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Abstract

This dissertation concerns the development and analysis of new preconditioned conjugate

gradient (PCG) algorithms for three important classes of large-scale and complex physical prob-

lems characterized by special structures. We propose several new iterative methods for solving the

eigenvalue problem or energy minimization problem, which leverage the unique structures inherent

in these problems while preserving the underlying physical properties. The new algorithms enable

more efficient and robust large-scale modeling and simulations in many areas, including condensed

matter physics, optical properties of materials, stabilities of dynamical systems arising from control

problems, and many more. Some methods are expected to be applicable to a broader range of

applications. For instance, the frameworks of the PCG method presented in Chapter 3 and 4 can

be extended to address various types of BEC and potential energy minimization problems. Addi-

tionally, the Chebyshev M-LOBPCG method introduced in Chapter 5 can be expanded to tackle

symmetric eigenvalue problems.

In Chapter 3, we develop two numerical methods for computing the steady-state solutions

of Allen-Cahn (AC) and Cahn-Hilliard (CH) equations: the PCG method and Picard iterative

method with Anderson acceleration (AA). The PCG method is developed from an optimization

perspective, which is equivalent to minimize the discrete energy E(u). We propose a simple approach

for fast evaluation of the energy functional, which enables the exact line search. We introduce

two preconditioners for the PCG method, which can be applied efficiently in the Fourier pseudo-

spectral discretization scheme. Moreover, we construct and analyze two Picard iterations to solve

the steady-state equations of AC and CH, where the inexact AA method is applied to speed up the

convergence. We compare these two methods with the second order exponential time differencing

schemes (ETDRK2) [37,60]. We conclude that the PCG method outperforms the other two methods,

while avoiding tuning the parameters.
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In Chapter 4, we propose a new nonlinear PCG method in real arithmetic for computing the

ground states of rotational Bose-Einstein condensate (BEC), modeled by the Gross–Pitaevskii equa-

tion (GPE). Our algorithm presents a few improvements of the PCG method in complex arithmetic

studied by Antoine, Levitt, and Tang [J. Comput. Phys., 343 (2017), pp. 92-109]. We show that the

special structure of the energy functional E(ϕ) and its gradient with respect to ϕ can be fully ex-

ploited in real arithmetic to evaluate them more efficiently in linear algebra operations. We propose

a simple approach for fast evaluation of the energy functional at many different step sizes along the

search direction at little computational cost, which enables a variety of line search methods including

exact line search. Most importantly, we derive the discrete Hessian operator of the energy functional

and propose a shifted Hessian preconditioner for PCG, with which the ideal preconditioned Hessian

has favorable eigenvalue distributions independent of the mesh size. This suggests that PCG with

our ideal Hessian preconditioner is expected to exhibit mesh size-independent asymptomatic conver-

gence behavior. In practice, our preconditioner is constructed by incomplete Cholesky factorization

of the shifted discrete Hessian operator based on high-order finite difference discretizations, updated

periodically with the progress of PCG iterations. Numerical experiments in 2D and 3D domains

show the efficiency of fast energy evaluation, the robustness of exact line search, and the improved

convergence of PCG with our new preconditioner in iteration counts and runtime, notably for more

challenging rotational BEC problems with high nonlinearity and rotational speed.

In Chapter 5, we study the iterative methods for the Bethe-Salpeter eigenvalue (BSE) prob-

lem. The discretized BSE problem arises in many body physics and quantum chemistry. Discretiza-

tion leads to an algebraic eigenvalue problem involving a matrix H ∈ C2n×2n with a Hamiltonian-like

structure. After appropriate transformations, we show that the real BSE eigenproblem of form I and

the complex BSE eigenproblem of form II can be transformed into real product eigenvalue problems

of order n and 2n, respectively. We propose a variant of the locally optimal block preconditioned

conjugate gradient (LOBPCG) based on polynomial filters to improve the robustness and effective-

ness of a few well-known existing algorithms for computing the lowest eigenvalues of the product

eigenproblems. We show that our ideal locally optimal algorithm delivers Rayleigh quotient approx-

imation to the desired lowest eigenvalue that satisfies a global quasi-optimality, which is similar to

the global optimality of the preconditioned conjugate gradient method for the iterative solution of

a symmetric positive definite linear system. The robustness and efficiency of the proposed method

is illustrated by numerical experiments.
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Chapter 1

Introduction

The conjugate gradient method is an iterative algorithm to solve systems of linear equations,

particularly symmetric positive definite matrices. It was first introduced by Magnus Hestenes and

Eduard Stiefel [55] in 1952, and then became one of the most popular and widely used iterative

methods for solving large-scale linear systems such that

Ax = b, (1.1)

where x ∈ Rn is an unknown vector, b ∈ Rn is a known vector, and A ∈ Rn×n is a known, symmetric,

positive definite (or positive-indefinite) matrix. The method gained popularity due to its efficiency

in solving large-scale sparse linear systems, which are common in various scientific and engineering

applications. Researchers have made various extensions and improvements to the conjugate gradient

method in many fields. Nowadays, it still remains an important algorithm in numerical linear algebra

and optimization.

The conjugate gradient (CG) methods comprise a class of unconstrained optimization al-

gorithms, which are well suited for large-scale problems due to the simplicity of their iterations

and low memory requirements. Moreover, the CG methods exhibit favorable local and global con-

vergence properties. The nonlinear conjugate gradient method is designed to solve the following

unconstrained optimization problem

min f(x) : x ∈ Rn (1.2)
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where f : Rn 7→ R is a continuously differentiable function, bounded from below. In practice,

f(x) may or may not be convex. Starting from an initial guess x0, it generates a sequence xk

(k = 1, 2, · · · ), using the recurrence

xk+1 = xk + αkdk, (1.3)

where αk is the step size obtained by a line search and dk is the search direction such that

dk+1 = −gk+1 + βkdk, and d0 = −g0. (1.4)

Here, βk is the update CG parameter and gk = ∇f(xk), i.e., gk is the gradient of f(x) evaluated at

xk. Different CG methods correspond to different choices for the scalar βk. Note that the application

of the conjugate gradient method may vary depending on the specific problem and its formulation.

The conjugate gradient method can also be applied to solve eigenvalue problems, specifically

to find a few eigenvalues and eigenvectors of a symmetric positive definite matrix. Consider a

symmetric eigenvalue problem

Ax = λx, (1.5)

where A ∈ Rn×n is symmetric and positive definite and (λ, x) is the corresponding eigenpair. In

this case, finding the smallest eigenvalue and the corresponding eigenvector of A is equivalent to

minimizing its Raleigh quotient xTAx
xT x

. A well known variation of the CG method is called the locally

optimal block preconditioned conjugate gradient (LOBPCG) method, which is used to compute a

few smallest eigenvalues and the corresponding eigenvectors of a symmetric generalized eigenvalue

problem

Ax = λBx (1.6)

for a given pair (A,B) of complex Hermitian or real symmetric matrices, where the matrix B is

also assumed positive-definite. Starting from an initial approximation of the desired eigenvectors
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X(0) ∈ Rn×k, the search subspace S(i) at the ith iteration constructed by LOBPCG is

S(i) = span{X(i), T−1R(i), P (i)}, (1.7)

where X(i) is the eigenvector approximation at the ith iteration, T−1R(i) ∈ Rn×k is the precondi-

tioned eigenresidual vectors, and the conjugate search direction P (i) ∈ Rn×k is defined as

P (i) = X(i) −X(i−1)CX , (1.8)

where CX ∈ Rk×k are determined by the primitive Ritz vectors from the Rayleigh-Ritz procedure

of last iteration.

In physics, the CG method stands out as a powerful numerical technique employed for

solving linear systems of equations, optimization problems, and eigenvalue problems. The method

exhibits notable effectiveness, especially in handling large systems and sparse matrices. Its exten-

sive applications span various domains, including quantum mechanics, classical mechanics, fluid

dynamics, electromagnetic field simulations, and more [3, 11, 48, 67, 74, 97, 98, 101]. Modifications or

variations of the method can be strategically implemented to address specific requirements or con-

straints posed by the physics problem at hand. For example, in quantum mechanics, the conjugate

gradient method is employed to solve the eigenvalue problem associated with the Schrödinger equa-

tion [93], which allows physicists to determine the energy levels and corresponding wave functions

of quantum systems, such as atoms, molecules, and solid-state materials.

In this dissertation, we aim to develop several new preconditioned conjugate gradient meth-

ods for three important classes of large-scale and complex physical problems with special structures:

1. Computing the steady-state solutions of Allen-Cahn (AC) and Cahn-Hilliard (CH) equations.

2. Computing ground states of rotational Bose-Einstein condensate (BEC).

3. The Bethe-Salpeter Eigenvalue problem (BSE).

More importantly, it is necessary to take advantage of the special structures to design efficient

problem-dependent methods that preserve the underlying physical properties of these problems.

For the steady-state solutions of the AC and CH equation, a natural way is to solve the steady-

state equations with some iterative nonlinear solvers, however, it could also be addressed from the
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optimization perspective, since the steady-state solutions of the AC and CH equations are the local

minimizers of the corresponding energy functional E(u). Although the wave function ϕ in the BEC

problem is complex-valued, we show that the special structure of the energy functional E(ϕ) (the

objective function of minimization by PCG) and its gradient with respect to ϕ can be fully exploited

in real arithmetic to evaluate them more efficiently in linear algebra operations. Based on the special

structure of the BSE problems, we transform it into real product eigenvalue problems of order n and

2n, respectively. Our proposed PCG methods are formulated based on these observations.

1.1 The steady-state solutions of Allen-Cahn and Cahn-Hilliard

equations (AC/CH).

We consider the numerical solution of the steady-state of the time-scaled Allen-Cahn (AC)

equation


ut − γ∆u+ γ

ϵ2 f (u) = 0, (x, t) ∈ Ω× (0, T ],

u(·, t) is Ω-periodic, t ∈ [0, T ]

u|t=0 = u0;

(1.9)

and the time-scaled Cahn-Hilliard (CH) equation


ut −∆

(
−γ∆u+ γ

ϵ2 f (u)
)
= 0, (x, t) ∈ Ω× (0, T ],

u(·, t) is Ω-periodic, t ∈ [0, T ]

u|t=0 = u0.

(1.10)

Here, Ω ⊂ Rd (d = 2, 3) is a bounded domain, γ > 0 is the time-scaling parameter, the parameter

ϵ > 0 relates to the interface width of the two phases, and f (u) = F ′ (u) with F (u) being a given

energy potential. We will employ the most widely used Ginzburg-Landau double-well potential in

this dissertation, i.e., F (u) = 1
4

(
u2 − 1

)2
. The steady-state AC and CH equations are

−∆u+
1

ϵ2
f (u) = 0 (1.11)
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and

−∆
(
−∆u+

1

ϵ2
f (u)

)
= 0, (1.12)

respectively. There are many steady-state solutions of (1.11) and (1.12) due to the non-convexity

of the potential term f(u). Therefore, the final solutions computed by the numerical methods most

likely depend on the initial approximations we specify. Note that, for the AC equation, it is easy to

check that it has three trivial solutions, i.e., +1, −1, and 0, which could be attained by the numerical

methods. These trivial solutions also holds for the CH equation, given that the mass (1.14) of the

initial approximation is ±|Ω| or 0.

More importantly, the AC and CH equations have the same energy functional

E (u) :=

∫
Ω

(
1

2
|∇u|2 + 1

ϵ2
F (u)

)
dx. (1.13)

The AC (1.9) and CH (1.10) equations can be viewed as the gradient flow of the energy func-

tional (1.13) in L2 (Ω) and H−1 (Ω), respectively. Moreover, it is well-known that the AC equa-

tion (1.9) satisfies maximum bound principle [37] in the sense that if the initial values are pointwisely

bounded by a specific constant in absolute value, then the absolute value of the solution is bounded

by the same constant everywhere for all time, which does not hold true for the CH equation (1.10).

However, the CH equation (1.10) conserve the following mass exactly (i.e., M(0) = M(t)):

M(t) :=

∫
Ω

u(x, t)dx, (1.14)

whereas the AC equation fails to conserve.

Great efforts have been devoted to the numerical analysis of AC and CH equations [30,

37, 38, 41, 43, 44, 60, 62, 84, 105, 108]. The gradient flow methods are classical methods to compute

the dynamics of the AC and CH equations. A common procedure is to discretize the AC (1.9) and

CH (1.10) equations in time with an appropriate scheme that satisfies the discrete energy dissipation

law (energy stable, i.e., E(uk+1) ≤ E(uk)), and then solve a large system of linear equations or

nonlinear equations at each time step. For example, suppose that Lp is the discrete Laplacian

matrix, a stabilized first-order semi-implicit scheme for the AC equation is proposed in [84] such

5



that

(
1

δt
+

S

ϵ2

)(
un+1 − un

)
− Lpu

n+1 +
1

ϵ2
f (un) = 0,

where un is the approximation to u(x, t) at time step t = tn.This requires to solve the following

linear system for un+1

(I − δtϵ2

ϵ2 + δtS
Lp)u

n+1 = un − δt

ϵ2 + δtS
f (un) ,

where S is a stabilizing parameter to be specified. The gradient flow methods are necessary to

compute the dynamics of the AC and CH equations, however, it becomes less attractive to compute

the steady state solution due to the slow convergence of the class of steepest descent methods. In

order to compute the steady-state solution, the time step size specified is expected to be as large as

possible such that we can attain the steady states rapidly, which might lead to stability issues for some

numerical schemes. For example, for a system of ODEs ut = f(t, u), if the Jacobian J(t, u) = ∂f
∂u has

eigenvalues of large negative parts, explicit methods all have severe restrictions of the time step sizes.

This happens typically when the mesh size h is sufficiently small, and this limitation is more severe

for CH equation than for AC equation, since J(t, u) = −L2
p + 1

ϵ2Lp diag(3u
2 − 1), whose negative

largest eigenvalues behave like O( 1
h4 ). Here, diag(3u2 − 1) is the diagonal matrix whose diagonal

entries are the elements of 3u2 − 1, where u2 stands for the the column vector whose entries are the

square of those of u. In this sense, the exponential time differencing (ETD) method [22,31,37,57,60]

is great of use, which involves exact integration of the linear part of the governing equations followed

by an explicit approximation of a temporal integral involving the nonlinear terms. The ETD schemes

could provide satisfactory and accuracy even though the linear terms have strong stiffness, due to the

exact evaluation of the contribution of the linear part. Such an advantage may lead it to compute

the steady-state solutions of AC and CH equations efficiently.
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1.2 Computing ground states of Bose-Einstein condensate

(BEC).

Quantum theory is one of the most important science discoveries in the last century, which

asserts that all objects behave like waves in the micro length scale. However, it remains hard

to observe quantum phenomena in experiments due to the extremely small wavelength until the

remarkable discovery of a new state of matter, the Bose-Einstein condensate (BEC). The literature

on BECs has grown rapidly over the last two decades in atomic, molecular, optics, condensed matter

physics, and quantum computing; see e.g., [25, 46, 47, 50, 61] and references therein. The BEC is

referred to as the fifth state of matter, which was first predicted theoretically by S.N. Bose and A.

Einstein, before being realized experimentally in 1995 [7,24,32,35]. It is formed by cooling a gas of

bosons at extremely low density to ultra low temperatures, when microscopic quantum mechanical

phenomena such as the wave function interference become macroscopically apparent. In this rapidly

growing research area, numerical simulation has been playing an important role in understanding the

theories and the experiments. A survey of mathematical theory and numerical methods of BEC is

given in [16]. At temperatures T which are much lower than the critical temperature Tc, the macro-

scopic behavior of a BEC can be well described by a condensate wave function ϕ which is the solution

to a Gross–Pitaevskii Equation (GPE) [11]. It is extremely useful to obtain numerical solutions of

such a class of equations efficiently. Calculations of stationary states, i.e. ground/excited states,

and of the real-time dynamics are the most crucial problems [8, 10, 16, 45, 59]. Numerical methods

for approximating the ground states are fundamental to explore the nucleation of vortices, the

properties of dipolar gases, bright beams of coherent matter waves, by studying rotational, dipolar,

multi-component and spinor BECs.

We consider a BEC that can be modeled by the rotational (dimensionless) GPE. In this

setting, the computation of a ground state of a d-dimensional BEC takes the form of a constrained

minimization problem:

Find ϕ ∈ L2(Rd) s.t. ϕ ∈ argmin
∥ϕ∥=1

E(ϕ) (1.15)

where ∥ϕ∥ = (
∫
Rd |ϕ|2)

1
2 is the standard L2-norm and E(ϕ) is the associated energy functional defined
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as

E(ϕ) =

∫
Rd

[
1

2
|∇ϕ|2 + V (x)|ϕ|2 + η

2
|ϕ|4 − Ωϕ∗Lzϕ

]
. (1.16)

Here, V is an external potential, η is the nonlinearity strength, Ω is the rotational speed, and

Lz = i(y∂x − x∂y) is the angular momentum operator.

The constrained minimization problem (1.15) can be written in the discrete form. Gen-

eration of an appropriate mesh on a finite domain U ⊆ Rd and application of a corresponding

discretization to the continuous GPE, the ground state of BEC in discrete form is the global mini-

mizer of the energy functional

Eη,Ω =

[
−1

2
ϕ∗Lpϕ+ ϕ∗diag(V )ϕ+

η

2
ϕ∗diag(|ϕ|2)ϕ− iΩϕ∗Lωϕ

]
hd, (1.17)

with ∥ϕ∥2ℓ2 = hdϕ∗ϕ = 1, which is a discretized version of (1.16). Here, −Lp (symmetric semi-

positive definite) is the negative discrete Laplacian operator, diag(V ) and diag(|ϕ|2) are diagonal

matrices with the values of the external trapping potential V (x) and |ϕ(x)|2 at the mesh nodes on

the diagonal, Lω (skew symmetric) is the discrete version of the operator y∂x−x∂y, η > 0 denotes the

repulsive particle interaction, and Ω is the angular momentum rotating speed. A direct evaluation

of the gradient of the energy being zero leads to the algebraic nonlinear eigenvalue problem

−1

2
Lpϕ+ diag(V )ϕ+ ηdiag(|ϕ|2)ϕ− iΩLωϕ = λη,Ωϕ,with hdϕ∗ϕ = 1, (1.18)

where the eigenvalue λη,Ω is defined as

λη,Ω =

[
−1

2
ϕ∗Lpϕ+ ϕ∗diag(V )ϕ+ ηϕ∗diag(|ϕ|2)ϕ− iΩϕ∗Lωϕ

]
hd. (1.19)

Our aim is to find the the global minimizer of (1.17) numerically. Note that the minimizer of Eη,Ω

is not necessarily the eigenvector associated with the lowest eigenvalue of (1.18) [16].

In the literature of numerical solutions to partial differential equations (PDEs), a family

of classical methods for computing the ground states of rotational BEC (1.15) and other types

of BECs, or similarly the steady-state solutions to Allen-Cahn and Cahn-Hilliard equations, are

based on gradient flows ut = −∇u(E(u)) that define a steepest descent curve u(t) of the energy

8



E(u).These algorithms have been extensively studied, most well-known and widely used for years

across disciplines, with mature theoretical support. However, they require solution to a large system

of linear equations at each time step, which is usually time-consuming, particularly in 3D domains

with a small mesh size. In addition, these gradient flow-based methods tend to converge slowly

with the progress of time steps, since they belong to the class of steepest descent methods that are

notably not efficient for numerical optimization (of the energy E(u)). For example, (1.15) can be

solved by the gradient flow with discrete normalization method (GFDN, also called ‘imaginary time’

methods in physics) [2, 9, 10,16,17,20,27,29,107]. More precisely, the gradient flow associated with

the energy E(ϕ) (1.16) is

∂tϕ = −(−1

2
Lpϕ+ diag(V )ϕ+ ηdiag(|ϕ|2)ϕ− iΩLωϕ− λη,Ωϕ), (1.20)

which can be discretized in time with the backward-Euler discretization scheme and solved. With

discrete from in time, we have

ϕ̃n+1 − ϕn

∆t
= −(−1

2
Lpϕ̃n+1 + diag(V )ϕ̃n+1 + ηdiag(|ϕn|2)ϕ̃n+1 − iΩLωϕ̃n+1 − λη,Ωϕn) (1.21)

After obtaining the solution ϕ̃n+1 of the above equation, a projection step ϕn+1 = ϕ̃n+1/∥ϕ̃n+1∥ is

followed to ensure the normalization constraint.

Other methods have been developed, based on numerical solution of the nonlinear eigenvalue

problem [36, 100] or on optimization techniques under constraints [19, 26, 33, 34]. In the past few

years, new methods have emerged, such as preconditioned conjugate gradient methods [11, 12, 94],

the regularized Newton-type method [103] and the rDF-APG method [18], which seem successful

but fall short of real arithmetic computation, problem-dependent preconditioning. In [11], the state-

of-the-art variant of preconditioned conjugate gradient(PCG) method was proposed to solve the

constrained minimization problem (1.15), which outperforms all the previous methods.

However, several issues remain in [11] to address. For example, the complex arithmetic

naturally used with Fourier pseudo spectral methods does not fully exploit the special structure of

rotational BEC to speed up certain basic linear algebra computations and to guarantee that the

computed energy E(ϕ) is real. More importantly, as a most significant component of preconditioned

conjugate gradient methods, the preconditioners proposed therein did not take the rotational speed
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Ω into account, and the convergence rate seems to deteriorate considerably for high-speed rotational

problems. In fact, the condition number of the preconditioned Hessian is shown to increase with

the domain size L and h−2 where h is the mesh size. In addition, direct energy evaluation of E(ϕ)

defined in (1.16) seems costly for each step size along the search direction, which entails the use of

approximate line search based on quadratic approximations of E(ϕ) or backtracking algorithms.

1.3 The Bethe-Salpeter eigenvalue (BSE) problem.

We consider the following product eigenvalue problem

KMv = λv (1.22)

where K and M are real symmetric positive definite matrices. This product eigenvalue problem has

several important applications. In the quantum physics, chemistry and material science communities,

there is a growing demand for ab initio computation of the absorption spectra for molecules or

surfaces of solids [66, 73, 78, 81]. This computational problem can be solved by the Bethe-Salpeter

equation (BSE). The BSE approach leads to the challenging computational task of the solution of a

large eigenvalue problem involving a non-Hermitian dense Hamiltonian matrix H of order O(N2
b ),

where Nb is the the number of atomic orbitals basis set. In the past decades, many progresses have

been made in structure-preserving full diagonalization methods [21,51,75,83] to handle problems of

small to medium size (e.g., up to ten thousand), limited by their arithmetic complexity of O(N6
b ).

When a modest number of the lowest excited states of excitation energies and oscillator strengths

are of interest, or when it is not clear how many excited states are needed, iterative methods

are expected to have a favorable performance. Many iterative methods for solving the standard

symmetric eigenvalue problem can be modified slightly and applied to compute the lowest partial

spectrum of (1.22), based on the observation that KM is self-adjoint with respect to the M -inner

product [98].

Depending on the exact circumstances and discretization schemes, the BSE eigenvalue prob-
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lem has two forms [21]. The BSE eigenproblem of form I is defined as

H1v ≡

 A B

−B −A

 v = λv, (1.23)

where A = A∗, B = B∗ ∈ Cn×n. If A and B are real symmetric matrices and

A B

B A

 ≻ 0

(symmetric positive define), the real BSE eigenproblem of form I turns out to be the linear response

eigenvalue problem (LREP). Through an orthogonal similarity transformation [14], the eigenvalue

problem (1.23) can be reformulated as

H1z ≡

 0 K

M 0


y

x

 = λ

y

x

 , (1.24)

where K = A − B and M = A + B are n × n real symmetric positive semidefinite matrices and

at least one of them is definite. As shown in [15], the LREP is equivalent to the following product

eigenvalue problems:

KMy = λ2y or MKx = λ2x, (1.25)

which is a real product eigenvalue problem of order n. This also implies that the eigenvalues of H1

come in pairs {λ,−λ}. If the time-inversion symmetry in the basis functions is not exploited or not

available, the BSE eigenproblem of form II is defined as [21]

H2v ≡

 A B

−B −A

 v = λv, (1.26)

where A = A∗, B = BT ∈ Cn×n or Rn×n. We derive a new formulation of (1.26), which is equivalent

to a real product eigenvalue problem of order 2n and can be solved in real arithmetic. Let us define

J =

 0 In

−In 0

 , Q =
1√
2

In −iIn

In iIn

 , (1.27)
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and

AR =

 Re(A) Im(A)

− Im(A) Re(A)

 , BR =

 Re(B) − Im(B)

− Im(B) −Re(B)

 , (1.28)

where Q is unitary, and AR, BR are real symmetric. It can be shown that H2 is unitarily similar to

a purely imaginary matrix,

Q∗H2Q = −iJ(AR +BR) = G. (1.29)

For practical physical systems, we have AR + BR ≻ 0 [83]. It follows that H2 is similar to the

following matrices:

(AR +BR)
1
2G(AR +BR)

− 1
2 = −i(AR +BR)

1
2 J(AR +BR)

1
2 , (1.30)

which are purely imaginary Hermitian with only real eigenvalues. Moreover, since (JH2)
T = JH2,

we have (Jv)TH2 = vTJTH2 = −vTJH2 = −vTHT
2 J

T = −λ(Jv)T , which implies that Jv is a left

eigenvector corresponding to the eigenvalue −λ of H2. Thus, the eigenvalues of H2 also comes in

pairs {λ,−λ}.

Unlike the real BSE eigenproblem of form I (LREP), which can be reformulated as (1.25),

the complex BSE eigenproblem of form II (1.26) seems unlikely to be compressed to a product

eigenproblem of order n. In fact, since H2 is unitarily similar to the purely imaginary matrix

G = −iJ(AR +BR), we can solve G2u = λ2u, that is

G2u = JTMRJMRu = λ2u, (1.31)

where MR = AR +BR ∈ R2n×2n and MR ≻ 0. Let KR = JTMRJ ≻ 0, we obtain

KRMRu = λ2u, (1.32)

which is a real product eigenproblem of order 2n.

Therefore, the real BSE eigenproblem of form I (LREP) and complex BSE eigenproblem of

form II (CBSEP) can be transformed into a real product eigenvalue problem (1.22) of order n and
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2n, respectively. To tackle the BSE eigenproblems, it would be sufficient to focus on the product

eigenvalue problem (1.25) or (1.32). For LREP, the solution of one product eigenvalue problem yields

n elements of the eigenvector associated with the original eigenvalue problem. The other n elements

of the eigenvector can be easily recovered in a post-processing procedure. For CBSEP, once we

obtain the lowest 2k eigenpairs (λ2
j , uj) of G

2 (1 ≤ j ≤ 2k), with λ2
1 = λ2

2 ≤ · · · ≤ λ2
2k−1 = λ2

2k, we

can perform Raleigh-Ritz projections to construct and solve the 2×2 eigenproblems (UT
ℓ GUℓ, U

T
ℓ Uℓ),

where Uℓ = [u2ℓ−1, u2ℓ] for 1 ≤ ℓ ≤ k to retrieve the k lowest positive eigenvalues and eigenvectors

of G, and pre-multiply those eigenvectors by Q in (1.27) to get the desired eigenvectors of H2.

In the past decades, many iterative methods have been developed for computing the smallest

eigenvalues of LREP [15, 23, 91, 92, 95, 96, 98]. Several Lanczos-type methods have been developed

to solve LREP. In [95, 96], Tsiper proposed a Lanczos-type process to reduce both K and M to

tridiagonal. The first Lanczos process for LREP in [90] was proposed to reduce K to tridiagonal and

M to diagonal. Theoretically, Tsiper’s Lanczos process converges at only half the speed of the first

Lanczos process. A weighted block Golub-Kahan-Lanczos for LREP was proposed in [109], which is

slightly cheaper in computational cost than the first Lanczos process. Also, we notice that a Lanczos

procedure in the M -inner product for the real full BSE has been proposed in [23]. These methods

have been used to build Krylov subspaces, which can be considered optimal matrix-polynomial-based

methods because they obtain their solutions over the entire set of matrix polynomials of degree up

to the number of iterations. For difficult problems, restarting technique may be applied to alleviate

the demand for memory and computational cost, but they may cause deterioration of convergence.

On the other hand, several non-Krylov subspace methods have been developed to solve LREP. A

variant of LOBPCG called LOBP4DCG was proposed in [15]. An indefinite variant of LOBPCG

is also proposed in [68] as a generalization of LOBP4DCG. Notice that all the variants of Lanczos

and LOBPCG mentioned so far work directly on (1.24). For example, the state-of-the-art approach

LOBP4DCG based on (1.24) initializes with two approximation block X(0) ∈ Rn×k, Y (0) ∈ Rn×k,

and the two projected search subspace S(i)K , S(i)M at the ith iteration constructed by LOBP4DCG are

S(i)K = span{X(i), T−1
K R

(i)
K , X(i−1)}, and S(i)M = span{Y (i), T−1

M R
(i)
M , Y (i−1)}, (1.33)

where X(i), Y (i) are the parts of the eigenvector approximation at the ith iteration, T−1
K R

(i)
K ,

T−1
M R

(i)
M ∈ Rn×k are components of the projected gradient of (1.24), and T−1

K , T−1
M are the cho-

13



sen preconditioners.

In [98], the product eigenvalue problem (1.25) is proposed to be solved by LOBPCG-like

methods that makes use of the M -inner product or the K-inner product. Several widely used algo-

rithms for solving the standard symmetric eigenvalue problems can be used by simply replacing the

regular Euclidean inner product with the M -inner product [98]. The M -Davidson and M -LOBPCG

methods are provided therein. These PCG-type methods are usually used with preconditioning

techniques to achieve fast convergence and their performance is sensitive to the quality of the pre-

conditioners. For some eigenproblems, it might be very challenging to obtain a preconditioner of

high quality. Also, if the number of desired eigenvalues is relatively large, the preconditioner becomes

less effective, then it is necessary to update the preconditioner during the iterations, which involves

more computational cost. To compute many smallest eigenvalues more efficiently, a Chebyshev-

Davidson method was proposed in [92] based on the polynomial filter technique. Numerical results

there showed that the approach could work quite well. For difficult problems, a very high degree

of polynomial filter needs to be applied to make it efficient, which may lead to instability of con-

vergence [71]. Moreover, the Davidson-type method is not storage efficient and repeated restarts

could slow the convergence. Note that, the polynomial filter technique could be used in the Lanczos

algorithm [42, 70] for solving the standard Hermitian eigenvalue problem, which could also work

here with the M inner product. However, in order to keep the structure of the Lanczos procedure,

the polynomial filter must remain fixed during the entire algorithm. Such a fixed polynomial filter

requires in-depth knowledge of the spectrum to be effective, but such knowledge may not be readily

available in practice. This makes these methods less robust than the Chebyshev-Davidson method

that does not build Krylov subspaces and allows for the use of adaptive polynomial filters.

For large CBSEP, iterative solvers are still necessary to find a modest number of smallest

positive eigenvalues, though, several direct methods leading to full diagonalization have been devel-

oped. Unlike the LREP, the study of structure preserving iterative methods for CBSEP still seems

limited. In Chapter 5, we review two classes of non-Krylov subspace iterative methods for comput-

ing the lowest partial spectrum of the product eigenproblem (1.22). Our new method is based on a

proper combination of the strengths of both algorithms.
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Chapter 2

Notation and Preliminaries

In this chapter, we introduce the discretization scheme for the BEC and AC/CH problems

in Chapter 3 and 4. Also, we present some preliminary results, which are useful to prove the

quasi-optimality of the Chebyshev-LOBPCG method in Chapter 5.

2.1 Discretization scheme for the BEC and AC/CH problems

In this section, we introduce the discretization scheme for the BEC and AC/CH problems

we employ in this dissertation. Since we consider these problems on periodic domains, the Fourier

pseudo-spectral method is very accurate and widely used. Here, we introduce this discretization

schemes based on the BEC problem, while it is straightforward to use it for the AC/CH problem.

The function ϕ ∈ L2(Rd) must be discretized in order to find a numerical solution of the

minimization problem (1.15). Also, the discretization must be accurate enough to resolve fine details

of vortexes in the solution. Several discretization schemes have been used to compute the solution

to the GPE, including high-order finite difference schemes, finite element schemes with adaptive

meshing strategies [33,34], the standard pseudo-spectral schemes based on Fast Fourier Transforms

(FFTs) [9–11,17].

In the literature on numerical methods for BEC computations, the Fourier pseudo-spectral

method [16] is the most widely adopted discretization. In this dissertation, we adopt the Fourier

pseudo-spectral discretization scheme, which is described in 2D and its extension to other dimen-

sions is straightforward. The wave function ϕ is truncated to a rectangular domain [−Lx, Lx] ×
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[−Ly, Ly] with periodic boundary conditions, and discretized with even number of grid points Nx,

Ny in the x- and y- directions, respectively. A uniformly sampled grid is introduced: DNx,Ny
:=

{xk1,k2
= (xk1

, yk2
)}k1,k2∈INx,Ny

, with INx,Ny
:= {0, · · · , Nx − 1} × {0, · · · , Ny − 1}, xk1+1 − xk1

=

yk2+1− yk2 = h, and with mesh size h = 2Lx/Nx = 2Ly/Ny. Define the discrete Fourier frequencies

(ξp, µq), with ξp = pπ/Lx, −Nx/2 ≤ p ≤ Nx/2 − 1 and µq = qπ/Ly, −Ny/2 ≤ q ≤ Ny/2 − 1. The

pseudo-spectral approximation ϕ̃ of the function ϕ in the x− and y−directions are such that

ϕ̃(x, y) =
1

Nx

Nx/2−1∑
p=−Nx/2

ϕ̃p

∗
(y)eiξp(x+Lx), ϕ̃(x, y) =

1

Ny

Ny/2−1∑
q=−Ny/2

ϕ̃q

∗
(x)eiµq(y+Ly),

where ϕ̃p

∗
(y) and ϕ̃q

∗
(x) are the Fourier coefficients in the x- and y-directions, respectively; that is,

ϕ̃p

∗
(y) =

Nx−1∑
k1=0

ϕ̃(xk1
, y)e−iξp(xk1

+Lx), ϕ̃q

∗
(x) =

Ny−1∑
k2=0

ϕ̃(x, yk2
)e−iµq(yk2

+Ly).

In order to evaluate the action of the discrete Laplacian and the angular rotation operators on

vectors in (1.17), we also need to apply the following operators to the approximation ϕ̃ of ϕ, for

(k1, k2) ∈ INx,Ny ,

∂2
xϕ(xk1,k2

) ≈ ∂2
xϕ̃(xk1

, yk2
) = − 1

Nx

Nx/2−1∑
p=−Nx/2

ξ2pϕ̃
∗
p(yk2

)eiξp(xk1
+Lx),

∂2
yϕ(xk1,k2

) ≈ ∂2
y ϕ̃(xk1

, yk2
) = − 1

Ny

Ny/2−1∑
q=−Ny/2

µ2
qϕ̃

∗
q(xk1

)eiµq(yk2
+Ly),

x∂yϕ(xk1,k2
) ≈ x∂yϕ̃(xk1

, yk2
) = − 1

Ny

Ny/2−1∑
q=−Ny/2

ixk1
µqϕ̃

∗
q(xk1

)eiµq(yk2
+Ly),

y∂xϕ(xk1,k2) ≈ y∂xϕ̃(xk1 , yk2) = −
1

Nx

Nx/2−1∑
p=−Nx/2

iyk2ξpϕ̃
∗
p(yk2)e

iξp(xk1
+Lx).

Meanwhile, we also introduce the finite difference discretization scheme [58, 88], which is

useful to construct the Hessian preconditioner we propose in Section 4.2. With the same uniform
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mesh grids in Fourier pseudo-spectral discretization scheme, the matrices for the operators are

Lp = D2,x ⊗ I + I ⊗D2,y,

Lω = diag(y0, · · · , yNy−1)⊗Dx −Dy ⊗ diag(x0, · · · , xNx−1),

where Dx, Dy and D2,x, D2,y are sparse matrices containing the coefficients of the central finite

difference approximations of the first partial derivative and the second partial derivative with respect

to x and y, respectively [27,58,88]. Also, the order of the finite difference approximation should be

even numbers from 2 to 8. Note that, regardless of the discretization scheme, the discrete negative

Laplacian operator −Lp and the discrete angular rotation operator Lω are real symmetric positive

definite and real skew-symmetric, respectively.

2.2 Preliminaries for BSE problem

Consider the matrix pencil (MKM,M), where K,M ∈ Rn×n are symmetric and positive

definite. Let λ1 < λ2 ≤ · · · ≤ λn and {vi} be the eigenvalues and eigenvectors of the matrix pencil,

such that MKMvi = λiMvi, (vi, vj)M = vTi Mvj = δij , ∥vi∥M = 1, 1 ≤ i, j ≤ n.

Let x be an approximation to v1, the eigenvector associated with the lowest eigenvalue λ1,

with the decomposition

x = v1 cos θ + f sin θ,where θ ̸= 0, f ⊥Mv1, and ∥f∥M = 1, (2.1)

which implies that ∥x∥M = (xTMx)
1
2 = (∥v1∥2M cos2 θ + ∥f∥2M sin2 θ)

1
2 = 1. Since f ⊥ Mv1, it has

the form f =
∑n

j=2 sjvj , where the scalars {sj}nj=2 satisfy
∑n

j=2 s
2
j =

∑n
j=2 s

2
j∥vj∥2M = ∥f∥2M = 1.

Hence, the Raleigh quotient of x is

ρ(x) =
xTMKMx

xTMx
= xTMKMx (2.2)

= vT1 MKMv1 cos
2 θ + fTMKMf sin2 θ = λ1 cos

2 θ + ρ(f) sin2 θ,

where ρ(f) = fTMKMf
fTMf

= fTMKMf =
∑n

j=2 s
2
jλj ∈ [λ2, λn].

Next, we’ll present two important propositions of ρ(x).
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Proposition 2.2.1. Let x be a vector with ∥x∥M = 1. The gradient and the Hessian of 1
2ρ(x) with

respect to x, respectively, are

∇1

2
ρ(x) =

1

xTMx
(MKM − ρ(x)M)x = MKMx− ρ(x)Mx, and

∇2 1

2
ρ(x) =

1

xTMx

{
MKM − ρ(x)M − 2

xTMx
(MKMx− ρ(x)Mx)(Mx)T

− 2

xTMx
Mx(MKMx− ρ(x)Mx)T

}
= MKM − ρ(x)M − 2(MKMx− ρ(x)Mx)(Mx)T − 2Mx(MKMx− ρ(x)Mx)T

Proof. This is done by letting T (ρ) = ρM −MKM in [89, Proposition 3.1].

Proposition 2.2.2. Let x be an approximation to v1 with the decomposition x = v1 cos θ + f sin θ,

where f ⊥ Mv1 and ∥f∥M = 1, then we have ρ(x) − λ1 = O(sin2 θ), and ∥MKMx − ρ(x)Mx∥ =

O(sin θ).

Proof. It is easy to see that, for small θ, ρ(x) is a second order approximation to λ1, since

ρ(x)− λ1 = λ1(cos
2 θ − 1) + ρ(f) sin2 θ = sin2 θ(ρ(f)− λ1). (2.3)

Thus, ρ(x)− λ1 = O(sin2 θ). Also, the eigenresidual associated with x, is

MKMx− ρ(x)Mx = (MKM − ρ(x)M)(v1 cos θ + f sin θ)

= (λ1 − ρ(x)) cos θMv1 + sin θ(MKM − ρ(x)M)f

= sin θ


n∑

j=2

sj(λj − ρ(x))Mvj − sin θ cos θ(ρ(f)− λ1)Mv1

 .

Since λ1 < λ2 and
∑n

j=2 s
2
j = 1, MKMf − ρ(x)Mf =

∑n
j=2 sj(λj − ρ(x))Mvj will not vanish as

θ → 0 and ρ(x)→ λ1. Then, for sufficiently small θ and some δ > 0 independent of θ, we have

(1− δ) sin θ∥MKMf − ρ(x)Mf∥ ≤ ∥MKMx− ρ(x)Mx∥

≤ (1 + δ) sin θ∥MKMf − ρ(x)Mf∥.
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Then,

∥MKMx− ρ(x)Mx∥ = O(sin θ). (2.4)
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Chapter 3

Steady-state solutions of

Allen-Cahn and Cahn-Hilliard

equations

In this chapter, we study three class of numerical methods for computing the steady-state

solutions of Allen-Cahn (AC) and Cahn-Hilliard (CH) equations with a Fourier pseudo-Spectral

discretization method (FPSM). Firstly, we consider the Picard type nonlinear iterative solvers based

on the steady-state AC (1.11) and CH (1.12) equations. We construct two contractive mappings and

formulate the solvers as fixed point problems. Moreover, we apply the inexact Anderson acceleration

(AA) to the Picard iterations to further accelerate the convergence. Secondly, we introduce the first

and second order exponential time differencing schemes, which seems promising for solving the

steady-state solution of AC/CH. We prove that, the first order scheme for CH equation satisfies

the energy stability and 2-norm stability under some assumptions. Finally, we develop an efficient

preconditioned conjugate gradient (PCG) method from the optimization perspective. For the PCG

method, we develop a simple approach to achieve fast energy evaluations for many different step

sizes along the search direction at little additional cost, which enables exact line search efficiently.

We propose two efficient preconditioners, which exploits the special structure of the problem and

realizes fast numerical linear algebra computations in FPSM. We compare the performances among

these three methods. We find that for computing the steady-state solutions of the AC and CH
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equations, the PCG method is much more efficient than the other two methods.

The remainder of this chapter is organized as follows. In Section 3.1, we develop the Picard

iterative method with the Anderson acceleration. We analyze the exponential time differencing in

Section 3.2. We provide a detailed description of the PCG method in Section 3.3. Section 3.4

provides numerical results in 2D and 3D domains to validate and compare the performances among

these methods.

3.1 The Picard iterative method with Anderson acceleration

In order to compute the steady-state solutions of the AC and CH equations, a natural

way is to solve the steady-state equations (1.11) and (1.12) with some iterative methods. In this

section, we develop the Picard iterative method with inexact Anderson acceleration for computing

the steady-state solutions of the AC and CH equations based on the steady-state equations (1.11)

and (1.12).

We introduce the Picard iterations for the AC and CH equations as

uk+1 =
(
−γLp +

γ

ϵ2
diag

(
u2
k

)
+ sI

)−1 (
s+

γ

ϵ2

)
uk = gAC (uk) , (3.1)

and

uk+1 =
(
γL2

p −
γ

ϵ2
Lp diag

(
u2
k

)
+ sI

)−1 (
sI − γ

ϵ2
Lp

)
uk = gCH (uk) , (3.2)

respectively. Here, s > 0 are tuning parameters to speed up the convergence. The Picard itera-

tions (3.1) and (3.2) come from the steady-state equations (1.11) and (1.12), by replacing u with

uk or uk+1. It is straightforward to check that the fixed points of gAC(u) and gCH(u) are solutions

to the steady-state AC (1.11) and CH (1.12) equations, respectively. A main concern associated

with the fixed point iteration is that the iterates may not converge. The contractivity of the Picard

iterations is essential to ensure the convergence. To show gAC (u) and gCH (u) are contractive, it

is equivalent to show that the spectral radiuses of the Jacobin matrix JAC(u) and JCH(u) are not

greater than 1. The following Lemma (3.1.1) is provided in order to find the Jacobian matrices of

gAC(u) and gCH(u).
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Lemma 3.1.1. Consider A, B ∈ Rn×n, where A is nonsingular, and ρ
(
A−1B

)
< 1. Then, we have

(A+B)
−1

= A−1 −A−1BA−1 +A−1BA−1BA−1 − · · · . (3.3)

Proof. The proof is straightforward. We have

(A+B)
−1

=
(
A
(
I +A−1B

))−1
=
(
I +A−1B

)−1
A−1

=
(
I −A−1B +

(
A−1B

)2 − (A−1B
)3

+ · · ·
)
A−1

= A−1 −A−1BA−1 +A−1BA−1BA−1 − · · · .

Here, the third equality is based on the Neumann series [87] of
(
I +A−1B

)−1
.

Next, we present the Jacobian matrices of gAC (u) and gCH (u) in Theorem (3.1.1).

Theorem 3.1.1. The Jacobian matrix of gAC (u) (3.1) and gCH (u) (3.2) are

JAC(u) = A−1
1

((
s+

γ

ϵ2

)
I − 2γ

ϵ2
diag

(
uA−1

1

(
s+

γ

ϵ2

)
u
))

, (3.4)

and

JCH(u) = A−1
2

(
sI − γ

ϵ2
Lp +

2γ

ϵ2
Lp diag

(
uA−1

2

(
sI − γ

ϵ2
Lp

)
u
))

, (3.5)

where A1 =
(
−γLp +

γ
ϵ2 diag(u

2) + sI
)
and A2 = γL2

p −
γ
ϵ2Lp diag(u

2) + sI.

Proof. Firstly, we derive the Jacobian matrix of gAC (u). Using lemma (3.1.1), we have

gAC(u+ δu) =
(
−γLp +

γ

ϵ2
diag(u+ δu)2 + sI

)−1 (
s+

γ

ϵ2

)
(u+ δu)

=

−γLp +
γ

ϵ2
diag(u2) + sI︸ ︷︷ ︸
A1

+
2γ

ϵ2
diag(uδu) +O(δu2)︸ ︷︷ ︸

B1


−1 (

s+
γ

ϵ2

)
(u+ δu)

=A−1
1

(
s+

γ

ϵ2

)
(u+ δu)−A−1

1

2γ

ϵ2
diag(uδu)A−1

1

(
s+

γ

ϵ2

)
u+O(δu2)
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It follows that

gAC(u+ δu)− gAC(u) = A−1
1

(
s+

γ

ϵ2

)
δu−A−1

1

2γ

ϵ2
diag

(
uA−1

1

(
s+

γ

ϵ2

)
u
)
δu+O(δu2),

which leads to

JAC(u) = A−1
1

((
s+

γ

ϵ2

)
I − 2γ

ϵ2
diag

(
uA−1

1

(
s+

γ

ϵ2

)
u
))

.

Similarly, we have

gCH(u+ δu) =
(
γL2

p −
γ

ϵ2
Lp diag (u+ δu)

2
+ sI

)−1 (
sI − γ

ϵ2
Lp

)
(u+ δu)

=

γL2
p −

γ

ϵ2
Lp diag(u

2) + sI︸ ︷︷ ︸
A2

+
2γ

ϵ2
Lp diag(uδu) +O(δu2)︸ ︷︷ ︸

B2


−1 (

sI − γ

ϵ2
Lp

)
(u+ δu)

=A−1
2

(
sI − γ

ϵ2
Lp

)
(u+ δu) +A−1

2

2γ

ϵ2
Lp diag(uδu)A

−1
2

(
sI − γ

ϵ2
Lp

)
u+O(δu2).

Then, we have

gCH(u+ δu)− gCH(u)

=A−1
2

(
sI − γ

ϵ2
Lp

)
δu+A−1

2

2γ

ϵ2
Lp diag

(
uA−1

2

(
sI − γ

ϵ2
Lp

)
u
)
δu+O(δu2),

and therefore

JCH(u) = A−1
2

(
sI − γ

ϵ2
Lp +

2γ

ϵ2
Lp diag

(
uA−1

2

(
sI − γ

ϵ2
Lp

)
u
))

.

For gAC(u), at the fixed points u∗
1, we have A−1

1 (s + γ
ϵ2 )u

∗
1 = u∗

1, and the Jacobian matrix

becomes

JAC(u∗
1) =

(
−γLp +

γ

ϵ2
diag(u∗2

1 ) + sI
)−1

((
s+

γ

ϵ2

)
I − 2γ

ϵ2
diag

(
u∗2
1

))
.
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Further suppose that u∗2
1 ≈ 1, then

JAC(u∗
1) ≈

(
−γLp +

( γ

ϵ2
+ s
)
I
)−1 (

s− γ

ϵ2

)
I.

Let λ ≥ 0 be an eigenvalue of −Lp. It follows that the eigenvalues of above approximate Jacobian

at u∗
1 are

s− γ
ϵ2

γλ+ γ
ϵ2 + s

Obviously, for any s > 0, we have |s − γ
ϵ2 | < s + γ

ϵ2 ≤ γλ + γ
ϵ2 + s. This means that this Picard

iteration (3.1) is strictly contractive at and near u∗
1 if u∗2

1 ≈ 1. It also suggests that letting s = γ
ϵ2

may lead to very rapid convergence near such u∗
1. Nevertheless, such a rapid convergence may not

be realized at u far from such u∗
1, and also not realized if u∗2

1 is not very close to 1.

Similarly, for gCH(u), at the fixed points u∗
2, we know A−1

2

(
sI − γ

ϵ2Lp

)
u∗
2 = u∗

2, and assume

that u∗2
2 ≈ 1, then

JCH(u∗
2) ≈ (γL2

p −
γ

ϵ2
Lp + sI)−1

(
sI +

γ

ϵ2
Lp

)
.

Note that (γL2
p−

γ
ϵ2Lp+sI)−1 and sI+ γ

ϵ2Lp have the same eigenvectors. Therefore, the eigenvalues

of above approximate Jacobian at u∗
2 are

s− γ
ϵ2λ

γλ2 + γ
ϵ2λ+ s

.

Let 0 = λ1 < λ2 < · · · < λn be the eigenvalues of −Lp. Given that s > 0, for λ1, the approximate

JCH(u∗
2) has a corresponding eigenvalue 1, associate with the eigenvector 1. For λ2, · · · , λn, the

corresponding eigenvalues of the approximate JCH(u∗
2) are strictly less than 1 in absolute value.

In this sense, in the n − 1 dimensional space orthogonal to 1, near u∗
2 with u∗

2 ≈ 1, this Picard

iteration (3.2) is strictly contractive. It is easy to check that the optimal s∗ is given by γ
ϵ2λ2 or γ

ϵ2λn.

The only eigenvalue 1 also suggests that this Picard iteration does not change the component of 1

in uk to the next iterate uk+1. Overall, by the argument of continuity of eigenvalues of symmetric

matrices that depend on the matrix elements, if u is sufficiently close to a vector whose elements

are only +1 and −1, the Picard iterations (3.1) and (3.2) should still be strictly contractive near

the fixed-point vector u∗. Note that, the tuning parameters s1 and s2 are better to be decided by
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trial and error, although we provide the optimal choices theoretically when the methods approach

convergence.

The contractive mappings guarantee the convergence of the fixed point iterations, which

usually exhibit only linear convergence (unacceptably slow). Acceleration methods can potentially

alleviate slow convergence. Here, we employ the Anderson acceleration [99] method to speed up

the convergence. Anderson acceleration is a computational technique designed for accelerating the

convergence of fixed point iterations [5,6], which is to find a proper linear combination of successive

previous iterates with coefficients obtained from a constrained minimization to obtain a new iterate

that potentially yields a smaller nonlinear residual norm than the new iterate computed from the

original fixed point iteration.

A general framework of the Picard iterations with Anderson acceleration is provided in

Algorithm 1. Here, the depth parameter mk and relaxation factors ck can be updated during the

iterations to accelerate the convergence. Note that whenmk = 0, the iterations is exactly the original

fixed point iteration. To further save computational cost, an inexact version of this algorithm can

be used, which only requires to compute the g(uk) in a low accuracy. More details and analysis can

be found in [104]. In our numerical experiments, we use the MATLAB built-in functions pcg and

gmres to solve (3.1) and (3.2) to a relative accuracy, e.g., lintol =10−3, respectively.

Algorithm 1 The Picard iterations with Anderson acceleration.

1: Start with an initial approximation u0, Anderson acceleration depth mk ≥ 0 and relaxation
factors 0 < ck ≤ 1.

2: Compute u1 = g(u0), and w1 = g (u0)− x0.
3: while not converged do
4: Compute g(uk), and wk = g(uk)− uk.

5: Let ℓ = max{0, k −mk}, and solve min∑k
i=ℓ α

(k)
i =1

∥
∑k

i=ℓ α
(k)
i wi∥ for {α(k)

i }.

6: Compute the new iterate uk+1 = (1− ck)
∑k

j=ℓ α
(k)
j uj + ck

∑k
j=ℓ α

(k)
j g(uj).

7: k = k + 1
8: end while

3.2 Exponential time difference scheme

In this section, we present the fully discrete exponential time difference (ETD) scheme for

Allen-Cahn (1.9) and Cahn-Hilliard (1.10) equations. Let the system of ODEs of spatially discretized

AC/CH be ut = F (u). Also, let Lu be the linear part of F (u) and N (u) be the nonlinear part
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of F (u), respectively, such that F (u) = Lu + N (u). Therefore, the Allen-Cahn equation can be

written and decomposed as

ut = γ
(
Lp −

κ

ϵ2
I
)
u︸ ︷︷ ︸

Lu

+ γ (−1) f (u)− κu

ϵ2︸ ︷︷ ︸
N(u)

, (3.6)

and the Cahn Hilliard equation can be written and decomposed as

ut = γ
(
−L2

p +
κ

ϵ2
Lp

)
u︸ ︷︷ ︸

Lu

+ γLp
f (u)− κu

ϵ2︸ ︷︷ ︸
N(u)

, (3.7)

where κ ≥ 2 is a stabilizing parameter [37]. Given a positive integer Kt, the time interval is divided

by {tn = nτ : 0 ≤ n ≤ Kt} with a uniform time step τ = T
Kt

. The exponential Euler’s method

(ETD1) for AC/CH are as follows: for k = 0, · · · ,Kt − 1,

uk+1 = eτLuk + τφ1 (τL)N (uk) , where φ1 (z) =
ez − 1

z
. (3.8)

The exponential trapezoid method (ETDRK2) for AC/CH takes the following form: for k =

0, · · · ,Kt − 1,

ûk+1 = eτLuk + τφ1 (τL)N (uk) , (3.9a)

uk+1 = ûk+1 + τφ2 (τL) (N (ûk+1)−N (uk)) , where φ2 (z) =
ez − 1− z

z2
. (3.9b)

The above expressions show that a crucial computational component of the exponential

integrator method is the exponential matrix-vector multiplication of the form eτLu, where L is

a symmetric negative definite matrix. An efficient method is provided in [80] for approximating

eτLu = φ0(τL)u, φ1(τL)u and φ2(τL)u, which only need solutions to 7 linear systems of the

form (τL − ziI)x = cib, where zi and ci are the coefficients of the rational approximation ez ≈

r∞+
∑p

i=1
ci

z−zi
, where p = 13 or 14. Solving linear systems of the form (L+ σI)x = b only requires

one pair of FFT/IFFT in FPSM, because the coefficient matrix L+σI is a polynomial of the discrete

Laplacian Lp. Also, ez can be evaluated directly with only pair of FFT/IFFT in FPSM, which is

adopted in our implementation. More importantly, using the ETD scheme can significantly increase

the time step size, compared with the basic explicit methods.
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In [37], a full analysis of the ETD1 and ETDRK2 for the AC equation is presented, where it

is shown that the ETD1 and ETDRK2 schemes satisfy the discrete maximum principle, while, the

discrete energy stability is proved for the ETD1 scheme. In the following of this section, we prove

the discrete energy stability and 2-norm stability of the ETD1 scheme for CH equation. Remind

that the discrete maximum principle does not hold true for the CH equation, unless for some special

potential functions. The following Theorem 3.2.1 shows the discrete energy stability for CH ETD1

scheme (3.8).

Theorem 3.2.1. Assume that ∥uk∥∞ ≤ 1 for k = 0, · · · ,Kt−1, hence, the approximating solutions

{uk}Kt

k=0 generated by ETD1 scheme (3.8) for Cahn-Hilliard equation satisfies the energy inequality

E (uk+1) ≤ E (uk) , 0 ≤ k ≤ Kt − 1,

for any τ > 0; i.e., the ETD1 scheme is unconditionally energy stable.

Proof. Under the assumption ∥uk∥∞ ≤ 1 for k = 0, · · · ,Kt − 1, we have the difference between the

discrete energies at two consecutive time levels from [37, Theorem 5.1] satisfying,

E (uk+1)− E (uk) ≤ (uk+1 − uk)
T ((−ϵ2Lp + κI

)
uk+1 −

(
(κ+ 1)uk − u3

k

))
. (3.10)

For the simplicity of notations, we focus on the following scaled equation, by multiplying both sides

of (3.7) by ϵ2

γ . The new form reads

ut =
(
−ϵ2L2

p + κLp

)
u︸ ︷︷ ︸

Lu

+Lp (f (u)− κu)︸ ︷︷ ︸
N(u)

. (3.11)

Using (3.8), we have

uk+1 = eτLuk + τφ1 (τL)N (uk)

= eτLuk + L−1
(
eτL − I

)
Lp

(
u3
k − (κ+ 1)uk

)
.
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Then, we have

(
u3
k − (κ+ 1)uk

)
= L−1

p

(
eτL − I

)−1
L
(
uk+1 − eτLuk

)
=
(
eτL − I

)−1 (−ϵ2Lp + κI
) (

uk+1 − eτLuk

)
=
(
eτL − I

)−1 (−ϵ2Lp + κI
)
(uk+1 − uk)−

(
−ϵ2Lp + κI

)
uk

Note that Lp, L, −ϵ2Lp+κI, eτL−I and their (pseudo) inverses all have the same set of eigenvectors,

and therefore their multiplications satisfy the commutative property. Also, the action of L−1
p is well-

defined for all vectors in the n− 1-dimensional subspace orthogonal to v1 = 1.

Then, we have

(
−ϵ2Lp + κI

)
uk+1 −

(
(κ+ 1)uk − u3

k

)
=
(
−ϵ2Lp + κI

)
(uk+1 − uk)−

(
I − eτL

)−1 (−ϵ2Lp + κ
)
(uk+1 − uk)

=B (uk+1 − uk) ,

where B =
(
−ϵ2Lp + κI

)
−
(
I − eτL

)−1 (−ϵ2Lp + κI
)
. Define a function

d (a) := a− a

1− e−
τa(a−κ)

ϵ2

, a ≥ κ.

Then, d (a) < 0 for any a ≥ κ and B = d
(
−ϵ2Lp + κI

)
. Since −ϵ2Lp+κI is symmetric and positive

definite, we know that B is symmetric and negative definite. Therefore, we obtain

E (uk+1)− E (uk) ≤ (uk+1 − uk)
T
B (uk+1 − uk) ≤ 0,

as desired.

Note that Theorem 3.2.1 is based on the assumption ∥u∥∞ ≤ 1, which is not satisfied by

the solution for the CH equation. Therefore, we need to explore further to relax this assumption.

Next, we prove the 2-norm stability for the CH equation in Theorem 3.2.2.

Theorem 3.2.2. Assume that κ and τ are sufficiently large, hence, the approximating solutions
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{uk}Kt

k=0 generated by ETD1 scheme (3.8) for Cahn-Hilliard equation satisfies

∥uk+1∥2 ≤ ∥uk∥2, 0 ≤ k ≤ Kt − 1.

Proof. Here, we still focus on the scaled equation (3.11) without changing any essence of the insight.

Applying the ETD1 scheme, we have

uk+1 = eτLuk + L−1
(
eτL − I

)
Lp

(
u3
k − (κ+ 1)uk

)
(3.12)

= eτLuk + (−ϵ2Lp + κI)−1
(
eτL − I

) (
u3
k − (κ+ 1)uk

)
With the periodic conditions, we know Lp is symmetric and negative definite. Assume that λn ≤

· · · ≤ λ2 < λ1 = 0 are the eigenvalues of Lp and v. Therefore, we can let

Lp = V diag(0, λ2, · · · , λn)V
T

and artificially define

L−1
p = V diag(0,

1

λ2
, · · · , 1

λn
)V T ,

which can be applied to any vector orthogonal to v1. It follows that

L = −ϵ2L2
p + κLp = V diag(0,−ϵ2λ2

2 + κλ2, · · · ,−ϵ2λ2
n + κλn)V

T

= V diag(0, µ2, · · · , µn)V
T ,

where µ1 = 0, µk = −ϵ2λ2
k + κλk < κλk < 0 (2 ≤ k ≤ n), and

eτL = V diag(eτ0, eτµ2 , · · · , eτµn)V T .

Let uk+1 = V w =
∑n

j=1 vjwj and u3
k − (κ+ 1)uk = V r =

∑n
j=1 vjrj (subscript step k of w
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and r are omitted for simplicity), and V2 = [v2, · · · , vn]. Plugging them into (3.12), we have

uk+1 = V [w1, e
τµ2w2, · · · , eτµnwn]

T + V [0,
eτµ2 − 1

ϵ2|λ2|+ κ
r2, · · · ,

eτµn − 1

ϵ2|λn|+ κ
rn]

T (3.13)

= v1w1 + V2[e
τµ2w2, · · · , eτµnwn]

T + V2[
eτµ2 − 1

ϵ2|λ2|+ κ
r2, · · · ,

eτµn − 1

ϵ2|λn|+ κ
rn]

T

= v1w1 + V2[e
τµ2 , · · · , eτµn ]T .[w2, · · · , wn]

T

+ V2[
eτµ2 − 1

ϵ2|λ2|+ κ
, · · · , eτµn − 1

ϵ2|λn|+ κ
]T .[r2, · · · , rn]T ,

where the “.” operation means element-wise multiplication between two vectors. Applying the

orthogonal projector P2 = I − v1v
T
1

vT
1 v1

on both sides, we have

P2uk+1 = V2[e
τµ2 , · · · , eτµn ]T .[w2, · · · , wn]

T + V2[
eτµ2 − 1

ϵ2|λ2|+ κ
, · · · , eτµn − 1

ϵ2|λn|+ κ
]T .[r2, · · · , rn]T ,

(3.14)

To obtain an upper bound on ∥P2uk+1∥2, we can apply a variant of Hölder’s inequality ∥u.v∥ ≤

∥u∥p∥v∥q, where 1
p + 1

q = 1
r . Let p =∞, q = 2, and r = 2. It follows that

∥[eτµ2 , · · · , eτµn ].[w2, · · · , wn]∥2 ≤ eτµ2∥[w1, · · · , wn]∥2 (3.15)

= eτµ2∥V 2[w2, · · · , wn]
T ∥2 = eτµ2∥P2uk∥2

Similarly, the second term can be bounded by

∥∥∥∥[ eτµ2 − 1

ϵ2|λ2|+ κ
, · · · , eτµn − 1

ϵ2|λn|+ κ

]
.[r2, · · · , rn]

∥∥∥∥
2

≤ max
2≤i≤n

∣∣∣∣ 1− eτµi

ϵ2|λi|+ κ

∣∣∣∣ ∥[r2, · · · , rn]∥2 (3.16)

≤ 1− eτµℓ

ϵ2|λℓ|+ κ
∥V2[r2, · · · , rn]∥2 =

1− eτµℓ

ϵ2|λℓ|+ κ

∥∥P2(u
3
k − (κ+ 1)uk)

∥∥
2
.

Suppose that ∥uK∥∞ ≤ U , where U ∈ (0,
√
κ+ 1] is a fixed constant independent of κ, and

P2uk ̸= 0. We want to show that

∥P2(u
3
k − (κ+ 1)uk)∥2 ≤ (1 + δ(κ))∥(P2)u

3
k − (κ+ 1)P2uk∥2,

for a sufficiently large κ, where δ(κ) =
∥P2u

3
k∥2+∥(P2uk)

3∥2

∥(κ+1)P2uk∥2−∥(P2uk)3∥2
, so that limκ→∞ δ(κ) = 0. In fact,

since ∥uK∥∞ ≤ U and U is fixed independent of κ, ∥P2u
3
k∥2 and ∥(P2uk)

3∥2 are bounded independent
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of κ. It follows that

∥P2(u
3
k − (κ+ 1)uk)∥2 ≤ ∥(κ+ 1)P2uk∥2

(
1 +

∥P2u
3
k∥2

∥(κ+ 1)P2uk∥2

)
(3.17)

= ∥(κ+ 1)P2uk∥2
(
1− ∥P2u

3
k∥2

∥(κ+ 1)P2uk∥2

)
(1 + δ(κ))

≤ ∥(P2)u
3
k − (κ+ 1)P2uk∥2(1 + δ(κ)).

We need an upper bound on ∥(P2)u
3
k − (κ + 1)P2uk∥2. Let the m-th element of P2uk be

am, and suppose that ∥P2uk∥∞ = maxm|am| ≤
√
κ+ 1. Mote that P2uk = uk − ūk such that

∥P2uk∥∞ ≤ ∥uk∥∞ + |ūk|, and similarly, ∥uk∥∞ ≤ ∥P2uk∥∞ + |ūk|, where ūk is the mean value of

the vector uk. Under this assumption, note that larger a2k corresponds to smaller (κ+1)− a2k (both

terms are non-negative). By the Chebyshev sum inequality [53], we have

∥(P2uk)
3 − (κ+ 1)P2uk∥22 =

n∑
m=1

a2m((κ+ 1)− a2m)2 (3.18)

≤(
n∑

m=1

a2m)

(
1

n

n∑
m=1

((κ+ 1)− a2k)
2

)

=∥P2uk∥22

(
(κ+ 1)2 − 1

n

n∑
m=1

a2m(2(κ+ 1)− a2m)

)
(where κ+ 1 ≤ 2(κ+ 1)− a2m)

≤∥P2uk∥22

(
(κ+ 1)2 − κ+ 1

n

n∑
m=1

a2m

)
≤ ∥P2uk∥22

(
(κ+ 1)− 1

2n
∥P2uk∥22

)
.

Combined (3.14) with (3.15), (3.16), (3.17) and (3.18), we have

∥P2uk+1∥2 ≤ eτµ2∥P2uk∥2 +
1− eτµℓ

ϵ2|λℓ|+ κ
∥P2(u

3
k − (κ+ 1)uk)∥2 (3.19)

≤eτµ2∥P2uk∥2 + (1− eτµℓ)
(1 + δ(κ))

(
(κ+ 1)− 1

2n∥P2uk∥22
)

ϵ2|λℓ|+ κ
∥P2uk∥2.

Suppose that κ and the step size τ are sufficiently large, so that δ(κ) > 0 and eτµ2 > 0 are sufficiently

small. Then, if 1
2n∥P2uk∥2 ≤ 1 and ϵ >

√
1− 1

2n∥P2uk∥2
2

|λℓ| , then

∥P2uk+1∥2 ≤

(
eτµ2 + (1− eτµℓ)

(1 + δ(κ))
(
(κ+ 1)− 1

2n∥P2uk∥22
)

ϵ2|λℓ|+ κ

)
∥P2uk∥2 ≤ ∥P2uk∥2.

Note that if 1
2n∥P2uk∥2 > 1, then ∥P2uk+1∥2 ≤ ∥P2uk∥2 holds for any ϵ as long as κ and τ are
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sufficiently large. Finally, recall (3.13) showing that the v1 component in the uk+1 is the same as

that uk, i.e., ∥P1uk+1∥2 = ∥P1uk∥2, where P1 = I − P2 =
v1v

T
1

vT
1 v1

, because

uk = V V Tuk = v1(v
T
1 uk) + V2(V

T
2 uk) = P1uk + P2uk.

It follows that

∥uk+1∥22 = ∥P1uk+1∥22 + ∥P2uk+1∥22 ≤ ∥P1uk∥22 + ∥P2uk∥22 = ∥uk∥22,

which complete the proof.

3.3 The preconditioned conjugate gradient method

Another alternative for computing the steady-state solutions of the AC and CH equations

arises from an optimization perspective. In this section, we develop the preconditioned conjugate

gradient method for computing the steady-state solutions of the AC and CH equations, which is

equivalent to minimize the discretized energy functional (3.20). Let Lp be the discrete Laplacian

matrix. In discrete form, the energy functional (1.13) can be written as

E (u) =

(
−1

2
uTLpu+

1

4ϵ2
(
uTdiag

(
u2
)
u− 2uTu+ 1T1

))
hd. (3.20)

Then, our aim is to compute the local minimizer of the discrete energy (3.20). It is necessary to

obtain the gradient of (3.20) in order to employ the PCG method. Note that, although the AC and

CH equations have the same energy functional, the gradients are not essentially the same due to

the mass conservative for CH equation. For the AC equation, the effective gradient of E (u) with

respect to u is

rAC (u) =
∂E (u)

∂u
= −Lpu+

1

ϵ2
(
u3 − u

)
, (3.21)
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For the CH equation, in order to reflect the direction of change with respect to time specified by the

right-hand side of (1.10), a modified gradient to preserve the mass is

rCH (u) = −Lp

(
−Lpu+

1

ϵ2
(
u3 − u

))
. (3.22)

Here, we disregard the the factors hd for both AC and CH equations. With the gradient expres-

sions (3.21) and (3.22), a nonlinear preconditioned conjugate gradient (PCG) method could be

employed in an effort to find the steady states of the energy functional (3.20) for AC and CH equa-

tions. Suppose we work with a generic preconditioner M . The standard search direction in nonlinear

PCG is

pk = −M−1rk + βkpk−1, (3.23)

with p0 = −r0 and the Polak–Ribière update [76]

βk = max

(
⟨rk − rk−1,M

−1rk⟩
⟨rk−1,M−1rk−1⟩

, 0

)
. (3.24)

At iteration k, a regular update formula for uk+1 in PCG could be

uk+1 = uk + ηkpk, (3.25)

where ηk is the step size, which can be determined by various methods, e.g. exact line search or

a backtracking line search with Armijo–Goldstein condition [13]. Generally, the exact line search

is prohibitive for large problems due to the requirement of evaluations of the energy functional at

many points, which leads to extremely high computational cost. Here, we provide an efficient way

to evaluate the energies at different points.

Let uk be the current approximate solution, and pk be the search direction. We want to

determine the optimal step size ηk such that uk+1 = uk + ηkpk achieves the minimum energy along

pk. We can write uk+1 =

(
uk pk

)(
1 η

)T

and plug into E (u) (3.20), and the energy becomes
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a function of the single variable η. We obtain

E(uk + ηpk) =

[
−1

2

(
1 η

)((
uk pk

)T

Lp

(
uk pk

))(
1 η

)T

(3.26)

+
1

4ϵ2

((
1 η η2

)(
u2
k 2ukpk p2k

)T (
u2
k 2ukpk p2k

)(
1 η η2

)T

−2
(
1 η

)(
uk pk

)T (
uk pk

)(
1 η

)T

+ n

)]
hd.

Here, ukpk stands for the column vector whose entries are the product of those of uk and pk; u
2
k and

p2k can be defined similarly.

Therefore, evaluation of E (uk + ηpk) at different candidate values of η requires the com-

putation of the 2× 2 matrices

(
uk pk

)T

Lp

(
uk pk

)
and

(
uk pk

)T (
uk pk

)
, and the 3× 3

matrix

(
u2
k 2ukpk p2k

)T (
u2
k 2ukpk p2k

)
only once and no more computation in the original

problem dimension n is needed. Now E(uk + ηpk) : R → R can be evaluated for any and as many

values of η as needed at little arithmetic cost. We can afford to perform a numerical exact line search

to minimize E(uk + ηpk), or find the minimizer by forming d
dηE(uk + ηpk) = 0 in closed form and

solving it for η. In our implementation, we use MATLAB’s fminsearch function to find the optimal

η, which can be done rapidly without additional work on dimension n. Note that the fast evaluation

of the energy functional E (u) is essential to enable the exact line search in the PCG method. Also,

the fast evaluation of the energy is still advantageous for the other line search methods, which require

to evaluate the energy functional at more than one point.

Another critical problem in the nonlinear PCG method is to design a good preconditioner,

which can significantly reduce the iteration counts and runtime. In general, the preconditioner for

PCG near convergence should be an approximation to the Hessian of the objective function. For

the AC equation, it is easy to get the effective Hessian of E (u), which is

HAC (u) =
∂r1 (u)

∂u
= −Lp +

1

ϵ2
(
3diag

(
u2
)
− I
)
. (3.27)

Similarly, for the CH equation, it is natural to use the Jacobian matrix of r2(u) (3.22) as the
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preconditioner, which is

HCH (u) =
∂r2 (u)

∂u
= L2

p −
1

ϵ2
Lp

(
3diag

(
u2
)
− I
)
. (3.28)

Note that, although, the preconditioning could accelerate the convergence of the PCG method, we

still need to consider the computational cost of applying the preconditioners. A preconditioner, which

can be applied efficiently is crucial for the success of the PCG method. Given (3.27) and (3.28),

applying the preconditioners in the PCG method require some iterative methods to solve the linear

systems M−1rk involved in (3.23). To lower the computational cost, the geometric multigrid (GMG)

method might be a reasonable method to approximate the action of M−1 on vectors. However, these

preconditioning strategies can be still expensive, especially for the 3D problems. Usually, the action

of preconditioning does not need to be computed to high accuracy. Also, we know that the elements

of the steady state solutions AC and CH equations are around 1 or −1. Therefore, we introduce two

efficient preconditioners for AC and CH in the PCG method, which are

MAC = −Lp +
2

ϵ2
I, and MCH = L2

p −
2

ϵ2
Lp, (3.29)

by assuming that u2 = 1 in (3.27) and (3.28), respectively. Since we adopt the Fourier pseudo-

spectral discretization scheme, applying the above preconditioners in the PCG method only require

one pair of FFT/IFFT, respectively, as both preconditioners are polynomials of the discrete Lapla-

cian Lp.

With the preconditioners(3.29) applied on the gradient (3.21) or (3.22), the convergence of

the nonlinear PCG relies on the properties of the preconditioned Hessian operator [1, 79]. Then, it

is reasonable to expect that the convergence of the nonlinear PCG method will be influenced by the

properties of the operators

(MAC)−
1
2HAC(MAC)−

1
2 (3.30)

for the AC equation and

(MCH)−
1
2HCH(MCH)−

1
2 (3.31)
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for the CH equation, respectively. Next, we show the pattern of the spectrum for the operators (3.30)

and (3.31), such that the nonlinear PCG is expected to converge quickly when approaching conver-

gence.

Note that the elements of the steady state solutions AC and CH equations are around 1 or

−1. For the steady-state solution u∗ of the AC and CH equation, we can assume that u∗2+δu∗2 = 1,

where δu∗2 ∈ Rn. Then, for the AC equation, most of the elements of δu∗2 are exactly 0, and for

the CH equation, most of the elements of δu∗2 are nearly 0. Also, it is well-known that solutions

of the AC and CH equation will develop interfaces with thickness O(ϵ) [28, 60], which render theirs

numerical simulation difficult as resolving thin interfaces. Thus, the ratio between the number of the

elements of u∗ which are not close to 1 or −1 and the number of elements in u∗ that are (very close

to) 1 or −1 is proportional to ϵ, i.e, O(ϵ). The following Theorems 3.3.1 and 3.3.2 clearly shows that

the operator (3.30) or (3.31) has a favorable eigenvalue distribution such that the nonlinear PCG

with our proposed preconditioners(3.29) is expected to converge fairly quickly when approaching

convergence.

Theorem 3.3.1. At the steady-state solutions u∗ of the AC equation, n(1 − O(ϵ)) eigenvalues of

the operator (3.30) are exactly 1, while nO(ϵ) eigenvalues are significantly different from 1.

Proof. To show the spectrum of the operator (MAC)−
1
2HAC(MAC)−

1
2 , it is equivalent to consider

the operator (MAC)−1HAC , since they have the same eigenvalues. For the AC equation, it is easy

to get

HAC = −Lp +
1

ϵ2
(
3diag

(
u∗2)− I

)
= −Lp +

1

ϵ2
(
3diag

(
u∗2)+ 3diag (δu∗2)− I

)
− 3

ϵ2
diag(δu∗2)

= −Lp +
2

ϵ2
I − 3

ϵ2
diag(δu∗2)

Also, for the AC equation, we know that n (1−O(ϵ)) elements of δu∗2 are exactly 0, while only

nO(ϵ) elements are not 0. Then, with the singular value decomposition, we can write the low-rank

matrix 3
ϵ2 diag(δu

∗2) = U1C1V
T
1 , where U1, V1 ∈ Rn×nO(ϵ) and C1 ∈ RnO(ϵ)×nO(ϵ). Based on the
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Sherman–Morrison–Woodbury formula [49,54,85], we have

(MAC)−1HAC = (HAC + U1C1V
T
1 )−1HAC

= I − (HAC)−1U1

(
C−1

1 + V T
1 (HAC)−1U1

)−1
V T
1 ,

which is a rank-nO(ϵ) update of the identity matrix I. This implies that n(1 − O(ϵ)) eigenvalues

of (MAC)−1HAC are exactly 1 and there are only nO(ϵ) eigenvalues that could be significantly

different from 1.

Theorem 3.3.2. At the steady-state solutions u∗ of the CH equation, n (1−O(ϵ)) eigenvalues of

the operators (3.30) are nearly 1, while nO(ϵ) eigenvalues are significantly different from 1.

Proof. Similarly, for the CH equation, we consider the spectrum of the operator
(
MCH

)−1
HCH .

We have

HCH = L2
p −

1

ϵ2
Lp

(
3diag

(
u∗2)− I

)
.

= L2
p −

1

ϵ2
Lp

(
3diag

(
u∗2)+ 3diag(δu∗2)− I

)
+

3

ϵ2
Lp diag(δu

∗2)

= L2
p −

2

ϵ2
Lp +

3

ϵ2
Lp diag(δu

∗2)

For the CH equation, we know that n(1 − O(ϵ)) elements of δ are nearly 0, while O(ϵ) elements

are significantly different from 0. Then, we can write the full-rank matrix 3
ϵ2Lp diag(δu

∗2) =

3
ϵ2Lp

(
diag(ι) + U2C2V

T
2

)
. Here, U2, V2 ∈ Rn×nO(ϵ), C2 ∈ RnO(ϵ)×nO(ϵ), and ι ∈ Rn such that

∥ι∥∞ ≤ |δ|, where δ > 0 is a small scalar.

Again, with the Sherman–Morrison–Woodbury formula, we have

(
MCH

)−1
HCH =

(
HCH − 3

ϵ2
Lp diag(ι)−

3

ϵ2
LpU2C2V

T
2

)−1

HCH

=

(
HCH − 3

ϵ2
Lp diag(ι)

)−1

HCH +

(
HCH − 3

ϵ2
Lp diag(ι)

)−1

U2

(
C−1

2 − V T
2

(
HCH − 3

ϵ2
Lp diag(ι)

)−1

U2

)−1

V T
2
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With Lemma 3.1.1, we know

(
HCH − 3

ϵ2
Lp diag(ι)

)−1

HCH = I +
3

ϵ2
(HCH)−1Lp diag(ι) +O(∥ι∥2∞).

Therefore,

(
MCH

)−1
HCH = I +

3

ϵ2
(HCH)−1Lp diag(ι) +O(∥ι∥2∞) +

(
HCH − 3

ϵ2
Lp diag(ι)

)−1

U2

(
C−1

2 − V T
2

(
HCH − 3

ϵ2
Lp diag(ι)

)−1

U2

)−1

V T
2 ,

which is a rank-nO(ϵ) update of the identity matrix I plus a matrix of small norm (bounded by

∥ι∥∞ < δ). This implies that n(1−O(ϵ)) eigenvalues of (MCH)−1HCH are nearly 1 and there are

only nO(ϵ) eigenvalues that could be significantly different from 1.

An outline of the nonlinear PCG is given in Algorithm 2.

Algorithm 2 The preconditioned conjugate gradient method.

1: Start with an initial approximation u0, k = 0 and define p−1 = 0.
2: while not converged do
3: rk = r (uk) (see (3.21) and (3.22)).

4: βk = max
(

⟨rk−rk−1,M
−1rk⟩

⟨rk−1,M−1rk−1⟩ , 0
)

5: pk = −M−1rk + βkpk−1

6: ηk = argminη E(uk + ηpk) (by fast energy evaluation (3.26))
7: uk+1 = uk + ηkpk
8: k = k + 1
9: end while

3.4 Numerical experiments

In this section, we perform numerical experiments in 2D and 3D domains to show the

performances of the three methods we introduced, i.e., the PCG method, the Picard iterative method

with inexact AA, and the ETDRK2 method with large time steps. The time-scaling parameters [84]

for the AC and CH equations are γ = ϵ2 and γ = ϵ4, respectively. In each experiment, the mesh

size h is set to be ϵ/2. For computing the steady-state solutions, we can define the relative change
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of discrete energy E(u) (3.20) as

Erel
k =

|E(uk+1)− E(uk)|
max{1, |E(u(k))|}

. (3.32)

Then, we adopt the stopping criterion, i.e., Erel
k ≤ 64ϵmac. Here, ϵmac is the machine precision.

Note that among these three methods, the PCGmethod is parameter-free. There is no other specified

details for the PCG method. For the Picard iterations (3.1) and (3.2), the tuning parameters

s = 10−3 and 10−4 are selected for the AC and CH equations, respectively. For the Picard iterative

method with inexact AA in Algorithm 1, the relaxation factors ck = 0.5 is fixed for k = 1, 2, · · · , and

the depth parameters mk is given in Table (3.1), where we adopt the multilevel depth strategy of

smallmk early and largemk late in the iteration [77]. At each step k, we only solve the equations (3.1)

Table 3.1: The values of mk

Erel
k mk

[10−3,∞) 0
[10−4, 10−3) 2
[10−5, 10−4) 4
[10−6, 10−5) 5
[0, 10−6) 6

and (3.2) to a relative accuracy min{10−3,
√
Erel

k /10}. For the ETDRK2 method, we specify the

time step size τ = 10. All the experiments in this section are performed on a single node with 16

cores on Clemson Palmetto Cluster running MATLAB R2022a.

3.4.1 Numerical experiments in 2D

In this section, we perform extensive experiments in 2D domains to compare the perfor-

mances among the three methods. The computational domain is D = [−1, 1]2. To compare the

performances among these three methods, we expect that the final solutions obtained by these

methods are the same. To be fair enough, we first run the ETDRK2 (τ = 0.01) with initial approxi-

mation with random entries uniformly distributed on [−0.5, 0.5] and [0, 1] for AC and CH equations,

generated by MATLAB’s rand function with the fixed seed 1. We save the approximation uk gener-

ated by the ETDRK2 when Erel
k ≤ 10−4. Then, we use this uk as the initial approximation u0 for

all these three methods.
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3.4.1.1 The AC equation

In this example, we perform several experiments to compare the performances among the

three methods for the AC equation. The results are provided in Table 3.2. Here, “N” records the

size the of the problem, “Iter” counts the total number of iterations, and “Time” is the runtime

in seconds. Since all these methods converge to the same final solution ug, we only report the

corresponding discrete energy E(ug) in the last column “Energy”. For example, in Table 3.2, when

ϵ = 1
64 (h = 1

128 ), it takes the PCG method 351 iterations in 3.17 seconds to obtain the final solution

ug ∈ R65536 with the discrete energy 241.35911438, whereas, the AA and ETDRK2 methods require

835 iterations in 21.51 and 6291 iterations in 40.25 seconds, respectively. Note that, if ϵ = 1
128 or

1
512 , all these three methods reach the trivial solution −1. Figure 3.1 shows the contour plots of

the density function ug obtained with the PCG method, which implies that most of the elements

of ug are 1 or −1. We can see that the PCG is much more efficient than the other two methods.

The performances of AA and ETDRK2 are competitive. When ϵ becomes smaller, it becomes more

difficult for all the three methods, however, the PCG method gains more advantage over the other

two methods. The PCG method achieves the fastest convergence in terms of iterations and is much

cheaper in computational cost.

Table 3.2: Performance comparison for the 2D AC equation.

ϵ N
PCG AA ETDRK2 Energy

Iter Time Iter Time Iter Time

1/64 65536 351 3.17 835 21.51 6291 40.25 241.35911438
1/128 262144 973 27.21 6982 516.63 6056 98.07 0
1/256 1048576 1879 191.13 15737 5185.06 101546 5953.41 965.43645980
1/512 4194304 4966 2282.52 37802 47077.59 97183 31739.25 0

3.4.1.2 The CH equation

We compare the performances among the three methods for the CH equation in this example.

We summarize the results in Table 3.3. Since the CH equation has the mass conservative property,

with our initial approximation, it could avoid the trivial solution in this situation. We can see that

computing the steady-state solution for the CH equation is more challenging than that for the AC

equation, even for the PCG method. Moreover, we find that without the preconditioner, the PCG

method could converge very slowly for the CH equation. This is reasonable, sine we use the modified
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Figure 3.1: Corresponding contour plots of the steady-state solutions ug for the 2D AC equation
obtained by the PCG method (left : ϵ = 1

64 , right: ϵ =
1

256 ).

gradient (3.22) for the CH equation, which reflects the direction of change with time specified by the

continuous equation (1.10), but does not achieve the steepest descent direction with respect to the

discrete energy (3.20). However, the PCG method still achieves the best performances in terms of

the runtime among all these three methods. When ϵ becomes smaller, it becomes more challenging

for all these methods and it seems not suitable to use the AA and ETDRK2 method to compute

the steady-state solutions for the CH equation.

Table 3.3: Performance comparison for the 2D CH equation.

ϵ N
PCG AA ETDRK2 Energy

Iter Time Iter Time Iter Time

1/64 65536 1721 18.32 984 55.36 21947 257.49 213.19874621
1/128 262144 2336 85.51 5010 1014.83 188220 5618.84 427.17439097
1/256 1048576 7105 879.77 37637 24352.94 1016780 100684.09 854.90965010
1/512 4194304 34535 20719.82 63969+ 181091.50+ 1038816+ 606573.89+ 1710.6116834
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Figure 3.2: Corresponding contour plots of the steady-state solutions ug for the 2D CH equation
obtained by the PCG method (Top left : ϵ = 1

64 ; Top right : ϵ = 1
128 ; Bottom left: ϵ = 1

256 ; Bottom
right: ϵ = 1

512 ).
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3.4.2 Numerical Experiments in 3D

In this section, we apply the PCG method to compute some 3D challenging problems. The

computational domain is D = [−1, 1]3. For the AC equation, the initial approximations are

u0(x, y, z) = sin(2πx) + 0.001 cos(16πx), (3.33)

in order to avoid the trivial steady-state solutions. For the CH equation, the initial approximations

are random entries uniformly distributed on [0, 1], generated by MATLAB’s rand function with

the fixed seed 1. Other details are the same as in the 2D domains. We summarize the results for

the AC and the CH equations in Table 3.4 and 3.5, respectively. Also, Figure 3.3 and 3.4 show

the corresponding isosurface plot |ug|2 = 1. We can see that the PCG method still performs very

efficiently extending to the 3D domains.

Table 3.4: Performance of the PCG method for the 3D AC equation.

ϵ N
PCG Energy

Iter Time

1/32 2097152 29 6.50 482.71822924
1/64 16777216 85 163.63 965.43646020

1/128 134217728 548 7801.12 1930.8729152

Figure 3.3: Corresponding isosurface plots of the steady-state solutions |ug|2 = 1 for the 3D AC
equation obtained by the PCG method in Table 3.4 (Left : ϵ = 1

32 ; Middle : ϵ = 1
64 ; Right: ϵ =

1
128 ).
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Table 3.5: Performance of the PCG method for the 3D CH equation.

ϵ N
PCG Energy

Iter Time

1/32 2097152 321 106.84 212.12420022
1/64 16777216 962 2454.06 459.94897753

1/128 134217728 18223 368850.70 854.07857874

Figure 3.4: Corresponding isosurface plots of the steady-state solutions |ug|2 = 1 for the 3D CH
equation obtained by the PCG method in Table 3.5 (Left : ϵ = 1

32 ; Middle : ϵ = 1
64 ; Right: ϵ =

1
128 ).
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Chapter 4

Computing ground states of

Bose-Einstein condensation

In this chapter, we propose and study an improved PCG method for computing the ground

state of rotational BEC (1.15). Our new method makes exclusive use of real arithmetic to fully

exploit the special structure of the problem and realizes fast numerical linear algebra computations.

We discuss a simple approach to achieve fast energy evaluations for many different step sizes along

the search direction at little additional cost, which enables exact line search efficiently. In addition,

we derive the explicit expression of the discrete Hessian operator of the energy E(ϕ) in real arithmetic

and propose an approximate shifted Hessian preconditioner that is quite efficient for tackling high

nonlinearity strength η and high rotational speed Ω. We show that the preconditioned Hessian

with our ideal preconditioner has favorable eigenvalue distributions independent of the mesh size h.

Therefore, given a rotational BEC problem in a specified domain, the PCG method with our ideal

preconditioner is expected to exhibit mesh size-independent asymptotic convergence behavior.

The remainder of this chapter is organized as follows. In Section 4.1, we present a detailed

description of our method. In Section 4.2, we derive the discrete Hessian operator of energy functional

E(ϕ) and provide the preconditioning strategy in practice. Section 4.3 provides an accurate and

efficient method to enable fast energy evaluation and exact line search. We study the eigenvalue

distribution of the preconditioned Hessian with our ideal preconditioner in Section 4.4. Section 4.5

provides numerical results in 2D and 3D domains to validate our new developments.
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4.1 The preconditioned conjugate gradient (PCG) method

in real arithmetic

To develop an efficient solver for problems involving complex numbers, an important strategy

in numerical linear algebra is to fully use real arithmetic whenever appropriate. Since Eη,Ω in (1.17)

is real even though ϕ is complex, computation in real arithmetic is desired, especially for optimization

algorithms where Eη,Ω needs to be evaluated many times. To the best of our knowledge, nearly all

existing algorithms for computing BEC ground states use complex arithmetic, with an exception

in [58] that requires solutions of a long sequence of large linear systems that arise in a special

nonlinear inverse iteration to solve the nonlinear eigenvalue problem (1.18).

First, we will reformulate the BEC problem in real arithmetic. To develop new methods

in real arithmetic, let ϕ = ϕr + iϕg ∈ Cn, where ϕr and ϕg are the real and imaginary parts of ϕ,

with ∥ϕ∥2ℓ2 = ∥ϕr∥2ℓ2 + ∥ϕg∥2ℓ2 = 1. Define Ls = − 1
2Lp + diag(V )(symmetric positive definite). The

energy (1.17) in real arithmetic has the form

Eη,Ω =
[
ϕT
r Lsϕr + ϕT

g Lsϕg +
η

2
(ϕ2

r + ϕ2
g)

T (ϕ2
r + ϕ2

g) + 2ΩϕT
r Lωϕg

]
hd, (4.1)

with ∥ϕ∥ℓ2 = hd/2∥ϕ∥2 = 1. Note that ϕ2
r is the column vector whose entries are the squares of

those of ϕr, and ϕ2
g is defined similarly. The evaluation of (4.1) takes only half of the arithmetic

cost needed to evaluate (1.17) in complex arithmetic. Note that the evaluation of (1.17) in complex

arithmetic [11] did not take advantage of the special structure of −Lp and Lω, which might involve

more round-off errors, give a complex energy value with a small imaginary part, and could make the

final converged energy Eη,Ω(ϕ) less accurate in high accuracy demand.

In order to employ the PCG method, it is necessary to obtain the gradient of Eη,Ω (4.1).

Note that the energy expression of Eη,Ω (1.17) or (4.1) is valid under the normalization constraint

∥ϕ∥ℓ2 = 1. But we may disregard it and derive its gradient formally. The gradient of Eη,Ω (4.1)

with respect to ϕ =
(
ϕT
r ϕT

g

)T
is

∂Eη,Ω

∂ϕ
= 2

Lsϕr + ηdiag(ϕ2
r + ϕ2

g)ϕr +ΩLωϕg

Lsϕg + ηdiag(ϕ2
r + ϕ2

g)ϕg − ΩLωϕr

hd. (4.2)
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We can disregard the factor hd and keep the direction
∂Eη,Ω

∂ϕ . Since ϕ is restricted on the sphere

∥ϕ∥ℓ2 = 1, the effective gradient is the component of (4.2) that is orthogonal to ϕ :

rη,Ω =

Lsϕr + ηdiag(ϕ2
r + ϕ2

g)ϕr +ΩLωϕg

Lsϕg + ηdiag(ϕ2
r + ϕ2

g)ϕg − ΩLωϕr

− λη,Ω

ϕr

ϕg

 , (4.3)

where

λη,Ω =
[
ϕT
r Lsϕr + ϕT

g Lsϕg + η(ϕ2
r + ϕ2

g)
T (ϕ2

r + ϕ2
g) + 2ΩϕT

r Lωϕg

]
hd (4.4)

such that ϕT rη,Ω = 0. Note that (4.3), up to a scaling factor, can also be derived by differentiating

the scaling invariant energy E(ϕ) as performed in Section 4.2. We call λη,Ω the nonlinear Rayleigh

functional of ϕ, which approximates the desired eigenvalue in (1.18). Also, λη,Ω represents the

chemical potential [16] and

λη,Ω = Eη,Ω +
η

2
(ϕ2

r + ϕ2
g)

T (ϕ2
r + ϕ2

g)h
d = Eη,Ω + Eint, (4.5)

where Eint =
η
2 (ϕ

2
r + ϕ2

g)
T (ϕ2

r + ϕ2
g)h

d is the interaction energy. Therefore, rη,Ω is the eigenresidual

associated with ϕ of the nonlinear eigenvalue problem (1.18).

Now, a nonlinear preconditioned conjugate gradient (PCG) method in real arithmetic could

be employed in an effort to find the global minimizer of the energy functional (4.1). Suppose we

work with a generic preconditioner M . The standard search direction in nonlinear PCG is

d(k) = −M−1r(k) + β(k)d(k−1), (4.6)

with the Fletcher–Reeves update [52]

β(k) =
⟨r(k),M−1r(k)⟩

⟨r(k−1),M−1r(k−1)⟩
.

At iteration k, a regular update formula for ϕ(k+1) in PCG could be

ϕ(k+1) = ϕ(k) cos(θ(k)) + p(k) sin(θ(k)), (4.7)
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Here, p(k) is the modified search direction, which is orthogonal to ϕ(k) in complex arithmetic and

normalized in the standard ℓ2-space.

Given two complex vectors d̂(k) = d(k)r + id(k)g and ϕ̂(k) = ϕ(k)r + iϕ(k)g ∈ Cn, the real

representation of d̂(k) and ϕ̂(k) are d(k) =
(
dT(k)r dT(k)g

)T
and ϕ(k) =

(
ϕT
(k)r ϕT

(k)g

)T
, respectively.

Then, the orthogonalization of d̂(k) against ϕ̂(k) in complex arithmetic which gives the result complex

vector p̂(k) = p(k)r + ip(k)g, can be done by their real representations as follows:

p(k) = d(k) −W (WTW )−1WT d(k), (4.8)

where p(k) =

p(k)r

p(k)g

 andW =

ϕ(k)r −ϕ(k)g

ϕ(k)g ϕ(k)r

. Moreover, the normalization condition ∥p(k)∥ℓ2 =

1 can be easily done by

p(k) = p(k)/(h
d
2 ∥p(k)∥2). (4.9)

Note that (4.8) and (4.9) ensure that ϕ(k+1) obtained from (4.7) satisfies the normalization constraint

such that ∥ϕ(k+1)∥ℓ2 = 1 for any θ(k).

An outline of the nonlinear PCG is given in Algorithm 3.

Algorithm 3 The preconditioned conjugate gradient method.

1: Start with an initial approximation ϕ(0) with ∥ϕ(0)∥ℓ2 = 1.
2: while not converged do
3: λ(k) = λη,Ω(ϕ(k)) (see (4.4)).
4: r(k) = rη,Ω(ϕ(k)) (see (4.3)).

5: β(k) =
⟨r(k),M

−1r(k)⟩
⟨r(k−1),M−1r(k−1)⟩

6: d(k) = −M−1r(k) + β(k)d(k−1)

7: p(k) = d(k) −W (WTW )−1WT d(k)

8: p(k) = p(k)/(h
d
2 ∥p(k)∥2)

9: θ(k) = argminθ E(ϕ(k) cos(θ) + p(k) sin(θ))
10: ϕ(k+1) = ϕ(k) cos(θ(k)) + p(k) sin(θ(k))
11: k = k + 1
12: end while
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4.2 Problem-dependent Hessian preconditioner

One critical problem in the nonlinear PCG is to design a good preconditioner, which can

significantly reduce the runtime. In general, the preconditioner for PCG near convergence should

be an approximation to the Hessian of the objective function. The most well-known case is to apply

the PCG method to find the solution of a linear system Ax = b, where A is symmetric and positive

definite. In this case, the objective function is f(x) = 1
2x

TAx − bTx, which leads to the gradient

of f(x) is ∇f(x) = Ax − b and the Hessian of f(x) is A. Then, minimizing f(x) is equivalent to

solving the linear system Ax = b. The preconditioner for PCG to solve this linear system should be

an approximation to A. Also, it is reasonable to expect to use an approximation to the Hessian of

the energy (4.1) as the preconditioner for the nonlinear PCG method.

4.2.1 Derivation of the discrete Hessian operator

In this section, we will derive the explicit expression of the discrete Hessian operator for

the energy functional Eη,Ω (4.1) based on the real arithmetic and introduce the preconditioning

strategy in practice. It is crucial to point out the discrete Hessian operator of a real-valued scalar

function of n complex variables must be a linear operator that operates on a vector of 2n degrees

of freedom [69]. In particular, this means that such a Hessian operator may not be represented

correctly as a complex matrix of order n. In [69], three definitions of the Hessian are given for such

a function based on the real arithmetic or complex arithmetic, and all these Hessian matrices are

of order 2n. For the BEC problems, with our use of real arithmetic, it is also natural to derive the

discrete Hessian operator of the energy functional (1.17) as a real symmetric matrix of order 2n. In

order to derive the full expression of discrete Hessian operator of Eη,Ω, we will follow the scheme

in [58] to absorb the normalization constraint to rewrite (4.1) in a form that is invariant with respect

to the scaling of the wave function ϕ.

Assume that ϕ =

(
ϕT
r ϕT

g

)T

, which leads to the equivalent expression of (4.1)

E(ϕ) =
ϕTAϕ

ϕTϕ
+

η

2

ϕTB(ϕ)ϕ

hd(ϕTϕ)2
, (4.10)
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where

A =

 Ls ΩLω

−ΩLω Ls

 and B(ϕ) =

diag(ϕ2
r + ϕ2

g) 0

0 diag(ϕ2
r + ϕ2

g)

 .

Here, A is real symmetric and E(ϕ) satisfies the scaling invariant property, i.e., E(αϕ) = E(ϕ) for

any α ∈ R\{0}. Theorem 4.2.1 provides the complete expression of the gradient and the Hessian for

E(ϕ) in (4.10).

Theorem 4.2.1. The gradient and Hessian for E(ϕ) (4.10) are given by

∂E(ϕ)

∂ϕ
=

2

ϕTϕ
(A(ϕ)ϕ− λ(ϕ)ϕ) (4.11)

and

∂2E(ϕ)

∂ϕ2
=

2

ϕTϕ

A+
η

hdϕTϕ

diag(3ϕ2
r + ϕ2

g) 2diag(ϕrϕg)

2diag(ϕrϕg) diag(ϕ2
r + 3ϕ2

g)

− λ(ϕ)I (4.12)

−2AϕϕT

ϕTϕ
− 2

ϕϕT

ϕTϕ
A− 4η

B(ϕ)

hdϕTϕ

ϕϕT

ϕTϕ
− 4η

ϕϕT

ϕTϕ

B(ϕ)

hdϕTϕ

+4
ϕTAϕ

ϕTϕ

ϕϕT

ϕTϕ
+ 6η

ϕϕT

ϕTϕ

ϕTB(ϕ)ϕ

hd(ϕTϕ)2

}
,

where

A(ϕ) = A+ η
B(ϕ)

hdϕTϕ
and λ(ϕ) =

ϕTAϕ

ϕTϕ
+ η

ϕTB(ϕ)ϕ

hd(ϕTϕ)2
.

Also, if ϕ =

ϕr

ϕg

 is a stationary point of E(ϕ) such that

∂E(ϕ)

∂ϕ
=

2

ϕTϕ
(A(ϕ)ϕ− λ(ϕ)ϕ) = 0,

we have

∂2E(ϕ)

∂ϕ2
ϕ = 0, and

∂2E(ϕ)

∂ϕ2
ϕ̂ = 0,
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where ϕ̂ =

−ϕg

ϕr

; that is, ϕ and ϕ̂ are the eigenvectors of ∂2E(ϕ)
∂ϕ2 associated with the zero eigen-

value.

Proof. The proof is given in the Appendix.

Note that the gradient from Theorem 4.2.1 is consistent with (4.3) up to a scaling factor.

Also, we can see that the discrete Hessian operator of the energy Eη,Ω(ϕ) should be of order 2n.

Now, we are ready to introduce a shifted Hessian preconditioner for the nonlinear PCG method.

4.2.2 Preconditioning strategy

For the nonlinear PCG, it is crucial to apply the preconditioner efficiently. For the ground

state solution, i.e, the global minimizer of Eη,Ω, the first order optimality condition is rη,Ω = 0, and

the second order optimality condition is Hη,Ω ⪰ 0 (positive semidefinite) with the null space spanned

by the ground state solution ϕ =
(
ϕT
r ϕT

g

)T
and ϕ̂ =

(
−ϕT

g ϕT
r

)T
. Suppose that P is the orthogonal

projector with null space spanned by the ground state ϕ =
(
ϕT
r ϕT

g

)T
and ϕ̂ =

(
−ϕT

g ϕT
r

)T
, i.e.,

P = I −W (WTW )−1WT , where W =

ϕr −ϕg

ϕg ϕr

.

With the normalization constraint ϕTϕhd = 1, we obtain WTW = 1
hd I, so that P =

I − hdWWT . Since that Pϕ = ϕTP = 0, the low-rank updates in (4.12) can be cancelled out by

multiplying ∂2E(ϕ)
∂ϕ2 on both sides by P . That is,

P
∂2E(ϕ)

∂ϕ2
P =

2

ϕTϕ
P

A+
η

hdϕTϕ

diag(3ϕ2
r + ϕ2

g) 2diag(ϕrϕg)

2diag(ϕrϕg) diag(ϕ2
r + 3ϕ2

g)

− λ(ϕ)I

P.

Therefore, we can define the effective Hessian of Eη,Ω (4.1), i.e.,

Hη,Ω := PHpP = P


 Ls + ηdiag(3ϕ2

r + ϕ2
g) ΩLω + 2ηdiag(ϕrϕg)

−ΩLω + 2ηdiag(ϕrϕg) Ls + ηdiag(ϕ2
r + 3ϕ2

g)

− λI2n

P, (4.13)

where ϕrϕg is the column vector whose entries are the product of those of ϕr and ϕg. Moreover, the

projector P adopted can avoid the potential stagnation of the ‘correction direction’ that occurred

in Davidson-type eigensolvers [86].
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To speed up the convergence of our optimization methods, we define the shifted Hessian

preconditioner based on (4.13) as

Mη,Ω := PMpP = P


 Ls + ηdiag(3ϕ2

r + ϕ2
g) ΩLω + 2ηdiag(ϕrϕg)

−ΩLω + 2ηdiag(ϕrϕg) Ls + ηdiag(ϕ2
r + 3ϕ2

g)

− (λ− σ)I2n

P. (4.14)

The shift σ > 0 is chosen such that Mp ≻ 0 (positive definite) near the ground state and ensures

that incomplete Cholesky factorization of Mp can be done successfully. A smaller σ lead to Mp

closer to the effective Hessian Hη,Ω (more effective preconditioning), whereas a larger σ makes Mp

less close to Hη,Ω (less effective). In practice, σ should be chosen to strike a balance between the

chance of success of incomplete Cholesky factorization and the effectiveness of preconditioning. In

our numerical experiments, we let σ = (Eη,Ω+λη,Ω)/2 for the current iterate ϕ(k) by default, though

this choice can be easily changed if necessary.

Given the real formulation of our proposed preconditioner Mη,Ω (4.14), one might wonder

if we could find a complex Hermitian M̂η,Ω of order n, and form the vector u in complex arithmetic

û = ur + iug, such that M−1
η,Ωu = M−1

η,Ω

(
uT
r uT

g

)T
and M̂−1

η,Ωû represent the same vector in real and

complex arithmetic, respectively. This is equivalent to find a complex Hermitian M̂p of order n such

that M−1
p u and M̂−1

p û represent the same vector in real and complex arithmetic, respectively. It

can be shown this is impossible. Suppose M−1
p u = v and M̂−1

p û = v̂ such that v̂ = vr + ivg, then

Mpv and M̂pv̂ represent the same vector in real and complex arithmetic, respectively. Let M̂p =

Re(M̂p)+ i Im(M̂p), then we have Mpv =

Re(M̂p) − Im(M̂p)

Im(M̂p) Re(M̂p)

 v, which leads to a contradiction,

since the (1, 2) and (2, 1) blocks of Mp are not opposite of each other unless η = 0. Real arithmetic

computation is essential to enable a wide range of options to approximate the action of the Hessian

Hp, for both Newton-like and preconditioner conjugate gradient-like methods for the minimization

of Eη,Ω.

A good preconditioner should be applied efficiently. The difficulty of applying the Hes-

sian preconditioner depends on the discretization scheme used. Under the Fourier pseudo-spectral

discretization scheme we adopt, the discrete Hessian operator (4.14) is fully dense, and geometric

multigrid (GMG) is a reasonable method to approximate the action of M−1
η,Ω on vectors. A more

efficient alternative, however, is to construct the shifted Hessian operator (4.14) in finite difference
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discretization based on the same uniform mesh; this leads to a sparse approximation to the true

discrete Hessian operator (4.12) in Fourier pseudo-spectral scheme, to which incomplete Cholesky

factorization can be applied efficiently. This preconditioning strategy is reasonable in this setting,

since the action of preconditioning usually does not need to be computed to high accuracy. In

practice, we apply the 8th order finite difference approximations to form Mη,Ω (4.14), which seems

accurate enough to approximate the true discrete Hessian operator (4.12) given that the wave func-

tion ϕ has complex pattern of vortexes. In this way, the shifted Hessian preconditioner actually

used is sparse and can be applied efficiently. For large problems, as exact matrix factorizations

are prohibitive, we apply incomplete Cholesky factorization with fill-reducing permutations such as

approximate minimal degree ordering [4] and an appropriate drop tolerance. Nevertheless, we still

cannot afford to perform a new factorization at each step of the nonlinear PCG. To lower the compu-

tational cost, we keep the same preconditioner for a certain number of PCG steps before performing

a new factorization. Compared with the state-of-the-art Combined preconditioner proposed in [11],

our Hessian preconditioner is not cheap to apply. To use our preconditioner when it is expected to be

effective, we propose a two-stage preconditioning strategy to further lower the computational cost.

We use the Combined preconditioner at the first stage and switch to our Hessian preconditioner at

the second stage. The timing of the switch depends on the relative difference between the energy of

two consecutive PCG iterations. In our numerical experiments, we found that this strategy performs

pretty well. Generally, the Combined preconditioner is effective to help PCG proceed closer to the

final minimized energy, but it tends to struggle or even stagnate near the convergence, whereas our

Hessian preconditioner can help PCG converge to the final energy more rapidly in a robust manner.

4.3 Fast energy functional evaluation and exact line search

For gradient-based optimization methods, it is a common practice to perform an approx-

imate line search following the Armijo-Goldstein or Wolfe conditions [72], since exact line search

is prohibitive for large problems. There are a few well-known counterexamples, such as PCG for

solving a symmetric positive definite (SPD) linear system and computing the lowest eigenvalue(s) of

an SPD matrix, as exact line search can be done efficiently with explicit formula for the optimal step

size [55] or by the Rayleigh-Ritz projection [64]. The state-of-the-art variant of PCG for rotational

BEC [11] performs line search by approximating Eη,Ω by a quadratic function and some complex
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methodologies based on different conditions and certain default values not explicitly specified. For-

tunately, we find that fast exact line search can be enabled, without repeated evaluations of the

energy functional at different step sizes in the original problem dimension n.

Specifically, let ϕ(k) be the current ground state approximation with ∥ϕ(k)∥ℓ2 = 1, and

d(k) be a search direction. We orthogonalize d(k) against ϕ(k) then normalize it in ∥ · ∥ℓ2 norm

into p(k) following the process introduced in Section 4.1. Then, the new iterate is ϕ(k+1) =

ϕ(k) cos(θ(k))+p(k) sin(θ(k)), where θ(k) is the minimizer E(ϕ(k) cos(θ)+p(k) sin(θ)). By construction,

we know ∥ϕ(k+1)∥ℓ2 = 1. Consider the objective function Eη,Ω (4.1), substitute ϕ =
(
ϕT
r ϕT

g

)T
with(

ϕT
(k)r ϕT

(k)g

)T
cos θ +

(
pT(k)r pT(k)g

)T
sin θ into Eη,Ω. Then, by direct algebraic evaluation, we get

Eη,Ω(ϕ(k) cos θ + p(k) sin θ) =
[
w(θ)TLs(k)w(θ) + 2Ωw(θ)TLω(k)w(θ)+ (4.15)

η

2

(
c1 cos

4 θ + c2 cos
3 θ sin θ + c3 cos

2 θ sin2 θ + c4 cos θ sin
3 θ + c5 sin

4 θ
)]

hd,

where

w(θ) =

(
cos θ sin θ

)T

, Lω(k) =

(
ϕ(k)r p(k)r

)T

Lω

(
ϕ(k)g p(k)g

)
∈ R2×2,

Ls(k) =

(
ϕ(k)r p(k)r

)T

Ls

(
ϕ(k)r p(k)r

)
+

(
ϕ(k)g p(k)g

)T

Ls

(
ϕ(k)g p(k)g

)
∈ R2×2,

and

c1 = (ϕ2
(k)r + ϕ2

(k)g)
T (ϕ2

(k)r + ϕ2
(k)g), c2 = 4(ϕ2

(k)r + ϕ2
(k)g)

T (ϕ(k)rp(k)r + ϕ(k)gp(k)g),

c3 = 4(ϕ(k)rp(k)r + ϕ(k)gp(k)g)
T (ϕ(k)rp(k)r + ϕ(k)gp(k)g) + 2(ϕ2

(k)r + ϕ2
(k)g)

T (p2(k)r + p2(k)g),

c4 = 4(ϕ(k)rp(k)r + ϕ(k)gp(k)g)
T (p2(k)r + p2(k)g), c5 = (p2(k)r + p2(k)g)

T (p2(k)r + p2(k)g).

Here, ϕ(k)r and ϕ(k)g stand for the real part and imaginary part of ϕ(k), respectively; p(k)r and p(k)g

are defined similarly, and ϕ(k)rp(k)r stands for the column vector whose entries are the product of

those of ϕ(k)r and p(k)r; ϕ
2
(k)r, ϕ

2
(k)g, p

2
(k)r and p2(k)g can be defined similarly.

The key observation is that it only takes 6 matrix vector multiplications of order n, 18 vector

inner product of order n, 6 element-wise vector multiplications of order n and 3 vector additions of

order n to obtain Ls(k), Lω(k) ∈ R2×2, and the scalars ci (1 ≤ i ≤ 5), no more computation in the

original problem dimension n is needed. Now Eη,Ω(ϕ(k) cos θ + p(k) sin θ) : R→ R can be evaluated
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for any and as many values of θ as needed at little arithmetic cost. We can afford to perform a

numerical exact line search to minimize Eη,Ω(ϕ(k) cos θ+p(k) sin θ), or find the minimizer by forming

d
dθEη,Ω(ϕ(k) cos θ+ p(k) sin θ) = 0 in closed form and solving it for θ. In our implementation, we use

MATLAB’s fminsearch function to find the optimal θ, which can be done rapidly without additional

work on dimension n. Note that this procedure is equivalent to the Rayleigh-Ritz procedure in many

iterative methods to solve linear or linearized symmetric eigenproblems for the lowest eigenvalues.

Similarly, the fast exact search can be applied to the locally optimal preconditioned conju-

gate gradient method (LOPCG) [63], which is very successful in nonlinear eigenproblems. Assume

that we have determined 2 search directions p(k), f(k) such that ∥p(k)∥2ℓ2 = ∥f(k)∥2ℓ2 = 1, and ϕ(k), p(k),

f(k) are pairwise orthogonal. To determine the new iterate ϕ(k+1) for which the energy functional

is minimized, define ϕ(k+1) = ϕ(k) cos θ + p(k) sin θ cos γ + f(k) sin θ sin γ. The simplified expression

Eη,Ω(ϕ(k+1)) can be derived and one only needs to compute Ls(k), LΩ(k) ∈ R3×3 and 15 scalar co-

efficients once to evaluate Eη,Ω all values of (θ, γ) efficiently. However, we found that adding more

directions in the search subspace does not yield significant gain in runtime consistently.

In [11, 12], a quadratic approximation line search is provided. Without the details of the

specified parameters, we find that it is not easy to achieve the fast convergence of the nonlinear PCG.

Here, we provide a modified quadratic approximation line search. Assuming ϵ(k) is the eigenresidual

at the step k, we can approximate Eη,Ω by a quadratic function, which is evaluated at θ(k) = 0,

ϵ(k)/2 and ϵ(k), respectively. Then, we can use the minimizer θopt(k) of the corresponding quadratic

function as a trial step size. If the energy Eη,Ω(θ
opt
(k) ) is decreased, we accept this step. Otherwise,

we reject this step, decrease the interpolation step sizes by a factor of 2 (e.g., 0, ϵ(k)/4 and ϵ(k)/2),

and try again, until the energy is decreased, which ensures that θ(k) is small enough. However,

the performance of the nonlinear PCG can still be affected by the choice of the three interpolation

points. Furthermore, a backtracking line search with Armijo–Goldstein condition [13] can also be

employed here. Compared with these line search methods, our exact line search can avoid tuning

parameters and help the nonlinear PCG converge more robustly.

4.4 Expected behavior of PCG near convergence

Given the well-known results about the convergence properties of the conjugate gradient

method for preconditioned linear systems [79] and the steepest descent methods for nonlinear con-
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strained minimization [1], the convergence of the nonlinear PCG relies on the properties of the

preconditioned Hessian operator. In this section, we show the pattern of the spectrum for the pre-

conditioned Hessian with our shifted Hessian preconditioner (4.14), such that the nonlinear PCG is

expected to converge quickly when approaching convergence.

The preconditioned Hessian operator with the shifted Hessian preconditioner is defined as,

in the way suggested in [11],

PM−1
η,Ω

∂2E(ϕ)

∂ϕ2
P. (4.16)

Suppose that Mη,Ω = P (Hp + σI)P = PLLTP , where the exact symmetric matrix factor L can

be obtained by the exact Cholesky factorization with or without fill-reducing permutation. Then,

a symmetric version of the preconditioned Hessian with the shifted Hessian preconditioner can be

defined as

Hc = PL−1P
∂2E(ϕ)

∂ϕ2
PL−TP. (4.17)

Note that the preconditioned Hessian (4.17) is defined ideally, since we cannot afford the exact

Cholesky decomposition for large problems in practice. Nevertheless, this ideal preconditioned Hes-

sian helps us develop insight into the expected favorable behavior of the nonlinear PCG with our

practical preconditioner near convergence.

Theorem 4.4.1. The preconditioned Hessian operator with the ideal shifted Hessian precondi-

tioner (4.14) given in (4.17) can be written in the following form

L−1HpL
−T +WWT

1 + L−1WWT
2 + L−1HpWWT

3 − hdL−1HpL
−TWWT , (4.18)

for σ > 0 and

I +W (W1 − hdW )T + L−1WWT
2 + L−1HpWWT

3 , (4.19)

for σ = 0. Here, W1, W2, W3 ∈ R2n×2. In other words, the ideal preconditioned Hessian is a rank-6

update of the identity matrix for σ = 0, and a rank-8 update of L−1HpL
−T that is close to the

identity matrix for a small σ > 0.
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Proof. The proof is given in the Appendix.

Theorem 4.4.1 implies that almost all eigenvalues of the ideal preconditioned Hessian (4.17)

are exactly or nearly 1, and there are only 6 or 8 eigenvalues that could be significantly different

from 1. Among these 6 or 8 eigenvalues, there are 2 zero eigenvalues associated with the orthogonal

projector P and have no impact on the convergence of the nonlinear PCG. Most importantly, such

an observation of the spectrum is independent of the mesh size. Specifically, suppose σ > 0 and

define the rank-8 matrix

R8 = WWT
1 + L−1WWT

2 + L−1HpWWT
3 − hdL−1HpL

−TWWT .

Then, by Theorem 4.4.1, we have

Hc = I +R8 − σL−1L−T . (4.20)

Suppose αi, ρi for 1 ≤ i ≤ 2n (satisfying αi ≤ αi+1, ρi ≤ ρi+1) are the eigenvalues of I + R8 and

I+R8−σL−1L−T , respectively. Then, 2n−8 eigenvalues among αi’s are 1 and at most 8 eigenvalues

are not 1. Moreover, by the Bauer–Fike theorem [40], we have |αi − ρi| ≤ |σ|∥L−1L−T ∥2.

Also, we know that L−1L−T and (Hp + σI)−1 have the same eigenvalues, since Hp + σI =

LLT . Assume that the lowest positive eigenvalue of Hp (positive semidefinite) has an infimum s∗ > 0

that is independent of the mesh size h, as h→ 0. It follows that the spectrum of L−1L−T falls within

(0, 1
s∗+σ ], i.e., ∥L

−1L−T ∥2 ≤ 1
s∗+σ . Then, we have

|αi − ρi| ≤
|σ|

s∗ + σ
, (4.21)

which is guaranteed to be small if σ is small compared to s∗. In other words, for any σ ≪ s∗, the

eigenvalues of I+R8−σL−1L−T are not much different from those of I+R8. This ensures that the

preconditioned Hessian has a favorable eigenvalue distribution such that the nonlinear PCG with

our ideal shifted Hessian preconditioner (where σ is sufficiently small) is expected to converge fairly

quickly when approaching convergence. Note that with the incomplete Cholesky preconditioner

obtained by a fixed drop tolerance, the condition number of L−1HpL
−T deteriorates as the mesh

size h decreases, so that nonlinear PCG needs more iterations to converge on a finer mesh.
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4.5 Numerical experiments

In this section, we perform extensive experiments in 2D and 3D domains to validate our

method. We compare our Hessian preconditioner with the Combined preconditioner proposed in [11].

In the following experiments, we consider the trapping potential: the harmonic plus quartic potential

for d = 2, 3

V (x) = (1− α)(γ2
xx

2 + γ2
yy

2) +
κ(x2 + y2)2

4
+


0, d = 2,

γ2
zz

2, d = 3.

(4.22)

Moreover, we take the initial wave function ϕ(0) as the Thomas Fermi approximation [11,16]

ϕ(0) =
ϕTF

∥ϕTF ∥ℓ2
with ϕTF (x) =


√
(µTF − V (x))/η, V (x) < µTF

0, otherwise,

(4.23)

where

µTF =
1

2


(4ηγxγy)

1/2, d = 2,

(15ηγxγyγz)
2/5, d = 3.

(4.24)

The stopping criterion we adopt is

| E(ϕn+1)− E(ϕn) |
| E(ϕn) |

≤ ϵ = 10−14, (4.25)

Other stopping criterion and comparison between them can be found in [16]. In order to apply our

Hessian preconditioner, we perform an inexact Cholesky factorization with the approximate minimal

degree ordering and the drop tolerance is chosen to be 10−3 and 10−2.5 for experiments in 2D and 3D

domains, respectively. We use the two stage preconditioning strategy. The Combined preconditioner

is used at the first stage and our Hessian preconditioner is used at the second stage. We switch

the preconditioner when |E(ϕn+1)−E(ϕn)|
|E(ϕn)| ≤ 10−7. After switching to the Hessian preconditioner, we

update the Hessian preconditioner every 100 iterations experiments in 2D domains and 300 iterations

in 3D domains.
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4.5.1 Fast energy evaluation and line search methods

In this section, we perform several experiments to compare the performances of the nonlinear

PCG with different line search methods (with or without fast evaluation of the energy) that we

introduce in Section 4.3. Note that we cannot afford to implement the exact line search without

the fast evaluation of the energy. Therefore, there are 5 schemes: (a) exact line search with fast

evaluation; (b) quadratic line search with fast evaluation; (c) quadratic line search without fast

evaluation; (d) backtracking line search with fast evaluation; (e) backtracking line search without fast

evaluation. Note that the exact line search performed by MATLAB’s built-in function fminsearch

is parameter-free, and the quadratic and backtracking line search use a small number of parameters

whose values are predetermined, independent of the test problems. Here, we test two cases: (I)

η = 100, Ω = 0.9 and V (x) is chosen with γx = γy = 1, α = 0.5 and κ = 0; (II) η = 1000,

Ω = 2 and V (x) is chosen with γx = γy = 1, α = 1.2 and κ = 0.3. The computational domain

and mesh size are D = [−10, 10]2 and h = 1
32 , respectively. To make fair comparison, all the

experiments are performed with the Combined preconditioner only. The results are summarized in

Tables 4.5.1 and 4.5.1, respectively. We can see that the exact line search and quadratic line search

are more competitive than the backtracking line search. Also, the exact line search could marginally

improve the number of iterations compared with the quadratic line search. More importantly, the

fast evaluation of the energy is always preferred.

Table 4.1: Comparison of line search for quadratic approximation and exact line search for case I.

η = 100, Ω = 0.9
exact quadratic backtracking
fast fast slow fast slow

PCG iteration 141 142 133 205 205
time (sec) 24.45 25.53 43.1 35.67 60.37

Table 4.2: Comparison of line search for quadratic approximation and exact line search for case II.

η = 1000, Ω = 2
exact quadratic backtracking
fast fast slow fast slow

PCG iteration 302 310 309 579 579
time (sec) 53.91 54.30 86.82 100.65 230.62
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4.5.2 Partial spectrum of the preconditioned Hessian

In this section, we provide numerical examples to illustrate the partial spectrum of precon-

ditioned Hessian with our Hessian preconditioner (4.17) at the converged ground state solution ϕc.

Here, we have two cases: (I) η = 500,Ω = 0.8, and V (x) is chosen with γx = γy = 1, α = 0.5 and

κ = 0; (II) η = 5000 and Ω = 1, and V (x) is chosen with γx = γy = 1, α = 1.2 and κ = 0.3. We

use the MATLAB built-in function eigs to compute the partial spectrum for the preconditioned

Hessian operators.

4.5.2.1 Partial spectrum with different shift σ

In this example, we apply the 8th order finite difference scheme to form (4.17), i.e, finite

difference method for both the effective Hessian itself (4.13) and the Hessian preconditioner (4.14).

Also, we perform an exact Cholesky factorization of the Hessian preconditioner for illustration,

which is too expensive for large realistic problems. Here, we fix h = 1
8 and the shift σ varies. The

computational domain is D = [−10, 10]2. Tables 4.5.2.1 and 4.5.2.1 list the 10 smallest eigenvalues

and 10 largest eigenvalues of the preconditioned Hessian operator for our Hessian preconditioner

with different shifts σ. We can see that most of the eigenvalues of the precondition Hessian with

Hessian preconditioner are approximately 1. These observations are consistent with Theorem 4.4.1.

Table 4.3: Partial spectrum of Preconditioned Hessian with different shift σ for Case I.

λmin λmax

-6.49e-16 1.25
-1.66e-19 1.00
2.33e-08 1.00
2.87e-05 1.00
5.18e-02 1.00
1.82e-01 1.00
5.05e-01 1.00
5.43e-01 1.00
8.24e-01 1.00
8.49e-01 1.00

(a) σ = 10−3

λmin λmax

-4.96e-17 1.24
4.84e-17 1.00
8.65e-08 1.00
3.00e-05 1.00
5.44e-03 1.00
2.18e-02 1.00
9.28e-02 1.00
1.06e-01 1.00
3.20e-01 1.00
3.61e-01 1.00

(b) σ = 10−2

λmin λmax

-4.49e-16 1.22
-1.90e-16 1.00
1.62e-07 1.00
3.86e-05 1.00
5.53e-04 1.00
2.22e-03 1.00
1.01e-02 1.00
1.17e-02 1.00
4.49e-02 1.00
5.35e-02 1.00

(c) σ = 10−1
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Table 4.4: Partial spectrum of Preconditioned Hessian with different shift σ for Case II.

λmin λmax

-3.69e-16 1.77
2.92e-16 1.17
3.11e-06 1.00
4.55e-05 1.00
9.60e-01 1.00
9.60e-01 1.00
9.83e-01 1.00
9.85e-01 1.00
9.86e-01 1.00
9.89e-01 1.00

(a) σ = 10−3

λmin λmax

-2.96e-16 1.17
-8.12e-17 1.02
4.33e-07 1.00
4.71e-05 1.00
6.97e-01 1.00
7.11e-01 1.00
8.53e-01 1.00
8.66e-01 1.00
8.90e-01 1.00
9.12e-01 1.00

(b) σ = 10−2

λmin λmax

-6.90e-17 1.16
-4.16e-17 1.00
9.30e-06 1.00
4.65e-05 1.00
1.93e-01 1.00
1.94e-01 1.00
3.75e-01 1.00
4.03e-01 1.00
4.04e-01 1.00
4.90e-01 1.00

(c) σ = 10−1

4.5.2.2 Partial spectrum with different preconditioners

In this example, we compare the partial spectrum of preconditioned Hessian with the state-

of-the-art Combined preconditioner [11] and our Hessian preconditioner. To be consistent with [11],

we compute the partial spectrum based on the the expression of the non-symmetric preconditioned

Hessian (4.16). The Hessian operator (4.13) is discretized in Fourier pseudo-spectral scheme for

both cases. Moreover, we apply the Combined preconditioner in Fourier pseudo-spectral scheme

and the Hessian preconditioner in 8th order finite difference scheme, which is consistent with the

preconditioning strategy proposed in Section 4.2. To make fair comparison, we scale the computed

eigenvalues so that the largest eigenvalue of both preconditioned Hessian is of the same value for

each experiment. Also, we perform an inexact Cholesky factorization with drop tolerance 10−3

of the shifted Hessian preconditioner (4.14) with shift σ = 10−3, permutated by the approximate

minimal degree ordering. For Case I, we fix h = 1
16 and vary the domain length L from 4 to 12.

For Case II, we fix L = 10 and vary h from 1
4 to 1

16 . Tables 4.5.2.2 and 4.5.2.2 list the 10 smallest

scaled eigenvalues and 10 largest scaled eigenvalues of the preconditioned Hessian operator (4.16) for

the Combined preconditioner and the Hessian preconditioner with different domain D, respectively.

Furthermore, Tables 4.5.2.2 and 4.5.2.2 list the 10 smallest scaled eigenvalues and 10 largest scaled

eigenvalues of the preconditioned Hessian operator for the Combined preconditioner and Hessian

preconditioner with different mesh size h, respectively. From these results, we can see that the

conditioning deteriorates for both preconditioners as both the spatial resolution and the size of the

domain increase, which is consistent with the observation in [11]. However, the preconditioned Hes-
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sian with Hessian preconditioner has a more favorable eigenvalue distribution and smaller condition

number compared with the Combined preconditioner. More importantly, the nonlinear PCG with

the Hessian preconditioner is expected to converge fairly quickly when approaching convergence.

Table 4.5: Partial spectrum of Preconditioned Hessian with Combined preconditioner for Case I.

λmin λmax

-1.02e-16 1.00
5.09e-17 1.00
1.25e-03 1.00
2.18e-03 1.00
2.70e-03 1.00
3.48e-03 1.00
5.18e-03 1.00
7.27e-03 1.00
8.22e-03 0.98
1.06e-02 0.98

(a) D = [−4, 4]2

λmin λmax

7.38e-16 1.00
3.77e-16 1.00
1.31e-09 0.98
3.71e-05 0.98
3.71e-05 0.98
2.26e-04 0.98
3.40e-04 0.98
4.62e-04 0.98
7.11e-04 0.98
7.28e-04 0.98

(b) D = [−8, 8]2

λmin λmax

-1.23e-16 1.00
1.68e-16 1.00
2.56e-11 0.98
3.71e-05 0.98
3.71e-05 0.98
2.26e-04 0.98
2.26e-04 0.98
3.39e-04 0.98
3.39e-04 0.98
4.62e-04 0.98

(c) D = [−12, 12]2

Table 4.6: Partial spectrum of Preconditioned Hessian with incomplete Cholesky Hessian precondi-
tioner for Case I.

λmin λmax

-2.91e-16 1.00
1.07e-16 1.00
6.85e-03 1.00
1.13e-02 1.00
1.26e-02 1.00
1.69e-02 1.00
2.78e-02 1.00
3.62e-02 1.00
3.96e-02 1.00
5.81e-02 1.00

(a) D = [−4, 4]2

λmin λmax

-1.96e-15 1.00
1.40e-16 1.00
7.02e-09 1.00
2.05e-04 1.00
2.23e-04 1.00
1.33e-03 1.00
1.38e-03 1.00
1.80e-03 1.00
1.92e-03 1.00
2.77e-03 1.00

(b) D = [−8, 8]2

λmin λmax

-1.26e-16 1.00
1.34e-15 1.00
1.30e-10 1.00
1.97e-04 1.00
2.02e-04 1.00
1.23e-03 1.00
1.31e-03 1.00
1.69e-03 1.00
1.77e-03 1.00
2.58e-03 1.00

(c) D = [−12, 12]2

4.5.3 Numerical experiments in 2D

In this section, we apply our method to compute the ground state for some 2D BECs

problems with strong repulsive interaction and rotational speed (large values of η and Ω), which are

more relevant for real physical problems. We compare our Hessian preconditioner with the state-

of-the-art Combined preconditioner. The maximum iteration number is set to be 100000. All the

62



Table 4.7: Partial spectrum of Preconditioned Hessian with Combined preconditioner for Case II.

λmin λmax

-2.66e-17 1.00
-1.40e-17 1.00
3.58e-04 1.00
3.58e-04 1.00
9.42e-04 1.00
9.75e-04 1.00
1.40e-03 1.00
1.78e-03 1.00
1.78e-03 0.98
2.75e-03 0.98

(a) h = 1
4

λmin λmax

-1.38e-17 1.00
1.99e-17 1.00
1.76e-04 0.99
1.76e-04 0.99
4.63e-04 0.98
5.02e-04 0.98
5.77e-04 0.98
8.26e-04 0.98
8.26e-04 0.98
9.92e-04 0.98

(b) h = 1
8

λmin λmax

-5.37e-17 1
-1.55e-17 1
5.82e-08 0.99
3.56e-07 0.99
1.88e-05 0.98
1.99e-05 0.98
7.17e-05 0.98
7.93e-05 0.98
7.95e-05 0.98
7.96e-05 0.98

(c) h = 1
16

Table 4.8: Partial spectrum of Preconditioned Hessian with incomplete Cholesky Hessian precondi-
tioner for Case II.

λmin λmax

1.29e-17 1.00
2.76e-17 0.98
1.21e-01 0.96
1.30e-01 0.96
2.28e-01 0.96
2.28e-01 0.96
2.31e-01 0.96
2.31e-01 0.96
2.31e-01 0.96
2.31e-01 0.96

(a) h = 1
4

λmin λmax

-3.45e-17 1.00
2.32e-16 1.00
1.43e-02 1.00
1.48e-02 1.00
3.87e-02 1.00
4.04e-02 1.00
6.10e-02 1.00
6.95e-02 1.00
7.05e-02 0.98
8.66e-02 0.98

(b) h = 1
8

λmin λmax

-1.79e-16 1.00
2.00e-16 1.00
1.23e-06 1.00
7.51e-06 1.00
3.58e-04 1.00
3.79e-04 1.00
1.55e-03 1.00
1.58e-03 1.00
1.59e-03 1.00
1.71e-03 1.00

(c) h = 1
16
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experiments are performed on a Ubuntu 22.04 LTS (64 bit) PC-Intel(R) Core(TM) i7-4700 CPU

2.40 GHz, 32 GB of DDR3 1600MHz RAM running MATLAB R2022b. Our numerical results show

that the Hessian preconditioner is more efficient than the Combined preconditioner especially for

the fast rotational BEC problems.

Firstly, V (x) is chosen with γx = γy = 1, α = 1.2 and κ = 0.3 [11]. The computational

domain and mesh sizes are D = [−20, 20]2 and h = 1
32 . We compute the ground states ϕg of rotating

BECs with large values of η and Ω. In Table 4.9, η is fixed to be 10000 and Ω is chosen from 1 to

5. In Table 4.10, Ω is fixed to be 5 and η is chosen from 1000 to 20000. Tables 4.9 and 4.10 lists

the iterations, runtime and final energy functional our method attain with Combined preconditioner

and Hessian preconditioner, respectively. Also, the lower final energy value for the same (η,Ω) is

highlighted in bold. The contour plot of the density function |ϕg(x)|2 with the Combined precondi-

tioner and the Hessian preconditioner are shown in Figure 4.1 and 4.2, respectively. For example,

in Table 4.9, when η = 10000,Ω = 5, the nonlinear PCG only with the Combined preconditioner

takes 26522 iterations to attain -485.0282069197 in 21126.00 seconds, whereas, only 4488 iterations

is required to attain -485.0305526536 in 4681.19 seconds with the Hessian preconditioner. Tables 4.9

and 4.10 show the advantage of our Hessian preconditioner involving Ω over the Combined precon-

ditioner that disregards Ω. We can see that with larger values of nonlinearity η and rotating speed

Ω, our Hessian preconditioner gains more advantage in runtime. Also, the nonlinear PCG with our

Hessian preconditioner tends to achieve a lower final energy.

Table 4.9: Performance comparison of PCG with two preconditioners for η = 10000 and different Ω
values.

Ω
PCG iteration time(sec) final Eη,Ω

Combined Hessian Combined Hessian Combined Hessian

1 724 2088 576.51 2052.01 63.02007542539 62.96553732649
1.5 749 697 593.38 583.06 53.26795985753 53.26795985751
2 4929 2443 3885.88 2399.98 37.59961999660 37.59961999657
2.5 5770 3287 4589.90 3137.76 13.63739471900 13.63739471896
3 16435 6226 12885.70 6347.01 −23.48312229660 -23.48295831441
3.5 8653 3612 6895.37 3733.51 -82.54564206625 −82.54564207131
4 25890 6047 20546.26 6430.85 -172.7171085876 −172.7188268092
4.5 18115 3701 14125.19 3868.01 -303.3183033037 −303.3185838060
5 26522 4488 21126.00 4681.19 -485.0282069197 −485.0305526536

Next, we compare the performance of our Hessian preconditioner with the Combined pre-

conditioner to solve some more difficult problems. Here, V (x) is chosen with γx = 10, γy = 1, α = 2
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Figure 4.1: Corresponding contour plots of the density function with the Combined preconditioner
|ϕg(x)|2 in Table 4.9 and 4.10.

Figure 4.2: Corresponding contour plots of the density function with the Hessian preconditioner
|ϕg(x)|2 in Table 4.9 and 4.10.
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Table 4.10: Performance comparison of PCG with two preconditioners for Ω = 5 and different η
values.

η
PCG iteration time(sec) final Eη,Ω

Combined Hessian Combined Hessian Combined Hessian

1000 12922 2426 10322.28 2446.36 -522.1631296805 −522.1631296901
2000 10846 2164 8727.81 2192.61 -516.1164313740 −516.1164313839
5000 17673 5349 14009.90 5710.81 -502.4144226059 −502.4145222867
10000 26522 4488 21126.00 4681.19 -485.0282069197 −485.0305526536
20000 60757 6401 47431.78 6956.86 −457.6996232199 -457.6981668537

and κ = 3. We fix η = 25000 and vary Ω from 4 to 16. We take Lx = Ly = 13, h = 1/64. The

results are showed in Table 4.11. Figure 4.3 and 4.4 show the contour plot of the density function

|ϕg(x)|2 with the Combined preconditioner and the Hessian preconditioner, respectively. Note that

the nonlinear PCG with the Combined preconditioner does not terminate after 10000 iterations,

thus we record the energy and the runtime it attains at the 10000 iterations. More importantly,

Table 4.11 shows that our Hessian preconditioner gains significant advantage over the Combined

preconditioner.

Table 4.11: Performance comparison of PCG with two preconditioners for η = 25000 and different
Ω values.

Ω
PCG iteration time(sec) final Eη,Ω

Combined Hessian Combined Hessian Combined Hessian

4 51864 17454 74290.97 33295.91 141.3951364011e 141.3951364033
8 100000+ 39510 143848.1+ 83809.49 -294.0500897923 −294.0521455922
12 98901 9616 170704.1 20936.99 −1871.149053296 -1871.148855358
16 100000+ 30003 168655.4+ 68113.02 -5913.255005955 −5913.256644684

4.5.4 Numerical experiments in 3D

In this section, we apply our method to compute some 3D problems. We perform the

3D experiments on a single node with 16 cores on Clemson Palmetto Cluster running MATLAB

R2022a. We test four cases : (i) η = 15000, Ω = 4; (ii) η = 15000, Ω = 5; (iii) η = 25000, Ω = 4;

(iv) η = 25000, Ω = 6. The mesh size is h = 1
16 for all cases. For (i) and (ii), V (x) is chosen with

γx = γy = 1, γz = 1, α = 0.3 and κ = 1.4. The computational domain is D = [−15, 15]2 × [−8, 8].

For (iii) and (iv), V (x) is chosen with γx = γy = 1, γz = 3, α = 0.3 and κ = 1.4. The computational

domain isD = [−10, 10]2×[−5, 5]. We summarize the results in Table 4.12 and Table 4.13. Figure 4.5

and 4.6 show the isosurfaces |ϕg(x)|2 = 10−3 and surface plots of |ϕg(x, y, z = 0)|2 for all the cases.
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Figure 4.3: Corresponding contour plots of the density function with the Combined preconditioner
|ϕg(x)|2 in Table 4.11.

Figure 4.4: Corresponding contour plots of the density function with the Hessian preconditioner
|ϕg(x)|2 in Table 4.11..
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From these results, we can see that our method work efficiently tackling challenging problems and

our Hessian preconditioner is still competitive compared with the Combined preconditioner.

Table 4.12: Performance comparison of PCG with two preconditioners for Cases I and II.

(η, Ω)
PCG iteration time(sec) final Eη,Ω

Combined Hessian Combined Hessian Combined Hessian

(15000, 4) 14568 3864 378007.4 156913.9 -210.8746065833 −210.8746066226
(15000, 5) 28023 10866 691078.8 448749.6 -529.2941298728 −529.2943293465

Table 4.13: Performance comparison of PCG with two preconditioners for Cases III and IV.

(η, Ω)
PCG iteration time(sec) final Eη,Ω

Combined Hessian Combined Hessian Combined Hessian

(25000, 4) 3509 2325 29258.16 23823.73 75.88162274531 75.88162274514
(25000, 6) 16929 7611 140570.9 74431.28 1.258275896279 1.258275895894
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Figure 4.5: Corresponding isosurface |ϕg(x)|2 = 10−3 in Table 4.12 (Top 4 : Combined; Lower 4:
Hessian).
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Figure 4.6: Corresponding surface plot of |ϕg(x, y, z = 0)|2 in Table 4.12 (Top 4: Combined; Lower
4: Hessian).
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Chapter 5

The Bethe-Salpeter eigenvalue

problem

In this chapter, we propose an extension of Locally Optimal Block Preconditioned Con-

jugate Gradient (LOBPCG) [63] that involves polynomial filtered Ritz vectors and preconditioned

eigenresidual vectors simultaneously. This new algorithm usually exhibits rapid and robust con-

vergence without the dependence on a polynomial filter or a preconditioner of very high quality.

The projection methods used in this chapter are geared toward a limited memory implementation

for computing a potentially large number (e.g., up to 200) of the smallest eigenvalues of (1.25) or

(1.32). We construct an m-step ideal version of our proposed method that also involves the polyno-

mial filtered Ritz vectors and preconditioned eigenresidual vectors simultaneously, and establish an

asymptotic global quasi-optimality of the ideal method, which is similar to the global optimality of

the conjugate gradient method for the iterative solution of a symmetric positive definite linear sys-

tem. We provide comprehensive numerical experiments to validate our algorithms and demonstrate

their competitiveness against a few widely used iterative methods for solving the BSE eigenproblems.

The remainder of this chapter is organized as follows. We provide a description of the

existing algorithms in Section 5.1. In Section 5.2, we present a detailed description of our method.

In Section 5.3 , we construct an ideal variant of our new locally optimal method and develop an

analysis of its asymptotic global quasi-optimality. Section 5.4 provides numerical results to validate

the algorithms.
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5.1 Review of existing algorithms

In this section, we review two classes of non-Krylov subspace iterative methods for comput-

ing the lowest partial spectrum of the product eigenproblem (1.22). Our new method is based on a

proper combination of the strengths of both algorithms.

5.1.1 M -LOBPCG

LOBPCG is widely used for computing extreme eigenvalues of large sparse symmetric ma-

trices. The so-called M -LOBPCG is similar to the LOBPCG method applied to a symmetric matrix,

where the standard inner product is replaced with the M -inner product.

Starting from an initial approximation of the desired eigenvectors X(0) ∈ Rn×k, the search

subspace S(i) at the ith iteration constructed by M -LOBPCG is

S(i) = span{X(i), T−1R(i), P (i)}, (5.1)

where X(i) is the eigenvector approximation at the ith iteration, T−1R(i) ∈ Rn×k is the precondi-

tioned eigenresidual vectors, and the conjugate search direction P (i) ∈ Rn×k is defined as

P (i) = X(i) −X(i−1)CX , (5.2)

where CX ∈ Rk×k are determined by the primitive Ritz vectors from the Rayleigh-Ritz procedure

of last iteration. In addition, we observed experimentally that the search direction P (i) of M -

LOBPCG could also be constructed by the linear least squares, namely, P (i) = X(i) − X(i−1)CX ,

where CX = X(i−1)†X(i) to minimize the 2-norm of each column of P (i). However, this will take

more runtime than (5.2) to obtain the coefficient matrix CX . Mathematically, these two ways to

extract coefficient matrix CX construct the same search subspace S(i) at the ith iteration such that

S(i) = span{X(i), T−1R(i), X(i−1)}. (5.3)

At each step, we orthonormalize the the basis vectors of S(i), denoted as S(i), so that

⟨S(i), S(i)⟩M = I. The Rayleigh-Ritz projection of KM with respect to the M -inner product onto
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the subspace spanned by S(i) gives the projected eigenvalue problem

S(i)TMKMS(i)C = CΘ2, CTC = I, (5.4)

where Θ2 is a k × k diagonal matrix which contains the k smallest eigenvalues of S(i)TMKMS(i),

whose associated eigenvectors are given by the orthonormal columns of the matrix C ∈ R3k×k. Then,

the approximations to the targeted eigenvectors of KM are given by the Ritz vectors S(i)C, and the

targeted eigenvalues are approximated by the diagonal entries of Θ2. In short, in order to solve the

product eigenvalue problem (1.22) , the M -LOBPCG method requires the projected subspace S(i)

to stay M -orthonormal and the projected eigenvalue problem becomes the one for S(i)TMKMS(i).

Details of an implementation of M -LOBPCG are provided in [98].

5.1.2 Chebyshev M -Davidson

To achieve fast convergence, the choice of preconditioner in M -LOBPCG plays an important

role. If no preconditioner of good quality is available, the polynomial filtering technique can be an

effective alternative. In [110, 111], the Chebyshev Davidson method was proposed to employ a

shifted and scaled Chebyshev polynomial to magnify the components of the desired eigenvectors

and suppress those of the undesired ones.

For a symmetric matrix A ∈ Rn×n, suppose the spectrum of A falls within [a0, b] and

the desired eigenvalues are in the interval [a0, a], where a0 < a < b. With the linear transform

ϕ(t) = a+b−2t
b−a , the decreasing shifted and scaled Chebyshev polynomial filter is constructed as

Fd(t) =
Td(ϕ(t))

Td(ϕ(a0))
, (5.5)

where Td(t) is the d-th real Chebyshev polynomial of the first kind. It is easy to verify that Fd(a0) = 1

and Fd(t)→ 0 exponentially with d for any t ∈ [a, b]. Therefore, for an eigenvector approximation v,

Fd(A)v amplifies the components of v in the directions of the eigenvectors associated with eigenvalues

in [a0, a] and suppresses those in the directions of the eigenvectors associated with eigenvalues in

[a, b].

Specifically, to enable the effect of eigenvalue filtering, define σi =
Ti−1(ϕ(a0))
Ti(ϕ(a0))

. Through the
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three-term recurrence relation between Chebyshev polynomials, we have

σ1 =
ω

γ − a0
, σi =

(
2

σ1
− σi−1

)−1

for i = 2, 3, · · · , d. (5.6)

where γ = a+b
2 and ω = b−a

2 . The shifted and scaled polynomial could also be obtained in a recursive

manner

Fi(t) = 2σi
γ − t

ω
Fi−1(t)− σi−1σiFi−2(t) for i = 2, 3, · · · , d. (5.7)

where F0(t) = 1 and F1(t) =
(γ−t)σ1

ω .

Algorithm 4 displays a detailed description of the block version of the shifted and scaled

Chebyshev polynomial filter for KM , which computes XF = Fd(KM)X.

Algorithm 4 Chebyshev Filtered Iteration

Input: SPD matrices K,M ∈ Rn×n, eigenvector approximations X ∈ Rn×k, and parameters
d, a, b, a0 for Chebyshev polynomial filter Fd.

Output: XF = Fd(KM)X
1: ω = b−a

2 , γ = b+a
2 , σ = ω

γ−a0
, τ = 2

σ

2: X̂ = (γX −K(MX))σ/ω
3: for i = 2 : d do
4: σ̂ = 1/(τ − σ)

5: XF = 2(γX̂ −K(MX̂))σ̂/ω − σσ̂X

6: X = X̂, X̂ = XF , σ = σ̂
7: end for

The core of Chebyshev Davidson is to expand the search subspace with polynomial filtered

Ritz vectors. Similarly, the idea of Chebyshev M -Davidson is rather simple. Instead of using the

preconditioned gradient (eigenresidual vectors), we use the polynomial filtered Ritz vectors to expand

the search subspace, that is

S(i) = span{S(i−1), X
(i)
F }, (5.8)

where X
(i)
F = F

(i)
d (KM)X(i), X(i) is the block of Ritz vectors obtained from Rayleigh-Ritz based

on S(i−1) and F
(i)
d (KM) is the polynomial filter adopted at the ith step. It is necessary to keep

basis vectors of the projected subspace S(i) to be M -orthonormal to solve the product eigenvalue

problem (1.22) with Chebyshev M -Davidson. We should point out that the Chebyshev M -Davidson

method is equivalent to the Chebyshev Davidson method for the LREP proposed in [92]. An outline
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of unrestarted Chebyshev M -Davidson is given in Algorithm 5. For difficult problems, they require

too many iterations to converge, resulting in impractical memory and computational demands. A

restart is needed when the projected subspace S(i) grows large.

Algorithm 5 Chebyshev M -Davidson

Input: SPD matrices K,M ∈ Rn×n, initial eigenvector approximations X(0) ∈ Rn×k, Chebyshev
polynomial filter Fd.

Output: Eigenpair approximations (Θ2, X) satisfy KMX = XΘ2.
1: X ← X(0), XF ← Fd(KM)X(0)

2: S ← [X,XF ]
3: while convergence not reached do
4: S ← M -orth{S}1
5: Solve the projected eigenvalue problem STMKMSC = CΘ2 to obtain the desired lowest k

eigenvalue and eigenvector approximations (Θ2, X), where X = SC ∈ Rn×k and Θ ∈ Rk×k is
diagonal

6: Update the polynomial filter Fd

7: XF ← Fd(KM)X
8: S ← [S,XF ]
9: end while

5.2 The Chebyshev M -LOBPCG method

In this section, we propose our new algorithm for computing the lowest eigenvalues of the

product eigenvalue problems (1.25) and (1.32). This method, referred to as ChebyshevM -LOBPCG,

can be considered as a balanced combination of Chebyshev M -Davidson and M -LOBPCG.

5.2.1 Motivation

To achieve fast convergence for the M -LOBPCG and the Chebyshev M -Davidson algo-

rithms, the choice of the preconditioner and polynomial filter plays a crucial role. For large prob-

lems, as exact matrix factorizations are prohibitive or infeasible, we may rely on preconditioners

such as the incomplete Cholesky factorization. An inexact Cholesky factorization with a lower drop

tolerance could lead to faster convergence in terms of iterations, however, it cannot guarantee less

runtime. Similarly, one challenge of the polynomial filter technique is to select the “optimal” degree

of the polynomial. Higher degrees may lead to an excessive number of matrix-vector multiplications

and lower degrees may result in very slow convergence. Also, if the desired interval [a0, a] is very

narrow compared to the undesired interval [a, b], it requires a very high degree to achieve a rapid

1M -orth{S} returns an M -orthonormal basis of the subspace spanned by the columns of S.
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rate of convergence, which leads to expensive computational cost. For non-expert users, it might

be hard to select an appropriate preconditioner or polynomial filter. It is necessary to develop a

black-box algorithm that does not heavily depend on users’ choice of preconditioners or polynomial

filters.

The motivation of our proposed Chebyshev M -LOBPCG is to cater to the needs for such a

black-box algorithm. In order to lower the demand for the quality of preconditioners and polynomial

filters in M -LOBPCG and Chebyshev M -Davidson, respectively, we propose to make use of both the

preconditioned gradient and polynomial filtered Ritz vectors together into the projected subspace.

To the best of our knowledge, no study has been conducted for solving matrix eigenvalue problems

based on a combination of the preconditioned gradient and polynomial filtered Ritz vectors.

5.2.2 Outline of the Method

Our proposed ChebyshevM -LOBPCG can be considered as a special variant ofM -LOBPCG.

We keep the three-term recurrence structure and apply the preconditioner to the eigenresidual vec-

tors. Different from M -LOBPCG, at each step before the Rayleigh-Ritz procedure, we replace the

Ritz vectors with the polynomial filtered Ritz vectors from the last iteration in the projected sub-

space. Usually, this technique provides a projected subspace containing more accurate eigenvector

approximation compared with M -LOBPCG.

Starting from an initial approximation of the desired eigenvectors X(0) ∈ Rn×k, the search

subspace S(i) at the ith iteration is

S(i) = span{X(i)
F ,W (i), P (i)} (5.9)

where X(i) is the initial desired eigenvector approximation obtained in the ith iteration by the

Rayleigh-Ritz projection onto Si−1, X
(i)
F is the polynomial filtered outcome of X(i), i.e., X

(i)
F =

F
(i)
d (KM)X(i), and W (i) = T−1R(i) is the preconditioned eigenresidual vectors for X

(i)
F . Similar to

M -LOBPCG, the block of search direction P (i) is defined as

P (i) = X
(i)
F −X

(i−1)
F CX , (5.10)
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where CX is obtained by minimizing the 2-norm of each column of X
(i)
F −X

(i−1)
F CX , namely,

CX = X
(i−1)†
F X

(i)
F . (5.11)

Therefore, we have

S(i) = span{X(i)
F ,W (i), X

(i−1)
F }, (5.12)

which is analogous to the subspace constructed by M -LOBPCG, with the regular Ritz vectors

replaced with the polynomial filtered Ritz vectors.

We observed that including the polynomial filtered Ritz vectors into the projection subspace

could accelerate the convergence achieved by M -LOBPCG. If the preconditioned gradient cannot

provide a good descent direction of the Rayleigh quotient for M -LOBPCG, the projected subspace

involving polynomial filtered Ritz vectors tends to contain more accurate eigenvector approxima-

tions than the projected subspace for M -LOBPCG. Notice that if the degree of polynomial filter

is set to be zero (no polynomial filter applied), our method is exactly the M -LOBPCG method.

Also, we observed that with a poor preconditioner could significantly delay the convergence or even

be counterproductive for the convergence of M -LOBPCG. However, our method could still con-

verge robustly with such a poor preconditioner, thanks to the contribution by the polynomial filter.

Compared with Chebyshev M -Davidson, including the preconditioned gradient into the projected

subspace lower the demand for the quality of the polynomial filter, which could save a large num-

ber of matrix vector multiplications and is especially beneficial for LREP and CBSEP with dense

matrices. In other words, our method could be a remedy if the polynomial filter is not effective for

Chebyshev M -Davidson, or the preconditioner is not effective for M -LOBPCG. Also, we observed

that if both the preconditioner and the polynomial filter are not effective, simultaneous utilization

of them could be effective, which leads to stable convergence that might not be achieved by either

of the two existing algorithms.

5.2.3 Chebyshev Polynomial Filter

We adopt the same shifted and scaled Chebyshev polynomial filter used in Chebyshev M -

Davidson. Notice that the efficiency of the Chebyshev polynomial filter mainly depends on its
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parameters, which are specified before Chebyshev M -LOBPCG starts. The polynomial degree d is

a user-specified and fixed parameter. Estimates for a0, a and b are needed, where [a0, a] contains

the desired eigenvalues, whereas [a, b] contains the undesired eigenvalues. The lower bound a of the

undesired eigenvalue interval can be estimated and refined during an iterative process with minimal

or no extra computational cost. For the upper bound b, it’s recommended to use a much tighter

bound by constructing an estimator using the Lanczos biorthogonalization procedure [92] for LREP.

In our method, we use the M -Lanczos procedure applied to the matrix KM to obtain the initial

values of a0, a and b. During the iterations, we adaptively update a0, a and b with the same

strategy in [92]. Let ρmax, ρmin, ρmed be the largest, the smallest and the median Ritz value at

each step, respectively. Then, we may let a ← ρmed. We may also set b ← ρmax or a0 ← ρmin, if

ρmax > b or ρmin < a0. Since our target is the lowest k eigenvalues, without in-depth knowledge

of the spectrum, it is not easy to select an accurate value of a to split the wanted and unwanted

eigenvalues; fortunately, our choice works well in practice.

5.2.4 Choice of Search Direction

The choice of the search direction block P (i) deserves a careful discussion. Note that in our

Chebyshev M -LOBPCG method, P (i) is constructed through the linear least squares, such that

P (i) ⊆ span{X(i)
F , X

(i−1)
F }. (5.13)

For the simplicity of notation, let F
(i)
d denote the polynomial filter adopted at the ithe iteration.

Then, after the Rayleigh-Ritz procedure at the ith step, we have three eigenvector approximations

in hand, namely, X(i), X
(i)
F = F

(i)
d X(i) and X

(i−1)
F = F

(i−1)
d X(i−1). We could also involve X(i) into

the search subspace to make a four-term recurrence, such that

S(i) = span{X(i)
F ,W (i), X

(i−1)
F , X(i)}. (5.14)

However, we noticed experimentally that this choice does not accelerate the convergence. On the

other hand, the polynomial filter Fd will be updated after the Rayleigh-Ritz procedure at each step,

thus, F
(i)
d X

(i−1)
F = F

(i)
d F

(i−1)
d X(i−1) tends to be a better eigenvector approximation than X

(i−1)
F ,
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and could be added into P (i). In this way, the search direction block P (i) can also be constructed as

P (i) = X
(i)
F − F

(i)
d X

(i−1)
F CX , (5.15)

where CX minimizes the 2-norm of each column of X
(i)
F − F

(i)
d X

(i−1)
F CX , such that

P (i) ⊆ span{X(i)
F , F

(i)
d X

(i−1)
F } = span{F (i)

d X(i), F
(i)
d F

(i−1)
d X(i−1)}. (5.16)

Also, X(i) is extracted by the Rayleigh-Ritz projection from the search subspace

S(i−1) = span{X(i−1)
F ,W (i−1), P (i−1)}. (5.17)

Then, we have X(1) ⊆ span{F (0)
d X(0),W (0)} and

X(2) ⊆ span{F (1)
d F

(0)
d X(0), F

(1)
d W (0),W (1)}. (5.18)

By induction, at the ith iteration, we have

X(i) ⊆ span


i−1∏
j=0

F
(j)
d X(0),

i−1∏
j=1

F
(j)
d W (0),

i−1∏
j=2

F
(j)
d W (1), · · · , F (i−1)

d W (i−2),W (i−1)

 . (5.19)

This gives the same expression of the projection subspace as the ideal version of our proposed

method, which exhibits the global quasi-optimality property. However, we observed numerically

that such a choice of search directions could accelerate the rate of convergence but does not gain in

runtime, because it involves one more application of polynomial filtering than the construction of

the search direction block P (i) in Chebyshev M -LOBPCG at each step. We will further explain the

difference between the ideal version and the practical version of our method in Section 5.3.

5.2.5 M -orthonormalization

In order to construct an M -orthonormal basis of the search subspace S(i), we require the

columns of X
(i)
F to be M -orthonormal first. This can be done by first performing a Cholesky

factorization of X
(i)T
F MX

(i)
F = LLT , and then X

(i)
F ← X

(i)
F L−T . When the columns of X

(i)
F are close

to be linearly dependent, the Cholesky factorization of X
(i)T
F MX

(i)
F may break down numerically.
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In this case, a more stable algorithm based on a truncated SVD of X
(i)T
F MX

(i)
F may be used [39,56].

Also, a numerically stable Householder orthogonalization with a non-standard inner product is

provided in [82].

After that, we need to M -orthogonalize the preconditioned residual block W (i) = T−1R(i)

against X
(i)
F , which can be achieved by performing

W (i) = W (i) −X
(i)
F (X

(i)T
F MW (i)). (5.20)

Then, W (i) is M -orthonormalized using the Cholesky factorization based scheme described above.

Finally, P (i) is made M -orthogonal against Z(i) = [X
(i)
F ,W (i)] by P (i) = P (i) − Z(i)(Z(i)TMP (i)),

and is then M -orthonormalized. Note that in our implementation, the above M -orthonormalization

procedure is preformed twice at each iteration to keep the columns of the search subspace S(i) being

M -orthonormal to near machine precision, which is necessary for the algorithm to converge.

5.2.6 Implementation with Limited Memory

An implementation with efficient storage is necessary for eigenvalue algorithms, especially

for large problems. In most implementations of eigenvalue algorithms, the block size is chosen at

least as large as the number of desired eigenvalues. It is well known that block methods become

less efficient when the block size is more than several dozens. A very large block size can lead to

overwhelming memory demand. Even if the block size is not very large, setting the block size equal

to the number of desired eigenvalues is still a challenge when the matrix is large. To overcome

this challenge with limited memory, we employ a hard deflation technique such that the block size

can be independent of and smaller than the number of desired eigenvalues. Hard deflation can be

performed since the eigenvectors of KM are M -orthonormal. Suppose X
(i)
c contains the converged

eigenvectors in the ith iteration, and S(i) contains basis vectors of the original search subspace, the

hard deflation can be done by

S(i) = S(i) −X(i)
c (X(i)T

c MS(i)). (5.21)

When some Ritz vectors have converged, new vectors are added into the eigenvector approximation

block X
(i)
F and the associated preconditioned residuals are added into W (i), respectively. Thus, the
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sizes of X
(i)
F and W (i) are always equal to the block size at the beginning and the size of the search

directions P (i) varies during the iterations, since the converged Ritz vectors are excluded from it.

The added vectors could be random vectors, but there is a better alternative. If the number of

newly converged Ritz vectors is less than the block size, we could apply the polynomial filter on

the unconverged columns of X
(i)
F and then add them into X

(i)
F . In this way, no matter how many

eigenvalues we desire, the block size could be flexible to choose (e.g.,1-20).

Also, for the sake of efficiency, we employ a moving window technique. We use one matrix

V to store both the converged eigenvectors and the current subspace of Rayleigh-Ritz projection

S(i), namely, V = [X
(i)
c , S(i)]. With more Ritz vectors converge and get locked, the size of X

(i)
c

becomes larger whereas S(i) keeps the three-block structure (5.9). This implementation has two

advantages: (i) it avoids the memory copy once some eigenvectors converged, since the converged

eigenvectors are already stored in the leading columns of V ; (ii) orthogonalization of the blocks W (i)

and P (i) to the converged eigenvectors X
(i)
c and X

(i)
F can be performed on one matrix. Notice that

we may also store MX
(i)
c and MS(i) into one matrix, which optional, but it could save a few matrix

vector multiplications when performing the M -orthogonalization.

A detailed description of our implementation is given in Algorithm 6.

5.3 Asymptotic global quasi-optimality of ChebyshevM -LOBPCG

In this section, we construct an ideal m-step Chebyshev M -LOBPCG method for computing

the lowest eigenpair (λ1, v1) of the matrix pencil (MKM,M), and establish an asymptotic global

quasi-optimality of this method. Our goal is to show that as the algorithm approaches convergence,

its performance becomes increasingly similar to that of a corresponding globally optimal method.

Such a property is analogous to the global optimality of the conjugate gradient method for the

iterative solution of a symmetric and positive definite linear system.

5.3.1 An ideal m-step Chebyshev M -LOBPCG method

The framework of the ideal method is summarized in Algorithm 7. It uses the polyno-

mial filter and preconditioner simultaneously to compute the lowest eigenpair of the matrix pencil

(MKM,M). The motivation in exploring the optimality of this algorithm arises from [102], where

the LOBPCG-like methods without using polynomial filters have been demonstrated to have the
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Algorithm 6 Chebyshev M -LOBPCG

Input: SPD matrices K,M ∈ Rn×n, initial eigenvector approximations X0 ∈ Rn×k, preconditioner
T−1 ∈ Rn×n, number of desired eigenpairs nw > 0, number of converged eigenpairs nc = 0,
maximum number of cycles maxIter, X = MX ∈ Rn×(nw+k), W = P = MW = MP ∈ Rn×k.

Output: Smallest nw eigenpairs {(λi, qi)}nw
i=1 of the product matrix KM .

1: X0 ← Fd(KM)X0, X(:, 1 : k)← M -orth{X0}, MX(:, 1 : k)←MX(:, 1 : k);
2: H ←MX(:, 1 : k)TKMX(:, 1 : k);
3: Compute eigenpairs of H: HY = Y Λ;
4: X(:, 1 : k)← X(:, 1 : k)Y ; MX(:, 1 : k)←MX(:, 1 : k)Y ;
5: while (j < maxIter) do
6: W ← KMX(:, nc + 1 : nc + k)−X(:, nc + 1 : nc + k)Λ;
7: Test for convergence. Store converge Ritz pairs into λi and qi. ec is the number of newly

converged Ritz pairs. nc = nc + ec;
8: if (ec > 0) then
9: Generate new vectors Xa ∈ Rn×ec ;

10: M -orthogonalize Xa against X(:, 1 : nc + k − ec), Xa ← M -orth{Xa};
11: X(:, nc + k − ec + 1 : nc + k)← Xa,MX(:, nc + k − ec + 1 : nc + k)←MXa;
12: Compute the eigenresiduals Wa, W (:, 1 : ec)←Wa;
13: end if
14: Apply the preconditioner W ← T−1W . M -orthogonalize W against

X(:, 1 : nc + k), W ← M -orth{W}, MW ←MW ;
15: M -orthogonalize P to [X(:, 1 : nc + k),W ], P ← M -orth{P}, MP ←MP ;
16: H ← [MX(:, nc + 1 : nc + k),MW ,MP ]

TK[MX(:, nc + 1 : nc + k),MW ,MP ];
17: Compute eigenpairs of H: HY = Y Λ;
18: W ← [X(:, nc + 1 : nc + k),W, P ]Y (:, 1 : k);
19: Update a0, a, b of the polynomial filter Fd, W ← Fd(KM)W ;
20: P = W −X(:, nc + 1 : nc + k)X(:, nc + 1 : nc + k)†W .
21: M -orthogonalize W against X(:, 1 : nc), W ← M -orth{W}.
22: X(:, nc + 1 : nc + k)←W , MX(:, nc + 1 : nc + k)←MW ;
23: end while
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global quasi-optimality property. We will show that Algorithm 7 also exhibits such a favorable

behavior when it approaches convergence.

Notice that we only provide the first cycle of the m-step Chebyshev M -LOBPCG method

in Algorithm 7 for a fixed m. To obtain the final converged eigenvector approximation with this

method, it requires a restart every m steps. Also, during this cycle, we assume that the polynomial

filter Fd is fixed. Thus, in order to obtain the eigenvector approximation xm at the end of the

first cycle, the polynomial filter is applied m(m + 1)/2 times, whereas it is applied only m times

in Algorithm 6. The extensive use of polynomial filter involves a large number of matrix-vector

multiplications, which makes Algorithm 7 too expensive to use in practice. Therefore, Algorithm 7

is the ideal version of Algorithm 6 with block size = 1 for computing the lowest eigenpair of the

matrix pencil (MKM,M). More importantly, if the polynomial filter F
(i)
d in Algorithm 6 is fixed

and the block of search direction P (i) is generated satisfying (5.19), then the projection subspaces at

the m− 1st step in Algorithm 6 with block size = 1 and Algorithm 7 have the identical expression.

Also, the global quasi-optimality of this ideal m-step algorithm is maintained only during the first

m steps for a predetermined m.

Algorithm 7 ideal Chebyshev M -LOPCG for computing (λ1, v1) of (MKM,M)

1: Choose an SPD preconditioner T−1 ≈ (MKM − σM)−1(where σ < λ1), total number of steps
m > 0.

2: Choose a polynomial filter Fd and vector x0 with ∥x0∥M = 1.

3: Compute Fm
d x0 and scale the vector so that ∥Fm

d x0∥M = 1, set ρ0 =
Fm

d xT
0 MKMFm

d x0

Fm
d xT

0 MFm
d x0

, and

r0 = (MKM − ρ0M)Fm
d x0

4: for k = 0, · · · ,m− 1 do
5: Set wk = T−1rk and pk = Fm−k−1

d wk

6: for j = 0, · · · , k − 1 do

7: pk = pk − pT
k (MKM−ρkM)pj

pT
j (MKM−ρkM)pj

pj

8: end for
9: pk = pk

∥pk∥M

10: Form Sk = [xk, pk], perform the Rayleigh-Ritz projection and solve ST
k MKMSku =

ρST
k MSku for the lowest primitive Ritz pair (ρ, u)

11: xk+1 = Sku, xk+1 = xk+1

∥xk+1∥M
, ρk+1 =

xT
k+1MKMxk+1

xT
k+1Mxk+1

, and rk+1 = (MKM − ρk+1M)xk+1

12: end for

5.3.2 Global quasi-optimality

We first give the definition of the global quasi-optimality.
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Definition 5.3.1. Consider an iterative method for computing the lowest eigenpair (λ1, v1) of a

symmetric and positive definite matrix pencil (MKM,M). Let x0 be the initial vector, xk be the

approximation obtained at step k, and θk = ∠(xk, v1)M = cos−1 (v1,xk)M
∥v1∥M∥xk∥M

be the error angle of

xk. Let U1, U2, · · · be a sequence of subspaces of increasing dimension, such that for each k ≥ 1,

xk ∈ Uk, and Ui ⊂ Uj for 1 ≤ i < j. Let y∗k ∈ Uk be the global minimizer of the Rayleigh quotient

ρ(x) = xTMKMx
xTMx

in Uk. Then, for a given step k, the iterate xk achieves the global quasi-optimality

if

lim
θ0→0

ρ(xk)− ρ(y∗k)

ρ(xk)− λ1
= 0. (5.22)

Note that an iterative method with global quasi-optimality is nearly as good as the globally

optimal method when approaching convergence. The difference between ρ(xk) computed by this

method and ρ(y∗k) of global minimizer y∗k in the same subspace is negligible compared to the error

between ρ(xk) and the target eigenvalue λ1, if the initial error angle θ0 of x0 is sufficiently small.

Thus, the global quasi-optimality of an iterative eigenvalue algorithm is a strongly favorable property.

5.3.2.1 Linear convergence assumption

To show the global quasi-optimality of Algorithm 7, we first make an assumption of its

precisely linear convergence.

Assumption 5.3.1. Assume that Algorithm 7 starting with initial ρ(x0) ∈ (λ1, λ2) converges pre-

cisely linearly (not superlinearly or faster) to λ1; in other words, there exists constants 0 < ξ < ξ < 1,

independent of the progress of Algorithm 7, such that

ξk−j(ρj − λ1) ≤ ρk − λ1 ≤ ξ
k−j

(ρj − λ1), for all 0 ≤ j < k. (5.23)

Also, we can rewrite Assumption 5.3.1 in terms of error angles. Consider two iterates xj =

v1 cos θj+fj sin θj and xk = v1 cos θk+fk sin θk, 0 ≤ j < k, where fj , fk ⊥Mv1, ∥fj∥M = ∥fk∥M = 1,

and ∥xj∥M = ∥xk∥M = 1. Due to (2.3), we have (5.23) equivalent to ξk−j sin2 θj(ρ(fj) − λ1) ≤

sin2 θk(ρ(fk)− λ1) ≤ ξ
k−j

sin2 θj(ρ(fj)− λ1), i.e,

√
ξ
k−j
√

ρ(fj)− λ1

ρ(fk)− λ1
sin θj ≤ sin θk ≤

√
ξ
k−j
√

ρ(fj)− λ1

ρ(fk)− λ1
sin θj (5.24)
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Therefore, we can conclude that O(sin θ0) = O(sin θl)(1 ≤ l ≤ k) for a sufficiently small θ0 and a

fixed k.

Next, we make an assumption on the effect of the polynomial filter as follows.

Assumption 5.3.2. Assume that F is a polynomial filter in Algorithm 7. Let y have the decompo-

sition y = v1 cos θy+fy sin θy ∈ U , where fy ⊥Mv1, and ∥fy∥M = 1 and Fy have the decomposition

Fy = v1 cos θFy + fFy sin θFy ∈ FU , where fFy ⊥Mv1, and ∥fFy∥M = 1 then we have

ρ(y) ≥ ρ(Fy), (5.25)

sin θFy = O(sin θy). (5.26)

Assumption 5.3.2 assumes that application of the polynomial filter F to the vector y is

guaranteed to decrease its Rayleigh quotient, but such an improvement is moderate. In other words,

F makes Fy closer to the target eigenvector v1 than y, meanwhile, the error angle of Fy cannot

be dramatically smaller than that of y. This assumption is largely consistent with our numerical

experience with many test matrices.

5.3.2.2 Relevant spaces

To study the global quasi-optimality of Algorithm 7, we define

Wk = span{p0, p1, · · · , pk−1}, (5.27)

and

Uk = span{Fmx0}+Wk. (5.28)

Proposition 5.3.1. For all 1 ≤ k ≤ m in Algorithm 7, Wk = span{Fm−1w0,

Fm−2w1, · · · , Fm−kwk−1} and xk ∈ Uk. Also, pTk (MKM − ρkM)pj = 0 for 0 ≤ j ≤ k − 1..

Proof. It is easy to check that Wk = span{Fm−1w0, F
m−2w1, · · · , Fm−kwk−1} by the step 5 of Algo-

rithm 7. The rest could be done by induction. We have x1 ∈ span{Fmx0, F
m−1w0} = {Fmx0, p0} =

U1. For a given k, xk is extracted from the subspace Sk = span{xk−1, pk−1} by Rayleigh-Ritz,

where pk−1 is a linear combination of Fm−k−2wk−1 and {p0, p1, · · · , pk−2}. Then, we conclude that
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xk ∈ Uk. Also, when we construction the search directions {pk} at the step 7 of Algorithm 7,

pTk (MKM−ρkM)pj = 0 for 0 ≤ j ≤ k−1 is achieved by the explicit orthogonalization of pk against

pj ’s with respect to the scalar product involving MKM − ρkM .

Remark. After m steps, we have

xm ∈ Um = span{Fmx0, F
m−1w0, F

m−2w1, · · · , Fwm−2, wm−1}, (5.29)

which has the identical expression with (5.19), given that F
(j)
d is fixed there.

5.3.2.3 Preliminary results

We present a few preliminary results [102, Assumption 4.4, Lemma 3-4] useful for the proof

of the main theorems.

Assumption 5.3.3. Assume that there is a constant δ > 0, independent of θ0 = ∠(x0, v1)M , such

that ∠(v1,Wk) ≥ δ for all k ≥ 1.

Lemma 5.3.1. Let x ≈ v1 in (2.1) , and p be a descent direction for ρ(x) such that (p,∇ρ(x)) <

0. Assume that there exists a δ > 0 independent of θ = ∠(x, v1)M , such that ρ(p) − ρ(x) ≥ δ.

Then, the optimal step size α∗ minimizing ρ(x + αp) is the unique or the smaller positive root of

a(x, p)α2 + b(x, p)α+ c(x, p) = 0, where

a(x, p) = (pTMKMp)(pTMx)− (pTMp)(pTMKMx) (5.30)

= ∥p∥2MxT (MKM − ρ(p)M)p

b(x, p) = (pTMKMp)(xTMx)− (pTMp)(xTMKMx)

= ∥x∥2MpT (MKM − ρ(x)M)p

= ∥x∥2M∥p∥2M (ρ(p)− ρ(x)) ≥ ∥x∥2M∥p∥2Mδ > 0, and

c(x, p) = (pTMKMx)(xTMx)− (pTMx)(pTMKMx)

= ∥x∥2MpT (MKM − ρ(x)M)x < 0.

Lemma 5.3.2. Let x be an approximation to v1 with decomposition (2.1) , p be a descent direction

for ρ(x), and δ > 0 be a constant independent of θ = ∠(x, v1)M , such that ρ(p)− ρ(x) ≥ δ > 0, and
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α∗ the optimal step size minimizing ρ(x+αp). Then for sufficiently small θ, with a, b and c defined

in (5.30),

− c2

2b −
ac3

3b3 +O(c4)
min{∥x∥2M , ∥x+ α∗p∥2M}

≤ ρ(x+ α∗p)− ρ(x) ≤
− c2

2b −
ac3

3b3 +O(c4)
max{∥x∥2M , ∥x+ α∗p∥2M}

, (5.31)

and hence ρ(x+ α∗p)− ρ(x) = −O(sin2 θ)O(cos2 ∠(p,∇ρ(x))).

Next, we prove a lemma that provides us the decomposition of xk in Algorithm 7. The

proof is in the Appendix.

Lemma 5.3.3. For 1 ≤ k ≤ m in Algorithm 7. Consider two iterates x0 = v1 cos θ0+ f0 sin θ0 ∈ U0,

and xk = v1 cos θk + fk sin θk ∈ Uk, where f0, fk ⊥Mv1, ∥f0∥M = ∥fk∥M = 1, ∥x0∥M = ∥xk∥M = 1

with sufficiently small θ0, θk such that λ1 < ρ(xk) ≤ ρ(x0) < λ2. Consider a decomposition

xk = β0kF
mx0 + γ0kg0k, (5.32)

with β0k, γ0k > 0, ∥Fmx0∥M = ∥g0k∥M = 1, g0k ∈ span{p0, p1, · · · , pk−1}. Let µ0k = gT0kF
mx0,

then we have for some scalar q ≥ 1,

γ0k = O(sinq θ0), β0k = 1−O(sinq θ0). (5.33)

5.3.2.4 Main theorems

We are ready to prove the global quasi-optimality of Algorithm 7. First, we show that

the quality of the iterate of Algorithm 7 at step k for approximating the corresponding global

minimizer can be extended to step k + 1 with a possible very small deterioration on the order of

O(sin θk+1)O(sin2 θ0). This theorem plays a foundational role in our effort to establish the global

quasi-optimality of Algorithm 7. The proof is long and technical, therefore is given in the Appendix.

Theorem 5.3.1. Let {xk} be the iterates of Algorithm 7 and {pk} be the M-normalized search

directions. For a given 0 ≤ k ≤ m− 1, consider all vectors of the form z = y + αpk ∈ Uk+1, where

y = βyF
mx0 + γygy ∈ Uk with ∥y∥M = ∥gy∥M = ∥Fmx0∥M = 1, and gy ∈ Wk. Let y∗k and y∗k+1 be

the global minimizer of ρ(·) in Uk and Uk+1, respectively. Then

ρ(xk+1)− ρ(y∗k+1) ≤ ρ(xk)− ρ(y∗k) +O(sin θk+1)O(sin2 θ0). (5.34)
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Now, we can present the major theorem of this section on the global quasi-optimality of all

iterates generated by Algorithm 7.

Theorem 5.3.2. Let {xk} be the iterate of Algorithm 7 and {pk} be the M-normalized search

directions. Suppose that Assumptions 5.3.1, 5.3.2 and 5.3.3 hold. In Theorem 5.3.1, let y∗k and

y∗k+1 be the global minimizer in Uk and Uk+1, respectively, and Ck+1 be the constant for which

ρ(xk+1) − ρ(y∗k+1) ≤ ρ(xk) − ρ(y∗k) + Ck+1 sin θk+1 sin
2 θ0. Then, for any given 2 ≤ k ≤ m − 1,

ρ(xk)− ρ(y∗k) ≤
∑k

j=2 Cj sin θj sin
2 θ0, and therefore,

lim
θ0→0

ρ(xk)− ρ(y∗k)

ρ(xk)− λ1
≤ lim

θ0→0

∑k
j=2 Cj sin θj sin

2 θ0

ξk(ρ(f0)− λ1) sin
2 θ0
≤ lim

θ0→0

∑k
j=2 Cj sin θj

ξk(λ2 − λ1)
= 0. (5.35)

Proof. The proof is based on mathematical induction.

Since x1 ∈ span{Fmx0, p0} = U1 is obtained from the Rayleigh-Ritz projection, it is the

global minimizer in U1. Let y
∗
2 be the global minimizer of ρ(·) in U2. It follows from Theorem 5.3.1

that

ρ(x2)− ρ(y∗2) ≤ ρ(x1)− ρ(y∗1) +O(sin θ2)O(sin2 θ0) = O(sin θ2)O(sin2 θ0),

where x1 = y∗1 is the global minimizer in U1. Then, the base case is established, i.e, x2 is a

global quasi-minimizer in U2 such that limθ0→0
ρ(x2)−ρ(y∗

2 )
ρ(x2)−λ1

= 0. Suppose that ρ(xk−1)− ρ(y∗k−1) ≤∑k−1
j=2 Cj sin θj sin

2 θ0 holds. Then, by Theorem 5.3.1 we have ρ(xk)− ρ(y∗k) ≤ ρ(xk−1)− ρ(y∗k−1) +

O(sin θk)O(sin2 θ0) ≤
∑k

j=2 Cj sin θj sin
2 θ0, as desired. We know f0 ⊥Mv1, then ρ(f0) ≥ λ2. Also,

we have ρ0 − λ1 = (ρ(f0) − λ1) sin
2 θ0 and ξk(ρ0 − λ1) ≤ ρk − λ1, thus the following inequalities

hold, i.e.,

lim
θ0→0

ρ(xk)− ρ(y∗k)

ρ(xk)− λ1
≤ lim

θ0→0

∑k
j=2 Cj sin θj sin

2 θ0

ξk(ρ(f0)− λ1) sin
2 θ0
≤ lim

θ0→0

∑k
j=2 Cj sin θj

ξk(λ2 − λ1)
= 0.

5.4 Numerical experiments

In this section, we perform extensive numerical experiments to validate our algorithm and

demonstrate its effectiveness compared with other algorithms. Since we focus on methods with
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limited memory for large problems, we control the block size. We implement all the methods based

on hard deflation and the moving window techniques discussed in section 5.2.6. All experiments

seek nw = 150 lowest eigenvalues with block size k = 10. To make fair comparisons, the maximum

size of projection subspace for all methods is set to be 3k = 30, which is the standard subspace size

of LOBPCG. The maximum number of iterations is set to be 10000. All experiments use a stopping

tolerance tol = 10−7 for the relative eigenresidual of (1.25) or (1.32), such that

∥KMxi − ρixi∥2
|ρi|∥xi∥2

≤ tol.

The Chebyshev polynomial filter degrees polyN = 5, 10, 20 have been considered. All methods

(except LOBP4DCG) start with the same initial approximation, with random entries uniformly

distributed on [0, 1], generated by MATLAB’s rand function with the fixed seed (rng default).

Note that LOBP4DCG could be extended to solve the product eigenvalue problems in practice. To

perform a complete comparison, we also solve the CBSEP with LOBP4DCG. Although LOB4DPCG

does not work directly on the product eigenvalue problem for LREP, it is sufficient to check the

convergence of n elements of the eigenvector approximation. Also, the LOBP4DCG method should

start with the initial approximation with twice as many random entries as that for other algorithms,

also constructed by the randn function. All our experiments were performed on a Windows 10

(64 bit) PC-Intel(R) Core(TM) i7-4700 CPU 2.40 GHz, 32 GB of DDR3 1600MHz RAM running

MATLAB R2022b.

5.4.1 Test Problems

The test problems are given in Table 5.1. Test 1 to Test 3 come from linear response analysis

for disodium (Na2, Na4), and silane (SiH4) compounds, respectively. Test 4 to Test 6 correspond to

discretized Bethe–Salpeter Hamiltonians associated with boron nitride (BN). Also, we provide the

ratio between the the width of the wanted spectrum against the width of the unwanted spectrum

for each test problem as

λnw
− λmin

λmax − λnw+1
, (5.36)
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which affects the quality of the polynomial filter. Generally, for a fixed Chebyshev polynomial

filter degree, a smaller ratio (5.36) makes the the polynomial filter less effective. In other words,

given a test problem with a small ratio (5.36), the polynomial filter based algorithms require a

high polynomial degree to be effective. As Table 5.1 shows, the problem Na4 is considerably more

demanding for polynomial filters than other test problems.

Table 5.1: Properties of the test matrices
Problem size n ratio (5.36)
Test 1 (Na2) 1862 3.03e-02
Test 2 (Na4) 2834 2.05e-03
Test 3 (SiH4) 5660 2.77e-02
Test 4 (BN1) 4608 3.98e-02
Test 5 (BN2) 4608 2.00e-02
Test 6 (BN3) 8192 5.20e-02

5.4.2 An Illustration Example of Quasi-optimality for the Ideal Cheby-

shev M-LOBPCG(Algorithm7)

The global quasi-optimality as defined in (5.22) implies that as the initial approximation

becomes closer to the eigenvector associated with the desired lowest eigenvalue, the relative difference

between the Rayleigh quotient obtained at step i of Algorithm 7 and that obtained at the same step

of the globally optimal algorithm tends to approach zero. Figure 5.1 demonstrates that Algorithm 7

achieves the global quasi-optimality on two test problems. For both problems, we choose step

m = 20, with incomplete Cholesky decomposition preconditioner with drop tolerance s = 0.01

and the degree of polynomial filter polyN = 5. We plot the quasi-optimal ratio (5.22) against the

number of iterations in Figure 5.1. It shows that as the initial approximation approaches the desired

eigenvector, at any given step k, the relative difference between the Rayleigh quotients generated

by Algorithm 7 and the globally optimal method becomes smaller. This suggests that, given a

fixed step k, the convergence of the ideal Chebyshev M -LOBPCG becomes increasingly close to the

globally optimal method as the ideal algorithm converges towards the desired eigenpair. Meanwhile,

given an initial approximation x0 with a fixed θ0, as the step k increases, the ratio (5.22) increases

to 1, showing that the globally optimal method becomes progressively more superior to the locally

optimal Algorithm 7 as both methods proceed. This is also largely consistent with our extensive

numerical experience with locally optimal eigenvalue algorithms.
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Although the ideal Chebyshev M -LOBPCG has such a favorable property, we should point

out that it is impractical to use this algorithm to solve the test problems, which is not only expensive

in the polynomial filter applications count (m(m − 1)/2), but also very expensive with the search

direction orthogonalization cost (proportional tom2). On the other hand, the global quasi-optimality

can be kept only for m steps with a predetermined value of m, which makes it not realistic to select

an appropriate m to gain in runtime compared with our Chebyshev M -LOBPCG.

Figure 5.1: Confirming the quasi-optimality of Algorithm 7 showing that the ratio (5.22) converges
to zero as the angle of the initial guess to the required eigenvector decreases.

5.4.3 An Illustration Example of Convergence

Figure 5.2 and Figure 5.3 shows the convergence towards the smallest eigenvalue for problems

Na2 and BN1. For both problems, Chebyshev M -LOBPCG exhibits fastest convergence. Also, with

polyN increasing from 5 to 10, Chebyshev M -Davidson and Chebyshev M -LOBPCG achieve faster

convergence for both problems. For these problems we chose, the Chebyshev polynomial filter seems

more effective than the preconditioner we used; however, this might not be always true. For those

problems that the preconditioner is more effective than the polynomial filter, our method could also

take advantage of the preconditioner. For Na2, with the preconditioner applied to the gradient, it

seems like that M -LOBPCG and LOBP4DCG could not achieve very fast convergence. For BN1,

with the preconditioner applied to the gradient, M -LOBPCG and LOBP4DCG were able to converge

more rapidly. This example also demonstrate the robustness of Chebyshev M -LOBPCG, which is

less sensitive to the quality of the polynomial filter and the preconditioner applied to the gradient.
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(a) Problem Na2 (b) Problem BN1

Figure 5.2: Comparison between Chebyshev M -LOBPCG and other methods for computing the
smallest eigenvalue with polyN=5 and without preconditioner.

(a) Problem Na2 (b) Problem BN1

Figure 5.3: Comparison between Chebyshev M -LOBPCG and other methods for computing the
smallest eigenvalue with polyN=10 and incomplete Cholesky decomposition preconditioner with
drop tolerance s = 0.05.
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5.4.4 Comparison with Chebyshev M -Davidson method

We compare our method against the Chebyshev M -Davidson method. Table 5.2, 5.3 and

5.4 summarize results based on the degree polyN of the polynomial filters. In each table, “iter”

counts the total number of iterations, “mvp” is the number of matrix-vector products, and “time”

is the runtime in seconds. “NA” implies that we fail to obtain all the desired eigenvalues within

10000 iterations. An algorithm using the incomplete Cholesky factorization preconditioner with

drop tolerance s is denoted by the name of the algorithm followed by (s), and an unpreconditioned

method is denoted by its name followed by (I). For example, in Table 5.2, for the test problem Sih4,

the first three numbers shows that given a polynomial filter of degree polyN = 5, the Chebyshev M -

Davidson method required 8530 iterations and 1492603 matrix-vector products to find all the wanted

eigenvalues in 3092.67 seconds. We observe that our method converges faster in terms of number of

iterations and matrix-vector multiplications given the same polyN even without a preconditioner.

Adding a preconditioner of low to modest quality could further accelerate convergence. For the

LREP problems Na2, Sih4 and the CBSEP problems BN1, BN3, which only require a relatively

low polyN for Chebyshev M -Davidson to be effective, our method matches or outperforms it in

terms of the runtime. For the LREP problem Na4 and the CBSEP problem BN2, Chebyshev M -

Davidson requires a relatively high polyN to be effective, which is consistent with the ratio (5.36)

we provide in Table 5.1, but our method still achieved fast convergence given a moderate polyN . In

fact, the harder the problem is for Chebyshev M -Davidson, the more significant relative advantage

our method has. In addition, the overall performance of our method is less sensitive to the degree

of polynomial filters than the Chebyshev M -Davidson method.

Table 5.2: Performance comparison of Chebyshev M -Davidson and Chebyshev M -LOBPCG
(polyN = 5).

Matrix
Chebyshev M -Davidson Chebyshev M -LOBPCG(I) Chebyshev M -LOBPCG(10−2)
mvp iter time mvp iter time mvp iter time

Na2 294541 1684 72.21 173840 784 51.40 169660 765 50.51
Na4 NA NA NA 1772360 8050 1061.10 1378100 6258 842.92
Sih4 1492603 8530 3092.67 234560 1060 553.56 146100 658 344.29
BN1 459415 2626 622.17 202440 914 311.22 110480 496 171.41
BN2 642099 3670 871.41 251060 1135 363.62 110690 497 169.10
BN3 459398 2626 2812.58 198920 898 1368.63 174500 787 1205.99
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Table 5.3: Performance comparison of Chebyshev M -Davidson and Chebyshev M -LOBPCG
(polyN = 10).

Matrix
Chebyshev M -Davidson Chebyshev M -LOBPCG(I) Chebyshev M -LOBPCG(10−2)
mvp iter time mvp iter time mvp iter time

Na2 131340 478 29.64 100130 304 29.04 85730 259 26.49
Na4 1837386 6682 972.06 1066530 3324 608.50 668450 2080 387.31
Sih4 617253 2245 1274.89 124750 381 297.78 99770 303 243.83
BN1 220714 803 297.27 108750 331 172.38 88610 268 142.51
BN2 357928 1302 481.42 172770 531 264.68 105250 320 168.72
BN3 198920 898 1370.97 122850 375 880.26 114190 348 824.83

Table 5.4: Performance comparison of Chebyshev M -Davidson and Chebyshev M -LOBPCG
(polyN = 20).

Matrix
Chebyshev M -Davidson Chebyshev M -LOBPCG(I) Chebyshev M -LOBPCG(10−2)
mvp iter time mvp iter time mvp iter time

Na2 93004 196 21.03 78110 139 25.36 73950 131 22.95
Na4 793102 1670 435.53 499790 950 304.66 448870 852 273.63
Sih4 150482 317 317.47 99230 180 254.66 88350 159 227.95
BN1 136224 287 184.08 80630 144 139.56 76510 126 123.83
BN2 189892 400 256.39 124910 229 204.51 97230 176 161.12
BN3 113446 239 723.59 92670 167 720.73 87470 157 680.49

5.4.5 Comparison with LOBPCG-type method

We compare our method against M -LOBPCG method and LOBP4DCG. Table 5.5, 5.6 and

5.7 summarize results based on the preconditioner on the gradient. For our method, we show the

results with a moderate degree polyN = 10. For example, in Table 5.6, for the test problem Sih4, the

first three numbers shows that the LOBP4DCG method with an incomplete Cholesky factorization

(s = 10−2) as the preconditioner, required 1209 iterations and 96934 matrix-vector products to find

all the wanted eigenvalues in 264.01 seconds. We observe that the M -LOBPCG method converge

very slowly for Na4, Sih4 and BN2 without a preconditioner or with an incomplete Cholesky de-

composition preconditioner with drop tolerance s = 10−2. Also, it seems that LOB4DPCG is not

efficient for computing a large number of eigenvalues. We should point out that the performance of

M -LOBPCG tends to rely on the quality of the preconditioner significantly. A large drop tolerance

e.g. 10−2 of the incomplete Cholesky factorization may delay the convergence for the test problems

Sih4 and BN2, which does not occur to LOB4DPCG and our method.

From these results, we can see that our method converges faster than other LOBPCG-

type methods in terms of number of iterations, but may involve more matrix-vector multiplications
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occasionally for certain difficult problems such as Na4, when the spectral width ratio (5.36) is so

small that polynomial filters are not very effective. However, in typical high-performance computing

environments these matrix-vector multiplications can be evaluated more efficiently but incomplete

factorizations may encounter performance bottlenecks, we assume that our method is likely more

efficient. Tables 5.6 and 5.7 show that with a good preconditioner, the number of iterations for all

methods decreases, but the additional cost of applying the preconditioner per iteration may lead to

a significant increase in computational time. In this regard, our method could be a better choice,

since it does not require a preconditioner of high quality that might be expensive to use. For the

problem Na4, Tables 5.6 and 5.7 clearly show that if the polynomial filter is not quite efficient, using

a preconditioner of higher quality can effectively compensate for the performance of Chebyshev

M -LOBPCG.

Table 5.5: Performance comparison of LOBPCG-type methods and Chebyshev M -LOBPCG
(polyN = 10).

Matrix
LOBP4DCG(I) M -LOBPCG(I) Chebyshev M -LOBPCG(I)

mvp iter time mvp iter time mvp iter time

Na2 185738 2319 99.31 546480 4969 155.03 100130 304 29.04
Na4 300456 3753 282.90 NA NA NA 1066530 3324 608.50
Sih4 194378 2427 508.02 519750 4726 1189.70 124750 381 297.78
BN1 213578 2667 623.99 474120 3952 695.72 108750 331 172.38
BN2 221338 2764 642.20 738960 6159 1076.73 172770 531 264.68
BN3 422058 5273 3694.90 481800 4016 3220.09 122850 375 880.26

Table 5.6: Performance comparison of LOBPCG-type methods and Chebyshev M -LOBPCG
(polyN = 10).

Matrix
LOBP4DCG(10−2) M -LOBPCG(10−2) Chebyshev M -LOBPCG(10−2)

mvp iter time mvp iter time mvp iter time

Na2 185258 2313 100.90 318450 2896 93.07 85730 259 26.49
Na4 146776 1832 147.47 NA NA NA 668450 2080 387.31
Sih4 96934 1209 264.01 NA NA NA 99770 303 243.83
BN1 112938 1409 335.43 80160 669 120.19 88610 268 142.51
BN2 127978 1597 381.76 NA NA NA 105250 320 168.72
BN3 327338 4089 2841.46 211080 1760 1442.44 114190 348 824.83
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Table 5.7: Performance comparison of LOBPCG-type methods and Chebyshev M -LOBPCG
(polyN = 10).

Matrix
LOBP4DCG(10−5) M -LOBPCG(10−5) Chebyshev M -LOBPCG(10−5)

mvp iter time mvp iter time mvp iter time

Na2 88696 1106 138.17 47850 436 48.84 65890 197 34.18
Na4 77096 961 141.67 44220 403 55.25 130530 399 106.65
Sih4 87654 1093 692.30 52580 479 326.80 82750 250 300.66
BN1 115338 1439 677.25 73920 617 257.05 79970 241 183.99
BN2 85658 1068 501.17 53520 447 193.80 89890 272 223.81
BN3 322298 4026 5276.83 205560 1714 2461.78 119010 363 1078.71

5.5 More experiments for the symmetric eigenvalue problem

In this section, we extend our Chebyshev M -LOBPCG method (Algorithm 6) to the the

symmetric eigenvalue problem such that

Ax = λx (5.37)

where A ∈ Rn×n is symmetric and (λ, x) is the corresponding eigenpair. Note that in the BSE

problem, we consider the product eigenvalue problem (1.22), where K and M are symmetric and

positive definite. Assume that M = I and K = A+ σI, where I is the identity matrix and σ is the

shift parameter such that K is symmetric and positive definite. Then, the Chebyshev M -LOBPCG

method (Chebyshev LOBPCG) can be simply employed for the symmetric eigenvalue problem (5.37).

For the rest of this section, we perform extensive experiments to compare our Chebyshev

LOBPCG method against the LOBPCG [63] and Chebyshev Davidson methods [110]. The test

matrices are available from the Suite Sparse Matrix Collection [65] except two Laplacian matrices

generated artificially. The information of the test problems is given in Table 5.8, where we record the

problem size n, the number of nonzero elements nnz and the application field. Also, we provide the

ratio between the the width of the wanted spectrum against the width of the unwanted spectrum for

each test problem (5.36), which affects the quality of the polynomial filter. To make fair comparisons,

the maximum size of projection subspace for all methods are the same. All methods start with

the same initial approximation, with random entries uniformly distributed on [0, 1], generated by

MATLAB’s rand function with the fixed seed (rng default). All experiments use a stopping
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tolerance tol = 10−7 for the relative eigenresidual of (5.37), such that

∥Axi − λixi∥2
|λi|∥xi∥2

≤ tol.

When the test matrix A is symmetric indefinite, we perform 30 Lanczos steps to find a rough

approximate of the leftmost eigenvalue, say λ̂left. Then, the shift parameter σ is set to be 1.5|λ̂left|

such that A+ σI is positive definite. Other parameter settings are the same as those in Section 5.4

for the BSE problem.

We summarize the results in Table 5.9 and 5.10 based on the number of wanted eigenvalues

nw. The degree polyN of the polynomial filters is set to be 20, when we apply the polynomial

filters in an algorithm. We still use the incomplete Cholesky factorization as the preconditioner

applied on the gradient and the drop tolerance is set to be 10−2. In Table 5.9, we compute 5 wanted

eigenvalues and the block size k is set to be 5. We compute 100 wanted eigenvalues with k = 20 in

Table 5.10. For each test problem, the method with the least run-time is highlighted in bold. From

these results, we can see that our method could achieve the best or second best performance in terms

of the run-time. Also, the fastest convergence in terms of the number of iterations is achieved with

our method. We observe that our method could still perform well, even though the quality of the

polynomial filter and the preconditioner applied on the gradient is poor at the same time. Overall,

our Chebyshev LOBPCG method is still competitive for the symmetric eigenvalue problem given a

relatively low degree of polynomial filter and a preconditioner of low-to-modest quality.

97



Table 5.8: Properties of the test matrices
Matrix n nnz ratio(nw = 5) ratio (nw = 100) Source

Tre20k 20000 554466 4.28e-05 2.40e-03 Combinatorial Problem
finan512 74752 596992 3.00e-03 9.31e-03 Economic Problem
hb1138bus 1138 4054 5.95e-06 7.50e-05 Power Network Problem
cfd1 70656 1825580 2.87e-05 3.25e-04 Computational Fluid Dynamics
Muu 7102 170134 1.70e-08 1.14e-02 Structural Problem
wathen100 30401 471601 1.82e-03 8.24e-03 Random 2D/3D Problem
obstclae 40000 197608 1.51e-04 3.21e-03 Optimization Problem
shallowwater1 81920 327680 8.27e-04 5.33e-03 Computational Fluid Dynamics
minsurfo 40806 203622 1.54e-05 6.48e-04 Optimization Problem
Ga41As41H72 268096 18488476 3.71e-05 4.66e-04 Theoretical/Quantum Chemistry
GaAsH6 61349 3381809 4.39e-04 1.67e-03 Theoretical/Quantum Chemistry
Ga3As3H12 61349 5970947 2.21e-04 1.53e-03 Theoretical/Quantum Chemistry
Si87H76 240369 10661631 1.65e-03 1.20e-02 Theoretical/Quantum Chemistry
Ge99H100 112985 8451395 1.75e-03 1.44e-02 Theoretical/Quantum Chemistry
SiO2 155331 11283503 4.73e-03 1.33e-02 Theoretical/Quantum Chemistry
CO 221119 7666057 1.48e-02 2.38e-02 Theoretical/Quantum Chemistry
Si41Ge41H72 185639 15011265 1.20e-03 1.11e-02 Theoretical/Quantum Chemistry
Laplace2d 261121 2343957 2.82e-05 5.05e-04 Numerical PDE
Laplace3d 1000000 6960000 3.29e-04 2.63e-03 Numerical PDE

Table 5.9: Performance comparison of Chebyshev LOBPCG with Chebyshev Davidson and
LOBPCG (nw = 5).

Matrix
Chebyshev Davidson LOBPCG Chebyshev LOBPCG
mvp iter CPU mvp iter CPU mvp iter CPU

Tre20k 61500 300 24.51 225 16 0.43 3370 15 1.34
finan512 5330 26 4.69 1185 80 8.55 4660 21 4.46
hb1138bus 866740 4228 6.68 1050 71 0.19 14550 67 0.19
cfd1 113980 556 143.94 52170 3479 411.22 53895 250 80.09
Muu 9840 48 0.93 930 63 0.58 4150 19 0.52
wathen100 7995 39 3.38 540 37 1.92 3800 17 1.92
obstclae 22140 108 8.63 3150 211 11.58 17130 79 8.08
shallowwater1 4920 24 4.31 4245 284 30.25 5050 23 5.10
minsurfo 36490 178 14.46 3585 240 12.31 20920 97 9.63
Ga41As41H72 121360 592 1169.04 35220 2349 1424.86 60560 281 633.34
GaAsH6 16400 80 30.59 22590 1507 176.87 11325 52 24.17
Ga3As3H12 22755 111 67.42 26235 1750 199.76 15800 73 57.55
Si87H76 7175 35 45.54 1770 119 62.14 6165 28 49.26
Ge99H100 7585 37 33.39 1935 130 36.83 6380 29 33.30
SiO2 5945 29 37.08 2295 154 58.65 3585 16 28.38
CO 2460 12 12.36 645 24 24.75 2080 9 17.45
Si41Ge41H72 7380 36 61.62 1635 110 53.51 5950 27 56.51
Laplace2d 112340 548 366.12 29355 1958 742.16 45900 213 171.00
Laplace3d 36115 233 405.13 1830 123 215.20 13440 81 225.72
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Table 5.10: Performance comparison of Chebyshev LOBPCG with Chebyshev Davidson and
LOBPCG (nw = 100).

Matrix
Chebyshev Davidson LOBPCG Chebyshev LOBPCG
mvp iter CPU mvp iter CPU mvp iter CPU

Tre20k 178760 218 71.77 5520 93 19.06 55500 60 27.79
finan512 91840 112 89.61 20940 350 295.71 64920 71 90.79
hb1138bus 4754360 5798 40.77 10380 174 1.46 142360 161 1.92
cfd1 1174240 1432 1452.59 249060 4152 2952.31 526740 608 881.34
Muu 61500 75 6.87 10800 181 11.85 44200 47 6.28
wathen100 87740 107 35.77 9300 156 46.34 51160 55 29.50
obstclae 103320 126 42.01 22140 370 128.55 74420 82 40.41
shallowwater1 97580 119 95.08 70740 1180 959.62 72700 80 100.96
minsurfo 418200 510 170.05 34260 572 191.96 208580 238 124.18
Ga41As41H72 1110280 1354 9748.58 299820 4998 16288.36 445900 514 4651.18
GaAsH6 502660 613 827.67 166920 2783 1801.57 230940 264 453.99
Ga3As3H12 NA NA NA NA NA NA 649760 751 1867.57
Si87H76 68880 84 414.92 16680 279 824.70 50340 54 378.38
Ge99H100 54940 67 216.29 13800 231 324.22 41740 44 191.66
SiO2 97580 119 544.97 25260 422 838.93 67300 74 415.02
CO 120540 147 573.39 25920 433 1081.17 75280 83 448.55
Si41Ge41H72 65600 80 465.04 16560 277 667.32 47720 51 384.08
Laplace2d 767520 936 2545.36 242760 4047 10345.83 374520 431 1706.91
Laplace3d 228160 368 3017.93 17220 288 3151.84 105180 155 2342.18
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Chapter 6

Conclusions

In this dissertation, we study three important classes of large-scale and complex physical

problems with special structures, i.e., computing the steady-state solutions of Allen-Cahn (AC) and

Cahn–Hilliard (CH) equations, computing the ground states of Bose-Einstein condensation (BEC),

and the Bethe-Salpeter eigenvalue problem (BSE). These problems can be addressed from the op-

timization perspective. We propose several new preconditioned conjugate gradient (PCG) methods

to find the local or global minimizer of the corresponding objective function (energy functional or

Rayleigh quotient), which takes advantage of the special structures and preserve the underlying

physical properties. We show that our methods exhibit good convergence properties theoretically.

We perform extensive numerical experiments to validate our methods and compare the proposed

PCG methods with other existing methods. Our results clearly show that the new PCG methods

are competitive or comparable with the state-of-art methods.

In Chapter 3, the preconditioned conjugate gradient (PCG) method and Picard iterative

method with Anderson acceleration (AA) are proposed for computing the steady-state solutions of

Allen-Cahn (AC) and Cahn-Hilliard (CH) equations. We show the Picard iterations are contractive

near the desired solutions u∗ with most elements are 1 in absolute value. In the meanwhile, we

show the discrete energy stability and 2-norm stability of the ETD1 scheme for the CH equation.

Numerical experiments were carried to compare the performances of our methods with the ETDRK2

scheme. We conclude that the PCG method is far more efficient than the other two methods for

computing the steady-state solutions of the AC and CH equations.

In Chapter 4, we propose a preconditioned nonlinear conjugate gradient method to compute
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the ground states of the GPE with fast rotation and large nonlinearities that arise in the modeling of

Bose–Einstein Condensates in real arithmetic. We develop a problem-dependent Hessian precondi-

tioner involving the rotational speed Ω, which is very efficient especially for solving BECs with high

nonlinearity and high rotational speeds. Also, we provide an efficient method to perform fast energy

functional evaluation without repeated computation in the original problem dimension. Exact line

search can be enabled by fast energy evaluation at many different step sizes at little extra cost.

Furthermore, our methodologies can be extended to solve other different types of BEC (e.g., spin-1

and rotating dipolar BEC) in the future.

In Chapter 5, we propose a variant of LOBPCG involving the preconditioned gradient and

polynomial filtered Ritz vectors into the search subspace simultaneously, for computing a large num-

ber of the lowest eigenvalues of the algebraic product eigenvalue problem (1.25) and (1.32) arising

from the Bethe-Salpeter equation. We construct an ideal method and establish the global quasi-

optimality of this algorithm near convergence. We compared our algorithm with several widely

known and adopted algorithms with incomplete Cholesky factorization preconditioners for the gra-

dient and polynomial filters of relatively low degrees for the Ritz vectors. Numerical results have

shown that our algorithm is competitive given a relatively low degree of polynomial filter and a

preconditioner of low-to-modest quality. In the meanwhile, we extend our method to solve the large

and sparse standard symmetric eigenvalue problems, and our numerical results demonstrate that

our method are competitive or comparable with other existing methods.

In the future, our proposed PCG method can be employed to solve other different types of

BEC. We use the 2-component as an example to briefly discuss a generalization of our ideas. The

energy functional is

Eβ,δ =

[
ϕ∗
1Lsϕ1 + ϕ∗

2Lsϕ2 + δϕ∗
1ϕ1 +

β11

2
ϕ∗
1 diag(|ϕ1|2)ϕ1 +

β22

2
ϕ∗
2 diag(|ϕ2|2)ϕ2 (6.1)

+β12(ϕ1ϕ2)
∗(ϕ1ϕ2) + 2λRe(ϕ1ϕ̄2)

]
h2, with ∥ϕ1∥ℓ2 + ∥ϕ2∥ℓ2 = 1,

where δ is the Raman transition constant, λ is the effective Rabi frequency describing the strength

to realize the internal atomic Josephson junction by a Raman transition, and βij are interaction
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constants between two components [16]. The gradient of Eβ,δ is

∂Eβ,δ

∂ϕ
=

(Ls + δI)ϕ1 + diag(β11|ϕ1|2 + β12|ϕ2|2)ϕ1 + λϕ2

Lsϕ1 + diag(β12|ϕ1|2 + β22|ϕ2|2)ϕ1 + λϕ1

− Eβ,δ

ϕ1

ϕ2

 . (6.2)

From here, one can follow our strategies for solving rotational BEC in Chapter 4: write (6.1)

and (6.2) in real arithmetic form, take the derivative of (6.2) with respect to ϕ to form the Hessian

Hβ,δ. Similarly, our method can be applied to the spin-1 BEC, whose energy functional and gradient

are known explicitly [94,106].

Another possible project will focus on the eigen-solvers which are based on the polynomial

filter. In Chapter 5, we point out that the quality of the polynomial filter depends on its degree

and ratio between the the width of the wanted spectrum against the width of the unwanted spec-

trum (5.36). Higher degree may involve more computational cost. In practice, we always prefer a

polynomial filter with low degree. Given that the degree of polynomial filter is fixed, the polynomial

filter tends to become less effective when λmax becomes larger. Suppose that the action of the inverse

of the matrix can be performed efficiently, we can solve the eigen-problem based on the inverse of

the matrix. Mostly, the ratio between the the width of the wanted spectrum against the width of

the unwanted spectrum can be much larger, which only requires a low degree for the polynomial

filter to be effective. For example, we can employ this strategy to solve the eigen-problem for the

discrete Laplacian matrix, since its largest eigenvalue tends to +∞ while the action of its inverse

can be evaluated efficiently.
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Appendix A

Supplementary materials

Proof of Theorem 4.2.1

Proof. The derivation follows from several applications of the product rule and quotient rule. More

specifically, we have

∂E(ϕ)

∂ϕ
=

∂ ϕTAϕ
ϕTϕ

∂ϕ
+

η

2hd

∂ ϕTB(ϕ)ϕ
(ϕTϕ)2

∂ϕ
.

It is easy to obtain

∂ ϕTAϕ
ϕTϕ

∂ϕ
=

2

ϕTϕ

(
Aϕ− ϕTAϕ

ϕTϕ
ϕ

)
, (A.1)

and

∂ ϕTB(ϕ)ϕ
(ϕTϕ)2

∂ϕ
=

1

(ϕTϕ)2

(
∂ϕTB(ϕ)ϕ

∂ϕ

)
− 4

ϕTB(ϕ)ϕ

(ϕTϕ)3
ϕ. (A.2)

From [58, Theorem 5.1], we have

∂B(ϕ)ϕ

∂ϕ
= B(ϕ) + 2diag(ϕ)2 + 2

0 I

I 0

 diag(ϕ)

0 I

I 0

 diag(ϕ)

0 I

I 0


= B(ϕ) + 2

 diag(ϕ2
r) diag(ϕrϕg)

diag(ϕrϕg) diag(ϕ2
g)


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Then, it follows that

∂ϕTB(ϕ)ϕ

∂ϕ
= B(ϕ)ϕ+

(
∂B(ϕ)ϕ

∂ϕ

)T

ϕ (A.3)

= B(ϕ)ϕ+

B(ϕ) + 2

 diag(ϕ2
r) diag(ϕrϕg)

diag(ϕrϕg) diag(ϕ2
g)




T

ϕ = 4B(ϕ)ϕ.

It follows from (A.2),

η

2hd

∂ ϕTB(ϕ)ϕ
(ϕTϕ)2

∂ϕ
=

2η

hd

(
B(ϕ)ϕ

(ϕTϕ)2
− ϕTB(ϕ)ϕ

(ϕTϕ)3
ϕ

)
(A.4)

Combining (A.1) and (A.4), we get

∂E(ϕ)

∂ϕ
=

2

ϕTϕ

(
Aϕ− ϕTAϕ

ϕTϕ
ϕ

)
+

2η

hd

(
B(ϕ)ϕ

(ϕTϕ)2
− ϕTB(ϕ)ϕ

(ϕTϕ)3
ϕ

)
(A.5)

=
2

ϕTϕ

(
Aϕ+ η

B(ϕ)ϕ

hdϕTϕ
− ϕTAϕ

ϕTϕ
ϕ− η

ϕTB(ϕ)ϕ

hd(ϕTϕ)2
ϕ

)
=

2

ϕTϕ
(A(ϕ)ϕ− λ(ϕ)ϕ).

Next, we know

∂2E(ϕ)

∂ϕ2
=

2

(ϕTϕ)2

(
ϕTϕ

∂(A(ϕ)ϕ− λ(ϕ)ϕ)

∂ϕ
− 2(A(ϕ)ϕ− λ(ϕ)ϕ)ϕT

)
(A.6)

=
2

ϕTϕ

(
∂(A(ϕ)ϕ− λ(ϕ)ϕ)

∂ϕ
− 2(A(ϕ)ϕ− λ(ϕ)ϕ)ϕT

ϕTϕ

)

Again, from [58, Theorem 5.1], we have

∂A(ϕ)ϕ

∂ϕ
= A+

η

hdϕTϕ


diag(3ϕ2

r + ϕ2
g) 2diag(ϕrϕg)

2diag(ϕrϕg) diag(ϕ2
r + 3ϕ2

g)

− 2

ϕTϕ
B(ϕ)ϕϕT

 (A.7)

Also, we have

∂λ(ϕ)ϕ

∂ϕ
= ϕ(

∂λ(ϕ)

∂ϕ
)T + λ(ϕ)I (A.8)

=
2

ϕTϕ
ϕ

(
ϕTA+ 2η

ϕTB(ϕ)

hdϕTϕ
− ϕT ϕTAϕ

ϕTϕ
− 2ηϕT ϕTB(ϕ)ϕ

hd(ϕTϕ)2

)
+ λ(ϕ)I

104



Combine (A.7) and (A.8), we get

∂(A(ϕ)ϕ− λ(ϕ)ϕ)

∂ϕ
(A.9)

= A+
η

hdϕTϕ


diag(3ϕ2

r + ϕ2
g) 2diag(ϕrϕg)

2diag(ϕrϕg) diag(ϕ2
r + 3ϕ2

g)

− 2

ϕTϕ
B(ϕ)ϕϕT


− 2

ϕTϕ
ϕ

(
ϕTA+ 2η

ϕTB(ϕ)

hdϕTϕ
− ϕT ϕTAϕ

ϕTϕ
− 2ηϕT ϕTB(ϕ)ϕ

hd(ϕTϕ)2

)
− λ(ϕ)I

= A+
η

hdϕTϕ

diag(3ϕ2
r + ϕ2

g) 2diag(ϕrϕg)

2diag(ϕrϕg) diag(ϕ2
r + 3ϕ2

g)

− λ(ϕ)I

− 2η
B(ϕ)

hdϕTϕ

ϕϕT

ϕTϕ
− 2

ϕϕT

ϕTϕ
A− 4η

ϕϕT

ϕTϕ

B(ϕ)

hdϕTϕ
+ 2

ϕTAϕ

ϕTϕ

ϕϕT

ϕTϕ
+ 4η

ϕϕT

ϕTϕ

ϕTB(ϕ)ϕ

hd(ϕTϕ)2

Also, we have

2(A(ϕ)ϕ− λ(ϕ)ϕ)ϕT

ϕTϕ
(A.10)

=
2
(
(A+ η

hd

B(ϕ)
ϕTϕ

)ϕ− (ϕ
TAϕ
ϕTϕ

+ η
hd

ϕTB(ϕ)ϕ
(ϕTϕ)2

)ϕ
)
ϕT

ϕTϕ

= 2A
ϕϕT

ϕTϕ
+ 2η

B(ϕ)

hdϕTϕ

ϕϕT

ϕTϕ
− 2

ϕTAϕ

ϕTϕ

ϕϕT

ϕTϕ
− 2η

ϕTB(ϕ)ϕ

hd(ϕTϕ)2
ϕϕT

ϕTϕ

Combining (A.9) and (A.10), it follows from (A.6) that

∂2E(ϕ)

∂ϕ2
=

2

ϕTϕ

A+
η

hdϕTϕ

diag(3ϕ2
r + ϕ2

g) 2diag(ϕrϕg)

2diag(ϕrϕg) diag(ϕ2
r + 3ϕ2

g)

− λ(ϕ)I

−2AϕϕT

ϕTϕ
− 2

ϕϕT

ϕTϕ
A− 4η

B(ϕ)

hdϕTϕ

ϕϕT

ϕTϕ
− 4η

ϕϕT

ϕTϕ

B(ϕ)

hdϕTϕ

+4
ϕTAϕ

ϕTϕ

ϕϕT

ϕTϕ
+ 6η

ϕϕT

ϕTϕ

ϕTB(ϕ)ϕ

hd(ϕTϕ)2

}
.

Next. we will show that ϕ and ϕ̂ are the eigenvectors of ∂2E(ϕ)
∂ϕ2 associated with the zero
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eigenvalue. Note that B(ϕ)ϕ =

ϕ3
r + ϕrϕ

2
g

ϕ2
rϕg + ϕ3

g

 ∈ R2n. Then, we have

∂2E(ϕ)

∂ϕ2
ϕ =

2

ϕTϕ

Aϕ
η

hdϕTϕ

 3ϕ3
r + 3ϕrϕ

2
g

3ϕ2
rϕg + 3ϕ3

g

− λ(ϕ)ϕ− 2Aϕ− 2
ϕTAϕ

ϕTϕ
ϕ

− 4η

hdϕTϕ

 ϕ3
r + ϕrϕ

2
g

ϕ2
rϕg + ϕ3

g

− 4η

hdϕTϕ

ϕTB(ϕ)ϕ

ϕTϕ
ϕ

+4
ϕTAϕ

ϕTϕ
ϕ+

6η

hdϕTϕ

ϕTB(ϕ)ϕ

ϕTϕ
ϕ

}

=
2

ϕTϕ

−Aϕ− η

hdϕTϕ

 ϕ3
r + ϕrϕ

2
g

ϕ2
rϕg + ϕ3

g

+ 2
ϕTAϕ

ϕTϕ
ϕ

+
2η

hdϕTϕ

ϕTB(ϕ)ϕ

ϕTϕ
ϕ− λ(ϕ)ϕ

}
=

2

ϕTϕ

{
−Aϕ− η

hdϕTϕ
B(ϕ)ϕ+ λ(ϕ)ϕ

}
=

2

ϕTϕ
{− (A(ϕ)ϕ− λ(ϕ)ϕ)} ,

which is zero since ∂E(ϕ)
∂ϕ = 2

ϕTϕ
(A(ϕ)ϕ− λ(ϕ)ϕ) = 0, i.e., ϕ is a stationary point of E(ϕ) (local or

global minimum, or saddle point). On the other hand, it is easy to see that ϕT ϕ̂ = 0, then we have

ϕTAϕ̂ = −ϕT
r Lsϕg +ΩϕT

r Lωϕr +ΩϕT
g Lωϕg + ϕT

g Lsϕr = 0, (A.11)

since Ls is symmetric and Lω is skew-symmetric such that uTLωu = 0 for any u ∈ Rn. Also, we

have

ϕTB(ϕ)ϕ̂ = −(ϕ3
r)

Tϕg − ϕT
r ϕ

3
g + ϕT

g ϕ
3
r + (ϕ3

g)
Tϕr = 0. (A.12)
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Combining (A.11) and (A.12), we can easily obtain

∂2E

∂ϕ2
ϕ̂ =

2

ϕTϕ

Aϕ̂+
η

hdϕTϕ

−ϕ2
rϕg − ϕ3

g

ϕrϕ
2
g + ϕ3

r

− λ(ϕ)ϕ̂


=

2

ϕTϕ


−Lsϕg +ΩLωϕr

Lsϕr +ΩLωϕg

+
η

hdϕTϕ

−ϕ2
rϕg − ϕ3

g

ϕrϕ
2
g + ϕ3

r

− λ(ϕ)

−ϕg

ϕr




=
2

ϕTϕ

0 −I

I 0



Lsϕr +ΩLωϕg

Lsϕg − ΩLωϕr

+
η

hdϕTϕ

ϕ3
r + ϕrϕ

2
g

ϕ2
rϕg + ϕ3

g

− λ(ϕ)

ϕr

ϕg




=

0 −I

I 0

 (A(ϕ)ϕ− λ(ϕ)ϕ) =

 0 I

−I 0

 ∂2E(ϕ)

∂ϕ2
ϕ.

Therefore, if ϕ is a stationary point of E(ϕ) such that ∂2E
∂ϕ2 ϕ = A(ϕ)ϕ − λ(ϕ)ϕ = 0, we also have

∂2E
∂ϕ2 ϕ̂ = 0.

Proof of Theorem 4.4.1

Proof. First, it is easy to obtain that Pϕ = ϕTP = 0, then we have

PL−1P
∂2E(ϕ)

∂ϕ2
PL−TP = 2hdPL−1PHpPL−TP. (A.13)

Since P = I − hdWWT , we have

PL−1PHpPL−T (A.14)

= L−1HpL
−T − hdL−1HpWWTL−T − hdL−1WWTHpL

−T

+ h2dL−1WWTHpWWTL−T − hdWWTL−1HpL
−T

+ h2dWWTL−1HpWWTL−T + h2dWWTL−1WWTHpL
−T

− h3dWWTL−1WWTHpWWTL−T ,
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and

PL−1PHpPL−ThdWWT (A.15)

= hdL−1HpL
−TWWT − h2dL−1HpWWTL−TWWT

− h2dL−1WWTHpL
−TWWT + h3dL−1WWTHpWWTL−TWWT

− h2dWWTL−1HpL
−TWWT + h3dWWTL−1HpWWTL−TWWT

+ h3dWWTL−1WWTHpL
−TWWT − h4dWWTL−1WWTHpWWTL−TWWT .

Then, we obtain

PL−1PHpPL−TP

= L−1HpL
−T +W

(
h2dWTL−1HpWWTL−T − hdWTL−1HpL

−T

+h2dWTL−1WWTHpL
−T − h3dWTL−1WWTHpWWTL−T

+h2dWTL−1HpL
−TWWT − h3dWTL−1HpWWTL−TWWT

−h3dWTL−1WWTHpL
−TWWT + h4dWTL−1WWTHpWWTL−TWWT

)
+ L−1W

(
h2dWTHpWWTL−T − hdWTHpL

−T + h2dWTHpL
−TWWT

−h3dWTHpWWTL−TWWT
)
+ L−1HpW

(
h2dWTL−TWWT − hdWTL−T

)
− hdL−1HpL

−TWWT .

Therefore, PL−1PHpPL−TP is a rank-8 update of L−1HpL
−T . Also, W1, W2 and W3 ∈ R2n×2 can

be obtained based on the above expression, respectively.

On the other hand, we have L−1HpL
−T = L−1(Hp + σI − σI)L−T = I − σL−1L−T . Then,
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hdL−1HpL
−TWWT = hd(I − σL−1L−T )WWT . If σ = 0, then L−1HpL

−T = I and we have

PL−1PHpPL−TP

= I +W
(
h2dWTLTWWTL−T − hdWTLTL−T + h2dWTL−1WWTL

−h3dWTL−1WWTHpWWTL−T + h2dWT − h3dWTL−1HpWWTL−TWWT

−h3dWTL−1WWTLWWT + h4dWTL−1WWTHpWWTL−TWWT − hdWT
)

+ L−1W
(
h2dWTHpWWTL−T − hdWTL+ h2dWTLWWT

−h3dWTHpWWTL−TWWT
)
+ L−1HpW

(
h2dWTL−TWWT − hdWTL−T

)
Therefore, PL−1PHpPL−TP is a rank-6 update of I.

Proof of Lemma 5.3.3

Proof. Given the decomposition (5.32), the normalization ∥xk∥M = 1 leads to

∥xk∥2M = (β0kF
mx0 + γ0kg0k)

TM(β0kF
mx0 + γ0kg0k)

= ∥Fmx0∥2Mβ2
0k + 2(gT0kMFmx0)γ0kβ0k + ∥g0k∥2Mγ2

0k

= β2
0k + 2µ0kγ0kβ0k + γ2

0k = (γ0k + µ0kβ0k)
2 + (1− µ2

0k)β
2
0k = 1, (A.16)

where µ0k = gT0kMFmx0 = (Fmx0, g0k)M ∈ (−1, 1), since ∥Fmx0∥M = ∥g0k∥M = 1.

Let r0 = MKMFmx0 − ρ(Fmx0)MFmx0 be the eigenresidual associated with Fmx0 and define
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d0k = ρ(g0k)− ρ(Fmx0). The Rayleigh quotient of xk is therefore

ρ(xk) =
xT
kMKMxk

xT
kMxk

= xT
kMKMxk

= (β0kF
mx0 + γ0kg0k)

TMKM(β0kF
mx0 + γ0kg0k)

= ((Fmx0)
TMKMFmx0)β

2
0k + 2(gT0kMKMFmx0)γ0kβ0k

+ (gT0kMKMg0k)γ
2
0k

= ρ(Fmx0)β
2
0k + 2gT0k(r0 + ρ(Fmx0)MFmx0)γ0kβ0k + ρ(g0k)γ

2
0k

= ρ(Fmx0)β
2
0k + 2ρ(Fmx0)(g

T
0kMFmx0)γ0kβ0k + 2(gT0kr0)γ0kβ0k

+ (ρ(Fmx0) + d0k)γ
2
0k

= ρ(Fmx0)(β
2
0k + 2µ0kγ0kβ0k + γ2

0k) + 2(gT0kr0)γ0kβ0k + d0kγ
2
0k

= ρ(Fmx0) + 2(gT0kr0)γ0kβ0k + d0kγ
2
0k.

Then, we have

2(gT0kr0)γ0kβ0k + d0kγ
2
0k = ρ(xk)− ρ(Fmx0).

Due to (5.25), we have ρ(Fmx0) ≤ ρ(x0), it follows that

(ρ(xk)− λ1)− (ρ(x0)− λ1) = ρ(xk)− ρ(x0) ≤ ρ(xk)− ρ(Fmx0) ≤ ρ(xk)− λ1.

Using Assumption 5.3.1, we have

−(1− ξk)(ρ(x0)− λ1) ≤ 2(gT0kr0)γ0kβ0k + d0kγ
2
0k ≤ ξ

k
(ρ(x0)− λ1).

By (2.3), we divide the above inequality by sin2 θ0 and obtain

−(1− ξk)(ρ(f0)− λ1) ≤ 2
gT0kr0
sin θ0

(
γ0k
sin θ0

)
β0k + d0k

(
γ0k
sin θ0

)2

≤ ξ
k
(ρ(f0)− λ1)

Note that the left-hand side and right-hand side of the above inequality are both O(1) independent

of θ0. Also, note that
|gT

0kr0|
sin θ0

≤ ∥g0k∥∥r0∥
sin θ0

= O(1), where ∥r0∥ = O(sin θFmx0) = O(sin θx0) by (5.26).

Then, by the above inequality, we have that γ0k = O(sinq θ0) for some scalar q ≥ 1. Remind that
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µ0k = gT0kMFmx0 = (Fmx0, g0k)M ∈ (−1, 1) from (A.16). Consequently, we have

β0k = −µ0kγ0k +
√
1− γ2

0k + µ2
0kγ

2
0k = −µ0kγ0k + 1− 1

2
(1− µ2

0k)γ
2
0k +O(γ4

0k)

= 1−O(sinq θ0)

Proof of Theorem 5.3.1

Proof. Since y = βyF
mx0 + γygy, gy ∈ Wk, ∥y∥M = ∥Fmx0∥M = ∥gy∥M = 1, from Lemma 5.3.3,

we have γy = O(sinq θ0) and |1 − βy| = O(sinq θ0) for some scalar q ≥ 1. Similarly, the iterate

xk = β0kF
mx0 + γ0kg0k satisfies γ0k = O(sinq θ0) and |1 − β0k| = O(sinq θ0). Since ρ(Fmx0) ≤

ρ(x0) by Assumption 5.3.2, we have ρ(Fmx0) − ρ(xk) ≤ ρ(x0) − λ1 = O(sin2 θ0). Similarly, we

have ρ(Fmx0) − ρ(y) = O(sin2 θ0). Also, for a fixed m, we have (MKM − ρ(Fmx0)M)Fmx0 =

O(sin θFmx0
) = O(sin θ0) by (2.4) and (5.26). It follows that

(MKM − ρ(y)M)y − (MKM − ρ(xk)M)xk (A.17)

= (MKM − ρ(Fmx0)M)(βyF
mx0 + γygy)

− (MKM − ρ(Fmx0)M)(β0kF
mx0 + γ0kg0k)

+ (ρ(Fmx0)− ρ(y))My − (ρ(Fmx0)− ρ(xk))Mxk

= (βy − 1 + 1− β0k)(MKM − ρ(Fmx0)M)Fmx0

+ (MKM − ρ(Fmx0)M)(γygy − γ0kg0k) +O(sin2 θ0)

=
(
O(sinq θ0) +O(sinq θ0)

)
O(sin θ0)

+ (MKM − ρ(Fmx0)M)(γygy − γ0kg0k) +O(sin2 θ0)

= (MKM − ρ(xk)M)(γygy − γ0kg0k)

+ (ρ(xk)− ρ(Fmx0))M(γygy − γ0kg0k) +O(sin2 θ0)

= γy(MKM − ρ(xk)M)gy − γ0k(MKM − ρ(xk)M)g0k +O(sin2 θ0).
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Note that gy, g0k ∈ Wk = span{p0, p1, · · · , pk−1}. Due to Proposition 5.3.1, we have pTk (MKM −

ρ(xk)M)gy = 0 and pTk (MKM − ρ(xk)M)g0k = 0. It follows from (A.17) that

pTk
(
(MKM − ρ(y)M)y − (MKM − ρ(xk)M)xk

)
= γyp

T
k (MKM − ρ(xk)M)gy − γ0kp

T
k (MKM − ρ(xk)M)g0k +O(sin2 θ0)

= O(sin2 θ0),

which is crucial for the rest of the proof, or equivalently

pTk (MKM − ρ(y)M)y = pTk (MKM − ρ(xk)M)xk +O(sin2 θ0). (A.18)

In addition, note that xk−y = (β0k−βy)F
mx0+(γ0kg0k−γygy) = O(sinq θ0)Fmx0+g0kO(sinq θ0)−

gyO(sinq θ0) = O(sinq θ0) and hence My = Mxk +O(sinq θ0).

Let R3(ρ(x), αp) =
1
2ρ(x+αp)−

(
1
2ρ(x)+αpT∇ 1

2ρ(x)+
1
2α

2pT∇2 1
2ρ(x)p

)
be the remainder

of 2nd order Taylor expansion of 1
2ρ(x+ αp) at x with ∥x∥M = 1. Then,

1

2
ρ(z) =

1

2
ρ(y + αpk) =

1

2
ρ(y) + αpTk

1

2
∇ρ(y) + 1

2
α2pTk

1

2
∇2ρ(y)pk +R3(ρ(y), αpk) (A.19)

=
1

2
ρ(y) + αpTk (MKM − ρ(y)M)y +

1

2
α2pTk

(
(MKM − ρ(y)M)

− 2(MKMy − ρ(y)My)(My)T − 2My(MKMy − ρ(y)My)T
)
pk +R3(ρ(y), αpk)

=
1

2
ρ(y) + α

(
pTk (MKM − ρ(xk)M)xk +O(sin2 θ0)

)
by (A.18)

+
1

2
α2
{
pTk
(
(MKM − ρ(xk)M) + (ρ(xk)− ρ(y))M

)
pk

− 2
(
pTk (MKM − ρ(xk)M)xk +O(sin θ20)

)(
xT
kM +O(sinq θ0)

)
pk

−2pTk
(
Mxk +O(sinq θ0)

)(
(xk)

T (MKM − ρ(xk)M)pk +O(sin2 θ0)
)}

+R3(ρ(y), αpk)

=
1

2
ρ(y) + αpTk

1

2
∇ρ(xk) + αO(sin2 θ0) +

1

2
α2pTk {(MKM − ρ(xk)M)

− 2rk(Mxk)
T − 2Mxkr

T
k }pk + α2

(
O(sin2 θ0) + ∥rk∥O(sinq θ0)

)
+R3(ρ(y), αpk)

=
1

2
ρ(xk + αpk) +

1

2
(ρ(y)− ρ(xk)) +R3(ρ(y), αpk)

−R3(ρ(xk), αpk) +O(α sin2 θ0) +O(α2 sin2 θ0).

Let the global minimizer in Uk+1 be y∗k+1 = y(y∗k+1) + α(y∗k+1)pk, with y(y∗k+1) ∈ Uk, and
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∥y(y∗k+1)∥M = 1. Consider the decomposition y(y∗k+1) = v1 cos θy(y∗
k+1)

+ fy(y∗
k+1)

sin θy(y∗
k+1)

with

fy(y∗
k+1)

⊥ Mv1 and ∥fy(y∗
k+1)
∥M = 1 such that ρ(y(y∗k+1)) − λ1 = O(sin2 θy(y∗

k+1)
). Here, α(y∗k+1)

is the optimal step size moving from y(y∗k+1) in the direction of pk, due to the global optimality of

y∗k+1 in Uk+1. Under Assumption 5.3.3, it follows from Lemma 5.3.2 that

ρ(y∗k+1)− ρ(y(y∗k+1)) = −O(sin2 θy(y∗
k+1)

)O(cos2 ∠(pk,∇ρ(y(y∗k+1)))).

Then, we have

ρ(y∗k+1)− λ1 = [ρ(y∗k+1)− ρ(y(y∗k+1))] + [ρ(y(y∗k+1))− λ1]

= −O(sin2 θy(y∗
k+1)

)O(cos2 ∠(pk,∇ρ(y(y∗k+1)))) +O(sin2 θy(y∗
k+1)

)

= O(sin2 θy(y∗
k+1)

).

On the other hand, as y∗k+1 is the global minimizer in Uk+1, we have

ρ(y∗k+1)− λ1 ≤ ρ(xk+1)− λ1 = O(sin2 θk+1).

Therefore, we obtain that

O(sin θy(y∗
k+1)

) ≤ O(sin θk+1).

Given y∗k+1 = y(y∗k+1) + α(y∗k+1)pk, by triangle inequality we have

∥y∗k+1∥M ≤ ∥y(y∗k+1)∥M + |α(y∗k+1)|∥pk∥M = 1 + |α(y∗k+1)|.

Also, the M -normalized y∗k+1 is
y∗
k+1

∥y∗
k+1∥M

= 1
∥y∗

k+1∥M
y(y∗k+1)+

α(y∗
k+1)

∥y∗
k+1∥M

pk, and we can follow the proof

of Lemma 5.3.3 to show that
α(y∗

k+1)

∥y∗
k+1∥M

= O(sin θy(y∗
k+1)

) ≤ O(sin θk+1). Then, we could obtain that,

|α(y∗
k+1)|

1+|α(y∗
k+1)|

≤ |α(y∗
k+1)|

∥y∗
k+1∥M

≤ O(sin θk+1), i.e.,|α(y∗k+1)| ≤ O(sin θk+1).

Let α∗
k be the minimizer of ρ(xk+αpk) and y∗k be the global minimizer in Uk, which contains

the all the vectors of the form y = βyF
mx0 + γygy. Note that ρ(xk + α(y∗k+1)pk) ≥ ρ(xk + α∗

kpk) =

ρ(xk+1) and ρ(y(y∗k+1)) ≥ ρ(y∗k).
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It follows from (A.19) that

1

2
ρ(y∗k+1) =

1

2
ρ(xk + α(y∗k+1)pk) +

1

2
(ρ(y(y∗k+1))− ρ(xk)) +R3(ρ(y(y

∗
k+1)), α(y

∗
k+1)pk)

−R3(ρ(xk), α(y
∗
k+1)pk) +O(α(y∗k+1) sin

2 θ0) +O(α(y∗k+1)
2 sin2 θ0)

≥ 1

2
ρ(xk + α∗

kpk) +
1

2
(ρ(y(y∗k+1))− ρ(xk)) +R3(ρ(y(y

∗
k+1)), α(y

∗
k+1)pk)

−R3(ρ(xk), α(y
∗
k+1)pk) +O(α(y∗k+1) sin

2 θ0) +O(α(y∗k+1)
2 sin2 θ0)

≥ 1

2
ρ(xk+1) +

1

2
(ρ(y∗k)− ρ(xk)) +R3(ρ(y(y

∗
k+1)), α(y

∗
k+1)pk)

−R3(ρ(xk), α(y
∗
k+1)pk) +O(α(y∗k+1) sin

2 θ0) +O(α(y∗k+1)
2 sin2 θ0)

≥ 1

2
ρ(xk+1) +

1

2
(ρ(y∗k)− ρ(xk)) +O(sin θk+1)O(sin2 θ0).

Equivalently,

ρ(xk+1)− ρ(y∗k+1) ≤ ρ(xk)− ρ(y∗k) +O(sin θk+1)O(sin2 θ0).
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forming nonlinear evolution equations with double-well potentials of quadratic growth. Math-
ematics of Computation, 80(273):205–223, 2011.

[31] Steven M Cox and Paul C Matthews. Exponential time differencing for stiff systems. Journal
of Computational Physics, 176(2):430–455, 2002.

[32] Franco Dalfovo, Stefano Giorgini, Lev P Pitaevskii, and Sandro Stringari. Theory of Bose-
Einstein condensation in trapped gases. Reviews of Modern Physics, 71(3):463, 1999.

[33] Ionut Danaila and Frédéric Hecht. A finite element method with mesh adaptivity for computing
vortex states in fast-rotating Bose–Einstein condensates. Journal of Computational Physics,
229(19):6946–6960, 2010.

[34] Ionut Danaila and Parimah Kazemi. A new Sobolev gradient method for direct minimization of
the Gross–Pitaevskii energy with rotation. SIAM Journal on Scientific Computing, 32(5):2447–
2467, 2010.

[35] Kendall B Davis, M-O Mewes, Michael R Andrews, Nicolaas J van Druten, Dallin S Durfee,
DM Kurn, and Wolfgang Ketterle. Bose-Einstein condensation in a gas of sodium atoms.
Physical Review Letters, 75(22):3969, 1995.

[36] Claude M Dion and Eric Cancès. Ground state of the time-independent Gross–Pitaevskii
equation. Computer Physics Communications, 177(10):787–798, 2007.

[37] Qiang Du, Lili Ju, Xiao Li, and Zhonghua Qiao. Maximum principle preserving exponential
time differencing schemes for the nonlocal Allen–Cahn equation. SIAM Journal on Numerical
Analysis, 57(2):875–898, 2019.

[38] Qiang Du and Roy A Nicolaides. Numerical analysis of a continuum model of phase transition.
SIAM Journal on Numerical Analysis, 28(5):1310–1322, 1991.

[39] Jed A Duersch, Meiyue Shao, Chao Yang, and Ming Gu. A robust and efficient implementation
of LOBPCG. SIAM Journal on Scientific Computing, 40(5):C655–C676, 2018.

[40] Stanley C Eisenstat and Ilse CF Ipsen. Three absolute perturbation bounds for matrix eigenval-
ues imply relative bounds. SIAM Journal on Matrix Analysis and Applications, 20(1):149–158,
1998.

[41] David J Eyre. Unconditionally gradient stable time marching the Cahn-Hilliard equation.
MRS Online Proceedings Library (OPL), 529:39, 1998.

[42] Haw-Ren Fang and Yousef Saad. A filtered Lanczos procedure for extreme and interior eigen-
value problems. SIAM Journal on Scientific Computing, 34(4):A2220–A2246, 2012.

[43] Xiaobing Feng and Andreas Prohl. Numerical analysis of the Allen-Cahn equation and ap-
proximation for mean curvature flows. Numerische Mathematik, 94:33–65, 2003.

[44] Xiaobing Feng and Andreas Prohl. Error analysis of a mixed finite element method for the
Cahn-Hilliard equation. Numerische Mathematik, 99:47–84, 2004.

[45] Alexander L Fetter, B Jackson, and S Stringari. Rapid rotation of a Bose-Einstein condensate
in a harmonic plus quartic trap. Physical Review A, 71(1):013605, 2005.

117



[46] Dale G Fried, Thomas C Killian, Lorenz Willmann, David Landhuis, Stephen C Moss, Daniel
Kleppner, and Thomas J Greytak. Bose-Einstein condensation of atomic hydrogen. Physical
Review Letters, 81(18):3811, 1998.

[47] Iulia Georgescu. 25 years of BEC. Nature Reviews Physics, 2(8):396–396, 2020.

[48] R Glowinski, B Mantel, J Periaux, G Poirier, and O Pironneau. An efficient preconditioned
conjugate gradient method applied to nonlinear problems in fluid dynamics via least square
formulations. In: Computing Methods in Applied Sciences and Engineering.(A82-17551 06-34)
Amsterdam, pages 445–487, 1980.

[49] Gene H Golub and Charles F Van Loan. Matrix computations. JHU press, 2013.

[50] Allan Griffin, David W Snoke, and Sandro Stringari. Bose-Einstein condensation. Cambridge
University Press, 1996.

[51] Zhen-Chen Guo, Eric Chu, and Wen-Wei Lin. Doubling algorithm for the discretized Bethe-
Salpeter eigenvalue problem. Mathematics of Computation, 88(319):2325–2350, 2019.

[52] William W Hager and Hongchao Zhang. A survey of nonlinear conjugate gradient methods.
Pacific journal of Optimization, 2(1):35–58, 2006.

[53] Godfrey Harold Hardy, John Edensor Littlewood, and George Pólya. Inequalities. Cambridge
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