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ABSTRACT 

The aim of this research is to make a newly constructed Stewart-Gough Platform-based 

test frame Tiger 66.1 operational by developing control software and estimating the error in its 

pose accuracy. The accuracy of the platform is affected by one source or multiple sources. The 

typical error sources are kinematic and structural, some of them originate from manufacturing 

imperfections, assembly deviations, elastic deformations, thermal deformations, and joint 

clearances which change the expected kinematic behavior of the manipulator. Also, some non-

mechanical errors like transmission error, sensor accuracy, algorithm error, and truncation error in 

calculation contribute significantly in some cases. Using pose deviations as a foundation, this 

research further aims to develop a calibration method that enhances pose accuracy, leveraging the 

pose deviations observed during the initial measurements. This research presents a novel 

calibration method for a Stewart-Gough platform using photogrammetry, a digital image-based 

technique for 3D measurement and modeling. As part of this research, a new forward kinematic 

algorithm has been developed to implement an accurate non-contact calibration method that can 

improve the accuracy and precision of a general Stewart-Gough platform. The Stewart-Gough 

platform is one of the most popular Parallel Kinematic Machines (PKM). This mechanism, also 

known as a parallel manipulator or parallel robot, consists of a fixed base and a movable platform 

connected by six actuators or struts. The Stewart-Gough platform has remained an interesting 

machine for research due to its flexibility, structural rigidity, high accuracy, and reliability in 

motion control. The calibration of a Stewart-Gough platform is one of the essential steps in 

ensuring the accuracy and stability of the moving platform center. This dissertation investigates a 

forward kinematic calibration method for improving the accuracy of the Stewart-Gough platform-
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based test platform “Tiger 66.1” which is intended for use in the characterization of additively 

manufactured parts. The method is not restricted to this platform only and can be extended to any 

similar platform designed for use in various applications. 

For calibrating Tiger 66.1, a new forward kinematic algorithm was developed in this 

research. The forward kinematics for parallel manipulator generates multiple solutions and they 

include both feasible and unfeasible solutions. The developed algorithm is a new way of finding 

unique feasible solution for a platform pose. The proposed algorithm utilizes the high power of 

modern computing systems and finds a unique solution for a pose through iterations. The 

advantage of this new algorithm is that the solution obtained from the iterations does not need to 

be verified manually to check the feasibility in real life and can be directly used as input for any 

further calculations without stopping the computation process. 

The proposed calibration methods used photogrammetry which minimizes the need for 

manual handling of the platform during the calibration process. Photogrammetry uses images of 

targets taken by one or more cameras to reconstruct 3D positions and orientations. In this research 

a high-resolution digital camera has been used to take multiple images of the moving platform 

center from three different angles for each pose and analyze those images through the commercial 

software package “Photomodeler”, to measure the pose of the platform in three-dimensional space. 

This method eliminates the need for any additional measurement instrument to be used directly or 

indirectly interacting with the Stewart-Gough platform. 

The proposed forward kinematic technique is validated through both simulations and 

experiments on the physical Stewart-Gough platform-based test frame Tiger 66.1. The vision-

based approach is highlighted to improve absolute positioning accuracy by up to 25% compared 

with an uncalibrated platform. The method requires minimal hardware modification and renders it 
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highly suitable for precision application. It provides a practical approach to the calibration of 

parallel manipulators intended for high-precision tasks. The dissertation concludes by 

summarizing the contributions of this research, which includes the development of a novel 

photogrammetry-based calibration method that involves minimal hardware modification and full 

extrinsic calibration from vision data. The demonstration shows the substantial potential of the 

proposed method in augmenting the positioning performance of the Stewart-Gough platform 

tailored for precision applications. Furthermore, this work identifies areas for further work, such 

as implementing an online calibration method. Overall, this research demonstrates the capabilities 

of photogrammetry for parallel manipulator calibration while minimizing hardware modifications, 

thereby presenting a pragmatic approach to the calibration of such systems in the pursuit of high-

precision applications. 
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1 INTRODUCTION 

Stewart platform, also known as Stewart-Gough platform or Gough-Stewart platform or as 

hexapod platform, is a type of parallel robotic manipulator that has been widely used in various 

industrial and research applications, such as robotics, aerospace, and manufacturing. A typical 

sketch is shown in Figure 1.1 [1]. These platforms consist of six linear actuators, or struts, 

connected to a fixed base and a moving platform, or end effector, in a symmetrical or asymmetrical 

pattern. The coordinated motion of the struts can generate six degrees of freedom at the moving 

platform center or end-effector, making the platform capable of precise and flexible positioning in 

a 6-DOF space. 

 

Figure 1.1: A general Stewart-Gough platform 

The calibration of a Stewart-Gough platform improves the pose accuracy of its moving 

platform center. The pose of the moving platform center is defined as the position and orientation 

of the platform center in three-dimensional space. A pose is expressed by 6 parameters: 3 positions 

and 3 orientation values with respect to a cartesian coordinate frame. Calibration refers to the 

process of determining the relationship between target pose and the actual pose of the platform 

center or the end-effector and adjusting them to ensure accuracy and reliability. The accuracy of a 
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Stewart-Gough platform depends on the calibration of its geometry and kinematics. The length 

and angle of the struts, as well as the position and orientation of the end effector, need to be 

carefully measured and adjusted to ensure the platform's accuracy. The accuracy of the platform 

pose may be improved by inverse kinematics and forward kinematics. In inverse kinematics (IK), 

the actuator lengths are calculated from the translation and rotation values of the platform center 

with respect to the home pose. In home pose the lengths of all six actuators are equal and the 

platform center is considered to have no translation and rotations in the three coordinate axes. The 

forward kinematics (FK) calculates the coordinates and orientations of the moving platform center 

from the actuator lengths. Inverse kinematics for parallel manipulators is simple and 

straightforward, but there are several challenging aspects in Stewart-Gough platform calibration 

using forward kinematics. This research used forward kinematics to implement the calibration 

strategy.  

Measurement of the actual platform pose of the hexapod is a critical part of this calibration 

process. Traditional measurement methods, such as tape measurement, double ball-bar, or laser 

scanning, may suffer from measurement noises, errors, and complexities, especially for large or 

complex platforms. In recent years, photogrammetry has emerged as a promising technique for 

various measurement processes. Photogrammetry is a method for 3D measurement and modeling 

based on digital images that can provide highly accurate, non-contact measurements. Images of 

the platform are captured at different positions and orientations using one or a set of digital 

cameras. These images are processed with custom software to estimate the 3D coordinates of the 

platform's joints and end effector and to optimize the calibration parameters. 

 The objective of this research is to develop, evaluate, and apply a photogrammetric 

calibration method for the Stewart-Gough platform. This method will improve the accuracy and 
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precision of the platform by measuring the actual 3D spatial position of the end-effector and 

comparing it with the theoretical (target) positions. The newly developed kinematic algorithm in 

this research calculates the Denavit-Hartenberg (DH) parameters for each actuator path for the 

theoretical and actual pose of the platform. The DH parameter sets for theoretical and 

corresponding actual poses are used to estimate the errors in the platform's geometry and 

kinematics. From these error values, the required compensation or correction values are calculated 

and added to the robot’s position control software to improve accuracy. The compensation values 

are used to estimate the new predicted pose for each target pose of the platform. The predicted 

poses are used as input to the position control software. The new pose errors are measured with 

the help of photogrammetry and compared with the uncompensated pose errors to check the 

accuracy improvement obtained through this calibration process. 

The contribution of this research is to provide a novel and effective method for the 

calibration of the Stewart-Gough platform by forward kinematics, which can significantly impact 

the performance and applications of these platforms. The photogrammetric method has potential 

applications in other areas of robotics and manufacturing and can lead to new developments in the 

field of parallel manipulators. 

The complete calibration process demonstrated in this study is divided into three main 

parts. The first part of this research (Chapter 2) surveys the current state-of-the-art research in 

Stewart-Gough platform calibration using forward kinematics and the different methods used for 

it. This chapter has been prepared as a journal article, which at the time of writing this dissertation 

is in the review process. 

The second part of the research (Chapter 3), published as a journal paper, describes the 

formulation of a new algorithm for forward kinematics. The mathematical formulation of the 
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forward kinematics of the hexapod platform generates multiple polynomial equations that generate 

multiple feasible and non-feasible solutions for any pose of the moving platform center. The 

developed new iterative algorithm generates a single, feasible solution for any pose. The 

simulation results were generated by using this algorithm and are verified as a unique feasible 

solution for a specific pose. 

The next part of the thesis (Chapter 4) introduces the photogrammetry method for 

calibrating the hexapod test frame “Tiger 66.1” developed in this lab. The pose data obtained from 

the newly developed algorithm was used for the development of the photogrammetric calibration 

method. A high-resolution digital camera is used to capture images of the platform center at various 

positions and orientations. A commercially available software package “Photomodeler” has been 

used for image processing and to extract the coordinates of the moving platform center. The target 

data and actual measurements were used to estimate the errors in the platform’s pose. Suitable 

compensation factors were calculated and combined in the custom motion control software to 

increase the accuracy of the test frame. This chapter is also prepared in the form of a journal article 

that was submitted at the time of this writing. 

In the concluding chapter of this study, a detailed review of this photogrammetry-based 

calibration method is presented for real-world applications. The outcomes of implementing this 

technique highlight the significant potential of the photogrammetric calibration approach for 

enhancing the accuracy and precision of the Stewart-Gough platform. Future research 

opportunities based on the proposed technique are discussed for diverse applications and the 

potential to drive further advancements in the field of parallel manipulators with minimal 

modifications to the actual system. 
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2 STATE OF ART 

Researchers have extensively studied Stewart-Gough platforms, also known as Gough-

Stewart platforms or hexapod platforms extensively for their inherent fine control characteristics. 

Their studies led to the potential deployment opportunities of Stewart-Gough platform in many 

critical applications such as the medical field, engineering machines, space research, electronic 

chip manufacturing, automobile manufacturing, etc. These applications require micro and nano-

level movement control in 3D space for the motions to be precise, complicated, and repeatable; a 

Stewart-Gough platform fulfills these challenges smartly. Therefore, the parallel robot must be 

more accurate than the specified application accuracy level, and thus proper calibration for a 

parallel robot is crucial. Forward kinematics-based calibration for such hexapod machines 

becomes unnecessarily complex, and inverse kinematics completes this task with much ease. To 

experiment with different calibration techniques, various calibration approaches were 

implemented by using external instruments, constraining one or more motions of the system, and 

using extra sensors for auto or self-calibration. The literature survey in this chapter focused on the  

key methodologies used for calibrations, their outcomes, and key details related to forward 

kinematic-based hexapod platform calibrations. It was observed during this study that the 

researchers focused on improving the accuracy of the platform position and orientation considering 

the errors contributed by one source or multiple sources. The error sources considered are 

kinematic and structural, in some cases, environmental factors also are reviewed; however, those 

calibrations are performed under no-load conditions. This review aims to study the present state 

of the art in this field and highlight the processes and errors considered for the calibration of 

Stewart-Gough platform. 
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2.1 Introduction 

In the world of conventional robots, there are three varieties of mechanisms: (i) Serial 

robot, (ii) Parallel robot, and (iii) Hybrid robot [2]. Any robot consists of a base and an end-

effector. These are connected by multiple links. In a serial robot or manipulator, the links are 

connected in series. A parallel mechanism, sometimes called a Parallel Kinematic Machine 

(PKM), is made by linking a moving platform or end-effector, which is generally mounted on a 

platform or endplate, to a reference body or base through three or more links forming a closed-

loop kinematic chain [3]. The base part remains fixed. A hybrid mechanism structure is formed by 

combining serial links and a parallel robot. Often, the parallel robot is mounted near the end 

effector of the serial manipulator to provide a high precision adjustment option to the serial system. 

The rigidity of a parallel robot is higher than a serial manipulator. The hybrid structure increases 

the workspace of a parallel robot at some cost of the rigidity of the structure. 

Parallel robots have received significant attention because of their high dynamic flexibility, 

structural rigidity, high accuracy due to the closed kinematic loops, no error accumulating 

characteristics [4], higher load-to-weight ratio, and uniform load distribution capacity compared 

with the serial manipulators [5]. For any parallel robot, the number of linking elements between 

the fixed base and movable platform varies between three and six. The link numbers together with 

the type of connections and the twist of the platform normally determine the degrees of freedom 

(DOF) of the machine. 

One such parallel robot controlled by six links connected between the fixed base and 

movable platform with 6-degrees of freedom (DOF) is termed Hexapod. The hexapod was first 

designed by an engineer Gough from the United Kingdom in 1954 for tire testing with six actuators 

acting as the links between the fixed base and its moving platform. The actuators are prismatic 
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joints. This machine had the structure of an octahedral hexapod [6]. Using the Gough’s platform, 

in 1965 another engineer from the United Kingdom, Stewart developed an articulated 6-DOF flight 

simulator [7] for the training of pilots. These types of platforms are known as a Stewart-Gough 

Platform or sometimes Gough-Stewart Platform, or simply as a Stewart Platform. In this article, 

these terms are used to mean the same machine. The combinations of motions of the six actuators 

give the platform high precision, high structural stiffness, and high dynamic performance [8]. 

Stewart-Gough platforms have been employed in many fields. The potential applications of 

parallel robots include mining machines, walking robots, both terrestrial and space applications 

including areas like high-speed manipulation, material handling, motion platforms, machine tools, 

medical fields, planetary exploration, satellite antennas, haptic devices, vehicle suspensions, 

variable-geometry trusses, cable-actuated cameras, and telescope positioning & pointing devices 

[9]. They are used in the development of high-precision machine tools by many companies like 

Giddings & Lewis, Ingersoll, Hexcel, Geodetic, and others [10] [11]. The application options 

expanded from a simulator to automobile manufacturing, inspection, human-robot collaboration, 

space telescope, medical tool control (by adding a hexapod at the end-effector point of a serial 

manipulator) [12]. For the precision and accuracy required for these machines to perform at a 

specific level of operational characteristics, the platform movements must be precisely controlled. 

To get the necessary level of accuracy for the moving platform position and orientation, called 

pose, it is essential to understand the various errors related to the machine at the time of its 

operation and apply suitable compensation. Calibration of the hexapod identifies these errors and 

adds suitable amounts of compensations to obtain reliable and predictable [13] output data. 

This chapter of the dissertation surveys the calibration methods used for hexapod platforms 

based on Stewart-Gough platforms. Efforts were made to cover most of the key articles published 
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after the year 2000 that focused on forward kinematic calibration techniques. This chapter has been 

divided into six main sections. The beginning section serves as an introduction. The second section 

reviews the kinematics of hexapods and the primary error factors that impact their accuracy. 

Section 3 reviews the calibration techniques and the strategies used for successful calibration 

thereof. Major calibration methodologies and their outcomes are presented in Section 4. Section 5 

discusses and compares the methods previously presented. Finally, section 6 provides a conclusion 

and recommendations for future work. 

2.2 Hexapod Kinematics & Error Factors 

A general 6-6 hexapod configuration is shown in Figure 2.1, with the appropriate terms 

defined using the nomenclature of Tsai [14] and Lee [15]. 

 

Figure 2.1: Hexapod Schematic with Nomenclature. 

In Figure 2.1, the position of the Fixed Base coordinate system (System O) defined at point 

O compared to the Moving Platform coordinate system (System P) defined at point P is defined 
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through the translation vector p, and a rotation matrix 𝑹𝑃
𝑂 . The rotation matrix can be further 

defined as in Equation (2.1) as: 

𝑹𝑃
𝑂 =  [

𝑢𝑥 𝑣𝑥 𝑤𝑥

𝑢𝑦 𝑣𝑦 𝑤𝑦

𝑢𝑧 𝑣𝑧 𝑤𝑧

] (2.1)  

where u, v, and w are unit vectors along the axes of the moving platform coordinate system, 

subject to the orthogonal conditions defined in Equations (2.2) through (2.7). 

𝑢𝑥
2 + 𝑢𝑦

2 + 𝑢𝑧
2 = 1 (2.2) 

𝑣𝑥
2 + 𝑣𝑦

2 + 𝑣𝑧
2 = 1 (2.3) 

𝑤𝑥
2 + 𝑤𝑦

2 + 𝑤𝑧
2 = 1 (2.4) 

𝑢𝑥𝑣𝑥 + 𝑢𝑦𝑣𝑦 + 𝑢𝑧𝑣𝑧 = 0 (2.5) 

𝑢𝑥𝑤𝑥 + 𝑢𝑦𝑤𝑦 + 𝑢𝑧𝑤𝑧 = 0 (2.6) 

𝑢𝑥𝑤𝑥 + 𝑢𝑦𝑤𝑦 + 𝑢𝑧𝑤𝑧 = 0 (2.7) 

If we define 𝒂𝑖 =  [a𝑖𝑥 a𝑖𝑦 a𝑖𝑧]𝑇
 

𝑂  as the vector from point O to point Ai (where i = 1, 

2, …, 6) in coordinate system O, and in coordinate system P, 𝒃𝑖 =  [𝑏𝑖𝑥 𝑏𝑖𝑦 𝑏𝑖𝑧]𝑇
 

𝑝  as the vector 

from point P to point Bi (where i = 1, 2, …, 6) in coordinate system P, this allows to define a vector 

loop equation for the ith arm of the platform as in Equation (2.8). 

𝐴𝑖𝐵𝑖 = 𝒑 
𝑂 + 𝑹𝑃

𝑂 𝑏 
𝑃

𝑖 − 𝒂 
𝑂

𝑖 = 𝒅 
𝑂

𝑖 (2.8) 

Thus, the length of the ith arm controlled by the prismatic actuator i, is defined in Equation 

(2.9) as: 

𝒅 
𝑂

𝑖
2 = ‖ 𝒅 

𝑂
𝑖‖ = [ 𝒑 

𝑂 + 𝑹𝑃
𝑂 𝑏 

𝑃
𝑖 − 𝒂 

𝑂
𝑖]𝑇[ 𝒑 

𝑂 + 𝑹𝑃
𝑂 𝑏 

𝑃
𝑖 − 𝒂 

𝑂
𝑖] = 𝒅 

𝑂
𝑖 • 𝒅 

𝑂
𝑖 

           ∀𝑖 = 1,2, . . . ,6 

(2.9) 

Depending on the inputs and outputs to and from the kinematic problem, the solution to 
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the resulting system of equations is defined as either forward kinematics or inverse kinematics 

[16]. In forward kinematics, the position and orientation of the moving plate are calculated based 

on the length of the six actuators, defined by di and expressed as Op and 𝑹𝑃
𝑂 . 

The opposite calculation is inverse kinematics where the position and orientation of the 

moving plate, Op and 𝑹𝑃
𝑂 , are known and the required length of each of the i actuators, defined by 

||di||, is to be determined [17]. 

In both cases, the correctness of the hexapod parameters is dependent on a number of error 

factors which can be geometric or non-geometric [18] [19]. These error parameters affect the 

values of all the variables which define the kinematics of the hexapod. Depending on the error 

factors, the calibration process is classified into three levels [13] [20] [21]: 

Level-1 calibration considers only the joint errors that play a critical role in the 

accuracy of the robot. This is defined as “Joint Level Calibration.” 

Level-2 calibration, also known as “Kinematic Model Calibration”, takes care of 

the error of the kinematic parameters. 

Level-3 calibration, also called as “Non-kinematic calibration” or “Dynamic Model 

Calibration”, captures the errors of non-geometric or quasi-static parameters [22], such as 

stiffness, geometry of the robot structure, and errors caused by temperature variation [23]. 

In a hexapod platform, the components of the rigid structure like the base, frame, top 

platform, and other accessories are fabricated and normally made from metal stocks. Therefore, 

the accuracy of these components has a direct influence on the accuracy of the entire system. The 

dimensions of the structure are dependent on the design tolerances or manufacturing deviations, 

clearances, joint errors [24], thermal deformations [25] [26], and elastic deformations [27]. The 

actuators or struts are connected to the structure with movable joints; joints are impacted by the 
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errors due to the assembly deviations in the form of joint run-out and ball screw deviations. Also, 

the mechanical joints are not free from friction, hysteresis, and backlash [4]. If the struts are 

operated by hydraulic fluids, there are chances of transmission errors and sensor errors [28]. 

Therefore, the accuracy of a hexapod can be expressed broadly by the function described 

in equation (2.10). 

𝑬𝐻𝑒𝑥𝑎𝑝𝑜𝑑 = 𝑓(𝑬𝑚𝑎𝑛𝑢𝑓𝑎𝑐𝑡𝑢𝑟𝑖𝑛𝑔 , 𝑬𝑎𝑠𝑠𝑒𝑚𝑏𝑙𝑦 , 𝑬𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛 , 𝑬𝑑𝑒𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 , 𝑬𝑠𝑒𝑛𝑠𝑜𝑟) (2.10) 

These error parameters are further elaborated in Table 2.1. Each of these errors can affect 

the position and orientation of the endplate. For instance, Emanufacturing, is the resultant error vector 

due to tolerances and manufacturing accuracy along the kinematic chains that define the hexapod. 

Conceptually, each degree of freedom in a kinematic chain is defined by four Denavit-Hartenberg 

(DH) parameters, representing the information necessary to transform the coordinate system across 

the component providing the degree of freedom (DOF). Therefore, on a 6-DOF kinematic chain 

defining one limb of a Stewert Platform, there are 4(6) or 24 DH parameters. With one prismatic 

actuator, there are 23 uncontrolled parameters and 1 controlled parameter in each limb. With six 

limbs, there are a total of 6 controlled DH parameters and 6 x 23 = 138 uncontrolled DH parameters 

in the Stewert platform. However, because these parameters are coupled into closed-loop 

kinematic chains, these parameters are coupled to the other parameters in the system, resulting in 

a 6-independent DOF for the endplate, and the remaining 138 uncontrolled parameters are 

dependent upon each other and the 6-independent DOF from the prismatic actuators. Errors 

originating from manufacturing tolerances and accuracy can have a cumulative effect that alters 

all uncontrolled DH parameters.  

Similarly, assembly errors can also lead to changes in any of these parameters, although 

some errors may be more likely to be seen in certain parameters (i.e., wear is more likely to affect 
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parameters specifically associated with the joint rather than the links). Similar arguments can be 

made for the other error components described in Table 2.1. 

Table 2.1: Error function illustrations 

Error source Dependency Remarks 

Manufacturing  Component Tolerances 

These components act as the basic structure of 

the machine and any deviation impacts 

permanently. This structure bears all the loads 

generated in the static and dynamic condition of 

the machine and provides rigidity to the machine. 

Assembly  

• Assembly Tolerances 

• System Age 

• Amount of Usage/Wear 

Assembly deviations are controllable and 

minimized by the replacement of old, worn-out 

parts with new parts. 

Transmission  

• Actuation Response Time 

• Joint Clearance and Backlash 

• Platform Position 

• Operation Speed and Lag 

• Hysteresis Effects 

This error depends on the robustness of the 

system and system configuration. Some default 

limitations cannot be avoided. 

Deformation 

(Mechanical) 

• Material Properties 

• Applied Loads 

• Component Geometry 

• Platform Position 

Dependent on the structural materials used and 

their response properties under load. 

Deformation 

(Thermal) 
Working temperature variations 

Changes in operating conditions due to 

temperature may affect structural components, 

joint tolerances, and actuator performance. 

Sensor 
• Specification Tolerances/Accuracy 

• Calibration Drift 
Modern sensors tend to be the least inaccurate. 

Some of the error sources, in particular the transmission and sensor errors, also can affect 

the controlled parameters associated with the actuators of each limb. Consequently, the task of 

calibrating a hexapod involves confirming that each of these 144 DH parameters is known 

throughout the operating range of the system. 

There are more typical sources of errors [29], other than those mentioned here, contribute 

to the outcome from the system; however, their influences are dependent on the construction 

philosophy adopted for that particular system, and the type of operations and level of accuracy 

expected out of those systems. 
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2.3 ACCURACY IMPROVEMENT STRATEGIES 

The purpose of kinematic calibration of parallel robot is to improve the motion and position 

accuracy of the moving platform by correctly evaluating and calculating the kinematic parameters 

within its defined workspace. A parallel robot can be calibrated in three ways (Figure 2.2): External 

calibration, Constrained calibration, and Auto or Self-calibration [30] [31]. 

External calibration is done by using one or more external instruments such as an 

electronic theodolite or a laser tracker [32] for measurement of multiple poses of the end-effector. 

In the Constrained calibration process, some motions of the mechanical elements, usually the 

movement of a struts of the robot are constrained to gather the error data. This method is 

comparatively simplest and least expensive [33]. Auto or Self-calibration is one of the most 

expensive and complex calibration techniques. In this method, the robot itself automatically takes 

care of the error parameters measured by redundant sensors with the help of the built-in algorithms 

installed on controllers. The error correction process can take place during normal robot 

operations. Several extra sensors are installed in the joints and on the links of the robot to gather 

calibration data continuously. Alternatively, additional sensors can be added to directly measure 

the end plate motion through extensometers or feeler arms [34] [35]. The number of sensors used 

 

Figure 2.2: Strategies for PKM calibration 
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in a parallel machine is equal to its number of degrees of freedom. In all these strategies, sensors 

play an important role and are an essential part of the calibration process; the difference occurs in 

how these sensors are employed. 

Conventionally, the four steps shown in Figure 2.3 are followed in the calibration process 

of a parallel robot: kinematic modeling, measurement, identification, and implementation [36]–

[38]. 

 

Figure 2.3: Steps in the PKM calibration process 

Kinematic modeling of the platform is used to build the relationship between the joint 

variables and the platform pose, along with the measurement device readings. The result of the 

modeling phase is a set of analytical equations showing relationships between these parameters as 

shown in Equations (2.1) - (2.9) [18] [19] [39]. The measurement phase gathers the data related to 

the actual platform position and orientation with the help of the measurement devices [22]. The 

identification step will identify the optimal set of unknown parameters based on the kinematic 

model and measurements to fit the actual behavior of the mechanism considering the major sources 

of errors for the context [8] [40]. Finally, through implementation, the compensation for the 

calculated model errors is added in the manipulator controller [38]. 

Kinematic Modeling

Measurement

Identification

Implementation
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The results of the robot calibration process are expressed in terms of the pose errors for a 

set of positions and orientations [41]. To generate a reliable and accurate result, the mechanical 

structure of the robot must be defined with an adequate number of parameters without repetition 

in the calibration model. A “good” calibration model must have three criteria: completeness, 

equivalence, and proportionality. Completeness refers to the fact that the model must have enough 

parameters to completely define the motion of the robot. Equivalence means that the derived 

functional model can be related to any other similar acceptable model. The proportionality 

property must give the model the ability to reflect small changes in the robot geometry with small 

changes in the model parameters [20]. A “good” calibration model can be established by building 

relationships between the independent parameters that are used to define the robot system. For a 

multiloop parallel robot such as the 6-DOF hexapod or Stewart-Gough platform, the number of 

independent parameters (C) can be calculated as follows [42]: 

𝐶 =  3𝑅 +  𝑃 + 𝑆 + 𝑆𝑆 + 𝐸 + 6𝐿 + 6(𝐹 − 1) (2.11) 

where… 

• L, number of independent link loops in the robot, 

• R, number of unsensed (non-instrumented) revolute joints, 

• P, number of prismatic joints, 

• S, number of unsensed (non-instrumented) spherical joints, 

• SS, number of pairs of S-joints connected by a simple link without any intermediate joint, 

• E, number of measurement devices or transducers, and 

• F, number of arbitrarily located frames. 

 

For a Stewart-Gough platform with one universal (U), one prismatic (P) and one spherical 

(S) joints for each actuator considering [UPS ≈ 2RP3R], the minimum total number of independent 

parameters necessary for the complete calibration model is as follows.  

𝐶 = 3 ∗ 6 ∗ 5 + 6 + 0 + 6 + 6 ∗ 5 + 6(2 − 1) = 138 
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2.4 Calibration Approach 

To achieve a high level of kinematic accuracy, it is necessary to develop a robust and 

reliable calibration method. After the introduction of the hexapod by Gough, and then by Stewart, 

calibration became the field of interest for researchers. Calibration research is typically performed 

using either analytical approaches or physical experiments. Analytical approaches are independent 

of the physical hexapod platform artifacts. Still, they are worth studying to get an idea of the 

research direction on the analytical hexapod calibration process. 

2.4.1 Calibrations through Analytical Approaches 

Jing et al. [43] considered that the final position and orientation of a hexapod platform 

depend on the joint radius and angles of the movable platform. In their analysis, they applied an 

interior-point algorithm. To validate their considerations, analytical techniques were used to 

reduce the errors of the 6 actuators. Through their analysis, they could reduce the average actuator 

length error from 0.1 mm to 2 x 10E-7 mm. 

In their research, Agheli et al. [44] considered the lengths of the actuators as the main 

sources of error for the moving platform accuracy in the hexapod and accordingly designed the 

calibration process to minimize the cost function through the simulation of the calibration process. 

They obtained approximately 50% error reduction in platform position and orientation errors at 

the workspace boundaries. For their simulations, Agheli et al. used the Levenberg-Marquardt 

algorithm to minimize the cost function obtained through inverse kinematic calculations. 

For small numbers (= 10) of measurements Daney et al. [45], they used Algebraic variable 

elimination and monomial linearization to calibrate the platform pose. They used the actuator 

lengths as the error source and compared their algorithm with classical non-linear least-square 

methods. They obtained the same results. The advantage of this algorithm is that for small numbers 
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of measurements, there is no need for any hypothesis for noise distribution and no initial estimate 

of solution is taken. 

In [46], Daney et al. presented a method of calibration based on interval arithmetic and 

interval analysis to solve an over-constrained equation. They used Taylor expansion to obtain a 

linear approximation to determine the kinematic parameters. The least-square method and their 

developed certification algorithm provide exact kinematic parameters when no errors are 

considered for the measurements. Considering kinematic errors, the results are comparable with 

the classical least-square method. 

Daney et al. [28] used the constrained optimization method and an algorithm named 

DETMAX for inverse kinematics applications. In this case, they studied the impact of errors at 

joint positions and actuator lengths. They found that the mean error on kinematic parameters 

improved from 0.2705 cm to 0.0335 cm for random poses and 0.2705 cm to 0.0023 cm for selected 

poses. 

Wang et al. [47] identified that errors from actuator lengths are the most dominant error 

factor for the overall accuracy of the 6-DOF platform. They considered errors from actuator 

lengths, ball joint location, and motion errors in their analysis. Based on the sensitivity analysis of 

the errors, they produced a graphical presentation of the optimal working region for their machine 

tool used in the experiment. 

In another study [48], Daney et al. carried out simulation using symbolic variable 

elimination with numerical optimization. These yielded superior results compared to the classical 

direct methods and were able to reduce initial pose error by up to 99% near the boundary 

configurations. With this study, the authors concluded that their algorithm is dependable 

irrespective of the robot configuration. 
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A summary of the research on analytical-based calibration is shown in Table 2.2. 

Table 2.2: Summary of the analytical work on hexapod calibration 

Reference 
Error/s 

considered 
Methods Outcome Performance Important points 

Jing et al. 

2020 [43] 

Moving 

platform joint 

radius and 

angles 

Interior-point 

algorithm 

Average actuator length 

error reduced from 0.1 

mm to 2 x 10E-7 

Use of MATLAB 

optimization toolbox 

could find local optimal 

solution 

Though other optimization 

methods may work better, 

the authors preferred this to 

tryout. 

Agheli et 

al. 2009 

[44] 

Actuator 

length 

A least-square 

method based on 

Levenberg-

Marquardt 

algorithm 

Reduction in platform 

pose error by ~50% at 

the boundary 

The position and 

orientation errors 

reduced 500 and 

15000 times, 

respectively. 

Maximum Kinematics 

Parameters errors were 

observed at the boundary 

of the workspace. 

Daney et 

al. 2004 

[45] 

Actuator 

length 

Algebraic 

variable 

elimination and 

monomial 

linearization 

Classical nonlinear 

least-squares method 

and this method 

generates exactly 

same results 

A superior method 

for small numbers 

(=10) of 

measurements. 

Need no hypothesis for 

noise distribution and no 

initial estimate of the 

solution. 

Daney et 

al. 2004 

[46] 

Actuator 

length 

Interval 

arithmetic and 

interval analysis 

The new measurement 

method shows 

comparable results to 

the classical least-

square method 

The interval analysis 

provided numerically 

certified result to 

kinematic calibration 

problem 

The classical least square 

method may not provide 

realistic solutions for all 

cases. 

Daney D. 

2002 [28] 

Joint 

position and 

actuator 

length 

Constrained 

optimization 

method and 

DETMAX 

algorithm 

Measurement noise in 

kinematic parameters 

reduced by 10 to 15 

times 

Mean error on 

kinematic parameters 

improved from 

0.2705 cm to 0.0335 

cm for random poses 

& to 0.0023 cm for 

selected poses. 

The error value decreases 

steadily with an increase 

in the number of 

randomly chosen poses 

and remains usually 

constant for carefully 

chosen configurations. 

Wang et 

al. 2002 

[47] 

Actuator 

length, 

location, 

and motion 

errors of 

ball joints 

An automated 

error analysis 

model of first 

and second order 

inverse 

kinematics 

Graphically sensitivity 

analysis results to 

select optimal 

working region 

1 mm actuator length 

(z-axis) error causes 

platform deviation in 

x-axis from -140 to -

180 μm, y-axis from 

520 to 650 μm, z-

axis from -150 to -

350 μm 

The length error (z-

direction) of the actuators 

influences the accuracy of 

the machine much larger 

than any other errors. 

Daney et 

al. 2001 

[48] 

Platform 

pose 

Symbolic 

variable 

elimination with 

numerical 

optimization 

More reliable 

algorithm irrespective 

of configurations 

compared the standard 

direct methods 

Initial pose error was 

reduced by 99%. 

An efficient technique to 

enhance the robustness of 

the measurement process. 

Possibility of this method 

for the self-calibration 

process. 

 

2.4.2 External Approach 

External approaches are widely used as a method for hexapod calibration. In this approach, 

the calibration is done through experiments on the hexapods using additional measuring 
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instruments. Instruments like a double ball bar, laser interferometer, laser tracker, digital cameras, 

etc. are used [31]. Highlights of external approach based hexapod calibration have been 

summarized in Table 2.3 and Table 2.4. The system name used for the experiment, instruments 

used, type of error considered, and kinematics are presented in Table 2.3; whereas the methods, 

performance, and key findings of the study are presented in Table 2.4. 

Table 2.3: Summary of external approaches (part 1 – left side) 

Reference System Name Instruments used 
Error considered / 

measured 
Kinematics 

Song et al. 2022 [49] - FARO measuring arm Joint errors Inverse 

Mahmoodi et al. 2014 

[50] 
- 

6 rotary sensors on 6 

actuators 
Actuator length  

Forward/ 

Inverse 

Jáuregui et al. 2013 [18] 

Secondary mirror 

of a radio-

telescopes. 

Laser Interferometer Actuator length  Inverse 

Ren et al. 2013 [36] XJ-HEXA 
Biaxial Inclinometer & 

Laser tracker 
Actuator length  Inverse 

Nategh et al. 2009 [51] Hexapod table Digital camera Platform pose 
Forward/ 

Inverse 

Großmann et al. 2008 

[52] 
FELIX Double Ball Bar Platform pose Inverse 

Liu et al. 2007 [53] - 3D Laser Tracker Actuator lengths Inverse 

Ting et al. 2007 [54] 

Micro-

positioning 

platform 

DMT22 Dual Sensitivity 

Systems with C5 probe 

Hysteresis of Piezoelectric 

actuators 
Inverse 

Daney et al. 2006 [17] DeltaLab robot CCD camera. 
Joint imperfection and 

backlash of each actuator. 
Inverse 

Dallej et al. , 2006 [55] - Omni-directional camera 
Position and orientation of 

the actuators 
Inverse 

Daney et al. 2005 [56] 
DeltaLab “Table 

of Stewart” 
Sony digital video camera Platform pose Inverse 

Gao et al. 2003 [57] FFCM of FAST Laser Tracker LTD500 Platform pose Inverse 

Renaud et al. 2002 [58] - 
A CCD camera & 1D 

laser interferometry 
Platform pose Inverse 

Week et al. 2002 [59] 
Ingersoll 

HOH600 

Double ball bar as 7th 

actuator & a CMM 
Actuator length Inverse 

Ihara et al. 2000 [60] - 
Telescoping magnetic ball 

bar (DBB) 

Actuator length and joint 

positions 
Inverse 
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Table 2.4: Summary of external approaches (part 2) 

Reference Methods Performance Important points 

Song et al. 

2022 [49] 

Artificial Neural 

Network (ANN) based 

non-linear functions 

Mean pose error reduction from 

0.642 mm and 0.184 deg to: 

Coupled network: 0.076 mm & 

0.024 deg respectively; Decouple 

network: 0.052 mm & 0.018 deg 

respectively 

The coupled and decoupled networks 

show a comparable results pattern 

though the optimal numbers of 

hidden nodes for couple network is 

13 and decoupled network is ~6. 

Mahmoodi 

et al. 2014 

[50] 

A new method with 6 

rotary sensors 

Positional and orientation 

variances improved by 0.16 m2 & 

0.16 rad2 respectively. 

The new method is less accurate in 

orientation measurement. 

This method is better than 

conventional method for position 

measurement. 

Jáuregui et 

al. 2013 [18] 

Simplified method (same 

error amount considered 

for all actuators) & 

comprehensive method 

(each actuator error is 

not equal) 

Majority of pose deviations fall 

within 10μm. 

The simplified method creates linear 

relationships and is easy to solve. 

The comprehensive method is 

complex, non-linear, but more 

accurate. 

Ren et al. 

2013 [36] 

Keeping any two attitude 

angles of the end-

effector constant. 

Position accuracy = 0.1 mm 

Orientation accuracy = 0.011° 

Exempting the need for precise pose 

measurement and mechanical 

fixtures. 

Independent of inclinometer range 

and accuracy. 

Nategh et al. 

2009 [51] 

A least-square approach 

based on Levenberg-

Marquardt algorithm 

with Singular value 

decomposition. 

The position & orientation errors 

as per simulation were 0.1 mm 

and 0.01° respectively and were 

1.45 mm and 0.27° as per 

experiment. 

Employed Observability index to find 

the most visible & optimum number 

of measurement configurations. 

Großmann et 

al. 2008 [52] 

Genetic Algorithm based 

Trajectory optimization. 

The deviation of platform pose 

reduced from 0.7 mm to 0.17 mm. 

Genetic algorithms are slow to get the 

most accurate solution, also rarely 

improve the solution. 

Liu et al. 

2007 [53] 
Genetic Algorithm 

After 5000 generations the 

platform position & orientation 

errors improved 1.4 & 2.4 times 

respectively without measurement 

noise filter. 

The genetic algorithm showed good 

calculation stability, though it is not 

sensitive to measurement noises. 

Ting et al. 

2007 [54] 
Preisach model 

Platform accuracy level achieved 

1 μm in position and 10 μ deg in 

orientation. 

The convergence of errors for fixed 

points can happen after several 

iterations. 

Daney et al. 

2006 [17] 

Interval arithmetic and 

analysis methods 

Yielded intervals for the position 

and orientation, which includes 

noise and robot repeatability 

error. 

Finds ranges of parameters that 

satisfy the calibration model. 

Dallej et al. , 

2006 [55] 
Linear regression 

Experimental validation of the 

method yielded 0.8 cm median 

error with respect to the CAD 

geometry. 

An omnidirectional camera 

overcomes the self-occlusion 

problem arising in the single 

perspective camera. 

No mechanical modification of the 

robot is necessary. 



 

 21 

Reference Methods Performance Important points 

Daney et al. 

2005 [56] 

Constrained optimization 

method with Tabu search 

Improvements in accuracy were 

not as per expectation due to the 

biasness error of 1.29 mm on the 

z-axis. 

The workspace boundary has a 

concentration of optimal poses. 

By maximizing the observability 

index, the robustness of calibration 

increases with respect to 

measurement noise. 

Gao et al. 

2003 [57] 
Least Square method Accuracy improved to 0.2 mm 

The method is effective even in lack 

of measurements. 

Some false parameters may occur for 

fewer measurement configurations. 

Renaud et 

al. 2002 [58] 

Error function 

minimization. 

Precision obtained in camera 

measurement is in the order of 1 

μm in translation and 1x10-3 deg 

in rotations for an axial 

displacement of 400 mm 

Low cost and easy to use compared 

to the measurements by 

interferometer. 

Precision level depends on the 

camera resolution. 

Week et al. 

2002 [59] 
- 

Roundness accuracy improved by 

3.7x 

Squareness accuracy improved by 

7x. 

The redundant actuator can be used to 

measure and compensate for the 

deflections due to gravity and thermal 

error. 

Ihara et al. 

2000 [60] 
Fourier transformation 

Machine’s motion error decreased 

to ¼. 

The measurement is easy and can 

take care of circularity, absolute 

radial error, and circle center position 

error. 

 

The artificial neural network (ANN) was used by Song et al. [49] in the calibration process 

for their Stewart-Gough platform. They corrected the joint variables by embedding the 

compensations in their numerical control system for online real-time error compensation. They did 

the experiment with their hexapod and demonstrated that the proposed ANN based robust 

compensator can enhance static pose accuracy for both coupled and decoupled networks. The 

ANN approach was implemented with inverse kinematics. The results obtained show that mean 

pose error reduced from 0.642 mm and 0.184 deg to 0.076 mm & 0.024 deg respectively for 

coupled network and to 0.052 mm & 0.018 deg respectively for decouple network though the 

optimal numbers of hidden nodes for couple network is 13, decoupled network is ~6. 

Mahmoodi et al. [50] proposed a new method of calibration for Stewart platform-based 

PKM. They used rotary sensors in place of the linear sensors in actuators. The method is not too 

sensitive to the orientation measurement but showed better results in position measurement for the 
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platform. In this study, 6 rotary sensors were used on 6 actuators to correct the pose of the platform. 

They used a mix of forward and inverse kinematics for their PKM and observed the positional and 

orientation variances improved over the conventional methods to 0.16 m2 and 0.16 rad2 

respectively for both small and moderate movements. 

The studies by Jáuregui et al. [18] used a laser interferometer as the measuring instrument 

to calibrate the hexapod. They used inverse kinematics and considered the error related to the 

actuator length. Their experiment consisted of two methods. In the first method, they considered 

the error from all actuators to be the same, applying linear relationships. This was simple and easy 

to solve. In the second method, labeled it as the comprehensive method, each actuator error was 

measured separately and modeled in a non-linear relationship. As expected, the second method 

resulted in complex calculations but yielded greater accuracy. 

Ren et al. [36] did their experiment with their PKM named XJ-HEXA using a biaxial 

inclinometer with the length precision of 0.002 mm and repeatability for angles of 0.001°. They 

reached a position and orientation accuracy up to 0.1 mm and 0.01° respectively after calibration 

of 80 configurations. They kept two of the three orientations defining angles of the moving 

platform constant during the measurements. 

Nategh et al. [51] studied their “Hexapod Table” with the use of an image capturing system. 

In this research, the results obtained by the simulations and experiments matched very closely. The 

platform position & orientation errors as per the simulation were 0.1 mm and 0.01° respectively, 

whereas those from the experiment were 1.45 mm and 0.27°, respectively. A least-squares 

approach based on the Levenberg-Marquardt algorithm was employed in this calibration process 

with Singular value decomposition. 

In another study by Großmann et al. [52] used a Double Ball Bar (DBB) to identify and 
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collect the kinematic parameters by moving the platform on a specific trajectory in the 3D 

workspace. They used a genetic algorithm and simulated measurements to finalize the parameters. 

Their hexapod named FELIX was designed and manufactured with a focus on simplicity and 

capacity for compensating the motion errors generated due to the thermal and elastic deformations. 

Thermal and elastic deformations were considered in the algorithm by incorporating fixed factors. 

By this method, they measured the error along a trajectory and were able to reduce the initial 

deviation from 0.7 mm to 0.17 mm after optimizing the trajectory orientation through kinematic 

calibration. 

Liu et al. [53] also used a genetic algorithm for calibrating their hexapod using inverse 

kinematics. They measured the errors coming from the actuator lengths and used a 3D laser tracker 

for the measurements. The genetic algorithm converged initially fast but gradually became slow 

little by little. For their experiments, though they obtained an improvement in the error of the 

platform for the position by 1.4 times and for the orientation by 2.4 times, they found that the 

genetic algorithm is not sensitive to the measurement noises.  

The applications of hexapod did not remain restricted to the dimension level of mm or inch, 

it has attracted attention for micro-level applications too. Ting et al. [54] did their experiment with 

a 6-dof micro-positioning platform to evaluate the platform error due to the hysteresis of the 

piezoelectric actuators. By using inverse kinematics with the Preisach model, they achieved a 

platform accuracy at the level of 1 μm in position and 10 μ deg in orientation after several 

iterations. For their experiment, they used Lion Precision DMT22 Dual Sensitivity Systems with 

C5 Probe for measurement. 

A popular method of hexapod calibration includes vision-based data collection. Daney et 

al. [17] employed calibration processes using a 1024x768 CCD camera. In their experiments, they 
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used plates with dot marks as visual targets and obtained their images for measurement analysis. 

The final errors measured by them were large with respect to the length of the actuators and with 

that they concluded that the kinematic model used was not robust. 

Dallej et al. [55] used an omnidirectional camera. The measurement of the actuators had 

been investigated by using images from external cameras. They used an omnidirectional camera 

which overcomes the self-occlusion problem arising in the single perspective camera. By using 

the omnidirectional camera, Dallej et al. got a median error of approximately 1 cm when compared 

to the CAD geometry and data obtained from the camera. 

Researchers Daney et al. [56] did several experiments with hexapod and other PKMs. They 

used this work on the machine DeltaLab’s “Table of Stewart” involved Sony digital video camera 

(1024 × 768) with a 4.2 mm focal length for measuring the joint positions and actuator lengths. In 

this case, they used the Constrained optimization method by combining it with the Tabu search, 

but the results obtained were not satisfying due to the error resulting from the bias of the system 

along the z-axis in the range of 1.29 mm. They selected 18 and 64 random poses for analyzing the 

pre- and post-calibration error values. 

Gao et al. [57] carried out their study and calibration of a Five-hundred-meter Aperture 

Spherical Telescope (FAST) using inverse kinematics. They used a laser tracker for measurements 

and controlled the position and orientation of the platform with a Stewart platform-based Fine Feed 

Cabin Model (FFCM). In their study, they were able to achieve the desired accuracy level of 0.2 

mm for the FAST. Here they had not considered any specific error factor except the final pose of 

the telescope. 

In their research, Renaud et al. [58] used a CCD camera and an LCD monitor to calibrate 

a 6-DOF PKM machine tool by using inverse kinematics. They compared the results by comparing 
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the measurement data obtained for the same poses by a laser interferometer. The platform pose of 

the machine had been measured for the comparison. The final comparison showed that the 

precision level obtained from the optical measurement is in the order of 1 μm in translation and 

1x10-3 deg in rotations for an axial displacement of 400 mm. 

The findings by Week et al. [59] considered the errors on the actuator length. They used a 

Double Ball Bar (DBB) as a redundant actuator in their Ingersoll HOH600 robot. The accuracy of 

roundness and squareness in their machining tests was improved by factors of 3.7 and 7.0, 

respectively. The system of setup they developed could be used to measure the errors due to the 

thermal and gravity load deflections at the end-effector pose.  

An investigation by Ihara et al. [60] using a Telescoping magnetic ball bar (DBB) resulted 

in a reduction in motion error of the platform by 25% after calibration. They used Fourier 

transformation and included the length error of struts, and position errors of base & platform joints 

of the platform for optimizing the overall error of the system. 

2.4.3 Constraint Approach 

The constraint calibration approach has the limitation of practical applications, for this 

reason this calibration approach is less popular among the researchers. Constraint approach for 

calibration is implemented by using some mechanical constraints to restrict the motion of one or 

more joints in the parallel robots [32]. Normally no external measuring instrument is used. The 

already existing sensors in the system act as the measuring sensor. The applied motion constraint 

causes a reduction in the degrees of freedom for the end-effector and reduction of workspace of 

the manipulator. The kinematics parameters also get reduced. The force generated due to 

constraining the movement may distort the structure and impact the accuracy of the calibration. 

As the system loses one or more degrees of freedom and the number of sensors becomes more than 
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the active degrees of freedom, the calibration process may be considered as self or auto calibration 

process of a system with the reduced degrees of freedom. 

Ryu et al. 2001 [32] used this approach to calibrate a hexapod “Hexa Slide Mechanism 

(HSM)” by constraining one actuator at a time and repeating the process for all six actuators. Ryu 

constrained the motion of the platform by restricting the motion of one actuator of the system and 

the system worked as a 5-DOF system instead of the regular 6-DOF system. There was no extra 

sensor used, the in-built existing actuator sensors were used for taking the needful measurements. 

By constraining one actuator, the initial error values of the platform position 8.0E-3 m and 

orientation 1.4E-2 rad converge to 3.8E-16 m & 1.7E-15 radians, respectively. 

Rauf et al. 2001 [61] constrained 3 actuators and experimented with 3-DOF in the same 

hexapod “Hexa Slide Mechanism (HSM)” mentioned in previous paragraph. Here also the final 

correction values are near zero. For 3-DOF measurements, initial error values of position 1.0E-2 

m and orientation 1.7E-2 radians changed to 2.4E-10 m & 1.8E-9 radians, respectively. The final 

correction values change by very small amounts depending on the value of the measurement 

noises. The advantage of these methods is that the locking device can be universal and need not 

be specific for a particular system. 

2.4.4 Auto or Self Calibration Approach 

Auto or Self-calibration is one of the ways to calibrate Stewart platform-based 6-DOF 

kinematic machines. This method requires adding one or more redundant sensors to the passive 

joints or an additional redundant passive limb [31]. The addition of extra increases complexity of 

the design and manufacturing processes of PKMs. Moreover, the addition of redundant sensors 

sometimes makes system development more expensive. The auto or self-calibration method also 

limits the workspace for calibration. Some research studies have been done with this method. 
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Similarly, Guo et al. [34] used a smaller set of four (4) extensometers to directly measure 

the position of the end plate relative the fixed plate during multimodal loading tests. The data was 

used in real-time to connect to an ADAMS model of the system, and to generate force feedback 

information as part of the system control loop. This use of continuous calibration demonstrated 

that forces could be very precisely controlled during testing. 

Mura [35] used a set of wire extensometers to directly measure the position of the moving 

end plate relative to the fixed plate during testing of flexible automotive components. The testing 

motions used ensured that the extensometers remained in tension throughout the test and provided 

accurate positional data while not imparting a significant amount of additional stiffness into the 

system. 

In their study, Chiu et al. [62] used a cylindrical gauge block and a commercial trigger 

probe to do the auto-calibration of the PKM. They made use of the non-linear least square method 

in their algorithm. The advantage of their method is that the instruments are standard and 

commercially developed, which makes them easily available and less expensive. Multiple PKM 

configurations were used to validate their method and the results showed that various levels of 

accuracy were achieved. 

Similarly, in another auto-calibration process, Zhuang et al. [63] used a Coordinate 

Measuring Machine (CMM) with their robot FAU Stewart Platform. Here also the position and 

orientation of the platform were used to calibrate system errors. They used Levenberg-Marquart 

algorithm for optimization and got error reduction by 50%. The highlights from their research are 

that some extra sensors needed to be installed in some of the joints to gather calibration data. 

Another conclusion they drew is that if the end-effector is a separate attachment on the hexapod 

platform, then the end effector should be calibrated separately. 
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Table 2.5: Assessment of auto or self-calibration approaches 

Reference 
Robot 

Name 

Instruments 

used 
Methods Performance Important points 

Guo et al. 

2016 [34] 
MLMTM 

Wire 

extensometer 

(4) 

Direct 

Kinematics 

& ADAMS 

Simulations 

Used to measure flexible 

specimens in multiaxial 

loading situations. Coupled 

with ADAMS simulations to 

provide PID Control 

information for Force 

Control. 

Integrated into the control loop to 

provide deflection information to an 

ADAMS model to provide data to a 

PID force control loop. The 

extensometers represent negligible 

stiffness in comparison to the test 

specimens. 

Mura 

2011 [35] 
 -  

Wire 

extensometer 

(6) 

Direct 

Kinematics 

Used to measure flexible 

automobile components in 

dynamic loading conditions 

such as fatigue situations. 

Extensometers continuously 

measure the platform position and 

represent a level of stiffness that is 

negligible compared to the 

measurement item. 

Chiu et al. 

2003 [62] 
- 

A cylindrical 

gauge block 

and a 

commercial 

trigger probe 

Nonlinear 

least squares 

Multiple PKM 

configurations were used to 

validate the calibration 

process and different 

accuracy levels have been 

obtained. 

The instruments used here are 

standardized and commercialized. 

The method is comparatively 

compact and economical. 

Zhuang et 

al. 2000 

[63] 

FAU 

Stewart 

Platform 

 

CMM 

Levenberg-

Marquart 

algorithm 

The average error was 

reduced by more than 50 

percent. 

The end-effector required separate 

calibration since it was not part of 

the closed-loop kinematic chains. 

It requires redundant sensors that 

need to be installed at some of the 

joints of the machine tool. 

Patel et al. 

2000 [10] 
- Ball-bar 

Least square 

minimization 

Simulations suggest that the 

measuring device accuracy 

needs to be five to ten times 

more than the desired 

calibration accuracy. 

The extra actuators can be mounted 

or unmounted easily. When left 

with the machine in certain 

situations, it enables online 

calibration. 

 

The research done by Patel et al. [10], observed that for their calibration algorithm 

increased error of the platform poses in some cases and for around 90% of observations, they got 

accuracy improvement from 50% to 100%. They used the least square method for their calibration 

algorithm. The advantage of their method is that the extra sensor is easily mountable and un-

mountable; also, the extra sensor consisting of Ball-Bar can remain with the system during the 

actual machine operation to allow online calibration. 

The details are presented in Table 2.5. It should be noted that for each case, platform pose 

error was considered.  
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2.5 Discussion and Comparison 

The goal of each calibration method is to make the hexapod machines more accurate, 

improve precision and obtain correct results at the platform pose during their operations. Based on 

the literature survey done, it can be inferred that researchers predominantly opt for conducting 

experiments on their hexapod platforms to validate their calibration procedures. Among these 

experiments, the majority employed external measurement equipment. The key focus in these 

studies is the improvement of pose accuracy, primarily targeting platform pose errors, joint errors, 

and actuator length errors. The extent of error being addressed varies among these studies. In  

Table 2.6, the crucial details from each research endeavor were summarized, aiding readers 

in identifying literature of interest based on the chosen approach, error considerations, methods 

employed, and the level of error addressed. 

It's worth noting that the units used to measure errors differ across various studies, and 

some literature sources do not specify pose errors before the calibration process; they only report 

final values after calibration. Additionally, in certain instances, pose error is defined solely by 

position errors, with no consideration given to orientation errors. Remarkably, none of the 

experiments focus exclusively on improving accuracy through orientation-related factors. 

Table 2.6: Comparison of experimental calibrations mentioned in this review. 

Reference 
Calibration 

approach 

Instruments 

used 

Error 

considered 
Methods 

Pose Error 

before 

calibration 

Pose error after 

calibration 

Song et al. 

2022 [49] 
External 

FARO 

measuring arm 
Joint errors 

Artificial Neural 

Network (ANN) based 

non-linear functions 

0.642 mm & 

0.184 deg 

0.175 mm & 

0.060 deg 

Mahmoodi et 

al. 2014 [50] 
External Rotary sensors 

Actuator 

length 
A new method 0.1 m & 0.1 rad 

Reduced by 8-

16 times 

Jáuregui et 

al. 2013 [18] 
External 

Laser 

Interferometer 

Actuator 

length 

Two different methods 

based on error 

propagation calculation 

0 – 60 µm 0 – 10 μm 

Ren et al. 

2009 [36] 
External 

Biaxial 

Inclinometer 

Actuator 

length 

A new orientation 

constraint method 
9 mm & 1 deg 

0.1 mm & 0.01 

deg 
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Reference 
Calibration 

approach 

Instruments 

used 

Error 

considered 
Methods 

Pose Error 

before 

calibration 

Pose error after 

calibration 

& Laser 

tracker 

Nategh et al. 

2009 [51] 
External Digital camera 

Platform 

pose 

Least-square approach 

based on Levenberg-

Marquardt algorithm  

2.67 mm & 4.6 

deg 

1.45 mm & 0.27 

deg 

Großmann et 

al. 2008 [52] 
External 

Double Ball 

Bar 

Platform 

pose 

Genetic Algorithm 

based Trajectory 

optimization. 

0.7 mm 0.17 mm 

Liu et al. 

2007 [53] 
External 

3D Laser 

Tracker 

Actuator 

lengths 
Genetic Algorithm 

0.7237 mm & 

0.1346 deg 

0.1555 mm & 

0.0172 deg 

Ting et al. 

2007 [54] 
External 

DMT22 Dual 

Sensitivity 

Systems with 

C5 probe 

Actuator 

lengths 
Preisach model - 1 µm & 10 µdeg 

Daney et al. 

2006 [17] 
External CCD camera. Joint errors 

Interval arithmetic and 

analysis methods 

1.32 mm & 0.34 

deg 

1.10 mm & 0.26 

deg 

Dallej et al. 

2006 [55] 
External 

Omni-

directional 

camera 

Joint errors Linear regression 1.2 cm ~1 cm 

Daney et al. 

2005 [56] 
External 

Sony digital 

video camera 

Platform 

pose 

Constrained 

optimization method 

with Tabu search 

- 
1.45 mm & 0.27 

deg 

Gao et al. 

2003 [57] 
External 

Laser Tracker 

LTD500 

Platform 

pose 
Least Square method ±2 mm ±1 mm 

Renaud et al. 

2002 [58] 
External 

A CCD 

camera & 1D 

laser 

interferometry 

Platform 

pose 

Error function 

minimization. 
- 

1 µm & 0.001 

deg 

Week et al. 

2002 [59] 
External 

Double ball 

bar & CMM 

Actuator 

length 
Gravity compensation - 

Improvement 

(µm): 

Roundness 3.7x 

Squareness 7x 

Ihara et al. 

2000 [60] 
External 

Telescoping 

magnetic ball 

bar (DBB) 

Actuator 

length and 

joint 

positions 

Fourier transformation 
Circle center error 

(-68, 164) µm 

Circle center 

error 

(-7, -9) µm 

Chiu et al. 

2003 [62] 

Self-

calibration 

Cylindrical 

gauge block & 

trigger probe 

Platform 

joints 
Nonlinear least squares ±1 µm ±0.001 µm 

Zhuang et al. 

2000 [63] 

Self-

calibration 
CMM 

Platform 

Joints 

Levenberg-Marquart 

algorithm 
1 µinch 0.1 µinch 

Patel et al. 

2000 [10] 

Self-

calibration 
Ball Bar 

Platform 

Pose 

Least square 

minimization 
±0.1 mm 3% to 100% 

Mura 2011 

[32] 

Self-

calibration 

Wire 

Extensometers 

Platform 

Pose 
Direct Kinematics ±0.1 mm ±0.005 mm 

Guo et al. 

2016 [33] 

Self-

calibration 

Wire 

Extensometers 

Platform 

Pose 
Direct Kinematics ±10 N, ±0.1 Nm 

±0.1 N, ±0.005 

Nm 
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As mentioned earlier, this pose accuracy is dependent on several mechanical and 

surrounding factors like temperature and load being experienced by the system. The ideal 

calibration would consider all these factors for any working condition of the machine but achieving 

that is not only expensive and time-consuming but also potentially unnecessary depending on the 

application conditions. In experiments where only the actuator lengths have been considered as 

the sources of error for the accuracy of the platform pose, it should be noted that the motion of the 

platform is dependent on all the joints which are moving to generate the motion. So, while 

calibration may include only the actuator length error, it also indirectly includes the error 

contributed by the joints. Even if all joints are not equipped with individual sensors, their error 

factors are indirectly accounted for in the calibration process. In general, when the platform pose 

accuracy is of primary interest, the calibration of it indirectly considers all the error factors existing 

in the hexapod system but adding appropriate compensation for each error factor becomes difficult 

unless they are correctly identified and accounted for in the calculations. 

2.5.1 Error Identification 

From the tables above, it is seen that the level of improvements obtained are varied. The 

error factors considered are also different in each study. In most cases, the platform pose error due 

to the actuator length errors remained common and was considered as the primary error contributor 

in the entire system. Also, considering the error of each actuator separately and equally impacts 

the overall accuracy of the system. In all these calibration processes, use of external instruments 

is the most common practice. External instruments such as Double Ball Bar (DBB), laser 

interferometer, biaxial inclinometer, laser tracker, telescopic magnetic ball bar, and wire 

extensometers were used. A separate study may be useful to ascertain the effectiveness of each of 

these instruments for the calibration of a hexapod by inverse kinematics. 
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Optical calibration methods have also gained importance in recent times. CCD camera, 

omnidirectional camera, digital video camera, and other image capturing devices were used to 

achieve an accuracy level in the range of 1.0 cm to 0.1 mm. The advantage of using optical methods 

is that the parallel robot system does not need modifications to accommodate the measurement 

equipment for calibration, also it is non-invasive and automatically records the event for future 

reference. In these cases, the quality of the optical systems and the associated analysis system 

configuration have a major contribution to the final accuracy attained. 

2.5.2 Algorithms 

Among the several different algorithms used for the calibration purpose, the least-square 

method based on the Levenberg-Marquardt algorithm was used most for both optical and non-

optical calibration. The genetic algorithm had been used for a couple of studies, but they had a 

high running time to reach the optimized level and were not sensitive to measuring noises. 

Constrained optimization method and Tabu search, Algebraic Elimination, non-linear least square 

methods were used and all of them resulted in various levels of calibration accuracy. The use of 

quaternions has improved calculation efficiency, though the practical application of hexapod 

accuracy level achieved by this technique has yet to be evaluated. Different algorithms also yielded 

different results on the same system for the calibrations done by Daney et al. [46]. Therefore, the 

selection of calibration methods and algorithms plays a key role in obtaining the desired accuracy 

level for the parallel robot system and application. In all cases, the final platform pose is the 

guiding parameter to evaluate calibration outcome. 

2.5.3 External factors 

There are some inherent dimensional errors in the hexapod structure due to the dimensional 
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tolerances of each component used in the fabrication. The cumulative effects of all these tolerances 

play a significant role in platform accuracy. Apart from these errors, other factors, hysteresis for 

instance, vary with the change of the operational characteristics. Normally, the effect of 

temperature is expected to be minimal for the parallel robot system unless the system experiences 

large temperature variations during its operation. From a practical point of view, such robot 

systems operate in a controlled environment unless they are deployed in special applications like 

large field telescope mounting. In these applications where exposure to fluctuating weather 

conditions is unavoidable, proper calibration factors for thermal deviation must be included. 

Likewise, the elastic deformation error factor is not dominant in all cases. If the hexapod 

platform is subjected to high loads relative to its structure, a factor for elastic deflection is essential. 

Hexapod platforms reviewed in this chapter can carry loads up to 2000kg though none of them 

were subjected to such load during the calibration process. As such, the structure can undergo a 

substantial amount of elastic stress and that may lead to a notable amount of deflection to impact 

the accuracy of the robot. In these types of cases, the factor of elastic load cannot be ignored. There 

are potential research opportunities for evaluating the impact of load conditions on parallel robot 

systems and to add suitable compensation factors for further improving the platform pose 

accuracy. 

2.6 References of standards 

While research documents serve as valuable references to grasp the present research 

landscape, it remains incomplete without highlighting the essential international standards crucial 

for comprehending the hexapod calibration process. These standards not only provide guideline 

for practical applications but also establish pathways for industry-wide implementation. So, these 

are also an important source of reference for Stewart Platform calibration. 
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A list of some relevant standards is summarized below: 

ISO 22958:2021 Hexapod platforms for industrial applications -- Vocabulary and 

requirements: This standard defines the terminology and requirements for hexapod platforms used 

in industrial applications.  

 ASTM F3251-10 Standard Test Method for Measuring the Geometric Errors of Six-

Degree-of-Freedom Robot Manipulators: This standard provides a method for measuring the 

geometric errors of six-degree-of-freedom robot manipulators, including Stewart platforms. The 

method is based on the use of a laser tracker to measure the positions and orientations of a reference 

point on the robot's end-effector. 

VDI/VDE guideline 2310-17 Geometric product specifications (GPS) -- Coordinate 

systems for robot manipulators: This guideline provides a set of recommendations for defining 

coordinate systems for robot manipulators. The recommendations are based on the ISO standard 

ISO 8434-1:2018 Coordinate systems for robots and manipulators. Part 1: Coordinate systems for 

manipulators. 

 ANSI/RIA R15.06-2020 American National Standard for Industrial Robots and Robot 

Systems -- Safety Requirements: This standard provides safety requirements for industrial robots 

and robot systems.  

ISO 230 Test Code for Machine Tools Package: This standard provides test codes for the 

determination of positioning numerically controlled axes, controlled machine tools, thermal effects 

on machine tools and machines operating under no-load or finishing conditions. 

ISO 8373:2021 - Robotics – Vocabulary: This document defines the terms used in relation 

to robotics. 
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ISO 9283:1998 - Manipulating Industrial Robots - Performance Criteria And Related Test 

Methods. 

ISO/TR 13309:1995 - Manipulating Industrial Robots - Informative Guide: On Test 

Equipment And Metrology Methods Of Operation For Robot Performance Evaluation In 

Accordance With ISO 9283. 

ISO 9787:2013 - Robots And Robotic Devices - Coordinate Systems And Motion 

Nomenclatures. 

ISO 5725 - Accuracy (Trueness And Precision) Of Measurement Methods And Results: 

The series of Standards in this provide guidelines for the determination of repeatability and 

reproducibility of measurement processes. These are needed for identifying the precision of a 

Stewart platform's measurements. 

Apart from the above list of standards, the following organization provides a respectable 

number of references which are extremely useful for Stewart Platform calibration process: 

 NIST (National Institute of Standards and Technology): An organization in United 

States of America provides a wealth of calibration and measurement standards and guidelines that 

can be referenced. 

ASTM International (formerly known as American Society for Testing and 

Materials): Provides a range of standards related to calibration and testing in various industries 

that may be applicable for Stewart platform calibration. 

IEEE (Institute of Electrical and Electronics Engineers): IEEE has standards related to 

robotics and automation, that are relevant for calibration in the context of robotics, including 

Stewart platforms. 
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2.7 Conclusions 

Hexapods are used for precise, complex, and repeatable operations in a variety of 

applications. Small errors in the system can lead to a serious impact on pose accuracy. Therefore, 

calibration is a critical activity for any hexapod machine to be reliable in each application. There 

are several sources of errors that negatively impact the accuracy of the hexapod. Selecting an 

appropriate calibration approach depends on the purpose and constraints of the hexapod system. 

In some cases, external sensor calibration may be the best solution, while in other cases, 

constrained or auto-calibration may be a better approach. This article attempts to provide an 

overview of those methods and draw an outline of the current state of the art in this field and help 

other researchers to take appropriate notes for the desired methods.  

Researchers have explored a variety of calibration methods, each exhibiting varying 

degrees of accuracy and complexity in implementation. The focus of this review is to identify the 

methods used to improve the positional accuracy of the hexapod platform or end-effector and the 

accuracy improvement obtained after calibration. Instruments and techniques utilized to 

compensate pose errors stemming from various inaccuracies were summarized. Individual 

researchers searching for an appropriate calibration approach should be cognizant of the level of 

calibration needed for a particular application and the resulting impact upon the complexity of 

implementation. Three types of calibration strategies are identified for physical systems: external, 

constraint, and auto- or self-calibration. Double ball bars, laser trackers, laser interferometers, and 

optical devices are some of the most used instruments for collecting positional data. The types of 

errors typically considered in these studies revolve around platform pose, joint variables and 

actuator length. In addition to the studies on physical systems, analytical-based studies were also 

discussed, and their specifics were summarized. In general, the authors agree with the sentiment 
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of Merlet [31], who suggested that the emergence of image-based systems offers a great deal of 

potential improvement. Since the publication of this statement in 2006, significant improvements 

have been observed in the hardware and software supporting image-based calibration and use of 

manipulator-image-coordination (i.e., hand-eye-coordination) approaches in biological systems 

have witnessed great successes.  

The literature reviewed in this article covers research conducted since the year 2000 

focusing hexapod platforms and on calibration of platform-pose under no-load condition; however, 

in actual applications, these hexapods may be experiencing heavy working loads. The effect of 

working load propagates directly to the hexapod structure. Based on structural rigidity, the load 

causes elastic deformation which can affect the operational accuracy. Therefore, the response 

behavior and platform accuracy of a hexapod under the influence of working loads remains a 

subject for further studies. 
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3 FORWARD KINEMATIC SOLUTION 

This chapter presents a method to generate feasible, unique forward-kinematic solutions 

for a general Stewart-Gough platform. This is done by using inverse kinematics to obtain valid 

workspace data and corresponding actuator lengths for the moving platform. For parallel kinematic 

machines, such as the Stewart-Gough platform, inverse kinematics are straight forward, but the 

forward kinematics are complex and generates multiple solutions due to the closed loop structure 

of the kinematic links. In this research, a simple iterative algorithm has been used employing 

modified Denavit-Hartenberg convention. The outcome is encouraging as this method generates a 

single feasible forward kinematic solution for each valid pose with the solved DH parameters and 

unlike earlier forward kinematics solutions, this unique solution does not need to be manually 

verified. Therefore, the forward kinematic solutions can be used directly for further calculations 

without the need for manual pose verification. This capability is essential for the six degree of 

freedom materials testing system developed by the authors in their laboratory. The developed 

system is aimed at characterizing additively manufactured materials under complex combined 

multiple loading conditions. The material characterization is done by enabling high precision force 

control on the moving platform via in situ calibration of the as-built kinematics of the Stewart 

Gough Platform. 

3.1 Introduction 

The Stewart-Gough platform is one of the most popular parallel kinematic machines 

(PKMs) [64]. Though there are PKMs with 3, 4, 5, 6 parallel links, 6 parallel linked stationary 

PKMs are termed as Stewart-Gough platform or Hexapod and are most versatile among the PKMs 
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because of having six degrees of freedom available in a compact machine [65]. A typical hexapod 

consists of one fixed base plate and one movable plate or platform connected by six actuators. 

Each of the six parallel actuators generally provides one degree of freedom (DOF) to the machine. 

6-DOFs are three translations along x, y, z axes and three rotations about x, y, z axes when a 

cartesian reference frame is attached to the movable platform center [66]. The hexapod considered 

here has each prismatic (P) actuator connected to the base with a universal (U) joint and the other 

end is connected to the moving platform by a spherical (U) joint. Such a hexapod or Stewart-

Gough platform is designated as 6-UPS Parallel Kinematic Machine [13]. The movement of the 

platform in 6-DOF through the movement of six actuators makes the motion control complex 

compared to other machines. 

To provide position and motion control, hexapod platforms use either Inverse Kinematics 

or Forward Kinematics. The position and orientation of the platform center point is known as the 

platform pose [67]. In inverse kinematics the actuator lengths are calculated based on the platform 

pose [16]. In forward kinematics the platform pose is calculated for a given set of the actuator 

lengths and joint angles [68]. The mathematics and solution of inverse kinematics is much easier 

than forward kinematics for a hexapod. The complexity of forward kinematics, also called direct 

kinematics, is generated due to highly non-linear kinematic equations with multiple solutions. To 

solve the forward kinematics, many researchers tried diverse ways to solve the non-linear problem. 

A 16th-degree univariate polynomial on the 6-3 type PKM was formulated by Innocenti and 

Parenti-Castelli [69]. Huang, Xiguang, Liao, Qizheng, at el. [70] presented algebraic method for a 

general 6-6 Stewart-Gough platform that yielded a 20th degree univariate polynomial from the 

determinant of the 15×15 Sylvester’s matrix. Husty [71] derived a 40th-degree univariate equation 

for a general 6-6 Stewart-Gough platform, by finding the greatest common divisor of the 
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intermediate polynomials. Domagoj & Leonardo Jelenkovicti [68] used canonical formulation for 

the forward kinematics and derived 9 equation with 9 unknowns and then solved it by multiple 

optimization methods. Wang, Yunfeng [72] derived the direct kinematics solutions for calculating 

the platform pose by increasing the actuator lengths in small amount and then increasing the joint 

parameters also in small amount utilizing numerical methods. Manuel Cardona [73] calculated the 

possible poses using Newton-Raphson Method for a set of joint angles and actuator lengths which 

includes invalid and valid poses for the platform and those need to be checked manually for 

acceptance. Also, other researchers [74] [75] used Newton-Rapson method to find the forward 

kinematic solution for parallel robots. The accuracy of convergence obtained in those works are at 

various levels based on the initial guesses. X. Zhou et al. [76] created a pose error model with the 

help of Denavit-Hartenberg (DH) parameters and then converted it to a constrained quadratic 

optimization problem. In another research by M. Tarokh [77] used an approach to generate a 

lookup-table with possible solution space data. This solution space is divided into multiple clusters. 

For forward kinematic solution, the system looks at lookup-table clusters to get the required data 

directly or from the fitted curves with the available. 

Other research on forward kinematics for Stewart-Gough platform used algebraic 

elimination [78], interval analysis, multiple optimization techniques, continuation algebraic 

formulations to generate solutions for a set of nonlinear equations or high degree of polynomials. 

Some researchers utilized neural network algorithms [79]–[82] and Artificial Intelligence (AI) [83] 

for improving the accuracy of the hexapod platform solving forward kinematics problem. All these 

works generated algorithms to obtain a valid solution for several types of PKMs, but finding a 

single feasible practical solution is still a challenging problem and limited for real-time 

applications. 
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The proposed method in this article uses inverse kinematics to solve forward kinematics 

using modified Denavit-Hartenberg (DH) convention. DH convention is the most popular method 

for forward kinematics in serial manipulators, but its application remains limited in parallel 

manipulators due to the closed loop nature of PKMs. The authors adopted this convention because 

of its simplicity and straight-forward nature of implementation. The proposed algorithm in this 

article generates a single feasible orientation solution for a general Stewart-Gough platform 

calculated by forward kinematics from a set of input data. The solution does not need to be 

validated through manual inspection. This is a simple iterative method that uses the available 

information from inverse kinematics. The pose data and the corresponding actuator lengths are 

stored in a database. Then based on the motion limits of each joint, the algorithm generates the DH 

parameter dataset consisting of joint angles for the platform pose through iterative forward 

kinematics. The authors tried to exploit the power of the latest generation of computing systems 

by using a simple iterative method, which is not significantly more time-consuming method in the 

present days than other efficient optimization methods like Newton-Rapson method, etc. Another 

advantage of this simple iterative method is that there is no initial guess and no doubt about 

obtaining a solution (convergence). As long as a pose exists, a solution must be available. 

The rest of the article is organized into the following parts. The first part serves as an 

introduction. The next part elaborates the general mathematical expressions for a Stewart-Gough 

platform. Section 3 and 4 explain the inverse kinematics and forward kinematics used in the 

calculations. Section 5 explains the method that has been used in the algorithm to simulate the 

desired results for a Stewart-Gough platform-based Test frame “Tiger 66.1”. Section 6 contains 

the result and discussion and finally the piece ends with the conclusion. 
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3.2 Platform Poses & Workspace 

Figure 3.1 shows the typical sketch of a hexapod platform. The circular plates at bottom 

and top are Fixed base and moving platform, respectively. Two cartesian coordinate frames are 

attached at the center of each circular plate. The platform frame is defined by Px, Py and Pz axes 

with origin OP and the base coordinate frame is expressed by Bx, By, and Bz axes with origin OB. 

Pz and Bz are denoting the vertical axes of the respective frames. The orientation of the moving 

platform is defined by the orientation of the OPPxPyPz frame with respect to the base coordinate 

frame OBBxByBz. The position of the platform center with respect to the base center is defined by 

vector h. In one condition, the base and platform frames remain parallel, the actuators are at their 

smallest length, and the z-axis are colinear. This orientation is called ‘home pose’ [84]. Under this 

condition, all the six actuators are of the same length. Once the platform is moved by controlling 

the lengths of the actuators, the resultant motion at the center of the platform is a translation, 

rotation, or a combination of both. 

The position and orientation of the platform center depends on the values of roll, pitch, 

yaw, and the translation motion along 𝑥, 𝑦, 𝑧 axes as per the Euler angle representations [85]. The 

rotations are expressed by vector Ф and 

Ф = (𝛼 𝛽 𝛾)𝑇 (3.1) 

where α (roll), β (pitch), γ (yaw) denotes the rotation angles about the x, y, and z axes, 

respectively. 

The translations are expressed by vector d where 

𝒅 = (𝑑𝑥 𝑑𝑦 𝑑𝑧)𝑇 (3.2) 

dx, dy, and dz are the translation values along the x, y, and z axes, respectively. 
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Figure 3.1: A typical hexapod configuration 

The relationships between different platform poses and actuator variables are expressed by 

forward kinematics and inverse kinematics. In forward kinematics, the platform poses are 

calculated by the length and orientation of the six actuators. It can be expressed by equation (3.3): 

[𝑑𝑥, 𝑑𝑦, 𝑑𝑧, 𝛼, 𝛽, 𝛾]𝑇  =  𝑓(𝒒𝟏, 𝒒𝟐, 𝒒𝟑, … … , 𝒒𝒏) (3.3) 

where 𝑑𝑥, 𝑑𝑦, 𝑑𝑧, 𝛼, 𝛽, 𝛾 are platform pose and 𝒒𝟏,  𝒒𝟐, 𝒒𝟑 … 𝒒𝒏 are link variables that 

include joint angles and actuator lengths. 

In inverse kinematics, actuator lengths are calculated for a platform pose by Equation (3.4). 

𝒒𝒊  =  𝑓𝑖(𝑑𝑥, 𝑑𝑦, 𝑑𝑧, 𝛼, 𝛽, 𝛾) (3.4) 

where 𝑖 = 1 … 𝑛 are link numbers. For a Stewart-Gough platform, the value for i = 1 to 6 

Mathematically, the rotations about each axis are represented by the following equations 

as per the Euler angle representation: 

𝑅𝑥,𝛼 =  [
1 0 0
0 𝑐𝛼 −𝑠𝛼
0 𝑠𝛼 𝑐𝛼

] (3.5) 
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𝑅𝑦,𝛽 =  [
𝑐𝛽 0 𝑠𝛽
0 1 0

−𝑠𝛽 0 𝑐𝛽
] (3.6) 

𝑅𝑧,𝛾 =  [
𝑐𝛾 −𝑠𝛾 0
𝑠𝛾 𝑐𝛾 0
0 0 1

] (3.7) 

Here s and c represent sine and cosine functions, respectively. 

Combining all these rotations, the complete rotation of the platform center with respect to 

its original fixed frame axes is calculated. The combined rotation denoted by R is calculated by 

pre-multiplying each subsequent rotation. 

 𝑹 =  𝑅𝑧,𝛾. 𝑅𝑦,𝛽. 𝑅𝑥,𝛼 

=  [

𝑐𝛽𝑐𝛾 𝑠𝛼𝑠𝛽𝑐𝛾 − 𝑐𝛼𝑠𝛾 𝑐𝛼𝑠𝛽𝑐𝛾 + 𝑠𝛼𝑠𝛾
𝑐𝛽𝑠𝛾 𝑠𝛼𝑠𝛽𝑠𝛾 + 𝑐𝛼𝑐𝛾 𝑐𝛼𝑠𝛽𝑠𝛾 − 𝑠𝛼𝑐𝛾
−𝑠𝛽 𝑠𝛼𝑐𝛽 𝑐𝛼𝑐𝛽

] 

(3.8) 

Equation (3.8) represents the final rotation matrix. This is further combined with the x, y,  

and z translations, and the Homogeneous Transformation Matrix (HTM) [63] in Equation (3.9) is 

obtained. The complete HTM is expressed as 

𝑯 =  (
𝑹 𝒅
0 1

) 

∴  𝑯 = [

𝑐𝛽𝑐𝛾 𝑠𝛼𝑠𝛽𝑐𝛾 − 𝑐𝛼𝑠𝛾 𝑐𝛼𝑠𝛽𝑐𝛾 + 𝑠𝛼𝑠𝛾 𝑑𝑥
𝑐𝛽𝑠𝛾 𝑠𝛼𝑠𝛽𝑠𝛾 + 𝑐𝛼𝑐𝛾 𝑐𝛼𝑠𝛽𝑠𝛾 − 𝑠𝛼𝑐𝛾 𝑑𝑦
−𝑠𝛽 𝑠𝛼𝑐𝛽 𝑐𝛼𝑐𝛽 𝑑𝑧

0 0 0 1

] 

(3.9) 

3.3 Inverse Kinematics & workspace 

The platform pose with respect to the base center defines the state of the system. In inverse 

kinematics, the actuator lengths li for a particular platform pose are calculated. With the change of 

vectors Ф and d, the coordinates of the platform center OP, platform joint vectors pi, and vectors 

h, li change. As the base is fixed, the base center vector OB, base joint vectors bi remain unchanged. 
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Figure 3.2: Flowchart for Workspace 

calculation by Inverse Kinematics 

 

Figure 3.3: Flowchart for DH parameters 

calculation by Forward Kinematics 

The new values of li and h are calculated by calculating new values of pi and OP by finding 

value of H in Equation (3.9) and pre-multiply to the respective coordinate values before the 

change. Then the length of each actuator is obtained by using Equation (3.10) [14] 

𝒍𝒊 = ||𝒉 +  𝑹𝑷 
𝑩 . 𝒑𝒊 

𝑩 − 𝒃𝒊 || (3.10) 

where 𝑹𝑷 
𝑩  denotes the rotation vector to express the rotation of the platform coordinate 
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frame with respect to the base coordinate frame, and 𝒑𝒊 
𝑩  is the platform joint vectors expressed 

with respect to the base coordinate frame. 

For each PKM, the actuators operate between fixed length limits. Conforming to the values 

of li for each new pose obtained by changing vectors Ф and d define the feasible movable points 

for the platform center. All these feasible points form the working space for the selected hexapod 

platform. 

Figure 3.2 shows the flowchart of the inverse kinematics calculations used by the authors 

to generate the valid workspace points. An important aspect of the platform pose is singularity. In 

singular condition, the end-effector gains one or more unwanted instantaneous degrees of freedom 

(DOF), and the platform pose cannot be determined by unique actuator lengths. In such situation, 

the PKM becomes out of control and can transitorily make the drive force go infinity [86]. A pose 

with singularity is not considered as a valid workspace point and discarded from further 

calculations. The mathematical check for singularity is included inside the calculation code by 

checking if the determinant of the force Jacobian matrix in that pose is zero or not [87]. 

3.4 Forward Kinematics and valid poses 

The Denavit-Hartenberg (DH) convention [88] is one of the most popular and earliest 

methods for solving forward kinematics for any serial manipulator in 3D space. For each pair of 

links, there are four DH parameters that are used in the DH matrix to transfer the coordinate of a 

point from one coordinate frame to another. 

The initial DH convention was introduced in 1955 by Jacques Denavit and Richard 

Hartenberg. In due course of time, it has been revisited by researchers and a modified DH 

convention [89] has been introduced. In this article, modified DH convention has been used. The 

4 DH parameters, as per modified conventions, are 
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Table 3.1: DH Parameters descriptions 

Modified DH Parameters 

Link (i) ai-1 αi-1 ri θi 

Parameter name Link length Link twist Link offset Joint angle 

 

Here 𝒊 denotes the joint in consideration and (𝒊 − 𝟏) is the previous joint. 𝒊 is always a 

positive integer 𝑻𝒊
 

 
𝒊−𝟏  describes the transformation matrix for frame 𝒊 relative to frame (𝒊 − 𝟏). 

Using these DH parameters, the frame transformation matrix is calculated using Equation (3.11) 

and (3.12) [90]. 

𝑻𝑖
 

 
𝑖−1 = 𝑅𝑥(𝛼𝑖−1). 𝑻𝑥(𝑎𝑖−1). 𝑅𝑧(𝜃𝑖). 𝑻𝑧(𝑟𝑖) (3.11) 

𝐎𝐫, 𝑻𝑖
 

 
𝑖−1 =  [

𝑐𝑜𝑠𝜃𝑖 −𝑠𝑖𝑛𝜃𝑖 0 𝑎𝑖−1

𝑠𝑖𝑛𝜃𝑖𝑐𝑜𝑠𝛼𝑖−1 𝑐𝑜𝑠𝜃𝑖𝑐𝑜𝑠𝛼𝑖−1 −𝑠𝑖𝑛𝛼𝑖−1 −𝑟𝑖𝑠𝑖𝑛𝛼𝑖−1

𝑠𝑖𝑛𝜃𝑖𝑠𝑖𝑛𝛼𝑖−1 𝑐𝑜𝑠𝜃𝑖𝑠𝑖𝑛𝛼𝑖−1 𝑐𝑜𝑠𝛼𝑖−1 𝑟𝑖𝑐𝑜𝑠𝛼𝑖−1

0 0 0 1

] (3.12) 

If there are, suppose, 4 joints, they are numbered from 0 to 3. A point P is expressed with 

respect to the end coordinate frame {3} as 𝑷 
 

 
3  = [Px Py Pz]T . The transformation matrix to express 

frame {3} with respect to the base frame {0} is calculated by Equation (3.13). 

𝑻3
 

 
0 =  𝑻1

 
 

0 . 𝑻2
 

 
1 . 𝑻3

 
 

2  (3.13) 

Point 3P with respect to the base frame {0} is calculated Equation (3.14). 

𝑷 
 

 
0 =  𝑻3

 
 

0 . 𝑷 
 

 
3  (3.14) 

In the workspace calculation by inverse kinematics, the valid actuator lengths are 

calculated for each valid pose of the platform and these data are stored in the workspace database. 

For calculating the DH parameters, the MATLAB code follows the flowchart shown in Figure 3.3. 

The code iterates different combinations of joint angles θi to a reach to the pose coordinate using 

the corresponding actuator lengths available in the workspace database. The angles αi-1 are defined 
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by the cartesian frame attached at each joints following modified DH convention rules and these 

values are not going to change for the whole process. A predefined error value is set in the 

calculation for the pose error which measures the distance between the pose in the database and 

pose calculated through forward kinematics. The forward kinematics calculation is repeated 

several times by changing θi. Once the pose error is achieved below the predefined value, the DH 

parameter sets are stored in the DH parameter database for the pose. In this process there are some 

instances when the angle combinations cannot construct an orientation with a pose error below the 

defined error value, that pose is recorded without a valid DH parameter set. 

3.5 Simulation results for “TIGER 66.1”  

The above method of DH parameter calculation has been tried out through simulation for 

the Hexapod Test Frame “Tiger 66.1” developed by the authors in their lab. Tiger 66.1 is a special 

Stewart-Gough platform-based test frame developed for full-field characterization of additively 

manufactured specimens. A CAD model of the test frame is shown in Figure 3.4. A partial sketch 

also shows a couple of critical dimensions. The test process uses photogrammetry, so there are 

four cameras (2) mounted to capture data from the test zone. This restricts the movements of the 

platform center and overall workspace. The two green blocks on the upper part of the system are 

the grippers for holding the material specimen (4) to be tested. The upper gripper (1) is mounted 

on the fixed frame and the lower gripper (3) is fixed at the center of the hexapod top moving 

platform. All motions and forces are applied on the test specimen by moving the lower gripper. 

Tiger 66.1 uses 6-UPS link combinations. As per the design and construction, the base 

frame center is situated 71.55 mm about the World frame origin which is located on the center of 

the circular plate at the lower structure and platform home pose is considered at a point 343.20 

mm above the actual platform center point. This dimension does not change. The test frame lower 
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and upper grip centers are considered at this point which is the condition of the system at the 

beginning of any test. All the calculations were done between the world frame center and this grip 

center pose. The major dimensions of Tiger 66.1 are shown in Table 3.2. 

   

Figure 3.4: CAD model of hexapod Test Frame "Tiger 66.1" with partial sketch 

The workspace for Tiger 66.1 has been calculated based on the actuator stroke length limit, 

translation, and rotation limits of the platform along and about x, y, z axes, respectively. The limits 

are given (Table 3.3) as per the feasible test conditions. All these motions limits are for pure 

translation and pure rotations. 

The workspace for the test frame is plotted and shown in Figure 3.5. Under given machine 

limits, the algorithm generated more than 180,000 valid workspace poses. This value may increase 

or decrease depending on the increment values used for platform’s 𝑑𝑥, 𝑑𝑦, 𝑑𝑧, 𝛼, 𝛽, 𝛾 parameters. 

The interval steps used in this case for translations along x & y axes = 15 mm, z-axis = 10 mm and 

+/-10° for rotations about each axis. 
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Table 3.2: Major dimensions of Tiger 66.1 

Sl no. Parameters Dimensions 

1 Base joint circle radius 477.4 mm 

2 Smaller sides of the base 377.9 mm 

3 Larger sides of the base 570.4 mm 

4 Platform joint circle radius 225.1 mm 

5 Smaller sides of platform 178.8 mm 

6 Larger sides of platform 268.7 mm 

7 Actuator stroke length 203.0 mm 

8 Base center to Platform center height at test start 495.46 mm 

 

Table 3.3: Motion limits of Tiger 66.1 

Motion no. Parameters Limits 

1 Rotation about x-axis 
+/- 30° 

2 Rotation about y-axis 

3 Rotation about z-axis +/- 55° 

4 Translation along x-axis 
+/- 158 mm 

5 Translation along y-axis 

6 Translation along z-axis 50 mm 

 

In the next part of the calculation, a random 100 poses have been selected (Figure 3.6) for 

finding the DH parameters for those poses through forward kinematics using DH transformation 

matrix. 
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Figure 3.5: Graphical representation of Workspace 

 

Figure 3.6: Selected 100 random poses from workspace 
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To use the DH convention, coordinate frames have been assigned to each joint and a DH 

frame layout has been created as shown in Figure 3.7. 

 

Figure 3.7: DH Frame layout for each actuator path 

The layout shows the frames and variables assigned for one actuator path from the world 

coordinate frame {0} to the moving grip center frame {8} on the platform. The coordinate frames 

were assigned as per the right-hand rule and the modified DH convention. Frame {1} is the base 

center, frames {2} & {3} represent the universal joint at the bottom of each actuator, frame {4} 

denotes the prismatic joint on the actuator, and frames {5}, {6}, {7} represent the spherical joint 

at the top end of each actuator. As per construction, variables a, b, c, and d remain constant and 

represent the height of the base center, base joint radius, platform joint radius, and grip center 

height from the platform center, respectively. 

Table 3.4 lists the DH parameters for each actuator path. All joint angles are varying except 

θ1. The value of θ1 for each actuator path remains fixed due to the construction of Tiger 66.1. 
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Table 3.4: Modified DH parameter table 

Link (i) ai-1 αi-1 ri θi 

1 0 0 a θ1 * 

2 b π/2 0 θ2 

3 0 π/2 0 θ3 

4 0 π/2 0 - π/2 

5 0 0 d4 θ5 

6 0 π/2 0 θ6 

7 0 π/2 0 θ7 

8 c 0 d 0 

* θ1 is predefined by construction for Tiger 66.1, and the values are 53.4°, 

126.6°, 173.4°, 246.6°, 293.4°, 366.6° 

 

The iterations found valid DH parameter sets for 100 poses out of 100 valid poses. To 

check the success rate of the algorithm, a random 100 poses were selected for 10 calculation 

processes and success rate of finding DH parameter sets is 100% for all processes. Table 3.5 shows 

the DH parameters value ranges as plotted in Figure 8 and the success of finding DH parameters 

for the number of poses considered.  

Table 3.5: DH parameters value ranges and results obtained 

Variable From to 

θ2 -83.2° -38.0° 

θ3 -118.8° -63.4° 

θ5 90.0° 270.0° 

θ6 92.0° 231.0° 

θ7 -90.0° 90.0° 

d4 465.68 mm 664.68 mm 

Number of poses evaluated  100 

Number of poses with valid DH parameters 100 

Number of poses with Grip Center deviation < 1mm  100 
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The DH parameter angles and actuator lengths variations for all 6 actuators for 100 poses 

are shown in Figure 3.8. 

 

Figure 3.8: Angles and actuator length ranges 

 

Figure 3.9: Tiger 66.1 orientation layouts through the calculated DH parameters 



 

 55 

The orientations of Tiger 66.1 were drawn based on the DH parameters obtained through 

the simulation. Figure 3.9 shows random 6 numbers of such orientation layout and it is observed 

that all the orientations are valid and feasible. It has been verified that all DH parameter sets 

generate unique valid feasible poses every time; however only some of them are shown here due 

to space limitations. 

3.6 Results and discussion 

The inverse kinematic and forward kinematic calculations run for Tiger 66.1 in this 

simulation shows that the unique solutions are achievable using the algorithm. This algorithm does 

not use any complex calculations and finds solutions through iterations. The pose data points were 

obtained for the workspace by changing the values of roll, pitch, yaw and translations along x, y, 

z in each iteration. The number of data points is dependent on the increment step value of each 

variable. A smaller increment in the value will generate a greater number of poses for the 

workspace. But the total time of calculation will increase because of an increased number of 

iterations. 

The frame assignments from world frame to grip center frame at the joints through each 

actuator path can be done in different ways and the initial parameters values may be different. This 

depends on whether the modified or standard DH conventions are used, but the result will be the 

same because both DH transformation matrices generate the same unique solutions. For finding 

the DH parameters for a pose, the variable values are changed by predefined steps in each iteration. 

The finer the increment steps are, the more accuracy level is achieved, but the calculation time will 

increase. In the current simulation, DH parameters for 100% valid poses have been found with 

pose accuracy level < 1 mm. For these iterations, the error limit for moving grip center pose was 

set as < 1 mm and the angle finding steps used between 0.05° to 1°. In a standard standalone laptop 
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with Intel(R) Core (TM) i7-8550U CPU @1.80GHz and 16GB physical memory, it took an 

average of 32.09 seconds to solve the DH parameters for one pose. In any multicore modern server, 

this solution time can be significantly reduced. Trial showed that in a 56-core server, the execution 

time comes down to 1.28 seconds to get the same solution. 

The orientations sketched in Figure 3.9 from the solutions found through forward 

kinematics indicate that they are feasible and unique. The forward kinematics solutions done 

earlier by the researchers yielded more than one solution for one pose. Those solutions need to be 

inspected one by one and validated for the acceptable one. The forward kinematic results from the 

method explained in this article do not require any manual review to check their feasibility. This 

gives an option to use the DH parameters for any further calculation without any intermediate stop 

and manual intervention for the selection of correct results. In section 6.1, one such exercise is 

executed which is important for the use of Tiger 66.1 in characterization of additively 

manufactured materials. 

3.6.1 Pose deviation due to tolerances & Sensitivity analysis 

A real-world Stewart-Gough platform is not free from manufacturing and assembly 

tolerances. These errors cause the actual platform pose to deviate from the theoretical platform 

pose for a set of DH parameters. The actual measurement of those DH parameter deviations is not 

only difficult and time consuming, but also expensive due to proper instrumentation. With various 

combinations of DH parameter tolerances, a tentative pose deviation can be calculated with this 

algorithm. 
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Figure 3.10: Platform pose deviations for DH parameters tolerances of ±0.5 deg & mm 

 

Figure 3.11: Sensitivity of Platform poses due to DH parameters tolerances 

Five tolerance values were considered for calculating the pose error. These values are ±0.1, 

±0.2, ±0.3, ±0.4 and ±0.5 in degrees for angles and in mm for the actuator lengths. These tolerances 
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were applied to the DH parameters for 100 poses found through the calculations as discussed in 

the previous section. For ±0.5 deg & mm tolerances on the DH parameters, the platform-pose 

errors in terms of absolute x, y, z values and absolute distance values from the theoretical poses 

are shown in Figure 3.10. The 0 marked horizontal lines in both the plots indicate the theoretical 

values. 

Similar calculations were done with four other tolerance values. From calculated data the 

maximum and minimum deviations were plotted to check the sensitivity of the platform poses due 

to the DH parameters tolerances (Figure 3.11). The maximum and average deviations for each 

tolerance are shown. In all these cases, the Grip pose denotes the lower moving grip center 

mounted on the moving platform. 

Table 3.6: Pose deviations corresponding to x, y, z maximum and minimum values 

Tol. 

value 
At 

x-

deviation 

y-

deviation 

z-

deviation 

Grip 

Center 

deviation 

At 
x-

deviation 

y-

deviation 

z-

deviation 

Grip 

Center 

deviation 

±0.1 

x-max 3.96 0.32 1.01 4.10 x-min 0.00 2.23 1.10 2.49 

y-max 0.35 3.72 0.42 3.76 y-min 0.43 0.00 0.14 0.45 

z-max 1.75 1.99 2.47 3.62 z-min 0.63 1.96 0.00 2.06 

±0.2 

x-max 7.78 0.79 1.95 8.06 x-min 0.00 1.18 0.60 1.33 

y-max 1.59 7.35 1.40 7.65 y-min 1.82 0.00 0.52 1.89 

z-max 4.80 3.32 4.69 7.49 z-min 0.96 0.38 0.00 1.03 

±0.3 

x-max 11.60 1.28 2.88 12.02 x-min 0.00 6.59 1.68 6.81 

y-max 2.39 10.99 2.05 11.43 y-min 1.82 0.00 0.52 1.89 

z-max 4.80 3.32 4.69 7.49 z-min 0.96 0.38 0.00 1.03 

±0.4 

x-max 15.37 1.79 3.79 15.93 x-min 0.00 1.69 0.27 1.71 

y-max 2.55 14.57 4.60 15.49 y-min 4.18 0.00 1.79 4.54 

z-max 9.56 6.65 9.10 14.78 z-min 4.10 4.47 0.00 6.07 

±0.5 

x-max 19.19 2.33 4.69 19.89 x-min 0.00 7.78 4.03 8.76 

y-max 3.11 18.25 5.71 19.38 y-min 4.55 0.00 2.01 4.97 

z-max 11.95 8.34 11.30 18.44 z-min 0.60 0.15 0.00 0.62 

The bold lettered values in the above table represent the maximum and minimum values. 
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As seen from the plots, the maximum grip center or grip pose deviation occurs when the 

tolerance value is ±0.5 for the DH parameters. The pose deviation distance may go more than 20 

mm. This is of course a worst-case scenario where all tolerance errors constructively combine to 

magnify the positional error in the end-effector position/orientation. It is far more likely that some 

tolerance increases the error value, while others decrease the error values. The deviations appear 

as linearly changing with the change of tolerances, though that has not been verified in this work; 

but one more point has been found that the maximum and minimum values for the x, y, z 

coordinates as well as for the grip center deviations are not coincidence. A summary of the 

observed data is shown in Table 3.6. 

3.7 Conclusion 

The simulation has been successfully executed for the test-frame Tiger 66.1. Both inverse 

and forward kinematics are completed using the iteration-based algorithms discussed here. The 

results indicate that the implementation of the algorithm for real time calculations is sensible. Once 

the valid workspace data and corresponding DH parameters for the poses are calculated, they can 

be stored in a database and those data can be used for real-time applications. If any pose-data and 

related DH parameters are not available in the database, they can be calculated and added to the 

database to enrich it during the operation and can cover the entire workspace with more precise 

data. In addition, the algorithm may be refined by reducing the iteration step values to generate 

valid DH parameter data sets for 100% valid poses with stricter error limits. 

In this work, the simulation was run with randomly selected 100 pose points. As the size 

of the database increases, finding the DH parameter data runtime for a required pose becomes 

trivial. The algorithm can be refined by adding efficient data searching methods. 

There is further scope to validate these data with measurements done on the physical 
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system for practical purposes. The validation is intended to be done on Tiger 66.1 hexapod 

platform in the next phase of this research through non-invasive methods like Photogrammetry. In 

photogrammetry the final platform pose can be measured directly without instrumenting and 

measuring each joint. By doing multiple actual measurements and comparing the values with the 

calculated values, the in-built construction or fabrication errors of system can be evaluated and 

applying proper compensation factors for those in-built deviations, the hexapod platform can be 

guided to the desired pose more accurately. Such a calibration process of a Stewart-Gough 

platform would make practical application of the machine more useful. In the following chapter, 

the demonstration of the above method for deriving the DH parameters and their utilization in 

enhancing the accuracy of the Tiger 66.1 test frame has been presented. 
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4 CALIBRATION THROUGH PHOTOGRAMMETRY 

Accurate calibration of a Stewart-Gough platform is important for their precise and 

efficient operation. However, the calibration of these platforms using forward kinematics is a 

challenge for researchers because forward kinematics normally generates multiple feasible and 

unfeasible solutions for any pose of the moving platform. The complex kinematic relations among 

the six actuator paths connecting the fixed base to the moving platform further compound the 

difficulty in establishing a straightforward and efficient calibration method. The Stewart-Gough 

platform “Tiger 66.1” developed in the author’s lab used for experimenting the calibration 

strategies described in this chapter. This system became operational upon completion of 

construction, marking its inaugural use. The author adopted three closely matching calibration 

strategies for compensating the errors in the system and response of the system to the methods 

adopted. These strategies leveraged a high-resolution digital camera and off-the-shelf software to 

non-invasively capture the poses of the moving platform's center. This process is non-invasive and 

does not need any additional equipment to be attached to the hexapod or any alteration of the 

hexapod hardware. This photogrammetry-based calibration process involves multiple high-

resolution images from different angles to measure the position and orientation of the platform 

center in the three-dimensional space through photogrammetry. The target poses and actual poses 

are then compared, and the error compensations are estimated with three methods using the Least-

Squared methods to calculate the predicted poses. Results from each of the three compensation 

approaches demonstrated noticeable enhancements in platform pose accuracies, suggesting room 

for further improvements. Given that "Tiger 66.1" is based on the general Stewart-Gough platform 

structure, the proposed calibration method holds promise for extension to machines operating on 
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similar principles where non-invasive calibration is desirable. This study contributes to advancing 

the field of Stewart-Gough platform calibration, paving the way for more precise and efficient 

applications in various domains. 

4.1 Introduction 

Parallel Kinematic Machine (PKMs) constitute a pivotal domain within robotics. Any 

PKM is characterized by a fixed base and a moving platform. The base and platform are connected 

by multiple parallel actuators, and the number of actuators can vary between 3 to 6. The actuators 

are used to control the position and orientation of the platform. The machines with six actuators 

are called a Stewart Platform, a Stewart-Gough Platform, a Gough-Stewart Platform or more 

commonly, a hexapod. Hexapod platforms stands out as one of the most prominent and widely 

adopted parallel kinematic machines [64]. The six actuators add six degrees of freedom at the 

center of the moving platform [65]. To articulate the dynamics of the moving platform center point, 

a cartesian coordinate-frame is attached to the platform center. The configuration of the platform 

center is specified by three translatory or linear displacement along x, y, z axes and three rotations 

about the same x, y, z axes [66] from a reference position called the home pose. The position and 

orientation of the platform are dependent on the actuators and joints connecting the fixed base with 

the moving platform. The joints can be spherical (S) or universal (U) while the actuators provide 

linear motions through prismatic (P) joints. The hexapod, named “Tiger 66.1”, used by the authors 

has six actuators acting as six prismatic (P) actuated joints, each of them connected to the fixed 

base with a universal (U) joint at one end and the other end with a spherical joint (S) connected to 

the moving platform. The combination of joints defines the designation of the hexapod. This 

configuration classifies Tiger 66.1 as a 6-UPS (total 6 DOF for 1 Universal, 1 Prismatic, and 1 

Spherical joint) Parallel Kinematic Machine [13]. This hexapod was built by the authors in their 
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lab and is used in this study to experiment with photogrammetry-based calibration.  

 Calibration of a Stewart-Gough platform has attracted research interest in the last couple 

of decades [91]. Various methods were adopted to make the calibration processes simple and 

straightforward, using both forward and inverse kinematics. The forward kinematics of a hexapod 

are complex and difficult because of its non-linear kinematic equations and multiple solutions [92]. 

Moreover, the use of additional equipment and / or modification of the hexapod hardware makes 

the calibration process more complicated. Various pieces of equipment were used to conduct the 

calibration procedures. Zhuang et al. [40] used commercial electronic theodolite for the calibration 

of their hexapod platform. Ryu J., and Rauf A. [32] imposed constraint motion on the end-effector 

by fixing the length of one of the six actuators and using inverse kinematics. In another research 

effort, Großmann et al. [52] used a simple and robust double-ball-bar (DBB) for measurements 

from a continuously moving hexapod platform under six degrees of freedom. Liu et al. [53] 

innovatively adopted self-calibration, incorporating a three-dimensional laser tracker and a genetic 

algorithm into their calibration method, which involved both simulated and real measurements. 

Digital cameras have assumed a significant role in hexapod calibration research. Daney et 

al. [56] harnessed a Sony digital video camera to measure the joint positions and leg lengths on 

their hexapod, named “Table of Stewart”. They seamlessly integrated inverse kinematics with data 

obtained from a digital camera to implement their calibration methodology. A omni-directional 

camera was employed by Dallej et al. [55] in their lab to measure the positions and orientations of 

the actuators in their hexapod, leveraging inverse kinematics for calibration. A high resolution 

digital camera was used by Nategh et al. [51] for the calibration process. A camera was used to 

capture images of the moving platform in a vertical downward direction. They developed 

MATLAB code to extract the platform's pose across various positions and orientations from these 
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images. 

With the continuous evolution of digital cameras and the increasing availability of software 

and hardware support, the integration of image processing into calibration methods is increasing. 

Notably, while photogrammetry has witnessed substantial adoption across various fields, its 

application in hexapod calibration remains relatively limited. This present study exclusively relied 

on photogrammetry. A high-resolution digital camera Nikon D3200 with AF-S DX Nikkor 18-

105mm lens has been used. For image processing, a photogrammetry software “Photomodeler 

2023” and PTC Creo 9.0.5 student edition have been used. 

The methods proposed in this study utilized inverse kinematics to derive forward 

kinematics solutions for platform poses. From the forward kinematic solutions, the DH parameters 

for each actuator path were calculated using modified Denavit-Hartenberg (DH) convention. 

Although the DH convention is the most popular method for forward kinematics in serial 

manipulators, its application remains very limited in parallel manipulators due to the closed loop 

nature of PKMs [93] and generation of multiple feasible and unfeasible solutions for any pose of 

parallel robots. Here modified DH convention was adopted because of its simplicity and straight-

forward nature of implementation. This was possible by the new algorithm [94] developed by the 

authors to find unique, feasible forward kinematic solution for any pose in PKMs. The DH 

parameters obtained from the target pose and corresponding actual pose were compared and 

analyzed to develop the calibrated predicted pose for the target configuration. As initial 

experiments, all the error compensations were calculated with Least-Squared methods. 

The subsequent sections of this article are organized as follows. The introduction is 

presented in this initial section. The second part illustrates the calibration methodology used by 

the authors to calibrate their “Tiger 66.1” hexapod. The following section explains the 
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experimental setup and data collection methods used. In Section 4, the data collected has been 

analyzed and findings were documented. Section 5 engages in discussions pertaining to the 

analyzed data. The concluding remarks are shared in the last section. 

4.2 Calibration Methodology 

 

Figure 4.1: A typical hexapod configuration 

In Figure 4.1, the typical sketch of a hexapod platform [94] is illustrated. OB is the center 

of the fixed base and OP is the center of the moving platform. Two cartesian coordinate frames 

OBBxByBz and OPPxPyPz are attached with these center points. The cartesian coordinate frame with 

OB as origin has x, y, z axes denoted by Bx, By and Bz respectively and for moving frame with 

origin OP has Px, Py and Pz axes to indicate x, y, z axes, respectively. Bz and Pz are the vertical axes 

of the respective coordinate frames. The configuration of the moving platform is defined by the 

position and orientation of coordinate frame attached at its center with respect to base coordinate 

frame by 6 parameters: distance along x, y, z axes and rotations about the same three axes. 

Figure 4.2 shows the 3D CAD model of Tiger 66.1 and the actual platform used for the 
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experiments. Tiger 66.1 has been developed for characterizing additively manufactured materials 

under complex loading conditions including tension, torsion, bending and combinations thereof 

[95]. 

  

Figure 4.2: CAD model of hexapod Test Frame "Tiger 66.1" & the actual test frame 

The configuration of a general Stewart-Gough platform has been modified to make the 

machine suitable for material testing while keeping the basic principle of Stewart-Gough platform 

unchanged. The fixed base was extended through rigid structures to move the fixed coordinate 

frame to the top of the moving platform. This was done to install a fixed gripper in a suitable 

position for the convenience of material characterization tests. The two green blocks as shown in 

the CAD model on the upper part of the system are the grippers for holding the material specimen 

(4) to be tested. The upper gripper (1) is mounted on the fixed frame, and the lower gripper (3) is 

fixed at the center of the hexapod moving platform. All motions and forces are applied to the test 
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specimen by moving the lower gripper. Photogrammetry has been planned to be used for 

measurements in this test process, so there are provisions to fix four digital cameras (2) to capture 

images from the test zone. As the manufactured platform is at the beginning stage of its 

development, these cameras have not yet been installed. Instead, all images were captured from 

different angles using an external camera with a suitable field of view, as mentioned previously. 

To use photogrammetry, two new coordinate frames have been introduced in Tiger 66.1 

for all measurements and calculations: one at the center of the upper grip end plate and another at 

the center of the lower grip end plate. The new frame configurations are shown in Figure 4.3. OUG 

is the center of the fixed upper grip end plate and the associated coordinate axes are UGx, UGy and 

UGz for x, y, z axes, respectively. Similarly, OLG is the center of the movable lower grip end plate 

and the associated coordinate axes are LGx, LGy and LGz corresponding to x, y, z axes, respectively. 

The distance between OUG and OB are fixed and known and the distance fd between OLG and OP 

are also fixed and known. The distance gd between the fixed grip center OUG and moving grip 

center OLG will change during the operation of Tiger 66.1. The relationships between these frames 

can be easily established by spatial transformation matrices. In the ‘home pose’ [84] all the z-axes 

remain vertical and colinear while the other axes remain parallel to each other and all x-axes or y-

axes remain in one plane. In the home pose the length of all actuators is equal and known. The 

lower grip center is moved with the moving platform by controlling the lengths of the actuators, 

and the resultant motion generated at the lower grip center is a translation, rotation, or combination 

of both. 

The new position and orientation of the lower grip center depend on the values of roll, 

pitch, yaw, and translation motion along 𝑥, 𝑦, 𝑧 axes as per the Euler angle representations [85]. 

These are values measured from OLG with respect to its home pose. In this investigation, the home 
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pose has been specifically established at gd = 50mm, in accordance with the other requisite home 

pose conditions. This gd value is equal to the standard gage length for tensile test of any material. 

 

Figure 4.3: Tiger 66.1 coordinate frame configuration 

The rotations from the home pose are expressed by vector Ф and 

Ф = (𝛼 𝛽 𝛾)𝑇 (4.1) 

where α (roll), β (pitch), γ (yaw) denotes the rotation angles about x, y & z axes, 

respectively. 

The translations are expressed by vector d where, 

𝒅 = (𝑥 𝑦 𝑧)𝑇 (4.2) 

and x, y & z are the translation values from home pose along x, y, and z axes, respectively. 

For the calibration process, Tiger 66.1 always starts moving from the home pose to travel 

to each new pose. In the home pose all actuator lengths are equal. Once the new actuator lengths 

were calculated by inverse kinematics for each new pose, the platform controller is fed with new 
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actuator lengths. Employing the digital camera, multiple photographs were taken for each pose 

from suitable angles and are processed through Photomodeler and ProEngineer Creo to get the 

new position of the lower grip center in the 3D space. The target pose values are subtracted from 

actual reached pose values to calculate the six error parameters in terms of x, y, z positions and 

orientations. These error values were now used to calculate the error compensation for Tiger 66.1.  

For a pose, if the target pose values = (𝑥 𝑦 𝑧 𝛼 𝛽 𝛾)𝑇 

and the real measurement shows the values = (𝑥′ 𝑦′ 𝑧′ 𝛼′ 𝛽′ 𝛾′)𝑇, 

then the error vector for a pose = ((𝑥′ − 𝑥) (𝑦′ − 𝑦) (𝑧′ − 𝑧) (𝛼′ −  𝛼) (𝛽′ − 𝛽) (𝛾′ −  𝛾))𝑇 

For an n-number of poses, there will be n-numbers of such error vectors. 

The error values are used to calculate the correction values by the Least-Square method. 

The correction values are then combined with the target pose values to calculate the predicted 

poses. 

The Least-Squares method [96] is a statistical method for fitting a line or curve to a set of 

data points. It minimizes the sum of the squared residuals, which are the distances between the 

data points and the fitted line or curve. The mathematical expression for the least squares method: 

Cost function = min ∑(𝑦 − 𝑓(𝑥))2 (4.3) 

where y is the dependent variable, x is the independent variable, 𝑓(𝑥) is the fitted line or 

curve, and ∑  is the sum of all the terms. 

In other words, the least squares method finds the line or curve that minimizes the total 

error between the data points and the fitted line or curve. 

Three different strategies were adopted by the authors to find the predicted poses after 

combining them with the correction values. These three strategies are explained in the next three 

sections. 
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4.2.1 Calibration – Option 1: With corrected DH parameters 

In this calibration approach, the Denavit-Hartenberg (DH) parameters for each pose were 

computed using the new algorithm developed, as explained in [94]. This algorithm enables one to 

find a unique, feasible solution for each platform pose by using forward kinematics. Using this 

technique, the DH parameters in each actuator path for each target pose and the corresponding 

actual pose were determined. The error for each pair of DH parameters were calculated. Using the 

least squares method, the predicted DH parameters were calculated. The predicted DH parameters 

for each actuator path were used to determine the predicted platform pose along each actuator path. 

For each target pose, there are 6 predicted poses calculated with compensated DH parameters 

through six actuator paths. Computing by matrix averaging technique, the 6 position vectors 

(through each actuator path) for each pose were unified and a new position vector for the predicted 

pose has been calculated. The matrix averaging of 6 orientation vectors from each actuator path 

for a pose did not yield any meaningful outcome, so they have not been treated in the same way 

as the position vectors. The orientation vectors for the predicted poses were left unchanged. A 

complete predicted pose vector is defined by combining the unified position vector with the target 

orientation vector (Euler angles) for that pose. (suffix ‘uc’ has been used to indicate uncorrected 

or uncompensated values and suffix ‘dc’ denotes the corrected or compensated values through DH 

parameters.) 

If a target pose vector = (𝑥𝑢𝑐  𝑦𝑢𝑐  𝑧𝑢𝑐  𝛼𝑢𝑐 𝛽𝑢𝑐  𝛾𝑢𝑐)𝑇 

and the predicted position vector after correction = (𝑥𝑑𝑐  𝑦𝑑𝑐 𝑧𝑑𝑐)𝑇 

then the new predicted pose for the target pose = (𝑥𝑑𝑐  𝑦𝑑𝑐 𝑧𝑑𝑐 𝛼𝑢𝑐 𝛽𝑢𝑐  𝛾𝑢𝑐)𝑇 (4.4) 

4.2.2 Calibration – Option 2: With corrected DH parameters & Euler angles 

In this option, the position vector for a pose has been corrected in the same manner as 
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described in the previous section. 

However, the orientation vectors were treated differently. For each pose, there are 2 

orientation vectors: one for the target pose and the other one for the actual measured pose. For n 

poses, n error values were calculated by subtracting the target orientations from the actual 

orientations. Using the Least-Square method, the compensation angles values for each pose have 

been calculated from error values. Now, each predicted pose has been calculated by creating a set 

of unified position vectors and compensated orientation vectors. Mathematically, it can be 

expressed as follows (suffix ‘lc’ denotes least-square method compensated values): 

Let, the target pose vector = (𝑥𝑢𝑐  𝑦𝑢𝑐  𝑧𝑢𝑐  𝛼𝑢𝑐 𝛽𝑢𝑐  𝛾𝑢𝑐)𝑇 

The predicted translation vector after correction = (𝑥𝑑𝑐  𝑦𝑑𝑐  𝑧𝑑𝑐)𝑇 

The predicted orientation vector after correction as stated above = = (𝛼𝑙𝑐  𝛽𝑙𝑐  𝛾𝑙𝑐)𝑇 

then the new predicted pose for the target pose = (𝑥𝑑𝑐  𝑦𝑑𝑐 𝑧𝑑𝑐 𝛼𝑙𝑐  𝛽𝑙𝑐 𝛾𝑙𝑐)𝑇 (4.5) 

4.2.3 Calibration – Option 3: With corrected translation vectors & Euler angles  

In this option, the predicted pose for a target pose is calculated by correcting both position 

vectors and orientation vectors using the Least-Squares method. 

For n number of poses there are n numbers of target poses and actual poses. Each pose has 

6 parameters, which are a combination of a position vector and an orientation vector. For n 

numbers of poses, n error values were calculated by subtracting the target pose parameters from 

the actual pose parameters. Using the Least-Squares method, the compensation values for each 

pose parameter were calculated from the error values and applied to the target poses. These 

compensated pose parameters are used as the predicted pose for each target pose. The main 

difference between this option and the earlier two options is that in this case, the DH parameters 

were not considered for determining the predicted poses. The new vector calculation can be 
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expressed in the following way: 

Let, the target pose vector = (𝑥𝑢𝑐  𝑦𝑢𝑐  𝑧𝑢𝑐  𝛼𝑢𝑐 𝛽𝑢𝑐  𝛾𝑢𝑐)𝑇 

The predicted position vector after correction = (𝑥𝑙𝑐  𝑦𝑙𝑐  𝑧𝑙𝑐)𝑇 

The predicted orientation vector after correction = (𝛼𝑙𝑐  𝛽𝑙𝑐  𝛾𝑙𝑐)𝑇 

then the new predicted pose for the target pose = (𝑥𝑙𝑐  𝑦𝑙𝑐  𝑧𝑙𝑐 𝛼𝑙𝑐 𝛽𝑙𝑐  𝛾𝑙𝑐)𝑇 (4.6) 

 

The above three options are summarized in the Table 4.1 

Table 4.1: Summary of the experiment options 

Option no. Position vector correction Orientation vector correction 

1 DH parameters by LSM No correction 

2 DH parameters by LSM Least Square method 

3 x y z coordinates by LSM Least Square method 

 

After position and orientation error ranges were calculated for uncompensated and 

compensated poses, the magnitude of errors for position and orientation have been calculated using 

the "Root Mean Square Error" (RMSE) equation: 

Magnitude of error or improvement = √
(𝑥_𝑟𝑎𝑛𝑔𝑒2 + 𝑦_𝑟𝑎𝑛𝑔𝑒2 + 𝑧_𝑟𝑎𝑛𝑔𝑒2)

3
 

(4.7) 

4.3 Experimental Setup & Data Collection 

4.3.1 Selection of the camera for photogrammetry 

Selecting a camera for photogrammetry involves considering several key parameters to 

ensure optimal performance [97]. Here are the main factors to look for [98]: 

Resolution: Higher resolution sensors capture more detail, contributing to the accuracy 
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and precision of 3D reconstructions. A camera with higher megapixel counts for better results in 

photogrammetry. 

Sensor Size: Larger sensors generally provide better image quality and low-light 

performance. Full-frame sensors or APS-C sensors are common choices for photogrammetry 

applications. 

Lens: A wide-angle lens is ideal for photogrammetry, as it will allow you to capture more 

of the scene in each frame. However, a fisheye lens must be avoided, as they can cause distortion. 

Shutter speed: A fast shutter speed is important for capturing sharp images, especially 

when shooting moving subjects. 

ISO Range and Low-light Performance: A low ISO setting will give you less noise in 

your images. However, ISO setting needs to increase in low light conditions. 

Remote Control Capability: Cameras with remote control options are beneficial for 

integration into automated systems or for capturing images from difficult-to-reach locations. 

Remote control capability enhances the camera's versatility in photogrammetry applications. 

Image Stabilization: In situations where stability is a concern, such as when the camera is 

mounted on a moving platform, optical or sensor-shift image stabilization can help reduce blur and 

ensure sharper images. 

Dynamic Range: A higher dynamic range allows the camera to capture a wider range of 

tones in a scene. This is crucial for maintaining detail in both shadow and highlight areas, 

improving the overall quality of photogrammetric reconstructions. 

File Format: Cameras that support the RAW file format provide more flexibility during 

post-processing, allowing for better control over adjustments and corrections. 
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Considering these parameters will help you choose a camera that meets the specific 

requirements of photogrammetry, ensuring reliable and accurate results in 3D reconstruction 

projects [99]. 

Here are some specific camera recommendations for photogrammetry: Canon EOS R5, 

Sony Alpha a7 IV, Nikon Z7 II, Nikon D3200, Fujifilm GFX 100S, Point Grey Research Flea3, 

and FLIR Blackfly S. 

4.3.2 Selecting Nikon D3200 

The Nikon D3200's compatibility with a range of lenses is a significant asset for 

photogrammetry applications. Some important considerations regarding lens compatibility for 

photogrammetry with the D3200 have been listed below [Nikon website]: 

Prime Lenses: Prime lenses with fixed focal lengths are often preferred for 

photogrammetry because of their optical clarity and lack of distortion. The D3200 is compatible 

with a variety of Nikon prime lenses, such as the Nikon AF-S NIKKOR 50mm f/1.8G, which can 

deliver sharp and distortion-free images. In this experiment Nikon AF-S DX Nikkor 18-105mm 

has been used in a fixed setting condition. 

Vibration Reduction (VR) Technology: Lenses equipped with VR technology can be 

advantageous, especially in dynamic or unstable environments where a robot might introduce 

vibrations. The Nikon AF-S NIKKOR 18-105mm f/4G ED VR is an example of a versatile zoom 

lens with VR, providing image stabilization for sharper photos. 

Compatibility with DX Format: The D3200 uses a DX-format sensor, and lenses 

designed for DX-format cameras can maximize the camera's performance. Nikon's DX lenses are 

tailored for APS-C sensor cameras like the D3200. 

High-resolution sensor: The Nikon D3200 has a 24.2-megapixel sensor, which can 
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capture high-resolution images. This is important for robot photogrammetry because it allows the 

software to accurately reconstruct the 3D model. 

Wide-angle lens: The Nikon D3200 comes standard with an 18-55 mm lens, which is a 

wide-angle lens. This type of lens is ideal for robot photogrammetry because it allows the robot to 

capture a large field of view in each image. This can reduce the number of images that need to be 

captured to create a complete 3D model. 

Fast shutter speed: The Nikon D3200 has a maximum shutter speed of 1/4000th of a 

second. This is fast enough to freeze motion blur, which is important for robot photogrammetry 

because the robot may be moving during the image capture process. 

Affordable price: The Nikon D3200 is a relatively affordable camera model. This makes 

it a good option for researchers and businesses that are on a budget. 

Easy to use: The Nikon D3200 is a relatively easy-to-use camera. This makes it a good 

option for researchers and businesses that do not have much experience with photography. 

The Nikon D3200 is considered a viable option for robot photogrammetry, providing the 

necessary features to capture high-quality images for 3D reconstruction in a variety of 

environments. 

4.3.3 Experimental setup 

The experimental setup for these calibration processes did not need any special hardware 

beyond one high resolution digital camera. This camera is independent from the hexapod test 

fixture and does not interfere with the operations of the system. A Nikon D3200 digital camera 

has been used for this purpose. The lens used is Nikon AF-S DX Nikkor 18-105mm. The camera 

has been used in “manual” mode. This was a requirement by the photogrammetry software to keep 

the camera calibration and other image parameters uniform throughout the process. The camera 



 

 76 

settings were kept fixed once the camera calibration was done. Though the zoom value used in the 

process is not visible on the camera setting windows shown in the Figure 4.4, the zoom settings 

are also kept fixed to maintain the same values for the lens parameters. 

 

Figure 4.4: Nikon D3200 camera settings for Photogrammetry 

In this experimental setup, the initial step involved the calibration of the camera in 

accordance with the specific calibration procedure prescribed by the photogrammetry software, 

"Photomodeler". To accomplish this, a series of printed templates, as shown in Figure 4.5, were 

employed. Subsequently, an automated camera calibration process was executed once these 

template images were processed through Photomodeler. Upon the successful completion of this 

calibration procedure, the camera was ready for the project. The completed calibration data were 

recorded and stored in a file, which was subsequently referenced during the image processing stage 

for the calibration of Tiger 66.1. 

4.3.4 Data collection 

In the next step, 34 random poses were selected in the moving gripper’s workspace. These 

workspaces were free from “singularity” condition and that has been verified in MATLAB code 
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before using in the control software. For each pose three images were taken in three different 

angles to satisfy the need for photogrammetric measurements. These three images were processed 

using Photomodeler, as shown in Figure 4.6. Each image was processed manually and integrated 

to generate a 3D wire frame model (visible in the extreme right-side window of the Figure 4.6). 

 

Figure 4.5: Calibration templates 

The wire frame model now becomes the input for the ProEngineer Creo software. Each 

wire frame model is manually analyzed to collect the pose data. A typical screenshot from Creo is 

shown in Figure 4.7 after the complete processing of a wire frame model in this software package. 

The outcome from this process is the translation vector and rotation matrix for the actual motion 

performed by the hexapod. The 3 rows of the last column in the 3x4 matrix shown in Figure 4.7 

denotes the position vector and the remaining 3x3 matrix denotes the orientation matrix. By using 

MATLAB function, the rotation values about the axes are extracted from this 3x3 matrix. 
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This process is repeated for all poses before and after calibrations following 3 options 

described in section 2. 

 

Figure 4.6: Photomodeler user interface for image processing 

 

Figure 4.7: Manual processing of wire frame model in ProEngineer Creo 
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4.4 Results and Analysis 

 

Figure 4.8: Absolute Error between Target & uncalibrated Measured poses 

The 6 parameters for all the poses were extracted by photogrammetry and recorded. In the 

beginning the target poses and actual poses were compared by measuring the differences between 

the respective pose parameters. The absolute difference values are plotted and are shown in Figure 

4.8. A random 34 target poses in the workspace were considered for the experiment and the lower 

grip center was moved to those poses one by one. The actual poses reached by the lower grip center 

in this process are uncalibrated poses and obtained from as-build condition. The prefix ‘-tran’ has 

been used to denote the position variables and ‘-rot’ has been used to denote the orientation 

variables. 

From the chart in Figure 4.8, it is seen that pose number 24 has one parameter that is 

significantly out of range compared to the other values. It was determined that while this point is 

not singular, it is close to a singular point. Therefore, it was designated as an outlier and removed 

from future calculations. The error range of the uncalibrated poses is shown in Figure 4.9. 
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Figure 4.9: Error range of the pose parameters in the uncalibrated condition 

4.4.1 Calibration results: Option 1 

Calibrating as per the options, the lower grip center has been moved to the new predicted 

positions for the corresponding target position. During this calibration process, some of the 

predicted pose parameter values after compensating fell outside the hexapod operating range and 

were removed from further calculations and analysis. The total valid pose numbers decreased to 

27 after removing the out-of-range values. The hexapod has been instructed by the controller to 

move to the new predicted poses one by one. The actual pose measurements were done through 

photogrammetry, and the pose data were compared with the corresponding target pose data. The 

bar chart in Figure 4.10 shows the error range of 6 pose parameters before and after calibration. 

There are improvements in pose parameters except position values along y and z axis. For 

all other parameters various measures of improvements were observed. 
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Figure 4.10: Comparison of pose parameters error range after calibration as per Option 1 

The absolute deviations of each pose parameters before and after the calibration are shown 

in Figure 4.11. Here the suffix ‘c’ with axis identifier denotes the calibrated values. 
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Figure 4.11: Comparison of absolute deviations of all 6 pose parameters for option 1 

To better understand the impact of the calibration method used as per option 1, the 

Magnitude of Errors for position (measured in mm) and orientation parameters (measured in deg) 

were compared. The data were shown in the Table 4.2. The magnitude of errors for position and 

orientation values were calculated separately. The results show that the magnitude of error for 

position improved by 9.8% and for orientation improvement is 19.9%. 

Table 4.2: Pose improvement after calibration as per option 1 

Parameters x-tran y-tran z-tran x-rot y-rot z-rot 

Error range-uncompensated 26.54 16.67 13.49 8.27 11.99 12.59 

Magnitude of errors - uncompensated 19.70 11.12 

Error range-compensated 20.25 18.44 14.01 6.86 10.29 9.2 

Magnitude of errors - compensated 17.76 8.90 

Magnitude of improvement % 9.8% 19.9% 

4.4.2 Calibration results: Option 2 

In this calibration method, the parameter values for a few of the predicted poses were 

outside the hexapod’s travel range after compensation. Those poses were not considered for further 

calculations. After removing those poses, calibration calculations were done with 26 poses. The 

error range of the uncalibrated and calibrated pose parameters are shown in Figure 4.12. 
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Figure 4.12: Comparison of pose parameters error range after calibration as per Option 2 

The individual parameter deviations comparison can be seen in the Figure 4.13. 
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Figure 4.13: Comparison of absolute deviations of all 6 pose parameters for option 2 

The pose parameters improvement based on this method of calibration is calculated and 

shown in Table 4.3. 

Table 4.3: Pose improvement after calibration as per option 2 

Parameters x-tran y-tran z-tran x-rot y-rot z-rot 

Error range-uncompensated 26.54 16.67 13.49 8.27 11.99 12.59 

Magnitude of errors - uncompensated 19.70 11.12 

Error range-compensated 25.20 20.31 16.14 6.05 11.32 7.99 

Magnitude of errors - compensated 20.88 8.73 

Magnitude of improvement % -6.0% 21.5% 

 

In this case, the magnitude of error for the positional part of the pose deteriorated by 6%, 

although 21.5% improvement was observed in the orientation part. 

4.4.3 Calibration results: Option 3 

In the earlier two options, the position parameters were corrected using DH parameter 

corrections through the Least-Square methods. In this option, both position and orientation 

parameters were compensated by using only Least-Square methods from the error values obtained 

from the uncompensated measurements and comparing those values with the target values. After 
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compensating the pose parameters in this method, only 21 poses were found to be inside the valid 

workspace of the lower grip center of Tiger 66.1. The comparison of the error ranges before and 

after calibration is shown in the Figure 4.14. 

 

Figure 4.14: Comparison of pose parameters error range after calibration as per Option 3 

A comparison of the deviation of each uncompensated and compensated pose parameter 

with respect to the target pose is presented in the Figure 4.15. 
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Figure 4.15: Comparison of absolute deviations of all 6 pose parameters for option 3 

The comparison of magnitude of error has been captured in Table 4.4. 

Table 4.4: Pose improvement after calibration as per option 3 

Parameters x-tran y-tran z-tran x-rot y-rot z-rot 

Error range-uncompensated 26.54 16.67 13.49 8.27 11.99 12.59 

Magnitude of errors - uncompensated 19.70 11.12 

Error range-compensated 26.92 13.74 9.81 6.01 10.39 8.18 

Magnitude of errors - compensated 18.35 8.39 

Magnitude of improvement % 6.9% 24.6% 

The magnitude of error for both position and orientation was observed to be improved and 

their values were 6.9% and 24.6%, respectively. 

4.5 Discussions 

The hexapod test-frame Tiger 66.1 was subjected to operation and calibration for the first 

time after its fabrication. For the first time calibration process, basic methods have been planned 

to start with. The Least-Square method is one of the basic statistical methods for fitting a line or 

curve to a set of data points to minimize the error on the data points. The above-mentioned three 

options have been considered as the starting point before moving to more complex compensation 

methods. 
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Figure 4.16: Comparison of Magnitude of Improvement for all 3 Calibration strategies 

In option 1, the error minimization was done by finding the DH parameters for each pose. 

But it has been observed during the calculation that the same calculation methods cannot be applied 

for angular vectors because of the different physical units of measurements. Therefore, the position 

and orientation vectors of a pose have been treated differently due to the units involved. The target 

orientation vector used for the calibrated predicted poses without any change in the first option. In 

the second option the same strategy as option 1 has been followed for position and orientation 

vectors were compensated by least-square methods. And in the third option, the error corrections 

for both the vectors were done with least-square methods taking the pose parameter differences 

into considerations. 

The three calibration strategies yielded different results and different amounts of pose-

accuracy improvements. The magnitude of improvements for all three options were calculated and 

presented together Figure 4.16. As can be seen from the plot, option 2 shows a reduction in 

positional accuracy, whereas option 1 and 3 have shown improvements in both position and 

orientation accuracy. In option 1 the improvement in both position and orientation accuracy 

-10%

-5%

0%

5%

10%

15%

20%

25%

30%

Option 1 Option 2 Option 3

M
ag

n
it

u
d
e 

o
f 

E
rr

o
r 

C
h
n
ag

e

Options

Magnitude of Improvement for 3 calibration Options

Translation Rotation



 

 88 

appears to be more balanced (the measure of improvement percentages is closer) than option 3. 

When the error ranges are compared between the uncompensated pose values and 

compensated pose values from all three options, option 1 shows more steady changes than other 

two options; though the error ranges for y-position and z-position increased marginally after the 

calibration process based on this method. Option 3 has shown maximum error reduction except 

for x-position values. The error range comparisons for these options were shown in Figure 4.17. 

 

Figure 4.17: Comparison of error ranges for all options 

In this research, various calibration methods were diligently applied to enhance the 

accuracy of hexapod poses. Despite the improvements in the hexapod poses following each of 

these calibration methods, none of them display a clear indication of which one is best and thereby 

which method is best suited for this system. It is crucial to acknowledge that there are multiple 

sources of errors that affect the pose accuracy of a hexapod. For this hexapod, those errors factors 

might have more complex relationships that is impacting the pose accuracy. These calibration 

methods were tried on Tiger 66.1 for the first time after it became operational. The control software 

has also been developed and used with its first version. While definitive conclusions regarding the 
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optimal calibration method remain elusive, it is evident that the hexapod exhibited notable 

improvements in response to initial calibration processes. Among the strategies explored by the 

authors, option 1 appears to be a more robust calibration model. If there are any constructional 

errors in Tiger 66.1, those errors can be taken care of with correction of the DH parameters without 

going into more detailed measurement of the fabrication errors. 

Another key factor to be considered in this experiment is the number of poses considered. 

The experiment started with 34 random poses, and it was reduced to 21 poses. The efficacy of 

compensation models relies on the number of data points, and it is expected that considering a 

greater number of poses for the experiments may help to further refine the calibration results. 

During the process, some of the pose points had to be eliminated from the calculations due to the 

newly predicted poses lying outside the workspace and out of the hexapod’s motion range. 

Consequently, a greater number of initial random poses could increase the number of compensated 

valid poses that can be considered for calibration calculation and analysis. Furthermore, there is 

considerable merit in considering the poses most likely to be used, i.e., those that would lie along 

the anticipated load pathways (tension, compression, torsion, bending, and combinations thereof). 

It is imperative to acknowledge the potential contribution of software and image processing 

errors to the calculated results. However, both software platforms employed in these calibration 

methods are well-established and widely adopted within industrial contexts, thereby minimizing 

the likelihood of software-related errors. Any residual errors can be primarily attributed to manual 

processing estimation. However, for image processing in this research, the error limit was 

restricted to below 5 pixels, which is equal to 0.425mm (for 300dpi resolution 1pixel = 0.085mm), 

thereby ensuring minimal impact on the overall accuracy of the calculations. 
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4.6 Conclusion 

The target of this project was to estimate pose errors in Tiger 66.1 using a non-invasive, 

least instrumented approach while exploring simple calibration methods to enhance hexapod pose 

accuracy. The implementation of photogrammetry for pose measurements is a successful 

achievement in this effort. It shows promise for further development though the initial iteration 

yielded modest improvements. The initial controller software efficiently manages the hexapod and 

incorporates compensations from the three calibration methods employed. Although the accuracy 

gains are not substantial, these methods demonstrate the possibility of employing non-invasive 

photogrammetry for hexapod calibration. One of the methods used by the authors involved forward 

kinematics to derive a unique feasible solution and calculate DH parameters, and the Least-Squares 

method displayed some error reduction potential, suggesting at the possibility of investigating 

more complex error compensation models. This successful calibration through photogrammetry 

not only enhances the hexapod's overall performance but also opens avenues for its versatile 

deployment across various domains, ranging from industrial automation to advanced research 

initiatives. This simple, effective calibration process is a significant step toward achieving high 

quality measurements in diverse applications, thereby contributing to the progress of automation 

and robotics. The potential for continued refinement and innovation in this field is vast, with 

photogrammetry emerging as a valuable tool in enhancing the accuracy and reliability of hexapod 

systems and, by extension, a wide spectrum of robotic and automated processes through non-

invasive and minimal instrumented methods. 
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5 CONCLUSION 

The improvement of precision and accuracy in robotic systems has long been a prime 

objective in various fields, from industrial automation to advanced scientific research. The 

Stewart-Gough platform, with its versatility and potential for high-precision applications, has been 

considered a significant player in this research. However, achieving and maintaining the desired 

levels of accuracy in these systems poses a difficult challenge, because of the complex interactions 

of multiple error sources. 

This dissertation has been centered on addressing this challenge by exploring and 

implementing a novel calibration approach for Stewart-Gough platform through the utilization of 

photogrammetry. The study has involved a thorough examination of theoretical formulations, 

practical implementation, and experimental validation of this methodology. The primary goal was 

to improve the absolute positioning accuracy of the moving platform center of a general Stewart-

Gough platform, enhance its performance for precision applications, and advance the 

understanding of calibration mechanism for parallel manipulators. 

The following sections provide a succinct summary of the key findings, contributions, and 

implications of this research. 

5.1 Key Findings 

The key findings from this research are as follows: 

• Forward kinematics-based calibration 

• Minimal hardware modification 

• Cost and time efficient process 
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• Practical approach for implementation 

• Feasibility of photogrammetry 

• Expanding the scope for future research 

In the next sections these key findings are discussed. 

5.1.1 Forward Kinematics-based Calibration 

 The dissertation aimed to develop and validate a forward kinematic calibration technique. 

Through simulations and real-world experiments conducted on the physical Stewart-Gough 

platform test frame, Tiger 66.1, it was demonstrated that this method effectively reduced position 

errors. Vision-based measurements, in conjunction with forward kinematics, proved to be a 

powerful tool for calibrating the platform, offering improvements in absolute positioning accuracy 

of up to 25% compared with the initial system. 

5.1.2 Minimal Hardware Modification 

An essential feature of the proposed photogrammetry-based calibration method is its 

minimal hardware modification requirement. This feature not only simplifies the implementation 

process but also ensures that the core structure and functionality of the Stewart-Gough platform 

remain intact. This is particularly valuable for applications where structural alterations are costly 

or impractical and there is a need for continuously monitoring the accuracy of the hexapods during 

their operations. 

5.1.3 Cost and time efficient calibration process 

This research uses digital cameras and standard commercial software. There is no need for 

customization of the standard setup repeatedly once established. This has the potential for 

substantial cost and time savings by automating the entire process. The digital camera needs 
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calibration in the beginning. Once calibrated, the camera settings remain valid for large numbers 

of repetitive measurements, moreover all the required software are reusable. Therefore, this 

process requiress minimal reinvestment of capital resources. 

5.1.4 Practical Approach to Calibration 

The research highlights the practicality of the photogrammetry-based calibration approach 

for parallel robots, particularly Stewart-Gough platform by validating it with the Tiger 66.1 

system. By minimizing hardware modifications and emphasizing the use of vision-based data, this 

method offers a pragmatic avenue for enhancing the accuracy of these systems in high-precision 

applications. This is done using the advantages of the latest high-powered computing systems. 

5.1.5 Contributions to Photogrammetry 

Beyond its application to Stewart-Gough platform accuracy improvements, this research 

contributes to the broader field of photogrammetry. The development of a calibration method that 

employs vision data for full extrinsic calibration serves as an innovative use case for 

photogrammetric techniques. 

5.1.6 Identification of Future Directions 

The dissertation also identifies several areas for further exploration. One noteworthy 

avenue is the potential implementation of an online calibration method, which could continuously 

adapt and refine the calibration in real-time. Continuous calibration will help to maintain the 

desired accuracy level of the system throughout its operating period. Additionally, the study 

highlights the importance of investigating more complex error correction formulas to further 

enhance the calibration process. More details have been elaborated section 5.4. 
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5.2 Contributions to Knowledge 

This research advances the understanding of calibration methodologies for parallel 

manipulators, particularly Stewart-Gough platforms. The key contributions to knowledge can be 

summarized as follows: 

• Novel Forward Kinematics algorithm 

• Integration to vision-based calibration 

• Brining Tiger 66.1 into operation 

5.2.1 Novel Forward Kinematics Algorithm 

In this research, a groundbreaking forward kinematic algorithm has been developed. The 

forward kinematics solution for the Stewart platform is inherently intricate, as it consistently yields 

multiple feasible and unfeasible solutions due to the non-linear and polynomial nature of its 

kinematic equations. This inherent complexity has traditionally made it necessary to verify each 

solution manually for practicality, thereby limiting its real-world applicability for any subsequent 

operations. What sets this algorithm apart is its unique ability to consistently yield a single, feasible 

solution. This distinct characteristic eliminates the need for manual verification, greatly enhancing 

its practicality for real-world applications, a feat that previous solutions have not achieved. 

Another significant output of this algorithm is the derivation of the Denavit-Hartenberg 

(DH) parameters for all six actuator paths. These DH parameters have been effectively utilized to 

enhance the accuracy of the hexapod platform's center, as demonstrated in the experiments 

conducted in this research. The key advantage of employing DH parameters for accuracy 

improvement in the hexapod platform's pose lies in the fact that individual error factors need not 

be measured separately. The DH parameters inherently encapsulate the effects of multiple error 

factors, rendering the calibration process robust, simple, and efficient. 
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5.2.2 Integration to vision-based calibration 

The effective use of vision-based measurements in the calibration process significantly 

broadens the scope of photogrammetry in the fields of robotics and automation. One notable 

benefit of utilizing photogrammetry is that this method seamlessly integrates with the operation of 

the hexapod platform without any disruption. No adjustments or modifications to the hexapod 

platform were required during the calibration process, ensuring the safeguarding of its original 

construction and functionality. Consequently, the original properties of the system remain intact. 

5.2.3 Bringing Tiger 66.1 into operation 

Simply operationalizing a system holds limited scientific value within any field. However, 

when the system is purposefully designed for unique and highly specialized functions, it inherently 

becomes a significant contribution to that domain. Tiger 66.1 has been particularly built for the 

precise characterization of additively manufactured specimens under complex loading scenarios, 

encompassing tensile, torsional, and bending forces. Consequently, the development and 

successful operationalizing of this system holds great significance for the broader scientific 

community. 

5.3 Limitations 

While this research presents a promising calibration approach for Stewart-Gough Platform, 

it is essential to acknowledge its limitations: 

• Numbers of poses considered for accuracy improvements 

• Hardware compatibility 

• Image quality 

• Volume (space availability) 
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5.3.1 Number of poses considered for accuracy improvements 

The measurement sample number considered for the experiment in this research is 34 to 

improve the accuracy of the Tiger 66.1 test frame. When more samples are included in the 

compensation model, the model performs better. In addition, as the measurement population 

increases, the statistical error correction model produces improved results.  

5.3.2 Hardware Compatibility 

The practicality of the photogrammetry-based approach assumes a certain level of 

compatibility with vision hardware and cameras. The feasibility of implementation may vary 

depending on the existing hardware infrastructure and compatibility of the image capturing system 

with the hexapod platform size. In some cases, the camera may not have sufficient capacity for 

capturing the required quality images of the platform pose and sometimes the operating 

environment around the platform would not be suitable for image capturing. This may restrict the 

implementation of this method. 

5.3.3 Image quality 

Image quality is another factor which may significantly influence the calibration process 

demonstrated in this research. The camera lens causes distortions in the images and the amount of 

distortions depends on the position of the subject with respect to the lens center and quality of the 

lens. So, depending upon the quality of the lens used for image capturing can significantly impact 

the success of the calibration process. The high quality of image capturing lens will cause less 

distortion of the images and thereby reduce the error in the image processing and measurement 

obtained from the image processing. 
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5.3.4 Volume (space) availability 

The photogrammetry method is implemented without interfering with the functions of the 

hexapod platform and the image capturing devices are installed outside the operational periphery 

of the platform motion. This necessitates an extra space around the hexapod platform’s operational 

space. Availability of such volume may sometimes restrict the implementation of this calibration 

method. 

5.4 Future Scope of work 

This research paves the way for several exciting avenues of future exploration: 

• Online calibration 

• Finding better, complex error models 

• Integration with AI-based vision systems 

• Compensation model for calibration under loaded condition 

• Define poses and workspace for Tiger’s application purpose  

5.4.1 Online Calibration 

The development of an online calibration method is an interesting possibility. By 

continuously adapting to changing conditions and improving accuracy in real-time, such a method 

could revolutionize the field of Stewart-Gough platform calibration. The continuous input of pose 

data and their further computations increase the data availability for the compensation model, 

thereby refining the accuracy of the system from continuous online measurements. By identifying 

areas for further research, such as online calibration methods and more complex error correction 

models, this study offers a roadmap for future investigations in the field of parallel manipulator 

calibration. 
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5.4.2 Complex Error Models 

Investigating more complex error correction models represents a promising area for future 

research. Understanding the intricate relationships between error sources and developing advanced 

correction formulas can potentially lead to substantial accuracy improvements. Earlier researches 

showed ways to compensate errors originating from various sources, combining them together for 

photogrammetry-based calibration process still to be evolved and an area for future research. 

5.4.3 Integration with AI-based Vision Systems 

In this research, the method's success relies heavily on capturing accurate images of the 

platform center to generate precise 3D measurement data. Achieving the correct angle and area 

coverage in images is essential for this purpose. Manual image capture can be challenging and 

inconvenient. However, significant improvements can be made by integrating an image capture 

system that possesses the knowledge to determine the right image specifications for 

photogrammetry. By combining this image capture system with AI technology, the process can 

move toward automated, intelligent image capturing-based system. As vision technology evolves, 

the integration of advanced AI-based vision systems like depth-sensing cameras and LiDAR into 

the calibration process has the potential to enhance precision and expand the capabilities of 

Stewart-Gough platforms. 

5.4.4 Compensation model for calibration under loaded condition  

This research was conducted under a no-load condition, and the error compensation model 

was specially designed to address errors in this condition. However, it's important to note that the 

behavior of the platform, both in terms of errors and motion, can be significantly influenced by the 

type and amount of load applied. Tiger 66.1 has been designed and built for characterization of 
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additively manufactured material specimens which can experience tensile, torsion or bending loads 

separately or any combination of these. This variability requires adjustments to the compensation 

model and the application of these compensation values to the control software, introducing 

complexity. Therefore, there is considerable scope for further research in this area. 

5.4.5 Define poses and workspace for Tiger’s application 

Tailoring calibration methods to specific applications and industries could yield highly 

specialized and optimized calibration techniques. The poses and working space of the moving 

platform center may vary depending on the specific application. This is a potential area for future 

work in the case of Tiger 66.1. Up to this point, the research has focused on conditions without 

external loads. However, when it comes to material characterization, the system undergoes 

multiple loading conditions, and the poses and workspace volume can change significantly. 

Therefore, there is a need to explore calibration techniques tailored to such conditions in the future. 

Adapting the core concept for various applications offers a wide realm for new experiments. 

5.5 Advancing Accuracy in Robotics 

This dissertation explores the calibration of a Stewart-Gough platform through the 

innovative use of photogrammetry. The research has introduced a novel calibration method that 

leverages vision-based measurements to enhance the absolute positioning accuracy of the 

platform. With minimal hardware modification requirements, this approach offers practical 

solutions for industries and applications where precision is paramount. 

The findings of this research have practical implications for a wide range of industries, 

including aerospace, manufacturing, healthcare, and more. They point to the potential for 

significant cost savings, improved precision, and enhanced versatility. 
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While this research represents a significant step forward, it is by no means the final word 

on Stewart-Gough platform calibration. Future research should continue to explore new avenues, 

such as online calibration, complex error models, and advanced vision systems integration. These 

efforts will contribute to the advancement of precision in robotics and automation. 

It has become increasingly evident that artificial intelligence (AI) will play a pivotal role 

in advancing the field of robotics, including calibration processes. AI-driven technologies have the 

potential to revolutionize the way calibration is performed and can enhance the capabilities of the 

Stewart-Gough platform in unprecedented ways. 

One notable avenue for AI integration is the optimization of calibration procedures. 

Machine learning algorithms can analyze vast datasets generated during calibration experiments, 

and identify patterns and relationships among various error sources. By automating the calibration 

process and continuously adapting to changing conditions, AI can potentially streamline and 

improve calibration accuracy in real-time, thereby reducing the need for manual intervention. 

Furthermore, AI can facilitate predictive maintenance for Stewart-Gough platform, alerting 

operators to potential issues before they impact performance. By analyzing sensor data and 

historical performance metrics, AI algorithms can detect early signs of wear, fatigue, or component 

degradation, enabling proactive maintenance and preventing costly downtimes. 

Additionally, AI-powered vision systems can enhance the precision and speed of 

photogrammetry-based calibration. Advanced computer vision algorithms can automatically 

identify calibration markers, track feature points in real-time, and even perform image processing 

tasks with exceptional accuracy. This not only reduces the reliance on human intervention but also 

enhances the overall robustness of the calibration process. 

As the processes navigate through this exciting intersection of AI and robotics, it is 
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imperative that researchers and engineers continue to explore and harness the full potential of AI 

in calibration and beyond. The fusion of these technologies holds the key to further advancements 

in robotics, automation, and high-precision applications, ultimately propelling us into a future 

where precision knows no bounds. 

In the grand scheme of things, the pursuit of precision & accuracy in robotics is an ongoing 

journey. With each step forward, it brings processes closer to unlocking new possibilities in 

industries and applications that rely on highly accurate robotic systems. In the coming days, the 

quest for precision will continue to drive innovation and shape the future of robotics. 

 

*** 
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7 APPENDIX 

7.1 Electrical circuit layout 

 

Figure 7.1: Electrical circuit layout 
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7.2 Arduino codes 

The code below is the main control code for Tiger 66.1. 

File name: Tiger_66.1_controller.ino 

// File name: Tiger_66.1_controller.ino 

// Created by: SOURABH KARMAKAR 

// Creation date: 2021-03-16 

// Description: Main code for controlling Tiger 66.1 by Arduino 

// Following two Library files are needed for this code to work: 

// Adafruit_ADS1X15, MatrixMath 

 

// rev4 : base angle distribution changed as per actual test frame layout 

// rev5 : base and platform angle distributions separated and rotation motion 

about z-axis is now working 

 

#include <MatrixMath.h> 

#include <Wire.h> 

#include <Adafruit_ADS1015.h> 

 

#define n (4) 

 

double Tx, Ty, Tz, Rx, Ry, Rz; // User input for new platform center pose 

 

double p_radius = 225.14; // platform joint radius 

double b_radius = 477.39; // base joint radius 

double to_rad = (2 * PI / 360); // factor to convert deg to rad 

 

// Base joint angles -- from matlab: 6.69, 53.31, 126.69, 173.31, 246.69, 

293.31 

double angb_rad[6] = { 6.69 * to_rad, 53.31 * to_rad, 126.69 * to_rad, 

 173.31 * to_rad, 246.69 * to_rad, 293.31 * to_rad }; // angles for base 

joints in home position in radians 

 

// Platform joint angles -- from matlab: 353.38, 66.53, 113.38, 186.53, 

233.38, 306.53 

double angp_rad[6] = { 353.38 * to_rad, 66.53 * to_rad, 113.38 * to_rad, 

 186.53 * to_rad, 233.38 * to_rad, 306.53 * to_rad }; // angles for platform 

joints in home position in radians 

 

// limits for translations and rotations in x, y & z 

// all linear dimensions are in mm and angles are in degrees unless specified 

double x_min = -55.0; 

double x_max = 55.0; 

double y_min = -55.0; 

double y_max = 55.0; 

double z_min = -52.5; 

double z_max = 0; 

double roll_min = -9.0; 

double roll_max = 9.0; 

double pitch_min = -9.0; 

double pitch_max = 9.0; 

double yaw_min = -25; 

double yaw_max = 25; 
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double hm_act_len = 96; // actuator length in platform home position, i.e. @ 

z = 0 

double pos_tol = 0.5; // Platform pose tolerance 0.5, i.e +/- 0.5 

double hm_pos_upper = hm_act_len + pos_tol; 

double hm_pos_lower = hm_act_len - pos_tol; 

 

// actuator length limits : original 

double act_len_max_org = 668.02; // = 305.4 + 203 + 83.42 + 76.2; 83.42 mm is 

joint dist from top hole center of actuator; 203 mm stroke length 

double act_len_min_org = 465.02; // = 305.4 + 83.42 + 76.2; 76.2 mm is joint 

dist from bottom hole center of actuator 

double act_len_max = 643.02; // 25 mm reduced to be on the safer side. To be 

verified and revised. 

double act_len_min = 490.02; // 25 mm increased to be on the safer side. To 

be verified and revised. 

 

// Initializize ADS1115 

Adafruit_ADS1115 ads1(0x48); 

Adafruit_ADS1115 ads2(0x49); 

 

int ans = 0; // answer from user 

String userAns; 

int usrAns; 

 

// EHAs are Initializized without non-zero value 

// EHAs are Speed for each actuator 

int EHA1 = 1; 

int EHA2 = 1; 

int EHA3 = 1; 

int EHA4 = 1; 

int EHA5 = 1; 

int EHA6 = 1; 

double diff1, diff2, diff3, diff4, diff5, diff6; // difference between 

existing and target actuator lengths 

 

int count = 0; // count for the loop 

 

// Variables for writing controller status 

String inString1 = "", inString2 = ""; 

boolean stringComplete1 = false, stringComplete2 = false; 

int Controller1_status, Controller2_status; 

 

// Array for controller variables, Actuator lengths variable and voltage 

variables 

int Controller_status[2]; 

double Length[6]; 

double Voltage[6]; 

 

// Target actuator lengths 

double inputD[6]; 

 

// New actuator lengths 

double nLeg[6]; 

 

// STARTING MATRIX CALCULATIONS FOR LEG LENGTH 

// Transformation matrices: 

// hwbc -> transformation matrix for base c (local) wrt to world, 
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// hwpc -> transformation matrix for pc (local) wrt to world, 

// htm -> homogeneous transfotmation matrix for new Tx, Ty, Tz, Rx, Ry, Rz 

from home pose 

// ALL CALCULATIONS ARE DONE wtr TO WORLD FRAME 

 

mtx_type wba1[n][1], wba2[n][1], wba3[n][1], wba4[n][1], wba5[n][1], 

wba6[n][1]; // base joint coordinates wrt to World @top home Pose 

mtx_type wpa1[n][1], wpa2[n][1], wpa3[n][1], wpa4[n][1], wpa5[n][1], 

wpa6[n][1]; // Platform joint coordinates wrt to World @top home Pose 

mtx_type gpa1[n][1], gpa2[n][1], gpa3[n][1], gpa4[n][1], gpa5[n][1], 

gpa6[n][1]; // Platform joint coordinates wrt to grip center @top home Pose 

 

mtx_type wgc[n][1] = { { 0 }, { 0 }, { 885.21 }, { 1 } }; // height of moving 

grip top center wrt world frame 

mtx_type n_wgc[n][1], n_ggc[n][1]; 

 

mtx_type n_gpa1[n][1], n_gpa2[n][1], n_gpa3[n][1], n_gpa4[n][1], 

n_gpa5[n][1], n_gpa6[n][1]; // New platform joint locations wrt moving grip 

center 

mtx_type n_wpa1[n][1], n_wpa2[n][1], n_wpa3[n][1], n_wpa4[n][1], 

n_wpa5[n][1], n_wpa6[n][1]; // New platform joint locations wrt world center 

 

// dimensions at upper home pose, i.e. grippers are gaugue distance (50mm) 

double gp = -318.22; // moving grip center to platform center 

double gb = -813.66; // moving grip center to base center 

double gw = -885.21; // moving grip center to world center 

double bp = 495.44; // base to plaform center 

double wb = 71.55; // world center to base center 

double wp = wb + bp; // world center to platform center 

 

// assign values to the base and platform joints for home pose 

// mtx_type is redefining double data type under MatrixMath.h header 

 

// matrices to define base joints 

mtx_type ba1[n][1] = { { b_radius * cos(angb_rad[0]) }, { b_radius * 

sin(angb_rad[0]) }, { 0 }, { 1 } }; 

mtx_type ba2[n][1] = { { b_radius * cos(angb_rad[1]) }, { b_radius * 

sin(angb_rad[1]) }, { 0 }, { 1 } }; 

mtx_type ba3[n][1] = { { b_radius * cos(angb_rad[2]) }, { b_radius * 

sin(angb_rad[2]) }, { 0 }, { 1 } }; 

mtx_type ba4[n][1] = { { b_radius * cos(angb_rad[3]) }, { b_radius * 

sin(angb_rad[3]) }, { 0 }, { 1 } }; 

mtx_type ba5[n][1] = { { b_radius * cos(angb_rad[4]) }, { b_radius * 

sin(angb_rad[4]) }, { 0 }, { 1 } }; 

mtx_type ba6[n][1] = { { b_radius * cos(angb_rad[5]) }, { b_radius * 

sin(angb_rad[5]) }, { 0 }, { 1 } }; 

 

// matrices to define platform joints 

mtx_type pa1[n][1] = { { p_radius * cos(angp_rad[0]) }, { p_radius * 

sin(angp_rad[0]) }, { 0 }, { 1 } }; 

mtx_type pa2[n][1] = { { p_radius * cos(angp_rad[1]) }, { p_radius * 

sin(angp_rad[1]) }, { 0 }, { 1 } }; 

mtx_type pa3[n][1] = { { p_radius * cos(angp_rad[2]) }, { p_radius * 

sin(angp_rad[2]) }, { 0 }, { 1 } }; 

mtx_type pa4[n][1] = { { p_radius * cos(angp_rad[3]) }, { p_radius * 

sin(angp_rad[3]) }, { 0 }, { 1 } }; 

mtx_type pa5[n][1] = { { p_radius * cos(angp_rad[4]) }, { p_radius * 
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sin(angp_rad[4]) }, { 0 }, { 1 } }; 

mtx_type pa6[n][1] = { { p_radius * cos(angp_rad[5]) }, { p_radius * 

sin(angp_rad[5]) }, { 0 }, { 1 } }; 

 

mtx_type ggc[n][1] = { { 0 }, { 0 }, { 0 }, { 1 } }; // moving grip center 

wrt moving grip center 

 

mtx_type hwgc[n][n] = { 

 { 1, 0, 0, 0 }, 

 { 0, 1, 0, 0 }, 

 { 0, 0, 1, -gw }, 

 { 0, 0, 1, 1 } 

}; 

mtx_type hgpc[n][n] = { 

 { 1, 0, 0, 0 }, 

 { 0, 1, 0, 0 }, 

 { 0, 0, 1, gp }, 

 { 0, 0, 1, 1 } 

}; 

mtx_type hwbc[n][n] = { 

 { 1, 0, 0, 0 }, 

 { 0, 1, 0, 0 }, 

 { 0, 0, 1, wb }, 

 { 0, 0, 0, 1 } 

}; 

 

// Function to check user input data 

double check_InputData(double min_val, double max_val) { 

 int ans = 0; 

 String userAns; 

 double input_data; 

 while (ans == 0) { 

 userAns = Serial.readStringUntil('\n'); 

 if (userAns != "") { 

 if (userAns.toDouble() >= min_val && userAns.toDouble() <= max_val) { 

 ans = 1; 

 input_data = userAns.toFloat(); 

 Serial.print((String) "Value entered = " + input_data + "\n"); 

 } else { 

 ans = 0; 

 Serial.print(userAns + " --> is out of range, please enter again!\n"); 

 } 

 } 

 } 

 return input_data; 

} 

 

// Function to read current actautor lengths 

void read_curr_act_len_vol(double Length[], double Voltage[]) { 

 // Reading present actuator lengths 

 auto val1 = ads1.readADC_SingleEnded(0); // reading voltage from the pin 

 Voltage[0] = val1 * 0.1875 / 1000.0; // converting voltage in mV units 

 Length[0] = 70.81362 * Voltage[0] + 16.97272; // converting mV to lengths in 

mm from the regression equation obtained in calibration of the LVDT1 

 

 auto val2 = ads1.readADC_SingleEnded(1); // reading voltage from the pin 

 Voltage[1] = val2 * 0.1875 / 1000.0; // converting voltage in mV units 



 

 114 

 Length[1] = 73.82455 * Voltage[1] + 11.75907; // converting mV to lengths in 

mm from the regression equation obtained in calibration of the LVDT2 

 

 auto val3 = ads1.readADC_SingleEnded(2); // reading voltage from the pin 

 Voltage[2] = val3 * 0.1875 / 1000.0; // converting voltage in mV units 

 Length[2] = 66.70747 * Voltage[2] + 20.41616; // converting mV to lengths in 

mm from the regression equation obtained in calibration of the LVDT3 

 

 auto val4 = ads2.readADC_SingleEnded(0); // reading voltage from the pin 

 Voltage[3] = val4 * 0.1875 / 1000.0; // converting voltage in mV units 

 Length[3] = 68.76017 * Voltage[3] + 15.22161; // converting mV to lengths in 

mm from the regression equation obtained in calibration of the LVDT4 

 

 auto val5 = ads2.readADC_SingleEnded(1); // reading voltage from the pin 

 Voltage[4] = val5 * 0.1875 / 1000.0; // converting voltage in mV units 

 Length[4] = 69.68864 * Voltage[4] + 15.09707; // converting mV to lengths in 

mm from the regression equation obtained in calibration of the LVDT5 

 

 auto val6 = ads2.readADC_SingleEnded(2); // reading voltage from the pin 

 Voltage[5] = val6 * 0.1875 / 1000.0; // converting voltage in mV units 

 Length[5] = 71.50050 * Voltage[5] + 15.56798; // converting mV to lengths in 

mm from the regression equation obtained in calibration of the LVDT6 

} 

 

// Function to control actuator speeds 

int EHACalc(double differ, double speedFactor) { 

 if ((String)differ == "-0.00" || (String)differ == "0.00") { 

 differ = 0.0; 

 } 

 int EHA; 

 

 if (differ >= -pos_tol && differ <= pos_tol) { 

 EHA = 0; 

 } 

 if (differ > pos_tol && differ <= 1) { 

 EHA = 105; 

 } else if (differ > 1) { 

 EHA = 105 + differ * speedFactor; 

 } 

 if (differ >= -1 && differ < -pos_tol) { 

 EHA = -105; 

 } else if (differ < -1) { 

 EHA = -105 + differ * speedFactor; 

 } 

 return EHA; 

} 

 

// Function to create the platform motion 

int travel_steps(int flag, int EHA1, int EHA2, int EHA3, int EHA4, int EHA5, 

int EHA6, int count, double inputD[]) { 

 while (EHA1 != 0 || EHA2 != 0 || EHA3 != 0 || EHA4 != 0 || EHA5 != 0 || EHA6 

!= 0) { 

 

 count = count + 1; 

 

 read_curr_act_len_vol(Length, Voltage); 
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 // calculates the difference between target extension lengths (inputD) and 

current extension lengths (Lengths) 

 diff1 = inputD[0] - Length[0]; 

 diff2 = inputD[1] - Length[1]; 

 diff3 = inputD[2] - Length[2]; 

 diff4 = inputD[3] - Length[3]; 

 diff5 = inputD[4] - Length[4]; 

 diff6 = inputD[5] - Length[5]; 

 

 // considered max speed 300 and minimum speed 100 for difference 100mm to 

0.5mm 

 // Adjusted after multiple iterations due to unequal responses of the 

actuators 

 double diff_fact = 6; 

 

 // Sets the actuator motions based on the differnce values 

 EHA1 = EHACalc(diff1, diff_fact); 

 EHA2 = EHACalc(diff2, diff_fact); 

 EHA3 = EHACalc(diff3, diff_fact); 

 EHA4 = EHACalc(diff4, diff_fact); 

 EHA5 = EHACalc(diff5, diff_fact); 

 EHA6 = EHACalc(diff6, diff_fact); 

 

 // Sending signal to controller1 for actuator motions 

 Serial1.println("!g 1 " + String(EHA1)); 

 Serial1.flush(); 

 Serial1.println("!g 2 " + String(EHA2)); 

 Serial1.flush(); 

 Serial1.println("!g 3 " + String(EHA3)); 

 Serial1.flush(); 

 

 // Checks controller availability in each cycle, it is only possible just 

after the flushing 

 if (Serial1.available() > 0) { 

 Controller1_status = 1; 

 } else { 

 Serial.print("Controller 1 NOT FOUND.\n"); 

 Controller1_status = 0; 

 } 

 

 // Sending signal to controller2 for actuator motions 

 Serial2.println("!g 1 " + String(EHA4)); 

 Serial2.flush(); 

 Serial2.println("!g 2 " + String(EHA5)); 

 Serial2.flush(); 

 Serial2.println("!g 3 " + String(EHA6)); 

 Serial2.flush(); 

 

 // Checks controller availability in each cycle, it is only possible just 

after the flushing 

 if (Serial2.available() > 0) { 

 Controller2_status = 1; 

 } else { 

 Serial.print("Controller 2 NOT FOUND.\n"); 

 Controller2_status = 0; 

 } 
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 // Displays reading in serial monitor for the current loop cycle for user 

knowledge 

 Serial.print((String) "\nReq Length1 = " + inputD[0] + "; Curr Length1 = " + 

Length[0] + "; Curr Voltage1 = " + Voltage[0] + "; Length Diff1 = " + diff1 + 

"; Speed1 = " + EHA1); 

 Serial.print((String) "\nReq Length2 = " + inputD[1] + "; Curr Length2 = " + 

Length[1] + "; Curr Voltage2 = " + Voltage[1] + "; Length Diff2 = " + diff2 + 

"; Speed2 = " + EHA2); 

 Serial.print((String) "\nReq Length3 = " + inputD[2] + "; Curr Length3 = " + 

Length[2] + "; Curr Voltage3 = " + Voltage[2] + "; Length Diff3 = " + diff3 + 

"; Speed3 = " + EHA3); 

 Serial.print((String) "\nReq Length4 = " + inputD[3] + "; Curr Length4 = " + 

Length[3] + "; Curr Voltage4 = " + Voltage[3] + "; Length Diff4 = " + diff4 + 

"; Speed4 = " + EHA4); 

 Serial.print((String) "\nReq Length5 = " + inputD[4] + "; Curr Length5 = " + 

Length[4] + "; Curr Voltage5 = " + Voltage[4] + "; Length Diff5 = " + diff5 + 

"; Speed5 = " + EHA5); 

 Serial.print((String) "\nReq Length6 = " + inputD[5] + "; Curr Length6 = " + 

Length[5] + "; Curr Voltage6 = " + Voltage[5] + "; Length Diff6 = " + diff6 + 

"; Speed6 = " + EHA6); 

 Serial.print("\n"); 

 

 Serial.print((String) "\nCycles count " + count + "\n"); 

 

 // Execution stops if any controller disconnected. 

 if (Controller1_status == 0 || Controller2_status == 0) { 

 Serial.print(F("Controller/s failed!\n")); 

 break; 

 } 

 

 if (EHA1 == 0 && EHA2 == 0 && EHA3 == 0 && EHA4 == 0 && EHA5 == 0 && EHA6 == 

0) { 

 if (flag == 0) { 

 Serial.print(F("\nReached Home Pose!\n")); 

 } 

 if (flag == 1) { 

 Serial.print(F("Lower Home position reached!\n")); 

 } 

 if (flag == 2) { 

 Serial.print(F("Upper Home position reached!\n")); 

 } 

 if (flag == 3) { 

 Serial.print(F("\nReached point on the Path!\n")); 

 } 

 break; 

 } 

 

 if (Serial.available() > 0) { 

 char serialState = Serial.read(); 

 if (serialState == 's') { 

 Serial.print((String) "\nCycles count " + count + "\n"); 

 Serial.print(F("Processing stopped by user!\n")); 

 break; 

 } 

 } 

 } 

 return count; 
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} 

 

// Calculate new actuator lengths 

void calc_new_act_len(double Tx, double Ty, double Tz, double Rx, double Ry, 

double Rz, double nLeg[]) { 

 

 double Rx_rad = Rx * to_rad; 

 double Ry_rad = Ry * to_rad; 

 double Rz_rad = Rz * to_rad; 

 

 mtx_type htm[n][n] = { 

 { cos(Ry_rad) * cos(Rz_rad), sin(Rx_rad) * sin(Ry_rad) * cos(Rz_rad) - 

cos(Rx_rad) * sin(Rz_rad), cos(Rx_rad) * sin(Ry_rad) * cos(Rz_rad) + 

sin(Rx_rad) * sin(Rz_rad), Tx }, 

 { sin(Rz_rad) * cos(Ry_rad), sin(Rx_rad) * sin(Ry_rad) * sin(Rz_rad) + 

cos(Rx_rad) * cos(Rz_rad), cos(Rx_rad) * sin(Ry_rad) * sin(Rz_rad) - 

sin(Rx_rad) * cos(Rz_rad), Ty }, 

 { -sin(Ry_rad), cos(Ry_rad) * sin(Rx_rad), cos(Rx_rad) * cos(Ry_rad), Tz }, 

 { 0, 0, 0, 1 } 

 }; 

 

 // Calcualate new Platform joints wrt to plaform center 

 Matrixx.Multiply((mtx_type*)htm, (mtx_type*)gpa1, n, n, 1, 

(mtx_type*)n_gpa1); 

 Matrixx.Multiply((mtx_type*)htm, (mtx_type*)gpa2, n, n, 1, 

(mtx_type*)n_gpa2); 

 Matrixx.Multiply((mtx_type*)htm, (mtx_type*)gpa3, n, n, 1, 

(mtx_type*)n_gpa3); 

 Matrixx.Multiply((mtx_type*)htm, (mtx_type*)gpa4, n, n, 1, 

(mtx_type*)n_gpa4); 

 Matrixx.Multiply((mtx_type*)htm, (mtx_type*)gpa5, n, n, 1, 

(mtx_type*)n_gpa5); 

 Matrixx.Multiply((mtx_type*)htm, (mtx_type*)gpa6, n, n, 1, 

(mtx_type*)n_gpa6); 

 

 // Calcualate new Platform joints wrt to World origin 

 Matrixx.Multiply((mtx_type*)hwgc, (mtx_type*)n_gpa1, n, n, 1, 

(mtx_type*)n_wpa1); 

 Matrixx.Multiply((mtx_type*)hwgc, (mtx_type*)n_gpa2, n, n, 1, 

(mtx_type*)n_wpa2); 

 Matrixx.Multiply((mtx_type*)hwgc, (mtx_type*)n_gpa3, n, n, 1, 

(mtx_type*)n_wpa3); 

 Matrixx.Multiply((mtx_type*)hwgc, (mtx_type*)n_gpa4, n, n, 1, 

(mtx_type*)n_wpa4); 

 Matrixx.Multiply((mtx_type*)hwgc, (mtx_type*)n_gpa5, n, n, 1, 

(mtx_type*)n_wpa5); 

 Matrixx.Multiply((mtx_type*)hwgc, (mtx_type*)n_gpa6, n, n, 1, 

(mtx_type*)n_wpa6); 

 

 // Final actuator lengths 

 nLeg[0] = sqrt(sq(n_wpa1[0][0] - wba1[0][0]) + sq(n_wpa1[1][0] - wba1[1][0]) 

+ sq(n_wpa1[2][0] - wba1[2][0])); 

 nLeg[1] = sqrt(sq(n_wpa2[0][0] - wba2[0][0]) + sq(n_wpa2[1][0] - wba2[1][0]) 

+ sq(n_wpa2[2][0] - wba2[2][0])); 

 nLeg[2] = sqrt(sq(n_wpa3[0][0] - wba3[0][0]) + sq(n_wpa3[1][0] - wba3[1][0]) 

+ sq(n_wpa3[2][0] - wba3[2][0])); 

 nLeg[3] = sqrt(sq(n_wpa4[0][0] - wba4[0][0]) + sq(n_wpa4[1][0] - wba4[1][0]) 
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+ sq(n_wpa4[2][0] - wba4[2][0])); 

 nLeg[4] = sqrt(sq(n_wpa5[0][0] - wba5[0][0]) + sq(n_wpa5[1][0] - wba5[1][0]) 

+ sq(n_wpa5[2][0] - wba5[2][0])); 

 nLeg[5] = sqrt(sq(n_wpa6[0][0] - wba6[0][0]) + sq(n_wpa6[1][0] - wba6[1][0]) 

+ sq(n_wpa6[2][0] - wba6[2][0])); 

} 

 

 

void setup() { 

 

 // Calcualate moving grip wrt to World center. THIS CANNOT BE DONE OUTSIDE 

setup function 

 Matrixx.Multiply((mtx_type*)hwgc, (mtx_type*)ggc, n, n, 1, (mtx_type*)wgc); 

 

 // Calcualate base joints wrt to World center 

 Matrixx.Multiply((mtx_type*)hwbc, (mtx_type*)ba1, n, n, 1, (mtx_type*)wba1); 

 Matrixx.Multiply((mtx_type*)hwbc, (mtx_type*)ba2, n, n, 1, (mtx_type*)wba2); 

 Matrixx.Multiply((mtx_type*)hwbc, (mtx_type*)ba3, n, n, 1, (mtx_type*)wba3); 

 Matrixx.Multiply((mtx_type*)hwbc, (mtx_type*)ba4, n, n, 1, (mtx_type*)wba4); 

 Matrixx.Multiply((mtx_type*)hwbc, (mtx_type*)ba5, n, n, 1, (mtx_type*)wba5); 

 Matrixx.Multiply((mtx_type*)hwbc, (mtx_type*)ba6, n, n, 1, (mtx_type*)wba6); 

 

 // Calcualate platform joints wrt to Moving grip center 

 Matrixx.Multiply((mtx_type*)hgpc, (mtx_type*)pa1, n, n, 1, (mtx_type*)gpa1); 

 Matrixx.Multiply((mtx_type*)hgpc, (mtx_type*)pa2, n, n, 1, (mtx_type*)gpa2); 

 Matrixx.Multiply((mtx_type*)hgpc, (mtx_type*)pa3, n, n, 1, (mtx_type*)gpa3); 

 Matrixx.Multiply((mtx_type*)hgpc, (mtx_type*)pa4, n, n, 1, (mtx_type*)gpa4); 

 Matrixx.Multiply((mtx_type*)hgpc, (mtx_type*)pa5, n, n, 1, (mtx_type*)gpa5); 

 Matrixx.Multiply((mtx_type*)hgpc, (mtx_type*)pa6, n, n, 1, (mtx_type*)gpa6); 

 // ========================================================================= 

 

 Serial.begin(115200); // Start serial monitor 

 Serial.flush(); 

 Serial1.begin(115200); // starts controller 1 serial port 

 Serial1.flush(); 

 Serial2.begin(115200); // starts controller 2 serial port 

 Serial2.flush(); 

 

 // write null speed to 3 output pins to check availability of the controller 

1 

 Serial1.println("!g 1 0"); 

 Serial1.flush(); 

 Serial1.println("!g 2 0"); 

 Serial1.flush(); 

 Serial1.println("!g 3 0"); 

 Serial1.flush(); 

 

 Serial.print("\n"); 

 // if available or unavailable, informs the user 

 if (Serial1.available() > 0) { 

 while (Serial1.available() > 0) { 

 char c_char = Serial1.read(); 

 inString1 += (char)c_char; // write read string in a single line instead of 

writing each character in each line 

 if (inString1.indexOf("FS=") < inString1.lastIndexOf('\r')) { 

 stringComplete1 = true; 

 } 
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 } 

 if (stringComplete1) { 

 Serial.print("\nController 1 Feedback: " + inString1); 

 inString1 = ""; 

 } 

 } else { 

 Serial.print("\nController 1 NOT FOUND."); 

 } 

 

 // write null speed to 3 output pins to check availability of the controller 

2 

 Serial2.println("!g 1 0"); 

 Serial2.flush(); 

 Serial2.println("!g 2 0"); 

 Serial2.flush(); 

 Serial2.println("!g 3 0"); 

 Serial2.flush(); 

 

 // if available or unavailable, informs the user 

 if (Serial2.available() > 0) { 

 while (Serial2.available() > 0) { 

 char c_char2 = Serial2.read(); 

 inString2 += (char)c_char2; // write read string in a single line instead of 

writing each character in each line 

 if (inString2.indexOf("FS=") < inString2.lastIndexOf('\r')) { 

 stringComplete2 = true; 

 } 

 } 

 if (stringComplete2) { 

 Serial.print("\nController 2 Feedback: " + inString2); 

 inString2 = ""; 

 } 

 } else { 

 Serial.print("\nController 2 NOT FOUND."); 

 } 

 

 // Starts the ADS1115 breakout boards 

 ads1.begin(); 

 ads2.begin(); 

 ads1.setGain(GAIN_TWOTHIRDS); 

 ads2.setGain(GAIN_TWOTHIRDS); 

 ads1.setSPS(ADS1115_DR_64SPS); 

 ads2.setSPS(ADS1115_DR_64SPS); 

 delay(1000); 

 

 read_curr_act_len_vol(Length, Voltage); // Read current actuator length from 

potentiometers 

 

 //Display present voltages in the serial monitor 

 Serial.print("\nCurrent LVDT voltages (mV): "); 

 Serial.print("Actuator 1: " + String(Voltage[0], 2) + "; "); 

 Serial.print("Actuator 2: " + String(Voltage[1], 2) + "; "); 

 Serial.print("Actuator 3: " + String(Voltage[2], 2) + "; "); 

 Serial.print("Actuator 4: " + String(Voltage[3], 2) + "; "); 

 Serial.print("Actuator 5: " + String(Voltage[4], 2) + "; "); 

 Serial.print("Actuator 6: " + String(Voltage[5], 2) + ";\n"); 
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 //Display present length in the serial monitor 

 Serial.print("Current Actuator extensions (mm):"); 

 Serial.print("Actuator 1: " + String(Length[0], 2) + "; "); 

 Serial.print("Actuator 2: " + String(Length[1], 2) + "; "); 

 Serial.print("Actuator 3: " + String(Length[2], 2) + "; "); 

 Serial.print("Actuator 4: " + String(Length[3], 2) + "; "); 

 Serial.print("Actuator 5: " + String(Length[4], 2) + "; "); 

 Serial.print("Actuator 6: " + String(Length[5], 2) + ";\n"); 

 

 Serial.print(F("\n[z --> upward is +ve]\n")); 

 Serial.print(F("At Upper Hoome Position z = 0, Gripper faces are 50mm apart 

& all extension lengths are = 96mm.\n")); 

 Serial.print(F("At Lower Hoome Position z = -50, all actuators extension 

lengths are = 52.5mm.\n")); 

 

 // at z = -50mm actator lengths are 52.5mm 

 Serial.print(F("Enter the values in the command line (ENTER 's' TO STOP THE 

EXECUTION):\n")); 

 Serial.print(F("Go to Lower Home Poisition (1), Upper Home Position (2), No 

(0) [0/1/2]:\n")); 

 while (ans == 0) { 

 userAns = Serial.readStringUntil('\n'); 

 if (userAns != "") { 

 ans = 1; 

 usrAns = userAns.toInt(); 

 } 

 } 

 

 if (usrAns == 1) { 

 Serial.print("\n"); 

 

 // Setting all actuator target length to 52.5mm to reach lower home position 

 inputD[0] = (double)52.5; 

 inputD[1] = (double)52.5; 

 inputD[2] = (double)52.5; 

 inputD[3] = (double)52.5; 

 inputD[4] = (double)52.5; 

 inputD[5] = (double)52.5; 

 

 int flag = 1; // flag to identify the source of the movement 

 // Moving the Platform 

 travel_steps(flag, EHA1, EHA2, EHA3, EHA4, EHA5, EHA6, count, inputD); 

 } 

 

 if (usrAns == 2) { 

 Serial.print("\n"); 

 

 // Setting all actuator target length to 96mm to reach upper home position 

 inputD[0] = hm_act_len; 

 inputD[1] = hm_act_len; 

 inputD[2] = hm_act_len; 

 inputD[3] = hm_act_len; 

 inputD[4] = hm_act_len; 

 inputD[5] = hm_act_len; 

 

 int flag = 2; // flag to identify the source of the movement 

 // Moving the Platform 
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 travel_steps(flag, EHA1, EHA2, EHA3, EHA4, EHA5, EHA6, count, inputD); 

 } 

 

 if (usrAns == 0) { 

 // Take position input from the user 

 // implement the conditions for Tx Ty Tz Rx Ry Rz 

 int count1 = 0; 

 

 Serial.print((String) "Enter x-coordinate from Home Pose (Between " + x_min 

+ " to " + x_max + "): \n"); 

 Tx = check_InputData(x_min, x_max); 

 Serial.print((String) "Enter y-coordinate from Home Pose (Between " + y_min 

+ " to " + y_max + "): \n"); 

 Ty = check_InputData(y_min, y_max); 

 Serial.print((String) "Enter z-coordinate from Home Pose (Between " + z_min 

+ " to " + z_max + "): \n"); 

 Tz = check_InputData(z_min, z_max); 

 Serial.print((String) "Enter rotation about x-axis (Between " + roll_min + " 

to " + roll_max + "): \n"); 

 Rx = check_InputData(roll_min, roll_max); 

 Serial.print((String) "Enter rotation about y-axis (Between " + pitch_min + 

" to " + pitch_max + "): \n"); 

 Ry = check_InputData(pitch_min, pitch_max); 

 Serial.print((String) "Enter rotation about z-axis (Between " + yaw_min + " 

to " + yaw_max + "): \n"); 

 Rz = check_InputData(yaw_min, yaw_max); 

 

 Serial.print(F("Input values are : Tx = ")); 

 Serial.print(Tx); 

 Serial.print(F("; Ty = ")); 

 Serial.print(Ty); 

 Serial.print(F("; Tz = ")); 

 Serial.print(Tz); 

 Serial.print(F("; Rx = ")); 

 Serial.print(Rx); 

 Serial.print(F("; Ry = ")); 

 Serial.print(Ry); 

 Serial.print(F("; Rz = ")); 

 Serial.print(Rz); 

 Serial.print("\n"); 

 

 // Calculating new leg lengths based on the input data 

 calc_new_act_len(Tx, Ty, Tz, Rx, Ry, Rz, nLeg); 

 

 Serial.print("New Target Actuator Lengths: Leg1 = "); 

 Serial.print(nLeg[0]); 

 Serial.print("; Leg2 = "); 

 Serial.print(nLeg[1]); 

 Serial.print("; Leg3 = "); 

 Serial.print(nLeg[2]); 

 Serial.print("; Leg4 = "); 

 Serial.print(nLeg[3]); 

 Serial.print("; Leg5 = "); 

 Serial.print(nLeg[4]); 

 Serial.print("; Leg6 = "); 

 Serial.print(nLeg[5]); 

 Serial.print("\n"); 
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 // New extension lengths = total leg length - fixed length (465.02mm) => 

from the Matlab code 

 inputD[0] = nLeg[0] - 465.02; 

 inputD[1] = nLeg[1] - 465.02; 

 inputD[2] = nLeg[2] - 465.02; 

 inputD[3] = nLeg[3] - 465.02; 

 inputD[4] = nLeg[4] - 465.02; 

 inputD[5] = nLeg[5] - 465.02; 

 

 // Sometimes the input data gets deleted from serial monitor due high amount 

of text scrolling, so saving the data to display at the end again. 

 double o_tx, o_ty, o_tz, o_rx, o_ry, o_rz; // original input data 

 double o_leg1, o_leg2, o_leg3, o_leg4, o_leg5, o_leg6; // Final actuator 

lengths to be obtained 

 double o_ext1, o_ext2, o_ext3, o_ext4, o_ext5, o_ext6; // Final extension 

lengths to be obtained 

 

 o_tx = Tx; 

 o_ty = Ty; 

 o_tz = Tz; 

 o_rx = Rx; 

 o_ry = Ry; 

 o_rz = Rz; 

 

 o_leg1 = nLeg[0]; 

 o_leg2 = nLeg[1]; 

 o_leg3 = nLeg[2]; 

 o_leg4 = nLeg[3]; 

 o_leg5 = nLeg[4]; 

 o_leg6 = nLeg[5]; 

 

 o_ext1 = inputD[0]; 

 o_ext2 = inputD[1]; 

 o_ext3 = inputD[2]; 

 o_ext4 = inputD[3]; 

 o_ext5 = inputD[4]; 

 o_ext6 = inputD[5]; 

 

 // Check if the values are within limits 

 if (nLeg[0] <= act_len_max && nLeg[1] <= act_len_max && nLeg[2] <= 

act_len_max && nLeg[3] <= act_len_max && nLeg[4] <= act_len_max && nLeg[5] <= 

act_len_max && nLeg[0] >= act_len_min && nLeg[1] >= act_len_min && nLeg[2] >= 

act_len_min && nLeg[3] >= act_len_min && nLeg[4] >= act_len_min && nLeg[5] >= 

act_len_min && n_wgc[3][0] <= (wgc[3][0] + 25) && n_wgc[3][0] >= (wgc[3][0] - 

50)) { 

 // Display New actuator lengths in the serial monitor 

 Serial.print(F("New Actuator Extension Lengths (mm)\n")); 

 Serial.print("Actuator 1: " + String(inputD[0], 2) + "; "); 

 Serial.print("Actuator 2: " + String(inputD[1], 2) + "; "); 

 Serial.print("Actuator 3: " + String(inputD[2], 2) + "; "); 

 Serial.print("Actuator 4: " + String(inputD[3], 2) + "; "); 

 Serial.print("Actuator 5: " + String(inputD[4], 2) + "; "); 

 Serial.print("Actuator 6: " + String(inputD[5], 2) + ";"); 

 Serial.print(F("\n")); 

 } else { 

 Serial.print(F("\n")); 
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 Serial.print((String) "Cycles count " + count + "\n"); 

 Serial.print("Actuator Lengths / Platform center height exceed limits!.\n"); 

 } 

 

 // if the platform center is not @(x, y, z) o equal to(0, 0, 0) and horz, 

bring it to the home position 

 if (Length[0] <= hm_pos_lower || Length[1] <= hm_pos_lower || Length[2] <= 

hm_pos_lower || Length[3] <= hm_pos_lower || Length[4] <= hm_pos_lower || 

Length[5] <= hm_pos_lower || Length[0] >= hm_pos_upper || Length[1] >= 

hm_pos_upper || Length[2] >= hm_pos_upper || Length[3] >= hm_pos_upper || 

Length[4] >= hm_pos_upper || Length[5] >= hm_pos_upper) { 

 Serial.print("\n"); 

 

 // Setting all actuator target length to 96mm to reach upper home position 

 inputD[0] = hm_act_len; 

 inputD[1] = hm_act_len; 

 inputD[2] = hm_act_len; 

 inputD[3] = hm_act_len; 

 inputD[4] = hm_act_len; 

 inputD[5] = hm_act_len; 

 

 // Going to home pose (0, 0, 0) 

 Serial.print(F("\n\nMoving to Home Pose (0, 0, 0) first....\n")); 

 

 int flag = 0; // flag to identify the source of the movement 

 count1 = travel_steps(flag, EHA1, EHA2, EHA3, EHA4, EHA5, EHA6, count, 

inputD); 

 } 

 

 // Path palnning for reaching the destination 

 // Divide the destination movements into 10 steps 

 // This display in the serial monitor shows more than 10 cycles, the display 

shows all 

 // moves in between each of the 10 steps 

 // As per the current Matlab calculations, based on the intelligent 

constructions, there is rarely a singularuty within the workspace 

 double Tx10 = Tx / 10; 

 double Ty10 = Ty / 10; 

 double Tz10 = Tz / 10; 

 double Rx10 = Rx / 10; 

 double Ry10 = Ry / 10; 

 double Rz10 = Rz / 10; 

 

 Serial.print(F("Starting Motion to final point!\n")); 

 

 int flag = 3; // flag to identify the source of the movement 

 

 for (int i = 0; i < 10; i++) { 

 

 if (Serial.available() > 0) { 

 char serialState = Serial.read(); 

 if (serialState == 's') { 

 flag = 5; 

 Serial.print((String) "\nCycles count " + count + "\n"); 

 

 break; 

 } 
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 } 

 

 int j = i + 1; 

 Serial.print((String) "\nGoing planned path point " + j + "\n"); 

 

 double Txn = Tx10 + i * Tx10; 

 double Tyn = Ty10 + i * Ty10; 

 double Tzn = Tz10 + i * Tz10; 

 double Rxn = Rx10 + i * Rx10; 

 double Ryn = Ry10 + i * Ry10; 

 double Rzn = Rz10 + i * Rz10; 

 

 calc_new_act_len(Txn, Tyn, Tzn, Rxn, Ryn, Rzn, nLeg); 

 // New extension lengths = total leg length - fixed length (465.02mm) => 

from the Matlab code 

 inputD[0] = nLeg[0] - 465.02; 

 inputD[1] = nLeg[1] - 465.02; 

 inputD[2] = nLeg[2] - 465.02; 

 inputD[3] = nLeg[3] - 465.02; 

 inputD[4] = nLeg[4] - 465.02; 

 inputD[5] = nLeg[5] - 465.02; 

 

 count = travel_steps(flag, EHA1, EHA2, EHA3, EHA4, EHA5, EHA6, count, 

inputD); 

 } 

 if (flag == 5) { 

 Serial.print(F("Processing stopped by user!\n")); 

 } else { 

 Serial.print(F("\nReached Target Pose!\n")); 

 } 

 int tcount = count1 + count; 

 Serial.print((String) "\nTotal Cycles count " + tcount + "\n"); 

 

 // reprint input data at the end 

 Serial.print(F("\nRedisplay critical data:\nInput values are : Tx = ")); 

 Serial.print(o_tx); 

 Serial.print(F("; Ty = ")); 

 Serial.print(o_ty); 

 Serial.print(F("; Tz = ")); 

 Serial.print(o_tz); 

 Serial.print(F("; Rx = ")); 

 Serial.print(o_rx); 

 Serial.print(F("; Ry = ")); 

 Serial.print(o_ry); 

 Serial.print(F("; Rz = ")); 

 Serial.print(o_rz); 

 Serial.print("\n"); 

 

 // reprint Final Target Actuator lengths at the end 

 Serial.print("Final Target Actuator Lengths: Act1 = "); 

 Serial.print(o_leg1); 

 Serial.print("; Act2 = "); 

 Serial.print(o_leg2); 

 Serial.print("; Act3 = "); 

 Serial.print(o_leg3); 

 Serial.print("; Act4 = "); 

 Serial.print(o_leg4); 
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 Serial.print("; Act5 = "); 

 Serial.print(o_leg5); 

 Serial.print("; Act6 = "); 

 Serial.print(o_leg6); 

 Serial.print("\n"); 

 

 // redisplay New actuator lengths in the serial monitor 

 Serial.print(F("Final Target Actuator Extension Lengths (mm)\n")); 

 Serial.print("Actuator 1: " + String(o_ext1, 2) + "; "); 

 Serial.print("Actuator 2: " + String(o_ext2, 2) + "; "); 

 Serial.print("Actuator 3: " + String(o_ext3, 2) + "; "); 

 Serial.print("Actuator 4: " + String(o_ext4, 2) + "; "); 

 Serial.print("Actuator 5: " + String(o_ext5, 2) + "; "); 

 Serial.print("Actuator 6: " + String(o_ext6, 2) + ";"); 

 Serial.print(F("\n")); 

 } 

 

 Serial.print(F("\n\nExecution ended....\n")); // To show that the all 

processing ended 

} 

 

 

// NOTHING IS HERE 

void loop(void) { 

} 

 

 

7.3 MATLAB codes 

7.3.1 tiger_dh_allpose_w_singularity_filter.m 

% aa_tiger_dh_allpose_w_singularity_filter.m Sourabh Karmakar 2022-05-12 

% revised on 2022-09-29 angle distribution matched with physical robot 

% 2022-10-22 fully revised to take care of the difference in angles  

% in plaform joints and base joints after facing z-rotation issue 

 

% Calculates DH parameters for theoretical poses for Tiger 66.1 Hexapod by 

Parallel Processing 

 

% clc 

clear all; 

close all; 

tic 

 

% if the diary file exists delete it 

if exist('aa_output_msrd_data.txt', 'file') 

 diary off; 

 delete('aa_output_msrd_data.txt'); 

end 

diary aa_output_msrd_data.txt; 

 

ncores = feature('numcores'); 

poolstat = gcp('nocreate'); % If no pool, do not create new one. 
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if isempty(poolstat) 

 parpool ('local', ncores); 

end 

fprintf ("\nRunning Matlab on %d cores...\n", ncores); 

disp(datetime("now")); 

toc 

 

tic 

fprintf ("\nFresh time counting started for calculations....\n"); 

 

%% Loading all fixed dimensions in mm 

az_all_fixed_variables_for_real_check; % Calling script to refresh all fixed 

variables 

load('fixed_variables_real_check.mat'); 

 

wplat_joints = Hwpc*plat_joints; % plat and base joints were wrt to their 

centers 

wbase_joints = Hwbc*base_joints; 

 

wpa1 = Hwpc*pa1; wpa2 = Hwpc*pa2; wpa3 = Hwpc*pa3; 

wpa4 = Hwpc*pa4; wpa5 = Hwpc*pa5; wpa6 = Hwpc*pa6; 

 

wba1 = Hwbc*ba1; wba2 = Hwbc*ba2; wba3 = Hwbc*ba3; 

wba4 = Hwbc*ba4; wba5 = Hwbc*ba5; wba6 = Hwbc*ba6; 

 

% Actuator leg lengths in the current condition 

leg1 = norm(wpa1(1:3,1) - wba1(1:3,1)); 

leg2 = norm(wpa2(1:3,1) - wba2(1:3,1)); 

leg3 = norm(wpa3(1:3,1) - wba3(1:3,1)); 

leg4 = norm(wpa4(1:3,1) - wba4(1:3,1)); 

leg5 = norm(wpa5(1:3,1) - wba5(1:3,1)); 

leg6 = norm(wpa6(1:3,1) - wba6(1:3,1)); 

 

exten_len1 = leg1 - dmin_org; 

exten_len2 = leg2 - dmin_org; 

exten_len3 = leg3 - dmin_org; 

exten_len4 = leg4 - dmin_org; 

exten_len5 = leg5 - dmin_org; 

exten_len6 = leg6 - dmin_org; 

 

fprintf( 'Actuator lengths in Home Position = %4.3f, %4.3f, %4.3f, %4.3f, 

%4.3f & %4.3f (in mm).\n', leg1, leg2, leg3, leg4, leg5, leg6); 

fprintf( 'Actuator extension lengths in Home Position = %4.3f, %4.3f, %4.3f, 

%4.3f, %4.3f & %4.3f (in mm).\n', exten_len1, exten_len2, ... 

 exten_len3, exten_len4, exten_len5, exten_len6); 

fprintf( ['Tx, Ty, Tz limits are = %0.3f & %0.3f; %0.3f & %0.3f; %0.3f & 

%0.3f (in mm);\nRx, Ry, Rz limits are = %0.3f & %0.3f; %0.3f & %0.3f;' ... 

 ' %0.3f & %0.3f (in deg).\n'], x_min, x_max, y_min, y_max, z_min, z_max, 

roll_min, roll_max, pitch_min, pitch_max, yaw_min, yaw_max); 

 

% get inputs from the user 

filename = 'input_theo_data.xlsx'; 

userdata = readmatrix(filename); 

i = size(userdata,1); 

 

% userdata = input('Enter the 6 values for Tx, Ty, Tz, Rx, Ry, Rz within a 

[]:'); 
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tot_calc = i; 

fprintf( "\nNumber of checks to run %i.\n", tot_calc); 

H_all = sparse(tot_calc, 16); 

new_cood = sparse(tot_calc, 54); 

jaco_all = []; 

jaco_not_0 = []; 

 

%% movement of the platform center --NEVER DELETE THE BELOW PART 

% TXdist, TYdist, TZdist => translations along x, y, z axes respectively 

% TXrad, TYrad, TZrad => rotations about x, y, z axes respectively 

 

parfor idx = 1:i 

 TXdist = userdata(idx,1); 

 TYdist = userdata(idx,2); 

 TZdist = userdata(idx, 3); 

 TXrad = deg2rad(userdata(idx, 4)); 

 TYrad = deg2rad(userdata(idx, 5)); 

 TZrad = deg2rad(userdata(idx, 6)); 

 

 % from equation 2.63 & 2.64 of Crig's book, rotations are about fixed axes 

 H =[cos(TYrad)*cos(TZrad), sin(TXrad)*sin(TYrad)*cos(TZrad)-

cos(TXrad)*sin(TZrad),... 

 cos(TXrad)*sin(TYrad)*cos(TZrad)+sin(TXrad)*sin(TZrad), TXdist, ... 

 sin(TZrad)*cos(TYrad), 

sin(TXrad)*sin(TYrad)*sin(TZrad)+cos(TXrad)*cos(TZrad),... 

 cos(TXrad)*sin(TYrad)*sin(TZrad)-sin(TXrad)*cos(TZrad), TYdist, ... 

 -sin(TYrad), cos(TYrad)*sin(TXrad), cos(TXrad)*cos(TYrad), TZdist, ... 

 0, 0, 0, 1]; 

 % New platform-end actuator coordinates wrt to base ctr 

 h_mat = [H(1:4); H(5:8); H(9:12); H(13:16)]; 

 new_wpa1 = Hwgc*h_mat*Hgpc*pa1; new_wpa2 = Hwgc*h_mat*Hgpc*pa2; new_wpa3 = 

Hwgc*h_mat*Hgpc*pa3; 

 new_wpa4 = Hwgc*h_mat*Hgpc*pa4; new_wpa5 = Hwgc*h_mat*Hgpc*pa5; new_wpa6 = 

Hwgc*h_mat*Hgpc*pa6; 

 

 % Actuator leg lengths 

 leg1 = norm(new_wpa1(1:3,1) - wba1(1:3,1)); 

 leg2 = norm(new_wpa2(1:3,1) - wba2(1:3,1)); 

 leg3 = norm(new_wpa3(1:3,1) - wba3(1:3,1)); 

 leg4 = norm(new_wpa4(1:3,1) - wba4(1:3,1)); 

 leg5 = norm(new_wpa5(1:3,1) - wba5(1:3,1)); 

 leg6 = norm(new_wpa6(1:3,1) - wba6(1:3,1)); 

 

 exten_len1 = leg1 - dmin_org; 

 exten_len2 = leg2 - dmin_org; 

 exten_len3 = leg3 - dmin_org; 

 exten_len4 = leg4 - dmin_org; 

 exten_len5 = leg5 - dmin_org; 

 exten_len6 = leg6 - dmin_org; 

 

 % Jacobian of the Stewart Gough Platform 

 % Jacobian J^T is calculated as per article "Position-singularity analysis 

 % of a special class of Stewart parallel mechanisms with two 

 % dissimilar semi-symmetrical hexagons" by Li, Baokun and at el. eq (2b) 

 

 % Unit vectors for each actuator 

 s1 = (new_wpa1(1:3,1) - wba1(1:3,1))/leg1; 
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 s2 = (new_wpa2(1:3,1) - wba2(1:3,1))/leg2; 

 s3 = (new_wpa3(1:3,1) - wba3(1:3,1))/leg3; 

 s4 = (new_wpa4(1:3,1) - wba4(1:3,1))/leg4; 

 s5 = (new_wpa5(1:3,1) - wba5(1:3,1))/leg5; 

 s6 = (new_wpa6(1:3,1) - wba6(1:3,1))/leg6; 

 

 s01 = cross(wba1(1:3,1),new_wpa1(1:3,1))/leg1; 

 s02 = cross(wba2(1:3,1),new_wpa2(1:3,1))/leg2; 

 s03 = cross(wba3(1:3,1),new_wpa3(1:3,1))/leg3; 

 s04 = cross(wba4(1:3,1),new_wpa4(1:3,1))/leg4; 

 s05 = cross(wba5(1:3,1),new_wpa5(1:3,1))/leg5; 

 s06 = cross(wba6(1:3,1),new_wpa6(1:3,1))/leg6; 

 

 jaco_cal = [s1 s2 s3 s4 s5 s6; s01 s02 s03 s04 s05 s06]; 

 

 % if det(jaco_cal) = 0, then that pose is singular and invalid 

 new_wgc = Hwgc*h_mat*ggc; % new top center of lower (moving) grip 

 

 % for new case the TXdist, TYdist, TZdist limits are valid for the moving 

grip center 

 lim_rad = sqrt(new_wgc(1)^2 + new_wgc(2)^2); 

 if (new_wgc(1) >= x_min && new_wgc(2) >= y_min && new_wgc(3) >= (wmgc(3) - 

60) && ... 

 new_wgc(1) <= x_max && new_wgc(2) <= y_max && new_wgc(3) <= (wmgc(3) + 25) 

... 

 && lim_rad <= w_space_rad && leg1 <= dmax && leg2 <= dmax && leg3 <= dmax && 

leg4 <= dmax && ... 

 leg5 <= dmax && leg6 <= dmax && leg1 >= dmin && leg2 >= dmin && leg3 >= dmin 

&& ... 

 leg4 >= dmin && leg5 >= dmin && leg6 >= dmin) 

 if (det(jaco_cal) ~= 0) 

 new_wpc = Hwgc*h_mat*gpc; 

 new_twc = Htwc*new_wgc; 

 new_cood(idx,:) = [new_wpa1', new_wpa2', new_wpa3', new_wpa4', ... 

 new_wpa5', new_wpa6', new_wpc', new_wgc', leg1, leg2, leg3, leg4, leg5, 

leg6, ... 

 TXdist, TYdist, TZdist, rad2deg(TXrad), rad2deg(TYrad), rad2deg(TZrad), 

exten_len1, exten_len2, ... 

 exten_len3, exten_len4, exten_len5, exten_len6, new_twc']; 

 H_all(idx,:) = [TXdist, TYdist, TZdist, rad2deg(TXrad), rad2deg(TYrad), 

rad2deg(TZrad), exten_len1, exten_len2, ... 

 exten_len3, exten_len4, exten_len5, exten_len6, new_wgc']; 

 jaco_not_0(idx,:) = det(jaco_cal); 

 else 

 fprintf( '\nJacobian for data number %i is 0, i.e. Invalid.', idx);  

 end 

 jaco_all(idx,:) = [s1' s2' s3' s4' s5' s6' s01' s02' s03' s04' s05' s06']; 

 else 

 fprintf( '\nData number %i is invalid due to out-of-range actuator 

lengths.\n', idx); 

 end 

end 

 

% remove all rows with all zeros, i.e. invalid 

h_params_inspace = full(H_all(any(H_all,2),:)); 

valid_coods_all = full(new_cood(any(new_cood,2),:)); 

jaco_not_0_valid = full(jaco_not_0(any(jaco_not_0,2),:)); 
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jaco_all_valid = full(jaco_all(any(jaco_all,2),:)); 

 

% Save all data files 

save('h_params_inspace.mat', 'h_params_inspace'); 

save('valid_coods_all.mat','valid_coods_all'); 

save('jaco_not_0_valid.mat', 'jaco_not_0_valid'); 

save('jac_all_valid.mat','jaco_all_valid'); 

 

%% NEVER DELETE THE ABOVE PART 

 

%% Load exisitng data table 

 

%% Process data 

jaco_det_max = max(jaco_not_0_valid(:,1)); 

jaco_det_min = min(jaco_not_0_valid(:,1)); 

 

% count valid poses 

v_pos_no = size(h_params_inspace); 

 

fprintf( '\nNo. of valid positions without Singularity Check = %i.', 

size(jaco_all_valid, 1)); 

fprintf( '\nNo. of valid positions with Singularity Check = %i.', 

size(jaco_not_0_valid, 1)); 

fprintf( '\nNo. of Total positions evaluated = %i.\n', tot_calc); 

 

pcx_max = max(valid_coods_all(1:end,25)); 

pcx_min = min(valid_coods_all(1:end,25)); 

pcy_max = max(valid_coods_all(1:end,26)); 

pcy_min = min(valid_coods_all(1:end,26)); 

pcz_max = max(valid_coods_all(1:end,27)); 

pcz_min = min(valid_coods_all(1:end,27)); 

 

gcx_max = max(valid_coods_all(1:end,29)); 

gcx_min = min(valid_coods_all(1:end,29)); 

gcy_max = max(valid_coods_all(1:end,30)); 

gcy_min = min(valid_coods_all(1:end,30)); 

gcz_max = max(valid_coods_all(1:end,31)); 

gcz_min = min(valid_coods_all(1:end,31)); 

 

minx = min(h_params_inspace(1:end,1)); 

maxx = max(h_params_inspace(1:end,1)); 

miny = min(h_params_inspace(1:end,2)); 

maxy = max(h_params_inspace(1:end,2)); 

minz = min(h_params_inspace(1:end,3)); 

maxz = max(h_params_inspace(1:end,3)); 

 

minroll = min(h_params_inspace(1:end,4)); 

maxroll = max(h_params_inspace(1:end,4)); 

minpitch = min(h_params_inspace(1:end,5)); 

maxpitch = max(h_params_inspace(1:end,5)); 

minyaw = min(h_params_inspace(1:end,6)); 

maxyaw = max(h_params_inspace(1:end,6)); 

 

Leg1_l_min = min(valid_coods_all(1:end,33)); 

Leg1_l_max = max(valid_coods_all(1:end,33)); 

Leg2_l_min = min(valid_coods_all(1:end,34)); 

Leg2_l_max = max(valid_coods_all(1:end,34)); 
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Leg3_l_min = min(valid_coods_all(1:end,35)); 

Leg3_l_max = max(valid_coods_all(1:end,35)); 

Leg4_l_min = min(valid_coods_all(1:end,36)); 

Leg4_l_max = max(valid_coods_all(1:end,36)); 

Leg5_l_min = min(valid_coods_all(1:end,37)); 

Leg5_l_max = max(valid_coods_all(1:end,37)); 

Leg6_l_min = min(valid_coods_all(1:end,38)); 

Leg6_l_max = max(valid_coods_all(1:end,38)); 

 

minextn1 = min(h_params_inspace(1:end,7)); 

maxextn1 = max(h_params_inspace(1:end,7)); 

minextn2 = min(h_params_inspace(1:end,8)); 

maxextn2 = max(h_params_inspace(1:end,8)); 

minextn3 = min(h_params_inspace(1:end,9)); 

maxextn3 = max(h_params_inspace(1:end,9)); 

minextn4 = min(h_params_inspace(1:end,10)); 

maxextn4 = max(h_params_inspace(1:end,10)); 

minextn5 = min(h_params_inspace(1:end,11)); 

maxextn5 = max(h_params_inspace(1:end,11)); 

minextn6 = min(h_params_inspace(1:end,12)); 

maxextn6 = max(h_params_inspace(1:end,12)); 

 

fprintf( '\nCoordinate values in mm wrt WC:\n'); 

fprintf( 'Max of x, y & z-s of Grip center = %0.2f, %0.2f & %0.2f 

respectively.\n', gcx_max, gcy_max, gcz_max); 

fprintf( 'Min of x, y & z-s of Grip center = %0.2f, %0.2f & %0.2f 

respectively.\n', gcx_min, gcy_min, gcz_min); 

fprintf( 'Max of x, y & z-s of Platform center = %0.2f, %0.2f & %0.2f 

respectively.\n', pcx_max, pcy_max, pcz_max); 

fprintf( 'Min of x, y & z-s of Platform center = %0.2f, %0.2f & %0.2f 

respectively.\n', pcx_min, pcy_min, pcz_min); 

 

fprintf( '\nValues for the moving Grip Top Centers:\n'); 

fprintf( 'Maximum & Minimum values of x-translation = %0.2f & %0.2f 

respectively.\n', maxx, minx); 

fprintf( 'Maximum & Minimum values of y-translation = %0.2f & %0.2f 

respectively.\n', maxy, miny); 

fprintf( 'Maximum & Minimum values of z-translation = %0.2f & %0.2f 

respectively.\n', maxz, minz); 

fprintf( 'Maximum & Minimum values of Roll = %0.2f & %0.2f respectively.\n', 

maxroll, minroll); 

fprintf( 'Maximum & Minimum values of Pitch = %0.2f & %0.2f respectively.\n', 

maxpitch, minpitch); 

fprintf( 'Maximum & Minimum values of Yaw = %0.2f & %0.2f respectively.\n', 

maxyaw, minyaw); 

 

fprintf( ['Maximum & Minimum values of Actuators: A1 = %0.2f & %0.2f, A2 = 

%0.2f & %0.2f, A3 = %0.2f & %0.2f,' ... 

 ' A4 = %0.2f & %0.2f, A5 = %0.2f & %0.2f, A6 = %0.2f & %0.2f 

respectively.\n'], Leg1_l_max, Leg1_l_min, Leg2_l_max, ... 

 Leg2_l_min, Leg3_l_max, Leg3_l_min, Leg4_l_max, Leg4_l_min, Leg5_l_max, 

Leg5_l_min, Leg6_l_max, Leg6_l_min); 

fprintf( ['Maximum & Minimum values of Actuators extensions: xA1 = %0.2f & 

%0.2f, xA2 = %0.2f & %0.2f, xA3 = %0.2f & %0.2f,' ... 

 ' xA4 = %0.2f & %0.2f, xA5 = %0.2f & %0.2f, xA6 = %0.2f & %0.2f 

respectively.\n'], maxextn1, minextn1, maxextn2, ... 

 minextn2, maxextn3, minextn3, maxextn4, minextn4, maxextn5, minextn5, 
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maxextn6, minextn6); 

 

fprintf( 'Maximum & Minimum values of Jacobian determinant = %0.2f & %0.2f 

respectively.\n', jaco_det_max, jaco_det_min); 

 

sel_pos_no = 100; % number of points selected for further calculation 

if v_pos_no(1) > sel_pos_no 

 sel_pos_no_rng = randi_org(v_pos_no(1),[1,sel_pos_no]); % randi_org(max(from 

1 to),[rows, cols]) - external function 

 valid_coods = valid_coods_all(sel_pos_no_rng, :); 

 sele_100_details = h_params_inspace(sel_pos_no_rng, :); 

 v_pos_no = sel_pos_no; 

 save('valid_coods.mat','valid_coods'); 

else 

 valid_coods = valid_coods_all; 

 sele_100_details = h_params_inspace; 

end 

save('sele_100_details.mat', 'sele_100_details'); 

save('variables_saved', 'wwc', 'wmgc', 'wplat_joints', 'wbase_joints', 'wbc', 

'v_pos_no', 'sel_pos_no') 

%% Calculate angles till Platform joint for each set 

fprintf('\nStarting angle checks till Platform joints.......'); 

angles_1 = sparse(v_pos_no(1),84); 

parfor i = 1:v_pos_no(1) 

 fprintf("\nFirst search no. %i of %i. ", i, v_pos_no(1)); 

 new_wpa1 = valid_coods(i,1:4)'; 

 new_wpa2 = valid_coods(i,5:8)'; 

 new_wpa3 = valid_coods(i,9:12)'; 

 new_wpa4 = valid_coods(i,13:16)'; 

 new_wpa5 = valid_coods(i,17:20)'; 

 new_wpa6 = valid_coods(i,21:24)'; 

 

 nleg1 = valid_coods(i,33); 

 nleg2 = valid_coods(i,34); 

 nleg3 = valid_coods(i,35); 

 nleg4 = valid_coods(i,36); 

 nleg5 = valid_coods(i,37); 

 nleg6 = valid_coods(i,38); 

 

 ang11 = angle_calculation_1(a, b, new_wpa1, nleg1, thetab_rng(1)); 

 ang12 = angle_calculation_1(a, b, new_wpa2, nleg2, thetab_rng(2)); 

 ang13 = angle_calculation_1(a, b, new_wpa3, nleg3, thetab_rng(3)); 

 ang14 = angle_calculation_1(a, b, new_wpa4, nleg4, thetab_rng(4)); 

 ang15 = angle_calculation_1(a, b, new_wpa5, nleg5, thetab_rng(5)); 

 ang16 = angle_calculation_1(a, b, new_wpa6, nleg6, thetab_rng(6)); 

 fprintf("\n"); 

 angles_1(i,:) = [ang11, ang12, ang13, ang14, ang15, ang16, 

valid_coods(i,:)]; 

end 

 

angles_1 = full(angles_1(any(angles_1,2),:)); 

ppose_devi = [angles_1(:, 1)' angles_1(:,6)' angles_1(:,11)' angles_1(:, 16)' 

angles_1(:,21)' angles_1(:,26)']; 

ppose_devi_max = max(ppose_devi); 

ppose_devi_min = min(ppose_devi); 

valid_angles_1 = size(angles_1); 

fprintf('\nPlatform joint devation maximum = %3.4f mm & minimum = %3.4f mm 
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and found %i valid poses.\n', ... 

 ppose_devi_max, ppose_devi_min, valid_angles_1(1)); 

toc 

 

%% Calculate angles till Grip center for each set 

fprintf('\nStarting angle checks till Grip Center .......'); 

angles_2 = sparse(valid_angles_1(1), 106); 

 

parfor i = 1:valid_angles_1(1) 

 fprintf("\nSecond search no. %i of %i.", i, valid_angles_1(1)); 

 new_wgc = valid_coods(i,29:32)'; 

 

 nleg1 = valid_coods(i,33); 

 nleg2 = valid_coods(i,34); 

 nleg3 = valid_coods(i,35); 

 nleg4 = valid_coods(i,36); 

 nleg5 = valid_coods(i,37); 

 nleg6 = valid_coods(i,38); 

 

 theta2_l1 = angles_1(i,3); theta3_l1 = angles_1(i,4); 

 theta2_l2 = angles_1(i,8); theta3_l2 = angles_1(i,9); 

 theta2_l3 = angles_1(i,13); theta3_l3 = angles_1(i,14); 

 theta2_l4 = angles_1(i,18); theta3_l4 = angles_1(i,19); 

 theta2_l5 = angles_1(i,23); theta3_l5 = angles_1(i,24); 

 theta2_l6 = angles_1(i,28); theta3_l6 = angles_1(i,29); 

 

 ang21 = angle_calculation_2(a, b, c, d, new_wgc, nleg1, thetab_rng(1), 

theta2_l1, theta3_l1); 

 ang22 = angle_calculation_2(a, b, c, d, new_wgc, nleg2, thetab_rng(2), 

theta2_l2, theta3_l2); 

 ang23 = angle_calculation_2(a, b, c, d, new_wgc, nleg3, thetab_rng(3), 

theta2_l3, theta3_l3); 

 ang24 = angle_calculation_2(a, b, c, d, new_wgc, nleg4, thetab_rng(4), 

theta2_l4, theta3_l4); 

 ang25 = angle_calculation_2(a, b, c, d, new_wgc, nleg5, thetab_rng(5), 

theta2_l5, theta3_l5); 

 ang26 = angle_calculation_2(a, b, c, d, new_wgc, nleg6, thetab_rng(6), 

theta2_l6, theta3_l6); 

 fprintf("\n"); 

 angles_2(i,:) = [new_wgc', ang21, ang22, ang23, ang24, ang25, ang26, 

valid_coods(i,:)]; 

end 

angles_2 = full(angles_2(any(angles_2,2),:)); 

wgc_pose_devi = [angles_2(:,5)' angles_2(:,13)' angles_2(:,21)' 

angles_2(:,29)' angles_2(:,37)' angles_2(:,45)']; 

wgc_pose_devi_max = max(wgc_pose_devi); 

wgc_pose_devi_min = min(wgc_pose_devi); 

valid_angles_2 = size(angles_2); 

fprintf('\nGrip Center devation maximum = %3.4f mm & minimum = %3.4f mm and 

found %i valid poses.\n', ... 

 wgc_pose_devi_max, wgc_pose_devi_min, valid_angles_2(1)); 

save('angles_2_msrd.mat', "angles_2"); 

 

disp(datetime("now")); 

toc 

diary off; 

 



 

 133 

7.3.2 az_all_fixed_variables_for_real_check.m 

% Load all fixed variables.m Sourabh Karmakar 2022-06-05 

 

% revised on 2022-08-29: All references are now calculated wrt moving grip 

top center because  

% the rotations and translations are specified wrt this point. 

% revised on 2022-09-29: theta angles distributions match with physical model 

 

% 2022-10-22 fully revised to take care of the difference in angles in 

plaform joints 

% and base joints after facing z-rotation issue. 

% The angles were obtained from Sean's thesis and then measured in the 

% actual model created by Sourabh. 

 

% ** Consider Test starting position with 50mm gauge length as Home Pose. 

% And moving platform center is lower Grip top surface center. 

 

% The movement limit for the Tiger Platform, as per Sean's Thesis modified as 

below: 

% z is the vertical axis (upward +ve) 

% z rotation = +/- 55 deg, z --> 50mm (the grippers touches each other), 

% x & y rotation = +/- 60 deg, Translation x & y --> +/- 200 mm,  

% From Sean's thesis page 76, 77. 

% All these are limits are pure translation and pure rotation. 

% Actuator close length = 305.4mm; stroke length = 203mm 

% All measurements are from the home pose. 

% At home position the Euler angles = 0 

% Base joint circle radius = 477.39mm 

% Sides of the base are = 570.4000mm & 377.8941mm 

% Platform joint circle radius = 225.12mm 

% Sides of the platform are = 268.6800mm & 178.8067mm 

 

% Actuator length min 464.83mm 

% Actuator length max 667.83mm 

 

% WHEN BOTH GRIPPER ARE GAUGE LENGTH 50MM APART, THAT IS TOP HOME POSE. 

% As per CAD model z motion possible = 50 (Grippers touches each other) to 

% -104mm (all actuator extensions = 0.6mm)?????? 

% at z = 0, following are the dimensions: 

% bc to pc 495.44mm 

% wc to bc 71.55 

% wc to pc 566.99 495.44 + 51.55 

% pc to gc 318.23 gc --> top center of moving (lower) grip 

% gc to pc -318.23 

% wc to gc 885.22 = 566.99 + 318.23  

% wc to tgc 935.22 = 885.22 + 50.00 

% gc to bc -813.66 

% pc to specimen center 343.23 

% Grip face to grip face maximum 154.00???? 

% Gauge length 50.0 mm 

% Grip Movement -104 mm & + 50mm 

 

% New Information Added: 

% ABS breaks with max 50% elongation in tensile test, so here z max is 

% taken as -50 mm for 50 mm gauge length 
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% So x & y ranges are -158 mm to +158 mm 

% z range changes from 0 mm to -50 mm 

 

%% All fixed dimensions in mm 

a = 71.55; 

b = 477.39; 

c = 225.12; 

d = 318.23; 

 

gp = -d; % moving grip center to platform center 

gb = -813.67; % moving grip center to base center 

gw = -885.22; % moving grip center to world center 

bp = 495.44; % base to plaform center 

tw = -935.21; % top grip ctr to world center 

wb = a; % world center to base center 

wp = wb + bp; % world center to platform center 

brad = b;   % base joint radius 

prad = c; % platform joint radius 

 

dmin_org = 465.02; 

% = 305.4 + 83.42 + 76.2; 83.42 mm is joint distance at lower end of actuator 

dmax_org = 668.02; 

% = 305.4 + 203 + 83.42 + 76.2; 76.2 mm is joint dist at upper end; 203 mm 

stroke length 

 

% modified actuator limits by clearing 25mm at both ends 

dmin = dmin_org + 25; 

dmax = dmax_org - 25; 

 

% Maximum extension length working is <140mm 2023-03-25 

% dmax = dmin + 115; 

 

% translation and rotation limits 

% Movement of the plaform ctr wrt to base ctr 

% roll - x rotation angle in degrees 

% pitch - y rotation angle in degrees 

% yaw - z rotation angle in degrees 

 

% Limits further changed due to operational issues on 2023-03-25 

% Translations: x & y changed to +/-60, z to -60 to 0 

x_min = -60; x_max = 60; 

y_min = -60; y_max = 60; 

z_min = -60; z_max = 0; 

w_space_rad = 150; 

 

% Rotations: x & y changed to +/-12, z to +/-30 

roll_min = -12; roll_max = 12; 

pitch_min = -12; pitch_max = 12; 

yaw_min = -30; yaw_max = 30; 

 

thetab_rng = [6.69, 53.31, 126.69, 173.31, 246.69, 293.31]; 

thetap_rng = [353.38, 66.53, 113.38, 186.53, 233.38, 306.53]; 

 

% Base joint coordinates in home position wrt base center frame 

ba1 = [brad*cos(deg2rad(thetab_rng(1))); brad*sin(deg2rad(thetab_rng(1))); 0; 

1]; 

ba2 = [brad*cos(deg2rad(thetab_rng(2))); brad*sin(deg2rad(thetab_rng(2))); 0; 
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1]; 

ba3 = [brad*cos(deg2rad(thetab_rng(3))); brad*sin(deg2rad(thetab_rng(3))); 0; 

1]; 

ba4 = [brad*cos(deg2rad(thetab_rng(4))); brad*sin(deg2rad(thetab_rng(4))); 0; 

1]; 

ba5 = [brad*cos(deg2rad(thetab_rng(5))); brad*sin(deg2rad(thetab_rng(5))); 0; 

1]; 

ba6 = [brad*cos(deg2rad(thetab_rng(6))); brad*sin(deg2rad(thetab_rng(6))); 0; 

1]; 

base_joints = [ba1 ba2 ba3 ba4 ba5 ba6 ba1]; 

 

% Platform joint coordinates in home position in platform center frame 

pa1 = [prad*cos(deg2rad(thetap_rng(1))); prad*sin(deg2rad(thetap_rng(1))); 0; 

1]; 

pa2 = [prad*cos(deg2rad(thetap_rng(2))); prad*sin(deg2rad(thetap_rng(2))); 0; 

1]; 

pa3 = [prad*cos(deg2rad(thetap_rng(3))); prad*sin(deg2rad(thetap_rng(3))); 0; 

1]; 

pa4 = [prad*cos(deg2rad(thetap_rng(4))); prad*sin(deg2rad(thetap_rng(4))); 0; 

1]; 

pa5 = [prad*cos(deg2rad(thetap_rng(5))); prad*sin(deg2rad(thetap_rng(5))); 0; 

1]; 

pa6 = [prad*cos(deg2rad(thetap_rng(6))); prad*sin(deg2rad(thetap_rng(6))); 0; 

1]; 

plat_joints = [pa1 pa2 pa3 pa4 pa5 pa6 pa1]; 

 

% Vector from global frame to base ctr, platform ctr, grip ctr at test start 

condition 

% base ctr height 71.55 mm, bc to pc height 566.99-71.55 = 495.44 mm 

ggc = [0; 0; 0; 1]; 

gpc = [0; 0; gp; 1]; 

gbc = [0; 0; gb; 1]; 

gwc = [0; 0; gw; 1]; 

 

wmgc = [0; 0; wb-gb; 1]; % = 566.99 + 318.22 

wtgc = [0; 0; -tw; 1]; % = 885.22 + 50 (bottom center of top fixed grip) 

twc = [ 0; 0 ; tw; 1]; % opposite to wtgc 

wpc = [0; 0; wb+bp; 1]; 

wbc = [0; 0; wb; 1]; 

 

bpc = [0; 0; bp; 1]; % pc wrt bc 

bmgc = [0; 0; -gb; 1]; % gc wrt bc 

pgc = [0; 0; -gp; 1]; % gc wrt pc 

ppc = [0; 0; 0; 1]; % pc wrt pc 

wwc = [0; 0; 0; 1]; 

bbc = [0; 0; 0; 1]; 

 

Hwbc = [1 0 0 0; 0 1 0 0; 0 0 1 wb; 0 0 0 1]; % HTM vector from world ctr to 

base ctr in current condition 

Hwpc = [1 0 0 0; 0 1 0 0; 0 0 1 wb+bp; 0 0 0 1]; % HTM vector from world ctr 

to base ctr in current condition 

Hwgc = [1 0 0 0; 0 1 0 0; 0 0 1 -gw; 0 0 0 1]; % HTM vector from world ctr to 

moving grip ctr in current condition 

 

% HTM vector from base ctr to platform ctr in current condition 

Hbpc = [1 0 0 0; 0 1 0 0; 0 0 1 bp; 0 0 0 1]; % 463.21-71.55 
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Hgbc = [1 0 0 0; 0 1 0 0; 0 0 1 gb; 0 0 0 1]; % HTM vector from moving grip 

ctr to base ctr 

Hgwc = [1 0 0 0; 0 1 0 0; 0 0 1 gw; 0 0 0 1]; % HTM vector from moving grip 

ctr to world ctr 

Hgpc = [1 0 0 0; 0 1 0 0; 0 0 1 gp; 0 0 0 1]; % HTM vector from moving grip 

ctr to pf ctr 

Htwc = [1 0 0 0; 0 1 0 0; 0 0 1 tw; 0 0 0 1]; % HTM vector from top grip ctr 

to world ctr 

 

save("fixed_variables_real_check.mat"); 

 

7.3.3 Function getTransformMatrix.m 

%% Function1: returns the transformation matrix  

function TransM = getTransformMatrix(a, alfa, d, theta) 

theta = deg2rad(theta); 

 

% from equation 3.6 of Crig's book 

TransM = [cos(theta) -sin(theta) 0 a; 

 sin(theta)*cos(alfa) cos(theta)*cos(alfa) -sin(alfa) -d*sin(alfa); 

 sin(theta)*sin(alfa) cos(theta)*sin(alfa) cos(alfa) d*cos(alfa); 

 0 0 0 1]; 

End 

 

7.3.4 Function randi_org.m 

function R = randi_org(imax, n) 

%RANDI_ORG Random (www.random.org) integers from a uniform discrete 

distribution. 

% 

% R = RANDI_ORG returns the quota of available random numbers. 

% R = RANDI_ORG(IMAX,N) returns an N-by-N matrix containing random 

% integer values drawn from the discrete uniform distribution on 1:IMAX. 

% RANDI_ORG(IMAX,[M,N]) returns an M-by-N matrix. 

% RANDI_ORG(IMAX,[M,N,P,...]) returns an 

% M-by-N-by-P-by-... array. 

% RANDI_ORG(IMAX,SIZE(A)) returns an array the same size as A. 

% 

% R = RANDI_ORG([IMIN,IMAX],...) returns an array containing integer 

% values drawn from the discrete uniform distribution on IMIN:IMAX. 

% 

% Note: The size inputs M, N, P, ... should be positive integers. 

% 

% Note: the function connects via http to www.random.org. It depends on 

% a working internet connection. 

% 

% Examples: 

% 

% Generate integer values from the uniform distribution on the set 1:10. 

% r = randi_org(10,[100,1]); 

% 

% See also RAND, RANDN, RANDSTREAM, RANDSTREAM/RANDI, 

RANDSTREAM.GETDEFAULTSTREAM. 
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% Copyright (c) 2010, Giampiero Salvi 

% All rights reserved. 

% 

% Redistribution and use in source and binary forms, with or without  

% modification, are permitted provided that the following conditions are  

% met: 

% 

% * Redistributions of source code must retain the above copyright  

% notice, this list of conditions and the following disclaimer. 

% * Redistributions in binary form must reproduce the above copyright  

% notice, this list of conditions and the following disclaimer in  

% the documentation and/or other materials provided with the distribution 

%  

% THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"  

% AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE  

% IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE  

% ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE  

% LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR  

% CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF  

% SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS  

% INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN  

% CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)  

% ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE  

% POSSIBILITY OF SUCH DAMAGE. 

 

if nargin == 0 

 [result, status] = urlread('http://www.random.org/quota/?format=plain'); 

 R = str2num(result); 

 return 

end 

 

if isscalar(imax) 

 imin = 0; 

else 

 if length(imax(:))>2 

 error('imax can at most hold two values'); 

 else 

 imin = imax(1); 

 imax = imax(2); 

 end 

end 

 

if any(n<=0) 

 error('randi_org:dimOutOfRange', 'n should contain positive integers'); 

end 

 

if isscalar(n) 

 sizes = [n n]; 

else 

 sizes = n; 

end 

 

tot = prod(sizes(sizes>0)); 

 

% www.random.org restricts queries to 10000 numbers 

maxlen = 10000; 
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nqueries = ceil(tot/maxlen); 

R = zeros(tot,1); 

for qu = 1:nqueries 

 len = maxlen; 

 if qu==nqueries 

 len = rem(tot, maxlen); 

 end 

 places = (qu-1)*maxlen + (1:len); 

 [result, status] = urlread(['http://www.random.org/integers/?num=' 

num2str(len) '&min=' num2str(imin) '&max=' num2str(imax) 

'&col=1&base=10&format=plain&rnd=new']); 

 if status~=1 

 error('randi_org:queryFail', 'command failed with code %d', status); 

 end 

 R(places) = str2num(result); 

end 

R = reshape(R, sizes); 

 

7.3.5 angle_calculation_1.m 

%% Function 1: Checking the angles to reach from Base to platform joint 

% Calculates the distance by norm function 

function angles1_f1 = angle_calculation_1(a, b, nwpa, nleg, theta1) 

 

diff_val_pa = 30; 

incre_1 = 1; 

 

theta2_rng = -75:incre_1:-48; 

theta3_rng = -115:incre_1:-70; 

 

% calling the inner function 

angles1 = angle_calculation_1_inner(a, b, nwpa, nleg, theta1, diff_val_pa, 

theta2_rng, theta3_rng); 

if isempty(angles1) 

 fprintf("\nPartial result!\n"); 

 angles1_f1 = [0 0 0 0 0]; 

 return 

end 

 

% selects all rows in angles1 where the value in the first column is greater 

than or equal to zero 

angles_a = angles1(angles1(:,1)>=0,:); 

[~,b_idx1] = min(angles_a(:,1)); 

angles_f1 = angles_a(b_idx1,:); 

 

%% Refining the calculation data 

diff_val_pa = 1; 

incre_2 = 0.01; 

 

theta2 = angles_f1(1,3); 

theta3 = angles_f1(1,4); 

 

theta2_rng = (theta2 - 3 + incre_2):incre_2:(theta2 + 3 - incre_2); 

theta3_rng = (theta3 - 3 + incre_2):incre_2:(theta3 + 3 - incre_2); 
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angles1_2 = angle_calculation_1_inner(a, b, nwpa, nleg, theta1, diff_val_pa, 

theta2_rng, theta3_rng); 

if isempty(angles1_2) 

 fprintf("\nPartial result!\n"); 

 angles1_f1 = [0 0 0 0 0]; 

 return 

end 

 

angles_a = angles1_2(angles1_2(:,1)>=0,:); 

[~,b_idx2] = min(angles_a(:,1)); 

angles1_f1 = angles_a(b_idx2,:); 

end 

 

7.3.6 angle_calculation_1_inner. 

%% Function 2: repeating loop of angle_calcualtion_1 

function angles = angle_calculation_1_inner(a, b, nwpa, nleg, theta1, 

diff_val_pa, theta2_rng, theta3_rng) 

 

theta2_rng_len = length(theta2_rng); 

theta3_rng_len = length(theta3_rng); 

 

calc_space = [theta2_rng_len, theta3_rng_len]; 

tot_calc = prod(calc_space); 

angles = sparse(tot_calc, 5); 

 

parfor idx = 1:tot_calc 

 [i, j] = ind2sub(calc_space, idx); 

 

 theta2 = theta2_rng(i); 

 theta3 = theta3_rng(j); 

 

 %dh = a alfa(in radians) d theta(in degrees) 

 dh = [0 0 a theta1; 

 b pi/2 0 theta2; 

 0 pi/2 0 theta3; 

 0 pi/2 0 -90; 

 0 0 nleg 0]; 

 

 % HTM between 2 consecutive frames for F0 to F5 using DH paramaters 

 A01=getTransformMatrix(dh(1,1), dh(1,2), dh(1,3), dh(1,4)); 

 A12=getTransformMatrix(dh(2,1), dh(2,2), dh(2,3), dh(2,4)); 

 A23=getTransformMatrix(dh(3,1), dh(3,2), dh(3,3), dh(3,4)); 

 A34=getTransformMatrix(dh(4,1), dh(4,2), dh(4,3), dh(4,4)); 

 A45=getTransformMatrix(dh(5,1), dh(5,2), dh(5,3), dh(5,4)); 

 

 T05 = A01*A12*A23*A34*A45; 

 calc_nwpa = T05(1:4,4); 

 nwpa_diff = norm(nwpa - calc_nwpa); 

 

 if nwpa_diff < diff_val_pa 

 angles(idx,:) = [nwpa_diff, theta1, theta2, theta3, nleg]; 

 end 

end 
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% removes any rows in the matrix angles that contain all zeros, and then 

assigns the remaining rows to the variable angles. 

angles = full(angles(any(angles,2),:)); 

end 

 

7.3.7 angle_calculation_2.m 

 

%% Function 3: Checking the angles to reach from platform joint to grip 

center 

function angles3_f3 = angle_calculation_2(a, b, c, d, nwgc, nleg, theta1, 

theta2, theta3) 

 

diff_val_pa = 15; 

incre_1 = 3; 

theta5_rng = 57:incre_1:125; 

theta6_rng = 95:incre_1:210; 

theta7_rng = -60:incre_1:60; 

 

angles1 = angle_calculation_2_inner(a, b, c, d, nwgc, nleg, theta1, theta2, 

theta3, diff_val_pa, theta5_rng, theta6_rng, theta7_rng); 

if isempty(angles1) 

 fprintf("\nPartial result!\n"); 

 angles3_f3 = [0 0 0 0 0 0 0 0]; 

 return 

end 

angles1_a = angles1(angles1(:,1)>=0,:); 

[~,b_idx1] = min(angles1_a(:,1)); 

angles1_f2 = angles1_a(b_idx1,:); 

 

%% Refining the calculation data 

diff_val_pa = 2; 

incre_2 = 0.1; 

 

theta5 = angles1_f2(1,6); 

theta6 = angles1_f2(1,7); 

theta7 = angles1_f2(1,8); 

 

theta5_rng = (theta5 - 3 + incre_2):incre_2:(theta5 + 3 - incre_2); 

theta6_rng = (theta6 - 3 + incre_2):incre_2:(theta6 + 3 - incre_2); 

theta7_rng = (theta7 - 3 + incre_2):incre_2:(theta7 + 3 - incre_2); 

 

angles2 = angle_calculation_2_inner(a, b, c, d, nwgc, nleg, theta1, theta2, 

theta3, diff_val_pa, theta5_rng, theta6_rng, theta7_rng); 

if isempty(angles2) 

 fprintf("\nPartial result!\n"); 

 angles3_f3 = [0 0 0 0 0 0 0 0]; 

 return 

end 

angles2_a = angles2(angles2(:,1)>=0,:); 

[~,b_idx2] = min(angles2_a(:,1)); 

angles2_f2 = angles2_a(b_idx2,:); 

 

%% Refining the calculation data 2nd stage 

diff_val_pa = 1; 
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incre_3 = 0.05; 

 

theta5 = angles2_f2(1,6); 

theta6 = angles2_f2(1,7); 

theta7 = angles2_f2(1,8); 

 

theta5_rng = (theta5 - 0.1 + incre_3):incre_3:(theta5 + 0.1 - incre_3); 

theta6_rng = (theta6 - 0.1 + incre_3):incre_3:(theta6 + 0.1 - incre_3); 

theta7_rng = (theta7 - 0.1 + incre_3):incre_3:(theta7 + 0.1 - incre_3); 

 

angles3 = angle_calculation_2_inner(a, b, c, d, nwgc, nleg, theta1, theta2, 

theta3, diff_val_pa, theta5_rng, theta6_rng, theta7_rng); 

if isempty(angles3) 

 fprintf("\nPartial result!\n"); 

 angles3_f3 = [0 0 0 0 0 0 0 0]; 

 return 

end 

angles3_a = angles3(angles3(:,1)>=0,:); 

[~,b_idx3] = min(angles3_a(:,1)); 

angles3_f3 = angles3_a(b_idx3,:); 

end 

 

7.3.8 angle_calculation_2_inner.m 

%% Function 4: repeating loop of angle_calcualtion_2 

function angles = angle_calculation_2_inner(a, b, c, d, nwgc, nleg, theta1, 

theta2, theta3, diff_val_pa, theta5_rng, theta6_rng, theta7_rng) 

 

%dh = a alfa(in radians) d theta(in degrees) 

dh1 = [0 0 a theta1; 

 b pi/2 0 theta2; 

 0 pi/2 0 theta3; 

 0 pi/2 0 -90; 

 0 0 nleg 0]; 

 

A01=getTransformMatrix(dh1(1,1), dh1(1,2), dh1(1,3), dh1(1,4)); 

A12=getTransformMatrix(dh1(2,1), dh1(2,2), dh1(2,3), dh1(2,4)); 

A23=getTransformMatrix(dh1(3,1), dh1(3,2), dh1(3,3), dh1(3,4)); 

A34=getTransformMatrix(dh1(4,1), dh1(4,2), dh1(4,3), dh1(4,4)); 

A45=getTransformMatrix(dh1(5,1), dh1(5,2), dh1(5,3), dh1(5,4)); 

 

T05 = A01*A12*A23*A34*A45; 

 

theta5_rng_len = length(theta5_rng); 

theta6_rng_len = length(theta6_rng); 

theta7_rng_len = length(theta7_rng); 

 

calc_space = [theta5_rng_len, theta6_rng_len, theta7_rng_len]; 

tot_calc = prod(calc_space); 

angles = sparse(tot_calc, 8); 

 

parfor idx = 1:tot_calc 

 [i, j, k] = ind2sub(calc_space, idx); 

 theta5 = theta5_rng(i); 

 theta6 = theta6_rng(j); 
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 theta7 = theta7_rng(k); 

 

 %dh = a alfa(in radians) d theta(in degrees) 

 dh2 = [0 0 0 theta5; 

 0 pi/2 0 theta6; 

 0 pi/2 0 theta7; 

 c 0 d 0]; 

 

 % HTM between 2 consecutive frames for F0 to F5 using DH paramaters 

 A56=getTransformMatrix(dh2(1,1), dh2(1,2), dh2(1,3), dh2(1,4)); 

 A67=getTransformMatrix(dh2(2,1), dh2(2,2), dh2(2,3), dh2(2,4)); 

 A78=getTransformMatrix(dh2(3,1), dh2(3,2), dh2(3,3), dh2(3,4)); 

 A89=getTransformMatrix(dh2(4,1), dh2(4,2), dh2(4,3), dh2(4,4)); 

  

 T59 = A56*A67*A78*A89; 

 T09 = T05*T59; 

 calc_nwgc = T09(1:4,4); 

 nwgc_diff = norm(nwgc - calc_nwgc); 

 

 if nwgc_diff < diff_val_pa 

 angles(idx,:) = [nwgc_diff, theta1, theta2, theta3, nleg, theta5, theta6, 

theta7]; 

 end 

end 

angles = full(angles(any(angles,2),:)); 

end 
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