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Abstract: Celiac disease, wheat sensitivity, and allergy represent three different reactions, which
may occur in genetically predisposed individuals on the ingestion of wheat and derived products
with various manifestations. Improvements in the disease diagnostics and understanding of disease
etiology unveiled that these disorders are widespread around the globe affecting about 7% of the
population. The only known treatment so far is a life-long gluten-free diet, which is almost impossible
to follow because of the contamination of allegedly “gluten-free” products. Accidental contamination
of inherently gluten-free products could take place at any level from field to shelf because of the
ubiquity of these proteins/grains. Gluten contamination of allegedly “gluten-free” products is a
constant threat to celiac patients and a major health concern. Several detection procedures have
been proposed to determine the level of contamination in products for celiac patients. The present
article aims to review the advantages and disadvantages of different gluten detection methods, with
emphasis on the recent technology that allows identification of the immunogenic-gluten peptides
without the use of antibodies. The possibility to detect gluten contamination by different approaches
with similar or better detection efficiency in different raw and processed foods will guarantee the
safety of the foods for celiac patients.

Keywords: gluten contamination; celiac disease; gluten detection; food labeling; aptamers;
prolamins; wheat

1. Introduction

Wheat feeds one-quarter of the annual worldwide demand for plant proteins (60 metric tons) and
has been the source of nutrition since the dawn of human civilization [1–4]. It is not only a primary
staple worldwide. But it is also responsible for numerous foodborne disorders, which remained one
of the major causes of premature deaths in the most resource-deprived parts of the world since the
prehistoric-times [3,5–8]. Given its vast influence on human health, domestication of bread wheat and
its subsequent industrialization has been considered a “mistake of evolution” that created conditions
for human diseases related to gluten exposure [7,9,10]. The word “gluten” refers to a complex mixture
of proline and glutamine-rich seed-storage proteins that serves as fuel for multiple disorders [11–16].
Different overlapping or non-overlapping epitopes have been shown to elicit various reactions in
different individuals in accordance to their genetic constitutions [14,17–20]. Gluten-intake in sensitive
individuals can lead to gastrointestinal, neurological, and fatal symptoms such as non-Hodgkin
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lymphoma [21–23]. These symptoms can be classified grossly into celiac disease, wheat sensitivity, and
allergy [11,23,24], with the celiac disease being the most prevalent gastrointestinal disorder [23]. In
celiac disease, the response to gluten is mediated by the adaptive immune system and the induction
of autoantibodies against the indigestible gluten peptides and tissue transglutaminase 2 (tTG2), an
enzyme involved in tissue homeostasis [25]. The tTG2 is also responsible for chemical modification of
gluten peptides, which enhance their recognition by the immune system. In this process, the faulty
immune system in genetically predisposed individuals recognizes tTG2 as an enemy and triggers
an autoimmune response against it [14,26]. Because of their mode of action, gluten peptides were
compared with the non-replicating pathogen [27]. Since like pathogens, these peptides evade “host”
defenses by escaping digestion through gastrointestinal enzymes, invade the intestinal epithelium, take
a more aggressive form after the modification by tTG2, and trigger a cascade of reactions leading to the
intestinal and extra-intestinal symptoms [14,27,28]. The first reaction initiated by gluten-peptides gets
amplified to take a more severe form of an autoimmune disorder upon recognition of tTG2 by the
immune system as antigen [29,30]. The second kind of reaction is gluten-allergy, which involves both
the innate and adaptive immune systems [23,31]. It is a quick reaction against the external allergen
within few minutes to hours after ingestion or inhalation and results in a variety of symptoms such
as dermatitis, anaphylaxis, etc., [32]. The third kind of reaction known as wheat sensitivity involves
the innate immune system and is associated with diverse symptoms ranging from fatigue, distress,
depression, and migraines to gastrointestinal disorders [31,33].

The only known treatment for gluten-associated disorders is a life-long wheat exclusion diet [14,16].
Such a diet is difficult to follow because of the unintended contamination of “gluten-free” products,
improper labeling, social constraints, and ubiquity of gluten proteins in raw or cooked food and
pharmaceuticals [34–36]. Thus, accidental gluten encounters are likely [37,38]. Different celiac patients
show sensitivity to different gluten proteins [9,39]. Besides, different individuals show different
tolerance levels for gluten intake. In general, celiac patients were shown to tolerate up to 20 mg gluten
in a kg of food consumed in a day [40,41]. Therefore, it is crucial to precisely monitor the gluten content
of the food prepared for celiac patients and to maintain gluten-levels below the prescribed limits in
their diets [42].

According to the Codex definition, any food product containing >20 mg/kg gluten cannot be
considered or labeled as “gluten-free” [43]. Because of the gluten contamination, many inherently
gluten-free products (derived from corn, rice, millet, oats, etc.,) cannot be consumed by celiac
patients [37,38]. These products, if misbranded as “gluten-free” and used by the celiac patients,
will result in recurrence of symptoms [34]. The gluten contamination can take place at any level
from field to the shelf during harvesting, transportation, and/or processing [44–46]. In bakeries
where gluten is present ubiquitously, it is almost impossible to decontaminate all equipment,
thus unconsciously contaminate the “gluten-free” products [47]. For instance, in analysis of R5
antibody-based enzyme-linked immunosorbent assay (ELISA) of 22 commonly available, “gluten-free”
commodities including grains, seeds, and flours, seven showed mean gluten levels of more than
20 mg/kg [44]. Antibody-based methods of gluten detection, specifically those relying on R5 and G12
antibodies, are also endorsed by the Prolamin Working Group of the Codex Alimentarius Commission
to test gluten contamination in raw and processed food samples (cf. Table 1) [48]. There is sufficient
evidence to support that even products derived from inherently gluten-free grains cannot be considered
safe under the proposed FDA rules for gluten-free labeling [43,44,49–55]. As most of these surveys
were performed on the raw material, it is very likely, that processed food or convenience products,
which have more chances of getting contaminated, will show even higher gluten contamination levels.
Besides, most of the existing detection methods employ the sandwich ELISA system, which suffers
from the following inherent problems. i) Sandwich ELISA can only be applied to antigens larger than
5-kDa in size and with at least two sterically distant epitopes for their binding and detection by capture
and detection antibodies. It thus is unsuitable for the detection of hydrolyzed protein products. ii) The
detection limit for most of the assays is 10 mg/kg, with a high error rate close to the lower detection
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limits. iii) Biased detection of one family of proteins over others, leading to the overestimation of one
and underestimation of the other protein family. iv) Protein contaminations in heat-processed food
samples (especially glutenins) are difficult to detect in these assays. Given the problem associated
with the commonly used gluten detection method, the major objective of this review is to look into
other gluten detection methods, with better sensitivity and possibility for implementation in the
food industry.

Table 1. A list of commonly available gluten detection kits, associated antibodies, target proteins,
detection procedures, and extraction systems.

Company Neogen Corp. R-Biopharm AG R-Biopharm AG Inmunología y
Genética Aplicada SA Romer Labs Tepnel

Biosystem Morinaga Inc.

Product Veratox RIDA-
SCREEN

Ridascreen®Gliadin
Competitive INgezim Gluten AgraQuant®Gluten

G12 Gluten assay Wheat protein

Antibody 2 mAb R5 mAb R5 mAb R5 mAb G12 mAb Skerritt mAb Wheat pAb
ELISA type Sandwich Sandwich Competitive Sandwich Sandwich Sandwich Sandwich

Time 30 min 1.5 h 40 min 60 min 60 min 30 min 2.5 h

Target gliadin
ω, α/β- &

γ-gliadins and
LMWg

ω, α/β- &
γ-gliadins and

LMWg

ω, α/β- & γ-gliadins
and LMWg α gliadins ω gliadins

and HMWg
Wheat

proteins

Antigen
LOD (mg/kg) n/a 3 1.36 3 2 1 0.3
LOQ (mg/kg) 10 5 5 10 4 10 3.12

2. Celiac Disease Prevalence

The availability of better tests such as serological analysis for antibodies against tissue
transglutaminase (tTG), deamidated gliadin peptide (DGP), and anti-endomysial antibodies (EMA),
as well as small bowel biopsy, have improved celiac disease (CD) diagnosis and distinction between
CD and non-celiac wheat sensitivity (NCWS) [26,56–58]. Worldwide prevalence of celiac disease has
been documented to range between 0.5 to 1.7% [59,60]. It is noteworthy that the prevalence of CD has
increased over the decades, with an incidence rate of 0.6% in the 1990s to 0.8% between 2001 to 2016.
Better diagnostics and health awareness might be responsible for this increased CD prevalence. In the
northern hemisphere, the incidence in adults diagnosed by biopsy ranges from 0.96% in Canada, 1% in
the United States to ~2% in Europe [61,62]. In the southern hemisphere, the once thought to be the
“celiac-free” region of the world has reported having similar CD prevalence to European countries.
The latest surveys have established an equal incidence of celiac disease in Asia and Africa [59,63,64].
Specifically, in India, a celiac disease frequency of 1.04% was reported [65–67]. In some provinces of
China, the CD prevalence, similar to the global incidence of two individuals diagnosed every hundred,
was reported [68,69]. In Northern Africa, the CD prevalence of about 0.3 to 5.6% was observed. In
Australia and New Zealand, a CD incidence of 0.5% and 1.2 %, respectively, was reported. In South
America, specifically Argentina and Brazil, a range of 0.2 to 0.6% was observed. Whereas, in Mexico,
a higher rate close to 3% of CD occurrence was reported [59]. It is possible, over the years, with the
advancement in technology and better diagnostics, several patients currently considered to suffer
from NCWS will be diagnosed with celiac disease, leading to the changes in our understanding of CD
prevalence. The prevalence of NCWS has been documented to range between 0.6 to 13% in the general
population. However, because of the lack of diagnostic criteria, biomarkers, and misconceptions
on self-diagnosis, the actual prevalence of NCWS cannot be established with a level of confidence
today [70]. These epidemiological studies have suggested that gluten-associated disorders are common
around the globe, and reflected toward a need for the “gluten-free” products. However, given the
market trend and consumer safety in mind, it is imperative to ascertain that the products labeled as
“gluten-free” should have and maintain a gluten-free status.

3. Hidden Gluten or Gluten Contamination

The products containing hidden gluten include sausages, fish fingers, cheese spreads, soups,
sauces, mixed seasonings, mincemeats, some medications, and food supplements like vitamin
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preparations [34]. Some beverages like real ales, beers, and stout are also contaminated with gluten
generally [36]. The primary causes of contamination are either use of common machinery during the
harvest, transportation, and processing or the use of shared storage space [71]. Mixed, parallel or
sequential cultivation of gluten-containing and gluten-free cereals could also lead to contamination of
the inherently gluten-free grains [49]. Contamination is unavoidable if the same milling equipment
is used for gluten-free and gluten-containing grains. Interestingly there is no legislature in place
regarding the maximum levels of foreign grains in gluten-free cereals. However, in general, 2% of
other grains are used as the maximum limit.

The ubiquitous nature of gluten constitutes a global problem. Contamination of food has been
reported as early as 1987 in Sweden, United Kingdom, Canada, South Africa, Brazil, the United States,
Italy, Australia, and Ireland [46]. The existence of gluten contamination was reported in industrial and
non-industrial products, with or without a “gluten-free” label, with an overall prevalence of 23.2% [46].
Besides the methodological limitations, such as different detection methods, the experimental design,
or non-consensus on the gluten reference material, there is an agreement on the importance of strict
regulations to check gluten contamination. Studies conducted over time have shown a decrease in the
number of gluten-contaminated samples worldwide [72,73]. After analysis of a fifteen-year period,
more significant decrease was observed in cereals and additives, which were down from 37.7% and
33.0% of gluten contaminated samples to 7% and 2.6%, respectively [72,74]. In the European Union,
55% of the gluten-free food products were found contaminated in the period between 2003–2005.
In contrast, only 19% of the food products were found contaminated in the period between 2013 to
2016, which is concordant with the codex revision implementation followed by Central and Western
European countries [72]. This revision was critical for snacks and yeasts, where gluten level was found
unsafe for celiac patients. It forced the yeast bakery product manufacturers to change their practices
to ensure gluten control in their products. During recent years, the development of non-invasive
methods to detect gluten-related disorders [75], allowed patients to check the quality of the products
and demanding better and reliable food labeling.

4. Gluten Threshold or Tolerance Level

A gluten-free diet does not necessarily mean “zero gluten” because low levels of gluten seem
to be tolerated by the patients. In consideration of the worldwide prevalence of the celiac disease,
establishing a threshold for gluten intake by the patients is a matter of general interest. Albeit several
studies were conducted in the past to determine the effect of low gluten intake in patients with celiac
disease, a more detailed study is required to reach a consensus. In the 1980s, by studying the toxicity
and time response to the gliadin doses in a single patient, the conclusion was reached that in between
10 to 100 mg of gliadins induce slight to no changes in the small intestine morphology [76]. Whereas,
500 mg to 1 g gliadin doses respectively cause moderate to extensive damage to the small intestine.
Later on, in a more detailed study, the same group of researchers reported that 2.4–4.8 mg gluten per
day caused no damage to the jejunal morphometry over an observation period of 1–6 weeks [77]. In an
earlier study, Ejderhamn and collaborators reached a similar conclusion that a daily intake of 4–14
mg gliadin does not cause morphological changes in the small bowel mucosa of celiac patients on an
abstinent diet [78]. Two Finnish groups also made similar observations, however, with slightly higher
daily doses of gluten (20–36 mg) in the celiac patients on the gluten-free diets [79,80]. In a later study,
even a higher amount (10 to 100 mg) of daily gluten intake was reported to be safe for celiac patient
consumption [81]. On the other hand, Catassi et al. [82] demonstrated that 100 mg of the gliadins per
day cause deterioration of the small intestine architecture, and the effects are more pronounced with
500 mg gliadin per day. Despite several studies conducted in the past, a consensus on the critical limit
or threshold for gluten intake has not been reached. This large variability in response to gluten among
celiac patients was also witnessed in a double-blind placebo-controlled multicenter investigation for
the gluten toxicity (10–50 mg/day) on 40 celiac patients. In this study, the patients were administered
daily with a capsule containing 0 mg, 10 mg, or 50 mg of gluten for 90 days and analyzed for clinical,
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serological, and histological changes in their small intestines. In this study, the authors reported a large
variability among patients in terms of gluten sensitivity. Some patients showed intestinal symptoms
already after ingesting daily 10 mg of gluten while other patients showed no histological symptoms
even after three months on 50 mg of the gluten daily. Additionally, in a similar study, it was reported
that 50 mg of daily gluten intake for three months is sufficient to cause significant damage to the
intestinal morphology of the tested celiac patients [83].

Because of the observed variability, different countries adapted different labeling regimens for
the products sold for celiac patients. In Europe, two labeling categories have been defined as (i)
“Gluten-free” and (ii) “Very low gluten.” To be listed under the first category, the products must contain
less than 20 mg/kg gluten, and under the second category, it should contain less than 100 mg/kg gluten.
Similarly, FSANZ (the Food Standards of Australia and New Zealand) recognizes two classes of foods,
“gluten-free foods” with no detectable gluten and “low-gluten foods” with no more than 200 mg/kg
gluten. Canada followed a more straightforward approach where a “gluten-free” label means food
without wheat, oats, barley, rye, triticale, and their parts. More recently, the United States Food and
Drug Administration also set a limit of 20 mg/kg gluten for the “gluten-free” products” [84].

The decision on the threshold depends mainly on two factors (i) the minimum toxic dose, and (ii)
the amount of “gluten-free” product(s) consumed. The results of the food challenge studies indicated
that 200 mg/kg is not a safe threshold as the gluten intake limit of 50 mg/kg could be reached with the
consumption of 250 g of allegedly gluten-free product(s). A 100-mg/kg limit that allows 10 mg gluten
in 100 g of food is also impractical, as in Europe, consumption of gluten-free products could be as high
as 500 g per day [85]. However, the threshold of 20 mg/kg keeps the intake of gluten from “gluten-free”
food (processed/unprocessed), well below the 50 mg amount. Thus, it allows a safety margin for the
variable gluten sensitivities and dietary habits of the different patients.

5. Food Labeling

Gluten-sensitive individuals rely mostly on product labels to make diet decisions. Therefore, it is
imperative to label all food ingredients, particularly in the case of the composite pre-packed foods. The
food ingredients that cause intolerance and/or allergy are documented in the “list of hypersensitivity”
complied by the Codex Commission. This list includes the gluten-containing cereals, Crustacea,
eggs, fish, peanuts, milk, tree nuts, and derivatives of the items listed above [86]. Gluten is not a
permitted food additive in the European countries; therefore, the label must include all ingredients [87].
Ingredients such as soluble wheat proteins and starches are, however, used without any declaration
in several food products. Therefore, the Codex Commission declared that gluten-ingredients from
wheat, including Spelt (Triticum spelta L.), Khorasan, or Kamut (T. polonicum L.), durum, einkorn (T.
monococcum), barley, rye, triticale, tritordium, and their hybrids should be declared [84]. The primary
concern at present is the misbranding of single or multi-ingredient food products as gluten-free without
proper testing, specifically in cases where the product is derived from the inherently gluten-free
grains [88]. Thus, to brand these products gluten-free, it is crucial to test and ascertain that the gluten
level stays below the prescribed limit of 20 mg/kg in them.

6. Available Detection Methods

Over the years, several gluten-detection and quantification methods have been developed and
tested using the gluten-containing and/or spiked samples. These procedures can be grossly classified
into genomic, proteomic, and immunological methods [89]. The pros and cons of using these methods
are discussed in this section.

Among genomic methods, PCR (polymerase chain reaction)-based assay relies on the
determination of specific DNA sequences. These methods are more sensitive by several orders
of magnitude than the protein-assays. The PCR-based assay was first applied by Allmann et al. [90] to
test 35 different food samples, including bakery additives and heated as well as processed food samples.
In this study, wheat starch having low gliadin content was found positive by PCR, albeit the pure
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gliadins or glutenins, used as a food additive, could not be detected. In a separate study, oat samples
spiked with wheat gluten were tested simultaneously with PCR and R5 ELISA, and PCR showed
ten times more sensitivity than R5 ELISA [91]. Later, Dahinden et al. [92] developed a quantitative
competitive (QC-) PCR system to detect wheat, rye, and barley contaminations. The QC-PCR was
applied to 15 gluten-free commodities, which gave results comparable to the ELISA test performed
using the R5 monoclonal antibody (mAb). Similar conclusions were reached in another study performed
using real-time PCR [93]. In the same year, Henterich et al. [94] developed a real-time immuno-PCR
assay for gliadin detection, where an R5 mAb was conjugated with an oligonucleotide. The results
showed 30-fold more sensitivity over ELISA. In a later experiment, Mujico and collaborators [95]
developed a highly sensitive RT-PCR based system for gluten detection in raw and processed samples,
which exhibited more sensitivity than R5 ELISA. A comparison of the results obtained over a six-year
period between laboratories using PCR and ELISA for wheat gluten detection showed that PCR
gave no false positives. In contract, ELISA detected 2% false positives, specifically in processed food
samples [96]. Despite the high sensitivity, PCR assays cannot be applied to the hydrolyzed products
such as beer, syrup, and malt extracts for the determination of their gluten content.

The relatively more direct and precise method for gluten detection and quantification is
matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). It can
simultaneously measure the protein and protein hydrolysate ranging in size from 1000 to 100,000
Daltons without a need for chromatographic purification [97]. Additionally, this technique allows
reliable determination of protein levels as low as 0.01 mg/ml in the food samples [97]. This method
was first applied to test 30 “gluten-free” food samples, and the results were comparable with that of
ELISA [98], with an added advantage, as it allowed determination of the contamination source [99].
MALDI-TOF MS is a highly sensitive non-immunological approach for the detection and quantification
of gluten contamination in food samples. However, its application requires highly expensive specialized
equipment, and the method is applicable only to make semi-quantitative measurements [100]. Coupling
HPLC could overcome this limitation to tandem mass spectrometry (LC-MS/MS) [89]. However,
there are a few points of consideration, such as the type of peptidase treatment needed for gluten
detection, the reference material for gluten quantification, and the extraction of proteins from the food
matrix. Earlier protocols allowed identification of gluten source in beer made from wheat, barley, or
buckwheat [101]. And, the following methods allowed gluten quantitation in the range of 0.01 to 100
mg/kg in raw and processed food samples [102]. Using LC-MS/MS proteomic profiles were obtained
for 60 beer samples [103], where each hordein fraction was expressed as percentages of prolamin
content [104]. Also, in beer samples, differences between ELISA and mass spectrometry were observed,
where samples detected negative for hordeins in ELISA were found positive for B-hordein fragments in
MS analysis [105]. Similarly, targeted LC-MS/MS analysis allowed detection of wheat gluten peptides
at concentrations of 10 and 15 mg/kg, respectively, in chymotrypsin and trypsin treated oat and soy
flour samples [106,107].

Column chromatography is another method that has been used extensively for characterization,
separation, and quantification of the cereal seed-storage proteins. Gel permeation (GP) chromatography,
which separates proteins based on their molecular weights, and reverse-phase (RP) chromatography
that separates proteins according to their hydrophobicities, are the most commonly used methods [108].
These procedures have advantages in terms of speed (often 30 min runs) and detection capability,
which is as low as 1-2 mg gluten. These methods have been used successfully in determining gluten
contamination in 23 starch samples with gliadin content of 15 to 574 mg/kg [109]. Although this
method can be used to access gluten contamination reliably, it has the disadvantage of being unable to
differentiate between gluten and non-gluten proteins in the complex food samples.

More recently, the applicability of near-infrared (NIR) spectroscopy for the detection of gluten
contamination in gluten-free products was proposed [110]. For gluten detection and quantification,
NIR spectroscopy was combined with chemometric techniques. However useful, this technique relies
on the development of a suitable calibration model, which depends on the availability of a large
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number of samples characterized by other methods to carry gluten contamination to serve as a training
set. Therefore, the availability of a training set is a prerequisite to calibrate the NIR equipment to test
unknown samples for gluten contamination, which may or may not be available to the user.

The more versatile and commonly accepted assays are immunological assays, in particular ELISA.
Owing to the sensitivity and speed of detection, the Codex Committee on Methods of Analysis and
Sampling has endorsed these methods [111]. Several variations of these methods have been developed
over the years. Several antibodies (monoclonal and polyclonal) and a variety of commercial kits
are available in the market to perform these assays [89]. The commonly used ELISA systems can
be grossly divided into two categories: the sandwich ELISA and the competitive ELISA [89]. In the
sandwich ELISA the antigen is sandwiched between two antibodies, one immobilized to the walls of
the microtiter plate (capture antibody) and the other coupled with an enzyme (detection antibody). The
sandwich ELISA is only suitable for large antigens because the antigen should have at least two separate
epitopes to bind both antibodies. Thus, this ELISA system is not an appropriate choice for partially
hydrolyzed gluten samples like in the sourdough products, malt, and beer. The other ELISA system is
competitive ELISA, which is suitable for the detection of small-sized antigens with a single epitope. In
this system, labeled and unlabeled antigen is applied to immobilized antibody, where they compete for
the antibody binding sites. After washing out the unbound antigen, the quantity of the labeled antigen
is determined by adding the enzyme-substrate and measuring the intensity of the colored end product,
which corresponds with the quantity of the labeled antigen. The major problem associated with both
of the ELISA systems is the determination of gluten contamination in heat-processed food samples,
which cause conformational changes to the antigen masking or modifying the antibody recognition
site(s) [89]. It has been documented that the α/β- and γ-gliadins lose 49 to 67% of the original reactivity
after the heat treatment, while the ω-gliadins remain largely unaffected, i.e., they only lose 7% of
reactivity [112,113]. The commercially available prolamin detection kits are summarized in Table 1.

There are, however, several shortcomings associated with the use of ELISA, the most important
being the appearance of false positives due to the requirement of an enzymatic reaction for antigen
detection/quantification and non-specific binding of antigen to the plate. To overcome these challenges,
during the last decade, there have been efforts to develop enzyme-free assays capable of fast
quantification, and requirement of the small amount of sample for analysis. In this area, the development
of nanomaterials and their use in biomolecular sensing has gained increasing importance [114].
Nanomaterials are defined as materials with a size of less than 100 nm in at least one dimension [115].
The nanoparticles possess unique properties because of their small size, composition, and high specific
surface area (the total surface area per unit of mass), allowing them to exhibit extraordinary reactivity.
Furthermore, they present unique optical, electrochemical, and magnetic properties, which have been
extensively exploited for capture, recognition, and quantification of chemical targets and biomolecules
such as proteins [114]. One of the most important properties of the nanoparticles is the possibility of
modifying their surface chemistry. Conjugation of nanoparticles with different surface binding chemical
groups allows the designing of nanoprobes that can be used in biomolecular sensing of specific targets
with many advantages over conventional assays [116,117]. Noble metal nanoparticles have been used
lately for the detection of food allergens with promising results. For instance, immunosensors were
developed using modified gold nanoparticles for gliadin detection [118–120]. The specificity of the
assays was tested against flour and breakfast cereals containing a matrix from different grains. In the
case of carbon/nanogold screen-printed electrodes directly functionalized with gliadin, the detection
was tested against four products, breadcrumbs, durum wheat pasta, crackers, and biscuits. In all
cases, the immunosensor tests exhibited more specificity compared with R5 ELISA (RIDASCREEN),
detecting lower amounts of gliadins in selected foods, on average 8,500 mg/kg less [118]. A different
approach was taken by Chu and collaborators, who used a label-free gliadin immunosensor based on
changes in the frequency of a quartz crystal microbalance (QCM) chip. With this system, the authors
were able to detect gliadin levels as low as 8 ppb in the samples [119]. Following the international
Codex Alimentarius Standard [43], and using a DNA recognition system, Yin et al. were able to classify
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samples into “gluten-free” and “very low gluten” foods [120]. In a screen of 48 samples, this assay
successfully differentiated between wheat and seven commonly used grains. The results were highly
concordant with those obtained by the Association of Official Agricultural Chemists (AOAC)-approved
ELISA or strip kits [120]. In a recent study, taking advantage of the dimer of the two different size
silver nanoparticles linked by gliadin IgG Biot, the authors reported getting more astringent results
both in terms of the limit of detection (LOD) and the limit of quantification (LOQ) [121]. When tested
on corn flour and corn starch samples, this intensity depletion immunolinked assay (IDILA) showed
1000 to 10,000 times more sensitivity than ELISA, which led to better performance in terms of both
LOD and LOQ [121].

The antibody-based detection methods suffer other drawbacks, such as these assays are not fully
compatible with the extraction solutions, which lead to the denaturation of proteins [122]. In recent
years, to avoid the limitations associated with antibody-based assays, aptamers were proposed as
an alternative. It is generally believed that these molecules can overcome the limitations of using
antibodies in the detection, identification, and quantification of specific targets due to their unique
properties (cf. Table 2 and ref. [123]). The aptamers are single-stranded oligonucleotides that can bind
proteins, small-molecules, and living cells with high affinity and specificity [124]. The single-stranded
DNA or RNA oligonucleotide is selected in vitro via a process dubbed as the systematic evolution of
ligands by exponential enrichment (SELEX) [124]. The method relies on the selection of target-specific
aptamers through the repetition of the following steps: binding, partition, elution, amplification, and
conditioning until the desired aptamer(s) are identified [125]. Briefly, in the case of aptamer designed
for gluten detection, specifically the 33-mer immunogenic epitope, a library consisting of 1014-1015

single-stranded DNA oligonucleotides with a portion of the random nucleotide sequence is synthesized
by a combinatorial chemical synthesis technique, and incubated with the target [126]. Unconjugated
or low-affinity binding molecules are removed, and captured nucleic acid molecules are eluted and
amplified by PCR. As a result, double-stranded PCR products are produced, which are later converted
to single-stranded aptamers. The whole process is repeated several times until a group of high-affinity
binding aptamers is obtained [127] (Figure 1). Aptamers are small molecules typically < 100-mers
that fold into three-dimensional structures with their self-annealing properties. Target identification
is due to their structure and not by their sequence (see Figure 1). Aptamer-target complexes present
dissociation constants (Kd) within the low picomolar (1 × 10−12 M) to nanomolar (1 × 10−9 M) range,
which reflects toward their high binding affinity. Furthermore, target recognition is highly specific
because aptamers can clearly distinguish between closely related protein targets [128].
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Table 2. Comparison of aptamers and antibodies based on properties.

Properties Aptamers Antibodies Reference

Affinity Very high target affinity, dissociation
constants from micro to picomolar range.

Lower target affinity except for some
monoclonal antibodies. [129]

Immunogenic
effect

Independent of immunogenic effect, due to
their in vitro production.

Immune response can fail when the target
molecule, has a structure similar to an

endogenous protein.
[130]

Specificity

High binding specificity, e.g., the
Anti-theophyllin aptamer displayed

10,000-fold discrimination against caffeine
(Theophyllin differs from caffeine by a

single methyl group).

Depends on target type. [131]

Production In vitro. In vivo. Use of animals or cell lines. [132]

Consistency
Chemical synthesis, extreme accuracy, and
reproducibility. Little or no batch-to-batch

variation.

May have in vivo variations. Restricted to
environmental conditions. [130]

Properties Can be optimized on demand for increasing
binding affinity and specificity. Properties cannot be changed on demand. [126,133]

Stability Undergo denaturation, but reversible
within minutes.

Irreversible denaturation. Stable under
physiological conditions [130]

Range of targets
Combinatorial library can be produced

against any type of target, even toxic
targets.

Restricted to molecules that produce
immunogenic effect. [134]

Shelf-life Stable to long-term storage at ambient
temperature. Limited shelf-life. [132]

Functionalization Labeling does not affect affinity. Attachment of molecules can cause loss in
affinity. [126,133,135]

Because of the great versatility of aptamers, these molecules have been developed against multiple
targets such as cells, viruses, proteins, peptides, amino acids, and also small molecules such as
metal ions, toxins, and dyes. The selectivity and high affinity of the aptamer-target interactions
have been utilized for the development of biosensors and bio-detection platforms in a wide range of
disciplines [127,137], which opened the possibility to their use in the detection of food contaminants.
The development of specific aptamers for gluten detection, however, constitutes a challenge because of
the hydrophobic nature of gluten proteins as opposed to the hydrophilic nature of nucleic acids [138].
By using magnetic beads and His-tags, an oligonucleotide able to recognize the immunogenic 33-mer
peptide from gluten was developed. This aptamer performed better than ELISA and showed a LOD as
low as 0.5 mg/kg [138]. A different approach was adopted by Pinto et al. [139], who immobilized wheat
gliadin by adsorbing gliadins suspended in carbonate buffer onto microtiter plates, and exposing the
plates to the pool of single-stranded oligonucleotides. This process has resulted in the select of an
aptamer specific to gliadin 33-mer peptide, which was later used to perform a competitive apta-PCR
assay for gliadin detection with a LOD value similar to ELISA [139]. However, to further improve
the detection efficiency, selection of a suitable labeling system, such as 6-FAM labeling of biotinylated
aptamer was tested [140]. The development of electrochemical competitive apta-sensors for gluten
detection relied on the immobilization of biotinylated 33-mer peptide onto a streptavidin carbon
surface, with LOD as low as 380 µg/kg [141]. When gluten content was measured in food samples,
such as rolled oats or fit-snacks extracted with ethanol, with the apta-sensor, it tolerated up to 1.2% of
ethanol without compromising reproducibility and performance of the assay.

When comparing methods for the detection of gluten contamination in food samples, it is vital to
take into consideration the availability of appropriate reference material. In this sense, PCR-based
methods have a clear advantage, as for quantification, there is no requirement to compare or calibrate
against gluten reference material. In the case of chromatographic, antibody, or aptamer-based methods,
one major concern in different countries that hinder the homologation of gluten food contamination
in “gluten-free” food products, is the absence of a reference material designed for the specific wheat
products, which will serve as the basis for analysis [142,143]. It is also true for oat, barley, and rye
products [144]. Besides this concern, the use of antibody-based methods for in situ detection of gluten
contamination in the food industry remains more accepted because of their user-friendliness and
safety. But, there is space to incorporate other immerging technologies, such as aptamers, which can
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be designed to specifically bind different proteins or protein combinations with more affinity and
specificity to guaranty the ease of detection and safety of food products.

7. Conclusions

Qualitative detection of gluten proteins has been conducted by several analytical techniques such
as gel and capillary electrophoreses, PCR, QC-PCR, RP-HPLC, LC-MS, and MALDI-TOF-MS. However,
these techniques, particularly those based on mass spectrometry, are relatively expensive and require
specialized skills. On the other hand, quantitative detection of gluten protein in food is currently
performed by immunochemical methodologies. The only commercially available method approved by
the FDA and the Codex Alimentarius for gluten detection in food products are immunological tests
such as ELISA. Although these tests are sensitive, they fail to detect partially hydrolyzed gluten in
samples. Furthermore, there is evidence that in ELISA tests, the antibody loses its reactivity when the
kit is used for gluten detection in heat-processed food samples. It is also known that reliable detection
of the trace quantities of 55-67 different gluten proteins is not possible with any available single assays.
A step forward is represented by aptamers, which consist of short chains of oligonucleotides that
specifically recognize and bind to targets by adopting unique three-dimensional structures. Aptamers
offer advancement over the antibodies. For instance, the chemical synthesis of aptamers offers extreme
accuracy and reproducibility, little to no batch-to-batch variation, and allows chemical modifications to
increase the substrate binding affinity further. Unlike antibodies, aptamers upon denaturation can
reassume their structure within minutes, and since they are not the product of the immunological
reaction, the stability under long-term storage at ambient temperature is guaranteed. In practice,
aptamers function like antibodies in recognition of targets but need to be conjugated to additional
components to facilitate detection. Conjugation of aptamers with functionalized nanoparticles
could be achieved by cross-reacting streptavidin-coated iron oxide nanoparticles to biotin-labeled
aptamers. Because of their high binding affinity, simple synthesis, performance under a range of
environmental conditions, and stability in storage, aptamers are promising candidates to be used in
combination with nanoparticles for gluten detection and quantification in unintentionally contaminated
gluten-free products.
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in gluten detection as a cross-contaminant in food. Croat. J. Food Technol. Biotechnol. Nutr. 2018, 13, 120–127.
[CrossRef]

http://dx.doi.org/10.1007/s002170000252
http://dx.doi.org/10.1007/s00217-003-0758-4
http://dx.doi.org/10.1002/food.200390079
http://www.ncbi.nlm.nih.gov/pubmed/14609092
http://dx.doi.org/10.1016/j.foodchem.2011.03.061
http://www.ncbi.nlm.nih.gov/pubmed/24144233
http://dx.doi.org/10.3390/nu6041578
http://dx.doi.org/10.1002/(SICI)1096-9888(199709)32:9&lt;940::AID-JMS550&gt;3.0.CO;2-2
http://dx.doi.org/10.1016/S0021-9673(98)00621-9
http://dx.doi.org/10.1002/jms.1361
http://dx.doi.org/10.1007/s00216-009-2943-1
http://www.ncbi.nlm.nih.gov/pubmed/19636545
http://dx.doi.org/10.1016/j.chroma.2010.01.067
http://www.ncbi.nlm.nih.gov/pubmed/20181349
http://dx.doi.org/10.1371/journal.pone.0056452
http://www.ncbi.nlm.nih.gov/pubmed/23509606
http://dx.doi.org/10.1371/journal.pone.0056456
http://dx.doi.org/10.1016/j.chroma.2014.10.033
http://dx.doi.org/10.1021/jf500997j
http://dx.doi.org/10.1021/acs.jproteome.5b00187
http://dx.doi.org/10.1021/acs.jafc.6b02512
http://dx.doi.org/10.1007/s00217-003-0748-6
http://dx.doi.org/10.31895/hcptbn.13.3-4.4


Nutrients 2019, 11, 2920 16 of 17

111. Codex Alimentarius Commission. Codex Standard 234-1999 (amended 2011), Recommended methods of
analysis and sampling. Gluten-free foods: Enzyme-linked immunoassay R5 Mendez (ELISA) method. In
Codex Alimentarious; FAO: Rome, Italy; WHO: Geneva, Switzerland, 2019; pp. 1–80.

112. Ellis, H.; Doyle, A.; Wieser, H.; Sturgess, R.; Day, P.; Ciclitira, P. Measurement of gluten using a monoclonal
antibody to a sequenced peptide of α-gliadin from the coeliac-activating domain I. J. Biochem. Biophys.
Methods 1994, 28, 77–82. [CrossRef]

113. Rumbo, M.; Chirdo, F.G.; Fossati, C.A.; Añón, M.C. Analysis of the effects of heat treatment on gliadin
immunochemical quantification using a panel of anti-prolamin antibodies. J. Agric. Food Chem. 2001, 49,
5719–5726. [CrossRef] [PubMed]

114. Vinci, G.; Rapa, M. Noble Metal Nanoparticles Applications: Recent Trends in Food Control. Bioengineering
2019, 6, 10. [CrossRef] [PubMed]

115. Khot, L.R.; Sankaran, S.; Maja, J.M.; Ehsani, R.; Schuster, E.W. Applications of nanomaterials in agricultural
production and crop protection: A review. Crop Prot. 2012, 35, 64–70. [CrossRef]

116. Thaxton, C.S.; Rosi, N.L.; Mirkin, C.A. Optically and chemically encoded nanoparticle materials for DNA
and protein detection. MRS Bull. 2005, 30, 376–380. [CrossRef]

117. Nam, J.-M.; Thaxton, C.S.; Mirkin, C.A. Nanoparticle-based bio-bar codes for the ultrasensitive detection of
proteins. Science 2003, 301, 1884–1886. [CrossRef]

118. Manfredi, A.; Giannetto, M.; Mattarozzi, M.; Costantini, M.; Mucchino, C.; Careri, M. Competitive
immunosensor based on gliadin immobilization on disposable carbon-nanogold screen-printed electrodes
for rapid determination of celiotoxic prolamins. Anal. Bioanal. Chem. 2016, 408, 7289–7298. [CrossRef]

119. Chu, P.-T.; Lin, C.-S.; Chen, W.-J.; Chen, C.-F.; Wen, H.-W. Detection of gliadin in foods using a quartz crystal
microbalance biosensor that incorporates gold nanoparticles. J. Agric. Food Chem. 2012, 60, 6483–6492.
[CrossRef]

120. Yin, H.-Y.; Chu, P.-T.; Tsai, W.-C.; Wen, H.-W. Development of a barcode-style lateral flow immunoassay for
the rapid semi-quantification of gliadin in foods. Food Chem. 2016, 192, 934–942. [CrossRef]

121. Mercadal, P.A.; Fraire, J.C.; Motrich, R.D.; Coronado, E.A. Enzyme-Free Immunoassay Using Silver
Nanoparticles for Detection of Gliadin at Ultralow Concentrations. ACS Omega 2018, 3, 2340–2350. [CrossRef]

122. Doña, V.; Fossati, C.; Chirdo, F. Interference of denaturing and reducing agents on the antigen/antibody
interaction. Impact on the performance of quantitative immunoassays in gliadin analysis. Eur. Food Res.
Technol. 2008, 226, 591–602. [CrossRef]

123. Song, K.-M.; Lee, S.; Ban, C. Aptamers and their biological applications. Sensors 2012, 12, 612–631. [CrossRef]
[PubMed]

124. Berezovski, M.V.; Musheev, M.U.; Drabovich, A.P.; Jitkova, J.V.; Krylov, S.N. Non-SELEX: Selection of
aptamers without intermediate amplification of candidate oligonucleotides. Nat. Protoc. 2006, 1, 1359.
[CrossRef] [PubMed]

125. Stoltenburg, R.; Reinemann, C.; Strehlitz, B. SELEX—a (r) evolutionary method to generate high-affinity
nucleic acid ligands. Biomol. Eng. 2007, 24, 381–403. [CrossRef]

126. Zhou, J.; Battig, M.R.; Wang, Y. Aptamer-based molecular recognition for biosensor development. Anal.
Bioanal. Chem. 2010, 398, 2471–2480. [CrossRef]

127. Van Dorst, B.; Mehta, J.; Bekaert, K.; Rouah-Martin, E.; De Coen, W.; Dubruel, P.; Blust, R.; Robbens, J. Recent
advances in recognition elements of food and environmental biosensors: A review. Biosens. Bioelectron. 2010,
26, 1178–1194. [CrossRef]

128. Nimjee, S.M.; Rusconi, C.P.; Sullenger, B.A. Aptamers: An emerging class of therapeutics. Annu. Rev. Med.
2005, 56, 555–583. [CrossRef]

129. Robertson, D.L.; Joyce, G.F. Selection in vitro of an RNA enzyme that specifically cleaves single-stranded
DNA. Nature 1990, 344, 467. [CrossRef]

130. Tombelli, S.; Mascini, M. Aptamers as molecular tools for bioanalytical methods. Curr. Opin. Mol. Ther. 2009,
11, 179–188.

131. Jenison, R.D.; Gill, S.C.; Pardi, A.; Polisky, B. High-resolution molecular discrimination by RNA. Science 1994,
263, 1425–1429. [CrossRef]

132. Ellington, A.D.; Szostak, J.W. In vitro selection of RNA molecules that bind specific ligands. Nature 1990, 346,
818. [CrossRef] [PubMed]

http://dx.doi.org/10.1016/0165-022X(94)90066-3
http://dx.doi.org/10.1021/jf010180b
http://www.ncbi.nlm.nih.gov/pubmed/11743753
http://dx.doi.org/10.3390/bioengineering6010010
http://www.ncbi.nlm.nih.gov/pubmed/30669604
http://dx.doi.org/10.1016/j.cropro.2012.01.007
http://dx.doi.org/10.1557/mrs2005.101
http://dx.doi.org/10.1126/science.1088755
http://dx.doi.org/10.1007/s00216-016-9494-z
http://dx.doi.org/10.1021/jf2047866
http://dx.doi.org/10.1016/j.foodchem.2015.06.112
http://dx.doi.org/10.1021/acsomega.7b01840
http://dx.doi.org/10.1007/s00217-007-0597-9
http://dx.doi.org/10.3390/s120100612
http://www.ncbi.nlm.nih.gov/pubmed/22368488
http://dx.doi.org/10.1038/nprot.2006.200
http://www.ncbi.nlm.nih.gov/pubmed/17406423
http://dx.doi.org/10.1016/j.bioeng.2007.06.001
http://dx.doi.org/10.1007/s00216-010-3987-y
http://dx.doi.org/10.1016/j.bios.2010.07.033
http://dx.doi.org/10.1146/annurev.med.56.062904.144915
http://dx.doi.org/10.1038/344467a0
http://dx.doi.org/10.1126/science.7510417
http://dx.doi.org/10.1038/346818a0
http://www.ncbi.nlm.nih.gov/pubmed/1697402


Nutrients 2019, 11, 2920 17 of 17

133. Strehlitz, B.; Nikolaus, N.; Stoltenburg, R. Protein detection with aptamer biosensors. Sensors 2008, 8,
4296–4307. [CrossRef] [PubMed]

134. Jayasena, S.D. Aptamers: An emerging class of molecules that rival antibodies in diagnostics. Clin. Chem.
1999, 45, 1628–1650. [PubMed]

135. Wang, J.; Meng, W.; Zheng, X.; Liu, S.; Li, G. Combination of aptamer with gold nanoparticles for
electrochemical signal amplification: Application to sensitive detection of platelet-derived growth factor.
Biosens. Bioelectron. 2009, 24, 1598–1602. [CrossRef] [PubMed]

136. Banerjee, J.; Nilsen-Hamilton, M. Aptamers: Multifunctional molecules for biomedical research. J. Mol. Med.
2013, 91, 1333–1342. [CrossRef]

137. Tombelli, S.; Minunni, M.; Mascini, M. Analytical applications of aptamers. Biosens. Bioelectron. 2005, 20,
2424–2434. [CrossRef]

138. Amaya-González, S.; de-los-Santos-Álvarez, N.; Miranda-Ordieres, A.J.; Lobo-Castañón, M.J.s. Aptamer
binding to celiac disease-triggering hydrophobic proteins: A sensitive gluten detection approach. Anal.
Chem. 2014, 86, 2733–2739. [CrossRef]

139. Pinto, A.; Polo, P.N.; Henry, O.; Redondo, M.C.B.; Svobodova, M.; O’Sullivan, C.K. Label-free detection of
gliadin food allergen mediated by real-time apta-PCR. Anal. Bioanal. Chem. 2014, 406, 515–524. [CrossRef]

140. Amaya-González, S.; López-López, L.; Miranda-Castro, R.; de-los-Santos-Álvarez, N.; Miranda-Ordieres, A.J.;
Lobo-Castañón, M.J. Affinity of aptamers binding 33-mer gliadin peptide and gluten proteins: Influence of
immobilization and labeling tags. Anal. Chim. Acta 2015, 873, 63–70. [CrossRef]

141. López-López, L.; Miranda-Castro, R.; de-Los-Santos-Alvarez, N.; Miranda-Ordieres, A.J.; Lobo-Castañón, M.J.
Disposable electrochemical aptasensor for gluten determination in food. Sens. Actuators B Chem. 2017, 241,
522–527. [CrossRef]

142. Schopf, M.; Scherf, K.A. Wheat cultivar and species influence variability of gluten ELISA analyses based on
polyclonal and monoclonal antibodies R5 and G12. Cereal Sci. 2018, 83, 32–41. [CrossRef]

143. Slot, I.D.B.; Bremer, M.G.; van der Fels-Klerx, I.; Hamer, R.J. Evaluating the performance of gluten ELISA test
kits: The numbers do not tell the tale. Cereal Chem. 2015, 92, 513–521. [CrossRef]

144. Schalk, K.; Lexhaller, B.; Koehler, P.; Scherf, K.A. Isolation and characterization of gluten protein types from
wheat, rye, barley and oats for use as reference materials. PLoS ONE 2017, 12, e0172819. [CrossRef] [PubMed]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.3390/s8074296
http://www.ncbi.nlm.nih.gov/pubmed/27879936
http://www.ncbi.nlm.nih.gov/pubmed/10471678
http://dx.doi.org/10.1016/j.bios.2008.08.030
http://www.ncbi.nlm.nih.gov/pubmed/18829294
http://dx.doi.org/10.1007/s00109-013-1085-2
http://dx.doi.org/10.1016/j.bios.2004.11.006
http://dx.doi.org/10.1021/ac404151n
http://dx.doi.org/10.1007/s00216-013-7475-z
http://dx.doi.org/10.1016/j.aca.2015.02.053
http://dx.doi.org/10.1016/j.snb.2016.10.112
http://dx.doi.org/10.1016/j.jcs.2018.07.005
http://dx.doi.org/10.1094/CCHEM-07-14-0166-R
http://dx.doi.org/10.1371/journal.pone.0172819
http://www.ncbi.nlm.nih.gov/pubmed/28234993
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Gluten Detection Methods and Their Critical Role in Assuring Safe Diets for Celiac Patients
	Introduction 
	Celiac Disease Prevalence 
	Hidden Gluten or Gluten Contamination 
	Gluten Threshold or Tolerance Level 
	Food Labeling 
	Available Detection Methods 
	Conclusions 
	References

