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Abstract.  A majority of soil carbon (C) is either directly or indirectly derived from fine roots, yet roots remain the 
least understood component of the terrestrial carbon cycle. The decomposability of fine roots and their potential to 
contribute to soil C is partly regulated by their tissue chemical composition. Roots rely heavily on heteropolymers 
such as suberins, lignins and tannins to adapt to various environmental pressures and to maximize their resource 
uptake functions. Since the chemical construction of roots is partly shaped by their immediate biotic/abiotic soil 
environments, global changes that perturb soil resource availability and plant growth could potentially alter root 
chemistry, and hence the decomposability of roots. However, the effect of global change on the quantity and com-
position of root heteropolymers are seldom investigated. We examined the effects of elevated CO2 and warming on 
the quantity and composition of suberin in roots of Bouteloua gracilis (C4) and Hesperostipa comata (C3) grass spe-
cies at the Prairie Heating and CO2 Enrichment (PHACE) experiment at Wyoming, USA. Roots of B. gracilis exposed 
to elevated CO2 and warming had higher abundances of suberin and lignin than those exposed to ambient climate 
treatments. In addition to changes in their abundance, roots exposed to warming and elevated CO2 had higher 
ω-hydroxy acids compared to plants grown under ambient conditions. The suberin content and composition in roots 
of H. comata was less responsive to climate treatments. In H. comata, α,ω-dioic acids increased with the main effect 
of elevated CO2, whereas the total quantity of suberin exhibited an increasing trend with the main effect of warming 
and elevated CO2. The increase in suberin content and altered composition could lower root decomposition rates 
with implications for root-derived soil carbon under global change. Our study also suggests that the climate change 
induced alterations in species composition will further mediate potential suberin contributions to soil carbon pools.

Keywords: Climate change; elevated CO2; fine roots; grassland; lignin; suberin; warming.
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Introduction
Fine roots (with diameter < 2 mm) not only help plants in 
the uptake of resources, but also contribute to 20–67 % 
of the terrestrial net primary productivity (Jackson et al. 
1997; McCormack et al. 2015). Along with the root bio-
mass, fine roots also input a considerable amount of 
carbon through root exudates that support high micro-
bial biomass and diversity (Jones et al. 2009), thus ena-
bling greater rhizosphere activity. Unlike leaves, roots 
are heavily protected against biotic and abiotic stressors 
by the organized deposition of heteropolymeric com-
pounds such as lignins, tannins and suberins along the 
tissue matrix. These polymeric compounds are relatively 
slow to decompose and are associated with higher resi-
dence time of C in roots than in leaves (Feng and Simpson 
2007; Filley et al. 2008). Also, due to their close proximity 
to soil, the decomposition products from roots are better 
incorporated to soil matrix. Thus, fine roots contribute 
significantly to the sequestration of atmospheric CO2 in 
soils (Mendez-Millan et  al. 2010). Roots achieve varied 
functions and resistance to a myriad of biotic and abiotic 
stresses by altering the quantity and composition of het-
eropolymers; hence the composition of heteropolymers 
in roots is primarily governed by the soil environment to 
which the roots are exposed, and by the resource de-
mand of the plant. Thus, global changes that impose 
constraints on soil resources and plant growth demands 
could potentially alter fine root tissue chemistry, which 
in turn could alter soil carbon sequestration. Although, 
it is widely recognized that a majority of carbon seques-
tered in soil is root derived (Russell et  al. 2004; Rasse 
et al. 2005), remarkably little is known about the effect 
of global change on the quality of root biopolymers.

Global change factors such as warming and elevated 
CO2 can affect fine root dynamics directly by influencing 
soil resource availabilities and indirectly through feed-
backs from changes in above-ground productivity. For ex-
ample, a warming-induced increase in N mineralization 
can reduce the allocation of resources to roots (Melillo 
et al. 2011) leading to lower root biomass. However, an 
increase in photosynthesis due to elevated CO2 could 
increase root biomass (de Graaff et al. 2006; Dieleman 
et al. 2010; Nie et al. 2013), thus enabling plants to cap-
ture the nutrients necessary to sustain above-ground 
growth (Luo et al. 2004; Norby et al. 2010). Under these 
environmental conditions, fine roots adopt several mor-
phological and physiological strategies that effectively 
facilitate their nutrient and water uptake functions while 
concurrently protecting their tissues from biotic and abi-
otic stresses. For example, fine roots alter their diam-
eter, length and tissue density to improve their resource 

uptake functions under global change factors (Nie et al. 
2013; Carrillo et al. 2014; Nelson et al. 2017).

Along with the morphological changes, roots may 
undergo changes in tissue chemistry as they rely on 
heteropolymers such as suberins and lignins to protect 
their tissues from pests and pathogens. Although, there 
is mounting evidence that fine roots alter their specific 
root area, specific root length and tissue density in re-
sponse to warming, elevated CO2 and resource availabil-
ities (Nie et al. 2013; Pilon et al. 2013; Nelson et al. 2017), 
there is sparse knowledge about the accompanying 
changes in the quantity and composition of heteropol-
ymers of roots (Brunner et  al. 2015). The chemistry of 
roots is a key factor regulating microbial carbon use ef-
ficiency and tissue decomposition, so a molecular-level 
understanding of root chemistry in response to global 
change factors is a prerequisite for accurately predicting 
root-derived soil carbon under future climates.

Our knowledge of the chemistry of roots exposed to 
warming and elevated CO2 is mostly limited to carbon, 
nitrogen and lignin. However, less is known about su-
berin, a dynamic biopolymer of roots that functions as 
a barrier to reduce uncontrolled transport of water, dis-
solved ions and gasses, and also defend against patho-
gens and toxic compounds in the rhizosphere (Baxter 
et al. 2009; Graca 2015). Suberin is an extracellular bio-
polymer comprised of polyaliphatic and polyphenolic 
domains. The predominant aliphatic components are 
ω-hydroxy acids, α,ω-dioic acids, fatty acids and primary 
alcohols, whereas the polyphenolic domain is mainly 
composed of hydroxycinnamic acid, especially ferulic 
acid (Schreiber et al., 1999; Bernards 2002). Along with 
their quantity, the function and biological reactivity of 
heteropolymers such as suberin are also governed by 
the identity of their monomeric units and the linkages 
connecting these units.

In this study, we investigated the effect of global 
change factors such as elevated CO2 and warming on root 
chemistry particularly focusing on suberin. We hypoth-
esized that warming and elevated CO2 would alter the 
quantity and chemical composition of suberin in grass 
roots. As elevated CO2 increases below-ground resource 
allocation, we predicted that elevated CO2 alone or in 
combination with warming would have a greater effect 
on the content and composition of suberin than warm-
ing alone. To test this hypothesis, we used common 
grass species belonging to C3 (Hesperostipa comata) 
and C4 (Bouteloua gracilis) functional types exposed to 
factorial combinations of warming and elevated CO2 at 
the Prairie Heating and CO2 Enrichment (PHACE) experi-
ment in Wyoming, USA (Morgan et al. 2011).
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Methods

Study site
The PHACE experiment (Cheyenne, WY, USA; latitude 
41°11′N, longitude 104°54′W) subjects a semi-arid 
mixed-grass prairie to a factorial combination of two 
levels of CO2 treatment (400  p.p.m.v. and elevated 
to 600  p.p.m.v.; abbreviated as c and C, respectively) 
and two levels of warming treatment (ambient and 
+1.5/3.0  °C warmer in the day/night; abbreviated as t 
and T, respectively). The study site has a mean tempera-
ture of 17.5 °C in July and a mean of −2.5 °C in January. 
The site has a mean annual precipitation of 384  mm. 
Free-air CO2 enrichment (FACE) technology was used to 
apply the CO2 treatments in 3.3-m diameter FACE rings 
and infrared heaters were used to raise the canopy tem-
perature in the warming treatments (Dijkstra et al. 2010; 
Morgan et al. 2011). There were five replicates for each 
treatment. The most dominant species at the study site 
included B.  gracilis (C4 grass), H.  comata, Pascopyrum 
smithii and Koeleria macrantha (C3 grasses) and 
Artemisia frigida (shrub species; Zelikova et al. 2014).

Litter chemistry analyses (sequential extraction)
Live, pigmented fine roots of B.  gracilis and H.  comata 
were collected from ct (ambient CO2, ambient tem-
perature), Ct (elevated CO2, ambient temperature), cT 

(ambient CO2, warming) and CT (elevated CO2, warm-
ing) treatments at the PHACE site in July 2013, follow-
ing 7 full years of treatments. From each treatment plot, 
blocks of soil from an area of 25 cm2 that contained live 
plants and roots of the study species were excavated 
to a depth of 10  cm. In each block, the study species 
were separated by identifying the grasses based on the 
above-ground leaf tissues followed by tracing the roots 
of the corresponding species in the soil block (Nelson 
et  al. 2017). The roots were washed in deionized (DI) 
water, oven-dried at 60  °C, finely powdered using a 
genogrinder (Spex Sample Prep, Metuchen, NJ, USA). 
About 200  mg of the powdered samples were added 
to 10 mL glass tubes and were subjected to a sequen-
tial extraction procedure. The samples were first sub-
jected to solvent extraction using an equal mixture of 
methylene chloride and methanol followed by sonicat-
ing the samples for 5  min. The samples were shaken 
overnight and then centrifuged at 2500 r.p.m. for 5 min 
and the supernatant was removed. The roots remain-
ing after the solvent extraction were subjected to base 
hydrolysis with 1 M methanolic KOH (pre-sparged with 
Ar for 20 min) at 20 °C and were shaken overnight. The 
samples were then centrifuged at 2500 r.p.m. for 5 min 
and the supernatant was removed. The roots subjected 
to base hydrolysis were further incubated at 100 °C for 
3 h in the presence of 1 M methanolic KOH (pre-sparged 
with argon for 20 min; Tamura and Tharayil 2014; Wang 

Table 1.  Suberin monomers identified from the roots of C3 and C4 grass species exposed to different climatic treatments.

No Suberin monomers m/z Monomer class Abbreviation

1 Docosane-1,22-dioic acid 514, 499, 147, 129, 117, 73 α,ω-Dioic acid DOCO

2 Hexacosane-1,26-dioic acid 570, 555, 439, 217, 204, 147, 129 α,ω-Dioic acid HAD

3 Octadec-9-ene-1,18-dioic acid 456, 441, 217, 204, 170 α,ω-Dioic acid OCTA

4 Tetracosane-1,24-dioic acid 542, 527, 411, 217, 204, 147, 129 α,ω-Dioic acid TETRA

5 4-Hydroxy-3-methaxybenzoic acid 254, 239, 224, 193, 179 Aromatics 4H3MBA

6 4-Hydroxy-3-methoxybenzaldehyde 224, 209, 194, 179, 165, 163 Aromatics 4H3MBAL

7 Coumaric acid 308, 293, 249, 219, 179 Aromatics CA

8 Ferulic acid 338, 323, 308, 293, 279, 249 Aromatics FA

9 16-Hydroxyhexadecanoic acid 401, 385, 311, 217, 204 ω-Hydroxy acid 16HHDA

10 18-Hydroxyoctadec-9-enoic acid 442, 427, 411, 383, 337 ω-Hydroxy acid 18HOD9EA

11 18-Hydroxyoctadecanic acid 444, 429, 413, 439, 217 ω-Hydroxy acid 18HODA

12 22-Hydroxydocosanoic acid 485, 217, 204, 147, 129 ω-Hydroxy acid 22HDSA

13 24-Hydroxytetracosanoic acid 513, 497, 423, 217, 204 ω-Hydroxy acid 24HHCSA

14 26-Hydroxyhexacosanoic acid 541, 525, 451, 147, 117 ω-Hydroxy acid 26HHCSA

15 Hexadecanoic acid 328, 313, 201, 145, 132, 117, 73 ω-Hydroxy acid HEXA

16 Octadecanoic acid 341, 201, 145, 132, 117, 73 ω-Hydroxy acid ODA
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et al. 2015). The hydrolysates were cooled in ice, centri-
fuged at 2500 r.p.m. for 5 min and the supernatant was 
removed. To the supernatants 15  mL of DI water and 
600 µL of 50 % HCl were added. The tubes were gently 
shaken and then added a mixture of methylene chloride 
and methanol (1:1) and put in ice bath for 15 min. The 
tubes were gently shaken for 10  min and put at 4  °C 
overnight for phase separation. The methylene chloride 
fraction settled at the bottom of the tube; ~200 µL of this 
fraction from each sample were added to a low volume 
GC vial to which 5  µL of C19 (methyl nonadecanoate; 
1000 p.p.m. in hexane) were added as internal standard. 
The vials were then completely dried under nitrogen, 
followed by derivatization using 100 µL of N-methyl-N-
methyl-N-(trimethylsilyl)-trifluoroacetamide with 1  % 
trimethylchlorosilane (MSTFA + 1 % TMCS) and incuba-
tion at 60 °C for 30 min. The derivatized samples were 
analysed within 8  h using gas-chromatography mass 
spectrometry (GC-MS) as per Tamura and Tharayil (2014) 
and compounds were positively identified based on com-
parison of mass fragmentation patterns (Table 1) with 
Wiley 9th + NIST08 MS Libraries (Agilent Technologies) 

and in comparison with external standards and the lit-
erature (Jarvinen et al. 2009).

Diffuse reflectance infrared Fourier transform 
spectroscopy
The solvent-extracted tissues of B. gracilis were further 
analysed using diffuse reflectance infrared Fourier trans-
form (DRIFT) spectroscopy (Suseela et al. 2013, 2014a). 
DRIFT is a complementary technique to wet chemistry 
analysis, because it provides the overall chemical com-
position based on the molecular vibration of the tissue 
matrix. The DRIFT spectra were acquired in transmission 
mode using a Perkin-Elmer Spectrum One DRIFT spec-
trometer with a deuterated triglycine sulfate detector. 
For acquiring the DRIFT spectra, the solvent-extracted 
root tissues were mixed with spectral grade KBr in a ratio 
of 1:50 using an agate mortar and pestle and packed 
in a macrocup accessory. The spectra were collected 
from 4000 to 650  cm−1 at 4  cm−1 resolution. For each 
sample, we acquired 40 interferograms and the spectra 
were then transformed to Kubelka–Munk units, and the 
baseline was corrected (ACD Spec Manager; Advanced 

Figure 1.  Heatmap and two-way hierarchical clustering of suberin monomers of roots of B. gracilis exposed to different climate treatments. 
Each column represents a sample from a climate treatment, and each row represents a positively identified compound, based on GC-MS 
(Table 1). Key: ct (ambient CO2, ambient temperature), Ct (elevated CO2, ambient temperature), cT (ambient CO2, warming) and CT (elevated 
CO2, warming).
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Chemistry Development, Toronto, ON, Canada). The 
peaks between 3000 and 2800 cm−1 correspond to C–H 
stretching contributed by aliphatic compounds such 
as suberin. The other important peaks identified were 
1510  cm−1 (C=C aromatic skeletal vibration attributed 
to lignin); 1375–1370  cm−1 (C–H symmetrical bending 
attributed to phenols and aliphatic compounds) and 
1200–800  cm−1 (C–O stretching and O–H deformation, 
representing carbohydrates).

Statistical analysis
The data on the chemical composition of suberin in 
roots were analysed using a two-way analysis of vari-
ance with warming and CO2 as the main factors (SAS 
v.9.2; SAS Institute Inc., Cary, NC, USA). Differences be-
tween climate change treatments were analysed using 
Tukey’s HSD test with significance inferred for P < 0.05. 
We did a hierarchical cluster analysis on both treat-
ments and the suberin monomers and generated a heat 
map (Metaboanalyst; Xia et  al. 2012) to visualize the 

difference in the relative abundance of suberin mono-
mers in roots exposed to different treatments. The DRIFT 
data were subjected to principal component analysis 
(PCA) to compare samples across different treatments. 
For the PCA analysis, we used the relative peak heights 
of 11 DRIFT peaks that corresponded to important 
carbon functional groups. In each sample, the relative 
peak heights were computed as the ratio of the intensity 
of each of the individual peaks to the sum of intensities 
of the 11 peaks (Suseela et al. 2014a).

Results
We identified 16 monomers of suberin in both the C3 and 
C4 species, of which eight belonged to ω-hydroxy acids 
and four each to α,ω-dioic acids and aromatic monomers 
(Table 1). The B. gracilis roots exposed to ambient condi-
tions (ct; control) clustered separately from all other treat-
ments and those exposed to combination of warming 
and elevated CO2 had higher abundance of monomers 

Figure 2.  Effect of warming and CO2 treatments on the relative contents of (A) total suberin, (B) aromatics, (C) ω-hydroxy acids and (D) α,ω-
dioic acids in roots of B. gracilis. Values represent means ± SE (n = 4).
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belonging to ω-hydroxy acids and aromatic monomers 
(Fig. 1). Moreover, the total quantity of suberin increased 
with warming (36  %) and elevated CO2 (28  %; Fig.  2A; 
P < 0.05; Table 2). Among the different compound classes, 
ω-hydroxy acids followed the same trend as total suberin, 
and increased with warming (40  %) and elevated CO2 
(35 %; Fig. 2C; P < 0.05). However, other compound classes 
such as the aromatic compounds increased only with 
warming (24 %; Fig. 2B; P < 0.05). Warming had a marginal 
influence on α,ω-dioic acids (34 %; Fig. 2D; P = 0.06).

The climate treatments affected the chemical com-
position of roots of B. gracilis subjected to factorial com-
binations of warming and elevated CO2, as indicated by 
the relative intensities of the DRIFT peaks (Fig. 3). The PC 
axis 1 explained 89 % of the variation in the data and 
separated the treatments based on the abundance of 
different carbon functional groups. The DRIFT analysis 
of B. gracilis roots also revealed that plants exposed 
to combination of warming and elevated CO2 (CT) had 
higher abundance of alkyl compounds (2944, 2890 
cm−1; potentially arising from the methylene groups of 
aliphatic suberin monomers; Zeier and Schreiber 1999; 
Lopes et al. 2000) and lignin (1511 cm−1) compared to 
those exposed to the control (ct) treatment which had 
higher abundance of polysaccharides (1039, 800 cm−1; 
Fig. 3; P < 0.05). However, B. gracilis exposed to either 
warming (cT) or elevated CO2 (Ct) alone did not differ 
from plants exposed to the control treatment (ct) and 
combined warming and elevated CO2 (CT) treatment.

Roots of H.  comata were less responsive to global 
change treatments compared to B. gracilis. In H. comata, 
the total quantity of suberin showed an increasing trend 
with the main effect of warming and elevated CO2 
(P = 0.07; Table 3). Unlike B. gracilis, in H. comata, α,ω-
dioic acids increased with the main effect of elevated 
CO2. The ω-hydroxy acids marginally varied by an inter-
action of warming and elevated CO2 (Fig. 4).

Discussion
Environmental cues exert a major influence on the depos-
ition of suberin along root tissues (Schreiber et al. 1999; 
Kolattukudy et al. 2001; Baxter et al. 2009; Ranathunge 
et al. 2011). For example, abiotic stresses such as drought 
and salinity increased the total quantity of suberin in 
roots (Franke and Schreiber 2007). Our results revealed 
that warming and elevated CO2 can alter the total quan-
tity of suberin in plant roots (Fig. 2). The above- and 
below-ground changes in resource availabilities induced 
by warming and elevated CO2 alter the morphological 
and physiological traits of roots (Nie et al. 2013; Carrillo 
et al. 2014; Nelson et al. 2017). Previous study from the 
PHACE site reported that elevated CO2 with warming 

increased the length and decreased the diameter of fine 
roots of grasses resulting in greater specific root length 
and specific root area (Carrillo et al. 2014). As the sur-
face area of roots increases, the content of suberin per 
unit mass could also increase. As roots become thinner, 

Table 2.  Results of the two-way analysis of variance of the 
responses of a) total suberin, b) aromatics, c) ω-hydroxy acids 
and d) α,ω-dioic acids in roots of B. gracilis to warming and CO2 
treatments. P values < 0.05 are given in bold. P values < 0.1 but 
>0.05 are given in italics. DF = degrees of freedom; MS = mean 
squares; SS = sum of squares.

a) Total suberin

Source of variation DF SS MS F P

CO2 1 71.364 71.364 5.201 0.042

Warming 1 105.788 105.788 7.71 0.017

CO2 × warming 1 14.123 14.123 1.029 0.33

Residual 12 164.643 13.72

Total 15 338.441 22.563

b) Aromatics

Source of variation DF SS MS F P

CO2 1 0.318 0.318 1.36 0.266

Warming 1 1.118 1.118 4.779 0.049

CO2 × warming 1 0.414 0.414 1.771 0.208

Residual 12 2.807 0.234

Total 15 4.407 0.294

c) ω-hydroxy acids

Source of variation DF SS MS F P

CO2 1 49.037 49.037 6.978 0.022

Warming 1 62.028 62.028 8.826 0.012

CO2 × warming 1 6.67 6.67 0.949 0.349

Residual 12 84.332 7.028

Total 15 192.49 12.833

d) α,ω-dioic acids

Source of variation DF SS MS F P

CO2 1 0.776 0.776 1.785 0.206

Warming 1 1.829 1.829 4.204 0.063

CO2 × warming 1 0.283 0.283 0.65 0.436

Residual 12 5.219 0.435

Total 15 7.816 0.521
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they are increasingly susceptible to pest and pathogen 
attack which could result in the increased deposition of 
defence compounds such as suberin and lignin (Emmett 
et al. 2014; Wang et al. 2015). In our study, in the roots of 
B. gracilis (C4 species), the relative abundance of suberin 
increased with the main effect of warming and elevated 
CO2 where the magnitude of change was highest with 
warming. Similarly, the abundance of lignin also increased 
with a combination of warming and elevated CO2 (Fig. 3). 
These changes in the content of suberin and lignin in the 
roots of B. gracilis may decrease their decomposability 
particularly if the suberin is associated with lignin (Angst 
et al. 2016). Although our study did not examine the as-
sociation of different heteropolymers in roots, our pre-
vious research at the same PHACE study system revealed 
that the cell wall-bound phenolics that cross-link lignin 
to polysaccharides increased in the leaves of B. gracilis 
exposed to elevated CO2 (Suseela et al. 2014b).

Along with changes in the content of suberin, our 
study also revealed changes in the composition of su-
berin in roots of plants exposed to different global 
change factors. Suberin composition is associated with 
important changes in root function (Schreiber et  al. 
2005; Ranathunge and Schreiber 2011), which may be 
a response to biotic/abiotic stress. For instance, higher 
amounts of aliphatic suberin in the exodermal cell walls 
in the roots of rice contributed to lower hydraulic con-
ductivity (Schreiber et al. 2005). Similarly, the deposition 

of aliphatic suberin monomers preferentially increased 
resistance to fungal pathogens compared to those from 
the aromatic domain (Lulai and Corsini 1998). In our 
study, the preferential enhancement of ω-hydroxy acids 
(35–40 %) with warming and elevated CO2 (Fig. 2) poten-
tially indicates the relative importance of the aliphatic 
component in maintaining their protective functions 
(Schreiber et al. 1999; Thomas et al. 2007; Ranathunge 
et al. 2008). In general, the lipid composition of leaves 
and roots is indicative of their morphology and lifespan 
(Mueller et al. 2012) which largely depends on the biotic 
and abiotic environmental conditions. As the enzymatic 
susceptibility of heteropolymers depends on their chem-
ical composition, the qualitative changes in suberin in 
response to elevated CO2 and warming may also have 
implications on the decomposability of these tissues. 
Recent studies have suggested that the decomposabil-
ity and potential of suberin to contribute to soil carbon 
depends on the chain length of the different monomers 
and the type and location of chemical functional groups 
in each monomer (Angst et al. 2016). For example, the 
decomposability of roots decreased with increase in 
the chain length of the monomers of suberin (Angst 
et  al. 2016). Thus, the observed increase in ω-hydroxy 
acids with monomers of higher chain length (ω-C22, ω-
C24, ω-C26) in B. gracilis may potentially decrease the 
decomposability of these tissues (Moucawi et al. 1981; 
Angst et al. 2016).

Figure 3.  Principal component analysis of the relative intensities of the dominant DRIFT peaks of roots of B. gracilis from different climatic 
treatments. The wave numbers (carbon functional groups in the litter corresponding to different compounds) with the highest eigenvector 
loadings are listed on each principal component axis. Each point represents a mean of five replicates. Letters ‘A’, ‘B’ and ‘C’ indicate Tukey’s 
difference between treatments separated by PC1 axis.
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In our study, the effect of warming and elevated CO2 
on the content and composition of suberin varied with 
the C3 (H. comata) and C4 (B. gracilis) species. The con-
tent and composition of suberin in roots of H. comata was 

less responsive to warming and elevated CO2 treatments.  
As our two study species varied in their photosynthetic 
carbon assimilation pathways, different climatic con-
ditions could elicit differential metabolic responses in 
these species. For example, our previous research in the 
same study site evaluating the above-ground metabolic 

Table 3.  Results of the two-way analysis of variance of the 
responses of a) total suberin, b) aromatics, c) ω-hydroxy acids 
and d) α,ω-dioic acids in roots of H. comata to warming and CO2 
treatments. P values < 0.05 are given in bold. P values < 0.1 but 
>0.05 are given in italics. DF = degrees of freedom; MS = mean 
squares; SS = sum of squares.

a) Total suberin

Source of variation DF SS MS F P

CO2 1 9.709 9.709 4.198 0.075

Warming 1 9.514 9.514 4.113 0.077

CO2 × warming 1 4.194 4.194 1.813 0.215

Residual 8 18.504 2.313

Total 11 41.921 3.811

b) Aromatics

Source of variation DF SS MS F P

CO2 1 0.0848 0.0848 0.385 0.552

Warming 1 0.0592 0.0592 0.269 0.618

CO2 × warming 1 0.629 0.629 2.859 0.129

Residual 8 1.761 0.22

Total 11 2.534 0.23

c) ω-hydroxy acids

Source of variation DF SS MS F P

CO2 1 7.755 7.755 3.294 0.107

Warming 1 2.553 2.553 1.085 0.328

CO2 × warming 1 9.794 9.794 4.16 0.076

Residual 8 18.834 2.354

Total 11 38.937 3.54

d) α,ω-dioic acids

Source of variation DF SS MS F P

CO2 1 0.656 0.656 7.741 0.024

Warming 1 0.224 0.224 2.645 0.142

CO2 × warming 1 0.232 0.232 2.736 0.137

Residual 8 0.678 0.0847

Total 11 1.789 0.163

Figure 4.  Effect of warming and CO2 treatments on the relative 
contents of (A) total suberin, (B) α,ω-dioic acids and (C) ω-hydroxy 
acids in roots of H. comata. Values represent means ± SE (n = 3).
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responses of a C3 (P. smithii) and C4 (B. gracilis) species 
revealed that the C4 species increased the content of lignin 
and cuticular matrix only under warming, whereas the C3 
species exhibited similar response only under combin-
ation of warming and elevated CO2. Similarly, the content 
of bound phenolics that cross-link lignin to polysaccha-
rides within the tissue matrix increased with warming only 
in the C4 species (Suseela et al. 2014b). Thus, the differen-
tial response we observed to warming and elevated CO2 in 
suberin in the roots of H. comata (C3) and B. gracilis (C4) 
could have arisen from different biochemical adaptations 
associated with their photosynthetic pathways.

Conclusion
Changes in the quantity and composition of suberin and 
an increase in the abundance of lignin could alter the con-
tribution of roots to stable soil organic matter because 
root-derived aliphatic compounds have greater stability 
in soils (Nierop 1998; Crow et al. 2009; Xia et al. 2015). Our 
results suggest that the observed increase in the abun-
dance of suberin, especially the aliphatic components, in 
roots could enhance below-ground soil carbon seques-
tration in grasslands under elevated CO2 and warming. 
However, the results also revealed that suberin in roots of 
B. gracilis was more responsive to global change factors 
than H. comata. Thus, changing species composition with 
climate change (Morgan et al. 2011) would further me-
diate potential suberin contributions to soil carbon pools. 
A  better understanding of how climatic factors modu-
late the biopolymer composition of fine roots would sub-
stantially improve our efforts to predict root-derived soil 
carbon storage under future climates.
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