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Figure 2. Molecular 
structure of D-

glucose Figure 3. Molecular 
structure of Acarbose

Figure 5. Starch Utilization System (Sus) for B. 
thetaiotaomicron. This is the pathway 
responsible for recognition, degradation, and 
importation of complex carbohydrates. 
(Figure from:  Koropatkin, N.M., E.A. Cameron, 
E.C. Martens. 2012. Nature, 10: 328.)
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Figure 1. Variation of ratios of the two major phyla of bacteria, Firmicutes and 
Bacteroidetes, found in 386 fecal samples

(Figure from: Marchesi, J.R. 2011. Human distal gut microbiome. Environmental Microbiology 13: 3088-3102)

Figure 6. Representative growth assay demonstrating acarbose inhibition of B. 
theta and B. fragilis grown with pullulan. 

Introduction Methods and Materials

Preliminary Results

Figure 4. Molecular 
structure of Miglitol

Species Glucose Maltose Pullulan
B. theta None At 200μM At 50μM
B. fragilis None Not tested At 10μM
L. reuteri ATCC 55730 None None None 
L. reuteri PTA 6475 None None None 

Figure 7. Anaerobic cultures of B. theta and B. fragilis 
with varying levels of acarbose. 

Table 1. Inhibition of Bacterial Growth by Acarbose

Conclusions

References

Objective:  To investigate a novel therapeutic for the treatment of Type I 
Diabetes (T1D).

The therapeutic would not kill, but just retard the growth of bacteria that 
are members of the genus Bacteriodes while not effecting other 
bacterial species. 

Why: T1D is a progressive autoimmune disorder characterized by the 
destruction of the insulin secreting Beta cells in the pancreas (Harrison 
et al. 2008).

While it has been previously acknowledged that there are genetic 
factors responsible for the onset of T1D, there is evidence to suggest 
environmental causes as well (Achenback et al., 2005; Gale, 2002). 	
  

Not everyone that has the genetic predisposition to developing the 
disease will have T1D. 

Our interest lies in the observation that just before the onset of T1D in 
an individual, there is a bloom of bacteria from the Bacteroidetes phyla. 
(Giongo et al., 2011). 

How: We are investigating therapeutics that can inhibit the Starch 
Utilization System (SUS) specific to members of Bacteriodes.  
Removing the SUS as a method of gaining biomass and energy for the 
cell would not kill the cell but slow its growth. The cell will have to find 
alternative and less effective methods of metabolism. 

Current Work: We have investigated the effects of the drugs Acarbose 
and Miglitol on the growth of members from the Firmicutes and 
Bacteroidetes phyla.
Acarbose has been used previously in diabetes treatments because of 
its ability to retard the degradation of starch via inhibiting human α-
amylases. α-amylases, similar to the ones observed in humans, can be 
found within the Sus.

Bacteroidetes representative: B. ovatus, B. theta, B. fragilis
Firmicutes representatives: L. reuteri ATCC 55730 and L. reuteri PTA 6475

Monosaccharide representative: Glucose
Disaccharide representative: Maltose
Polysaccharide/Glycan representative: Pullulan	
  

•  Bacteroides thetaiotaomicron was grown on 
tryptone yeast glucose (TYG) agar anaerobically. 

•  Colonies from plates were used to prepare 
overnight cultures of B. thetaiotaomicron TYG 
broth (grown anaerobically). 

•  Test tubes were filled with minimal media 
containing either 0.5% glucose, maltose, or 
pullulan as a carbon source, cysteine, Bacteroides 
culture, and varying amounts of acarbose.

•  An anaerobic environment was created by 
inserting a cotton ball in the tube and lighting it on 
fire. 

•  Upon completion of burning, sodium bicarbonate 
and pyrogallol were added. 

•  The tube was stoppered, sealed, and incubated at 
37°C for 24 hours. 

•  Inhibition was indicated the following day by 
measuring the optical density at a wavelength of 
600nm.

•  Lactobacillus reuteri strains were grown on 
de Man, Rogosa and Sharpe (MRS) agar 
aerobically. 

•  Colonies from plates were used to prepare 
overnight cultures of L. reuteri MRS broth 
(grown aerobically).

•  Test tubes were filled with MRS broth 
containing either 0.5% glucose, maltose, or 
pullulan as a carbon source, cysteine, 
Lactobacillus culture, and varying amounts 
of acarbose.

•  The test tubes were incubated at 37°C for 24 
hours. 

•  Inhibition was indicated the following day by 
measuring the optical density at a 
wavelength of 600nm.

What we have found: 
•  Acarbose inhibits the growth of 

Bacteroides spp. and is not 
lethal to the cells.

•  Acarbose does not inhibit 
Lactobacillus growth.

•  Acarbose has structural 
similarities to many glycan 
molecules and is most likely 
effecting the Sus and therefore 
prohibiting its ability to 
breakdown available glycan 
molecules.

These findings have the possibility of providing a novel T1D treatment by 
preventing the bloom of Bacteroidetes in the large intestine. 

Our future directions include: 
•  Assay inhibition on other complex carbohydrates
•  Investigate inhibitory effects with another Bacteroides sp. and a non-Bacteriodes 

sp. within the Bacteroidetes phylum
•  Establish exact mode of inhibition of Sus system in B. thetaiotaomicron (i.e. 

where does it bind to inhibit?) 
•  Determine if correlation is an indicator of causation by conducting in vivo 

experiments using the Non-obese diabetic (NOD) mouse model to examine the 
effectiveness of acarbose administration at delaying or preventing the onset of 
T1D.
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