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ABSTRACT 

 

Mechanical stimulation through physical activity has been shown to play an important 

role in treating and preventing several non-communicable diseases such as hypertension, lower 

back pain (LBP), type-2 diabetes mellitus, and several cancers. This is accomplished through the 

regulation of cellular behavior and tissue remodeling within the body at both the micro- and 

macro-scale levels. The goal of mechanobiology research is to gain in-depth knowledge and 

understanding of how cells sense physical forces in conjunction with other biochemical cues and 

translate those factors into important biological functions that either maintain tissue homeostasis 

or lead to pathological states. Understanding these processes can lead to the development of 

medical interventions that influence cells towards a desired outcome. While some of these 

processes can be observed naturally through thoughtful experimental design, most 

mechanobiological processes require the development of tools that can enable scientists and 

researchers to investigate a specific aspect of cell mechanobiology. In this PhD dissertation, we 

investigated the role that mechanical stimulation plays in regulating cell behavior in different 

chemical environments by subjecting cells cultured in monolayer to levels of uniaxial tension 

similar to those experienced in the annulus fibrosus (AF) in the intervertebral disc (IVD). We 

then developed both an experimental and computational platform that could be used to study the 

effects of mechanical stimulation on physiological function at both the microscopic and 

macroscopic levels. The experimental platform was designed to enable long term application of 

mechanical forces onto cell-seeded tissue scaffolds with the intention of developing a bioreactor 

to enable in vitro studies focused on investigating how mechanical forces influence cell behavior 

in healthy and diseased IVDs. The computational platform employed machine learning 
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algorithms and data science strategies to examine how clinical measurements such as blood 

pressure and blood serum analytes influence patient risk for masked hypertension in a young, 

apparently healthy population. 
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CHAPTER 1 

Introduction 

 

1.1 Motivation 

Several diseases and medical disabilities such as hypertension, lower back pain (LBP), 

type-2 diabetes mellitus, and certain cancers are regulated in part by mechanical forces 1-4. Many 

of these conditions are leading causes of morbidity and disability globally. To illustrate the 

impact that these mechanically regulated diseases have on society, consider the prevalence and 

economic burden of just 2 cases: hypertension and LBP. It has been estimated that nearly 116 

million adults in the U.S. alone suffer from hypertension 5 while other reports suggest that 

between 70 and 85% of adults worldwide will experience LBP during their lifetime 6. 

Furthermore, a study from 2019 found that hypertension was a primary or contributing 

cause of death for 516,955 people in the United States 7 and another report found that between 

13.1% and 20.3% of people who experience LBP have chronic symptoms 8. A significant 

number of economic resources have been allocated to treating these pathological conditions, with 

hypertension accounting for nearly $131 billion in healthcare costs annually 9 and nearly an 

average of $8,900 per patient being spent on LBP treatments each year 10. 

Given these high societal and economic costs, it is imperative to develop new therapies 

and interventions that will prevent, mitigate, and reverse these diseases and disabilities. The 

development of these therapies and interventions comes with increased scientific understanding 

and technological advancement. Experimental and computational platforms which can be used to 

test pathological hypotheses and fill in gaps in knowledge are vital to achieving this goal and 
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therefore there is a significant need to develop novel experimental and computational platforms 

dedicated to studying specific diseases and disabilities. 

Intervertebral disc (IVD) degeneration is thought to be the predominant cause of chronic 

LBP 11. IVD degeneration commonly leads to defects in the annulus fibrosus (AF) that forms the 

outer shell of the IVD and can result in IVD herniation 12. If the IVD herniation is severe enough, 

it is typically treated by performing a discectomy to remove portions of the prolapsed IVD 13. 

When this happens, the probability of re-herniation is high due to ruptures in the IVD AF. 

Several companies have investigated different possible devices for sealing the IVD following a 

tear in the AF; however, these devices are still lacking as they only reduce patient re-herniation 

by 52% 14,15. Furthermore, these devices are limited in their ability to repair the IVD because of 

their inability to support tissue regeneration. One strategy to improve the success rate of these 

devices that is currently being investigated is the incorporation of stromal cells into the device to 

promote tissue regeneration at the site of the rupture 16. However, the optimal cell source for this 

application is currently unknown. We propose to utilize a commercially available experimental 

platform to evaluate the effector responses of different stromal cells in a monolayer culture and 

develop a novel experimental platform capable of evaluating these effector responses from 

different stromal cells in 3-D biological scaffolds to collect data that could help answer this 

question. 

Hypertension is a disease that can be fatal by increasing the risk of catastrophic heart 

failure (HF) 17. Fortunately, hypertension can be managed through preventative measures such as 

lifestyle changes and medications that lower blood pressure (BP) 18. Identifying patients who are 

at-risk for hypertension prior to becoming hypertensive would be beneficial as measures could 

be taken to prevent or slow the occurrence of the disease 19. Several other studies have sought to 
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develop computational models that could be used to predict the onset of hypertension to aid 

physicians in clinical decision-making 20-23. Machine learning (ML) computational models have 

become popular for this application due to their ability to create complex and highly accurate 

models from large clinical datasets without the need for a complete mechanistic understanding of 

the underlying biology. However, there are currently several drawbacks to the ML models that 

have currently been developed 24,25. First, many of the models are limited in the number of 

biologically relevant features that are being examined and second, ML models lack 

expandability, which often is one of the main issues that prevents them from being trusted and 

adopted by physicians in clinical practice. A ML model that could indicate which factors were 

most relevant in making a prediction while utilizing a more detailed array of biologically 

relevant features would give clinicians greater insight into how to treat their patients more 

effectively and could be used to expedite the adoption of computational models into clinical 

practice. 

 

1.2 Organization 

 This dissertation is divided into five chapters. Chapter 1 describes the motivation behind 

this work, presents an outline of how this dissertation is organized, outlines the overall aims for 

this work, and provides a general review of each of fundamental topics presented herein. These 

topics include mesenchymal stromal cell (MSC) mechanobiology, bioreactors, and machine 

learning models. More extensive background information will be provided within the following 

chapters as it relates to the topic of the study discussed in that particular chapter. Chapter 2 

presents a study entitled “Mechanical Stimulation Alters Mesenchymal Stromal Cell 

Survivability and Cytokine Production in Low pH Culture Conditions: Implications for 
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Intervertebral Disc Repair”. This study examines how the biological behavior of MSCs sourced 

from 3 different tissues changes when exposed to low pH or a combination of pH and cyclic 

tensile strain. Chapter 3 presents a study entitled “Design and Testing of a Multi-Well Tissue 

Stretching Bioreactor”. This study reports the design details and validation procedures that were 

implemented in the development and construction of a novel 3-D printed bioreactor capable of 

applying tensile strain to multiple cell-seeded biological scaffolds concurrently. Chapter 4 

presents a study entitled “Development of a Machine Learning Model for Detecting Masked 

Hypertension in Young, Apparently Healthy Adults from Low-and-Middle Income Countries”. 

This study describes the construction of a machine learning (ML) model that is capable of 

assessing several easy-to-obtain clinical measurements and calculating a patient’s risk for 

masked hypertension (MHT). Finally, chapter 5 outlines the overall conclusions from the studies 

presented here and offers recommendations for future work. 

 

1.3 Study Aims 

The overarching objective of this dissertation was to further the scientific knowledge of 

how mechanical forces influence biological behavior, maintain tissue homeostasis, and regulate 

the progression of disease. This objective was achieved by expanding the field of systems 

mechanobiology and by developing novel experimental and computational platforms for 

studying the complex interactions between mechanical forces and biological behavior. The 

findings of this research can be broadly categorized into 3 distinct aims. 

 

Aim 1: Investigate the Impact of Mechanical Stimulation on MSC Behavior in Normal and Low 

pH Cell Culture Conditions. The first aim of this dissertation was to expand the field of systems 
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mechanobiology by conducting a study that resulted in new knowledge and insights regarding 

how mechanical forces could alter MSC behavior in the context of repairing and regenerating the 

degenerate IVD and how MSC behavior would vary when sourced from different tissues. The 

work presented in Chapter 2 demonstrated that mechanical stimulation does alter MSC behavior 

in a low pH microenvironment. This work also demonstrated that the MSC response to 

biochemical and mechanical conditions varies depending on the MSC type. 

 

Aim 2. Develop and Validate a Long-Term Bioreactor Capable of Mechanically Stimulating 

Cells Seeded on Collagenous Tissue. The second aim of this study was to design a novel 

experimental platform for studying systems mechanobiology. This was accomplished through 

the development of a novel multi-well 3-D printed bioreactor system that could apply 

mechanical stimulation to a cell-seeded biological scaffold. Furthermore, a methodology of 

imaging the cells and tissues in the bioreactor to assess the level of strain experienced by the 

tissue and the resident cells during an experiment was also developed. The work in Chapter 3 

demonstrated that DIC strain analysis could be implemented during an experiment to evaluate 

tissue strains without having to disrupt or terminate the experiment. Fluorescent image analysis 

was used to evaluate cell strains during testing. Cytotoxicity assays and long-term viability tests 

were used to demonstrate that the bioreactor could be utilized for long-term cell culture 

experiments.  

 

Aim 3. Develop a Machine Learning Model Capable of Predicting Cardiac Morphology and 

Health as a Function of Physical Activity and Biochemical Profiles. The third aim of this study 

was to develop a novel computational platform for analyzing patient data and identifying 
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potential relationships that link clinical measures of in vitro mechanical forces and biochemicals 

to MHT with the purpose of predicting a patient’s risk for that disease. Machine learning 

techniques were employed to develop a computational model that was capable of predicting a 

patient’s risk for MHT in a young, apparently healthy population from a LMIC using several 

clinical measures that could be easily obtained during a single outpatient visit. The work 

presented in Chapter 4 demonstrate that a functional ML model can be developed using only a 

few clinical measurements that can be easily obtained from a single outpatient visit and that the 

model presented herein would function better than the current “rule-of-thumb” method for 

assessing a patient’s risk for MHT without having to immediate resort to evaluating the patient 

with ABPM.  

 

1.4 Background 

1.4.1 MSC Mechanobiology 

 Stromal cell therapy and tissue engineering strategies have the potential to revolutionize 

treatments for injury, disease, and age-related conditions 26. However, this potential has yet to be 

realized as our understanding of stromal cell biology is limited. While many studies have been 

published detailing the role of biochemical cues and signaling events in directing stromal cell 

behavior, recent work in the field has shown that mechanical stimulation also plays a significant 

role in regulating stromal cell function 27. Previous reports have been published detailing how 

mechanical loading can affect cell behavior through the assembly and disassembly of focal 

adhesions, the rearrangement of cytoskeletal proteins, the activation of stretch ion channels and 

G protein-coupled receptors, and conformational changes in the nucleus 28. For MSCs in 

particular, mechanical signaling has been shown to play a significant role in influencing MSC 
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fate decisions. For example, compressive forces have been shown to induce chondrogenic 

differentiation while tensile forces have been shown to induce osteogenic differentiation 29,30. 

Other studies have shown that mechanical forces can impact MSC apoptosis and proliferation 

31,32. 

 

1.4.2 Bioreactors  

 Bioreactors can be broadly defined as “devices in which biological and/or biochemical 

processes develop under closely monitored and tightly controlled environmental and operating 

conditions (e.g., pH, temperature, pressure, nutrient supply, and waste removal)” 33. These 

devices are invaluable tools for developing tissue engineering strategies as they enable the 

application of biochemical and mechanical stimulation to cells and tissues in vitro within a 

tightly regulated environment. The ability to apply these stimuli in a controlled manner allows 

for the fundamental mechanisms of cell function under normal and pathological conditions to be 

assessed.  

 There are several factors that should be taken into consideration when designing a 

bioreactor. First, a bioreactor must be able to establish environmental conditions that are 

favorable for cell survival. This includes maintaining the cells at a temperature of 37 °C with a 

high relative humidity, and a 5% CO2 gas mixture. Another requirement of a bioreactor system is 

the ability to provide the cell culture with nutrients, often in the form of a specially formulated 

media that can provide the necessary metabolites, oxygen, growth factors, and other components 

necessary for maintaining cell viability. The bioreactor should also be made of materials that are 

not cytotoxic and will not negatively impact cell viability. 
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 The second design factor that must be considered when creating a bioreactor is the type 

of desired stimulation that the bioreactor should be applying to the cells. This can include a 

variety of mechanical and physical stimuli such as tension, compression, torsion, and shear. It 

can also involve electromagnetic stimulation through the application of magnetic fields or 

alterations in biochemical signaling in the form of different cytokines or alterations in 

environmental conditions. Occasionally, bioreactors will combine multiple types of stimuli in 

order to fulfill the requirements of an experimental protocol. 

 Another important consideration when designing a bioreactor is the parameters that need 

to be monitored. Again, the parameters which should be evaluated depend on the requirements of 

the experimental protocol, but in general, a system should have sensors to monitor the 

environmental conditions of the system and/or the physical properties of the cells and tissue in 

the system. 

 Other considerations related to bioreactor design include the ease of assembling the 

bioreactor and loading the cells and/or tissue, the ability to test multiple samples at once, and the 

ease of scaling-up the system. 

 

1.4.3 Machine Learning Models  

In 1959, Arthur Samuel defined machine learning (ML) as a subfield of artificial 

intelligence (AI) that focuses on developing algorithms that “enable computers to learn without 

explicitly being programmed” 34. Using this approach, computers can develop highly accurate 

predictive models using only historical data without any a priori knowledge regarding the causal 

relationships between the different variables within the dataset. This is accomplished through the 



9 
 

use of mathematical, computational, and statistical methodologies that enable underlying patterns 

in the data to be identified, extracted, and employed in a model framework.  

The ML modeling approach has several advantages over more mechanistic modeling 

approaches which require that the rules of the model be explicitly defined. First, models created 

using a ML approach are dynamic in nature, operating off of trends observed in the data using 

statistical analysis rather than having a static model which operates on a single set of hardcoded 

rules. This allows the model to update itself over time and correct for mistakes in the model 

without requiring any input from the model user. Second, ML models can detect and incorporate 

relationships between variables in the data that were previously unknown and therefore may not 

be accounted for in a mechanistic model. This can be useful when little is known about the 

variables included in the dataset. Finally, ML models can handle a large number of variables 

because of this method’s ability to learn rules for how each variable behaves from the data 

directly; whereas more mechanistic model tend to be more simplistic and operate using fewer 

variables because the relationships for each variable in the model need to be comprehensively 

defined in order to successfully incorporate them into the model.  

One drawback to using ML methods to develop predictive algorithms is that they are 

completely reliant on the quality and quantity of the dataset that they learn on, making them 

highly susceptible to noise or false signals. Furthermore, it is typically difficult to determine how 

a ML-based model makes a prediction, giving ML-based modeling a reputation for being a 

“black-box” approach to modeling. Thus, while ML-based modeling is not necessarily the best 

universal approach to computational modeling, it does have several advantageous that make it an 

appropriate choice for particular applications.  
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CHAPTER 2 

Mechanical Stimulation Alters Mesenchymal Stromal Cell Survivability and 
Cytokine Production in Low pH Culture Conditions: Implications for 

Intervertebral Disc Repair 
 

2.1 Introduction 

Intervertebral disc (IVD) degeneration is an increasingly prevalent condition that has 

been linked to low back pain and IVD herniation 1,2. IVD herniation occurs when the nucleus 

pulposus (NP) pushes through the annulus fibrosus (AF), resulting in the protrusion of IVD 

material.  Despite having a relatively high incidence rate of 1-3% in the global population, 

treatment options for IVD herniations are mostly limited to symptom management or focus 

primarily on the late stage of the disease 3,4. Microdiscectomies are surgical interventions 

performed to alleviate pain by removing part of the damaged IVD that is impinging on nerve 

roots. However, this procedure leaves the AF to heal on its own and can result in further 

degeneration and fibrosis 5,6. Furthermore, it has been estimated that up to 25% of patients who 

undergo microdiscectomies require additional care due to reherniation 7.  Annular repair 

products, including Barricade™ have been shown to reduce the incidence of reherniation and 

reoperation rates by sealing tears in the AF. However, these products do not promote integration 

with or regeneration of AF tissue 8. 

         These current limitations have prompted researchers to investigate novel regenerative 

strategies for repairing and regenerating the AF of a herniated IVD. These include utilizing the 

delivery of cells, growth factors, scaffolds, and gene therapy 2,9-12. Cell therapy utilizing 

mesenchymal stromal cells (MSCs) is one promising option for this application, as clinical trials 

have shown that intradiscal injection of MSCs can reduce pain 2 years post operation in patients 
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undergoing discectomies 13,14, and animal models demonstrate the possibility that MSC injection 

could help alleviate pain by preventing neovascularization and innervation of the IVD 15. 

Furthermore, a recent study by Privu et al., demonstrated the potential of using scaffolds seeded 

with BM-MSCs to repair ruptured AF tissue 16. However, use of MSCs for IVD repair is still in 

its infancy and there remain gaps in our understanding of how to properly employ MSCs in 

strategies to repair and regenerate the AF following discectomy. Some of these gaps in 

knowledge include improving our understanding of how to increase the low survival rates of 

MSCs post implantation and elucidation of how MSCs respond to the harsh microenvironment of 

the degenerate IVD 9. 

         Briefly, the microenvironment of the degenerate IVD can be characterized by low pH 

(6.2- 6.8), low nutrition (8mM glucose), low oxygen (1- 5%), high osmolarity (250mOsm- 

370mOsm), and complex mechanical loading (-5 to -8% axial strain and 8 to 10% max 3D shear 

strain in the posterior region of the AF; -4 to -6% axial strain and 7 to 9% max 3-D shear strain 

in the NP) 9,12,17-20. This combination of factors results in a microenvironment that can be 

challenging for both endogenous IVD cells and implanted MSCs. This has been confirmed by 

previous studies which have shown that MSCs survival is impacted negatively by this 

microenvironment 11,21,22. Several research groups have conducted studies to demonstrate how 

the different microenvironmental stimuli impact MSCs 9. For example, research published by 

Liang et al., and Weurtz et al., examined the effects that low pH, low osmolarity, low glucose, 

and different combinations of each factor had on human adipose derived MSCs (AD-MSCs) 11,12 

while other groups such as Li et al., examined the impact of hypoxia on rat AD-MSCs and NP 

derived MSCs (NP-MSCs) 13. These studies suggest that low pH, low osmolarity, and hypoxia 

both had a negative impact on matrix biosynthesis and cell proliferation while low glucose had a 



15 
 

small positive impact on these same metrics. The combination of low pH, low osmolarity, and 

low glucose resulted in an overall detrimental effect as well. Due to the observation that acidity 

increases during IVD degeneration while osmolarity decreases, it was suggested that pH in 

particular, might be the major limiting factor for MSC-based IVD repair strategies12. It is 

important to consider the pH of the IVD when developing a AF repair strategy as the lactic acid 

in the NP could contaminate the AF tissue during herniation, resulting in an acidic 

microenvironment that could negatively impact any cells involved in the therapy. 

         While the majority of these studies have investigated the impact of different biochemical 

factors on MSC behavior; previous research has shown that it is important to also consider the 

MSC response to mechanical loading in the context of the AF 23. In a recent review paper by 

Vadalà et al., it was reported that mechanical loading played a crucial role in regulating IVD cell 

activity and metabolism. Thus, in the context of repairing and regenerating the AF with an MSC-

based therapy, it is important to not only consider the biochemical factors, but also the relevant 

mechanical conditions. To our knowledge, the effect of tensile strain in conjunction with low pH 

on MSC behavior has not yet been explored, particularly in the context of repairing and 

regenerating the AF. Wuertz et al., did investigate the relationship between osmolarity and cyclic 

tensile strain on IVD cells, but did not extend their research to investigate the relationship 

between low pH and tensile strain on MSCs 14. Furthermore, recent research has demonstrated 

that native AF cells can react both positively and negatively to mechanical stimulation, 

suggesting that mechanical stimulation plays an important role in AF repair and regeneration 14,24 

Thus, it is important to understand the combined effects of low pH and mechanical stimuli on 

MSC’s. 
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It is also important to note that researchers have demonstrated that MSC response can 

vary based on the tissue origins of these cells 15,25. For example, in a study by Kozlowska et al., 

researchers found that while MSCs from different tissues may exhibit some common 

characteristics, their biological behavior differed depending on their tissue of origin 25. Borem et 

al., observed different effector responses between AD-MSCs and amnion derived MSCs (AM-

MSCs) when cultured conditions designed to simulate the inflammatory microenvironment of 

the degenerate IVD 15. Therefore, MSC type must also be considered when developing an MSC-

based cellular therapy of IVD regeneration. 

   Taken together, the aim of this study was to investigate how the combined effects of low 

pH and simplified uniaxial tensile strain similar to that observed in the degenerate AF, impacted 

the biological behavior of human MSCs sourced from different tissues.  It was hypothesized that 

the introduction of tensile strain would reduce the negative impact of low pH on MSC 

survivability, and that the degree of this response would vary depending on the MSC tissue 

source. To test this, human MSCs derived from bone marrow- (BM), adipose- (AD) and amnion- 

(AM) tissues were cultured in low pH in a tensile bioreactor and measures of cell survival and 

cytokine release profiles were completed. Results from these studies suggest that mechanical 

stimulation impacts MSC biological behavior in low pH conditions and that the response is 

dependent on the MSC type. 
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2.2 Materials and Methods 

2.2.1 MSC Expansion 

  Human AD-MSCs and BM-MSCs were purchased from ATCC. Human Amnion derived-

MSCs (AMMSC) were isolated from human placentas in accordance with previously published 

methods 26. Samples were obtained from consenting patients immediately after delivery via 

elective cesarean sections of full-term babies under an Institutional Review Board-approved 

protocol (Prisma Health Upstate: Pro00031185). All MSCs were expanded in standard culture 

conditions (37 C, 5% CO2) until passage 3 (P3) using cell culture media consisting of 

Dulbecco’s modified Eagle’s medium (DMEM), 10% fetal bovine serum (FBS), and 1% 

antibiotic/antimitotic (Ab/Am). 

 

2.2.2 Experimental Setup 

  Deformable 16-well silicone culture plates (CellScale) were coated with. 100 uL of a 

0.05% fibronectin solution (Advanced BioMatrix) for 2 hours at 37 C and 5% CO2.  After 

coating, 200 uL of cell culture media with MSCs (~5,000 cells/cm2) were dispensed into each 

well and incubated overnight to allow for MSCs attachment. Live cell nuclear stain (NucBlue, 

Thermofisher) was added to each well and incubated at 37 C and 5% CO2. Fluorescent images 

of cell nuclei were obtained for each well to get an initial cell count prior to assigning each 

culture plate to its experimental condition. Plates were then assigned to 1 of 3 experimental 

groups: (1) a mechanically static group with normal pH (7.4) cell culture media (Static-Normal), 

(2) a mechanically static group with low pH (6.5) cell culture media (Static-Low), and (3) a 
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mechanically dynamic group with low pH cell culture media (Dynamic-Low). These groups 

were chosen specifically to evaluate the relative impact of both pH and mechanical stimulation 

on MSC behavior. Silicone well plates assigned to the mechanically static groups were placed 

into 60 mm cell culture plates (Sigma-Aldrich) while silicon well plates assigned to 

mechanically dynamic groups were loaded into a device to apply uniaxial tension to the silicone 

culture plates (MCFX-2, CellScale). Once each plate was assigned to either the dynamic or static 

grouping, normal pH cell culture media was added to 8 wells of each plate and low pH cell 

culture media was added to the remaining 8 wells. This resulted in 8 wells per group per 

experiment for each MSC type. The experimental setup is summarized below in Figure 2.1a. 

Normal pH media consisted of standard Dulbecco’s modified Eagle’s medium (DMEM) with 

2.13 g/L of sodium bicarbonate, 10% fetal bovine serum (FBS), and 1% antibiotic/antimitotic 

(Ab/Am). Low pH media consisted of standard Dulbecco’s modified Eagle’s medium (DMEM) 

with 0.2g/L of sodium bicarbonate, 10% fetal bovine serum (FBS), and 1% antibiotic/antimitotic 

(Ab/Am). 
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Figure 2.1. Experimental setup and protocol. A) For each experimental group, MSCs were seeded into individual 
wells of a fibronectin coated 16-well silicone plate. The wells of each plate contained either low or normal pH media 
(8 wells each) prior to placing them into a Mechanoculture FX2 system for dynamic stimulation or a 60 mm culture 
dish for static culture. B) For both static and dynamic conditions, there were 2 identical plates. The first plate was 
cultured for 2 days, and the second plate was cultured for 4 days. At each timepoint, data was collected to assess cell 
metabolic activity, viability, and cytokine production. 

  

2.2.3 Cell Culture and Mechanical Stimulation Protocol 

         Cells in the dynamic group with low pH were stretched to ~6% uniaxial strain at a 

frequency of 0.1 Hz for 16 hours and then held statically at ~1% uniaxial strain for 8 hours to 

simulate the mechanical loading that cells in the AF may experience in vivo over the course of a 

normal 24-hour day. The strain magnitudes and frequencies were chosen to replicate 

physiologically relevant conditions in the AF 24,27. Two sets of experiments were done: 1) MSCs 

cultured for 2 days and 2) MSCs being cultured for 4 days. For the 2-day experiments, cells were 

cultured in their respective experimental conditions for 48 hours and then 100 uL of cell 

supernatant was collected from each well and stored at -80 °C. For each experimental group, five 

wells were used to assess cell metabolic activity (CyQUANT MTT assay, Thermofisher 
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Scientific). The remaining three wells were used to assess cell number, viability, and 

morphology via fluorescent imaging using live/dead staining (2 uL/mL calcein, 1uL/mL 

ethidium homodimer, one drop NucBlue, Thermofisher Scientific).  For the 4-day experiments, 

cells were cultured in their respective experimental conditions for 96 hours with a media change 

at 48 hours. Cell metabolic activity, count, viability, and morphology was then assessed using the 

same protocol from the 2-day experiments. The experimental protocol is summarized in Figure 

2.1b. 

 

2.2.4 Cell Metabolic Activity 

         An MTT assay was performed at 2- and 4-days to assess the metabolic activity of each 

MSC type under each experimental condition and served as a general indicator of cell growth 

and survival 28. The assay was performed (n=5/condition/time-point/MSC type) in accordance 

with manufacturer’s instructions. Absorbance was measured at 540 nm and blanked to control 

samples. Results are expressed in relative absorbance units (RAU). Data is presented as mean 

RAU ± standard deviation. 

 

2.2.5 Cell Viability and Number 

     A live/dead assay (n=3//condition/time-point/MSC type) was performed in accordance 

with manufacturer instructions to assess the viability of each MSC type under each experimental 

condition and served as a direct indicator of cell survival. Wells were imaged at a 10X total 

magnification using a (insert microscope name / model) fluorescent microscope. Subsequently an 

open-source automated image processing and cell segmentation/counting software (CellProfiler, 
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Broad Institute) 29 was used to identify and count the number of live and dead cells to estimate 

percent cell viability (# Live cells/# Total cells*100). A machine learning segmentation plugin 

(Cellpose 2.0) 30 was used to generate segmentations of the MSC membranes using a neural 

network model trained specifically on fluorescent images of cell membranes (Cyto model). 

Results are presented as mean percent cell viability ± standard deviation and total cell count ± 

standard deviation. 

 

2.2.6 Cytokine Analysis 

     A cytokine array (Human Cytokine Array C5, Raybiotech) was used to semi-

quantitatively compare the secretion profile of 80 different growth factors and inflammatory 

cytokines for each MSC type under the different experimental conditions.  Five individual 

supernatants from each group were pooled together to get a single collection of cell culture 

supernatants per group. Subsequently, the pooled samples were diluted with 0.5 mL of blocking 

buffer and allowed to incubate overnight at 4 C and samples were prepared in accordance with 

the manufacturer's instructions and were imaged using a chemiluminescence reader. For each 

membrane array, chemiluminescence measurements were quantified using a custom written 

MATLAB script prior to subtracting background signal from control media samples.  Data is 

presented as relative densitometric units (RDU) normalized to the control (fresh media) and 

presented as 1) the percent change of cytokine concentrations of culture conditions compared to 

the control and 2) the precent change of cytokine concentrations from static low to dynamic low 

culture conditions. 
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2.2.7 Statistical Analysis 

  Statistical analysis and graph preparation was completed using GraphPad Prism 9 

software. All data is presented as mean ± standard deviation with the exception of the cytokine 

data. A 3-way ANOVA followed by Tukey’s multiple comparisons test was used to evaluate the 

statistical significance of applicable data. A p-value ≤ 0.05 was considered significant. 

 

2.3 Results: 

2.3.1 Effects of pH and Mechanical Stimulation on MSC Metabolic Activity 

         The metabolic activity of MSCs cultured in low pH conditions were significantly lower 

than the metabolic activity of MSCs cultured in normal pH conditions at both the day 2 and day 

4 time point (Figure 2.2). On day 2, AD-MSC and AM-MSC metabolic activity was increased in 

low pH with mechanical stimulation conditions compared to the metabolic activity of AD-MSCs 

(day 2, p = 0.0114) and AM-MSCs (day 2, p = <0.001) in the low pH conditions while BM-MSC 

(day 2, p = 0.0348) metabolic activity was further reduced (Figure 2.2). This trend continued on 

day 4 but was not significantly different. 
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Figure 2.2. Assessment of MSC metabolism. A-B) MTT assay results for day 2 and day 4 time points indicating 
significant differences between experimental conditions (static-normal: pH 7.4, static-low: pH 6.5, dynamic-low: 
6% strain for 16 hrs at 0.1 Hz then 1% strain for 8 hrs, pH 6.5) for different MSC types (AD-MSC, AM-MSC, BM-
MSC). * indicates p<0.05, ** indicates p<0.01, *** indicates p<0.005, and **** indicates p<0.001.  

 

2.3.2 Effects of pH and Mechanical Stimulation on MSC Viability 

         The viability of AD-MSCs and AM-MSCs cultured in low pH conditions were not 

statistically significant to the viability of AD-MSCs and AM-MSCs cultured in normal pH 

conditions at both the day 2 and day 4 time point (Figure 2.3), however BM-MSC viability was 

significantly decreased in low pH culture compared to normal pH culture conditions (day 2, p = 

<0.0001; day 4, p = <0.0001). AD-MSC and AM-MSC viability was also similar in low pH with 

mechanical stimulation conditions compared to the viability of AD-MSCs and AM-MSCs in the 

low pH conditions while BM-MSC viability was significantly reduced on day 2 (day 2, p = 

0.0055) but then was significantly increased on day 4 (day 4, p = <0.0001) (Figure 2.3). 
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Figure 2.3. Assessment of cell survivability. A-B) Cell viability results for days 2 and 4 time points clustered by 
MSC type and arranged to highlight statistical changes in the number of cells counted between normal static, low 
static, and low dynamic culture conditions. * indicates p<0.05, ** indicates p<0.01, *** indicates p<0.005, and **** 
indicates p<0.001.  

 

2.3.3 Effects of pH and Mechanical Stimulation on MSC Number 

         The number of MSCs cultured in low pH conditions was not significantly changed 

compared to normal pH conditions at both the day 2 and day 4 time point (Figure 2.4). AD-

MSCs demonstrated a non-significant increase in cell numbers in low pH conditions on both day 

2 and day 4 while AM-MSCs demonstrated a non-significant increase in cell numbers in low pH 

conditions on day 2 but this decreased in low pH conditions on day 4. BM-MSCs demonstrated a 

non-significant decrease in cell number in low pH conditions on both day 2 and day 4. AD-

MSCs demonstrated a non-significant decrease in cell number on day 2 and day 4 in low pH with 

mechanical stimulation conditions compared to low pH conditions (Figure 2.4). AM-MSC cell 

number was significantly increased in low pH conditions with mechanical stimulation on both 

day 2 and day 4 (day 2, p = 0.0039; day 4, p = 0.0087) compared to static low pH culture 
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conditions while BM-MSC cell number experienced a non-significant increase in cell number in 

low pH conditions with mechanical stimulation on day 4 when compared to cell number in low 

pH culture conditions (Figure 2.4).  

 

Figure 2.4. Assessment of cell number. A-B) Cell number for days 2 and 4 depicting the average number of 
individual live cells identified. Results are clustered by experimental condition and arranged to highlight statistical 
changes in the number of cells counted between AD-MSC, AM-MSC, and BM-MSC cell types. * indicates p<0.05, 
** indicates p<0.01, *** indicates p<0.005, and **** indicates p<0.001.  

 

2.3.4 Effects of pH and Mechanical Stimulation on MSC Cytokine Production 

         Relative cytokine concentrations were reduced in AD-MSCs and AM-MSCs in low pH 

culture conditions compared to normal pH culture conditions while BM-MSC relative cytokine 

concentrations remained largely unaffected in low pH culture conditions. However, slight 

increases in the relative concentration of TGF-B2, LIGHT, IGFBP-2, IL-1α, IL-2, IL-12, and IL-

16 were observed in the BM-MSCs (Figure 2.5). The addition of mechanical stimulation with the 

low pH culture condition further altered cytokine production. AD-MSCs cultured in low pH 

conditions with mechanical stimulation produced more TIMP-1, TIMP-2, GRO a/b/c, BDNF, 
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Angiogenin, and IGFBP-2 compared to low pH conditions (Figure 2.5). AM-MSCs cultured in 

low pH conditions with mechanical stimulation produced more MCP-1, TIMP-1, OPG, TGF-B3, 

IFN-γ, and IL-6 compared to low pH conditions (Figure 2.5). BM-MSCs cultured in low pH 

conditions with mechanical stimulation produced more MCP1, IFN-γ, IL-2, and IL-16 while 

producing less IL-8, TIMP-1, TIMP-2, angiogenin, VEGF-A, and LIGHT compared to low pH 

conditions (Figure 2.5). 

 

Figure 2.5. Cytokine profiles for each MSC type. Heatmaps depicting chemiluminescent intensity measurements 
of cytokines present in day 4 cell supernatant.  Measurements are clustered by MSC type and arranged to highlight 
differences between normal static, low static, and low dynamic culture conditions. Each measurement is expressed 
as a percent change relative to the chemiluminescent intensity measurements of the cell culture media alone to filter 
out signals not directly produced by MSCs. n = 5 pooled samples per condition. 
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  The change in cytokine concentrations between the low-static and low-dynamic 

experimental conditions was calculated to highlight the effect that mechanical stimulation had on 

each MSC type in conjunction with low pH (Figure 2.6). Furthermore, the cytokines that were 

examined were segregated into three different groupings (anti-inflammatory, pro-inflammatory, 

and tissue remodeling) based on their reported roles in IVD biology to provide further insights 

into the effects of tensile strain on MSC biological response in low pH conditions. When tensile 

strain was applied to AD-MSCs in the presence of low pH a general increase in pro-

inflammatory (IGFBP-2, IL-10), anti-inflammatory (GRO a/b/c, IL-5, IL-8, MCP-1), and tissue 

remodeling cytokines (Angiogenin, BDNF, TGF-b3, TIMP-1, TIMP-2) was observed. Notably, 

IL-6 was decreased in the dynamic low condition compared to the static low condition. When 

AM-MSCs were subjected to tensile strain in low pH, there was a slight increase in the 

concentration of the anti-inflammatory cytokine, IL-4. Like AD-MSCs, AM-MSCs also 

experienced increases in several other pro-inflammatory (IFN-gamma, IL-2, IL-3, IL-6, MCP-1) 

and tissue remodeling cytokines (BDNF, TGF-b3, TIMP-1, TIMP-2, OPG); however, the 

cytokines that changed varied between to two groups. Finally, BM-MSCs in dynamic low pH 

conditions experienced decreases in anti-inflammatory cytokine concentration levels (IGFBP-2, 

IL-4, IL-10, and IL-13). For pro-inflammatory cytokines, BM-MSCS saw a mix of cytokines 

with increased concentrations (IFN-gamma, IL-1beta, IL-2, IL-3, IL-5, and IL-16) and decreased 

concentrations (GRO a/b/c, IL-1alpha, IL-6, IL-7, IL-8, IL-12, IL-15, and LIGHT). Interestingly, 

in BM-MSCs, nearly all of the concentrations of cytokines related to tissue remodeling were 

decreased when subjected to tensile strain in the presence of low pH (Angiogenin, BDNF, TGF-

b2, TGF-b3, TIMP-1, TIMP-2, VEGF-A). 
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Figure 2.6. Change in the cytokine concentration measurements of the dynamic low condition relative to the 
static low condition. Dynamic low condition cytokine intensity readings normalized to static low condition 
cytokine intensity readings to highlight the impact of mechanical stimulation on MSC cytokine expression profiles. 
Results are grouped by cell type to highlight differences in MSC sources. Cytokines are grouped by known 
functional role within the IVD to determine the biological response of each MSC type to mechanical (tensile) 
loading in low pH conditions. Results are reported as percent change compared to static low condition intensity 
readings. n = 5 pooled samples per condition.  

 

2.4 Discussion 

         The aim of this study was to evaluate the impact that simplified tensile strain has on the 

biological behavior of different MSC phenotypes in the context of a low pH microenvironment 

similar to that of the degenerate IVD and AF repair.  Here, it was found that uniaxial tensile 

strain partially reversed some of the negative impacts that low pH had on cell metabolic activity 
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and survival in AD-MSCs and AM-MSCs. Interestingly, it was also found that the same level of 

tensile strain appeared to have a time-dependent effect on BM-MSCs, with strain having a 

negative impact on metabolic activity, viability, and cell number on Day 2 and positive impact 

on Day 4. Furthermore, the results presented here suggest that low pH may have a more 

prominent influence on MSC metabolic activity while tensile strain may stimulate cell 

proliferation. Overall, this research adds to the understanding of how degenerate IVD-like pH 

and tensile strain influence MSC biological behavior, and this knowledge can help provide 

insight into novel strategies or techniques that could be employed to optimize the therapeutic 

potential of MSC-based therapies targeting the repair and regeneration of the herniated AF. 

         The motivation for this study results from the current lack of suitable long-term 

treatments for repairing damaged AF tissue following IVD herniation and subsequent 

discectomy surgery. Briefly, IVD herniation occurs when degeneration of the AF tissue 

combined with abnormal or excessive loading of the IVD causes it to prolapse. The current 

standard of care aims to alleviate patient pain through surgical intervention via discectomy. 

While studies have shown that these interventions can alleviate short-term discomfort, they can 

fail to address the long-term complications related to IVD herniation which can include further 

degeneration of the IVD 31. One potential solution to this complication is to restore the structural 

integrity of the AF through the application of an MSC-based therapy in combination with a 

biomaterial strategy aimed at restoring competency of the damaged outer AF. MSCs are a 

promising option due to their capacity to proliferate, to differentiate into other cell types, and to 

modulate the behavior of other cells in the surrounding microenvironment 32. Several studies 

have reported that MSC based cell therapies targeting the AF could promote its regeneration 

16,33,34. Although promising, more research needs to be completed to better understand how 
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MSCs will respond to the harsh microenvironment of the degenerate IVD when used to repair 

the AF.  Furthermore, research on MSCs has shown that the biological behavior of the MSCs can 

depend on the MSC tissue source 35. Lastly, prior studies focused on cellular mechanobiology 

have demonstrated that mechanical stimulation can alter biological behavior of MSCs, 

suggesting that the application of mechanical forces could potentially improve their function 

within the harsh microenvironment of the degenerate IVD 36,37.  Thus, this study aimed to 

evaluate the biological responses of several MSC types from different tissue sources in the 

presence of both mechanical and biochemical (pH) stimulation representing the harsh chemical 

microenvironment of the AF. 

         This study demonstrated that low pH significantly decreased the metabolic activity of 

AD-, AM-, and BM-MSCs. Low pH also reduced the viability of BM-MSCs. Additionally, in 

static low pH conditions, AD-MSC cell numbers on both day 2 and day 4 were increased 

compared to normal pH controls. Furthermore, AM-MSC cell number in the static low pH 

condition was decreased on day 2 while increased on day 4 when compared to normal pH 

controls. Finally, BM-MSC cell number in the static low pH condition decreased on both day 2 

and day 4 when compared to the normal pH controls. These findings are consistent with the 

results found in previous studies. Research conducted by Liang et al., found that human AD-

MSC viability and metabolic activity were significantly decreased when cultured in low pH (6.5) 

conditions 22. This paper provided further evidence that MSC response is dependent on tissue 

source. 

         The first major finding of this study is that mechanical stimulation alters MSC metabolic 

activity, viability, and cell number in low pH conditions. More specifically, the addition of cyclic 

tensile strain was found to improve AD-MSC and AM-MSC metabolic activity, partially 
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offsetting the reduction caused by low pH. Cyclic tensile strain also increased AM-MSC cell 

number. Conversely, cyclic tensile strain further decreased metabolic activity in BM-MSCs. 

Interestingly, cyclic tensile strain decreased BM-MSC cell number on day 2 compared to the low 

pH static condition, but then increased cell count on day 4.  These findings are similar to those 

found by Chen et al., where the application of mechanical stimulation via rotational displacement 

to BM-MSCs on silk fibronectin scaffolds inhibited BM-MSC metabolic activity and 

proliferation in the short term (1-3 days), while longer time points (9-15 days) demonstrated that 

this same stimulus increased metabolic activity, proliferation, and collagen production 38. These 

findings suggest that mechanical stimulation influences MSC function in a low pH 

microenvironment. Although increased in low pH when tensile strain was applied, metabolic 

activity of all MSCs was significantly decreased when compared to cell metabolic activity when 

cultured in neutral pH (7.4), suggesting that pH is still the dominant characteristic of this 

microenvironment, which results in an overall negative response 11. However, this data suggests 

that mechanical stimulation of MSCs in environments like that in the AF of a degenerated / 

herniated IVD could result in increased survivability, or that preconditioning in this type of 

environment prior to implant could potentially improve MSC efficacy. This finding is supported 

by a study which found that cyclic tensile strain increased expression of genes related to wound 

healing in MSCs that were implanted in rat AF fissures 33. The present study and the 

aforementioned study suggest that mechanical stimulation of MSCs could increase their 

regenerative capacity within the AF. 

         The next major finding was that the MSC biological response to tensile strain in the 

context of low pH is dependent on the tissue source of MSCs. The results of the MTT assay 

demonstrated that mechanically stimulating AD-MSCs or AM-MSCs in low pH conditions 
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increased metabolic activity. This suggests that tensile strain could help mitigate the negative 

effects of low pH on these specific MSCs and could be important to consider when developing 

an MSC-based repair strategy for the IVD, particularly in the context of disc herniation where 

the pH of AF tissue could be lowered due to direct contact with the lactic acid from the NP. This 

finding could also indicate that mechanically conditioning MSCs on a biological scaffold or 

relevant biomaterial by applying tensile strain prior to application to the AF could potentially 

improve viability and overall efficacy of the treatment.  However, this finding was not universal 

as tensile strain had a negative effect on BM-MSC metabolic activity. Similarly, ADMSC and 

AMMSC viability was not altered by application of tensile strain, but BMMSC viability was 

negatively affected. Thus, BM-MSCs had a different overall response to mechanical loading 

compared to AD-MSCs and AM-MSCs. Of note, there were no distinct relationships between 

mechanical stimulation and cell number across MSC types. Previous studies on the effect of 

cyclic tensile strain on MSC survival and metabolic activity have reported varying results 39,40. In 

another study, ADMSC were cultured in monolayer and stretched at 10% cyclic tensile strain at 

0.5 Hz for 24 to 72 hours. Their results indicated that ADMSC metabolic activity was enhanced 

by mechanical stimulation, similar to the results presented herein, however, it was found that 

ADMSC proliferation was also increased by tensile strain which contradicts the findings in the 

present study 39. It is important to note, their study did not incorporate low pH culture conditions, 

which could explain the differences in our findings. Furthermore, Kang et al, subjected umbilical 

cord-derived mesenchymal stem cells (UC-MSCs) to 0%, 5%, or 10% strain for 5 seconds 

followed by 15 seconds of relaxation for 10 days and found that UC-MSC metabolic activity was 

significantly decreased by cyclic tensile strain. However, ECM (sulfated GAG and elastin) 

production was significantly increased by the same stimulant 40.  Taken together, it is plausible 
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that mechanical stimulation of MSCs may increase their therapeutic potential. However, MSC 

source and the magnitude and intensity of mechanical stimulation appears to dictate the 

biological response of MSCs, and thus more research must be conducted to further investigate 

the relationship between mechanical stimulation, MSC source, and biological response. 

         The third major finding is that mechanical stimulation alters the cytokine release profile 

of each MSC source. These cytokine release profiles were also MSC source dependent. Overall, 

it was found that mechanical stimulation up regulated anti-inflammatory cytokine production in 

AD-MSCs, had little effect on AM-MSC anti-inflammatory cytokine production, and decreased 

anti-inflammatory cytokine production in BM-MSCs. Furthermore, it altered pro-inflammatory 

cytokine production across all MSC types. AD-MSCs demonstrated a significant decrease in the 

concentration of IL-6 while simultaneously expressing a significant increase in IL-8. AM-MSCs 

experienced mostly increases in pro-inflammatory cytokines, while BM-MSCS mostly 

experienced a mix of increased and decreased pro-inflammatory cytokine concentrations. In both 

AD-MSCs and AM-MSCs, mechanical stimulation promoted the production of cytokines related 

to tissue remodeling (TIMP-1, TIMP-2, OPG, TGF-b2, TGF-b3), blood vessel formation 

(Angiogenin), and innervation (BDNF). In the context of the IVD, pro-inflammatory cytokines 

have been linked to IVDD and its progression 41, as well as pain relating to post-discectomy and 

IVDD 42. Angiogenic and neurotrophic factors are also critical in the development of IVDD as 

complications that arise as a part of IVDD, are in part due to nerve and blood vessel ingrowth 43. 

This suggests that implanted cells which express these cytokines could be a suboptimal source 

for use in a cell-based therapy aimed at repairing and regenerating the IVD.  In the context of the 

herniated IVD, blood vessels allow for immune cell migration into the IVD, which further 

promotes inflammation in and degeneration of the IVD (blood vessels allow for immune cell 
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migration into the IVD)44. Furthermore, studies have shown that BMMSC cultured in low pH 

increases senescence which has been linked to a proinflammatory phenotype in MSCs 45,46. 

Taken together, this data suggests that the low pH conditions of the degenerate IVD could limit 

the therapeutic potential of certain MSC types in AF repair and regeneration. Additionally, if the 

implanted MSCs promoted inflammation, angiogenesis, or innervation, this could negatively 

impact the healing of the IVD in the context of IVDD, herniation repair, and AF regeneration 

41,43,46. 

         Several key observations were also made by examining each cytokine individually. For 

example, in the context of IVD regeneration and disease, IL-8 has been theorized to be a key 

pro-inflammatory cytokine in the onset and progression of IVDD related lower back pain (LBP), 

and a possible therapeutic target for chronic LBP 47.  It is worth noting that the results herein 

indicated that IL-8 was upregulated by mechanical stimulation in AD-MSCs and downregulated 

in AM-MSCs and BM-MSCs. This suggests that AM-MSCs and BM-MSCs could potentially 

induce less inflammation if utilized for an IVD-specific cellular therapy. 

         Two other key cytokines that we examined in each MSC type were angiogenin and 

BDNP. Angiogenin is a potent angiogenic factor that promotes blood vessel invasion and 

development while BDNP is a neurotrophic factor that modulates inflammatory pain 

hypersensitivity and promotes the formation of vascular structures 48. Within the IVD, 

angiogenesis is theorized to be a large contributor to lower back pain and the progression of 

IVDD. Results suggested that BM-MSCs down-regulated angiogenin and BDNP when subjected 

to mechanical stimulation, while AD-MSCs up-regulated angiogenin and BDNP. Angiogenin 

and BDNP production by AM-MSCs was largely unaffected by mechanical stimulation. These 

results could suggest that the application of mechanical stimulation to MSCs through 
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interventions such physical therapy or exercise could be helpful in reducing the degree of pain 

and angiogenesis involved in therapies that utilize MSCs, particularly those therapies that 

involve AD-MSCs.  

         Finally, studies have investigated how the MMP/TIMP ratio affects matrix degradation. 

Prior studies found that as this ratio decreases, matrix degradation is inhibited within the IVD. 

Results herein indicate that mechanical stimulation up regulated AD-MSC and AM-MSC TIMP 

production, and down regulated BM-MSC TIMP production. It is important to note that the 

concentrations of TIMP for BM-MSC were higher than that of AD-MSC and AM-MSCs 

regardless of the experimental condition examined. The high concentrations of TIMP-1 and 

TIMP-2 suggest that MSCs may work to reduce matrix degradation and slow degeneration by 

further inhibiting MMPs 49,50. 

         Taken together, the cytokine analysis shows that MSCs may work to quell inflammation, 

suppress angiogenesis, and reduce matrix degradation in the context of AF regeneration. 

However, the source of the MSC must also be considered, as these cells exhibit remarkably 

different release profiles. These findings are generally in agreement with other related research 

which found that MSC cytokine production varies by tissue source 51,52. Therefore, we can 

conclude that it is important to consider the differences in MSC types when developing a MSC 

based therapy for AF repair and regeneration. 

         A key limitation of this study was the substrate stiffness of the plates utilized for 

culturing the cells. Previous work by others demonstrated that low (1 - 30 kpa) substrate stiffness 

significantly decreased BMMSC adhesion and proliferation. The plates that were used in the 

current study had a low surface stiffness (~30kPa), which may have significantly contributed to 
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the viability, cell count, and metabolic activity of the BMMSCs that was noted throughout the 

study 53. Another limitation of the study was that the effect of low pH and mechanical 

stimulation on the production of active MMPs was not directly investigated. To address these 

limitations, further studies should be completed. 

 

2.5 Conclusion 

         In conclusion, this study demonstrated that MSC survival and response is altered by the 

combination of low-pH and tensile strain, and that the tissue source of the MSC plays a 

significant role in the survival and response that is realized by this combined microenvironment. 

The understanding of how both the chemical and mechanical microenvironment affects MSC 

behavior in the context of herniation repair and IVDD will allow further research to increase the 

therapeutic potential of MSC based cellular therapy in the hopes of repairing and regenerating 

the damaged AF. 
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CHAPTER 3 

Design and Testing of a Multi-Well Tissue Stretching Bioreactor 

 

3.1 Introduction 

Mechanotransduction is the process by which mechanical stimuli are converted into 

biochemical signals that direct cellular processes. Tensile, compressive, or shear stresses cause 

conformational changes in the cell at the molecular level and activate different signaling 

pathways that alter gene transcription 1. This in turn influences many cellular functions such as 

proliferation, differentiation, protein synthesis, migration, and apoptosis. As a result, 

mechanotransduction plays a crucial role in organ development and tissue homeostasis 2 and 

deviation from the physiologic range of mechanical stimulation can lead to dysfunction and 

disease. For example, several studies have related diseases such as arteriosclerosis 3, fibrosis 4, 

muscular dystrophy 5, osteoporosis 6, and certain types of cancers 7 to abnormal mechanical 

stimulation. Understanding how physical forces impact cellular function is therefore critical to 

preventing, arresting, or reversing many of these conditions. 

While studying the influence of mechanical stimulation on cellular function in vivo would 

be the most direct way to examine the role of mechanotransduction in cell biology, it is currently 

hindered by the technical limits to monitor cell activity and the inherent difficulty of parsing out 

effects due solely to mechanical stimulation within the complex network of biological signaling 

that occurs within the body. Therefore, it is helpful to employ in vitro methods to examine the 

effects of mechanotransduction on cell biology. Bioreactors can serve as effective tools for 

studying the effects of mechanotransduction in vitro, as they can be designed with the capacity to 
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apply physiologically relevant mechanical stimulation to cells in a controlled, sterile cell culture 

environment 8. 

To replicate the in vivo effects of mechanical stimulation on cell biology, bioreactors 

must be built specifically to apply precise user-defined physical stimuli. 3-D printing has become 

an increasingly attractive option for manufacturing custom bioreactors for studying 

mechanobiology due to the low cost of production and the design flexibility it offers to 

researchers. Several studies have recently been published highlighting the efficacy of 3-D printed 

bioreactors, each with their own specific use case 9-11. Cook et al. designed a novel bioreactor to 

stretch up to four electrospun biological scaffolds concurrently using a system that incorporated 

load cells to monitor tissue stress during loading. It also had a specially designed pre-tensioning 

mechanism to ensure that the amount of pre-strain in each sample was consistent prior to loading 

9. Janvier et al. developed a custom 3-D printed bioreactor chamber with the goal of developing a 

universal modular platform capable of interfacing with a variety of different actuator systems. 

The purpose of this research was to create a low-cost system for early career and 

interdisciplinary researchers to use. This work established a robust platform for easy comparison 

of results across experiments as well as enabling reproducibility between experiments 10. Putame 

et al. utilized fused deposition modeling (FDM) 3-D printing to create a single chamber tensile 

bioreactor that used a custom-designed clamping system to stretch multiple types of samples, 

including hydrogels and electro spun biological samples 11. 

While each of these systems were able to test multiple samples independently, monitor 

local strains, acquire real-time fluorescent images, and clamp various tissue samples; no single 

system incorporated all of these design criteria into the same platform. In this study, our primary 

goal was to build upon these existing bioreactor system designs and develop a low-cost, 3-D 
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printed bioreactor that could combine all of these features into a single system. More 

specifically, this involves the capability to stretch multiple independent biological samples 

simultaneously, allow for real-time fluorescent imaging to assess cell viability and morphology, 

and enable evaluation of local tissue strains at different time points during long-term 

experiments. We hypothesized that a custom bioreactor chamber can be manufactured using 3-D 

printing to meet the design criteria outlined above. Biocompatibility tests, fluorescent imaging, 

protein assays, and strain validation analyses were utilized to verify that each of these conditions 

are met and validate the biological effects of the bioreactor on cell-seeded tissue samples. 

 

3.2 Materials and Methods  

3.2.1 Bioreactor Chamber Design Requirements and Fabrication 

The overall goal of this 3-D printed bioreactor was to apply cyclic tensile strain to 

multiple biological scaffolds seeded with cells for an extended tissue culture period while 

simultaneously allowing for real-time imaging to monitor cell and tissue behavior over time. To 

achieve this goal, 8 distinct design criteria were defined to set the scope of the project (Table 

3.1). More specifically, the first design criteria for this bioreactor was to enable up to 6 

biological scaffolds to be tested simultaneously and independently of each other to allow for an 

effective number of experimental repeats per experimental run. Secondly, the bioreactor needed 

to apply a range of tensile strains on samples (1 – 10% tensile strain) to mimic the 

physiologically relevant stains that have been observed in a variety of different soft collagenous 

tissues within the body 18,19. Because certain biological scaffolds are not necessarily 

homogeneous in nature 12,13, the bioreactor must be compatible with real-time imaging platforms 

allowing for fluorescent and brightfield images to assess both cell and tissue behavior. 



47 
 

Fluorescent imaging could be combined with live cell stains such as NucBlue to track cell count 

and orientation over time while digital image correlation (DIC) software could be utilized in 

conjunction with brightfield images of the biological samples to calculate the strain field 

distribution across each sample as it was stretched. Furthermore, to be able to understand how 

mechanical stretch affects cellular functioning and potential tissue/scaffold remodeling at 

different time points, it was decided that the bioreactor should be able to maintain cells in sterile 

tissue culture for extended periods of time without impacting cell viability. Thus, the bioreactor 

needed to be both biocompatible and autoclavable to ensure sterility and maintain the cells in a 

healthy culture environment. It was determined that each sample should be able to be submerged 

in 3-5 mL of cell culture media to match media volumes typically used in normal 6-well cell 

culture plates to ensure sufficient nutrient availability and buffering during culture while 

simultaneously minimizing the amount of media required for an experiment. The final design 

criteria was that the amount of displacement delivered to each sample via the mechanical 

actuator needed to be consistent across each sample to stretch each sample as consistently as 

possible. 
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Table 3.1: Bioreactor design criteria. 

Number of samples 1 - 6 

Tensile Strain Range 1 – 15% 

Real-Time Imaging Capability Yes 

Long-Term Culture Capacity > 7days 

Biocompatibility < 5% reduction in cell viability 

Autoclavable Yes 

Culture Media Volume per Well 3 – 5 mL 

Variability in Displacement < 0.25 mm 

  

      With these criteria in mind, the initial design strategy for the bioreactor was to construct a 

chassis that could apply tensile stretching to biological scaffolds being cultured in a standard 6-

well tissue culture plate (Corning) using a commercially available linear actuator (CellScale). 

The components needed for this design consisted of: a standard 6-well tissue culture plate, a 6-

well insert that fit into each well and acted as an anchor for one end of the biological scaffolds, a 

housing unit that fit around the 6-well insert and allowed for the linear actuator to connect to the 

6-well plate, a linear actuator, and a linear actuator arm that was used to transform the motion of 

the linear actuator into mechanical tension that stretched the biological scaffolds (Figure 3.1a). 
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Each of these components were modeled as individual parts using SolidWorks 2021 and 

compiled into a single assembly to visualize the entire system prior to manufacturing the 

components. After completing the initial assembly, the bioreactor system was simplified by 

combining the 6-well insert and the housing unit into a single piece for the final bioreactor 

design (Figure 3.1b). The individual part files were converted to STL files and uploaded onto a 

commercially available stereolithography (SLA) 3D printer (Formlabs). The parts were printed 

using BioMed Amber resin (Formlabs). After printing, each part was washed in isopropanol 

alcohol (IPA) for 20 minutes, allowed to air dry for 30 minutes, and then placed into an oven at 

60 °C overnight to ensure that the part was completely dry. The following day, the print supports 

were trimmed away, and the parts were placed into a UV curing station (Formlabs) and fully 

cured for 30 minutes at 70 °C. The parts were then autoclaved for sterilization and the bioreactor 

was assembled in a cell culture laminar flow hood. 

 

 

Figure 3.1. Final 3-D printed bioreactor design. (A) Exploded CAD drawing illustrating the different components 
of the 3D printed bioreactor, including: (i) the tissue culture chamber, (ii) the tensile arm that applies tensile strain to 
the collagenous tissue, (iii) the MCFX-2 motor unit used to actuate the tensile arm, (iv) the bottom half of a standard 
6-well cell culture plate that attaches to the bottom of the tissue culture chamber and houses the collagenous samples 
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during culture, and (v) the top half of a standard 6-well cell culture plate that attaches to the top of the tissue culture 
chamber. (B) Representative image of the fully constructed bioreactor. 
 

3.2.2 Biological Scaffold Preparation 

      Tissue samples consisting of porcine pericardium were obtained from a local abattoir, 

cleaned, and decellularized using a modified process previously described by Borem et al. 15. 

Briefly, the pericardium was immersed in distilled water at 4 °C for 24 hours to lyse any viable 

cells in the tissue following dissection. The samples were then cut into pieces (~ 4 cm x 4 cm 

each) and washed in a decellularization (decell) solution (50 mM Tris, 0.15% v/v Trito X-100, 

0.25% w/v deoxycholic acid, 0.1% ethylenediaminetetraacetic acid, and 0.02% w/v sodium 

azide) for 3 days at room temperature on a orbital shaker (150 rpm, Thomas Scientific) to 

remove cellular debris from the samples. On day 3, the decell solution was replaced with fresh 

solution and washed for another 3 days. After a total of 6 days, the samples were washed in 70% 

ethanol and distilled water (2X each for 10 minutes while agitated at room temperature). Then 

samples were placed in a DNase/RNase solution (7.5 pH, 720 U/ml each) containing 5 mM 

magnesium chloride at 37 °C for 24 hours at 150 rpm. Samples were sterilized in a 0.01% 

peracid acid solution for 2 hours on the orbital shaker at 150 rpm and then washed in sterile PBS 

3 times (1 hour each at 37 °C and 150 rpm) before being placed in a neutralization solution (50% 

dulbecco’s modified edge medium (DMEM), 48% fetal bovine serum (FBS), and 2% 

antibiotic/antimycotic) and stored at 4 ° C until experimental use. 

  

3.2.3 Cytotoxicity Assay 

      The cytotoxicity of the bioreactor components was assessed using a modified in vitro test 

for cytotoxicity outlined in ISO 10993-5 16.  For this study, GFP-labeled NIH-3T3 (Cell Biolabs, 

Inc.) were plated into 75 cm2 cell culture flasks and cultured for 24 hours at 37 °C.  Cells were 
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maintained in culture until confluent and were passaged at 72 h. Concurrently, test components 

(3-D printed resin sample, BioMed Amber; 316 Stainless steel screws and nuts; pericardium 

tissue sample) of the 3-D printed bioreactor were autoclaved, assembled within the confines of a 

laminar flow cabinet to maintain sterility, and placed within a cell culture dish with an 

appropriate amount of cell culture media and maintained at 37° C for 72 h to generate extract for 

the cytotoxicity assay. A total of 3 replicate extract samples were generated following this 

process. At 72 h, the cells were passaged into 6-well plates. Cells in 3 of the wells were 

submerged in regular cell culture media to act as experimental controls. Cells in the remaining 3 

wells were submerged in extract from the bioreactor components to test for cytotoxicity. Cells in 

the 6-well plate were maintained in culture for 2 days to allow for any cytotoxic effects to 

become apparent. Cytotoxicity was assessed using an alamarBlue™ cell viability assay in 

conjunction with a visual inspection of cell morphology using brightfield imaging. 

  

3.2.4 Sample Loading and Long-Term Viability Analysis  

      Prior to loading, samples were removed from the neutralization solution, placed into a 60 

mm plastic tissue culture dish (Corning), and sectioned into segments approximately 25 mm x 10 

mm in length. For each experiment, 6 segmented samples were then placed into 6-well plates 

with the fibrous side of the pericardium face up. Mesenchymal stromal cells derived from human 

adipose tissue (AD-MSCs) were seeded onto the samples in a dropwise fashion at approximately 

3,500 cells/cm2 in normal cell culture media (Dulbecco’s Modified Eagles Media (DMEM), 10% 

fetal bovine serum (FBS), and 1% penicillin/streptomyocin) and incubated for 4 hours to allow 

the cells to adhere to the samples. Each well was then gently filled with 2 mL of normal cell 

culture media to ensure proper nutrient exchange and then incubated for an additional 20 hours. 



52 
 

Once the cells had sufficient time to adhere to the samples, they were loaded into the 3D printed 

bioreactor. 

To load the samples into the bioreactor, the bioreactor was placed face down on a sterile 

drape within a cell culture laminar flow hood so that the clamp ends of the actuator arm and the 

6-well insert were facing up. Sterile forceps were used to gently drape the cell-seeded samples 

across both clamp ends. A 3-D printed clamp end was used to secure the end of the sample 

corresponding to the 6-well insert. Slack was then removed from the sample by gently pulling 

the sample to remove the slack and then clamping the actuator end of the sample. Samples were 

loaded into the bioreactor with the fibrous side facing up so that the seeded cells could be easily 

imaged during tissue culture. Once all 6 samples had been loaded, the bioreactor was flipped 

right-side-up and attached to the bottom half of a standard 6-well plate so that the tissue samples 

could be submerged in media. 3 mL of standard cell culture media were then added to each well 

and the top half of the standard 6-well plate was placed on top of the bioreactor housing unit. An 

overview of the loading procedure is depicted in Figure 3.2. 
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Figure 3.2.  Protocol for loading collagenous tissue samples into the 3-D printed bioreactor. (A) The motor, 
tensile arm, and tissue culture chamber were assembled in a sterile tissue culture hood and flipped upside down so 
that the clamp ends of the tensile arm and the tissue culture chamber were face-up. (B) Pre-seeded tissue samples 
were carefully extracted from tissue culture plates and lain across the clamp ends of the tensile arm and tissue 
culture chamber so that the side of the tissue seeded with cells was face-up. The tissue samples were clamped down 
at the end of the sample that was lying draped across the tissue culture chamber using a sterilized Alan wrench tool. 
(C) Forceps were used to pull the slack out of the tissue sample and keep it held in place across the tensile arm 
clamp for each well. (D) The remaining end of the tissue sample was clamped down to ensure that the collagenous 
sample was being stretched immediately upon actuation of the tensile arm. (E) Representative image of sample fully 
loaded in the bioreactor. 
 

 
         The bioreactor was then placed in an incubator and connected to an external computer via 

a wire fed through a port on the back of the incubator. A custom loading protocol written using 

commercially available software (CellScale) was used to apply ~5% cyclic tensile strain to the 

samples for 16 hours and then 1% static tensile strain for 8 hours. This loading protocol was 

repeated each day for 12 days. Media changes were performed every 3 days to maintain proper 

cell culture nutrient conditions during the experiment.  
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      At day 12, cell morphology, alignment, and viability were assessed using a Live/Dead 

staining assay. Live cell membranes were stained with calcein AM while dead cell membranes 

were stained ethidium homodimer-1 (EthD-1) following the manufacturer’s instructions: 2 uM of 

calcein AM and 4 uM of EthD-1, 15 min incubation at 37 °C. 2X Images were obtained using a 

fluorescent microscope (EVOS Auto FL) and analyzed using an open image analysis software 

(CellProfiler). Briefly, images were loaded into the software and an automatic segmentation 

algorithm (Ostu) was used to identify the DAPI images of the cell nuclei. These objects were 

then used as seeds in a subsequent step to segment the live cell outlines using a watershed 

propagation algorithm. The number of live cells was determined as the number of outlines 

identified using this method. The shape of each outline was also used to determine cell 

morphology and alignment relative to the direction of stretch. The number of dead cells was 

determined by counting the number of objects obtained by an automatic segmentation algorithm 

(Manual, threshold = 0.255). The viability was determined as the percentage of live cells to the 

total number of cells. Cells plated in standard 6-well plates and cultured with standard cell 

culture media were used as controls. 

  

3.2.5 Tissue Strain Validation and Distribution Analysis 

      A second experiment was performed to quantify the average magnitude and typical 

distribution of tissue strain in a pericardium sample while it was being stretched in the 

bioreactor. For this experiment, the strain distribution in the tissue samples was evaluated using 

the methodology for evaluating soft tissue strain fields described by Lionelle et al. 17 Briefly, 

acellular pericardium samples were loaded into the bioreactor as described above in 3.2.4 Sample 

Loading and Long-Term Viability Analysis and an airbrush was used to apply a speckled pattern 
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of black, matte paint to the surface of each sample. The bioreactor was then loaded onto a 

brightfield microscope for imaging and was connected to an external computer to control the 

actuator motor. Then a 2X image of the unstretched speckled sample was obtained to serve as a 

reference image. The computer was then used to actuate the motor and stretch the samples in 

0.25 mm increments from the unstretched position to 2 mm in tension. At each 0.25 mm 

increment, a subsequent brightfield image was taken at 2X to obtain a series of images of the 

tissue being stretched. The dense speckle pattern tracked across subsequent images to evaluate 

the strain distribution field using digital image correlation (DIC) techniques while the samples 

were stretched. This process was repeated for each sample (n = 6). Once a complete stack of 

images was obtained for each sample, they were loaded into an open source, Matlab based, DIC 

analysis software (ncorr). Using standard settings for the software, strain distribution maps were 

computed at each increment of stretch relative to the initial unstretched reference image. These 

maps were then analyzed to compute the median tensile strain in the direction of stretch for each 

sample and plotted against the distance the sample was stretched to obtain average tissue strain 

as a function of applied stretch. The details of the analysis process are depicted in Figure 3.3. 
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Figure 3.3. Example of total tissue strain distribution analysis procedure. Samples were stretched from 0 
actuator strain to 0.5 actuator strain (Change in grip-to-grip distance over initial grip-to-grip distance) in increments 
of 0.0625 actuator strain.  A) An image of the sample was taken at each increment of stretch to obtain a stack of 
images. B) The stack of images was loaded into a MATLAB based, open source DIC software (ncorr) and analyzed 
at each increment to obtain strain distribution maps of the tissue at each increment of strain. 
 

      To evaluate how the strain distribution varied in different regions of each sample, the 

strain distribution maps were segmented into 7 different distinct regions: a 1 pixel x 1 pixel 

region at the center of the strain field, a 10 pixel x 10 pixel region at the center of the strain field, 

a 20 pixel x 20 pixel region at the center of the strain field, and four rectangular regions at the 

top, bottom, left, and right portions of the strain field. The median strain values for each of these 

regions was calculated and used to compare how strain varied throughout the strain field 

distribution. A summary of the tissue strain distribution analysis protocol is outlined in Figure 

3.4. 
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Figure 3.4. Regional tissue strain distribution analysis procedure. A) Illustration of different regions. B) 
Example of strain map used for analysis. C) Illustration of how the strain map was divided into different regions. D) 
Median strain values of each region plotted together for comparison. 
 

 3.2.6 Cell Strain Analysis 

 To verify that cells were being stretched using the prescribed loading method and to 

assess the relationship between cell strain and tissue strain, a protocol to non-directly measure 

cell strain was developed. Fluorescently labeled NIH-3T3 cells were seeded onto pericardium 

patches at a density of 100,000 cells per cm2 and cultured for 24 hours to allow the cells to 

adhere. After 24 hours, the seeded patches were loaded into the 3D printed bioreactor as 

described above in 3.2.4 Sample Loading and Long-Term Viability Analysis. Cell culture media 

was added to each well to maintain cell viability during the experiment. The bioreactor was 

placed onto an Evos Auto FL for imaging. Fluorescent images of the cells in the were taken 
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using a 10X objective (AMEP 4933, ThermoFisher Scientific) and a GFP Light Cube (AMEP 

4951, ThermoFisher Scientific). Cell seeded samples were stretched from 0 mm to 2 mm in 

increments of 0.25 mm to match the increments of stretch that were applied during the strain 

validation protocol in 3.2.5 Tissue Stain Validation and Distribution Analysis. Once images had 

been taken, the membranes of each cell were automatically identified and segmented using an 

open-source cell segmentation software (CellProfiler). The white segmented outlines were 

overlain on a blank black image. These binary images were then loaded into a custom software 

script (MATLAB) written specifically to identify each cell using the cell segmented boundaries, 

match each cell from image to image, and measure the changes in the cell morphological 

properties to evaluate cell strain. This process can be outlined in the following steps:  

1. Load an image sequence in order of increased stretch from 0 mm to 2 mm 

2. For each cell in the 0 mm image: 

● Trace the interior of the cell outline 

● Fill in the trace 

● Measure the morphological properties of the trace object 

● Identify potential cell matches in the subsequent image by comparing the 

morphological properties and location of the cell matches relative to the initial 

cell location in the original image 

● Select the cell that is the most likely match to initial cell based on the largest 

similarity in morphological properties 

● Fit an ellipse to the traces of the initial cell and the matched cell 

● Obtain measures of the long axis, short axis, and orientation of the ellipse for both 

cells 
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● Calculate points on the boundary of the ellipse for both cells 

● Determine the deformation gradient matrix to transform the cell    

Examples of how the cell strain analysis was conducted are outlined in Figure 3.5. 

 

 

Figure 3.5. Overview of cell strain analysis. The unstretched image of a seeded sample is displayed in the top row 
and the corresponding sample is depicted in the bottom row. A) Original GFP images. B) Segmented cell outlines 
obtained using Cellprofiler. C) Cell objects created using segmented cell outlines. D) Selected cell overlain with best 
fit ellipse. 
 

3.2.7 Statistical Analysis 

       Statistics for differences between the experimental groups in the cytotoxicity evaluation 

(n = 3 for alamarBlue™ assay measurements; n = 9 for cell count images) was calculated using 

ANOVA followed by Tukey’s post hoc analysis. Statistics for the differences between the 

bioreactor experimental group and the control group were assessed using an independent 

student’s t-test (n = 3). 
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3.3 Results 

3.3.1 Cytotoxicity Assay 

 The results from the cytotoxicity assay revealed no significant cytotoxic effects of 

the media extract from the different bioreactor components on cell metabolic activity and cell 

count when compared to the positive control well (Figure 3.6). No noticeable difference in 

morphology between the cells cultured in the positive control extract wells, the BioMed Amber 

extract wells, the 316 stainless steel nut/screw extract wells, and pericardium tissue extract wells 

was observed.  

 

Figure 3.6. Cytotoxicity assay results. A) Representative Images from each experimental group depicting the cell 
morphology at the conclusion of the alamarBlue™ assay. B) Bar graphs showing results of the alamarBlue™ 
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viability assay from the first trial that were assessed by measuring sample absorbance measurements (Fisher 
Scientific). C) Bar graphs depicting the average number of cells counted per image (n = 9). 
 

3.3.2 Cell Viability Analysis 

 Fluorescent images of cell-seeded pericardium samples demonstrated cell viability at day 

12 (Figure 3.7). Cellprofiler analysis demonstrated the number of counted cells in the 

pericardium sample images was significantly lower (p < 0.05) and analysis of mean vector length 

revealed that the cells seeded on the pericardium were more aligned (p < 0.001).   

 

 

Figure 3.7. Long-term cell viability results. A) Representative Images from each experimental group depicting the 
cell morphology at the conclusion of the Long-Term Cell Viability Assay. B-C). Bar graphs showing results of the 
average number of cells counted per image and the alignment of the cells (n = 3). 
 

3.3.3 Tissue Strain Analysis 

 Tissue strain analysis was performed on each sample in the bioreactor for a total of 6 

samples per experiment. The experiment was performed 4 times to collect 4 independent tissue 
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strain analysis datasets. For each experiment, the average median strain and standard deviation of 

the samples was calculated and plotted as a function of actuator strain (Figure 3.8a).  

The results of this analysis demonstrated that there was variability between samples but 

the average strain values between experiments were not significantly different, indicating overall 

repeatability despite having slight individual differences between samples. The relationship 

between tissue strain and actuator strain was non-linear, following a logarithmic relationship 

where tissue strain increased quickly as a function of actuator strain and then gradually tapered 

off. 

 Regional strain analysis was conducted on each sample for each trial as described in 3.2.5 

Tissue Stain Validation and Distribution Analysis, providing a total of 24 samples analyzed 

(Figure 3.8b). A comparison of the regions revealed that median strain values did not differ 

significantly; however, the regions on the edges of the tissue sample did show a trend of having 

higher strains than the regions at the center of the tissue sample. 
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Figure 3.8. Tissue strain analysis results. A) Average median tissue strain values as a function of actuator 
strain. Values are plotted as the average median value and standard deviation for the strain field in the direction of 
stretch at each increment of actuator strain. The experiment was repeated 4 times independently to access 
repeatability. B) Regional strain analysis. Strain fields in the direction of linear actuation were calculated using 
ncorr. These fields were segmented into 7 different regions as defined in 3.2.5 Tissue Stain Validation and 
Distribution Analysis: a single pixel center region (middle 1 pxl), a 10 pixel x 10 pixel center region (middle 10 pxl), 
a 20 pixel x 20 pixel center region (middle 20 pxl), a 30 pixel x 30 pixel center region (middle 30 pxl), a left 
rectangular region that covered the length of the left side by 20 pixels deep (left edge), a right rectangular region that 
covered the length of the right side by 20 pixels deep (right edge), a top right rectangular region that covered the 
length of the top side by 20 pixels deep (top edge), and a bottom rectangular region that covered the length of the 
bottom side by 20 pixels deep (bottom edge). For each experiment, the average strain and standard deviation for 6 
samples for each region was calculated and reported at each increment of actuator strain. 
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3.3.4 Cell Strain Analysis 

 Results from the cell strain analysis demonstrated large variability in the measured cell 

strain (Figure 3.9). An examination of the cell morphological properties revealed that the 

measured cell strain was not impacted by orientation, size, or eccentricity. On average, cell strain 

increased exponentially. 

 

 

Figure 3.9. Cell strain analysis results. Average Cell strain plotted against the actuator strain. 

 
3.4 Discussion  

 In this study, we presented a novel 3D printed bioreactor for conducting cellular 

mechanobiology studies. This system offers several advantages over other alternatives that are 

currently available. The first is that the use of 3D printing also enables this system to be easily 

modified to accommodate any design changes that may be required for a different experimental 
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setup. Second, this system provides the user with the ability to image cells in culture during 

mechanobiology studies in real time. Here, we utilized a fluorescently labeled cell line (GFP-

labeled NIH-3T3s) and we were able to obtain high resolution images of cells at 10X that could 

be utilized for morphological analysis, strain analysis, and viability assessment. Third, we 

demonstrated that we could use this system to achieve tissue strains that are within 

physiologically relevant levels for collagenous tissues 20.   

 It is worth noting that while this system offers several advantages to other bioreactor 

systems for studying mechanobiology, there are several limitations that should be addressed in 

future iterations of the device in order to improve performance. First, the analysis of the tissue 

strains revealed a significant degree of variation between samples. This is likely due to human 

error involved with the sample loading protocol. With the current system setup described here, 

samples are loaded into the bioreactor by clamping one end of the tissue to the 6-well insert, 

stretching the sample out and then clamping it to the actuator arm without any method of 

verifying the initial level of tissue prestrain. Future iterations of this system should incorporate a 

pre-tensioning system which would allow the samples to be loaded into the bioreactor and then 

adjusted to ensure that all samples experience similar levels of strain during experimental 

studies.  

Another limitation of this study is that the cell analysis was conducted on images that 

were captured using a standard fluorescence microscope. Furthermore, the samples that were 

imaged were 3D in nature. Thus, when the samples were stretched, cells were shifted slightly 

into and out of focus, resulting in variation in the cell membrane measurements due to the 

experimental protocol. This issue was further exacerbated by diffuse background light from 

fluorescent cells that were not in the focal plane during imaging. While it is difficult to remedy 



66 
 

these issues when imaging cells in 3D, one simple way to improve the quality of the fluorescent 

images during an experiment would be to utilize a confocal microscope rather than a basic 

fluorescent microscope like the one used in this study. The use of a confocal would help filter out 

diffuse light from out-of-focus fluorescent cells, ensuring that any fluorescent signal that was 

captured was only from the cells that were being imaged within a consistent focal plane. 

 
3.5 Conclusion 

 The bioreactor system presented here serves as a low-cost system for performing 

mechanobiological studies and enables real-time monitoring of strain at the tissue and cellular 

level.  The 3D printed design can serve as an example of how 3D printing can be utilized in a 

research study to efficiently create custom components that can meet the specific experimental 

criteria for the study based on the researcher’s domain knowledge, rather than being limited to 

rigid commercially available components. 
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CHAPTER 4 
 

Machine Learning Model for Detecting Masked Hypertension in Young, 
Apparently Healthy Adults  

 
 

4.1 Introduction 
 
4.1.1 Background 
 

Cardiovascular disease (CVD) is the leading cause of death globally, claiming 

approximately 17.9 million lives annually (1,2). Hypertension (HT) is one of the strongest risk 

factors for CVD and is associated with coronary disease, left ventricular hypertrophy, valvular 

heart disease, cardiac arrhythmias, cerebral stroke, and renal failure (3). HT accounts for 

approximately 56% of all CVD-related deaths (10 million) and is incredibly prevalent, affecting 

an estimated 1.3 billion people worldwide (4). This number has been increasing and is expected 

to reach 1.56 billion deaths annually by the year 2025 due to multiple factors, including 

population aging, increased prevalence of chronic kidney disease (CKD), diabetes mellitus, and 

obesity, suboptimal clinical treatments, and poor adherence to treatment plans (5,6). HT is 

defined clinically as a blood pressure (BP) of 140/90 mmHg or higher and can be prevented or 

managed through lifestyle and pharmacological interventions (7,8).  

 
While HT can be managed, it often remains untreated as several population studies have 

found 12.7% - 37.3% of all cases of HT were not diagnosed clinically (9-11). This is due in part 

to a subset of these patients (10% of the general population) having normotensive BP 

measurements within the clinic while their out-of-clinic BP as measured by ambulatory BP 

monitoring is actually elevated to the point of being considered hypertensive (12). This condition 

has been classified as masked hypertension (MHT) and has been shown to have equal, if not 
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increased, risk for adverse cardiovascular morbidity due to the lack of any clinical diagnosis and 

corresponding clinical intervention (13-15). Furthermore, this condition has been associated with 

increased organ damage and altered cardiovascular dysfunction and structural changes (15,16).  

 
One recent meta-analysis has suggested that nearly one in three patients who have 

normotensive office blood pressure (OBP) measurements have MHT and while this condition is 

more commonly present in older populations, MHT has even been identified in young and 

apparently healthy populations (15). Other studies have also reported similar findings, with one 

study reporting that approximately 11% of children under the age of 15 had MHT (17) and 

another study reported the prevalence of MHT in young to middle-aged adults (44 ± 19 years of 

age) to be 23% (18). Other studies found MHT present in populations that appeared to be in peak 

physical condition, such as endurance runners and professional soccer players (16,19).   

 
4.1.2 Clinical Need 

These studies demonstrate the need to monitor the out-of-office BP of the general 

population in order to diagnose and treat MHT in a timely and effective manner. The most 

common methods for detecting MHT are ambulatory BP monitoring (ABPM) and home BP 

monitoring (HBPM), however both of these methods come with significant drawbacks (20,21). 

HBPM, while convenient and easy to obtain, has been shown to have a reduced ability to detect 

MHT when compared to ABPM and research published by Stergiou et al., suggests that HBPM 

should only be used in conjunction with ABPM to detect MHT (22). ABPM, on the other hand, 

has been shown to successfully detect MHT with a high degree of accuracy; however, it requires 

the use of cumbersome equipment that may not be available to certain population groups, 
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particularly in children or in populations in low-and-middle income countries (LMICs) (23-26). 

Thus, the feasibility of ABPM for population-level detection of MHT is unknown (26).  

 
4.1.3 Study Objective 

One potential solution to the limited availability of ABPM in LMICs would be to develop 

a method for assessing risk for MHT based on clinical measurements obtained from a single 

outpatient visit. This could serve as a preliminary screening method that would allow for the 

patients most at risk for MHT to be identified while reducing the need for all patients to undergo 

ABPM. Patients that are then classified as being at risk for MHT could then undergo ABPM to 

confirm the presence of MHT and the need for further medical and lifestyle intervention to 

prevent the advent of CVD. 

 
Several studies have recently developed machine learning (ML) models to predict 

adverse cardiovascular events such as coronary heart disease, heart failure, and stroke that have 

shown potential to assist clinicians in early disease detection and diagnosis (27, 28). These 

models evaluate clinical features to determine which patients are most at risk for these events 

using a combination of statistical methods and computational algorithms that can be 

automatically fine-tuned to these specific applications based on the input data. Researchers have 

found that these data-driven models can outperform traditional mechanistic models in 

applications involving a multitude of different variables due to their inherent ability to capture 

the non-linear relationships between these features and the variable that is being predicted (28-

30). ML models are also useful for establishing a predictive model in which an experimentally 

validated mechanistic model is not readily available. Thus, a ML model that could potentially be 

used to create a method for predicting a patient’s risk for MHT and identifying which patients in 
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LMICs are most at-risk for MHT and require ABPM to receive a definitive diagnosis. However, 

the feasibility of such a model remains unknown. Therefore, the goal of this study was to 

develop a ML that could be utilized in a LMIC setting to detect patients with MHT in the hopes 

of improving MHT detection, diagnosis, and treatment in a young and relatively healthy 

population.  

 

4.2 Materials and Methods 

4.2.1 Model Overview 

 Figure 4.1 depicts the process implemented during model development. The original 

dataset was obtained from study collaborators and contained health records with 420 different 

features from a cohort of 1,202 de-identified patients. This dataset was preprocessed prior to 

modeling by cleaning the data, performing feature engineering, imputing missing values, and 

scaling the continuous features. The preprocessed dataset was then split into a training set for 

constructing the ML model and a testing set for validating the model. Automatic feature 

selection was performed using the BorutaSHAP algorithm to identify the relevant features in the 

dataset and eliminate the unnecessary features. Twelve popular classifiers were trained on this 

optimized dataset. The performance of these classifiers was evaluated, and the five best-

performing models were selected as base classifiers to using in a stacking classifier. The 

performance of the resulting stacking classifier was then compared to the performance of each 

base classifier. The best classifier was then tuned and the results of the final model were 

reported. Shapley Additive exPlanations (SHAP) values were used to investigate the individual 

contributes of each feature to the model predictions and partial dependence plots (PDPs) were 

created to assess the relationship between each feature and the predicted outcome. 
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Figure 4.1. Overview of model development process. The original dataset was imported as a 1202 x 420 matrix. It 
underwent preprocessing that consisted of feature engineering, data cleaning, imputation, and scaling to make a 

transformed dataset that was a 1033 x 192 matrix. The data was split into testing and training sets using a 1:4 split 
ratio. 5 feature selection methods were evaluated on 4 different base ML models and a 5th ensemble ML model. The 
best performing model was evaluated and SHAP analysis was using in conjunction with PDP plots to interpret the 

model performance. 
 

4.2.2 Original Dataset 

 The dataset used in this study was derived from the African-PREDICT study, a study 

aimed at preemptively identifying cardiovascular disease in young patients from South Africa, a 

country currently classified as a LMIC (31). The study design and research methods used to 
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collect the data have been described previously (32). All measurements were conducted in 

accordance with current gold standard methodologies and were carried out by trained research 

nurses, postgraduate students, and academic staff. The inclusion and exclusion criteria of the 

study as well as the patient data is summarized in Figure 4.2. 

 

 

Figure 4.2. Summary of participant inclusion and data collection in the African PREDICT study. A total of 
1,886 volunteers were screened for study eligibility. 624 were excluded by study criteria. 60 more were excluded 

during the study for multiple reason, resulting in an overall sample size of 1,202 participants. 
 

In brief, a total of 1202 black (N = 606) and white (N = 596) young men and women 

(aged 20-30 years) in South Africa were screened to be healthy and clinically normotensive and 

without complicating factors such as pregnancy and previous diagnosis of any chronic diseases. 

Different clinical measures relevant to hypertension were collected from each patient. Each of 

the measured features could be broadly categorized into the following groups: 1. Questionnaire 
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data (e.g. medical history, social status, diet, psychosocial profile); 2. Biological data (e.g. serum, 

plasma, buffy coat, 24-hour urine); 3. Biomarker data (e.g. lipids, glucose, multiplex cytokines, 

RAS-Fingerprint, adipokines, oxidative stress, nitric oxide and coagulation markers, urinary 

sodium, metabolomics, proteomics); 4. Body composition data (physical measurements) ;  5. 

Physical activity (Vigorous, moderate, and sedentary activity levels); 6. BP (office, 24-hour, 

central, reactivity); and 7. Target organ damage (arterial stiffness, carotid wall thickness, 

electrocardiography, echocardiography, retinal microvasculature, renal function). The compiled 

dataset for each patient included a total of 420 different features (Appendix A-1.1. Complete List 

of African PREDICT Measured Features).  

 

4.2.3 Data Preprocessing 

 The de-identified patient data were uploaded and stored as a data frame within a script 

written in Python (Python 3.8.10) using an open-source integrated development environment 

(IDE) (Spyder 5.3.3). The original data frame was a 1202 x 420 matrix. To prepare the data for 

analysis, the entire dataset was preprocessed by cleaning the data, dropping irrelevant features, 

feature engineering, imputing any missing values in the remaining data, and then scaling the 

continuous features as needed.  

The first step in cleaning the data was to drop from the data frame any instance (row) that 

was completely empty, any instance that corresponded to patients who were clinically diagnosed 

with hypertension, or any instance where the patient was missing a diagnosis of MHT. The next 

step was to eliminate any instances or features (columns) that were missing a significant number 

of values (> 10%). Finally, any features that contained only 1 unique value were dropped from 

the dataset. Cleaning the data reduced the dataset to 1038 patients and 316 features. 
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After cleaning the data, the next preprocessing step was to drop irrelevant features and 

feature engineering to reduce the number of features in the dataset. The purpose of this step was 

two-fold: first, reducing the number of features in the dataset by removing unnecessary features 

helps to improve model performance and reduce computational cost (33), and second, this step 

helps to improve the overall interpretability of the model. Several features in the original dataset 

were not considered relevant to the model based on the intended use case for the model. These 

features could be broadly classified as socio-economic features, ambulatory blood pressure 

measurement features, and certain questionnaire features. The list of features manually removed 

from the dataset is listed in Appendix A-1.2. List of Features Dropped from the Original African 

PREDICT Dataset. Next, a literature review of the risk factors associated with MHT was 

conducted and several categorical features that were not included in the dataset were identified 

(34-37). Of these, several categorical features were identified that could be determined from 

numerical features in the dataset. Given that these categorical features could potentially help 

improve the performance of certain ML models and potentially serve as important predictors of 

MHT, these features were created using the criteria outlined in Table 4.1 and included as 

additional features in the data frame.  

 

Table 4.1. List of engineered categorical features and corresponding definitions. 

 

 

Feature Name Variable Type Classification Definition
Prehypertensive ('prehypertensive') Categorical 0, healthy; 1, diseased 140 mmHg > SBP > 119 mmHg OR 90 mmHg > DBP > 79 mmHg

Obese ('Obese') Categorical 0, healthy; 1, diseased bmi > 25

Left Ventricular Hypertrophy ('lvh') Categorical 0, healthy; 1, diseased
Left Ventricular Mass Index > 115 g/m2 AND Sex is Male OR Left 

Ventricular Mass Index > 95 g/m2 AND Sex is Female
Physically Inactive ('sedentary') Categorical 0, healthy; 1, diseased Sum of total vigourous, moderate, and travel MET minutes < 600

Smoker ('smoker') Categorical 0, healthy; 1, diseased Self-identified smoker AND cotinine > 10
Excessive Alcohol Use ('excessive_alcohol') Categorical 0, healthy; 1, diseased Self-identified alcohol consumption AND ggt > 48

Dyslipidemic ('dislipidemic') Categorical 0, healthy; 1, diseased LDL > 3.4
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Finally, in this dataset there were several features with multiple repeated measurements 

of the same feature, in which case the repeated measurements were averaged. This process was 

performed on a total of 44 different measurements to bring the total number of remaining 

features in the dataset to 195. Several nominal categorical features were converted to binary 

categorical features for the purposes of simplifying the model as well. For example, information 

regarding the hypertensive status of a patient’s parent was encoded from 5 categories (0 – No, 1 

– Don’t Know, 2 – Yes, under 60, 3 – Yes, over 60, 4 – Yes, don’t know) to 2 categories (0 – 

No, 1 – Yes). A complete list of the transformed categorical variables is presented in Appendix 

A-1.3. Complete List of Transformed African PREDICT Categorical Features).  

Once the dataset had been cleaned and feature engineering had been conducted to reduce 

the number of features in the dataset, any remaining missing values in the dataset were filled in 

using imputation. For this study, Multivariate Imputation by Chained Equations (MICE) 

algorithm was used to impute missing values in the dataset (40). The MICE algorithm assumes 

that the missing values are Missing At Random (MAR) without any underlying relationship 

between the instances where features are missing and can summarized in the following steps: 

1. For each feature in the dataset, replace the missing values in that feature set with 

the mean of that feature.  

2. Revert the imputed values of one feature back to missing values. 

3. The missing value is then treated as a dependent variable while the other features 

in the instance are treated as independent variables. A regression model is then 

constructed from these variables using the values from each instance. 

4. The regression model is then used to calculate the missing value for the feature in 

question. This value is the new imputed feature value. 
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5. A new feature that had missing values is then selected and this process is 

repeated. 

6. This step is then repeated for a predefined number of cycles, with the imputed 

values for each feature being updated with each cycle. 

A more detailed explanation of the algorithm has been described by Azur et al., (41). For 

this work, MICE imputation was implemented using the iterative imputer class in scikit-learn. 

More details of how this algorithm was implemented in the scikit-learn library are described 

elsewhere (38, 40). 

 After imputing any missing values in the dataset, the next step in the data preprocessing 

stage was to scale the continuous features to increase model efficiency and prevent feature bias 

from occurring in the ML algorithms that weigh feature importance based on Euclidean distance 

measures. This is a crucial step for those ML algorithms, as features of high magnitude can be 

biased toward higher weights than features of lower magnitude (42). The two most common 

methods for scaling features include standardization and normalization. Standardization involves 

centering the values of each feature around the mean value of that feature with respect to the 

standard deviation of the feature values. Mathematically, this can be expressed as: 

 

,     (4.1) 

 
 Where μ represents the mean and σ the standard deviation the feature set values. This 

scaling technique is useful when the feature set is normally distributed and offers the advantage 

of retaining the relationship between data points and being less sensitive to outliers. 

Normalization, on the other hand, adjusts the range of values in the feature set to a common scale 

to prevent features with different magnitudes from inadvertently biasing the ML model towards a 
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particular feature. Using normalization, each feature is scaled to a value between 0 and 1 using 

equation 2.   

 

,     (4.2) 

 
 This technique offers the advantage of retaining the original feature distribution after 

transformation and is therefore useful when the data is not normally distributed. The drawback to 

this method is that it can be sensitive to any outliers in the data.  

 The distribution of each continuous feature in the dataset was evaluated using a Shapiro-

Wilk test for normality. Based on the results of this analysis, it was determined that 

normalization was the most appropriate method for scaling the data (Appendix A-1.4. 

Continuous Feature Normality Test Results). Scaling the dataset was implemented using a 

MinMaxScaler class from the scikit-learn.preprocessing library (scikit-learn v. 1:3:0) (38). 

 

4.2.4 Feature Selection 

 Feature selection is a crucial step in preparing a dataset for training a ML model (44). 

This process involves reducing the number of features in a dataset in order to reduce the 

complexity of the ML model and increase model interpretability, increase the speed of training 

the model, and improve model performance by eliminating features that are statistically 

redundant or do not contribute to the significantly to making a model prediction. In practice, 

there are several methods for performing features selection. These methods are either manual or 

automated and can be combined to determine the optimal set of features for a ML problem.  
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Manual feature selection involves choosing the relevant features to include based on 

domain knowledge or experience while automatic feature selection utilizes a variety of 

mathematical calculations and ML algorithms to select relevant features based on the raw values 

in the dataset. Automatic feature selection is generally classified as one of three categories based 

on the underlying methodology of the technique that is employed. These classes include filter 

methods, wrapper methods, and embedded methods. Briefly, filter methods use statistical tests 

such as the Chi-Squared test or the fisher’s score to evaluate the relevance of each feature based 

on the univariate statistics of that feature. Common filter methods include information gain, the 

Chi-Squared test, Pearson’s correlation coefficient, fisher’s score, variance threshold, mean 

absolute distance (MAD), and Information Gain (46). Wrapper methods employ a specific ML 

algorithm to evaluate the importance of each feature relative to a specific evaluation metric. 

These methods can iteratively evaluate all possible subsets of features and can therefore assess 

complex non-linear relationships between features that are not inherently obvious using basic 

statistical tests alone. Thus, they often result in selecting feature sets that lead to models that 

have better overall performances than feature sets created by filter methods. However, these 

methods are very computationally expensive. Popular embedded feature selection techniques 

include forward feature selection, backward feature elimination, exhaustive feature selection, 

recursive feature elimination, and the Boruta feature selection method (45,46). Embedded feature 

selection methods combine the benefits of both filter feature selection methods and embedded 

feature selection methods in that they account for complex interactions between features but 

maintain a reasonable computational cost. Two common examples of embedded methods include 

LASSO regularization and random forest importance (46, 47). The choice of which feature 
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selection method to use depends on the user needs for model performance and computational 

cost. 

 For this work, a total of 3 different automatic feature selection methods were investigated 

alongside manual feature selection utilizing domain knowledge and the case in which all features 

were included. The 3 automatic feature selection methods that were investigated included: 1) a 

wrapper feature selection method known as recursive feature elimination which utilized a 

support vector machine classifier as a wrapper (RFE-SVM), 2) a wrapper feature selection 

method known as Boruta-SHAP which utilized the Boruta algorithm wrapped around a extreme 

gradient boosted classifier (XGB) to select features based on their Shapley Additive exPlanation 

(SHAP) values, and 3) Least Absolute Shrinkage and Selection Operator (LASSO) regression, an 

embedded feature selection method that uses an L1 regularization technique to eliminate 

unimportant features by shrinking the coefficients of these features to zero and effectively 

removing them from the model. 

 

4.2.4.1 Entire Feature Set 

 A complete list of the features included in the final feature set is detailed in Appendix A-

1.3. Complete List of Transformed African PREDICT Categorical Features. 

 

4.2.4.2 Manual Feature Selection 
 
 A literature review was conducted to determine which features in the original dataset 

were correlated with the incidence of MHT. Several papers highlighted the following features 

from our dataset as relevant to MHT: sex (34,48-56), ethnicity (34,55,56), age (48-50,53-56), 

body mass index (BMI)(49,53-56), waist hip ratio (WHR)(49,54), blood lipid levels (Glucose 
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(49,55), Triglycerides (49,55), LDL (49,55), HDL (49,55), Total Cholesterol (49,55)), clinical 

measurements (systolic BP (49,51-56), diastolic BP (49,54-56), mean arterial pressure (MAP) 

(49), pulse pressure (PP) (49), heart rate (54)), lifestyle factors (Smoking (34,48,50,53,54,56), 

alcohol consumption (48,50,51,53,54), activity level (48,50)), and personal/family medical 

history (comorbidities such as prehypertension (50,53,56), obesity (48,50), stroke (48,50), or 

diabetes mellitus (48,50,54-56), family history of hypertension), and echocardiogram measures 

(left ventricular mass (34,48,55),  left ventricular hypertrophy (LVH), (34,54), intima-media 

carotid thickness (48)).  

 

4.2.4.3 Automatic Feature Selection Technique #1: Recursive Feature Elimination 
 

 RFE-SVM is a popular wrapper feature selection method that has been used in multiple 

previous studies to select important features using the backward feature elimination algorithm in 

conjunction with a SVM linear classifier (80). The algorithm operates according to the following 

general steps: 

1. The algorithm fits an SVM model to the training set.  

2. The model performance is evaluated according to a user-specified evaluation metric 

and recorded. 

3. During training, each feature is assigned a weight corresponding to its relative 

importance in the model. 

4. The features are ranked by weight in descending order from largest to smallest 

weight. 

5. The features with the smallest weight are eliminated from the feature set. 

6. The process is repeated, and the model is re-trained on the reduced feature set. 
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7. This process continues until only 1 feature remains. 

8. The features set with the highest evaluate metric score is the selected feature set. 

SVM classifiers are a class of generalized linear classifiers that operate under the guiding 

principle of simultaneously minimizing classification error and maximizing the geometric 

margin by identifying the hyperplane that maximizes the Euclidian distance between the plane 

and the dataset features in a multidimensional space. A more detailed discussion of SVM is 

provided by Brereton and Gavin (81). 

For this study, the Recursive Feature Elimination was implemented using the RFE class 

in the scikit-learn.feature_selection library (scikit-learn v. 1:3:0). 

 

4.2.4.4 Automatic Feature Selection Technique #2: Boruta-SHAP 
 
 The 2nd automatic feature selection technique that was evaluated for this study was the 

Boruta-SHAP technique. Briefly, the Boruta method determines feature importance by 

comparing the relevance of real features in the dataset to randomized copies of the features. The 

algorithm can be outlined as follows: 

 

1. Create a copy of each feature in the dataset and shuffle the arrangement of the 

instances within these copy features. 

2. Fit a random forest classifier model to the new dataset with the original features 

and the shuffled copy features. 

3. Rank the features of the random forest classifier using the inherent feature 

importance algorithm within the random forest classifier. 
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4. Set a threshold value that corresponds to the highest importance score from the 

created copy features. 

5. Perform a two-sided T-test of equality on all of the features. 

6. Remove features that are significantly lower than the threshold as they are 

deemed “unimportant” and features that are significantly higher are noted as 

“important”. 

7. Remove all copy features and repeat the process until an importance has been 

assigned to each feature or the algorithm has reached a set number of iterations. 

 

A more detailed overview of the Boruta algorithm has been described previously by 

Kursa et al., (58). For this study, the standard Boruta-SHAP algorithm was slightly modified to 

utilize SHAP values as the metric for importance scoring. This metric was selected based on 

previous research which has evaluated different automatic feature selection techniques and found 

that feature selection techniques based on SHAP values are more stable (less lightly to alter 

selected features for different permutations of the training data) and can improve overall model 

performance compared to other automatic feature selection techniques (47,57). Briefly, SHAP 

values are calculated by approximating each prediction f(x) in a dataset with a linear function 

g(x), defined as: 

 

𝑔(𝑧!) = 	𝜑" +	∑ 𝜑#𝑧#!$
#%&       (4.3) 

 

Where 𝑧! 	 ∈ {0,1}'	, M is the number of explanatory variables being evaluated by the 

algorithm, and 𝜑# 	 ∈ 	ℝ, are the Shapely values determined by: 
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𝜑#(𝑓, 𝑥) = 	∑
('!(!*$+	('!(+&-!

$!'!⊆/! [𝑓/(𝑧!) − 𝑓/(𝑧!\𝑖)	]   (4.4) 

 

Where f is the base ML model that the algorithm is wrapped around, x is the number of 

available variables, and 𝑓/(𝑧!) − 𝑓/(𝑧!\𝑖) is the deviation of Shapley values from their mean for 

each single prediction; i.e. the contribution of the i-th variable. For a more detailed discussion of 

Shapley values, please refer to Hart, 1989 (59). 

  The Boruta-SHAP feature selection algorithm was implemented in python using the 

BorutaSHAP function BorutaSHAP library (BorutaSHAP v. 1.0.0) (60).  A Random Forest 

Classifier class from the scikit-learn.ensemble library (scikit-learn v. 1.3.0) was fit to a training 

dataset containing all the features and implemented as the wrapper for the BortuaSHAP instance.  

 

4.2.4.5 Automatic Feature Selection Technique #3: LASSO Regression 
 

 The 3rd and final automatic feature selection method that was assessed in this study was 

LASSO regression. At a high level, LASSO regression performs feature selection by shrinking 

the coefficient of unimportant features in the regression model towards zero through the 

introduction of an L1 regularization penalty term. This process was first proposed by Tibshirani 

et al., in 1995 and is implemented through the following steps:  

 

1. Construct a logistic regression model as: 

𝑦 = 	𝛽" +	𝛽&𝑥& +⋯+ 𝛽0𝑥0 + 	𝜀,     (4.5) 
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Where y is the predicted feature, β are the regression coefficient terms to be 

estimated using ML techniques, x are the input features, and 𝜀 represents the L1 

regularization penalty term. 

 

2. Define the 𝜀 term: L1 regularization is defined as the sum of the absolute values of the 

coefficients,	𝛽, in the regression function multiplied by a tuning parameter λ. This is 

expressed as:  

 

𝜀 = 𝜆 ∗ (|𝛽"| + ⋯+ |𝛽0|)		    (4.6) 

 

The tuning parameter λ is a user defined parameter that is commonly determined 

through hyperparameter tunning, as discussed in 2.6 Hyperparameter Tuning. 

 

3. Define the objective function for estimating the values of the coefficients,	𝛽. In this case, 

the objective function is to minimize the sum of squares: 

 

argmin	{∑ (𝛽&𝑥& −	𝑦#)1 + 	𝜀# }    (4.7) 

 

4. Implement an optimization algorithm such as Coordinate Descent to minimize the 

objective function. 
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5. As 𝜆 is increased, the degree of regularization is increased and more of the feature 

coefficients are set to 0. The features that have non-zero coefficients are considered to be 

important features for the model. 

 

LASSO regression feature selection was implemented using the LassoCV class in the 

scikit-learn.linear_model library (scikit-learn v. 1:3:0). For further reading, refer to 

Randstam and Cook (82).  

 

 

4.2.5 Machine Learning Models 

 The goal of this model was to detect patients that were at risk for MHT. Therefore, 

patient classification was the ML task chosen to be modeled using the African-PREDICT 

dataset. Several ML classifier algorithms were employed and evaluated for this purpose. Those 

algorithms included a: 1. Multivariate logistic regression (LR) classifier, 2. Random forest (RF) 

classifier, 3. Support vector machine (SVM) classifier, 4. K-Nearest Neighbors (KNN) 

Classifier, 5. naïve Bayes (NB) classifier, 6. Extreme Gradient Boosting (XGB) classifier, 7. 

Artificial Neural Network (ANN) classifier, 8. LightGBM (GBM) classifier, and 9. a stacking 

(STK) classifier. All models were implemented using the scikit-learn (scikit-learn v. 1:3:0), 

xgboost (xgboost v. 1:7:6), and lightgbm (lightgbm v. 3.3.4) libraries (38). A short explanation of 

each model functions and was implemented is provided in the following sections: 2.4.1 – 2.4.9. 

 

4.2.5.1 Logistic Regression Classifier 
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Logistic Regression is a statistical model that is commonly used to estimate the 

probability of a binary (2-outcome) event based on a set of independent continuous and 

categorical variables and variable weights (63). This algorithm is defined mathematically as the 

natural logarithm of the odds of an event occurring as a regression function of a predictor 

variable (feature) or set of predictor variables: 

 

ln F 2
&+2

G = 	𝛽" + 𝛽&𝑥& +⋯+ 𝛽0𝑥0    (4.8) 

 

Here p represents the probability of an event occurring (outcome = 1), β0 is the intercept 

term, βn represents the regression coefficient that quantifies the change in the natural logarithm of 

the probability of an event occurring when the corresponding predictor variable changes value. 

Equation 5 can be rearranged to solve directly for the probability of an event occurring: 

 

𝑝̂(𝑥#) = 	
3(#$%#&'&%⋯%#)'))

&4	3(#$%#&'&%⋯%#)'))
     (4.9) 

 

The values of the regression coefficients are calculated through computational numerical 

methods where initial guesses for each coefficient are initialized and then iteratively refined to 

improve the fit of the regression until the coefficients converge to stable values that minimize the 

following cost function: 

 

min𝐶	∑ (−𝑦# logL𝑝̂(𝑥#)M − (1 − 𝑦#)log	(1 −0
#%& 𝑝̂(𝑥#))) + 𝑟(𝛽)  (4.10) 
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Here n is the total number of instances in the dataset, y is the true value of the outcome 

variable being predicted for a particular instance,  𝑝̂(𝑥#) is the predicted probability for the same 

instance, and 𝑟(𝛽) is a regularization term that is used to introduce a penalty argument into the 

equation in order to generalize the model and reduce the risk of over-fitting the data. For this 

work, the logistic regression model was implemented using the LogisticRegression class in the 

scikit-learn.linear_model library (scikit-learn v. 1:3:0). 

 

4.2.5.2 Random Forest Classifier 

 A Random Forest Classifier is a tree-based ensemble ML algorithm (64). It consists of 

multiple independent Decision Tree Classifier that collaborate together to make a prediction. 

More specifically, each Decision Tree Classifier in the Random Forest is trained on a 

randomized subset of features and instances in the entire training dataset to create a classifier that 

captures a certain aspect of the data. As more of these Decision Tree Classifiers are trained, the 

more they can capture different aspects of the data. Once the ensemble of Decision Tree 

Classifiers in the Random Forest has been trained, they each make outcome feature predictions 

on the entire original training dataset, with each prediction from a classifier acting as a “vote”.  

The outcome feature prediction with a majority of the votes from the collection of individual 

Decision Tree Classifiers becomes the final outcome feature prediction for the Random Forest 

Classifier. Random Forest Classifiers can also report outcome feature predictions as probabilities 

by averaging the probability outcome from each underlying Decision Tree Classifier. The 

concept behind this process can be visualized below in Figure 4.3.  
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Figure 4.3. Random forest classifier schematic. The random forest classifier consists of multiple individual 
decision tree classifiers that make predictions on an instance. The prediction that is made the majority of the time is 

then selected as the overall prediction for the random forest. 
 

 In order to fully appreciate how the Random Forest Classifier operates, it is important to 

understand the underlying Decision Tree Classifier algorithm. Decision Tree Classifiers are 

intuitively easy to conceptualize. Each Decision Tree starts with a single base node that 

represents a single decision point that is then split into two branches depending on the output of 

that decision point. Each branch feeds into another node that represents another decision point. 

This process is repeated until a node that splits into a decision on the output feature is reached for 

each branch. An example of this process is shown in Figure 4.4. 
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Figure 4.4. Example of a simple decision tree classifier. Decision trees make a prediction about an instance based 
on a series of decision nodes that pertain to a particular feature. The decision results in a binary decision of yes or no 

that then leads to more decision nodes that ultimately lead to a final decision of a predicted outcome. 
 

 The number of decisions, or splits, of the Decision Tree Classifier is determined by 

algorithmically evaluating all instances being evaluated at a given node. If the number of 

instances at the node do not all belong to the same class, then the node is split into two branches. 

The split value of the feature for the node is determined by selecting the value that maximizes a 

goodness measure such as Information gain, Gain Ratio, or Gini value. For more complete 

details, refer to a recent overview by S.B. Kotsiantis (65). For this study, the Random Forest 

Classifier was implemented using the RandomForestClassifier class in the scikit-learn.ensemble 

library (scikit-learn v. 1:3:0). 

 

4.2.5.3 Extreme Gradient Boosting Classifier 

 XGBboost classifier models are another type of ensemble model based on decision tree 

classifiers. The primary difference between XGBoost classifiers and RF classifiers is the way in 

which the underlying decision tree classifiers are constructed. RF classifiers utilize a 

methodology known as bagging, which each of the decision tree classifiers in the ensemble are 

trained concurrently with random subsets of the training dataset. XGBoost classifiers, on the 

other hand, implement a strategy known as boosting, which decision tree classifiers in the 
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ensemble are trained sequentially so that each new iteration of decision tree classifiers can learn 

from the mistakes of the previous iteration of decision trees in an attempt to improve on overall 

model performance. Another aspect of XGBoost that differentiates them from RF classifiers is 

the incorporation of regularization terms in the model algorithm that help prevent the model from 

overfitting on the training data, allowing for a more generalize model. A more detailed 

explanation of the underlying algorithm has been presented previously by Tianqi et al., (85). 

Here, the XGBoost classifier was implemented in this study using the XGBClassifier class in the 

xgboost library (xgboost v. 1:7:6). 

 

4.2.5.4 Multilayer Perceptron Classifier 

 MLPs are a class of feed forward artificial neural networks (84). These neutral 

networks are comprised of many interconnected computation units called perceptrons (Figure 

4.5a). Perceptrons take in input such as feature values and multiply those values by a specific 

weight. The sum of all the weighted inputs is applied to an activation function that results in an 

output value. This value can be fed into another perceptron in second layer along with any other 

output layers from other perceptrons in the first layer and the process is repeated for a user 

defined number of layers (Figure 4.5b). After the final layer, the output from the final layer of 

perceptrons is mapped to an output prediction. The MLP classifier was implemented in this study 

using the MLPClassifier class in the sklearn.neural_network library (scikit-learn v. 1:3:0). 
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Figure 4.5. MLP classifier schematics. A) Schematic of a single perceptron. B) Schematic of a neural network 
formed by multiple layers of interconnected perceptrons 

 

4.2.5.5 Stacking Classifier 

 Stacking Classifiers are another class of ensemble ML algorithms that operate similarly 

to Random Forest Classifiers where the final output feature prediction from the model is 

determined from the votes from each of the underlying base classifier models. However, there 

two significant differences between these classifiers that are worth noting. The first is that the 

base models for the Stacking Classifier consist of different ML Classifier algorithms, rather than 

multiple Decision Tree Classifier algorithms. The second is that the stacking classifier utilizes a 

secondary ML algorithm to evaluate the output feature predictions from each of the base 

classifiers and determine the final output feature prediction probability. For the purposes of this 

study, a Logistic Regression Classifier, Random Forest Classifier, Support Vector Machine 

Classifier, K-Nearest Neighbors Classifier, a Naïve Bayes Classifier, an Extreme Gradient 

Boosting Classifier, an ANN Classifier, and a LightGBM Classifier were implemented as base 

ML algorithms and a second Logistic Regression Classifier was implemented as the secondary 

ML algorithm for the Stacking Classifier. The base ML algorithms and The Stacking Classifier 

was implemented using the StackingClassifier class in the scikit-learn.ensemble library (scikit-

learn v. 1:3:0). 
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4.2.6 Hyperparameter Tuning  
 
 Each ML model employed in this study has underlying mathematical parameters that 

influence how the model operates on the dataset. These parameters are called hyperparameters 

because they have to be chosen manually by the model developer rather than being automatically 

selected during the model training. Just as with feature selection, selecting the correct 

hyperparameters is a crucial step in model development as the right hyperparameters will enable 

the model to best capture the underlying patterns in the data while avoiding overfitting or 

underfitting. While knowing exactly what values to select for different model hyperparameters 

can be a daunting task, a grid search strategy can be employed to easily enable a wide range of 

model hyperparameters to be tested and evaluated to determine the correct values for a particular 

dataset. 

 In this study, a Bayesian Optimization grid search strategy was employed to evaluate a 

range of hyperparameters for each model (Table 4.2). In a normal grid search strategy, each 

hyperparameter combination defined by the developer is tested systematically one at a time. 

However, Bayesian Optimization utilizes a variant of Bayes’ theorem to identify the best 

hyperparameter options in a set of hyperparameters without having to evaluate each 

combination, making it a much more efficient search method. The modified version of Bayes’ 

theorem can be expressed as: 

 

𝑝(𝑆𝑐𝑜𝑟𝑒|𝐻𝑦𝑝𝑒𝑟𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠) = 	 5*𝐻𝑦𝑝𝑒𝑟𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠(𝑆𝑐𝑜𝑟𝑒-∗5(89:;3)
5(=>53;5?;?@3A3;B)

  (4.11) 

 

 By implementing this modified version of Bayes’ theorem, hyperparameters in a set are 

maps to a corresponding score probability to create a probabilistic model that enables the grid 
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search to converge to the optimal hyperparameter values, rather than blindly testing each 

combination of values individually. A more detailed discussion of this algorithm is presented by 

Wu et al., (82). Bayesian Hyperparameter Tuning was implanted using the BayesSearchCV class 

from the skopt library (scikit-optimize v. 0:8:1). 

 
Table 4.2. List of ML classifiers and the associated sets of evaluated hyperparameters 

 

 
 
 
4.2.7 Decision Threshold Tuning 
 
 Once the model had been fit to the training data and the model hyperparameters had been 

tuned on the validation data to optimize the model performance, the final step in constructing the 

model was to tune the decision threshold value for classifying patients as “at risk” for MHT. For 

each model, the predicted MHT probability for each patient was calculated. Then a threshold 
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value between 0 and 1 was then chosen and each probability that was above that threshold value 

was assigned an “at risk” for MHT designation and each probability below that threshold was 

considered “normotensive”. The precision and recall of the model using this threshold was then 

calculated. From that value, the F1 score was determined. Precision is a quantitative measure of 

the ability of the ML model to correctly make a positive prediction and can be defined 

mathematically as: 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 	 	C;D3	2:B#A#E3	2;3F#9A#:0B
(C;D3	2:B#A#E3	2;3F#9#A:0B	4	G?HB3	2:B#A#E3	2;3F#9A#:0B)

 ,  (4.12) 

 

Similarly, recall is a quantitative measure of the ML model’s ability to correctly identify 

a prediction belonging to the class of interest, in this case, MHT. This can be expressed 

mathematically as: 

 

𝑅𝑒𝑐𝑎𝑙𝑙	 = 	 C;D3	2:B#A#E3	2;3F#9A#:0B
(C;D3	2:B#A#E3	2;3F#9#A:0B	4	G?HB3	I3J?A#E3	2;3F#9A#:0B)

 ,  (4.13) 

 

The F1 score, defined as the harmonic mean of the precision and recall, was selected as 

the evaluation metric of choice due to the imbalanced nature of the dataset. This metric can be 

readily calculated from the precision and recall using the following equation: 

 

𝐹1	𝑆𝑐𝑜𝑟𝑒	 = 	2 ∗ 2;39#B#:0∗K39?HH
(239#B#:04K39?HH)

 ,     (4.14) 
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The F1 scores for threshold values ranging from 0 to 1 in increments of 0.01 were 

calculated and the threshold that had the highest F1 was deemed the optimal decision threshold. 

To ensure that the optimal threshold would generalize well to the test dataset, the training dataset 

was cross validated using k-fold cross validation. Briefly, the dataset was split into equally 

partitioned subsets based on the number of splits defined by the user. For this study, 7 was 

chosen as the number of splits given that previous studies have found this value to be the 

recommended number of splits for optimizing model performance across multiple different types 

of ML algorithms (62). The probabilities of MHT for each dataset were then calculated and the 

F1 score values for each threshold for each subset was determined. The F1 score values for each 

threshold value were averaged across the 7 subsets and the optimal threshold was chosen based 

on the threshold that corresponded to the highest average F1 score.   

 

4.2.8 Evaluation Metrics 

 This study evaluated several classification metrics commonly used to evaluate the 

performance of a ML model on an imbalanced dataset. These metrics include the area under the 

receiving operator curve (ROC AUC), area under the precision recall curve (PR AUC), the 

confusion matrix, the aforementioned F1 score, sensitivity, and specificity. Each of these metrics 

provides information on how well the model was able to identify patient outcomes based on the 

features in the dataset. ROC AUC is one of the most common evaluation metrics for binary 

classification problems and is constructed by plotting the true positive rate (TPR) vs the false 

positive rate (FPR) for a range of decision thresholds between 0 and 1 and then calculating the 

area under the resulting curve. The TPR and FPR are defined, respectively as: 
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𝑇𝑃𝑅 = 	 C;D3	2:B#A#E3	2;3F#9A#:0B
C;D3	2:B#A#E3B	2;3F#9A#:0B+G?HB3	I3J?A#E3B	2;3F#9A#:0B

,    (4.15) 

 

and 

 

𝐹𝑃𝑅 = 	 G?HB3	2:B#A#E3	2;3F#9A#:0B
G?HB3	2:B#A#E3	2;3F#9A#:0B+C;D	I3J?A#E3	2;3F#9A#:0B

,    (4.16) 

 

A confusion matrix is a 2 x 2 matrix that compares the positive and negative predictions 

of the ML model to the positive and negative values of the dataset that the model is being 

evaluated against. This metric helps to visually access how well the predictions from the model 

are aligning with the actual dataset values. 

The F1 score was reported as the F1 score calculated using equation 8 at the optimal 

decision threshold, as explained in 4.2.7 Decision Threshold Tunning.  

The sensitivity and specificity of the model are the reported TPR and FPR values for the 

optimal decision threshold. The sensitivity provides a quantitative metric for assessing how well 

the model can correctly identify positive results. Similarly, specificity is a quantitative metric for 

assessing how well the model can correctly identify negative results. In the context of this study, 

sensitivity was used to assess how well the model could identify a patient as having MHT and 

specificity was used to assess how well the model could identify a patient as being normotensive. 

Furthermore, the greater the sensitivity, the less likely an individual with a negative predicted 

value will actually have MHT while, conversely, the greater the specificity, the less likely an 

individual with a positivity will actually be normotensive. 
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4.2.9 Model Interpretation 

 While the predictions of several standard ML algorithms such as Logistic Regression 

Classifiers and Decision Tree Classifiers can be readily interpreted to determine how different 

features in a dataset generate lead to predicted output feature from a model for a given instance, 

it can be difficult to interpret how the predictions are generated from more complex models such 

as ensemble models like the Random Forest Classifier or the Stacking Classifier. Model 

interpretability is a key factor when developing a ML model for clinical applications as end users 

such as clinicians and other medical professionals need to be able to understand how a prediction 

was made in order to confirm that the prediction is valid and aligns with their own medical 

knowledge and understanding. Thus, a method for helping model end users to make sense of the 

model is imperative when the final model involves more complex ML algorithms (66). Two 

common methods used in ML model development include SHAP Values and Partial Dependence 

Plots (PDPs). SHAP Values enable the end user to understand the relative importance of each 

feature in the model and can be used to assess how much a feature contributes to an outcome for 

a given instance. PDPs provide insight into the relationship between a predicted outcome and a 

specific feature. 

 

4.2.9.1 SHAP Values 

SHAP values were used to access the contribution of a feature to a model’s predicted 

outcome for a particular instance is a concept rooted in game theory (69). In its original context, 

Shapley values were created as a means of evaluating a player’s contribution to a game’s final 

outcome. It has since been applied in the field of ML as a model-agnostic means of interpreting 
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how a model operates (70). In this case, each feature in the model is considered a player in the 

game and the model prediction is the final outcome.  

 

4.2.9.2 Partial Dependence Plots 

  PDPs are a valuable tool for interpreting and explaining the behavior of ML models by 

providing insights into how the predicted outcome of the model changes as a function of a 

specific feature while holding other features constant. By isolating the effect of a single feature 

on the model's predictions, PDPs can highlight the relationship between that feature and the 

output feature in an intuitive and visual manner. These plots can then be used to identifying 

trends, patterns, and potential nonlinearities that might not be evident from simple summary 

statistics or coefficients. PDPs can also facilitate the detection of interaction effects between 

variables, showcasing how their combined influence impacts the model's output. 

 

4.3 Results 

4.3.1 Baseline Characteristics of Study Population 

 The demographic, clinical, biochemical, and family history characteristics of the study 

participants are summarized in Table 4.3. A total of 1,033 participants were included in the 

preprocessed dataset, of which 178 (17%) had a confirmed diagnosis of MHT. Compared to 

normotensive participants, participants with a confirmed diagnosis of MHT were more likely to 

be male, white, and have a father with hypertension. They also had significantly higher body 

mass indexes (BMI), waist-to-hip ratios (WHR), systolic blood pressure (SBP), diastolic blood 

pressure (DBP), mean arterial pressure (MAP), pulse pressure (PP), triglycerides (TG), glucose 
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(GLU), gamma-glutamyl transferase (GGT). Participants with MHT also had significantly lower 

levels of high-density lipoprotein cholesterol (HDL-C) then normotensive participants. 

 

Table 4.3. Comparison of characteristics of normotensive and MHT study participants. 

 

 

The study cohort was split into training and testing cohorts for the purposes of developing 

and validating the ML model using a 4:1 split ratio. This resulting in a total of 826 participants in 

the training cohort and 207 participants in the testing cohort. The proportion of patients with 

MHT to normotensive patients was conserved in both groups. Comparisons of the demographic, 

clinical, biochemical, and physical activity characteristics between the training and testing 
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cohorts is summarized in Table 4.4. Characteristics between the two cohorts were not 

significantly different. 

 

Table 4.4. Comparison of characteristics of training and testing cohort. 

 

 

4.3.2 Feature Selection and Relative Importance of Selected Features 

 Five different feature selection strategies were evaluated. These strategies included: 1) 

manually selecting all the available features in the dataset, 2) manually selecting features based 

on relevant predictors reported in the scientific literature, 3) automatically selecting features 

using the RFE algorithm wrapped around a SVM classifier, 4) automatically selecting features 



103 
 

using the Boruta SHAP algorithm wrapped around a RF classifier, and 5) automatically selected 

features using LASSO regression. The selected features for each feature selection strategy are 

reported in Table 4.5. 

 

Table 4.5. Selected features for each feature selection strategy. 

 

 

 There were several features that were identified as significant regardless of the feature 

selection strategy employed. These features included systolic blood pressure, mean arterial 

pressure, body weight, and left ventricular mass. Minutes of vigorous exercise, pulse pressure, 

and left ventricular systolic mass, were features that were commonly selected by at least 2 of the 

3 automatic feature selection methods. Compared to the manually selected features, the RFE-

SVM feature selection strategy selected 12 novel features: granulocyte-macrophage colony-

stimulating factor,  il_1beta, il_12, ang_1_10_pmol, ang_1_5_pmol, ang_iv_pmol, ras_ace, 

s_meds_d, s_meds_h, s_meds_c, smoke_type___4, and heart attack. The BorutaSHAP feature 

selection strategy identified both left ventricular diastolic mass and left ventricular systolic mass 

as import features compared to the manually feature selection strategy. The LASSO feature 
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selection strategy identified intima-media mean, intima-media minimum, left ventricular 

posterior wall thickness at diastole, left atrium diameter, and mitrial velocity A wave imtf_min, 

lvpwd, lvs_mass, lad, mv_a_vel, ang_1_5_pmol, ras_renin, smoke_type___1, smoke_type___6, 

type_alcohol___1, type_alcohol___2, type_alcohol___5, type_alcohol___6, type_alcohol___7, 

strenuous_exercise, moderate_exercise, mild_exercise, leisure_activitiy_times, 

mother_heart_disease, mother_stroke, father_stroke, father_diabetes, excessive_alcohol, and 

dyslipidemic as important. 

 

4.3.3 Comparison of Base Classifiers and Stacking Classifiers Across Different Feature 

Selection Strategies 

 Each permutation of feature selection strategy and machine learning algorithm was 

implemented to create a total of 25 different MHT classifier models. 7-fold cross validation was 

used to obtain the mean and standard deviation of the ROC AUC for each model (Table 4.6). 

The BorutaSHAP feature selection strategy combined with a Stacking Classifier constructed 

using LR, RF, XGB, and MLP classifiers tuned using the features selected using BorutaSHAP 

obtained the highest average ROC AUC score out of the entire set of models when evaluated on 

the test set, with a ROC AUC of 0.86 ± 0.09. Conversely, the MLP classifier tuned using the 

features selected using LASSO obtained the lowest average ROC AUC score out of the entire set 

of models when evaluated on the test set, with a ROC AUC of 0.70 ± 0.16. 

 When no feature selection was employed, the XGB classifier performed the best while 

the LR classifier performed the worst (Figure 4.6). When manual feature selection was 

employed, the LR and STK classifiers performed the best and the MLP classifier performed the 

worst. Similarly, for RFE-SVM, the LR, RF, and STK classifiers performed the best and the 

MLP classifier again exhibited the worst ROC AUC score. For BorutaSHAP, the STK classifier 
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achieved the highest score, while the XGB classifier recorded the lowest score. Finally, for the 

LASSO feature selection method, the RF classifier had the highest performance and the MLP 

classifier had the lowest performance.    
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Table 4.6. Comparison of machine learning pipelines. 
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Figure 4.6. Comparison of machine learning pipelines. Machine learning pipeline performances are grouped by 
feature selection strategy.  

 

4.3.4 Evaluation of Final Model Performance 

 The Stacking classifier with BorutaSHAP feature selection strategy was chosen as 

the final model for the MHT classifier due to its superior ROC AUC score. Decision threshold 

tuning was performed to maximize the model’s F1 score on the training set. A threshold value of 

0.186 was found to optimize model performance. To assess the overall model performance, the 

model’s ROC AUC, PR AUC, F1 score, sensitivity, and specificity on the test set were 

calculated at this decision threshold and compared to the corresponding metrics calculated by a 

simple binary model that classifies patients as having MHT if they have an office blood pressure 

greater than 120 mmHg. This simple binary classifier was based on a suggestion proposed by 

Thompson et al., as a simple means for assessing a patient’s risk for MHT (67). The results of 

the comparison are outlined in Table 4.7 and Figure 4.7. The Stacking classifier outperformed 

the binary classifier across all metrics evaluated; however, these differences were not statistically 

significant. 
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Figure 4.7. Comparison of MHT ML model performance vs. MHT binary model performance. A) The 
confusion matrix, distribution of predictions, ROC AUC curve, and PR AUC curve for the simple binary classifier. 

B) The confusion matrix, distribution of predictions, ROC AUC curve, and PR AUC curve for the ML model. 
 

Table 4.7. ML model evaluation metrics vs. simple binary classifier evaluation metrics. 

 

 

4.3.5 Model Explanation 

 SHAP analysis was used to evaluate the overall contribute of each feature to the model’s 

predictions. SHAP values were calculated for each feature for each instance in the optimized 

dataset. The absolute value of each SHAP value for a particular feature across all instances were 

summed together and the total value was used to indicate the importance of the feature relative to 

the other features in the optimized dataset (Figure 4.8). 

MODEL PREDICTION 0 1 ROC AUC PR AUC F1 Score Sensitivity Specificity
0 124 49
1 8 26

0 127 46
1 6 29

ACTUAL MHT

Binary Model

ML Model

0.74 0.58 0.486 0.77 0.36

0.83 0.59 0.527 0.83 0.39
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Figure 4.8. Features ranking according to mean absolute SHAP value. The absolute SHAP value of each feature 
for each instance was calculated and average to get the relative feature importance. 

 

The relationship between each feature and the predicted outcome of the model were also 

assessed using PDPs (Figure 4.9). Figure 4.9a-e, g, h, j, and l indicate that the likelihood of the 

model classifying a patient with MHT increases nearly linearly as bw, bsa, wc, nc, sbp, pp, map, 

lvm_cube, and lvs_mass increases. Figure 4.9f indicates that dbp does not have a significant 

impact on the likelihood of a patient having MHT until the dbp measurement exceeds 

approximately 80 mmHg and then it begins to have a significant impact on the model prediction. 

Figure 4.9i indicates that the likelihood of the model classifying a patient as MHT decreases as 
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ad_max increases. Figure 4.9k incidates a gradual linear increase in likelihood of classifying a 

patient as MHT, but then the likelihood begins to increase significantly as lvd_mass exceeds 

approximately 210 g. Finally, Figure 4.9m indicates that the likelihood of having MHT increases 

if the patient is also considered prehypertensive. 

 

Figure 4.9. Partial Dependence Plots for features selected using the BorutaSHAP feature selection 
strategy. The features include: A) bw, B) bsa, C) wc, D) nc, E) sbp, F) dbp, G) map, H) pp, I) ad_max, J) 

lvm_cube, K) lvd_mass, L) lvs_mass, and M) prehypertensive. 
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4.4 Discussion 

 The aim of this study was to develop a machine learning model that would be able to 

detect MHT in a seemingly young and healthy individual from a LMIC. This would allow 

healthcare providers to conserve resources by identifying which patients are most at risk for 

MHT and should be evaluated further for MHT using ABPM. Data from the African-PREDICT 

study met the criteria for the aim of this study and served as the training set for developing the 

model. To develop the model, several feature popular feature selection methods and ML 

algorithms were evaluated. The results of this study found that the BorutaSHAP feature selection 

strategy in conjunction with a Stacking classifier resulted in a ML model that had the highest 

ROC AUC score out of the set of 25 different models that were constructed. The final ML model 

was compared to a simple binary classifier that serves as the current recommended “rule-of-

thumb” for evaluating a patient’s risk for MHT in LMIC and was found to perform better in each 

evaluation metric that was considered (67). SHAP analysis and PDP plots were also 

implemented to provide the model with interpretability. Overall, the results of this study show 

that a ML model could be utilized to identify patients most at risk for MHT and highlights which 

features out of the ones that were considers have the greatest impact on a patient’s risk for MHT. 

It is worth noting that all of the features that were considered important for making predictions 

are easily obtained from a single outpatient visit, which enables the model to be implemented 

easily into a routine clinic evaluation. Interestingly, this study also demonstrated that the current 

recommended “rule-of-thumb” of classifying patients with greater than clinical systolic blood 

pressure measurement of greater than 120 mmHg is surprisingly effective at identifying patients 

at risk for MHT and could be used in instances where employing a ML model might not be 

feasible. Finally, the SHAP analysis revealed that the most important predictors of MHT for this 



112 
 

ML model were related to blood pressure and body weight, 2 factors which can be regulated 

through clinical intervention and lifestyle changes. Individual patient analysis using this model 

could be used to identify which of these features need to be focused on and could help clinicians 

in implementing a clinical action plan. 

 A review of the relevant literature reveals that several recent studies have developed ML 

models to predict MHT (68 - 72). Two of these studies used datasets focused on patients between 

20 and 50 years of age from Taiwan, a high-income country (68, 70) and developed models 

based on single classifiers such as Logistic Regression or Multilayer Perceptron classifiers or 

homogeneous ensembles such as XGBoost and Random Forest classifiers. Another study 

focused on developing a ML training on a dataset consisting of medical information from 

patients younger than 16 years of age from the United States and Canada (69). Other studies 

focused on older patients from Wuhan, China and Glasgow, Scotland (71, 72). While these 

studies served as valuable foundational work for this study, to our knowledge, the work 

presented here is the first to focus specifically on identifying MHT in young, healthy adults from 

LMICs and is the first to employ a stacking ensemble framework to develop a ML model for 

detecting MHT. Here, it was demonstrated that the proposed stacking classifier consisting of 

several different base classifier models could, on average, outperform each of the base 

classifiers. This finding is consistent with other studies which developed heterogeneous 

ensemble models for binary disease classification (73, 74).  

 Feature selection is widely regarded as an important step in creating a ML model pipeline 

and the results of this study confirm this concept. Of all the feature selection strategies that were 

evaluated, not implementing any feature selection method, and utilizing all the available features 

in the dataset resulted, on average, in the lowest performing group of ML models. ROC AUC 
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scores increased in all other feature selection methods for all other ML algorithms, with the one 

exception of the MLP classifier trained on the features selected using the LASSO feature 

selection strategy. It is interesting to note that the ML models trained on a set of manually 

selected features performed, on average, better than the ML models trained on the set of features 

selected using LASSO, a feature selection method used commonly in many ML applications. 

This demonstrates that domain knowledge is necessary to ensure that the features used in a ML 

problem are actually the most relevant features to include. The two other automatic feature 

selection methods that were implemented, RFE-SVM and BorutaSHAP, performed on average 

better than the manually selected feature set. In the case of BorutaSHAP, nearly all of the 

selected features were also found in the manually selected feature set, suggesting that, for this 

particular dataset, some of the manually selected features such as age, stroke, or diabetes mellitus 

might not be pertinent to the population that was being evaluated as the inclusion criteria of the 

participants in this study were selected on the basis of being within a certain age range and health 

status where these factors might not have much of a correlation with MHT. For this reason, it is 

possible that the manually selected feature set could have performed similarly to the 

BorutaSHAP feature set if these features had been ignored. The RFE-SVM produced, on 

average, the second highest performing group of ML models. It is worth noting that this method 

of feature selection alone identified several biochemical features as important predictors of 

MHT.  

 The final model’s performance was evaluated on the test set, resulting in an average ROC 

AUC score of 0.843, an average PR AUC score of 0.589, a precision score of 0.387, a recall 

score of 0.829, and an F1 score of 0.527. These evaluation metrics are comparable to the 

reported evaluation metrics for other recently published ML models for MHT (68, 70, 72) or 
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better (69,71). It is worth noting that the model developed on this study exhibited a high degree 

of recall, which is a desirable attribute for a ML model, as it indicates that the model will rarely 

diagnosis a patient as normotensive when they actually have MHT. The model in this study 

errors on the side of precision, resulting in patients being classified as “at-risk” for MHT when 

they are truly normotensive. In the case of MHT, this would be an acceptable outcome, as 

physicians could either use an ABPM to verify the model prediction or recommend lifestyle 

changes to the patient that could be potentially beneficial, regardless of a true diagnosis of MHT. 

It is also worth noting that, in a previous study that evaluated the African-PREDICT dataset, the 

authors mentioned that a systolic blood pressure measurement of 120 mmHg could be used as a 

cut-off value for classifying someone as “at-risk” for MHT. In this study, a simple binary model 

was created that classified patients as having MHT if they had a systolic blood pressure of 120 

mmHg. With just this single predictor alone, this basic classification model was able to perform 

surprisingly well on the test set, resulting in a ROC AUC score of 0.744, a PR AUC score of 

0.583, precision and recall scores of 0.355 and 0.771 respectively, and an F1 score of 0.486. This 

could suggest that either there is a high degree of overlap between systolic blood pressure and 

other predictors in the ML model, or that systolic blood pressure is the primary predictor of 

MHT. The ML model proposed here did perform better than this simple binary classifier; 

however, the performance was comparable enough to suggest that the simple binary classifier 

could be used in place of the proposed ML model if utilizing the ML model was not a feasible 

option.   

 As mentioned previously, model interpretability is crucial for promoting clinical use 

because it provides the clinician with insight into how the model works. Here SHAP analysis and 

PDPs were used to gain insight into how the model generally works. Using SHAP analysis, it 
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was shown that a patient’s clinical systolic and diastolic blood pressures, mean arterial pressure, 

pulse pressure, body weight, and left ventricular mass are all important factors that are highly 

correlated with MHT. This finding is consistent with the reported literature, lending credibility to 

the model’s underlying logic (48, 49, 53-56). Furthermore, neck circumference has also been 

shown to be a significant predictor of hypertension (75) and is associated with MHT in obese 

patients who present as clinically normotensive (76). The finding that max adventitial diameter is 

a significant predictor of MHT risk is noteworthy as, to our knowledge, there are no reported 

studies reporting a direct correlation between max adventitial diameter and MHT. While 

previous studies have demonstrated that adventitial diameter has been related to increase in 

cardiovascular disease in postmenopausal women (77) and has been associated with left 

ventricular mass (78), these studies did not directly focus on measurements of adventitial 

diameter.  

 An examination of the PDPs reveals how each feature in the model influences the model 

output. All but one the features that were selected were positively correlated with the risk of 

MHT. Interestingly, two of the features that were associated with diastole, the diastolic blood 

pressure, and the left ventricular mass at diastole, had a piece-wise linear features, where the risk 

of MHT increased only slightly or not at all and then drastically increased after a specific value 

was reached. It is worth noting that the diastolic blood pressure at which the risk of MHT started 

to increase drastically was approximately 80 mmHg, a value that has been reported by the Mayo 

clinic as the cutoff point where a patient is considered to have elevated blood pressure and a 

patient is classified as prehypertensive (79). It is also interesting that the relationship between the 

risk between MHT and diastolic blood differs from the relationship between the relationship 

between MHT and systolic blood pressure. Another finding that is worth noting is that there was 
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an observed decrease in the risk of MHT when the max adventitial diameter increased, making it 

the only selected feature to exhibit this inverse relationship.  

 There are several limitations to this study that are worth highlighting. First, there were 

several relevant features that previous studies have found to be associated with MHT that were 

not included in the dataset that the ML model was built on. Notable examples include atrial pulse 

wave velocity, monocyte chemoattractant protein-1, and C-reactive protein, which have been 

previously established as MHT predictors (67). Secondly, the size of the training set was 

relatively small for the number of features that were evaluated, and it is likely that the model 

performance would increase given a larger set of training data. Thirdly, the model was not 

validated on a test set from an external cohort; thus, the general utility of this model has not been 

tested. Fourth and finally, there are other feature selection methods and ML algorithms that were 

not included in the development of this model. Since each option that is currently available 

within the field of ML was not evaluated exhaustively, there could be potential feature selection 

methods or ML algorithms that could improve upon the performance of the model developed 

here. Overall, these study limitations highlight the need to expand upon the dataset by collecting 

more patient data, to include more relevant features into the dataset, to obtain more data from 

other sources to validate the model, and to continue to test and evaluate other ML algorithms that 

could improve the model performance. 

 

4.5 Conclusion 

 This study proposed a heterogeneous stacking ensemble framework as a ML model for 

predicting the incidence of MHT in a young, apparently healthy population from a LMIC. The 

resulting model consisted of a two-layer stacking ensemble, with the first layer consisting of LR, 
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RF, XGB, and MLP classifiers as the base learners and the second layer consisting of a LR 

classifier as the meta learner. The proposed stacking ensemble model achieve a higher ROC 

AUC than each base model could achieve independently and demonstrated higher scoring 

metrics compared to the current “rule-of-thumb” classifier for MHT. The BorutaSHAP feature 

selection method identified several features for the model which could all be easily obtained 

from a single outpatient visit, making the adoption of the model in a clinical setting feasible. 

SHAP analysis found that systolic blood pressure and body weight were the two most important 

predictors of MHT. PDP revealed the relationships between each feature and the prediction of 

MHT and revealed that the features related to diastole had a relatively low impact on the 

presence MHT until they exceeded a set point where the influence of these features on MHT 

increased dramatically. Max adventitial diameter was identified as a novel predictor of MHT, 

suggesting that its exact relationship with MHT could be worth investigating in the future. 

Overall, this study demonstrated the promise of using a stacking ensemble learning ML model to 

detect MHT and further development of the model could potentially lead to a viable tool for 

aiding clinicians in identifying which patients are most at risk for MHT and need further 

evaluation through ABPM. 

 

 

 

 

 

 

 



118 
 

4.6 References 
 

1. World Health Organisation Cardiovascular Disease 2023; https://www.who.int/health-

topics/cardiovascular-diseases#tab=tab_1 

2. Mathers, Colin D., Ties Boerma, and Doris Ma Fat. “Global and regional causes of 

death.” British medical bulletin 92.1 (2009):7-32 

3. Sverre E. Kjeldsen, “Hypertension and cardiovascular risk: General aspects.” 

Pharmacological research 129 (2018): 95-99 

4. World Heart Federation 2022; https://world-heart-federation.org/news/world-

hypertension-day-taking-action-against-the-silent-epidemic-of-high-blood-pressure/ 

5. Kearney, Patricia M., et al. "Global burden of hypertension: analysis of worldwide data." 

The lancet 365.9455 (2005): 217-223. 

6. Hunter, Paul G., Fiona A. Chapman, and Neeraj Dhaun. "Hypertension: Current trends 

and future perspectives." British Journal of Clinical Pharmacology 87.10 (2021): 3721-

3736. 

7. Messerli, Franz H., Bryan Williams, and Eberhard Ritz. "Essential hypertension." The 

Lancet 370.9587 (2007): 591-603. 

8. Nguyen, Quang, et al. "Hypertension management: an update." American health & drug 

benefits 3.1 (2010): 47. 

9. Huguet, Nathalie, et al. "Rates of undiagnosed hypertension and diagnosed hypertension 

without anti-hypertensive medication following the Affordable Care Act." American 

Journal of Hypertension 34.9 (2021): 989-998.) 

10. Shukla, Anand N., et al. "Prevalence and predictors of undiagnosed hypertension in an 

apparently healthy western Indian population." Advances in Epidemiology 2015 (2015) 

https://www.who.int/health-topics/cardiovascular-diseases#tab=tab_1
https://www.who.int/health-topics/cardiovascular-diseases#tab=tab_1
https://world-heart-federation.org/news/world-hypertension-day-taking-action-against-the-silent-epidemic-of-high-blood-pressure/
https://world-heart-federation.org/news/world-hypertension-day-taking-action-against-the-silent-epidemic-of-high-blood-pressure/


119 
 

11. Essa, Enatnesh, et al. "Undiagnosed hypertension and associated factors among adults in 

Debre Markos town, North-West Ethiopia: A community-based cross-sectional study." 

SAGE Open Medicine 10 (2022): 20503121221094223. 

12. Pickering, Thomas G., Kazuo Eguchi, and Kazuomi Kario. "Masked hypertension: a 

review." Hypertension Research 30.6 (2007): 479-488. 

13. Stergiou, George S., et al. "Prognosis of white-coat and masked hypertension: 

International Database of HOme blood pressure in relation to Cardiovascular Outcome." 

Hypertension 63.4 (2014): 675-682. 

14. Thakkar, Harsh V., Alun Pope, and Mahesan Anpalahan. "Masked hypertension: a 

systematic review." Heart, Lung and Circulation 29.1 (2020): 102-111. 

15. Bobrie, Guillaume, et al. "Masked hypertension: a systematic review." Journal of 

hypertension 26.9 (2008): 1715-1725. 

16. Trachsel, Lukas D., et al. "Masked hypertension and cardiac remodeling in middle-aged 

endurance athletes." Journal of hypertension 33.6 (2015): 1276-1283. 

17. Stergiou, George S., et al. "White-coat hypertension and masked hypertension in 

children." Blood pressure monitoring 10.6 (2005): 297-300. 

18. Ben-Dov, Iddo Z., et al. "In clinical practice, masked hypertension is as common as 

isolated clinic hypertension: predominance of younger men." American journal of 

hypertension 18.5 (2005): 589-593. 

19. Berge, Hilde Moseby, et al. "High ambulatory blood pressure in male professional 

football players." British journal of sports medicine 47.8 (2013): 521-525. 



120 
 

20. Hermida, Ramón C., et al. "Ambulatory Blood Pressure Monitoring (ABPM) as the 

reference standard for diagnosis of hypertension and assessment of vascular risk in 

adults." Chronobiology International 32.10 (2015): 1329-1342. 

21. Anstey, D. Edmund, et al. "Diagnosing masked hypertension using ambulatory blood 

pressure monitoring, home blood pressure monitoring, or both?." Hypertension 72.5 

(2018): 1200-1207. 

22. Stergiou, George S., et al. "Masked hypertension assessed by ambulatory blood pressure 

versus home blood pressure monitoring: is it the same phenomenon?." American journal 

of hypertension 18.6 (2005): 772-778. 

23. Flynn, Joseph T., et al. "Update: ambulatory blood pressure monitoring in children and 

adolescents: a scientific statement from the American Heart Association." Hypertension 

63.5 (2014): 1116-1135. 

24. Shimbo, Daichi, et al. "Role of ambulatory and home blood pressure monitoring in 

clinical practice: a narrative review." Annals of internal medicine 163.9 (2015): 691-700. 

25. Stergiou, George S., et al. "2021 European Society of Hypertension practice guidelines 

for office and out-of-office blood pressure measurement." Journal of hypertension 39.7 

(2021): 1293-1302. 

26. Abdalla, Marwah. "Ambulatory blood pressure monitoring: a complementary strategy for 

hypertension diagnosis and Management in low-Income and Middle-Income Countries." 

Cardiology clinics 35.1 (2017): 117-124. 

27. Krittanawong, Chayakrit, et al. "Machine learning prediction in cardiovascular diseases: a 

meta-analysis." Scientific reports 10.1 (2020): 16057. 



121 
 

28. Sevakula, Rahul Kumar, et al. "State‐of‐the‐art machine learning techniques aiming to 

improve patient outcomes pertaining to the cardiovascular system." Journal of the 

American Heart Association 9.4 (2020): e013924. 

29. Motwani, Manish, et al. "Machine learning for prediction of all-cause mortality in 

patients with suspected coronary artery disease: a 5-year multicentre prospective registry 

analysis." European heart journal 38.7 (2017): 500-507. 

30. Churpek, Matthew M., et al. "Multicenter comparison of machine learning methods and 

conventional regression for predicting clinical deterioration on the wards." Critical care 

medicine 44.2 (2016): 368. 

31. Naidoo, Vivian, Fatima Suleman, and Varsha Bangalee. "The transition to universal 

health coverage in low and middle-income countries: new opportunities for community 

pharmacists." Journal of Pharmaceutical Policy and Practice 13 (2020): 1-3. 

32. Schutte, Aletta E., et al. "2." European journal of preventive cardiology 26.5 (2019): 

458-470. 

33. Franklin, Stanley S., et al. "Masked hypertension: a phenomenon of measurement." 

Hypertension 65.1 (2015): 16-20. 

34. Franklin, Stanley S., Eoin O’Brien, and Jan A. Staessen. "Masked hypertension: 

understanding its complexity." European heart journal 38.15 (2017): 1112-1118. 

35. Booth III, John N., et al. "Evaluation of criteria to detect masked hypertension." The 

Journal of Clinical Hypertension 18.11 (2016): 1086-1094. 

36. du Toit, Wessel L., et al. "Markers of arterial stiffness and urinary metabolomics in 

young adults with early cardiovascular risk: the African-PREDICT study." Metabolomics 

19.4 (2023): 28. 



122 
 

37. Gramegna, Alex, and Paolo Giudici. "Shapley feature selection." FinTech 1.1 (2022): 72-

80. 

38. Scikit-learn: Machine Learning in Python, Pedregosa et al., JMLR 12, pp. 2825-2830, 

2011. 

39. Olga Troyanskaya, Michael Cantor, Gavin Sherlock, Pat Brown, Trevor Hastie, Robert 

Tibshirani, David Botstein and Russ B. Altman, Missing value estimation methods for 

DNA microarrays, BIOINFORMATICS Vol. 17 no. 6, 2001 Pages 520-525. 

40. Stef van Buuren, Karin Groothuis-Oudshoorn (2011). “mice: Multivariate Imputation by 

Chained Equations in R”. Journal of Statistical Software 45: 1-67. 

41. Azur, Melissa J., et al. "Multiple imputation by chained equations: what is it and how 

does it work?." International journal of methods in psychiatric research 20.1 (2011): 40-

49. 

42. Jadhav, Anil, Dhanya Pramod, and Krishnan Ramanathan. "Comparison of performance 

of data imputation methods for numeric dataset." Applied Artificial Intelligence 33.10 

(2019): 913-933. 

43. Changyong, F. E. N. G., et al. "Log-transformation and its implications for data 

analysis." Shanghai archives of psychiatry 26.2 (2014): 105. 

44. Kumar, Vipin, and Sonajharia Minz. "Feature selection: a literature review." SmartCR 4.3 

(2014): 211-229. 

45. Kursa, Miron B., Aleksander Jankowski, and Witold R. Rudnicki. "Boruta–a system for 

feature selection." Fundamenta Informaticae 101.4 (2010): 271-285. 

46. Effrosynidis, Dimitrios, and Avi Arampatzis. "An evaluation of feature selection methods 

for environmental data." Ecological Informatics 61 (2021): 101224. 

https://jmlr.csail.mit.edu/papers/v12/pedregosa11a.html


123 
 

47. S. Ma and J. Huang, "Penalized feature selection and classification in 

bioinformatics", Briefings in Bioinformatics, vol. 9, no. 5, pp. 392-403, 2008. 

48. Longo, Daniele, Francesca Dorigatti, and Paolo Palatini. "Masked hypertension in 

adults." Blood pressure monitoring 10.6 (2005): 307-310. 

49. Hung, Ming-Hui, et al. "Prediction of masked hypertension and masked uncontrolled 

hypertension using machine learning." Frontiers in Cardiovascular Medicine 8 (2021): 

778306. 

50. Franklin, Stanley S., et al. "Masked hypertension: a phenomenon of measurement." 

Hypertension 65.1 (2015): 16-20. 

51. Barochiner, Jessica, et al. "Predictors of masked hypertension among treated hypertensive 

patients: an interesting association with orthostatic hypertension." American journal of 

hypertension 26.7 (2013): 872-878. 

52. Mallion, Jean-Michel, et al. "Predictive factors for masked hypertension within a 

population of controlled hypertensives." Journal of hypertension 24.12 (2006): 2365-

2370. 

53. Bobrie, Guillaume, et al. "Masked hypertension: a systematic review." Journal of 

hypertension 26.9 (2008): 1715-1725. 

54. Hänninen, Marjo-Riitta A., et al. "Determinants of masked hypertension in the general 

population: the Finn-Home study." Journal of hypertension 29.10 (2011): 1880-1888. 

55. Franklin, Stanley S., Eoin O’Brien, and Jan A. Staessen. "Masked hypertension: 

understanding its complexity." European heart journal 38.15 (2017): 1112-1118. 

56. Booth III, John N., et al. "Evaluation of criteria to detect masked hypertension." The 

Journal of Clinical Hypertension 18.11 (2016): 1086-1094. 



124 
 

57. Gramegna, Alex, and Paolo Giudici. "Shapley feature selection." FinTech 1.1 (2022): 72-

80. 

58. Kursa, Miron B., Aleksander Jankowski, and Witold R. Rudnicki. "Boruta–a system for 

feature selection." Fundamenta Informaticae 101.4 (2010): 271-285. 

59. Hart, Sergiu. "Shapley value." Game theory. London: Palgrave Macmillan UK, 1989. 

210-216. 

60. Keany, Eoghan. "BorutaShap: A wrapper feature selection method which combines the 

Boruta feature selection algorithm with Shapley values." Zenodo (2020). 

61. Ke, Guolin, et al. "Lightgbm: A highly efficient gradient boosting decision 

tree." Advances in neural information processing systems 30 (2017). 

62. Nti, Isaac Kofi, Owusu Nyarko-Boateng, and Justice Aning. "Performance of machine 

learning algorithms with different K values in K-fold cross-validation." J. Inf. Technol. 

Comput. Sci 6 (2021): 61-71. 

63. LaValley, Michael P. "Logistic regression." Circulation 117.18 (2008): 2395-2399. 

64. Breiman, Leo. "Random forests." Machine learning 45 (2001): 5-32. 

65. Kotsiantis, Sotiris B. "Decision trees: a recent overview." Artificial Intelligence 

Review 39 (2013): 261-283. 

66. Cinà, Giovanni, et al. "Why we do need explainable ai for healthcare." arXiv preprint 

arXiv:2206.15363 (2022). 

67. Thompson, Jane ES, et al. "Masked hypertension and its associated cardiovascular risk in 

young individuals: the African-PREDICT study." Hypertension Research 39.3 (2016): 

158-165. 



125 
 

68. Hung, Ming-Hui, et al. "Prediction of masked hypertension and masked uncontrolled 

hypertension using machine learning." Frontiers in Cardiovascular Medicine 8 (2021): 

778306. 

69. Bae, Sunjae, et al. "Machine Learning–Based Prediction of Masked Hypertension Among 

Children With Chronic Kidney Disease." Hypertension 79.9 (2022): 2105-2113. 

70. Shih, Ling-Chieh, et al. "Prediction of white-coat hypertension and white-coat 

uncontrolled hypertension using machine learning algorithm." European Heart Journal-

Digital Health 3.4 (2022): 559-569. 

71. Meng, Hong, et al. "Nomogram based on clinical features at a single outpatient visit to 

predict masked hypertension and masked uncontrolled hypertension: A study of 

diagnostic accuracy." Medicine 101.49 (2022). 

72. Lip, Stefanie, et al. "Machine Learning Based Models for Predicting White-Coat and 

Masked Patterns of Blood Pressure." Journal of Hypertension 39 (2021): e69. 

73. Zhu, Xiuqing, et al. "An interpretable stacking ensemble learning framework based on 

multi-dimensional data for real-time prediction of drug concentration: The example of 

olanzapin  

74. Khan, Asfandyar, et al. "Cardiovascular and Diabetes Diseases Classification Using 

Ensemble Stacking Classifiers with SVM as a Meta Classifier." Diagnostics 12.11 

(2022): 2595. e." Frontiers in Pharmacology 13 (2022): 975855. 

75. Soitong, Panuwat, et al. "Association of neck circumference and hypertension among 

adults in a rural community Thailand: A cross-sectional study." Plos one 16.8 (2021): 

e0256260. 



126 
 

76. Cunha, A., et al. "[PP. 34.01] NECK CIRCUMFERENCE AND WAIST-HIP RATIO, 

INDEPENDENTLY OF BODY MASS INDEX, ARE MORE RELATED WITH 

MASKED HYPERTENSION IN OBESE NORMOTENSIVE INDIVIDUALS WITH 

OBSTRUCTIVE SLEEP APNEA." Journal of Hypertension 34 (2016): e329. 

77. Patel, Ami S., et al. "Cardiovascular risk factors associated with enlarged diameter of the 

abdominal aortic and iliac arteries in healthy women." Atherosclerosis 178.2 (2005): 311-

317. 

78. Polak, Joseph F., et al. "Associations of cardiovascular risk factors, carotid intima-media 

thickness and left ventricular mass with inter-adventitial diameters of the common carotid 

artery: the Multi-Ethnic Study of Atherosclerosis (MESA)." Atherosclerosis 218.2 

(2011): 344-349. 

79. Mayo Clinc, 2023; https://www.mayoclinic.org/diseases-conditions/high-blood-

pressure/symptoms-causes/syc-20373410 

80. Samb, Mouhamadou Lamine, et al. "A novel RFE-SVM-based feature selection approach 

for classification." International Journal of Advanced Science and Technology 43.1 

(2012): 27-36. 

81. Brereton, Richard G., and Gavin R. Lloyd. "Support vector machines for classification 

and regression." Analyst 135.2 (2010): 230-267. 

82. Ranstam, Jonas, and J. A. Cook. "LASSO regression." Journal of British Surgery 105.10 

(2018): 1348-1348. 

83. Wu, Jia, et al. "Hyperparameter optimization for machine learning models based on 

Bayesian optimization." Journal of Electronic Science and Technology 17.1 (2019): 26-

40. 

https://www.mayoclinic.org/diseases-conditions/high-blood-pressure/symptoms-causes/syc-20373410
https://www.mayoclinic.org/diseases-conditions/high-blood-pressure/symptoms-causes/syc-20373410


127 
 

84. Hinton, Geoffrey E. “Connectionist learning procedures.” Artificial intelligence 40.1 

(1989): 185-234. 

85. Chen, Tianqi, et al. "Xgboost: extreme gradient boosting." R package version 0.4-2 1.4 

(2015): 1-4. 

  



128 
 

CHAPTER 5 

Conclusions and Future Recommendations 

 

5.1 Conclusions  

The objective of this dissertation was to expand the foundational knowledge of MSC 

mechanobiology and to develop novel experimental and computational platforms to aid 

researchers and clinicians in studying and understanding systems mechanobiology. In Chapter 2, 

mechanical stimulation was shown to influence MSC behavior by altering cell metabolic 

activity, proliferation, viability, and cytokine production. Furthermore, the biological response of 

each MSC type that was evaluated was dependent on the specific tissue source. In Chapter 3, a 3-

D printed bioreactor was developed that could apply mechanical stimulation to multiple cell-

seeded biological scaffolds for an extending period without harming cell viability. This study 

also demonstrated a process by which both tissue-level and cell-level strains could be evaluated 

without having to disrupt the cells in culture or terminate the experiment.  In Chapter 4, a novel 

stacking ML model for MHT risk classification was created using patient healthcare data from a 

young, apparently healthy population from a LMIC. The stacking ML model was shown to 

outperform other ML models that were evaluated, including LR, RF, BGBoost, and MLP 

classifier models. This ML model also performed better than the current “rule-of-thumb” that has 

been suggested to access patient risk for MHT. The BorutaSHAP feature selection method 

demonstrated that a highly accurate model could be built using only a few, easy-to-obtain 

features from a single out-patient clinical visit. SHAP analysis and PDP evaluation revealed that 

the top 3 most important predictors of MHT were SBP, BW, and MAP and that there was a 

linear relationship between these factors and a patient’s risk for MHT.  
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5.2 Study Limitations and Future Recommendations 

 Each of the studies presented in this work had limitations that should be acknowledged to 

provide insights that could be helpful in improving future studies related to these topics. In the 

first aim of this study, a commercial bioreactor was utilized to culture the cells in monolayer and 

apply cyclic tensile strain to the cells throughout the experiment. Previous research has shown 

that there are significant differences in how cells behave in 2-D vs. 3-D microenvironments and 

that the behavior of cells cultured in monolayer may not reflect the behavior of those cells in a 

physiological environment 1. Therefore, in future studies, it would be important to modify the 

experimental setup to incorporate a 3D cell culture system instead of a 2D cell culture system. 

One way that this could be accomplished would be to culture the cells in a biological scaffold 

such as tissue sample similar to that used in Chapter 3, a collagen or fibrinogen hydrogel, or an 

electrospun polystyrene scaffold 2,3. A bioreactor such as the one developed in Chapter 3 could 

then be utilized to culture these cell-seeded scaffold and apply mechanical stimulation. Another 

limitation of this study was means by which mechanical stimulation was applied to the cells. 

While the magnitude and frequency of the cyclic tensile stretch that was implemented in this 

study attempted to simulate the magnitude and frequency of tensile stretch seen in the AF of a 

degenerate IVD and the loading protocol that was implemented was designed to reflect the 

loading regime of an individual who was active for 16 hours a day and then resting for 8 hours a 

day, neither of these experimental parameters truly capture the complex and dynamic loads that 

cell experienced within the context of the native AF microenvironment. This is due to the 

limitations of the bioreactor, which could only apply simple cyclic tensile loading. Future studies 

could improve upon the work presented here by utilizing a more complex bioreactor that is 
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capable of incorporating more complex loading regimes such as uniaxial tension in conjunction 

with shear stress, biaxial loading, or various combinations of these three loading strategies. This 

would enable the experiment better reflect the physiological forces experienced in the AF 

microenvironment.  

 In the second aim of this study, the bioreactor that was developed could apply mechanical 

stimulation in the form of tensile strain and could culture cells in 3D on a biological scaffold; 

however, limitations in the loading process resulted in large sample-to-sample variation. As a 

result, the first recommendation for future work in this area would be to implement a pre-

tensioning system into the actuator arms. This could easily be accomplished by implementing a 

design similar the bioreactor designed by Somers and Grayson 4. Another recommendation 

would be to utilize a confocal microscope instead of a wide-field fluorescent microscope and 

perform a second study focused on the analysis of the cell strain using the procedure described in 

Chapter 3 to determine whether this method of imaging could help reduce the large variations in 

the observed cell strains by eliminating any diffuse light that could potentially confound the 

segmentation of the cell membrane during analysis.  

 In the final aim of this study, the primary limitations of the ML model were the limited 

number of training samples and the lack of an external cohort to validate the model. The solution 

to both of these limitations would be to identify a dataset with a similar patient population and 

incorporate that new dataset into the model. As an initial step, features from the new dataset that 

did not overlap with the features from the African PREDICT dataset could be removed ensure 

that both datasets shared common features. Then statistical comparisons between features from 

each dataset could be evaluated to check for statistical differences. If there were not statistical 

differences, then the model could be trained on the entire African PREDICT dataset and 
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evaluated on the new cohort. If there were statistical differences, then the two datasets could be 

combined, shuffled, and then split into testing and training sets. Another limitation was the 

number of ML classifiers that were evaluated. A future study could examine how the 

implementation of other ML classifier algorithms such as SVM, bagging, or adaboost classifiers 

into the ML pipeline could improve the overall performance of the stacking classifier. Finally, 

the model could be implemented into a web-based platform or application that could allow 

clinicians to try the model in their practice. This could enable real-time evaluation of the model 

performance as well as enable the model to re-train and learn from new data. 
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A-1.1 Complete List of African PREDICT Measured Features 

 

 

Category Features

General
s_pp_number, dob, deceased, icd10_code, dod, sex, ethnicity, ses_skill, 

ses_education, ses_income, ses_score, ses_class, age_b, ear_temp
Anthropometry bh, bw, bmi, bsa, rfm, wc, hc, waist_hip_ratio, nc

Office Blood Pressure
bp_apparatus, l_sbp_1, l_sbp_2, r_sbp_1, r_sbp_2, l_dbp_1, l_dbp_2, r_dbp_1, 

r_dbp_2, pulse_pressure, clinic_map, clinic_bp_status, bp_grade, isolated_sbp_ht, 
sustained_ht, white_coat, l_hr_1, l_hr_2, r_hr_1, r_hr_2

Medication

meds_names, s_meds_a, s_meds_b, s_meds_d, s_meds_g, s_meds_h, s_meds_j, 
s_meds_l, s_meds_m, s_meds_n, s_meds_p, s_meds_r, s_meds_s, s_meds_v, 

s_meds_c, s_meds_c_cardiac, s_meds_c_ht, s_meds_c_diur, s_meds_c_bb, 
s_meds_c_ccb, s_meds_c_ren, s_meds_c_lipid, s_meds_c_other

Physical Activity Data

days_actiheart, rmr, aee, dit, tee, pal, activity, 
physical_activity_actiheart_complete, vig_work_minutes, vig_work_met_min, 

minutes_moderate_work_week, moderate_work_met_minutes, 
travel_minutes_week, travel_met_minutes, minutes_vig_exerc, vig_exercise_met, 

minutes_moderate_exerc, moderate_exercise_met, sedentary_minutes, 
vig_act_day, mod_act_day, mvpa, sedentary_mvpa, infl_24

Ambulatory Blood Pressure Data

nr_infl, perc_succ_infl, seventy_perc_yn, day_infl, night_infl, abpm_24_s, 
abpm_24_d, abpm_24_pp, map_24h, abpm_overall_ht, abpm_24_ht, abpm_d_sbp, 

abpm_d_dbp, abpm_d_pp, map_day, abpm_d_ht, abpm_n_sbp, abpm_n_dbp, 
abpm_n_pp, map_night, pulse_24, pulse_d, pulse_night, hrv_ti, sphygmocor_sbp1, 
sphygmocor_dbp1, sphygmocor_sbp2, sphygmocor_dbp2, csbp_1, cdbp_1, csbp_2, 
cdbp_2, cpp1, cpp2, cmp_1, cmp_2, ap_1, ap_2, cai_1, cai_2, sphyg_hr1, sphyg_hr2

Sonar Data

l_imtn_mean, l_imtn_min, l_imtn_max, l_imtn_std, l_imtn_length, l_imtf_mean, 
l_imtf_min, l_imtf_max, l_imtf_std, l_imtf_length, l_ld_mean, l_ld_min, l_ld_max, 

l_ld_std, l_ld_legth, l_ad_mean, l_ad_min, l_ad_max, l_ad_std, l_ad_length, 
l_rough_near, l_rough_far, l_cca_ps, l_cca_ed, l_ica_ps, l_ica_ed, l_plaque_score, 

l_plaque_at, lcswa, l_osbp, l_odbp, l_pp, l_acimt, l_delta_ld, l_strain, 
l_distensibility, l_compliance, l_bsi, l_pem, l_yem, r_imtn_mean, r_imtn_min, 
r_imtn_max, r_imtn_std, r_imtn_length, r_imtf_mean, r_imtf_min, r_imtf_max, 
r_imtf_std, r_imtf_length, r_ld_mean, r_ld_min, r_ld_max, r_ld_std, r_ld_legth, 

r_ad_mean, r_ad_min, r_ad_max, r_ad_std, r_ad_length, r_rough_near, 
r_rough_far, r_cca_ps, r_cca_ed, r_ica_ps, r_ica_ed, r_plaque_score, r_plaque_at, 

rcswa, r_osbp, r_odbp, r_pp, r_acimt, r_delta_ld, r_strain, r_distensibility, 
r_compliance, r_bsi, r_pem, r_yem, ivsd, ivss, lvidd, lvids, lvpwd, lvpws, rwt, edv, 

esv, ef, sv, fs, lvm_cube, ilvm_cube, lvd_mass, lvd_mass_ase, lvs_mass_ase, 
lvs_mass, lad, aod, la_ao, mv_e_vel, mv_dect, mv_dec_slope, mv_a_vel, 

mv_ea_ratio, m_e_fill, e_e_prime, mv_vmax, mv_vmean, mv_maxpg, mv_meanpg, 
mv_vti, av_vmax, av_maxpg, av_vmean, av_meanpg, av_env_ti, av_vti, rvids, rvidd, 
ra_diam, ra_area, rald, raad, raedv_al, raedv_mod, rals, raas, raesv_al, raesv_mod, 

avc, glps_lax, glps_a4c, glps_a2c, glps_avg

Milliplex Data
fractalkine, gm_csf, ifn_gamma, il_1beta, il_2, il_4, il_5, il_6m, il_7, il_8, il_10, il_12, 

il_13, il_17a, il_21, il_23, itac, mip_1_alpha, mip_1_beta, mip_3_alpha, 
tnf_alpha_m, multiplex_analyses_results_complete

Biochemical Analysis Data ggt, chol, hdl, ldl, trig, glu, crp, cotinine, cot_nominal

RAS Fingerprint Analysis

ang_ii_pmol, ang_1_7_pmol, ang_1_9_pmol, ang_1_10_pmol, ang_iii_pmol, 
ang_3_7_pmol, ang_1_5_pmol, ang_iv_pmol, ang_2_7_pmol, ang_2_10_pmol, 
ras_aldosterone_pmol, ras_ace, ras_renin, aa2_ratio, ang_ii_pg, ang_1_7_pg, 
ang_1_9_pg, ang_1_10_pg, ang_iii_pg, ang_3_7_pg, ang_1_5_pg, ang_iv_pg, 

ang_2_7_pg, ang_2_10_pg, ras_aldosterone_pg

Questionaire Data

smoke, smoke_past, smoke_quit, age_smoke_start, smoke_occasion, 
smoke_type___1, smoke_type___2, smoke_type___3, smoke_type___4, 
smoke_type___5, smoke_type___6, smoke_type___7, smoke_type___8, 

smoke_type___9, type_other_smoke, number_filter_cigarette, 
number_rolled_cigarette, number_chewing_tobacco, number_pipe, 

number_cigars, number_hubbly, number_snuff, number_dagga, number_other, 
alcohol, type_alcohol___1, type_alcohol___2, type_alcohol___3, type_alcohol___4, 

type_alcohol___5, type_alcohol___6, type_alcohol___7, type_alcohol___8, 
type_other, beer_dumpie_number, beer_quart_number, beer_boxes_number, 

beer_mahewe_number, wine_number, tots_spirits_number, cider_number, 
alcohol_other_number, age_alcohol_started, number_weekend_drinks, 

homemade_beer, homemade_beer_container, other_container, size_container, 
number_homemade_beer, strenuous_exercise, moderate_exercise, 

mild_exercise, leisure_activity_times, heart_attack, stroke, cancer, tuberculosis, 
hypertension, heart_disease, cholesterol, diabetes, health_problems_other, 

type_health_problems, year_health_problems, year_hypertension, 
year_heart_disease, year_high_cholesterol, diabetes_type, year_diabetes, 

diabetes_manage_other___1, diabetes_manage_other___2, 
diabetes_manage_other___3, diabetes_manage_other___4, 

diabetes_manage_other___5, other_manage_diabetes, mother_heart_disease, 
father_heart_disease, mother_stroke, father_stroke, mother_diabetes, 

father_diabetes, mother_hypertension, father_hypertension, mother_cholesterol, 
father_cholestrol, gender_self_reported, menstruate, contraceptive_pill, 
contraceptive_injection, contraceptive_implant, mirena, hysterectomy, 

hormone_replacement, age_hrt, hiv_status_first_follow_up, 
participant_fill_in_sheet_complete
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A-1.2 List of Features Dropped from the Original African PREDICT Dataset 

 

 
 
 
  

Category Features

General
s_pp_number, dob, deceased, icd10_code, dod, ses_skill, ses_education, 

ses_income, ses_score, ses_class, ear_temp

Office Blood Pressure
bp_apparatus, clinic_bp_status, bp_grade, isolated_sbp_ht, sustained_ht, 

white_coat
Medication meds_names

Physical Activity Data days_actiheart, physical_activity_actiheart_complete, infl_24

Ambulatory Blood Pressure Data

nr_infl, perc_succ_infl, seventy_perc_yn, day_infl, night_infl, abpm_24_s, 
abpm_24_d, abpm_24_pp, map_24h, abpm_overall_ht, abpm_24_ht, abpm_d_sbp, 

abpm_d_dbp, abpm_d_pp, map_day, abpm_d_ht, abpm_n_sbp, abpm_n_dbp, 
abpm_n_pp, map_night, pulse_24, pulse_d, pulse_night, hrv_ti, sphygmocor_sbp1, 
sphygmocor_dbp1, sphygmocor_sbp2, sphygmocor_dbp2, csbp_1, cdbp_1, csbp_2, 
cdbp_2, cpp1, cpp2, cmp_1, cmp_2, ap_1, ap_2, cai_1, cai_2, sphyg_hr1, sphyg_hr2

Sonar Data
rvids, rvidd, ra_diam, ra_area, rald, raad, raedv_al, raedv_mod, rals, raas, raesv_al, 

raesv_mod, avc, glps_lax, glps_a4c, glps_a2c, glps_avg
Milliplex Data multiplex_analyses_results_complete

Biochemical Analysis Data cot_nominal

RAS Fingerprint Analysis
ang_ii_pg, ang_1_7_pg, ang_1_9_pg, ang_1_10_pg, ang_iii_pg, ang_3_7_pg, 

ang_1_5_pg, ang_iv_pg, ang_2_7_pg, ang_2_10_pg, ras_aldosterone_pg

Questionaire Data

smoke, smoke_past, smoke_quit, age_smoke_start, type_other_smoke, 
number_filter_cigarette, number_rolled_cigarette, number_chewing_tobacco, 
number_pipe, number_cigars, number_hubbly, number_snuff, number_dagga, 

number_other, type_other, beer_dumpie_number, beer_quart_number, 
beer_boxes_number, beer_mahewe_number, wine_number, tots_spirits_number, 

cider_number, alcohol_other_number, age_alcohol_started, 
number_weekend_drinks, homemade_beer, homemade_beer_container, 

other_container, size_container, number_homemade_beer, 
health_problems_other, type_health_problems, year_health_problems, 

year_hypertension, year_heart_disease, year_high_cholesterol, diabetes_type, 
year_diabetes, diabetes_manage_other___1, diabetes_manage_other___2, 

diabetes_manage_other___3, diabetes_manage_other___4, 
diabetes_manage_other___5, other_manage_diabetes, gender_self_reported, 

menstruate, contraceptive_pill, contraceptive_injection, contraceptive_implant, 
mirena, hysterectomy, hormone_replacement, age_hrt, 

hiv_status_first_follow_up, participant_fill_in_sheet_complete
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A-1.3 Complete List of Transformed African PREDICT Categorical Features 
 

 
 
  

Category Features
Office Blood Pressure sbp, dbp, hr, cpp, map, cmp, pp, ap, cai

Sonar Data

imtn_mean','imtn_min','imtn_max','imtn_std','imtn_length','imtf_mean','strain','d
istensibility','compliance','bsi','pem','yem' 

'imtf_min','imtf_max','imtf_std','imtf_length','ld_mean','ld_min','ld_max','ld_std','
ld_legth','ad_mean','ad_min','ad_max','ad_std','ad_length','rough_near','rough_far

','cca_ps','cca_ed','ica_ps','ica_ed','cswa','acimt','delta_ld'

Questionaire Data

diabetes, cholesterol, heart_disease, mother_hypertension, father_hypertension, 
mother_cholesterol, father_cholestrol, mother_heart_disease, 

father_heart_disease, mother_stroke, father_stroke, mother_diabetes, 
father_diabetes
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A-1.4 Continuous Feature Normality Test Results 
 

 
 

 

 

 

 

 

 

 

Feature Shapiro-Wilk Test P Value Result
age_b 7.15E-16 Not Normal

sbp 1 Normal
dbp 1 Normal
map 0.0908278 Normal
pp 1.20E-06 Not Normal
bh 0.017438231 Not Normal
bw 1.66E-19 Not Normal
wc 1 Normal
hc 1.99E-11 Not Normal
nc 1 Normal

bmi 7.12E-23 Not Normal
waist_hip_ratio 1 Normal

chol 1 Normal
trig 1 Normal
hdl 1 Normal
ldl 1 Normal
glu 1 Normal

cotinine 1 Normal
ggt 1 Normal

lvm_cube 1.10E-14 Not Normal
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Appendix B 
 

Aim 2 MATLAB Scripts 
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B-1.1 Cell Strain Analysis Script 

clc,clear,close all 
  
% Set filter size 
filter_size = 10; 
  
% Set distance threshold 
dist_thresh = 25; 
  
% Set simliarity threshold 
similiarity_thresh = 0.87; 
  
% Set window dimensions 
window_h = 50; 
window_w = window_h; 
  
% Load images 
[original_image,original_cell_boundaries,image_h,image_w,path_dir,images] = 
load_images(filter_size); 
  
% Cycle through each of the cells in the original image 
for i = 1:length(original_cell_boundaries) 
    % Create folder for saving data 
    mkdir(fullfile(path_dir,'Analysis_Output',string(i))); 
  
    % For each cell in the original image, get the original mask, original 
properties, original cropped mask, and original cropped properties 
    
[original_cell_mask,original_cell_mask_props,original_cell_mask_cropped,origi
nal_cell_mask_cropped_props] = 
process_image(original_cell_boundaries{i},image_h,image_w,window_h,window_w); 
     
    first_cell_mask_cropped = original_cell_mask_cropped; 
  
    % Cycle through each of the deformed images 
    for j = 2:length(images) 
  
        % Get deformed image and the cell boundaries in that image 
        [deformed_image,deformed_cell_boundaries] = 
process_deformed_image(path_dir,images(j).name,image_h,image_w,filter_size); 
         
        % Identify the distances between the original cell being analyzed and 
the cells in the deformed image 
        [dists,idx] = get_cell_dists(original_cell_boundaries, 
deformed_cell_boundaries, original_cell_mask_props, dist_thresh, image_h, 
image_w); 
         
        if ~isempty(idx) 
            %similiarities = []; 
            cell_props = []; 
            similarity = []; 
            for k = 1:length(idx) 
                indice = idx(k); 
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[deformed_cell_mask,deformed_cell_mask_props,deformed_cell_mask_cropped,defor
med_cell_mask_cropped_props] = 
process_image(deformed_cell_boundaries{indice},image_h,image_w,window_h,windo
w_w); 
                similiarities(k) = 
dice(original_cell_mask_cropped,deformed_cell_mask_cropped); 
                if k == 1 
                    props = 
regionprops(original_cell_mask_cropped,'Centroid','Area','MajorAxisLength','M
inorAxisLength','Orientation','Eccentricity','Solidity','Circularity','Extent
'); 
                    if length(props) > 1 
                        [~, props_idx] = max([props.Area]); 
                        props = props(props_idx); 
                    end 
                    cell_props.properties(1) = props; 
                    props = 
regionprops(deformed_cell_mask_cropped,'Centroid','Area','MajorAxisLength','M
inorAxisLength','Orientation','Eccentricity','Solidity','Circularity','Extent
'); 
                    if length(props) > 1 
                        [~, props_idx] = max([props.Area]); 
                        props = props(props_idx); 
                    end 
                    cell_props.properties(k+1) = props; 
                    eccentricity_similarity = 
abs(cell_props.properties(k+1).Eccentricity-
cell_props.properties(1).Eccentricity)/cell_props.properties(1).Eccentricity; 
                    solidarity_similarity = 
abs(cell_props.properties(k+1).Solidity-
cell_props.properties(1).Solidity)/cell_props.properties(1).Solidity; 
                    circularity_similarity = 
abs(cell_props.properties(k+1).Circularity-
cell_props.properties(1).Circularity)/cell_props.properties(1).Circularity; 
                    extent_similarity = 
abs(cell_props.properties(k+1).Extent-
cell_props.properties(1).Extent)/cell_props.properties(1).Extent; 
  
                    similarity(k) = 
((dice(original_cell_mask_cropped,deformed_cell_mask_cropped) + (1-
(eccentricity_similarity + solidarity_similarity + circularity_similarity + 
extent_similarity)/4)))/2; 
                else 
                    props = 
regionprops(deformed_cell_mask_cropped,'Centroid','Area','MajorAxisLength','M
inorAxisLength','Orientation','Eccentricity','Solidity','Circularity','Extent
'); 
                    if length(props) > 1 
                        [~, props_idx] = max([props.Area]); 
                        props = props(props_idx); 
                    end 
                    cell_props.properties(k+1) = props; 
                    eccentricity_similarity = 
abs(cell_props.properties(k+1).Eccentricity-
cell_props.properties(1).Eccentricity)/cell_props.properties(1).Eccentricity; 



142 
 

                    solidarity_similarity = 
abs(cell_props.properties(k+1).Solidity-
cell_props.properties(1).Solidity)/cell_props.properties(1).Solidity; 
                    circularity_similarity = 
abs(cell_props.properties(k+1).Circularity-
cell_props.properties(1).Circularity)/cell_props.properties(1).Circularity; 
                    extent_similarity = 
abs(cell_props.properties(k+1).Extent-
cell_props.properties(1).Extent)/cell_props.properties(1).Extent; 
  
                    similarity(k) = 
((dice(original_cell_mask_cropped,deformed_cell_mask_cropped) + (1-
(eccentricity_similarity + solidarity_similarity + circularity_similarity + 
extent_similarity)/4)))/2; 
                end 
            end 
            %[max_similiarity,max_similiarity_index] = max(similiarities); 
            [max_similiarity,max_similiarity_index] = max(similarity); 
            max_sim(j-1) = max_similiarity; 
  
            if max_similiarity > similiarity_thresh 
                indice = idx(max_similiarity_index); 
                
[deformed_cell_mask,deformed_cell_mask_props,deformed_cell_mask_cropped,defor
med_cell_mask_cropped_props] = 
process_image(deformed_cell_boundaries{indice},image_h,image_w,window_h,windo
w_w); 
            else 
                for l = j:length(images) 
                    deformed_image = 
imread(fullfile(path_dir,images(l).name)); 
                    fig1 = figure; 
                    imshow(deformed_image) 
                    image_name = strcat('Tracked-Image-',string(l-1),'-Cell-
',string(i)); 
                    saveas(fig1, 
fullfile(path_dir,'Analysis_Output',string(i),strcat(image_name,'.tiff'))); 
                    close; 
                end 
                break 
            end 
        else 
            for l = j:length(images) 
                deformed_image = imread(fullfile(path_dir,images(l).name)); 
                fig1 = figure; 
                imshow(deformed_image); 
                image_name = strcat('Tracked-Image-',string(l-1),'-Cell-
',string(i)); 
                saveas(fig1, 
fullfile(path_dir,'Analysis_Output',string(i),strcat(image_name,'.tiff'))); 
                close; 
            end 
            break 
        end 
        
[original_cell_mask,original_cell_mask_props,original_cell_mask_cropped,origi
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nal_cell_mask_cropped_props] = 
process_image(deformed_cell_boundaries{indice},image_h,image_w,window_h,windo
w_w); 
        fig1 = figure; 
        imshow(deformed_image); 
        hold on 
        for k = 1:length(idx) 
            indice2 = idx(k); 
            
[cell_mask,cell_mask_props,cell_mask_cropped,cell_mask_cropped_props] = 
process_image(deformed_cell_boundaries{indice2},image_h,image_w,window_h,wind
ow_w); 
            
plot(cell_mask_props.Centroid(1),cell_mask_props.Centroid(2),'b*'); 
        end 
        hold off 
        hold on 
        
plot(deformed_cell_mask_props.Centroid(1),deformed_cell_mask_props.Centroid(2
),'r*'); 
        hold off 
        image_name = strcat('Tracked-Image-',string(j-1),'-Cell-',string(i)); 
        saveas(fig1, 
fullfile(path_dir,'Analysis_Output',string(i),strcat(image_name,'.tiff'))); 
        close; 
  
        if j == 2 
            original_props = 
regionprops(first_cell_mask_cropped,'Centroid','Area','MajorAxisLength','Mino
rAxisLength','Orientation','Eccentricity','Solidity','Circularity','Extent'); 
            if length(original_props) > 1 
                [~, original_props_idx] = max([original_props.Area]); 
                original_props = original_props(original_props_idx); 
            end 
            cell_props_matrix(1,:) = 
[original_props.Centroid(1),original_props.Centroid(2),original_props.Area,or
iginal_props.MajorAxisLength,original_props.MinorAxisLength,original_props.Or
ientation,original_props.Eccentricity,original_props.Solidity,original_props.
Circularity,original_props.Extent]; 
        end 
        deformed_props = 
regionprops(deformed_cell_mask_cropped,'Centroid','Area','MajorAxisLength','M
inorAxisLength','Orientation','Eccentricity','Solidity','Circularity','Extent
'); 
        if length(deformed_props) > 1 
            [~, deformed_props_idx] = max([deformed_props.Area]); 
            deformed_props = deformed_props(deformed_props_idx); 
        end 
        cell_props_matrix(j,:) = 
[deformed_props.Centroid(1),deformed_props.Centroid(2),deformed_props.Area,de
formed_props.MajorAxisLength,deformed_props.MinorAxisLength,deformed_props.Or
ientation,deformed_props.Eccentricity,deformed_props.Solidity,deformed_props.
Circularity,deformed_props.Extent]; 
  
        t = linspace(0,2*pi,50); 
        a = original_props.MajorAxisLength/2; 
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        b = original_props.MinorAxisLength/2; 
        phi = deg2rad(-original_props.Orientation); 
        ellipse_x1 = a*cos(t)*cos(phi) - b*sin(t)*sin(phi); 
        ellipse_y1 = a*cos(t)*sin(phi) + b*sin(t)*cos(phi); 
        orig_mat = [ellipse_x1;ellipse_y1]; 
        a = deformed_props.MajorAxisLength/2; 
        b = deformed_props.MinorAxisLength/2; 
        phi = deg2rad(-deformed_props.Orientation); 
        ellipse_x2 = a*cos(t)*cos(phi) - b*sin(t)*sin(phi); 
        ellipse_y2 = a*cos(t)*sin(phi) + b*sin(t)*cos(phi); 
        deform_mat = [ellipse_x2;ellipse_y2]; 
     
        fig2 = figure; 
        subplot(1,2,1) 
        imshow(first_cell_mask_cropped); 
        hold on  
        plot(ellipse_x1+window_w/2,ellipse_y1+window_h/2,'r*'); 
        hold off 
        subplot(1,2,2) 
        imshow(deformed_cell_mask_cropped); 
        hold on 
        plot(ellipse_x2+window_w/2,ellipse_y2+window_h/2,'r*'); 
        hold off 
        image_name2 = strcat('Cell_Comparison_Images',string(j-1),'-Cell-
',string(i)); 
        saveas(fig2, 
fullfile(path_dir,'Analysis_Output',string(i),strcat(image_name2,'.tiff'))); 
        close; 
             
        F = deform_mat/orig_mat; 
        C = F*F'; 
        I = eye(length(F)); 
        e = ((1/2)*(C-I))*100; 
                          
        cell_F(j,:) = [F(1,1),F(1,2),F(2,1),F(2,2)]; 
        cell_E(j,:) = [e(1,1),e(1,2),e(2,1),e(2,2)]; 
    end 
cell_props_mat = array2table(cell_props_matrix); 
cell_props_mat.Properties.VariableNames = 
{'Centroid_X','Centroid_Y','Area','MajorAxisLength','MinorAxisLength','Orient
ation','Eccentricity','Solidity','Circularity','Extent'}; 
writetable(cell_props_mat,fullfile(path_dir,'Analysis_Output',string(i),'cell
_props_mat.csv')); 
writematrix(cell_F,fullfile(path_dir,'Analysis_Output',string(i),'cell_F_matr
ix.csv')); 
writematrix(cell_E,fullfile(path_dir,'Analysis_Output',string(i),'cell_E_tota
l.csv')); 
end 
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B-1.2 load images Function 

function [image,cell_boundaries,image_h,image_w,path_dir,images] = 
load_images(filter_size) 
    % Load Images to Analyze 
    disp('Select Folder with Images to Process'); 
    path_dir = uigetdir('Select Folder with Images to Process'); 
    images = dir(fullfile(path_dir,'*.tiff')); 
  
    % Read in image to process 
    image = imread(fullfile(path_dir,images(1).name)); 
         
    % Get dimensions of image 
    [image_h,image_w] = size(image); 
     
    % Filter image 
    image = bwareafilt(imbinarize(image),[filter_size image_h*image_w]); 
         
    % Get Cell Objects from First Image 
    cell_boundaries = bwboundaries(image,'noholes'); 
end 
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B-1.3 process image Function 

function 
[cell_mask,cell_mask_props,cell_mask_cropped,cell_mask_cropped_props] = 
process_image(cell_boundary,image_h,image_w,window_h,window_w) 
    cell_x = cell_boundary(:,1); 
    cell_y = cell_boundary(:,2); 
    cell_mask = poly2mask(cell_y,cell_x,image_h,image_w); 
    cell_mask_props = regionprops(cell_mask,'Centroid','BoundingBox','Area'); 
    if length(cell_mask_props) > 1 
        [~, idx] = max([cell_mask_props.Area]); 
        cell_mask_props = cell_mask_props(idx); 
    end 
    cell_mask = imtranslate(cell_mask,[round(-
cell_mask_props.Centroid(1)+window_w/2),round(-
cell_mask_props.Centroid(2)+window_h/2)]); 
    cell_mask_cropped = imcrop(cell_mask,[0,0,window_h,window_w]); 
    cell_mask_cropped_props = 
regionprops(cell_mask_cropped,'Centroid','Area','MajorAxisLength','MinorAxisL
ength','Orientation','Eccentricity'); 
end 
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B-1.4 process deformed image Function 

function [deformed_image,deformed_cell_boundaries] = 
process_deformed_image(path_dir,image_name,image_h,image_w,filter_size) 
    deformed_image = imread(fullfile(path_dir,image_name)); 
     
    % Filter out small objects (noise) 
    deformed_image = bwareafilt(imbinarize(deformed_image),[filter_size 
image_h*image_w]); 
             
    % Get Cell Objects from First Image 
    deformed_cell_boundaries = bwboundaries(deformed_image,'noholes'); 
end 
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B-1.5 get cell dists Function 

function [dists,idx] = get_cell_dists(original_cell_boundaries, 
deformed_cell_boundaries, original_cell_mask_props, dist_thresh, image_h, 
image_w) 
    for k = 1:length(deformed_cell_boundaries) 
        deformed_cell_boundary = deformed_cell_boundaries{k}; 
        deformed_cell_x = deformed_cell_boundary(:,1); 
        deformed_cell_y = deformed_cell_boundary(:,2); 
        deformed_cell_mask = 
poly2mask(deformed_cell_y,deformed_cell_x,image_h,image_w); 
        deformed_cell_mask_props = 
regionprops(deformed_cell_mask,'Centroid','BoundingBox','Area'); 
        if length(deformed_cell_mask_props) > 1 
            [~, idx] = max([deformed_cell_mask_props.Area]); 
            deformed_cell_mask_props = deformed_cell_mask_props(idx); 
        end 
        dists(k) = sqrt((deformed_cell_mask_props.Centroid(1)-
original_cell_mask_props.Centroid(1))^2+((deformed_cell_mask_props.Centroid(2
)-original_cell_mask_props.Centroid(2))^2)); 
    end 
    idx = find(dists < dist_thresh); 
    l1 = length(original_cell_boundaries); 
    l2 = length(deformed_cell_boundaries); 
    min_l = min([l1,l2]); 
    idx = idx(idx<min_l); 
end 
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Appendix C 

 
Aim 3 Python Scripts 
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C-1.1 African PREDICT MHT Classification Algorithm 

# Import Libraries 
import pandas as pd 
import numpy as np 
import matplotlib.pyplot as plt 
import seaborn as sns 
from sklearn.model_selection import train_test_split, 
cross_val_score, StratifiedKFold 
from sklearn.experimental import enable_iterative_imputer  
from sklearn.impute import IterativeImputer 
from sklearn.preprocessing import MinMaxScaler 
from sklearn.feature_selection import RFECV 
from sklearn.svm import SVC 
from sklearn.ensemble import 
RandomForestClassifier,StackingClassifier,  
GradientBoostingRegressor, GradientBoostingClassifier 
from BorutaShap import BorutaShap 
from sklearn.linear_model import LassoCV 
from sklearn.linear_model import LogisticRegression 
from xgboost import XGBClassifier 
from sklearn.neural_network import MLPClassifier 
from skopt import BayesSearchCV 
from sklearn.metrics import roc_auc_score, 
confusion_matrix, auc, roc_curve, precision_recall_curve 
import shap 
from sklearn.inspection import plot_partial_dependence 
 
# Set User Defined Parameters 
SEED = 42 
cv_metric = StratifiedKFold(10, random_state=SEED, 
shuffle=True)  
scoring_metric = 'roc_auc' 
split_ratio = 0.2 
label = 'abpm_overall_ht' 
 
# Load Data  
file_path = 'C:/Users/brendym/Desktop/African PREDICT 
dataset/PhD Files/' 
file_name = 'Richardson_Oct 2021 Unprotected.xlsx' 
df = pd.read_excel(file_path+file_name) 
df_cleaned = df.copy() 
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sbp = 
pd.DataFrame((df_cleaned['l_sbp_1']+df_cleaned['l_sbp_2'] 
                            
+df_cleaned['r_sbp_1']+df_cleaned['r_sbp_2'] 
                            
+df_cleaned['sphygmocor_sbp1']+df_cleaned['sphygmocor_sbp
2'] 
                            
+df_cleaned['csbp_1']+df_cleaned['csbp_2'] 
                            
+df_cleaned['l_osbp']+df_cleaned['r_osbp'])/10, 
columns=['sbp']) 
df_cleaned = pd.concat([df_cleaned,sbp],axis = 1) 
df_cleaned = 
df_cleaned.drop(['l_sbp_1','l_sbp_2','r_sbp_1','r_sbp_2',
'sphygmocor_sbp1', 
                  
'sphygmocor_sbp2','csbp_1','csbp_2','l_osbp','r_osbp'],ax
is=1) 
 
dbp = 
pd.DataFrame((df_cleaned['l_dbp_1']+df_cleaned['l_dbp_2'] 
                            
+df_cleaned['r_dbp_1']+df_cleaned['r_dbp_2'] 
                            
+df_cleaned['sphygmocor_dbp1']+df_cleaned['sphygmocor_dbp
2'] 
                            
+df_cleaned['cdbp_1']+df_cleaned['cdbp_2'] 
                            
+df_cleaned['l_odbp']+df_cleaned['r_odbp'])/10, 
columns=['dbp']) 
df_cleaned = pd.concat([df_cleaned,dbp],axis = 1) 
df_cleaned = 
df_cleaned.drop(['l_dbp_1','l_dbp_2','r_dbp_1','r_dbp_2',
'sphygmocor_dbp1', 
                  
'sphygmocor_dbp2','cdbp_1','cdbp_2','l_odbp','r_odbp'],ax
is=1) 
 
# Create average hr metric 
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hr = 
pd.DataFrame((df_cleaned['l_hr_1']+df_cleaned['l_hr_2'] 
                    
+df_cleaned['r_hr_1']+df_cleaned['r_hr_2'] 
                    
+df_cleaned['sphyg_hr1']+df_cleaned['sphyg_hr2'])/6, 
columns=['hr']) 
df_cleaned = pd.concat([df_cleaned,hr],axis = 1) 
df_cleaned = 
df_cleaned.drop(['l_hr_1','l_hr_2','r_hr_1','r_hr_2','sph
yg_hr1','sphyg_hr2'],axis=1) 
 
# Create average cpp metric 
cpp = 
pd.DataFrame((df_cleaned['cpp1']+df_cleaned['cpp2'])/2, 
columns=['cpp']) 
df_cleaned = pd.concat([df_cleaned,cpp],axis = 1) 
df_cleaned = df_cleaned.drop(['cpp1','cpp2'],axis=1) 
 
# Create average map metric 
map = df_cleaned['clinic_map'].rename('map') 
df_cleaned = pd.concat([df_cleaned,map],axis = 1) 
df_cleaned = df_cleaned.drop(['clinic_map'],axis=1) 
 
# Create average cmp metric 
cmp = 
pd.DataFrame((df_cleaned['cmp_1']+df_cleaned['cmp_2'])/2, 
columns=['cmp']) 
df_cleaned = pd.concat([df_cleaned,cmp],axis = 1) 
df_cleaned = df_cleaned.drop(['cmp_1','cmp_2'],axis=1) 
 
# Create average pp metric 
pp = 
pd.DataFrame((df_cleaned['pulse_pressure']+df_cleaned['l_
pp']+df_cleaned['r_pp']/3),columns=['pp']) 
df_cleaned = pd.concat([df_cleaned,pp],axis = 1) 
df_cleaned = 
df_cleaned.drop(['pulse_pressure','l_pp','r_pp'],axis=1) 
 
# Create average ap metric 



153 
 

ap = 
pd.DataFrame((df_cleaned['ap_1']+df_cleaned['ap_2'])/2, 
columns=['ap']) 
df_cleaned = pd.concat([df_cleaned,ap],axis = 1) 
df_cleaned = df_cleaned.drop(['ap_1','ap_2'],axis=1) 
 
# Create average cai metric 
cai = 
pd.DataFrame((df_cleaned['cai_1']+df_cleaned['cai_2'])/2, 
columns=['cai']) 
df_cleaned = pd.concat([df_cleaned,cai],axis = 1) 
df_cleaned = df_cleaned.drop(['cai_1','cai_2'],axis=1) 
 
# Create average imtn_mean metric 
imtn_mean = 
pd.DataFrame((df_cleaned['l_imtn_mean']+df_cleaned['r_imt
n_mean'])/2, columns=['imtn_mean']) 
df_cleaned = pd.concat([df_cleaned,imtn_mean],axis = 1) 
df_cleaned = 
df_cleaned.drop(['l_imtn_mean','r_imtn_mean'],axis=1) 
 
# Create average imtn_min metric 
imtn_min = 
pd.DataFrame((df_cleaned['l_imtn_min']+df_cleaned['r_imtn
_min'])/2, columns=['imtn_min']) 
df_cleaned = pd.concat([df_cleaned,imtn_min],axis = 1) 
df_cleaned = 
df_cleaned.drop(['l_imtn_min','r_imtn_min'],axis=1) 
 
# Create average imtn_max metric 
imtn_max = 
pd.DataFrame((df_cleaned['l_imtn_max']+df_cleaned['r_imtn
_max'])/2, columns=['imtn_max']) 
df_cleaned = pd.concat([df_cleaned,imtn_max],axis = 1) 
df_cleaned = 
df_cleaned.drop(['l_imtn_max','r_imtn_max'],axis=1) 
 
# Create average imtn_std metric 
imtn_std = 
pd.DataFrame((df_cleaned['l_imtn_std']+df_cleaned['r_imtn
_std'])/2, columns=['imtn_std']) 
df_cleaned = pd.concat([df_cleaned,imtn_std],axis = 1) 
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df_cleaned = 
df_cleaned.drop(['l_imtn_std','r_imtn_std'],axis=1) 
 
# Create average imtn_length metric 
imtn_length = 
pd.DataFrame((df_cleaned['l_imtn_length']+df_cleaned['r_i
mtn_length'])/2, columns=['imtn_length']) 
df_cleaned = pd.concat([df_cleaned,imtn_length],axis = 1) 
df_cleaned = 
df_cleaned.drop(['l_imtn_length','r_imtn_length'],axis=1) 
 
# Create average imtf_mean metric 
imtf_mean = 
pd.DataFrame((df_cleaned['l_imtf_mean']+df_cleaned['r_imt
f_mean'])/2, columns=['imtf_mean']) 
df_cleaned = pd.concat([df_cleaned,imtf_mean],axis = 1) 
df_cleaned = 
df_cleaned.drop(['l_imtf_mean','r_imtf_mean'],axis=1) 
 
# Create average imtf_min metric 
imtf_min = 
pd.DataFrame((df_cleaned['l_imtf_min']+df_cleaned['r_imtf
_min'])/2, columns=['imtf_min']) 
df_cleaned = pd.concat([df_cleaned,imtf_min],axis = 1) 
df_cleaned = 
df_cleaned.drop(['l_imtf_min','r_imtf_min'],axis=1) 
 
# Create average imtf_max metric 
imtf_max = 
pd.DataFrame((df_cleaned['l_imtf_max']+df_cleaned['r_imtf
_max'])/2, columns=['imtf_max']) 
df_cleaned = pd.concat([df_cleaned,imtf_max],axis = 1) 
df_cleaned = 
df_cleaned.drop(['l_imtf_max','r_imtf_max'],axis=1) 
 
# Create average imtf_std metric 
imtf_std = 
pd.DataFrame((df_cleaned['l_imtf_std']+df_cleaned['r_imtf
_std'])/2, columns=['imtf_std']) 
df_cleaned = pd.concat([df_cleaned,imtf_std],axis = 1) 
df_cleaned = 
df_cleaned.drop(['l_imtf_std','r_imtf_std'],axis=1) 
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# Create average imtf_length metric 
imtf_length = 
pd.DataFrame((df_cleaned['l_imtf_length']+df_cleaned['r_i
mtf_length'])/2, columns=['imtf_length']) 
df_cleaned = pd.concat([df_cleaned,imtf_length],axis = 1) 
df_cleaned = 
df_cleaned.drop(['l_imtf_length','r_imtf_length'],axis=1) 
 
# Create average ld_mean metric 
ld_mean = 
pd.DataFrame((df_cleaned['l_ld_mean']+df_cleaned['r_ld_me
an'])/2, columns=['ld_mean']) 
df_cleaned = pd.concat([df_cleaned,ld_mean],axis = 1) 
df_cleaned = 
df_cleaned.drop(['l_ld_mean','r_ld_mean'],axis=1) 
 
# Create average ld_min metric 
ld_min = 
pd.DataFrame((df_cleaned['l_ld_min']+df_cleaned['r_ld_min
'])/2, columns=['ld_min']) 
df_cleaned = pd.concat([df_cleaned,ld_min],axis = 1) 
df_cleaned = 
df_cleaned.drop(['l_ld_min','r_ld_min'],axis=1) 
 
# Create average ld_max metric 
ld_max = 
pd.DataFrame((df_cleaned['l_ld_max']+df_cleaned['r_ld_max
'])/2, columns=['ld_max']) 
df_cleaned = pd.concat([df_cleaned,ld_max],axis = 1) 
df_cleaned = 
df_cleaned.drop(['l_ld_max','r_ld_max'],axis=1) 
 
# Create average ld_std metric 
ld_std = 
pd.DataFrame((df_cleaned['l_ld_std']+df_cleaned['r_ld_std
'])/2, columns=['ld_std']) 
df_cleaned = pd.concat([df_cleaned,ld_std],axis = 1) 
df_cleaned = 
df_cleaned.drop(['l_ld_std','r_ld_std'],axis=1) 
 
# Create average ld_legth metric 
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ld_legth = 
pd.DataFrame((df_cleaned['l_ld_legth']+df_cleaned['r_ld_l
egth'])/2, columns=['ld_legth']) 
df_cleaned = pd.concat([df_cleaned,ld_legth],axis = 1) 
df_cleaned = 
df_cleaned.drop(['l_ld_legth','r_ld_legth'],axis=1) 
 
# Create average ad_mean metric 
ad_mean = 
pd.DataFrame((df_cleaned['l_ad_mean']+df_cleaned['r_ad_me
an'])/2, columns=['ad_mean']) 
df_cleaned = pd.concat([df_cleaned,ad_mean],axis = 1) 
df_cleaned = 
df_cleaned.drop(['l_ad_mean','r_ad_mean'],axis=1) 
 
# Create average ad_min metric 
ad_min = 
pd.DataFrame((df_cleaned['l_ad_min']+df_cleaned['r_ad_min
'])/2, columns=['ad_min']) 
df_cleaned = pd.concat([df_cleaned,ad_min],axis = 1) 
df_cleaned = 
df_cleaned.drop(['l_ad_min','r_ad_min'],axis=1) 
 
# Create average ad_max metric 
ad_max = 
pd.DataFrame((df_cleaned['l_ad_max']+df_cleaned['r_ad_max
'])/2, columns=['ad_max']) 
df_cleaned = pd.concat([df_cleaned,ad_max],axis = 1) 
df_cleaned = 
df_cleaned.drop(['l_ad_max','r_ad_max'],axis=1) 
 
# Create average ad_std metric 
ad_std = 
pd.DataFrame((df_cleaned['l_ad_std']+df_cleaned['r_ad_std
'])/2, columns=['ad_std']) 
df_cleaned = pd.concat([df_cleaned,ad_std],axis = 1) 
df_cleaned = 
df_cleaned.drop(['l_ad_std','r_ad_std'],axis=1) 
 
# Create average ad_legth metric 
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ad_length = 
pd.DataFrame((df_cleaned['l_ad_length']+df_cleaned['r_ad_
length'])/2, columns=['ad_length']) 
df_cleaned = pd.concat([df_cleaned,ad_length],axis = 1) 
df_cleaned = 
df_cleaned.drop(['l_ad_length','r_ad_length'],axis=1) 
 
# Create average rough_near metric 
rough_near = 
pd.DataFrame((df_cleaned['l_rough_near']+df_cleaned['r_ro
ugh_near'])/2, columns=['rough_near']) 
df_cleaned = pd.concat([df_cleaned,rough_near],axis = 1) 
df_cleaned = 
df_cleaned.drop(['l_rough_near','r_rough_near'],axis=1) 
 
# Create average rough_far metric 
rough_far = 
pd.DataFrame((df_cleaned['l_rough_far']+df_cleaned['r_rou
gh_far'])/2, columns=['rough_far']) 
df_cleaned = pd.concat([df_cleaned,rough_far],axis = 1) 
df_cleaned = 
df_cleaned.drop(['l_rough_far','r_rough_far'],axis=1) 
 
# Create average cca_ps metric 
cca_ps = 
pd.DataFrame((df_cleaned['l_cca_ps']+df_cleaned['r_cca_ps
'])/2, columns=['cca_ps']) 
df_cleaned = pd.concat([df_cleaned,cca_ps],axis = 1) 
df_cleaned = 
df_cleaned.drop(['l_cca_ps','r_cca_ps'],axis=1) 
 
# Create average cca_ed metric 
cca_ed = 
pd.DataFrame((df_cleaned['l_cca_ed']+df_cleaned['r_cca_ed
'])/2, columns=['cca_ed']) 
df_cleaned = pd.concat([df_cleaned,cca_ed],axis = 1) 
df_cleaned = 
df_cleaned.drop(['l_cca_ed','r_cca_ed'],axis=1) 
 
# Create average ica_ps metric 
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ica_ps = 
pd.DataFrame((df_cleaned['l_ica_ps']+df_cleaned['r_ica_ps
'])/2, columns=['ica_ps']) 
df_cleaned = pd.concat([df_cleaned,ica_ps],axis = 1) 
df_cleaned = 
df_cleaned.drop(['l_ica_ps','r_ica_ps'],axis=1) 
 
# Create average ica_ed metric 
ica_ed = 
pd.DataFrame((df_cleaned['l_ica_ed']+df_cleaned['r_ica_ed
'])/2, columns=['ica_ed']) 
df_cleaned = pd.concat([df_cleaned,ica_ed],axis = 1) 
df_cleaned = 
df_cleaned.drop(['l_ica_ed','r_ica_ed'],axis=1) 
 
# Create average cswa metric 
cswa = 
pd.DataFrame((df_cleaned['lcswa']+df_cleaned['rcswa'])/2, 
columns=['cswa']) 
df_cleaned = pd.concat([df_cleaned,cswa],axis = 1) 
df_cleaned = df_cleaned.drop(['lcswa','rcswa'],axis=1) 
 
# Create average acimt metric 
acimt = 
pd.DataFrame((df_cleaned['l_acimt']+df_cleaned['r_acimt']
)/2, columns=['acimt']) 
df_cleaned = pd.concat([df_cleaned,acimt],axis = 1) 
df_cleaned = 
df_cleaned.drop(['l_acimt','r_acimt'],axis=1) 
 
# Create average delta_ld metric 
delta_ld = 
pd.DataFrame((df_cleaned['l_delta_ld']+df_cleaned['r_delt
a_ld'])/2, columns=['delta_ld']) 
df_cleaned = pd.concat([df_cleaned,delta_ld],axis = 1) 
df_cleaned = 
df_cleaned.drop(['l_delta_ld','r_delta_ld'],axis=1) 
 
# Create average strain metric 
strain = 
pd.DataFrame((df_cleaned['l_strain']+df_cleaned['r_strain
'])/2, columns=['strain']) 
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df_cleaned = pd.concat([df_cleaned,strain],axis = 1) 
df_cleaned = 
df_cleaned.drop(['l_strain','r_strain'],axis=1) 
 
# Create average distensibility metric 
distensibility = 
pd.DataFrame((df_cleaned['l_distensibility']+df_cleaned['
r_distensibility'])/2, columns=['distensibility']) 
df_cleaned = pd.concat([df_cleaned,distensibility],axis = 
1) 
df_cleaned = 
df_cleaned.drop(['l_distensibility','r_distensibility'],a
xis=1) 
 
# Create average compliance metric 
compliance = 
pd.DataFrame((df_cleaned['l_compliance']+df_cleaned['r_co
mpliance'])/2, columns=['compliance']) 
df_cleaned = pd.concat([df_cleaned,compliance],axis = 1) 
df_cleaned = 
df_cleaned.drop(['l_compliance','r_compliance'],axis=1) 
 
# Create average pem metric 
bsi = 
pd.DataFrame((df_cleaned['l_bsi']+df_cleaned['r_bsi'])/2, 
columns=['bsi']) 
df_cleaned = pd.concat([df_cleaned,bsi],axis = 1) 
df_cleaned = df_cleaned.drop(['l_bsi','r_bsi'],axis=1) 
 
# Create average pem metric 
pem = 
pd.DataFrame((df_cleaned['l_pem']+df_cleaned['r_pem'])/2, 
columns=['pem']) 
df_cleaned = pd.concat([df_cleaned,pem],axis = 1) 
df_cleaned = df_cleaned.drop(['l_pem','r_pem'],axis=1) 
 
# Create average pem metric 
yem = 
pd.DataFrame((df_cleaned['l_yem']+df_cleaned['r_yem'])/2, 
columns=['yem']) 
df_cleaned = pd.concat([df_cleaned,yem],axis = 1) 
df_cleaned = df_cleaned.drop(['l_yem','r_yem'],axis=1) 



160 
 

 
# Clean patient data 
df_cleaned['diabetes'] = 
df_cleaned['diabetes'].replace(2, np.nan) 
df_cleaned['cholesterol'] = 
df_cleaned['cholesterol'].replace(2, np.nan) 
df_cleaned['heart_disease'] = 
df_cleaned['heart_disease'].replace(2, np.nan) 
df_cleaned['mother_hypertension'] = 
df_cleaned['mother_hypertension'].replace(2, np.nan) 
df_cleaned['father_hypertension'] = 
df_cleaned['father_hypertension'].replace(2, np.nan) 
df_cleaned['mother_cholesterol'] = 
df_cleaned['mother_cholesterol'].replace(2, np.nan) 
df_cleaned['father_cholestrol'] = 
df_cleaned['father_cholestrol'].replace(2, np.nan) 
df['mother_heart_disease'] = 
df['mother_heart_disease'].replace(1, np.nan) 
df['mother_heart_disease'] = 
df['mother_heart_disease'].replace([2,3,4], 1) 
df['father_heart_disease'] = 
df['father_heart_disease'].replace(1, np.nan) 
df['father_heart_disease'] = 
df['father_heart_disease'].replace([2,3,4], 1) 
df['mother_stroke'] = df['mother_stroke'].replace(1, 
np.nan) 
df['mother_stroke'] = 
df['mother_stroke'].replace([2,3,4], 1) 
df['father_stroke'] = df['father_stroke'].replace(1, 
np.nan) 
df['father_stroke'] = 
df['father_stroke'].replace([2,3,4], 1) 
df['mother_diabetes'] = df['mother_diabetes'].replace(1, 
np.nan) 
df['mother_diabetes'] = 
df['mother_diabetes'].replace([2,3,4], 1) 
df['father_diabetes'] = df['father_diabetes'].replace(1, 
np.nan) 
df['father_diabetes'] = 
df['father_diabetes'].replace([2,3,4], 1) 
 
# Create prehypertensive metric 
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df_cleaned['prehypertensive'] = np.nan 
df_cleaned.loc[(df_cleaned['sbp'] <= 119) & 
(df_cleaned['dbp'] <= 79), 'prehypertensive'] = 0 
df_cleaned.loc[(df_cleaned['sbp'] < 140) & 
(df_cleaned['sbp'] > 119) | (df_cleaned['dbp'] < 90) & 
(df_cleaned['dbp'] > 79), 'prehypertensive'] = 1 
 
# Create obese metric 
df_cleaned['obese'] = np.nan 
df_cleaned.loc[(df_cleaned['bmi'] <= 25), 'obese'] = 0 
df_cleaned.loc[(df_cleaned['bmi'] > 25), 'obese'] = 1 
 
# Create left ventrical hypertrophy metric 
df_cleaned['lvh'] = np.nan 
df_cleaned.loc[((df_cleaned['ilvm_cube'] <= 115) & 
(df_cleaned['sex'] == 1)) | ((df_cleaned['ilvm_cube'] <= 
95) & (df_cleaned['sex'] == 0)), 'lvh'] = 0 
df_cleaned.loc[((df_cleaned['ilvm_cube'] > 115) & 
(df_cleaned['sex'] == 1)) | ((df_cleaned['ilvm_cube'] > 
95) & (df_cleaned['sex'] == 0)), 'lvh'] = 1 
 
# Create sedentary metric 
df_cleaned['sedentary'] = np.nan 
df_cleaned.loc[df_cleaned['vig_work_met_min'] + 
df_cleaned['moderate_work_met_minutes'] + 
df_cleaned['travel_met_minutes'] + 
df_cleaned['vig_exercise_met'] + 
df_cleaned['moderate_exercise_met'] >= 600,'sedentary'] = 
0 
df_cleaned.loc[df_cleaned['vig_work_met_min'] + 
df_cleaned['moderate_work_met_minutes'] + 
df_cleaned['travel_met_minutes'] + 
df_cleaned['vig_exercise_met'] + 
df_cleaned['moderate_exercise_met'] < 600,'sedentary'] = 
1 
 
# Create smoker metric 
df_cleaned['smoker'] = np.nan 
df_cleaned.loc[(df_cleaned['cotinine'] < 11) | 
(df_cleaned['smoke'] == 0),'smoker'] = 0 
df_cleaned.loc[(df_cleaned['cotinine'] >= 11) & 
(df_cleaned['smoke'] == 1),'smoker'] = 1 
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# Create excessive alcohol metric 
df_cleaned['excessive_alcohol'] = np.nan 
df_cleaned.loc[(df_cleaned['ggt'] < 49) | 
(df_cleaned['alcohol'] == 0),'excessive_alcohol'] = 0 
df_cleaned.loc[(df_cleaned['ggt'] >= 49) & 
(df_cleaned['alcohol'] == 1),'excessive_alcohol'] = 1 
 
# Create dyslipidemic metric 
df_cleaned['dyslipidemic'] = np.nan 
df_cleaned.loc[df_cleaned['ldl'] < 3.5,'dyslipidemic'] = 
0 
df_cleaned.loc[df_cleaned['ldl'] >= 3.5,'dyslipidemic'] = 
1 
 
# Select Features 
numeric_features = 
['age_b','bh','bw','bmi','bsa','rfm','wc','hc','waist_hip
_ratio','nc','sbp','dbp', 
                    
'rmr','aee','dit','tee','pal','activity','vig_work_minute
s','minutes_moderate_work_week','travel_minutes_week', 
                    
'minutes_vig_exerc','minutes_moderate_exerc','sedentary_m
inutes','vig_act_day','mod_act_day','mvpa','sedentary_mvp
a', 
                    
'hr','cpp','map','cmp','pp','ap','cai','imtn_mean','imtn_
min','imtn_max','imtn_std','imtn_length','imtf_mean', 
                    
'imtf_min','imtf_max','imtf_std','imtf_length','ld_mean',
'ld_min','ld_max','ld_std','ld_legth','ad_mean','ad_min', 
                    
'ad_max','ad_std','ad_length','rough_near','rough_far','c
ca_ps','cca_ed','ica_ps','ica_ed','cswa','acimt','delta_l
d', 
                    
'strain','distensibility','compliance','bsi','pem','yem',
'ivsd','ivss','lvidd','lvids','lvpwd','lvpws','rwt','edv'
,'esv', 
                    
'ef','sv','fs','lvm_cube','ilvm_cube','lvd_mass','lvd_mas
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s_ase','lvs_mass_ase','lvs_mass','lad','aod','la_ao','mv_
e_vel', 
                    
'mv_dect','mv_dec_slope','mv_a_vel','mv_ea_ratio','m_e_fi
ll','e_e_prime','mv_vmax','mv_vmean','mv_maxpg','mv_meanp
g','mv_vti', 
                    
'av_vmax','av_vmean','av_maxpg','av_meanpg','av_env_ti','
av_vti','fractalkine','gm_csf','ifn_gamma','il_1beta','il
_2','il_4','il_5', 
                    
'il_6m','il_7','il_8','il_10','il_12','il_13','il_17a','i
l_21','il_23','itac','mip_1_alpha','mip_1_beta','mip_3_al
pha','tnf_alpha_m', 
                    
'ang_ii_pmol','ang_1_7_pmol','ang_1_9_pmol','ang_1_10_pmo
l','ang_iii_pmol','ang_3_7_pmol','ang_1_5_pmol','ang_iv_p
mol','ang_2_7_pmol', 
                    
'ang_2_10_pmol','ras_aldosterone_pmol','ras_ace','ras_ren
in','aa2_ratio','ggt','chol','hdl','ldl','trig','glu','cr
p','cotinine'] 
 
categoric_features = 
['sex','ethnicity','s_meds_a','s_meds_b','s_meds_d','s_me
ds_g','s_meds_h','s_meds_j','s_meds_l','s_meds_m', 
                      
's_meds_n','s_meds_p','s_meds_r','s_meds_s','s_meds_v','s
_meds_c','s_meds_c_cardiac','s_meds_c_ht','s_meds_c_ht', 
                      
's_meds_c_diur','s_meds_c_bb','s_meds_c_bb','s_meds_c_ccb
','s_meds_c_ren','s_meds_c_lipid','s_meds_c_other', 
                      
'smoke_occasion','smoke_type___1','smoke_type___2','smoke
_type___3','smoke_type___4','smoke_type___5','smoke_type_
__6', 
                      
'smoke_type___7','smoke_type___8','smoke_type___9','alcoh
ol','type_alcohol___1','type_alcohol___2','type_alcohol__
_3', 
                      
'type_alcohol___4','type_alcohol___5','type_alcohol___6',
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'type_alcohol___7','type_alcohol___8','strenuous_exercise
', 
                      
'moderate_exercise','mild_exercise','leisure_activity_tim
es','heart_attack','stroke','cancer','tuberculosis', 
                      
'diabetes','cholesterol','heart_disease','mother_hyperten
sion','father_hypertension','mother_cholesterol','father_
cholestrol', 
                      
'mother_heart_disease','father_heart_disease','mother_str
oke','father_stroke','mother_diabetes','father_diabetes', 
                      
'prehypertensive','obese','lvh','sedentary','smoker','exc
essive_alcohol','dyslipidemic','clinic_bp_status'] 
 
# Create Dataset 
dataset = df_cleaned.copy() 
dataset = 
dataset[numeric_features+categoric_features+[label]] 
 
# Drop Rows Missing Label Values 
dataset.dropna(subset = 'abpm_overall_ht', inplace = 
True) 
 
# Drop Rows with Hypertensive Patients 
dataset = dataset[dataset['clinic_bp_status'] != 1] 
 
# Remove Columns Missing More Than 10% of Data 
missing_percent_columns = (dataset.isnull().sum() / 
len(dataset)) * 100 
columns_to_drop = 
missing_percent_columns[missing_percent_columns > 
10].index.tolist() 
dataset = dataset.drop(columns=columns_to_drop) 
 
# Remove Rows Missing More Than 10% of Data 
missing_percent_rows = (dataset.isnull().sum(axis=1) / 
len(dataset.columns)) * 100 
rows_to_drop = missing_percent_rows[missing_percent_rows 
> 10].index.tolist() 
dataset = dataset.drop(index=rows_to_drop) 
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# Remove Columns With Only 1 Value 
unique_counts = dataset.nunique() 
unique_columns = unique_counts[unique_counts == 
1].index.tolist() 
dataset = dataset.drop(columns=unique_columns) 
 
columns_to_drop = columns_to_drop + unique_columns 
# Remove Column Names from Numeric and Categorical 
Feature Lists 
for column in columns_to_drop: 
    if column in numeric_features: 
        numeric_features.remove(column) 
    elif column in categoric_features: 
        categoric_features.remove(column) 
 
# Split into Features and Labels 
X = dataset.drop('abpm_overall_ht',axis=1) 
y = dataset['abpm_overall_ht']  
 
# Split into Training and Testing Sets 
X_train, X_test, y_train, y_test = train_test_split(X, y, 
test_size = split_ratio, random_state = SEED, stratify = 
y) 
 
### Preprocess Features 
print('Preprocessing Features') 
X_train_numeric = X_train[numeric_features] 
X_train_categoric = X_train[categoric_features] 
X_test_numeric = X_test[numeric_features] 
X_test_categoric = X_test[categoric_features] 
 
# Impute Missing Values 
def mice_imputation_numeric(train_numeric, test_numeric): 
    iter_imp_numeric = 
IterativeImputer(GradientBoostingRegressor(random_state=S
EED)) 
    imputed_train = 
iter_imp_numeric.fit_transform(train_numeric) 
    imputed_test = 
iter_imp_numeric.transform(test_numeric) 
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    train_numeric_imp = pd.DataFrame(imputed_train, 
columns = train_numeric.columns, index = 
train_numeric.index) 
    test_numeric_imp = pd.DataFrame(imputed_test, columns 
= test_numeric.columns, index = test_numeric.index) 
    return train_numeric_imp, test_numeric_imp 
 
def mice_imputation_categoric(train_categoric, 
test_categoric):        
    iter_imp_categoric = 
IterativeImputer(GradientBoostingClassifier(random_state=
SEED), max_iter = 5, initial_strategy='most_frequent') 
    imputed_train = 
iter_imp_categoric.fit_transform(train_categoric) 
    imputed_test = 
iter_imp_categoric.transform(test_categoric) 
    train_categoric_imp = pd.DataFrame(imputed_train, 
columns = train_categoric.columns, index = 
train_categoric.index).astype(int) 
    test_categoric_imp = pd.DataFrame(imputed_test, 
columns = test_categoric.columns, index = 
test_categoric.index).astype(int) 
    return train_categoric_imp, test_categoric_imp 
 
print('Performing MICE Imputation') 
X_train_numeric_imp, X_test_numeric_imp = 
mice_imputation_numeric(X_train_numeric,X_test_numeric) 
X_train_categoric_imp, X_test_categoric_imp = 
mice_imputation_categoric(X_train_categoric,X_test_catego
ric) 
 
X_train_imp = pd.concat([X_train_numeric_imp, 
X_train_categoric_imp], axis = 1) 
X_test_imp = pd.concat([X_test_numeric_imp, 
X_test_categoric_imp], axis = 1) 
 
# Scale Numerical Features 
print('Performing MinMax Scaling') 
 
X_train_scaled = X_train_imp.copy() 
X_test_scaled = X_test_imp.copy() 
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scaler = MinMaxScaler() 
X_train_scaled[numeric_features] = 
scaler.fit_transform(X_train_scaled[numeric_features]) 
X_test_scaled[numeric_features] = 
scaler.transform(X_test_scaled[numeric_features]) 
 
# Perform No Feature Selection 
X_train_final = X_train_scaled.copy() 
X_test_final = X_test_scaled.copy() 
y_train_final = y_train.copy() 
y_test_final = y_test.copy() 
 
lr_model = LogisticRegression(random_state=SEED) 
params = { 
        'C': [0.1, 1, 10], 
        'penalty': ['l1', 'l2'], 
        'solver': ['liblinear','saga'], 
        'class_weight':[None,'balanced'] 
    } 
     
lr_search = BayesSearchCV(lr_model, params, scoring = 
scoring_metric, cv = cv_metric, random_state = SEED) 
lr_search.fit(X_train_final, y_train_final) 
no_fs_best_lr_model = lr_search.best_estimator_ 
   
lr_model_scores = cross_val_score(no_fs_best_lr_model, 
X_train_final, y_train_final, cv = cv_metric, 
scoring=scoring_metric) 
msg = "TRAINING SET - Base LR Model Score: %f (%f)" % 
(lr_model_scores.mean(), lr_model_scores.std()) 
print(msg) 
   
lr_model_scores = cross_val_score(no_fs_best_lr_model, 
X_test_final, y_test_final, cv = cv_metric, 
scoring=scoring_metric) 
msg = "TEST SET - Base LR Model Score: %f (%f)" % 
(lr_model_scores.mean(), lr_model_scores.std()) 
print(msg) 
 
rf_model = RandomForestClassifier(random_state=SEED) 
params = { 
        'n_estimators': [100, 200, 300], 
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        'max_depth': [None, 5, 10, 15], 
        'min_samples_split': [2, 5, 10], 
        'min_samples_leaf': [1, 2, 4], 
        'max_features': ['auto','sqrt','log2'], 
        'criterion': ['gini', 'entropy'], 
        'class_weight':[None,'balanced'], 
        } 
     
rf_search = BayesSearchCV(rf_model, params, scoring = 
scoring_metric, cv = cv_metric, random_state = SEED) 
rf_search.fit(X_train_final, y_train_final) 
no_fs_best_rf_model = rf_search.best_estimator_ 
    
rf_model_scores = cross_val_score(no_fs_best_rf_model, 
X_train_final, y_train_final, cv = cv_metric, 
scoring=scoring_metric) 
msg = "TRAINING SET - Base RF Model Score: %f (%f)" % 
(rf_model_scores.mean(), rf_model_scores.std()) 
print(msg) 
     
rf_model_scores = cross_val_score(no_fs_best_rf_model, 
X_test_final, y_test_final, cv = cv_metric, 
scoring=scoring_metric) 
msg = "TEST SET - Base RF Model Score: %f (%f)" % 
(rf_model_scores.mean(), rf_model_scores.std()) 
print(msg) 
 
xgb_model = XGBClassifier(random_state=SEED) 
params = { 
        'n_estimators': [100, 200, 300], 
        'learning_rate': [0.1, 0.05, 0.01], 
        'max_depth': [3, 5, 10], 
        'subsample': [0.5, 1.0, 'uniform'], 
        'gamma':[0, 5.0], 
        'colsample_bytree': [0.8, 0.9, 1.0] 
        } 
     
xgb_search = BayesSearchCV(xgb_model, params, scoring = 
scoring_metric, cv = cv_metric, random_state = SEED) 
xgb_search.fit(X_train_final, y_train_final) 
no_fs_best_xgb_model = xgb_search.best_estimator_ 
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xgb_model_scores = cross_val_score(no_fs_best_xgb_model, 
X_train_final, y_train_final, cv = cv_metric, 
scoring=scoring_metric) 
msg = "TRAINING SET - Base XGB Model Score: %f (%f)" % 
(xgb_model_scores.mean(), xgb_model_scores.std()) 
print(msg) 
        
xgb_model_scores = cross_val_score(no_fs_best_xgb_model, 
X_test_final, y_test_final, cv = cv_metric, 
scoring=scoring_metric) 
msg = "TEST SET - Base XGB Model Score: %f (%f)" % 
(xgb_model_scores.mean(), xgb_model_scores.std()) 
print(msg) 
 
mlpc_model = 
MLPClassifier(random_state=SEED,max_iter=2000) 
params = { 
        #'hidden_layer_sizes': 
[(50,),(100,),(50,50),(100,50,25)], 
        'activation':['relu','tanh'], 
        'solver':['sgd','adam'], 
        'learning_rate':['constant','adaptive'], 
        'alpha':[0.0001, 0.001, 0.01] 
        } 
       
mlpc_search = BayesSearchCV(mlpc_model, params, scoring = 
scoring_metric, cv = cv_metric, random_state = SEED) 
mlpc_search.fit(X_train_final, y_train_final) 
no_fs_best_mlpc_model = mlpc_search.best_estimator_ 
  
mlpc_model_scores = 
cross_val_score(no_fs_best_mlpc_model, X_train_final, 
y_train_final, cv = cv_metric, scoring=scoring_metric) 
msg = "TRAINING SET - Base ANN Model Score: %f (%f)" % 
(mlpc_model_scores.mean(), mlpc_model_scores.std()) 
print(msg) 
             
mlpc_model_scores = 
cross_val_score(no_fs_best_mlpc_model, X_test_final, 
y_test_final, cv = cv_metric, scoring=scoring_metric) 
msg = "TEST SET - Base ANN Model Score: %f (%f)" % 
(mlpc_model_scores.mean(), mlpc_model_scores.std()) 
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print(msg)   
    
base_learners = [ 
        ('LR', no_fs_best_lr_model), 
        ('RF', no_fs_best_rf_model), 
        ('ANN', no_fs_best_mlpc_model), 
        ('XGB', no_fs_best_xgb_model), 
        ] 
     
no_fs_stk_model = 
StackingClassifier(estimators=base_learners, 
final_estimator = lr_model, cv = cv_metric) 
no_fs_stk_model.fit(X_train_final, y_train_final) 
  
stk_model_scores = cross_val_score(no_fs_stk_model, 
X_train_final, y_train_final, cv = cv_metric, 
scoring=scoring_metric) 
msg = "TRAINING SET - Base Stacking Classifier Model 
Score: %f (%f)" % (stk_model_scores.mean(), 
stk_model_scores.std()) 
print(msg) 
    
stk_model_scores = cross_val_score(no_fs_stk_model, 
X_test_final, y_test_final, cv = cv_metric, 
scoring=scoring_metric) 
msg = "TEST SET - Base Stacking Classifier Model Score: 
%f (%f)" % (stk_model_scores.mean(), 
stk_model_scores.std()) 
print(msg) 
 
# Perform Manual Feature Selection 
manually_selected_features = 
['sex','ethnicity','age_b','bmi','waist_hip_ratio','sbp',
'dbp', 
                     
'map','pp','hr','glu','trig','ldl','hdl','chol','cotinine
', 
                     
'ggt','smoker','excessive_alcohol','sedentary','prehypert
ensive', 
                     
'obese','stroke','diabetes','lvm_cube','lvh','imtn_mean'] 
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X_train_final = X_train_scaled.copy() 
X_test_final = X_test_scaled.copy() 
y_train_final = y_train.copy() 
y_test_final = y_test.copy() 
 
X_train_final = X_train_final[manually_selected_features] 
X_test_final = X_test_final[manually_selected_features] 
y_train_final = y_train_final 
y_test_final = y_test_final 
 
lr_model = LogisticRegression(random_state=SEED) 
params = { 
        'C': [0.1, 1, 10], 
        'penalty': ['l1', 'l2'], 
        'solver': ['liblinear','saga'], 
        'class_weight':[None,'balanced'] 
    } 
     
lr_search = BayesSearchCV(lr_model, params, scoring = 
scoring_metric, cv = cv_metric, random_state = SEED) 
lr_search.fit(X_train_final, y_train_final) 
manual_best_lr_model = lr_search.best_estimator_ 
  
lr_model_scores = cross_val_score(manual_best_lr_model, 
X_train_final, y_train_final, cv = cv_metric, 
scoring=scoring_metric) 
msg = "TRAINING SET - Manually Tunned LR Model Score: %f 
(%f)" % (lr_model_scores.mean(), lr_model_scores.std()) 
print(msg) 
    
lr_model_scores = cross_val_score(manual_best_lr_model, 
X_test_final, y_test_final, cv = cv_metric, 
scoring=scoring_metric) 
msg = "TEST SET - Manually Tunned LR Model Score: %f 
(%f)" % (lr_model_scores.mean(), lr_model_scores.std()) 
print(msg) 
 
rf_model = RandomForestClassifier(random_state=SEED) 
params = { 
        'n_estimators': [100, 200, 300], 
        'max_depth': [None, 5, 10, 15], 
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        'min_samples_split': [2, 5, 10], 
        'min_samples_leaf': [1, 2, 4], 
        'max_features': ['auto','sqrt','log2'], 
        'criterion': ['gini', 'entropy'], 
        'class_weight':[None,'balanced'], 
        } 
     
rf_search = BayesSearchCV(rf_model, params, scoring = 
scoring_metric, cv = cv_metric, random_state = SEED) 
rf_search.fit(X_train_final, y_train_final) 
manual_best_rf_model = rf_search.best_estimator_ 
  
rf_model_scores = cross_val_score(manual_best_rf_model, 
X_train_final, y_train_final, cv = cv_metric, 
scoring=scoring_metric) 
msg = "TRAINING SET - Manually Tunned RF Model Score: %f 
(%f)" % (rf_model_scores.mean(), rf_model_scores.std()) 
print(msg) 
    
rf_model_scores = cross_val_score(manual_best_rf_model, 
X_test_final, y_test_final, cv = cv_metric, 
scoring=scoring_metric) 
msg = "TESTING SET - Manually Tunned RF Model Score: %f 
(%f)" % (rf_model_scores.mean(), rf_model_scores.std()) 
print(msg) 
 
xgb_model = XGBClassifier(random_state=SEED) 
params = { 
        'n_estimators': [100, 200, 300], 
        'learning_rate': [0.1, 0.05, 0.01], 
        'max_depth': [3, 5, 10], 
        'subsample': [0.5, 1.0, 'uniform'], 
        'gamma':[0, 5.0], 
        'colsample_bytree': [0.8, 0.9, 1.0] 
        } 
     
xgb_search = BayesSearchCV(xgb_model, params, scoring = 
scoring_metric, cv = cv_metric, random_state = SEED) 
xgb_search.fit(X_train_final, y_train_final) 
manual_best_xgb_model = xgb_search.best_estimator_ 
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xgb_model_scores = cross_val_score(manual_best_xgb_model, 
X_train_final, y_train_final, cv = cv_metric, 
scoring=scoring_metric) 
msg = "TRAINING SET - Manually Tunned XGB Model Score: %f 
(%f)" % (xgb_model_scores.mean(), xgb_model_scores.std()) 
print(msg) 
         
xgb_model_scores = cross_val_score(manual_best_xgb_model, 
X_test_final, y_test_final, cv = cv_metric, 
scoring=scoring_metric) 
msg = "TEST SET - Manually Tunned XGB Model Score: %f 
(%f)" % (xgb_model_scores.mean(), xgb_model_scores.std()) 
print(msg) 
 
mlpc_model = 
MLPClassifier(random_state=SEED,max_iter=2000) 
params = { 
        #'hidden_layer_sizes': 
[(50,),(100,),(50,50),(100,50,25)], 
        'activation':['relu','tanh'], 
        'solver':['sgd','adam'], 
        'learning_rate':['constant','adaptive'], 
        'alpha':[0.0001, 0.001, 0.01] 
        } 
       
mlpc_search = BayesSearchCV(mlpc_model, params, scoring = 
scoring_metric, cv = cv_metric, random_state = SEED) 
mlpc_search.fit(X_train_final, y_train_final) 
manual_best_mlpc_model = mlpc_search.best_estimator_ 
   
mlpc_model_scores = 
cross_val_score(manual_best_mlpc_model, X_train_final, 
y_train_final, cv = cv_metric, scoring=scoring_metric) 
msg = "TRAINING SET - Manually Tunned ANN Model Score: %f 
(%f)" % (mlpc_model_scores.mean(), 
mlpc_model_scores.std()) 
print(msg)  
            
mlpc_model_scores = 
cross_val_score(manual_best_mlpc_model, X_test_final, 
y_test_final, cv = cv_metric, scoring=scoring_metric) 
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msg = "TEST SET - Manually Tunned ANN Model Score: %f 
(%f)" % (mlpc_model_scores.mean(), 
mlpc_model_scores.std()) 
print(msg)   
 
base_learners = [ 
        ('LR', manual_best_lr_model), 
        ('RF', manual_best_rf_model), 
        ('ANN', manual_best_mlpc_model), 
        ('XGB', manual_best_xgb_model), 
        ] 
     
manual_stk_model = 
StackingClassifier(estimators=base_learners, 
final_estimator = lr_model, cv = cv_metric) 
manual_stk_model.fit(X_train_final, y_train_final) 
 
stk_model_scores = cross_val_score(manual_stk_model, 
X_train_final, y_train_final, cv = cv_metric, 
scoring=scoring_metric) 
msg = "TRAINING SET - Manually Tunned Stacking Classifier 
Model Score: %f (%f)" % (stk_model_scores.mean(), 
stk_model_scores.std()) 
print(msg) 
     
stk_model_scores = cross_val_score(manual_stk_model, 
X_test_final, y_test_final, cv = cv_metric, 
scoring=scoring_metric) 
msg = "TEST SET - Manually Tunned Stacking Classifier 
Model Score: %f (%f)" % (stk_model_scores.mean(), 
stk_model_scores.std()) 
print(msg) 
 
# Select Features using RFE-SVM 
print('Performing Feature Selection with RFE-SVM') 
estimator = SVC(random_state=SEED, probability=True, 
kernel='linear') 
selector = RFECV(estimator = estimator, cv = cv_metric, 
scoring = scoring_metric) 
selector.fit(X_train_scaled,y_train) 
selector.support_ 
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#print('Optimal number of features :', 
selector.n_features_) 
#print('Best RFECV-SVM features: ', 
X.columns[selector.support_]) 
#print('Original features :', X.columns) 
plt.figure() 
plt.xlabel("Number of features selected") 
plt.ylabel("Cross validation score \n of number of 
selected features") 
plt.plot(range(1, len(selector.grid_scores_) + 1), 
selector.grid_scores_) 
plt.show() 
 
rfe_svm_features = 
X_train_scaled.columns[selector.support_] 
 
X_train_final = X_train_scaled.copy() 
X_test_final = X_test_scaled.copy() 
y_train_final = y_train.copy() 
y_test_final = y_test.copy() 
 
X_train_final = X_train_final[rfe_svm_features] 
X_test_final = X_test_final[rfe_svm_features] 
y_train_final = y_train_final 
y_test_final = y_test_final 
 
lr_model = LogisticRegression(random_state=SEED) 
params = { 
        'C': [0.1, 1, 10], 
        'penalty': ['l1', 'l2'], 
        'solver': ['liblinear','saga'], 
        'class_weight':[None,'balanced'] 
    } 
     
lr_search = BayesSearchCV(lr_model, params, scoring = 
scoring_metric, cv = cv_metric, random_state = SEED) 
lr_search.fit(X_train_final, y_train_final) 
rfe_svm_best_lr_model = lr_search.best_estimator_ 
  
lr_model_scores = cross_val_score(rfe_svm_best_lr_model, 
X_train_final, y_train_final, cv = cv_metric, 
scoring=scoring_metric) 
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msg = "TRAINING SET - RFECV-SVM Tunned LR Model Score: %f 
(%f)" % (lr_model_scores.mean(), lr_model_scores.std()) 
print(msg) 
    
lr_model_scores = cross_val_score(rfe_svm_best_lr_model, 
X_test_final, y_test_final, cv = cv_metric, 
scoring=scoring_metric) 
msg = "TEST SET - RFECV-SVM Tunned LR Model Score: %f 
(%f)" % (lr_model_scores.mean(), lr_model_scores.std()) 
print(msg) 
 
rf_model = RandomForestClassifier(random_state=SEED) 
params = { 
        'n_estimators': [100, 200, 300], 
        'max_depth': [None, 5, 10, 15], 
        'min_samples_split': [2, 5, 10], 
        'min_samples_leaf': [1, 2, 4], 
        'max_features': ['auto','sqrt','log2'], 
        'criterion': ['gini', 'entropy'], 
        'class_weight':[None,'balanced'], 
        } 
     
rf_search = BayesSearchCV(rf_model, params, scoring = 
scoring_metric, cv = cv_metric, random_state = SEED) 
rf_search.fit(X_train_final, y_train_final) 
rfe_svm_best_rf_model = rf_search.best_estimator_ 
 
rf_model_scores = cross_val_score(rfe_svm_best_rf_model, 
X_train_final, y_train_final, cv = cv_metric, 
scoring=scoring_metric) 
msg = "TRAINING SET - RFECV-SVM Tunned RF Model Score: %f 
(%f)" % (rf_model_scores.mean(), rf_model_scores.std()) 
print(msg) 
     
rf_model_scores = cross_val_score(rfe_svm_best_rf_model, 
X_test_final, y_test_final, cv = cv_metric, 
scoring=scoring_metric) 
msg = "TEST SET - RFECV-SVM Tunned RF Model Score: %f 
(%f)" % (rf_model_scores.mean(), rf_model_scores.std()) 
print(msg) 
 
xgb_model = XGBClassifier(random_state=SEED) 
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params = { 
        'n_estimators': [100, 200, 300], 
        'learning_rate': [0.1, 0.05, 0.01], 
        'max_depth': [3, 5, 10], 
        'subsample': [0.5, 1.0, 'uniform'], 
        'gamma':[0, 5.0], 
        'colsample_bytree': [0.8, 0.9, 1.0] 
        } 
     
xgb_search = BayesSearchCV(xgb_model, params, scoring = 
scoring_metric, cv = cv_metric, random_state = SEED) 
xgb_search.fit(X_train_final, y_train_final) 
rfe_svm_best_xgb_model = xgb_search.best_estimator_ 
 
xgb_model_scores = 
cross_val_score(rfe_svm_best_xgb_model, X_train_final, 
y_train_final, cv = cv_metric, scoring=scoring_metric) 
msg = "TRAINING SET - RFECV-SVM Tunned XGB Model Score: 
%f (%f)" % (xgb_model_scores.mean(), 
xgb_model_scores.std()) 
print(msg) 
         
xgb_model_scores = 
cross_val_score(rfe_svm_best_xgb_model, X_test_final, 
y_test_final, cv = cv_metric, scoring=scoring_metric) 
msg = "TEST SET - RFECV-SVM Tunned XGB Model Score: %f 
(%f)" % (xgb_model_scores.mean(), xgb_model_scores.std()) 
print(msg) 
 
mlpc_model = 
MLPClassifier(random_state=SEED,max_iter=2000) 
params = { 
        #'hidden_layer_sizes': 
[(50,),(100,),(50,50),(100,50,25)], 
        'activation':['relu','tanh'], 
        'solver':['sgd','adam'], 
        'learning_rate':['constant','adaptive'], 
        'alpha':[0.0001, 0.001, 0.01] 
        } 
       
mlpc_search = BayesSearchCV(mlpc_model, params, scoring = 
scoring_metric, cv = cv_metric, random_state = SEED) 
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mlpc_search.fit(X_train_final, y_train_final) 
rfe_svm_best_mlpc_model = mlpc_search.best_estimator_ 
  
mlpc_model_scores = 
cross_val_score(rfe_svm_best_mlpc_model, X_train_final, 
y_train_final, cv = cv_metric, scoring=scoring_metric) 
msg = "TRAINING SET - RFECV-SVM Tunned ANN Model Score: 
%f (%f)" % (mlpc_model_scores.mean(), 
mlpc_model_scores.std()) 
print(msg)   
             
mlpc_model_scores = 
cross_val_score(rfe_svm_best_mlpc_model, X_test_final, 
y_test_final, cv = cv_metric, scoring=scoring_metric) 
msg = "TEST SET - RFECV-SVM Tunned ANN Model Score: %f 
(%f)" % (mlpc_model_scores.mean(), 
mlpc_model_scores.std()) 
print(msg)   
 
base_learners = [ 
        ('LR', rfe_svm_best_lr_model), 
        ('RF', rfe_svm_best_rf_model), 
        ('ANN', rfe_svm_best_mlpc_model), 
        ('XGB', rfe_svm_best_xgb_model), 
        ] 
     
rfe_svm_stk_model = 
StackingClassifier(estimators=base_learners, 
final_estimator = lr_model, cv = cv_metric) 
rfe_svm_stk_model.fit(X_train_final, y_train_final) 
  
stk_model_scores = cross_val_score(rfe_svm_stk_model, 
X_train_final, y_train_final, cv = cv_metric, 
scoring=scoring_metric) 
msg = "TRAINING SET - RFECV-SVM Tunned Stacking 
Classifier Model Score: %f (%f)" % 
(stk_model_scores.mean(), stk_model_scores.std()) 
print(msg) 
    
stk_model_scores = cross_val_score(rfe_svm_stk_model, 
X_test_final, y_test_final, cv = cv_metric, 
scoring=scoring_metric) 
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msg = "TEST SET - RFECV-SVM Tunned Stacking Classifier 
Model Score: %f (%f)" % (stk_model_scores.mean(), 
stk_model_scores.std()) 
print(msg) 
 
# Select Features using BorutaSHAP 
print('Performing Feature Selection with BorutaSHAP') 
selector = BorutaShap(model = 
RandomForestClassifier(random_state=SEED), 
importance_measure = 'shap', classification = True) 
selector.fit(X=X_train_scaled, y=y_train, n_trials = 100, 
random_state=SEED) 
selector.plot(which_features='all', figsize=(16,12)) 
 
features_to_remove = selector.features_to_remove 
borutaSHAP_features = [column for column in 
X_train.columns if column not in features_to_remove] 
#print('Best BorutaSHAP features: ', borutaSHAP_features) 
 
X_train_final = X_train_scaled.copy() 
X_test_final = X_test_scaled.copy() 
y_train_final = y_train.copy() 
y_test_final = y_test.copy() 
 
X_train_final = X_train_final[borutaSHAP_features] 
X_test_final = X_test_final[borutaSHAP_features] 
y_train_final = y_train_final 
y_test_final = y_test_final 
 
lr_model = LogisticRegression(random_state=SEED) 
params = { 
        'C': [0.1, 1, 10], 
        'penalty': ['l1', 'l2'], 
        'solver': ['liblinear','saga'], 
        'class_weight':[None,'balanced'] 
    } 
     
lr_search = BayesSearchCV(lr_model, params, scoring = 
scoring_metric, cv = cv_metric, random_state = SEED) 
lr_search.fit(X_train_final, y_train_final) 
borutaSHAP_best_lr_model = lr_search.best_estimator_ 
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lr_model_scores = 
cross_val_score(borutaSHAP_best_lr_model, X_train_final, 
y_train_final, cv = cv_metric, scoring=scoring_metric) 
msg = "TRAINING SET - borutaSHAP Tunned LR Model Score: 
%f (%f)" % (lr_model_scores.mean(), 
lr_model_scores.std()) 
print(msg) 
    
lr_model_scores = 
cross_val_score(borutaSHAP_best_lr_model, X_test_final, 
y_test_final, cv = cv_metric, scoring=scoring_metric) 
msg = "TEST SET - borutaSHAP Tunned LR Model Score: %f 
(%f)" % (lr_model_scores.mean(), lr_model_scores.std()) 
print(msg) 
 
rf_model = RandomForestClassifier(random_state=SEED) 
params = { 
        'n_estimators': [100, 200, 300], 
        'max_depth': [None, 5, 10, 15], 
        'min_samples_split': [2, 5, 10], 
        'min_samples_leaf': [1, 2, 4], 
        'max_features': ['auto','sqrt','log2'], 
        'criterion': ['gini', 'entropy'], 
        'class_weight':[None,'balanced'], 
        } 
     
rf_search = BayesSearchCV(rf_model, params, scoring = 
scoring_metric, cv = cv_metric, random_state = SEED) 
rf_search.fit(X_train_final, y_train_final) 
borutaSHAP_best_rf_model = rf_search.best_estimator_ 
 
rf_model_scores = 
cross_val_score(borutaSHAP_best_rf_model, X_train_final, 
y_train_final, cv = cv_metric, scoring=scoring_metric) 
msg = "TRAINING SET - borutaSHAP Tunned RF Model Score: 
%f (%f)" % (rf_model_scores.mean(), 
rf_model_scores.std()) 
print(msg) 
     
rf_model_scores = 
cross_val_score(borutaSHAP_best_rf_model, X_test_final, 
y_test_final, cv = cv_metric, scoring=scoring_metric) 
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msg = "TEST SET - borutaSHAP Tunned RF Model Score: %f 
(%f)" % (rf_model_scores.mean(), rf_model_scores.std()) 
print(msg) 
 
xgb_model = XGBClassifier(random_state=SEED) 
params = { 
        'n_estimators': [100, 200, 300], 
        'learning_rate': [0.1, 0.05, 0.01], 
        'max_depth': [3, 5, 10], 
        'subsample': [0.5, 1.0, 'uniform'], 
        'gamma':[0, 5.0], 
        'colsample_bytree': [0.8, 0.9, 1.0] 
        } 
     
xgb_search = BayesSearchCV(xgb_model, params, scoring = 
scoring_metric, cv = cv_metric, random_state = SEED) 
xgb_search.fit(X_train_final, y_train_final) 
borutaSHAP_best_xgb_model = xgb_search.best_estimator_ 
  
xgb_model_scores = 
cross_val_score(borutaSHAP_best_xgb_model, X_train_final, 
y_train_final, cv = cv_metric, scoring=scoring_metric) 
msg = "TRAINING SET - borutaSHAP Tunned XGB Model Score: 
%f (%f)" % (xgb_model_scores.mean(), 
xgb_model_scores.std()) 
print(msg) 
        
xgb_model_scores = 
cross_val_score(borutaSHAP_best_xgb_model, X_test_final, 
y_test_final, cv = cv_metric, scoring=scoring_metric) 
msg = "TEST SET - borutaSHAP Tunned XGB Model Score: %f 
(%f)" % (xgb_model_scores.mean(), xgb_model_scores.std()) 
print(msg) 
 
mlpc_model = 
MLPClassifier(random_state=SEED,max_iter=2000) 
params = { 
        #'hidden_layer_sizes': 
[(50,),(100,),(50,50),(100,50,25)], 
        'activation':['relu','tanh'], 
        'solver':['sgd','adam'], 
        'learning_rate':['constant','adaptive'], 
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        'alpha':[0.0001, 0.001, 0.01] 
        } 
       
mlpc_search = BayesSearchCV(mlpc_model, params, scoring = 
scoring_metric, cv = cv_metric, random_state = SEED) 
mlpc_search.fit(X_train_final, y_train_final) 
borutaSHAP_best_mlpc_model = mlpc_search.best_estimator_ 
  
mlpc_model_scores = 
cross_val_score(borutaSHAP_best_mlpc_model, 
X_train_final, y_train_final, cv = cv_metric, 
scoring=scoring_metric) 
msg = "TRAINING SET - borutaSHAP Tunned ANN Model Score: 
%f (%f)" % (mlpc_model_scores.mean(), 
mlpc_model_scores.std()) 
print(msg)  
             
mlpc_model_scores = 
cross_val_score(borutaSHAP_best_mlpc_model, X_test_final, 
y_test_final, cv = cv_metric, scoring=scoring_metric) 
msg = "TEST SET - borutaSHAP Tunned ANN Model Score: %f 
(%f)" % (mlpc_model_scores.mean(), 
mlpc_model_scores.std()) 
print(msg)    
 
base_learners = [ 
        ('LR', borutaSHAP_best_lr_model), 
        ('RF', borutaSHAP_best_rf_model), 
        ('ANN', borutaSHAP_best_mlpc_model), 
        ('XGB', borutaSHAP_best_xgb_model), 
        ] 
     
borutaSHAP_stk_model = 
StackingClassifier(estimators=base_learners, 
final_estimator = lr_model, cv = cv_metric) 
borutaSHAP_stk_model.fit(X_train_final, y_train_final) 
  
stk_model_scores = cross_val_score(borutaSHAP_stk_model, 
X_train_final, y_train_final, cv = cv_metric, 
scoring=scoring_metric) 
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msg = "TRAINING SET - BorutaSHAP Tunned Stacking 
Classifier Model Score: %f (%f)" % 
(stk_model_scores.mean(), stk_model_scores.std()) 
print(msg) 
    
stk_model_scores = cross_val_score(borutaSHAP_stk_model, 
X_test_final, y_test_final, cv = cv_metric, 
scoring=scoring_metric) 
msg = "TEST SET - BorutaSHAP Tunned Stacking Classifier 
Model Score: %f (%f)" % (stk_model_scores.mean(), 
stk_model_scores.std()) 
print(msg)  
 
# Select Features using LASSO 
print('Performing Feature Selection with LASSO') 
selector = LassoCV() 
selector.fit(X_train_scaled,y_train) 
coefficients = selector.coef_ 
importance = np.abs(coefficients) 
lasso_features = np.array(X_train.columns)[importance > 
0] 
#print('Best LASSO features: ', lasso_features) 
 
X_train_final = X_train_scaled.copy() 
X_test_final = X_test_scaled.copy() 
y_train_final = y_train.copy() 
y_test_final = y_test.copy() 
 
X_train_final = X_train_final[lasso_features] 
X_test_final = X_test_final[lasso_features] 
y_train_final = y_train_final 
y_test_final = y_test_final 
 
lr_model = LogisticRegression(random_state=SEED) 
params = { 
        'C': [0.1, 1, 10], 
        'penalty': ['l1', 'l2'], 
        'solver': ['liblinear','saga'], 
        'class_weight':[None,'balanced'] 
    } 
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lr_search = BayesSearchCV(lr_model, params, scoring = 
scoring_metric, cv = cv_metric, random_state = SEED) 
lr_search.fit(X_train_final, y_train_final) 
lasso_best_lr_model = lr_search.best_estimator_ 
 
lr_model_scores = cross_val_score(lasso_best_lr_model, 
X_train_final, y_train_final, cv = cv_metric, 
scoring=scoring_metric) 
msg = "TRAINING SET - LASSO Tunned LR Model Score: %f 
(%f)" % (lr_model_scores.mean(), lr_model_scores.std()) 
print(msg) 
     
lr_model_scores = cross_val_score(lasso_best_lr_model, 
X_test_final, y_test_final, cv = cv_metric, 
scoring=scoring_metric) 
msg = "TEST SET - LASSO Tunned LR Model Score: %f (%f)" % 
(lr_model_scores.mean(), lr_model_scores.std()) 
print(msg) 
 
rf_model = RandomForestClassifier(random_state=SEED) 
params = { 
        'n_estimators': [100, 200, 300], 
        'max_depth': [None, 5, 10, 15], 
        'min_samples_split': [2, 5, 10], 
        'min_samples_leaf': [1, 2, 4], 
        'max_features': ['auto','sqrt','log2'], 
        'criterion': ['gini', 'entropy'], 
        'class_weight':[None,'balanced'], 
        } 
     
rf_search = BayesSearchCV(rf_model, params, scoring = 
scoring_metric, cv = cv_metric, random_state = SEED) 
rf_search.fit(X_train_final, y_train_final) 
lasso_best_rf_model = rf_search.best_estimator_ 
 
rf_model_scores = cross_val_score(lasso_best_rf_model, 
X_train_final, y_train_final, cv = cv_metric, 
scoring=scoring_metric) 
msg = "TRAINING SET - LASSO Tunned RF Model Score: %f 
(%f)" % (rf_model_scores.mean(), rf_model_scores.std()) 
print(msg) 
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rf_model_scores = cross_val_score(lasso_best_rf_model, 
X_test_final, y_test_final, cv = cv_metric, 
scoring=scoring_metric) 
msg = "TEST SET - LASSO Tunned RF Model Score: %f (%f)" % 
(rf_model_scores.mean(), rf_model_scores.std()) 
print(msg) 
 
xgb_model = XGBClassifier(random_state=SEED) 
params = { 
        'n_estimators': [100, 200, 300], 
        'learning_rate': [0.1, 0.05, 0.01], 
        'max_depth': [3, 5, 10], 
        'subsample': [0.5, 1.0, 'uniform'], 
        'gamma':[0, 5.0], 
        'colsample_bytree': [0.8, 0.9, 1.0] 
        } 
     
xgb_search = BayesSearchCV(xgb_model, params, scoring = 
scoring_metric, cv = cv_metric, random_state = SEED) 
xgb_search.fit(X_train_final, y_train_final) 
lasso_best_xgb_model = xgb_search.best_estimator_ 
 
xgb_model_scores = cross_val_score(lasso_best_xgb_model, 
X_train_final, y_train_final, cv = cv_metric, 
scoring=scoring_metric) 
msg = "TRAINING SET - LASSO Tunned XGB Model Score: %f 
(%f)" % (xgb_model_scores.mean(), xgb_model_scores.std()) 
print(msg) 
         
xgb_model_scores = cross_val_score(lasso_best_xgb_model, 
X_test_final, y_test_final, cv = cv_metric, 
scoring=scoring_metric) 
msg = "TEST SET - LASSO Tunned XGB Model Score: %f (%f)" 
% (xgb_model_scores.mean(), xgb_model_scores.std()) 
print(msg) 
 
mlpc_model = 
MLPClassifier(random_state=SEED,max_iter=2000) 
params = { 
        #'hidden_layer_sizes': 
[(50,),(100,),(50,50),(100,50,25)], 
        'activation':['relu','tanh'], 
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        'solver':['sgd','adam'], 
        'learning_rate':['constant','adaptive'], 
        'alpha':[0.0001, 0.001, 0.01] 
        } 
       
mlpc_search = BayesSearchCV(mlpc_model, params, scoring = 
scoring_metric, cv = cv_metric, random_state = SEED) 
mlpc_search.fit(X_train_final, y_train_final) 
lasso_best_mlpc_model = mlpc_search.best_estimator_ 
 
mlpc_model_scores = 
cross_val_score(lasso_best_mlpc_model, X_train_final, 
y_train_final, cv = cv_metric, scoring=scoring_metric) 
msg = "TRAINING SET - LASSO Tunned ANN Model Score: %f 
(%f)" % (mlpc_model_scores.mean(), 
mlpc_model_scores.std()) 
print(msg) 
              
mlpc_model_scores = 
cross_val_score(lasso_best_mlpc_model, X_test_final, 
y_test_final, cv = cv_metric, scoring=scoring_metric) 
msg = "TEST SET - LASSO Tunned ANN Model Score: %f (%f)" 
% (mlpc_model_scores.mean(), mlpc_model_scores.std()) 
print(msg) 
     
base_learners = [ 
        ('LR', lasso_best_lr_model), 
        ('RF', lasso_best_rf_model), 
        ('ANN', lasso_best_mlpc_model), 
        ('XGB', lasso_best_xgb_model), 
        ] 
     
LASSO_stk_model = 
StackingClassifier(estimators=base_learners, 
final_estimator = lr_model, cv = cv_metric) 
LASSO_stk_model.fit(X_train_final, y_train_final) 
 
stk_model_scores = cross_val_score(LASSO_stk_model, 
X_train_final, y_train_final, cv = cv_metric, 
scoring=scoring_metric) 
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msg = "TRAINING SET - LASSO Tunned Stacking Classifier 
Model Score: %f (%f)" % (stk_model_scores.mean(), 
stk_model_scores.std()) 
print(msg)  
     
stk_model_scores = cross_val_score(LASSO_stk_model, 
X_test_final, y_test_final, cv = cv_metric, 
scoring=scoring_metric) 
msg = "TEST SET - LASSO Tunned Stacking Classifier Model 
Score: %f (%f)" % (stk_model_scores.mean(), 
stk_model_scores.std()) 
print(msg)  
 
# Perform Threshold Tunning 
# Tune Stacking Model Decision Threshold 
y_probs_tune = 
borutaSHAP_stk_model.predict_proba(X_train_scaled[borutaS
HAP_features].values) 
y_probs_tune = y_probs_tune[:,1] 
 
cv = StratifiedKFold(n_splits=10, shuffle=True, 
random_state=SEED) 
thresholds = np.arange(0.01,0.99,0.001) 
thresholds_df = pd.DataFrame({'threshold':thresholds})  
i = 1 
for _, val_index in 
cv.split(X_train_scaled[borutaSHAP_features],y_train): 
    X_val_cv = 
X_train_scaled[borutaSHAP_features].iloc[val_index] 
    y_val_cv = y_train_final.iloc[val_index] 
 
    y_probs_tune = 
borutaSHAP_stk_model.predict_proba(X_val_cv.values) 
    y_probs_tune = y_probs_tune[:,1] 
 
    fscores = [] 
    for threshold in thresholds: 
        y_pred = y_probs_tune > threshold 
        fscore = roc_auc_score(y_val_cv, y_pred) 
        fscores.append(fscore) 
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    thresholds_df = 
pd.concat([thresholds_df,pd.DataFrame({'Fold'+str(i):fsco
res})],axis=1) 
    i = i + 1 
average_fscores = 
pd.DataFrame({'average':thresholds_df.iloc[:,1:10+1].mean
(axis=1)}) 
pr_ix = np.nanargmax(average_fscores) 
 
decision_threshold = thresholds[pr_ix] 
 
print('Optimal decision threshold: '+ 
str(decision_threshold)) 
 
def binary_performances(y_true, y_prob, thresh=0.5, 
labels=['Positives','Negatives'], title = ''): 
 
    shape = y_prob.shape 
    if len(shape) > 1: 
        if shape[1] > 2: 
            raise ValueError('A binary class problem is 
required') 
        else: 
            y_prob = y_prob[:,1] 
 
    plt.figure(figsize=[15,12]) 
 
    #1 -- Confusion matrix 
    cm = confusion_matrix(y_true, 
(y_prob>thresh).astype(int)) 
 
    plt.subplot(221) 
    ax = sns.heatmap(cm, annot=True, cmap='Blues', 
cbar=False,  
                      annot_kws={"size": 14}, fmt='g') 
    cmlabels = ['True Negatives', 'False Positives', 
                'False Negatives', 'True Positives'] 
    for i,t in enumerate(ax.texts): 
        t.set_text(t.get_text() + "\n" + cmlabels[i]) 
    plt.title('Confusion Matrix', size=15) 
    plt.xlabel('Predicted Values', size=13) 
    plt.ylabel('True Values', size=13) 
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    #2 -- Distributions of Predicted Probabilities of 
both classes 
    plt.subplot(222) 
    plt.hist(y_prob[y_true==1], density=True, bins=25, 
              alpha=.5, color='green',  label=labels[0]) 
    plt.hist(y_prob[y_true==0], density=True, bins=25, 
              alpha=.5, color='red', label=labels[1]) 
    plt.axvline(thresh, color='blue', linestyle='--', 
label='Decision Threshold') 
    plt.xlim([0,1]) 
    plt.title('Distributions of Predictions', size=15) 
    plt.xlabel('Positive Probability (predicted)', 
size=13) 
    plt.ylabel('Samples (normalized scale)', size=13) 
    plt.legend(loc="upper right") 
 
    #3 -- ROC curve with annotated decision point 
    fp_rates, tp_rates, _ = roc_curve(y_true, y_prob) 
    roc_auc = auc(fp_rates, tp_rates) 
    plt.subplot(223) 
    plt.plot(fp_rates, tp_rates, color='orange', 
              lw=1, label='ROC curve (area = %0.3f)' % 
roc_auc) 
    plt.plot([0, 1], [0, 1], lw=1, linestyle='--', 
color='grey') 
    tn, fp, fn, tp = [i for i in cm.ravel()] 
    plt.plot(fp/(fp+tn), tp/(tp+fn), 'bo', markersize=8, 
label='Decision Point') 
    plt.xlim([0.0, 1.0]) 
    plt.ylim([0.0, 1.05]) 
    plt.xlabel('False Positive Rate', size=13) 
    plt.ylabel('True Positive Rate', size=13) 
    plt.title('ROC Curve', size=15) 
    plt.legend(loc="lower right") 
    plt.subplots_adjust(wspace=.3) 
 
    #4 -- PR curve with annotated decision point 
    precisions, recalls, _ = 
precision_recall_curve(y_true, y_prob) 
    pr_auc = auc(recalls, precisions) 
    plt.subplot(224) 
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    plt.plot(recalls, precisions, color='orange', 
              lw=1, label='PR curve (area = %0.3f)' % 
pr_auc) 
    no_skill_score = len(y_true[y_true==1]) / len(y_true) 
    plt.plot([0, 1], [no_skill_score, no_skill_score], 
lw=1, linestyle='--', color='grey') 
    tn, fp, fn, tp = [i for i in cm.ravel()] 
    plt.plot(tp/(tp+fn), tp/(tp+fp), 'bo', markersize=8, 
label='Decision Point') 
    plt.xlim([0.0, 1.0]) 
    plt.ylim([0.0, 1.05]) 
    plt.xlabel('Recall', size=13) 
    plt.ylabel('Precision', size=13) 
    plt.title('Precision-Recall Curve', size=15) 
    plt.legend(loc="upper right") 
    plt.subplots_adjust(wspace=.3) 
 
    plt.suptitle(title) 
    plt.show() 
 
    tn, fp, fn, tp = [i for i in cm.ravel()] 
    accuracy = (tp+tn)/(tp+fp+tn+fp) 
    precision = tp / (tp + fp) 
    recall = tp / (tp + fn) 
    F1 = 2*(precision * recall) / (precision + recall) 
 
    results = { 
        'Decision Threshold': thresh, 
        "TN": tn, "FP": fp, "FN": fn, "TP": tp, 
        "Accuracy": accuracy, "Precision": precision, 
        "Recall": recall, "F1 Score": F1,  
        "AUC": roc_auc, "PR AUC":pr_auc 
    } 
 
    prints = [f"{kpi}: {round(score, 3)}" for kpi,score 
in results.items()] 
    prints = ' | '.join(prints) 
    print(prints) 
 
    return results 
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y_no_model = X_test['sbp'].apply(lambda x: 1 if x > 120 
else 0) 
no_model_test_results = binary_performances(y_test, 
y_no_model, title = 'No Model Evaluation: Testing Set') 
 
y_probs = 
borutaSHAP_stk_model.predict_proba(X_test_scaled[borutaSH
AP_features]) 
y_probs = y_probs[:,1] 
stk_test_results = binary_performances(y_test, 
y_probs,thresh = decision_threshold, title = 'Stacking 
Classifier Model Evaluation: Testing Set') 
     
### Explain Classifier Model 
# SHAP Feature Importance Plot 
explainer = shap.Explainer(borutaSHAP_stk_model.predict, 
X_test_scaled[borutaSHAP_features].values) 
shap_values = 
explainer(X_test_scaled[borutaSHAP_features]) 
#shap_values = shap_values[:,:,1] 
shap.plots.beeswarm(shap_values,max_display=X_test_scaled
[borutaSHAP_features].shape[1]) 
 
# Calculate the mean absolute SHAP values for each 
feature 
feature_importance = 
np.abs(shap_values.values).mean(axis=0) 
 
# Create a DataFrame to store the feature importance 
scores 
feature_importance_df = pd.DataFrame({ 
    'Feature': 
X_test_scaled[borutaSHAP_features].columns, 
    'Importance': feature_importance 
}) 
 
# Sort the DataFrame by importance scores in descending 
order 
feature_importance_df = 
feature_importance_df.sort_values('Importance', 
ascending=False) 
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# Partial Dependency Plots (PDP) 
for i in 
range(len(X_test_scaled[borutaSHAP_features].columns)): 
    
plot_partial_dependence(estimator=borutaSHAP_stk_model,X=
X_test_scaled[borutaSHAP_features],features=[i],feature_n
ames=X_test_scaled[borutaSHAP_features].columns) 
  



193 
 

C-1.2 African PREDICT MHT Data Analysis 

# Import Libraries 
import pandas as pd 
import numpy as np 
from scipy.stats import bartlett, kruskal, shapiro, 
ttest_ind, chi2_contingency 
from sklearn.model_selection import train_test_split 
import sys 
 
# Define SEED 
SEED = 42 
 
# Define Scoring Metric 
scoring_metric = 'roc_auc' 
 
# Define CV Metric 
cv_metric = 7 
 
# Define Split Ratio 
split_ratio = 0.2 
 
# Define Label 
label = 'abpm_overall_ht' 
 
# Load Data  
file_path = 'C:/Users/brendym/Desktop/African PREDICT 
dataset/PhD Files/' 
file_name = 'Richardson_Oct 2021 Unprotected.xlsx' 
df = pd.read_excel(file_path+file_name) 
df_cleaned = df.copy() 
 
sbp = 
pd.DataFrame((df_cleaned['l_sbp_1']+df_cleaned['l_sbp_2'] 
                            
+df_cleaned['r_sbp_1']+df_cleaned['r_sbp_2'] 
                            
+df_cleaned['sphygmocor_sbp1']+df_cleaned['sphygmocor_sbp
2'] 
                            
+df_cleaned['csbp_1']+df_cleaned['csbp_2'] 
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+df_cleaned['l_osbp']+df_cleaned['r_osbp'])/10, 
columns=['sbp']) 
df_cleaned = pd.concat([df_cleaned,sbp],axis = 1) 
df_cleaned = 
df_cleaned.drop(['l_sbp_1','l_sbp_2','r_sbp_1','r_sbp_2',
'sphygmocor_sbp1', 
                  
'sphygmocor_sbp2','csbp_1','csbp_2','l_osbp','r_osbp'],ax
is=1) 
 
dbp = 
pd.DataFrame((df_cleaned['l_dbp_1']+df_cleaned['l_dbp_2'] 
                            
+df_cleaned['r_dbp_1']+df_cleaned['r_dbp_2'] 
                            
+df_cleaned['sphygmocor_dbp1']+df_cleaned['sphygmocor_dbp
2'] 
                            
+df_cleaned['cdbp_1']+df_cleaned['cdbp_2'] 
                            
+df_cleaned['l_odbp']+df_cleaned['r_odbp'])/10, 
columns=['dbp']) 
df_cleaned = pd.concat([df_cleaned,dbp],axis = 1) 
df_cleaned = 
df_cleaned.drop(['l_dbp_1','l_dbp_2','r_dbp_1','r_dbp_2',
'sphygmocor_dbp1', 
                  
'sphygmocor_dbp2','cdbp_1','cdbp_2','l_odbp','r_odbp'],ax
is=1) 
 
# Create average hr metric 
hr = 
pd.DataFrame((df_cleaned['l_hr_1']+df_cleaned['l_hr_2'] 
                    
+df_cleaned['r_hr_1']+df_cleaned['r_hr_2'] 
                    
+df_cleaned['sphyg_hr1']+df_cleaned['sphyg_hr2'])/6, 
columns=['hr']) 
df_cleaned = pd.concat([df_cleaned,hr],axis = 1) 
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df_cleaned = 
df_cleaned.drop(['l_hr_1','l_hr_2','r_hr_1','r_hr_2','sph
yg_hr1','sphyg_hr2'],axis=1) 
 
# Create average cpp metric 
cpp = 
pd.DataFrame((df_cleaned['cpp1']+df_cleaned['cpp2'])/2, 
columns=['cpp']) 
df_cleaned = pd.concat([df_cleaned,cpp],axis = 1) 
df_cleaned = df_cleaned.drop(['cpp1','cpp2'],axis=1) 
 
# Create average map metric 
map = df_cleaned['clinic_map'].rename('map') 
df_cleaned = pd.concat([df_cleaned,map],axis = 1) 
df_cleaned = df_cleaned.drop(['clinic_map'],axis=1) 
 
# Create average cmp metric 
cmp = 
pd.DataFrame((df_cleaned['cmp_1']+df_cleaned['cmp_2'])/2, 
columns=['cmp']) 
df_cleaned = pd.concat([df_cleaned,cmp],axis = 1) 
df_cleaned = df_cleaned.drop(['cmp_1','cmp_2'],axis=1) 
 
# Create average pp metric 
pp = 
pd.DataFrame((df_cleaned['pulse_pressure']+df_cleaned['l_
pp']+df_cleaned['r_pp']/3),columns=['pp']) 
df_cleaned = pd.concat([df_cleaned,pp],axis = 1) 
df_cleaned = 
df_cleaned.drop(['pulse_pressure','l_pp','r_pp'],axis=1) 
 
# Create average ap metric 
ap = 
pd.DataFrame((df_cleaned['ap_1']+df_cleaned['ap_2'])/2, 
columns=['ap']) 
df_cleaned = pd.concat([df_cleaned,ap],axis = 1) 
df_cleaned = df_cleaned.drop(['ap_1','ap_2'],axis=1) 
 
# Create average cai metric 
cai = 
pd.DataFrame((df_cleaned['cai_1']+df_cleaned['cai_2'])/2, 
columns=['cai']) 
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df_cleaned = pd.concat([df_cleaned,cai],axis = 1) 
df_cleaned = df_cleaned.drop(['cai_1','cai_2'],axis=1) 
 
# Create average imtn_mean metric 
imtn_mean = 
pd.DataFrame((df_cleaned['l_imtn_mean']+df_cleaned['r_imt
n_mean'])/2, columns=['imtn_mean']) 
df_cleaned = pd.concat([df_cleaned,imtn_mean],axis = 1) 
df_cleaned = 
df_cleaned.drop(['l_imtn_mean','r_imtn_mean'],axis=1) 
 
# Create average imtn_min metric 
imtn_min = 
pd.DataFrame((df_cleaned['l_imtn_min']+df_cleaned['r_imtn
_min'])/2, columns=['imtn_min']) 
df_cleaned = pd.concat([df_cleaned,imtn_min],axis = 1) 
df_cleaned = 
df_cleaned.drop(['l_imtn_min','r_imtn_min'],axis=1) 
 
# Create average imtn_max metric 
imtn_max = 
pd.DataFrame((df_cleaned['l_imtn_max']+df_cleaned['r_imtn
_max'])/2, columns=['imtn_max']) 
df_cleaned = pd.concat([df_cleaned,imtn_max],axis = 1) 
df_cleaned = 
df_cleaned.drop(['l_imtn_max','r_imtn_max'],axis=1) 
 
# Create average imtn_std metric 
imtn_std = 
pd.DataFrame((df_cleaned['l_imtn_std']+df_cleaned['r_imtn
_std'])/2, columns=['imtn_std']) 
df_cleaned = pd.concat([df_cleaned,imtn_std],axis = 1) 
df_cleaned = 
df_cleaned.drop(['l_imtn_std','r_imtn_std'],axis=1) 
 
# Create average imtn_length metric 
imtn_length = 
pd.DataFrame((df_cleaned['l_imtn_length']+df_cleaned['r_i
mtn_length'])/2, columns=['imtn_length']) 
df_cleaned = pd.concat([df_cleaned,imtn_length],axis = 1) 
df_cleaned = 
df_cleaned.drop(['l_imtn_length','r_imtn_length'],axis=1) 
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# Create average imtf_mean metric 
imtf_mean = 
pd.DataFrame((df_cleaned['l_imtf_mean']+df_cleaned['r_imt
f_mean'])/2, columns=['imtf_mean']) 
df_cleaned = pd.concat([df_cleaned,imtf_mean],axis = 1) 
df_cleaned = 
df_cleaned.drop(['l_imtf_mean','r_imtf_mean'],axis=1) 
 
# Create average imtf_min metric 
imtf_min = 
pd.DataFrame((df_cleaned['l_imtf_min']+df_cleaned['r_imtf
_min'])/2, columns=['imtf_min']) 
df_cleaned = pd.concat([df_cleaned,imtf_min],axis = 1) 
df_cleaned = 
df_cleaned.drop(['l_imtf_min','r_imtf_min'],axis=1) 
 
# Create average imtf_max metric 
imtf_max = 
pd.DataFrame((df_cleaned['l_imtf_max']+df_cleaned['r_imtf
_max'])/2, columns=['imtf_max']) 
df_cleaned = pd.concat([df_cleaned,imtf_max],axis = 1) 
df_cleaned = 
df_cleaned.drop(['l_imtf_max','r_imtf_max'],axis=1) 
 
# Create average imtf_std metric 
imtf_std = 
pd.DataFrame((df_cleaned['l_imtf_std']+df_cleaned['r_imtf
_std'])/2, columns=['imtf_std']) 
df_cleaned = pd.concat([df_cleaned,imtf_std],axis = 1) 
df_cleaned = 
df_cleaned.drop(['l_imtf_std','r_imtf_std'],axis=1) 
 
# Create average imtf_length metric 
imtf_length = 
pd.DataFrame((df_cleaned['l_imtf_length']+df_cleaned['r_i
mtf_length'])/2, columns=['imtf_length']) 
df_cleaned = pd.concat([df_cleaned,imtf_length],axis = 1) 
df_cleaned = 
df_cleaned.drop(['l_imtf_length','r_imtf_length'],axis=1) 
 
# Create average ld_mean metric 



198 
 

ld_mean = 
pd.DataFrame((df_cleaned['l_ld_mean']+df_cleaned['r_ld_me
an'])/2, columns=['ld_mean']) 
df_cleaned = pd.concat([df_cleaned,ld_mean],axis = 1) 
df_cleaned = 
df_cleaned.drop(['l_ld_mean','r_ld_mean'],axis=1) 
 
# Create average ld_min metric 
ld_min = 
pd.DataFrame((df_cleaned['l_ld_min']+df_cleaned['r_ld_min
'])/2, columns=['ld_min']) 
df_cleaned = pd.concat([df_cleaned,ld_min],axis = 1) 
df_cleaned = 
df_cleaned.drop(['l_ld_min','r_ld_min'],axis=1) 
 
# Create average ld_max metric 
ld_max = 
pd.DataFrame((df_cleaned['l_ld_max']+df_cleaned['r_ld_max
'])/2, columns=['ld_max']) 
df_cleaned = pd.concat([df_cleaned,ld_max],axis = 1) 
df_cleaned = 
df_cleaned.drop(['l_ld_max','r_ld_max'],axis=1) 
 
# Create average ld_std metric 
ld_std = 
pd.DataFrame((df_cleaned['l_ld_std']+df_cleaned['r_ld_std
'])/2, columns=['ld_std']) 
df_cleaned = pd.concat([df_cleaned,ld_std],axis = 1) 
df_cleaned = 
df_cleaned.drop(['l_ld_std','r_ld_std'],axis=1) 
 
# Create average ld_legth metric 
ld_legth = 
pd.DataFrame((df_cleaned['l_ld_legth']+df_cleaned['r_ld_l
egth'])/2, columns=['ld_legth']) 
df_cleaned = pd.concat([df_cleaned,ld_legth],axis = 1) 
df_cleaned = 
df_cleaned.drop(['l_ld_legth','r_ld_legth'],axis=1) 
 
# Create average ad_mean metric 
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ad_mean = 
pd.DataFrame((df_cleaned['l_ad_mean']+df_cleaned['r_ad_me
an'])/2, columns=['ad_mean']) 
df_cleaned = pd.concat([df_cleaned,ad_mean],axis = 1) 
df_cleaned = 
df_cleaned.drop(['l_ad_mean','r_ad_mean'],axis=1) 
 
# Create average ad_min metric 
ad_min = 
pd.DataFrame((df_cleaned['l_ad_min']+df_cleaned['r_ad_min
'])/2, columns=['ad_min']) 
df_cleaned = pd.concat([df_cleaned,ad_min],axis = 1) 
df_cleaned = 
df_cleaned.drop(['l_ad_min','r_ad_min'],axis=1) 
 
# Create average ad_max metric 
ad_max = 
pd.DataFrame((df_cleaned['l_ad_max']+df_cleaned['r_ad_max
'])/2, columns=['ad_max']) 
df_cleaned = pd.concat([df_cleaned,ad_max],axis = 1) 
df_cleaned = 
df_cleaned.drop(['l_ad_max','r_ad_max'],axis=1) 
 
# Create average ad_std metric 
ad_std = 
pd.DataFrame((df_cleaned['l_ad_std']+df_cleaned['r_ad_std
'])/2, columns=['ad_std']) 
df_cleaned = pd.concat([df_cleaned,ad_std],axis = 1) 
df_cleaned = 
df_cleaned.drop(['l_ad_std','r_ad_std'],axis=1) 
 
# Create average ad_legth metric 
ad_length = 
pd.DataFrame((df_cleaned['l_ad_length']+df_cleaned['r_ad_
length'])/2, columns=['ad_length']) 
df_cleaned = pd.concat([df_cleaned,ad_length],axis = 1) 
df_cleaned = 
df_cleaned.drop(['l_ad_length','r_ad_length'],axis=1) 
 
# Create average rough_near metric 
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rough_near = 
pd.DataFrame((df_cleaned['l_rough_near']+df_cleaned['r_ro
ugh_near'])/2, columns=['rough_near']) 
df_cleaned = pd.concat([df_cleaned,rough_near],axis = 1) 
df_cleaned = 
df_cleaned.drop(['l_rough_near','r_rough_near'],axis=1) 
 
# Create average rough_far metric 
rough_far = 
pd.DataFrame((df_cleaned['l_rough_far']+df_cleaned['r_rou
gh_far'])/2, columns=['rough_far']) 
df_cleaned = pd.concat([df_cleaned,rough_far],axis = 1) 
df_cleaned = 
df_cleaned.drop(['l_rough_far','r_rough_far'],axis=1) 
 
# Create average cca_ps metric 
cca_ps = 
pd.DataFrame((df_cleaned['l_cca_ps']+df_cleaned['r_cca_ps
'])/2, columns=['cca_ps']) 
df_cleaned = pd.concat([df_cleaned,cca_ps],axis = 1) 
df_cleaned = 
df_cleaned.drop(['l_cca_ps','r_cca_ps'],axis=1) 
 
# Create average cca_ed metric 
cca_ed = 
pd.DataFrame((df_cleaned['l_cca_ed']+df_cleaned['r_cca_ed
'])/2, columns=['cca_ed']) 
df_cleaned = pd.concat([df_cleaned,cca_ed],axis = 1) 
df_cleaned = 
df_cleaned.drop(['l_cca_ed','r_cca_ed'],axis=1) 
 
# Create average ica_ps metric 
ica_ps = 
pd.DataFrame((df_cleaned['l_ica_ps']+df_cleaned['r_ica_ps
'])/2, columns=['ica_ps']) 
df_cleaned = pd.concat([df_cleaned,ica_ps],axis = 1) 
df_cleaned = 
df_cleaned.drop(['l_ica_ps','r_ica_ps'],axis=1) 
 
# Create average ica_ed metric 
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ica_ed = 
pd.DataFrame((df_cleaned['l_ica_ed']+df_cleaned['r_ica_ed
'])/2, columns=['ica_ed']) 
df_cleaned = pd.concat([df_cleaned,ica_ed],axis = 1) 
df_cleaned = 
df_cleaned.drop(['l_ica_ed','r_ica_ed'],axis=1) 
 
# Create average cswa metric 
cswa = 
pd.DataFrame((df_cleaned['lcswa']+df_cleaned['rcswa'])/2, 
columns=['cswa']) 
df_cleaned = pd.concat([df_cleaned,cswa],axis = 1) 
df_cleaned = df_cleaned.drop(['lcswa','rcswa'],axis=1) 
 
# Create average acimt metric 
acimt = 
pd.DataFrame((df_cleaned['l_acimt']+df_cleaned['r_acimt']
)/2, columns=['acimt']) 
df_cleaned = pd.concat([df_cleaned,acimt],axis = 1) 
df_cleaned = 
df_cleaned.drop(['l_acimt','r_acimt'],axis=1) 
 
# Create average delta_ld metric 
delta_ld = 
pd.DataFrame((df_cleaned['l_delta_ld']+df_cleaned['r_delt
a_ld'])/2, columns=['delta_ld']) 
df_cleaned = pd.concat([df_cleaned,delta_ld],axis = 1) 
df_cleaned = 
df_cleaned.drop(['l_delta_ld','r_delta_ld'],axis=1) 
 
# Create average strain metric 
strain = 
pd.DataFrame((df_cleaned['l_strain']+df_cleaned['r_strain
'])/2, columns=['strain']) 
df_cleaned = pd.concat([df_cleaned,strain],axis = 1) 
df_cleaned = 
df_cleaned.drop(['l_strain','r_strain'],axis=1) 
 
# Create average distensibility metric 
distensibility = 
pd.DataFrame((df_cleaned['l_distensibility']+df_cleaned['
r_distensibility'])/2, columns=['distensibility']) 
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df_cleaned = pd.concat([df_cleaned,distensibility],axis = 
1) 
df_cleaned = 
df_cleaned.drop(['l_distensibility','r_distensibility'],a
xis=1) 
 
# Create average compliance metric 
compliance = 
pd.DataFrame((df_cleaned['l_compliance']+df_cleaned['r_co
mpliance'])/2, columns=['compliance']) 
df_cleaned = pd.concat([df_cleaned,compliance],axis = 1) 
df_cleaned = 
df_cleaned.drop(['l_compliance','r_compliance'],axis=1) 
 
# Create average pem metric 
bsi = 
pd.DataFrame((df_cleaned['l_bsi']+df_cleaned['r_bsi'])/2, 
columns=['bsi']) 
df_cleaned = pd.concat([df_cleaned,bsi],axis = 1) 
df_cleaned = df_cleaned.drop(['l_bsi','r_bsi'],axis=1) 
 
# Create average pem metric 
pem = 
pd.DataFrame((df_cleaned['l_pem']+df_cleaned['r_pem'])/2, 
columns=['pem']) 
df_cleaned = pd.concat([df_cleaned,pem],axis = 1) 
df_cleaned = df_cleaned.drop(['l_pem','r_pem'],axis=1) 
 
# Create average pem metric 
yem = 
pd.DataFrame((df_cleaned['l_yem']+df_cleaned['r_yem'])/2, 
columns=['yem']) 
df_cleaned = pd.concat([df_cleaned,yem],axis = 1) 
df_cleaned = df_cleaned.drop(['l_yem','r_yem'],axis=1) 
 
# Clean patient data 
df_cleaned['diabetes'] = 
df_cleaned['diabetes'].replace(2, np.nan) 
df_cleaned['cholesterol'] = 
df_cleaned['cholesterol'].replace(2, np.nan) 
df_cleaned['heart_disease'] = 
df_cleaned['heart_disease'].replace(2, np.nan) 
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df_cleaned['mother_hypertension'] = 
df_cleaned['mother_hypertension'].replace(2, np.nan) 
df_cleaned['father_hypertension'] = 
df_cleaned['father_hypertension'].replace(2, np.nan) 
df_cleaned['mother_cholesterol'] = 
df_cleaned['mother_cholesterol'].replace(2, np.nan) 
df_cleaned['father_cholestrol'] = 
df_cleaned['father_cholestrol'].replace(2, np.nan) 
df['mother_heart_disease'] = 
df['mother_heart_disease'].replace(1, np.nan) 
df['mother_heart_disease'] = 
df['mother_heart_disease'].replace([2,3,4], 1) 
df['father_heart_disease'] = 
df['father_heart_disease'].replace(1, np.nan) 
df['father_heart_disease'] = 
df['father_heart_disease'].replace([2,3,4], 1) 
df['mother_stroke'] = df['mother_stroke'].replace(1, 
np.nan) 
df['mother_stroke'] = 
df['mother_stroke'].replace([2,3,4], 1) 
df['father_stroke'] = df['father_stroke'].replace(1, 
np.nan) 
df['father_stroke'] = 
df['father_stroke'].replace([2,3,4], 1) 
df['mother_diabetes'] = df['mother_diabetes'].replace(1, 
np.nan) 
df['mother_diabetes'] = 
df['mother_diabetes'].replace([2,3,4], 1) 
df['father_diabetes'] = df['father_diabetes'].replace(1, 
np.nan) 
df['father_diabetes'] = 
df['father_diabetes'].replace([2,3,4], 1) 
 
# Create prehypertensive metric 
df_cleaned['prehypertensive'] = np.nan 
df_cleaned.loc[(df_cleaned['sbp'] <= 119) & 
(df_cleaned['dbp'] <= 79), 'prehypertensive'] = 0 
df_cleaned.loc[(df_cleaned['sbp'] < 140) & 
(df_cleaned['sbp'] > 119) | (df_cleaned['dbp'] < 90) & 
(df_cleaned['dbp'] > 79), 'prehypertensive'] = 1 
 
# Create obese metric 
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df_cleaned['obese'] = np.nan 
df_cleaned.loc[(df_cleaned['bmi'] <= 25), 'obese'] = 0 
df_cleaned.loc[(df_cleaned['bmi'] > 25), 'obese'] = 1 
 
# Create left ventrical hypertrophy metric 
df_cleaned['lvh'] = np.nan 
df_cleaned.loc[((df_cleaned['lvm_cube'] <= 115) & 
(df_cleaned['sex'] == 1)) | ((df_cleaned['lvm_cube'] <= 
95) & (df_cleaned['sex'] == 0)), 'lvh'] = 0 
df_cleaned.loc[((df_cleaned['lvm_cube'] > 115) & 
(df_cleaned['sex'] == 1)) | ((df_cleaned['lvm_cube'] > 
95) & (df_cleaned['sex'] == 0)), 'lvh'] = 1 
 
# Create sedentary metric 
df_cleaned['sedentary'] = np.nan 
df_cleaned.loc[df_cleaned['vig_work_met_min'] + 
df_cleaned['moderate_work_met_minutes'] + 
df_cleaned['travel_met_minutes'] + 
df_cleaned['vig_exercise_met'] + 
df_cleaned['moderate_exercise_met'] >= 600,'sedentary'] = 
0 
df_cleaned.loc[df_cleaned['vig_work_met_min'] + 
df_cleaned['moderate_work_met_minutes'] + 
df_cleaned['travel_met_minutes'] + 
df_cleaned['vig_exercise_met'] + 
df_cleaned['moderate_exercise_met'] < 600,'sedentary'] = 
1 
 
# Create smoker metric 
df_cleaned['smoker'] = np.nan 
df_cleaned.loc[(df_cleaned['cotinine'] < 11) | 
(df_cleaned['smoke'] == 0),'smoker'] = 0 
df_cleaned.loc[(df_cleaned['cotinine'] >= 11) & 
(df_cleaned['smoke'] == 1),'smoker'] = 1 
 
# Create excessive alcohol metric 
df_cleaned['excessive_alcohol'] = np.nan 
df_cleaned.loc[(df_cleaned['ggt'] < 49) | 
(df_cleaned['alcohol'] == 0),'excessive_alcohol'] = 0 
df_cleaned.loc[(df_cleaned['ggt'] >= 49) & 
(df_cleaned['alcohol'] == 1),'excessive_alcohol'] = 1 
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# Create dyslipidemic metric 
df_cleaned['dyslipidemic'] = np.nan 
df_cleaned.loc[df_cleaned['ldl'] < 3.5,'dyslipidemic'] = 
0 
df_cleaned.loc[df_cleaned['ldl'] >= 3.5,'dyslipidemic'] = 
1 
 
# Select Features 
numeric_features = 
['age_b','sbp','dbp','map','pp','bh','bw','wc','hc','nc', 
                       
'bmi','waist_hip_ratio','chol','trig','hdl','ldl','glu', 
                       'cotinine','ggt','lvm_cube'] 
 
categoric_features = 
['sex','ethnicity','heart_attack','mother_hypertension','
father_hypertension', 
                      
'mother_cholesterol','father_cholestrol','mother_heart_di
sease', 
                      
'father_heart_disease','mother_stroke','father_stroke','m
other_diabetes', 
                      
'father_diabetes','clinic_bp_status'] 
 
# Create Dataset 
dataset = df_cleaned.copy() 
dataset = 
dataset[numeric_features+categoric_features+[label]] 
 
# Drop Rows Missing Label Values 
dataset.dropna(subset = 'abpm_overall_ht', inplace = 
True) 
 
# Drop Rows with Hypertensive Patients 
dataset = dataset[dataset['clinic_bp_status'] != 1] 
 
# Remove Columns Missing More Than 50% of Data 
missing_percent_columns = (dataset.isnull().sum() / 
len(dataset)) * 100 
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columns_to_drop = 
missing_percent_columns[missing_percent_columns > 
50].index.tolist() 
dataset = dataset.drop(columns=columns_to_drop) 
 
# Remove Rows Missing More Than 50% of Data 
missing_percent_rows = (dataset.isnull().sum(axis=1) / 
len(dataset.columns)) * 100 
rows_to_drop = missing_percent_rows[missing_percent_rows 
> 50].index.tolist() 
dataset = dataset.drop(index=rows_to_drop) 
 
# Remove Columns With Only 1 Value 
unique_counts = dataset.nunique() 
unique_columns = unique_counts[unique_counts == 
1].index.tolist() 
dataset = dataset.drop(columns=unique_columns) 
 
columns_to_drop = columns_to_drop + unique_columns 
# Remove Column Names from Numeric and Categorical 
Feature Lists 
for column in columns_to_drop: 
    if column in numeric_features: 
        numeric_features.remove(column) 
    elif column in categoric_features: 
        categoric_features.remove(column) 
         
normotensive_dataset = dataset[dataset['abpm_overall_ht'] 
== 0] 
normotensive_dataset = 
normotensive_dataset.drop('abpm_overall_ht',axis=1) 
mht_dataset = dataset[dataset['abpm_overall_ht'] == 1] 
mht_dataset = mht_dataset.drop('abpm_overall_ht',axis=1) 
 
# Evaluate statistical differences between Normotensive 
and MHT group 
def 
evaluate_groups(group1,group2,numeric_features,categoric_
features): 
    feature_name = [] 
    feature_p_val = [] 
    for feature in group1.columns: 
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        if feature in numeric_features: 
            stat, p_val = bartlett( 
                group1[feature].dropna(), 
group2[feature].dropna()) 
            if p_val < 0.05: 
                stat, p_val = kruskal( 
                    group1[feature].dropna(), 
group2[feature].dropna()) 
            else: 
                stat, p_val = shapiro( 
                    pd.concat([group1[feature].dropna(), 
group2[feature].dropna()], axis=0)) 
                if p_val < 0.05: 
                    stat, p_val = kruskal( 
                        group1[feature].dropna(), 
group2[feature].dropna()) 
                else: 
                    stat, p_val = 
ttest_ind(group1[feature].dropna(), 
group2[feature].dropna(), equal_var=False) 
            feature_name.append(feature) 
            feature_p_val.append(p_val) 
        elif feature in categoric_features: 
            contingency_table = 
np.array([[(group1[feature] == 0).sum(), (group2[feature] 
== 0).sum()], 
                                          
[(group1[feature] == 1).sum(), (group2[feature] == 
1).sum()]]) 
            stat, p_val, dof, expected = 
chi2_contingency(contingency_table) 
            feature_name.append(feature) 
            feature_p_val.append(p_val) 
        else: 
            print('Error: feature not recognized') 
            sys.exit() 
    return pd.concat([pd.DataFrame(feature_name), 
pd.DataFrame(feature_p_val)], axis=1) 
 
group1_comparison = 
evaluate_groups(normotensive_dataset,mht_dataset,numeric_
features,categoric_features) 



208 
 

 
shapiro_name = [] 
shapiro_p_val = [] 
for feature in dataset.columns: 
    if feature in numeric_features: 
        stat, p_val = shapiro(dataset[feature]) 
        shapiro_name.append(feature) 
        shapiro_p_val.append(p_val) 
normality_evaluation = 
pd.concat([pd.DataFrame(shapiro_name), 
pd.DataFrame(shapiro_p_val)], axis=1) 
 
# Split into Features and Labels 
X = dataset.drop('abpm_overall_ht',axis=1) 
y = dataset['abpm_overall_ht']  
 
# Split into Training and Testing Sets 
X_train, X_test, y_train, y_test = train_test_split(X, y, 
test_size = split_ratio, random_state = SEED, stratify = 
y) 
 
group2_comparison = 
evaluate_groups(X_train,X_test,numeric_features,categoric
_features) 
 
numeric_feature_names = [] 
numeric_feature1_mean = [] 
numeric_feature1_std = [] 
numeric_feature2_mean = [] 
numeric_feature2_std = [] 
categoric_feature_names = [] 
categoric_feature1_number = [] 
categoric_feature1_percentage = [] 
categoric_feature2_number = [] 
categoric_feature2_percentage = [] 
for column in normotensive_dataset.columns: 
    if column in numeric_features: 
        numeric_feature_names.append(column) 
        normotensive_data = normotensive_dataset[column] 
        normotensive_mean = normotensive_data.mean() 
        normotensive_std = normotensive_data.std() 
        numeric_feature1_mean.append(normotensive_mean) 
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        numeric_feature1_std.append(normotensive_std) 
        mht_data = mht_dataset[column] 
        mht_mean = mht_data.mean() 
        mht_std = mht_data.std() 
        numeric_feature2_mean.append(mht_mean) 
        numeric_feature2_std.append(mht_std) 
    if column in categoric_features: 
        categoric_feature_names.append(column) 
        normotensive_data = normotensive_dataset[column] 
        mht_data = mht_dataset[column] 
        number1 = normotensive_data.sum() 
        percentage1 = number1/len(normotensive_data) 
        categoric_feature1_number.append(number1) 
        categoric_feature1_percentage.append(percentage1) 
        number2 = mht_data.sum() 
        percentage2 = number2/len(mht_data) 
        categoric_feature2_number.append(number2) 
        categoric_feature2_percentage.append(percentage2) 
numeric_dataframe = pd.DataFrame( 
    {'Feature': numeric_feature_names, 
     'Normotensive_Mean': numeric_feature1_mean, 
     'Normotensive_StDev': numeric_feature1_std, 
     'MHT_Mean': numeric_feature2_mean, 
     'MHT_StDev': numeric_feature2_std 
    }) 
categoric_dataframe = pd.DataFrame( 
    {'Feature': categoric_feature_names, 
     'Normotensive_Number': categoric_feature1_number, 
     'Normotensive_Percentage': 
categoric_feature1_percentage, 
     'MHT_Number': categoric_feature2_number, 
     'MHT_Percentage':categoric_feature2_percentage 
     }) 
 
numeric_feature_names = [] 
numeric_feature1_mean = [] 
numeric_feature1_std = [] 
numeric_feature2_mean = [] 
numeric_feature2_std = [] 
categoric_feature_names = [] 
categoric_feature1_number = [] 
categoric_feature1_percentage = [] 
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categoric_feature2_number = [] 
categoric_feature2_percentage = [] 
for column in X_train.columns: 
    if column in numeric_features: 
        numeric_feature_names.append(column) 
        X_train_data = X_train[column] 
        X_train_mean = X_train_data.mean() 
        X_train_std = X_train_data.std() 
        numeric_feature1_mean.append(X_train_mean) 
        numeric_feature1_std.append(X_train_std) 
        X_test_data = X_test[column] 
        X_test_mean = X_test_data.mean() 
        X_test_std = X_test_data.std() 
        numeric_feature2_mean.append(X_test_mean) 
        numeric_feature2_std.append(X_test_std) 
    if column in categoric_features: 
        categoric_feature_names.append(column) 
        X_train_data = X_train[column] 
        X_test_data = X_test[column] 
        number1 = X_train_data.sum() 
        percentage1 = number1/len(X_train_data) 
        categoric_feature1_number.append(number1) 
        categoric_feature1_percentage.append(percentage1) 
        number2 = X_test_data.sum() 
        percentage2 = number2/len(X_test_data) 
        categoric_feature2_number.append(number2) 
        categoric_feature2_percentage.append(percentage2) 
numeric2_dataframe = pd.DataFrame( 
    {'Feature': numeric_feature_names, 
     'Train_Mean': numeric_feature1_mean, 
     'Train_StDev': numeric_feature1_std, 
     'Test_Mean': numeric_feature2_mean, 
     'Test_StDev': numeric_feature2_std 
    }) 
categoric2_dataframe = pd.DataFrame( 
    {'Feature': categoric_feature_names, 
     'Train_Number': categoric_feature1_number, 
     'Train_Percentage': categoric_feature1_percentage, 
     'Test_Number': categoric_feature2_number, 
     'Test_Percentage':categoric_feature2_percentage 
     }) 
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