Implementation and analysis of the aodvv2 routing protocol in arm
devices,” in 2021 International Symposium on Networks, Computers and
Communications (ISNCC), 2021, pp. 1–6.

[8] T. Staub, S. Ott, and T. Braun, “Experimental evaluation of multi-path
routing in a wireless mesh network inside a building,” ECEASST, vol. 17,
01 2009.

[9] H. Lundgren, D. Lundberg, J. Nielsen, E. Nordstrom, and C. Tschudin,
“A large-scale testbed for reproducible ad hoc protocol evaluations,”
in 2002 IEEE Wireless Communications and Networking Conference
Record. WCNC 2002 (Cat. No.02TH8609), vol. 1, 2002, pp. 412–418
vol.1.

[10] T. Huang, F. R. Yu, C. Zhang, J. Liu, J. Zhang, and Y. Liu, “A survey on
large-scale software defined networking (sdn) testbeds: Approaches and
challenges,” IEEE Communications Surveys Tutorials, vol. 19, no. 2,
pp. 891–917, 2017.


	The Development of a Mobile Ad-Hoc Network Testbed: Modular Implementation of Ad-Hoc On-Demand Distance Vector Routing
	tmp.1703002898.pdf.zonkx

