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ARTICLE

Thermal cues drive plasticity of desiccation
resistance in montane salamanders with
implications for climate change
Eric A. Riddell 1, Emma Y. Roback 1,2, Christina E. Wells 1, Kelly R. Zamudio 3 & Michael W. Sears1

Organisms rely upon external cues to avoid detrimental conditions during environmental

change. Rapid water loss, or desiccation, is a universal threat for terrestrial plants and ani-

mals, especially under climate change, but the cues that facilitate plastic responses to avoid

desiccation are unclear. We integrate acclimation experiments with gene expression analyses

to identify the cues that regulate resistance to water loss at the physiological and regulatory

level in a montane salamander (Plethodon metcalfi). Here we show that temperature is an

important cue for developing a desiccation-resistant phenotype and might act as a reliable

cue for organisms across the globe. Gene expression analyses consistently identify regulation

of stem cell differentiation and embryonic development of vasculature. The temperature-

sensitive blood vessel development suggests that salamanders regulate water loss through

the regression and regeneration of capillary beds in the skin, indicating that tissue regen-

eration may be used for physiological purposes beyond replacing lost limbs.
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Organisms rely upon their ability to sense and integrate
cues from their external environment to maintain fitness
during environmental change1–4. At short time scales,

these cues facilitate phenotypic changes by stimulating gene
expression to regulate fitness-related traits5. In turn, the response
helps to anticipate fluctuating resources6 and avoid conditions
that threaten survival7,8. These environmentally mediated
responses are a widespread strategy among organisms termed
phenotypic plasticity9. Plasticity allows individuals to adjust
behavioral, morphological, or physiological traits within their
lifetime in response to environmental conditions1. By operating
within individuals, plasticity acts on faster time scales than evo-
lutionary responses and reduces reliance on dispersal, which can
be energetically-demanding or infeasible10. Due to its rapid and
reversible nature, physiological plasticity has the potential to limit
the loss of global biodiversity during severe environmental
change11–13, such as increased desiccation risk from climate
change14,15. Yet, we lack knowledge on the cues and underlying
genetic pathways responsible for avoiding the physiological and
ecological consequences of a warming and drying environment.

Thermal cues are commonly used by plants and animals due to
its association with fitness-related biotic and abiotic variables16,
such as prey availability6 and photosynthetic performance17.
Temperature has the potential to act as a reliable cue for desic-
cation risk because warming triggers greater evaporation rates by
increasing the vapor pressure deficit (VPD), the primary physical
factor driving rates of evaporative water loss18. VPDs increase
with warming because the amount of vapor required to saturate
the air (termed the saturation vapor pressure) increases expo-
nentially with temperature19, and therefore, might represent a cue
for greater desiccation risk. High VPDs can impose strong
selective pressure by causing large-scale mortality in plants15,20

and animals14,21 under climate change. Plasticity in water loss
rates, in turn, provides an adaptive strategy for plants22 and
animals23,24 to reduce desiccation risk. Using thermal cues as
opposed to hydric also allows organisms to avoid desiccation,
rather than responding to the physiological consequences (i.e.,
dehydration) after they have begun25. To date, studies have yet to
evaluate the potential for organisms to use temperature as a cue
to predict desiccation risk and how these responses are regulated
at the genetic level. Identifying the genetic mechanisms under-
lying plasticity can reveal targets of selection during environ-
mental change26–29, improving predictions on the ecological and
evolutionary outcome of climate change.

Here, we identify the cues and functional gene networks
underlying plasticity of skin resistance to water loss (ri) in a fully
terrestrial, montane salamander (Plethodon metcalfi). The cues
and mechanisms are particularly relevant for salamanders
because resistance to desiccation determines the spatial distribu-
tion of their fundamental niche30,31 and regions with the highest
extinction risk under climate change13. In the present study, we
identify the potential for temperature to act as a cue for high and
more variable VPDs at local and global scales. We explicitly assess
temperature, VPD, and their interaction as cues for plasticity at
the physiological and regulatory level in a month-long acclima-
tion experiment with a randomized, full factorial experimental
design. We use a high throughput RNA-seq approach to sequence
total RNA from experimental salamanders, build a de novo
transcriptome, and link gene expression in the skin to phenotypic
changes using multiple independent analyses on gene expression.
Our analysis includes targeted gene ontology terms based upon
the mechanisms known to influence plasticity in amphibian water
loss physiology, specifically involving lipid barrier formation32

and regulation of the skin’s vasculature33. We find that tem-
perature is an important cue for regulating water loss rates in
salamanders and might act as a similar cue for plants and animals

across the globe. We also discovered that P. metcalfi appears to
regulate ri using temperature-dependent regression and regen-
eration of bloody vessels in their skin.

Results
Desiccation risk rises exponentially with temperature. Sala-
manders experienced an exponential rise in desiccation risk as
temperatures warmed in the field (Fig. 1). We measured night-
time temperatures and VPDs on the forest floor during the
months of salamander activity (April to October) in 2013, 2015,
and 2016 using iButtons (see Methods). Physical expectations
suggest that warming temperatures increase VPDs and variability
in the VPD due to the exponential rise in vapor required for
saturation (es), that is 100% relative humidity (Fig. 1a). VPDs
were higher in the late spring, but the air became more saturated
during the summer and into early fall (Fig. 1b). Non-linear
regression analyses that controlled for site-specific and annual
variation revealed that the VPD increased exponentially with air
temperature (Fig. 1c, Supplementary Table 1). Warming tem-
peratures also coincided with greater variability in VPDs, espe-
cially after 20 °C (Fig. 1d, Supplementary Table 1). The rapid
increase of the evaporative demand of the air on warm nights
indicates that desiccation risk increases dramatically with
warming.

Thermal cues across the globe. We conducted an analysis on the
TerraClimate database to evaluate the potential for temperature
to act as a reliable cue for desiccation risk across the globe34.
We analyzed the associations between temperature, VPD, and the
standard deviation of VPD over the last 30 years to determine
hotspots of thermal cue reliability. Our global analysis revealed
that temperature is associated with VPD and variation in VPD
across much of the globe’s terrestrial ecosystems (Fig. 2). Most
regions between 50° and −50° latitude exhibited a positive
association with temperature and VPD (Fig. 2a). This positive
relationship was especially high in the Americas, Africa, and
Australia; however, temperature may be a poor predictor of
desiccation risk in the tropics due to high error in the relationship
(Fig. 2b). Warm temperatures were also associated with greater
variability in VPD, with two exceptions (Fig. 2c). In the Saharan
Desert and Tibetan Plateau, warmer temperatures were associated
with less variability in VPD. Sub-Saharan Africa exhibited the
greatest uncertainty between temperature and the variability in
VPD (Fig. 2d). These global relationships were consistent with
empirical measurements in the Appalachian Mountains and
predictions based upon theory.

Individual variation in plasticity in ri. We measured plasticity in
water loss physiology by evaluating an individual’s change in ri
over a 4-week experiment in response to ecologically relevant
temperatures and VPDs. The experiment consisted of nightly
exposures to a combination of cycling temperatures and humidity
in a full factorial design across four treatments (Supplementary
Fig. 1). The experiment was specifically designed to evaluate
whether salamanders use temperature, VPD, or their interaction
as cues to regulate ri. The capacity to adjust ri was influenced by
mass, temperature, and an individual’s initial value of ri in the
experiment. Salamanders that began the experiment with low ri
(roughly 4 s cm−1) exhibited the greatest increase in ri by the end
of the experiment (Fig. 3; as determined by linear regression
analysis [LRA], β=−0.694 ± 0.0774, p= < 0.001, ω2= 0.378).
These individuals increased ri by as much as 68% during the
experiment until they reached a maximum resistance (roughly 7 s
cm−1). Salamanders with a high initial ri exhibited a low capacity
to adjust ri, suggesting they had reached a physiological limit. We
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also discovered an interaction between mass and temperature in
which large individuals increased ri under warm temperatures
more than large individuals in cool temperatures (Fig. 2; β=
0.477 ± 0.141, p < 0.001, ω2= 0.021). Inclusion of the mass by
temperature interaction improved model fit by 5%. We removed
VPD from the analysis because it and its interactions failed to
explain any variation in ri (p > 0.05 and ω2 < 0.01).

The de novo transcriptome for P. metcalfi. We extracted total
mRNA from salamander skin tissue before and after our
experiments, sequenced transcripts on an Illumina platform,
constructed a de novo transcriptome using Trinity (v. 2.4.0), and
compared gene expression among treatments. Our sequencing
results produced a high-quality de novo transcriptome for P.
metcalfi. Trimmomatic and ConDeTri reduced raw sequences by
12.8%, resulting in a final number of 826 million reads with an
average of 17.2 million reads per sample after filtering and
trimming. Average base pair quality was consistently greater than
30 along the entire sequence for each sample based upon the
FastQC files. All adapters and overrepresented sequences were
successfully removed. In total, our assembled de novo tran-
scriptome consisted of over 72,700 genes and gene isoforms.
Transdecoder identified 17,300 of these genes as likely coding

regions. After further filtering for gene counts, we proceeded with
13,763 genes for differential gene expression analysis.

Differential gene expression reveals temperature as a cue. Our
differential gene expression (DGE) anaylsis indicated that sala-
manders altered gene expression in the skin in response to
temperature, but not VPD. Using the most liberal significance
threshold (α= 0.1), we found that 203 genes were upregulated
and 308 genes were downregulated in the warm treatment relative
to the cool. Only five genes were downregulated in response to
high VPDs, and no genes were upregulated. For genes down-
regulated in response to warm temperatures, we found significant
enrichment for 37 biological processes, 6 cell components, and 17
molecular functions (Supplementary Table 2). In general,
downregulated genes were associated with stem cell differentia-
tion (GO:0048863, as determined by GO enrichment analysis
[GOEA], p= 1.18 × 10−4), endothelial cell differentiation
(GO:1901796, GOEA, p= 1.66 × 10−2), and processes related to
spleen, thymus, and liver development (GO: 0048536, GOEA,
p= 7.74 × 10−5; GO: 0048538, p= 5.01 × 10−4; GO:0001889,
p= 1.03 × 10−2). For upregulated genes in warm treatments, we
found enrichment for 30 biological processes, 13 cell components,
and 19 molecular functions (Supplementary Table 3). Common
trends among these terms included regulation of NF-kappa β
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Fig. 1 The risk of desiccation increases exponentially with warming. a Physical relationship between saturation vapor pressure (es) and air temperature
indicates that VPDs are likely to become drier and more variable as climates warm. Blue shading indicates more water required to saturate the air, whereas
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transcription factor (GO:0051992, GOEA, p= 1.29 × 10−3),
protein folding (GO:0006457, GOEA, p= 3.66 × 10−3), response
to hydrogen peroxides (GO:0042542, GOEA, p= 1.01 × 10−2),
and responses to heat (GO:1900034, GOEA, p= 1.23 × 10−2). In
general, we found that downregulated genes were related to stem
cell differentiation and developmental processes, and upregulated
genes were related to stress responses associated with warm
temperatures.

Lowering the significance threshold of our analyses resulted
in similar patterns. At the significance threshold of 0.001, we
found four genes that were strongly downregulated in the warm
treatments related to Jumonji isoforms (Supplementary Table 4),
a suite of genes involved in regulation of stem cell differentia-
tion35 and blood vessel growth36. We also identified four genes
associated with heat shock proteins and responses to stress
(Supplementary Table 4). No matter the stringency of the
significance threshold, our DGE and GO term enrichment
analyses suggested that temperature represents a cue for the

downregulation of stem cell differentiation and developmental
processes.

For genes downregulated in response to dry VPDs, three of the
five genes were uncharacterized. The other two genes are involved
in heat shock responses (GO:000948) or regulation of responses
to pheromones (GO:0019236). These genes are the DNAj
homolog subfamily A member 4 (DNAJA4, padj= 1.42 × 10−2)
and the vomeronasal type-2 receptor 26 (Vmn2r26, padj= 1.05 ×
10−3), respectively.

Network analysis indicates role of blood vessels and lipids. We
used a weighted gene co-expression network analysis (WGCNA)
to identify suites of gene networks that were associated with
plasticity of ri. These gene networks can identify important
functional groups of genes and candidate genes underlying phe-
notypic responses28,37,38. We identified gene networks relevant to
plasticity (termed skin resistance modules) based upon a module’s
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association with the change in ri over the course of the experi-
ment. Our analysis identified 26 gene networks or modules. One
of these modules was negatively correlated with ri (Fig. 4a), and
the other was positively correlated with ri (Fig. 4b). The positively
correlated module consisted of 203 genes, and the negatively
correlated module consisted of 75 genes (Supplementary Table 5).
Temperature and humidity did not influence gene expression in
either module, but expression of both modules was associated
with the change in ri (Supplementary Tables 6 and 7). These
analyses revealed that module expression explained 11% and 10%
of the change in ri for the negatively and positively associated
modules, respectively.

The GO term enrichment analysis of genes within skin
resistance modules identified several developmental processes,

similar to the DGE analysis. We found enrichment for 18
biological processes, 5 cell components, and 7 molecular
functions (Supplementary Table 8). Our analysis revealed
enrichment of genes associated with angiogenesis (GO:0016525,
GOEA, p= 3.37 × 10−3), long-chain fatty acid metabolic process
(GO:0001676, GOEA, p= 2.59 × 10−2), and branching involved
in blood vessel morphogenesis (GO:0001569, GOEA, p= 3.31 ×
10−2). We identified two genes, semaphorin (SEMA) and
semaphorin-3E (SEMA3E), that were associated with enriched
GO terms for angiogenesis and also within the skin resistance
modules. These two genes were not correlated to the change in ri
(as determined by weighted gene co-expression analysis
[WGCNA], p= 0.396 and p= 0.442, respectively); however, they
were identified as important hub genes within the skin resistance
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modules (MM=−0.603, p < 0.001 and MM=−0.693, p < 0.001,
respectively).

Our co-expression network analysis also identified hub genes
associated with muscle contraction and skin barrier development
that correlated to plasticity in ri. The network analysis revealed 13
hub genes that were positively correlated with the change in ri
(Supplementary Table 9). Two of these hub genes are associated
with muscle contraction (GO:0006936, GO:0010614,
GO:1901898, GO:0086006), and these genes represented the first
and third highest correlation to plasticity in ri. These genes were
the E3 ubiquitin-ligase (TRIM63, Fig. 4d, WGCNA, r= 0.487,
p= 4.65 × 10−3) and the cAMP-specific 3,5-cyclic phosphodies-
terase (PDE4B, Fig. 4f, WGCNA, r= 0.443, p= 1.24 × 10−2),
both of which had high and significant module connectivity
(Supplementary Table 9). We also found 19 hub genes that were
negatively correlated with the change in ri. Of these, the highest
ranking hub gene, muscarinic acetylcholine receptor (CHRM3),
was negatively correlated with the change in ri (Fig. 4c, r=

−0.482, WGCNA, p= 5.96 × 10−3) and exhibited high
connectivity (MM= 0.628, WGCNA, p < 0.001). We also identi-
fied the hydroperoxide isomerase (ALOXE3) as having the fourth
highest negative relationship with the change in ri (Fig. 4e, r=
−0.434, WGCNA, p= 1.47 × 10−2) and high connectivity
(MM= 0.733, WGCNA, p < 0.001). These two negatively corre-
lated hub genes are associated with the regulation of smooth
muscle contraction (GO:0045987 and GO:003056) and establish-
ment of a skin barrier for limiting water loss (GO:0061436),
respectively.

Thermal cues regulate blood vessel growth. Down-regulation of
genes related to blood vessel branching and development under
warm temperatures coincided with greater resistance to water loss
(Fig. 5). We identified candidate genes underlying the response to
temperature by isolating genes within the skin resistance modules
that exhibited the same interaction between mass and tempera-
ture as ri. For this post hoc analysis, termed the interaction ana-
lysis, we identified six genes from the skin resistance modules that
exhibited a significant interaction with mass and temperature.
Two of these genes, stromal interaction molecule 1 (STIM1)
(Fig. 5, as determined by analysis of covariance [ANCOVA], p=
0.0277) and rap guanine nucleotide exchange factor 1 (RAPGEF1)
(Fig. 5, ANCOVA, p= 0.00247), were associated with GO terms
relating to plasticity of ri. STIM1 is associated with positive reg-
ulation of angiogenesis (GO:0045766)39,40, and RAPGEF1 is
associated with positive regulation of vasculogenesis
(GO:2001214) and blood vessel development (GO:0001568)41.
These results suggest that blood vessel development underlies
plasticity in ri.

Gene set enrichment analysis. We identified up- and down-
regulation of predefined physiological pathways in response to
temperature and humidity using the Gene Set Enrichment Ana-
lysis (GSEA v. 2.1.0). In response to temperature, we found a suite
of upregulated pathways involved in muscle contraction and
downregulated pathways involved in thymus and liver develop-
ment (Supplementary Table 10). The genes associated with these
GO terms are known to be specifically involved in regulating
blood vessel growth and stem cell differentiation (see below). For
humidity, we found two upregulated pathways also involved in
muscle contraction (though fewer compared to temperature) and
downregulation of pathways involved in signal transduction and
developmental processes (Supplementary Table 11).

High degree of overlap between transcriptional approaches.
We determined the degree of overlap between independent
transcriptional analyses to evaluate the robustness of our
approach. The GSEA and WGCNA analyses shared eight genes
(Supplementary Table 12) and the GSEA and DGE analyses also
shared 17 genes (Supplementary Table 13). For genes shared
between GSEA and WGCNA analyses, two genes were sig-
nificantly related to plasticity in ri. These two genes, JAK2 tyr-
osine kinase (JAK2) and phosphodiesterase-4B (PDE4B), are
involved in proliferation of stem cells42 and muscle contraction,
respectively. PDE4B was also identified in the WGCNA analysis
as an important hub gene related to plasticity in ri (Fig. 4f). For
the GSEA and DGE overlap, we found several genes involved in
stem cell differentiation related to the Jumanji isoforms that were
down-regulated in response to warm temperatures (Supplemen-
tary Table 13). These genes are also known to be involved in
blood vessel growth36. We also found several genes related to
muscle contraction (UTRN), cell differentiation (UNC45B and
BCL6), and angiogenesis (Cav1). We found four genes that
overlapped between the WGCNA and DGE analysis
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(Supplementary Table 14), which involved genes that regulate
inhibition of blood flow (hemostasis), lipid synthesis, and protein
transport. Interestingly, the gene related to hemostasis (APLP2)
was also correlated with plasticity in ri (Supplementary Table 14).
Assessing overlap revealed robust, common trends between the
independent gene expression analyses that supported the role of
blood vessel development and lipid barriers in regulating ri.

Discussion
Our analysis revealed a novel perspective on the physiological
significance of tissue regeneration. Gene expression analyses
suggested that the high resistance to water loss phenotype (and
thus low plasticity phenotype) were associated with the con-
stitutive expression of ALOXE3, a gene involved in the enzymatic
pathway for regulating transepidermal water loss. At the other
end of the spectrum, the high plasticity phenotype was associated
with genes that regulate vasoconstriction and blood vessel
development. Without the continued expression of ALOXE3,
salamanders appeared to adjust ri by limiting blood flow to the
skin’s vasculature, an effective strategy to reduce water loss33. Not
only did salamanders regulate pathways involved in vasocon-
striction, hemostasis, and angiogenesis, but also pathways
involved in vasculogenesis, the de novo formation of capillaries
from hematopoietic stem cells typically confined to embryos43.
Salamanders, however, are known for their ability to regenerate
many types of tissues by continuing to express embryonic
developmental pathways44,45. Thus, salamanders may adjust
water loss across their skin using their unique ability to regenerate
tissues by regulating dermal capillary growth in response to
environmental change.

From the broad functional perspective, independent enrich-
ment analyses revealed consistent involvement of genes, gene
networks, and known gene pathways related to developmental
processes and stem cell differentiation. Each analysis identified
the regulation of muscle contraction, blood vessel growth, and
stem cell proliferation, suggesting that regeneration of capillary
beds is involved in the temperature-sensitive plasticity of resis-
tance to desiccation. We hypothesize that repeated exposure to
warm temperatures elicits vascular regression in the capillary beds
of the skin. The process of vascular regression begins with sus-
tained vasoconstriction, eventually leading to hemostasis and the
programmed cell death of capillary beds over the course of several
weeks46. Once the threat of desiccation has passed, salamanders
might then regenerate dermal capillary beds using vasculogenesis
and angiogenesis to return blood flow. Given the potential for
plasticity in ri to reduce extinction risk from climate change13,
our study draws connections between the regenerative capacity of
salamanders and the ecological consequences of increasing ri
through physiological plasticity.

The expression of genes related to tissue regeneration may also
have alternative explanations, but we consider these less likely.
Amphibians shed more frequently in response to warming47, and
the growth of new skin would likely influence blood vessel
growth. However, increased rates of shedding in amphibians are
associated with higher rates of water loss48, but in our study, we
found the reduction in water loss rates (or increase in ri) was
associated with expression of genes related to angiogenesis and
stem cell differentiation. The conflicting patterns suggest that the
thermal sensitivity of shedding is unlikely to underlie the
observed gene expression patterns. Being lungless, these sala-
manders might also regulate blood vessel formation to adjust
oxygen and carbon dioxide exchange across their skin. Recent
evidence, however, suggests that plasticity in ri and gas exchange
are tightly coupled31. Vascular regression in the skin would thus
simultaneously reduce water loss rates and gas exchange, a

pattern recently observed in this species31. The subsequent
reduction in metabolic rate likely represents a consequence
associated with reducing water loss rates by adjusting the capillary
densities in the skin. The exact role of vasculature regeneration
requires studies that explicitly link physiological plasticity to
more direct cellular and molecular evidence of new capillary
growth in the skin.

We observed a high degree of individual variation in the
capacity to regulate resistance to water loss in our experiments.
Individuals that exhibited a high initial ri (roughly 7 s cm−1)
maintained a high ri throughout the entire experiment, exhibiting
limited plasticity. The maintenance of high ri was unexpected
given that salamanders were maintained in saturated conditions
for a month prior to the experiment, and consequently, this upper
boundary may be indicative of a physiological limit. At the other
end of the spectrum, some individuals began the experiment with
a relatively low ri (4 s cm−1) and increased ri over the course of
the experiment by as much as 68% to the maximum value. Thus,
the population consists of individuals that fall across a spectrum
of plasticity, which raises intriguing questions about the benefits
of plasticity or lack thereof. Low ri would predispose individuals
to desiccation. However, a low resistance might also increase
metabolic scope by promoting greater oxygen uptake31. Thus,
individuals might benefit from low resistance by supporting
oxygen-demanding activities, such as foraging or defending ter-
ritories. At the other end of the spectrum, limiting plasticity
might reduce costs of maintaining sensory pathways49,50 or
maximal resistance in the face of unpredictable VPDs. The costs
and benefits of water loss plasticity might be better understood by
exploring these interactions.

Lipids are the fundamental unit that structures the resistance of
the integument or cuticle to water loss32. The role of lipid reg-
ulation, though unexplored in salamanders, is consistent with
mechanisms underlying water loss plasticity in other vertebrates.
The composition and maintenance of lipid barriers plays a role in
reducing water loss in amphibians32, birds51–53, and mammals54.
Our study revealed a negative association with plasticity in ri and
expression of the ALOXE3, a gene associated with production of
ceramides, a type of essential fatty acid in epidermal tissue55. Loss
of function mutations in this family of genes results in patholo-
gical disorders associated with high transepidermal water loss55,
and many mammals and birds rely on ceramides or related fatty
acids to limit transepidermal water loss52. With lower production
of ceramides, salamanders might then rely on vascular regression
to regulate water loss. Thus, salamanders can achieve their rela-
tively water-tight phenotype through two different pathways:
lipid barrier formation or regulation of blood flow to the skin.
Our study highlights the potential for complex interactions
among underlying mechanisms in a system that has historically
been characterized as one-dimensional56.

Seminal studies on amphibian water loss physiology have
suggested that many amphibians, and salamanders in particular,
do not have a physiological resistance to water loss56. The
assumption that most amphibians exhibit water loss rates similar
to free water has been perpetuated for decades, often citing the
seminal study on a single species of salamander57,58. This reifi-
cation on amphibian physiology resulted in many studies over-
looking variation in water loss physiology or focusing on rare
forms of desiccation resistance, such as cocoon formation and
waxy secretions32,59. Our results strongly conflict with the con-
clusion that salamanders do not have a resistance to water loss
due to the observed plasticity in ri. Moreover, these changes in
resistance, though small relative to other animals, can have major
implications for the fundamental niche of terrestrial sala-
manders30. Our study differs from previous evaluations of water
loss by carefully measuring changes in vapor pressure contributed
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by the animal over several weeks under ecologically relevant
conditions using an advanced flow-through system. Thus, we
strongly advocate for studies that investigate amphibian water
loss physiology within and between species to promote the dis-
covery of novel physiological variation and their underlying
mechanisms.

We revealed temperature, but not humidity, as a cue for the
regulation of water loss physiology at the regulatory and phy-
siological level. Due to the unpredictable variation in VPD and
the physical relationship between VPD and temperature (Fig. 1),
our results provide a clear understanding for why selection may
favor temperature as a cue for regulating water loss physiology. At
global scales, temperature and VPD are highly correlated (Fig. 2),
suggesting that many organisms across the globe likely use tem-
perature as a cue to reduce water loss rates in anticipation of drier
conditions, especially in temperate climates. Temperate ecto-
therms60 and plants61 support this hypothesis. In tropical cli-
mates, however, high error in the relationship between
temperature and desiccation risk suggests that few organisms
would use temperature as a cue to predict desiccation risk, and in
support of this, some tropical ectotherms exhibit a limited
capacity to adjust water loss rates62. In regions like the Tibetan
plateau, organisms might use warming to anticipate more humid
conditions due to the negative correlation between temperature
and VPD. These global correlations can inform hypotheses for
experiments that explore thermal cues across the globe and taxa.

Plants and animals also have different plastic responses to
warming depending on the time scale of the exposure. In
response to warming over short time scales, plants and animals
often increase water loss rates to offload excess heat through
evaporative cooling63–65. When exposed to warm temperatures
during development or over longer periods of time, as in our
study, organisms frequently conserve water by reducing water
loss rates (or increasing resistance) to lower desiccation risk61.
Thus, organisms experience a trade-off between cooling and
conserving water that determines variation in water loss rates
over different time scales66,67. Integrating these temporal con-
siderations with the spatial variation in thermal cues will improve
predictions on plastic responses to climate warming across a wide
range of taxa.

Predicting ecological responses to novel environmental con-
ditions depends upon understanding plasticity of environmen-
tally sensitive traits. However, the role of plasticity in novel
environments is contentious. In some cases, plastic responses can
facilitate rapid phenotypic evolution6,29,68, whereas in other cases,
plasticity limits the ability to respond to adapt to novel envir-
onments69. Despite these uncertainties, our study provides
important insight into the use of temperature as a cue for plas-
ticity, the ecological significance of tissue regeneration, and the
complex mechanisms underlying water loss plasticity. Evaluating
these mechanisms as targets of selection across space, time, and
taxa has the potential to inform their evolutionary potential in a
rapidly warming climate.

Methods
Salamander collection. We collected 132 salamanders (P. metcalfi) from the
Balsam Mountain Range in the Nantahala National Forest (35° 20′ N, 83° 4′ W)
during May 2016. We collected no more than four salamanders per site, and sites
were distributed in a randomized designed between high (1600 m), mid (1400 m),
and low elevations (1200 m) to account for potential elevational variation in water
loss rates70. Each collection point was generated using a random point generator on
QGIS (v.2.1). We created a buffered region around the dirt access road to generate
points at least 100 m away from the road to minimize possible road effects. We
placed each salamander in an individual Ziploc® bag with moist leaf litter for
transported back to Clemson University on the night of collection. Salamanders
were housed in individual plastic containers (17 cm × 17 cm × 12 cm) with moist
paper towels for rehydration throughout the month-long acclimation period. All
salamanders were maintained in a Percival incubator (Percival, Inc.; Model #I-

36VL) under a cool, cycling thermal regime for 1 month to acclimate to laboratory
conditions. The cycling thermal regime was designed to mimic conditions that
salamanders experience in the early spring31. We rotated the position and shelf for
each salamander every day so that salamanders experienced every combination of
position (front, middle, back) and shelf location (1–4) during the course of the
acclimation period. All individuals were fed crickets (Acheta domesticus) ad libi-
tum. These protocols were also continued during the acclimation experiment, and
in addition, we rotated treatments among incubators to reduce the chance of an
incubator effect. We complied with all relevant ethical regulations for animal
testing and research with approved protocols from the Institute for Animal Care
and Use Committee at Clemson University (#2014-024). Field collections were
approved by the North Carolina Wildlife Commission (#16-SC00746) and United
States Fish and Wildlife Service (#MA90761B-0).

Acclimation experiments. The acclimation experiment was specifically designed
to tease apart temperature and humidity as cues for physiological plasticity. After
the 1-month acclimation period, salamanders were randomly assigned to a cycling
thermal regime. The cool cycling thermal regime resembled the temperature cycle
during the acclimation period, which fluctuated between 8 and 15 °C. The warm
temperature cycle fluctuated between 15 and 22.5 °C. The cool temperature cycle
was developed from conditions that salamanders experience in the early spring,
and the warm cycle was developed from conditions that salamanders are likely to
face under climate change assuming the Representative Concentration Pathway 8.5
—near a 5 °C increase in air temperature by the end of the century in the southern
Appalachian Mountains71. Each temperature was also assigned a particular
humidity treatment: dry or wet. The dry cycle maintained a VPD of 0.4 kPa,
whereas the wet cycle maintained a VPD of 0.2 kPa. These VPDs correspond to
humidities that salamanders experience in nature (Fig. 1). We maintained these
VPDs during the thermal regime by cycling relative humidities throughout the day.
Therefore, our experiment consisted of a full factorial design of four treatments: (1)
warm, wet; (2) warm, dry; (3) cool, wet; (4) cool, dry. Prior to salamanders being
exposed to any treatments, we measured baseline skin resistance to water loss rates
using a flow-through system (see Flow-through system). After baseline measure-
ments, we extracted total RNA from 12 randomly selected individuals, and the
remaining 120 individuals were randomly assigned to their treatments with 30
individuals per treatment.

We exposed salamanders to their treatment by moving them to activity
enclosures for a three-hour period between the hours of 2100 and 0600. Activity
enclosures were the same size as their enclosures during the pre-experiment
acclimation period, but they consisted of dry soil as a substrate. We dried the soil to
make sure that variation in soil moisture did not influence the vapor content of the
air. We also ensured that VPDs in the activity chambers reflected the desired vapor
content of the treatment by placing three Hygrochron iButtons (Item# DS1923,
Maxim Integrated, 160 Rio Robles, San Jose, CA 95134) on three randomly selected
shelves every night of the exposure. The activity enclosures also had a hardwire
mesh roof to allow air to freely circulate into the enclosure, exposing salamanders
to the vapor content of the air. Salamanders were weighed prior to and after each
activity simulation to ensure that they did not lose more than 10% of their baseline
body mass, which we determined at the end of the 1-month acclimation period. In
total, individuals were not exposed to their treatment 1.1% out of all possible
exposures because their mass did not recover from the previous exposure. After five
nights of exposure to their treatment, we measured ri using the flow-through
system (see below). Immediately following the physiological measurement,
salamanders were returned to their treatment and allowed to rest for one night. We
continued this protocol (five nights of exposure, one night of physiological
measurement, and one night of rest) for roughly 1 month. At the end of the
experimental period, we sacrificed all salamanders to collect total RNA
immediately following the final measurement in the flow-through system.

Physiological measurements. We measured ri using a flow-through system
designed to carefully control temperature and humidity. Our flow-through system
operated in push mode, starting with a sub-sampler pump (SS4; Sable Systems
International, 3840 N. Commerce Street, North Las Vegas, NV 89032). The pump
pulled air from within a temperature controlled Percival incubator that housed the
chambers containing the salamanders. The air then flowed into a dewpoint gen-
erator (DG-4) to control the level of humidity (VPD= 0.5 kPa). The air then
passed through a manifold to divide the airstream and control the flow rate
(180 mLmin−1). The air then passed into the acrylic chambers (16 × 3.5 cm;
volume ~153 mL) containing an individual salamander. Salamanders were sus-
pended on top of a mesh platform in the chamber to ensure that salamanders could
not behaviorally alter water loss rates by curling onto themselves. Their position
was also intentionally made to mimic posture while walking on the forest floor. We
ensured that each measurement was recorded from resting individuals by directly
evaluating activity and ensuring vapor pressure recordings were stable—a pattern
indicative of resting72. After the chamber, the air passed into a RH-300 to measure
the vapor content of the air. Changes in voltage from each analyzer were con-
tinuously measured using Expedata (Sable Systems International). Equations for
converting voltages into meaningful physiological values have been extensively
reported in previous research30,31. Individuals were measured randomly across
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treatments to ensure that a given round of measurements contained a random
mixture of individuals across all treatments.

Temperature as a cue for salamanders. Identifying environmental cues under-
lying plasticity requires measurements of relevant abiotic conditions. We used
iButton Hygrochrons (Item# DS1923) to simultaneously record temperature and
humidity across collection sites from 2013 to 2016, excluding 2014. We recorded
temperature and VPDs from May to October over this 3-year period (n= 64,502).
We selected this monthly time period because it coincides with the activity season
of P. metcalfi73. We evaluated the relationship between temperature and vapor
pressure based upon the thermal preferences of montane salamanders, which occur
between 15 and 25 °C73. Hygrochrons were deployed to randomly generated
coordinates using similar methods as the collection sites (see above). Each
Hygrochron was housed within a custom-built hardwire mesh cage (1 cm gauge)
and secured within the cage using a plastic cable tie. The sensors were placed 1 cm
from the ground to record temperatures and VPDs that salamanders experience
while roaming the forest floor. Temperature and relative humidity were recorded
every 20 min during the sampling period, and in most cases, temperature was
recorded to the nearest tenth decimal to extend the sampling period by reducing
the data file size.

Temperature as a cue across the globe. We assessed the relationship between
temperature and VPD across terrestrial ecosystems to understand the potential for
temperature to act as a cue for desiccation risk. We used estimates of monthly
minimum and maximum temperatures and VPDs from the TerraClimate dataset34.
These values were downscaled from globally-distributed field station measurements
and advanced general circulation models. These conditions are relevant to any
plant or animal experiencing temperature and VPD roughly 1–2 m from ground
level. Permission to adapt these maps for our purposes was granted under Creative
Commons Attribution 4.0 International License (http://creativecommons.org/
licenses/by/4.0/). We evaluated the association between temperature and humidity
using downloadable raster datasets from the TerraClimate database (http://www.
climatologylab.org/terraclimate.html), which have been recently described34.

We averaged monthly temperatures and VPDs to calculate annual temperature,
annual VPD, and standard deviation of annual VPD for each location over a 30-
year time period. We then developed custom code in Python (v. 3.6) to analyze the
correlation between these environmental variables using linear regression analyses
from the statsmodels library. We sampled the spatial layers using the gdal functions
in osgeo library to convert the spatial data into a large dataset (~60 gigabytes) for
downstream analysis. Due to the large size of the dataset, we used the chunksize
parameter in the pandas library to import portions of the global dataset for
analysis. We then used the multiprocessing library to evaluate correlations for each
site (meaning, a single pixel of roughly 4 km) across 30 independent central
processing units. These individual datasets were then compiled together and sorted
into global maps using a custom function in Python. These maps were then
visualized in QGIS (v. 2.1). All script is available at https://github.com/
ecophysiology/global_cues.

Extraction and sequencing of RNA. We extracted total RNA from 12 individuals
after the initial physiological measurements following the one-month acclimation
period, but prior to any exposure to the treatments. These individuals are referred
to as baseline individuals or samples. We then extracted total RNA from sala-
mander skin tissue immediately following the final measurement of ri. Individual
salamanders were removed from the flow-through system and immediately
immersed in liquid nitrogen for 15–20 min. After freezing, we used a flame-
sterilized razor blade to shave off a thin layer of skin from the dorsal side of the
salamander. We also extracted hearts from the frozen specimen using the flame-
sterilized razor blade. The hearts were easily visible through the ventral side of the
salamander because the ventral skin is translucent. Though heart samples were
included in the de novo transcriptome, we did not evaluate gene expression dif-
ferences because the analysis is beyond the scope of this study. The tissue samples
were immediately immersed in TRIzol reagent (Item#: 15596026; Thermo Fisher
Scientifics, 168 Third Avenue, Waltham, MA 02451) and blended using a
motorized tissue homogenizer with sterilized pestle (Item#: UX-44468-25; Argos
Technologies Inc., 625 E. Bunker Ct., Vernon Hills, IL 60061). Once fully homo-
genized, the tissue samples were stored at 80 °C until downstream preparation in
accordance with standard protocols.

We extracted total RNA using standard protocols for TRIzol reagent. Prior to
library preparation, we purified each sample to remove contaminants (e.g., phenol,
ethanol, etc.) using the RNeasy Mini Kit for total RNA (ID: 74136; Qiagen®, 1001
Marshall St., Redwood City, CA 94063). In addition, we treated samples with
DNase to limit the possibility of DNA contamination in tandem with the RNeasy
Mini Kit. Prior to library preparation, we determined the concentration of total
RNA using a Qubit Fluorometer (Thermo Fisher Scientific) to ensure each sample
contained sufficient material for library preparation. We prepared each sample
using the Illumina TruSeq® mRNA Stranded Kit (Product#: RS-122-2101,
Illumina, Inc., 5200 Illumina Way, San Diego, CA 92122) by following standard
protocols. Once again, we used the Qubit Fluorometer to quantify the amount of
cDNA prior to sequencing.

We sequenced our samples using the Illumina HiSeq2500 platform at the
Genomics Facility at Cornell University. We sequenced singe-end 100-bp reads for
all libraries. We pooled 12 barcoded samples per lane to balance sequencing depth
for each sample with the total number of samples (N= 48 total samples across four
lanes). We randomly assigned an individual sample to each sequencing lane with
respect to treatment to avoid lane biases. In preparation for de novo transcriptome
assembly, we trimmed Illumina-specific sequences and adapters using
Trimmomatic (v. 0.36). We evaluated error probabilities of each read with
ConDeTri (v. 2.3) and low-quality bases or sections of multiple bases were removed
using default parameters. After trimming, reads were assessed using FastQC
(version 0.11.5) to confirm that extraneous reads had been removed and quality
scores were greater than 30 along the entire sequence length.

We assembled our de novo transcriptome using 827 million reads from 48
tissue samples (36 skin and 12 heart samples) using Trinity (v. 2.4.0) and standard
protocols for strand specific analysis and normalization. We used TransDecoder
(version 3.0.1) to reduce the transcriptome to coding regions from all transcript
sequences. TransDecoder identified likely coding sequences as those with a
minimum open reading frame length of 50 amino acids. We then assigned gene
ontology terms, enzyme codes, and KEGG pathways to genes by blasting against all
databases using the Blast2GO Cloud Blast Function. We blasted against all known
organisms to ensure the highest chance at annotating each gene. The number of
blast hits was increased from the default parameter to 20, and the mapping and
annotation steps were run using default protocols. RSEM (version 1.3.0) estimated
gene and gene isoform expression levels by aligning individual samples back to the
transcriptome using Bowtie (version 1.2.1.1). To prepare for differential gene
expression analysis, low-expressed genes were filtered out, retaining only those for
which approximately one-third of genes had 10 or more counts.

Statistical analyses. We analyzed the physiological data using R (v.3.4.2) using
linear regression analyses. We evaluated the change ri over the course of the
experiment with mass and initial ri as covariates. Temperature and humidity were
treated as factors. Change in ri was calculated by taking the difference of final ri and
initial ri for each individual. We also evaluated interactions between covariates and
factors to assess complex responses to temperature and humidity. Covariates were
scaled and centered over zero, and we assessed collinearity between covariates
using the vif function from the car package in R to examine variance inflation
factors (VIF). We excluded variables and combinations of variables that exceeded
the VIF threshold of 3 (ref. 74). We then conducted a Type-II analysis of covariance
using the car package to assess significance of covariates and factors. Finally, we
report effect size using omega-squared (ω2) for each significant effect using the
sjstats package in R.

We analyzed the environmental data using non-linear, mixed effects models
from the nlmer() function in the lme4 package in R with VPD as the response
variable and temperature as a covariate. We also examined the relationship
between temperature and the variation in nightly VPD because physical
expectations suggest VPDs should become more variable with warming air
temperature. For our random effects, we nested an iButton within the year the
recording was taken. The nested random effects accounted for abiotic differences
between locations and years due to local topographic effects and interannual
seasonality. We generated starting values for the non-linear simulations using the
nlsLM() function in the minpack package in R. We assessed model performance by
evaluating the confidence intervals of the parameter estimates and 95% confidence
intervals of the non-linear models.

Differential gene expression. We conducted a differential gene expression (DGE)
analysis using DESeq2 library to identify differentially expressed genes between
treatments75. We tested for DGE by comparing the gene expression between
samples collected at the end of the experiment using the DESeqDataSetFromMatrix
function in DESeq2. We explored the number of differentially expressed genes for
each treatment using two significance thresholds (α= 0.1 and 0.001) on gene-
specific p-values adjusted for false discovery rate using the default
Benjamini–Hochberg procedure75. Varying the significance threshold provided
insight into broad differences in gene ontology under the most liberal threshold,
whereas the more stringent threshold was used to identify candidate genes involved
in plasticity.

Gene ontology enrichment. We conducted a gene ontology (GO) enrichment
analysis on differentially expressed genes using the GOseq package in R (v. 3.4.2) to
identify overrepresentation of certain GO terms76. The GOseq package determines
enrichment of specific GO terms by incorporating the probability a gene will be
differentially expressed based upon length of the gene. The GOseq procedure uses
a random selection process to evaluate the GO category membership and
enrichment by randomly sampling the given dataset to generate a suitable null
distribution. Upon identifying the distribution, GOseq evaluates each GO term for
under- and overrepresentation. We conducted GO term enrichment on the DGE
analysis and the weighted gene co-expression analysis. For enrichment analyses, we
removed GO terms with less than 10 and more than 500 genes within a category to
reduce enrichment sensitivity and redundancy77.
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Weighted gene co-expression analysis. We identified suites of correlated gene
networks using weighted gene co-expression network analysis (WGCNA) to
improve our understanding of the gene networks and genes underlying acclimation
of ri. These analyses were conducted independently of the DGE analysis. We used
WGCNA to identify networks of genes (or modules) associated with plasticity of ri.
We refer to this analysis as the skin resistance analysis. We also conducted an
additional analysis to identify potential mechanisms underlying the relationship
between mass and temperature within modules identified in the skin resistance
analysis, referred to as the interaction analysis. We designed these analyses to
identify the possible genetic changes underlying specific physiological responses
from the experiments.

Skin resistance analysis. We began the skin resistance analysis using all of the
samples from the experimental treatments (n= 32). We used the post trimmed and
cleaned samples generated from RSEM (from above) to begin the analysis. We then
removed any genes that had <10 counts across 28 samples37, which resulted in a
total of 9346 genes for downstream analyses. Gene counts were then normalized
using the varianceStabilizingTransformation function in DESeq275. We ensured
that the dataset did not have any missing data or zero-variance genes, and we
removed one sample identified as an outlier based upon cluster analysis prior to
constructing co-expression networks37.

Gene co-expression networks were constructed by building pairwise Pearson
correlations between each pair of genes using the blockwiseModules function in
WGCNA. The resulting co-expression similarity values were transformed into an
adjacency matrix using the soft thresholding approach, which favors stronger
correlations over weaker correlations between genes. We selected a soft threshold
of 4 to simultaneously maximize the model fit of the scale-free topology (R2 > 0.80)
and mean connectivity among genes (Supplementary Fig. 2). Then, we defined a
dendrogram of the gene networks using average linkage hierarchical clustering
coupled with a gene dissimilarity matrix. Finally, we used the Dynamic Tree Cut
approach to merge highly correlated modules using a height-cut of 0.25 (ref. 37).
These modules could then be used to understand important networks and genes
underlying acclimation of ri.

Module construction can be leveraged to identify biologically meaningful genes
or groups of genes underlying variation in a phenotype. We summarized
expression for each module using a principle component analysis (PCA) to
calculate eigengenes using the blockwiseModules function, which summarized the
expression for each sample using the first principle component (PC1) for each
module. We then used a Pearson correlation to test for associations between
eigengene values and the change in ri for each module using the cor function in
WGCNA. The resulting p-values were estimated using the corPalueStudent
function in WGCNA. Modules significantly associated with the change in ri,
referred to as skin resistance modules, also identified potential genes based upon
intramodular connectivity37. Hub genes are defined as having high intramodular
connectivity (or module membership (MM)), and previous research has revealed
important biological functions by assessing hub genes37. We explored the function
of hub genes in subsequent analyses based upon their connectivity score, statistical
significance (α < 0.05) with a particular phenotype, and their association with
enriched GO terms. These methods helped to discover potential genes underlying
plasticity of water loss physiology.

Temperature and humidity might also represent important cues that explain
variation within gene co-expression networks. We evaluated the importance of our
treatments in affecting gene expression in skin resistance modules using regression
analyses. We used the eigengene values from PC1 as our dependent variable, the
change in ri as a covariate, and temperature and humidity as fixed effects. The
model also included interactions with the change in ri and treatment to determine
whether interactions played in important role in affecting gene expression within
skin resistance modules. We conducted separate analyses for modules that were
negatively and positively associated with ri. Then we used the car package to
conduct a Type-II ANCOVA to determine whether the treatments influenced gene
expression within skin resistance modules.

We identified potential genes underlying plasticity of ri using two methods.
First, we evaluated GO term enrichment based upon the genes within modules
significantly associated with ri. We reported enrichment for biological processes,
cell components, and molecular function for any terms related to the regulation of
water loss. These GO terms included lipid metabolism, skin barrier formation,
vasoconstriction, angiogenesis, and lipid excretion. We then cross-referenced these
GO terms with hub genes significantly associated with ri (as denoted by gene
significance and intramodular connectivity) to identify potential genes underlying
acclimation of ri. We also identified hub genes (from the WGCNA analysis) that
significantly correlated with the change in ri that were also associated with GO
terms related to water loss.

Interaction analysis. We conducted an additional analysis to explore the inter-
action between mass and temperature on acclimation of ri. For the interaction
analysis, we analyzed the interaction between mass and temperature for all genes
within the skin resistance modules. We used linear regression analyses with the
transformed gene expression value as the dependent variable, mass as a covariate,
and temperature as a factor. We also included the interaction between mass and
temperature. Then we conducted Type-II ANCOVA using the car package to

evaluate significance of the interaction for each gene by looping across each gene in
R. Genes from the skin resistance modules that exhibited a significant interaction
between temperature and mass are referred to as interaction genes. We assessed the
interaction genes for their potential role in water loss regulation by evaluating GO
terms associated with each known gene, similar to our previous procedure for
identifying candidate genes.

Gene set enrichment analysis. We performed a Gene Set Enrichment Analysis
(GSEA v.2.1.0) to identify predefined gene sets that showed significant, concordant
differences in expression between temperature and humidity treatments78. GSEA
identifies gene sets that show functionally related, but potentially smaller, changes
in expression. A custom GSEA database, with each set containing at least 15 genes,
was created from GO terms and enzyme code annotations of the assembled
transcriptome. We identified enriched or depleted gene sets under specific tem-
perature and humidity conditions using a false discovery rate (FDR) of 0.1. We also
determined gene overlap between WGNA, DGE, and GSEA analyses using the
merge() function in R.

Reporting summary. Further information on research design is available in the
Nature Research Reporting Summary linked to this article.

Data availability
We provided the data required to interpret, replicate, and build upon our findings. We
provided the raw data on the Open Science Framework repository (https://osf.io/rnsmk/).
The data are referenced using the following identifier: https://doi.org/10.17605/OSF.IO/
RNSMK. Figure 2 requires the available data from http://www.climatologylab.org/
products.html. RNA-seq data is currently available for download on Genbank (BioProject:
PRJNA509078).

Code availability
The Open Science Framework repository (https://osf.io/rnsmk/) contains the annotated
script and analysis for Fig. 2 written in Python (v. 3.6).
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