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ABSTRACT 

 

This dissertation presents and evaluates model-free methodologies to process 

Phasor Measurement Unit (PMU) data. Model-based PMU applications require knowledge 

of the system topology, most frequently the system admittance matrix. For large systems, 

the admittance matrix, or other system parameters, can be time-consuming to integrate into 

supporting PMU applications. These data sources are often sensitive and can require 

permissions to access, delaying the implementation of model-based approaches. This 

dissertation focuses on evaluating individual model-free applications to efficiently perform 

functions of interest to system operators for real-time situational awareness. Real-time 

situational awareness is evaluated with respect to central digitization where the PMU data 

is archived, and delays from telecommunication and system architecture are not 

considered. 

The PMU data available to utilities is often a subset of the overall system. Even 

without full observability, PMU data for observable portions of the system provides 

valuable, high-resolution information about the current system state. Methods are needed 

that can analyze and generate critical insight about the system in real-time to assist in 

detection and mitigation of major system events. All chapters address methodologies that 

can derive their output solely from the PMU signals. These methodologies are evaluated 

for their reliability and computational efficiency, considering a specific task of interest.  

Inter-area oscillations and poorly damped electromechanical modes are dangerous 

when undetected for extended periods of time, eventually leading to blackouts when 

unstable parameters are present. Prony Analysis and Matrix Pencil Method were selected 



 iii 

in Chapter 4 for their proven effectiveness of estimating the dominant modes of an input 

signal; for purposes of this dissertation, the signal of interest for oscillation analysis is real 

power. The speed of convergence, accuracy of the methods, and viability when applied to 

utility PMU data were assessed to determine suitability to online system operation.  Matrix 

Pencil Method was determined to provide more robust and computationally efficient 

estimation of key system modes for both simulated and real utility PMU data. 

The biorthogonal discrete wavelet transform, which can correlate frequency data to 

a time-domain solution, was utilized in Chapter 3 to create a methodology for event 

detection and classification for a subset of selected events. The derived methodology was 

shown to be effective for identification and classification of load and capacitor switch 

events, as well as breaker operation and faults. 

Methods to mimic the power flow Jacobian from discrete measurements are derived 

to assess system stability and eigenvalues in Chapter 2. These methods were effective for 

fast detection of unstable system parameters. Chapter 5, the most significant contribution 

of this dissertation, details derivations of a mathematical reduced system model and power 

flow Jacobian variants for more robust instability detection, system weak point 

identification, mitigation techniques, and state estimation capabilities. Considering the 

functions of all evaluated and developed model-free methodologies, event detection, event 

classification, detection of poorly damped oscillatory modes, and instability detection and 

mitigation can be achieved for situational awareness. 
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CHAPTER ONE 

1 CHAPTER ONE 

INTRODUCTION 

 

1.1 PMU Overview 

Phasor measurement units (PMUs) have seen increased implementation and 

installation in industry power systems. Due to this, PMUs are seeing increased use in 

applications for protection, controls, and situational awareness [1][2]. PMU devices can 

return a variety of different quantities, including the current and voltage magnitude of each 

phase, the corresponding phase angles of these quantities, the sequence voltage and current 

magnitudes, the phase angles of the sequence voltages and currents, and the frequency at 

the bus of installation [3]. Many PMUs installed in existing systems report phasor and 

frequency data at a 30 Hz rate, in accordance with IEEE Standard C37.118-2005, which 

allows a report rate up to half of the nominal system frequency: 30Hz for a 60 Hz system 

[4][5]. Many PMUs were installed while this standard was in place. The 60Hz report rate 

was included and supported by PMUs considering the updated IEEE Standard C37.118-

2011 [6], as well as subsequent standards. This dissertation considers the 30Hz report rate, 

as this is the more restrictive case and is often encountered in utility data. The phase angles 

are calculated by comparing system waveforms to an absolute time-synchronized reference 

waveform via Global Positioning System (GPS) [4]. The recorded readings at a specific 

point in time are compared to the position of the time synchronized absolute reference 

during calculation. The developed methodologies in this dissertation consider compliance 
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with PMU data that is streamed by the industry through openPDC [7], which streams PMU 

data as individual signals without relationship to system topology.  

The increased number of PMUs in the power grid necessitates a need for effective 

and high-speed analytic techniques to return viable data near real-time. These methods 

need to capitalize on the speed at which the PMU data is returned while converging to a 

solution before the next PMU measurements are received, when critical, or within a 

timeframe that is suitable to its purpose and allows consumption of all incoming PMU data. 

For large systems, the convergence of many applications considering system topology, 

such as state estimation, do not resolve in time to utilize the full report rate of the PMUs. 

This dissertation considers model-free applications and focuses on the incoming PMU data 

for meaningful analysis. 

1.2 Power Flow Jacobian Utilization for Instability Identification 

The power flow Jacobian, derived and calculated when implementing Newton-

Raphson state estimation, requires system topology in order to be utilized. In [8] and [9], 

stability of the system is assessed by monitoring eigenvalues and determining when the 

Jacobian is reaching singularity. Singularities in the Jacobian lead the matrix to be non-

invertible when used in the Newton-Raphson method. The singularities give an upper 

bound to the loading and voltage conditions that would induce instability, since a 

singularity in the steady state model assumes that the stable solution can be reached by the 

dynamic system; confirming these bounds with greater accuracy requires detailed 

generator models and a representation of the control systems [8]. Monitoring the Jacobian 

for developing singularities has been reliably used to determine the stability of the system, 
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with singularity indicating an unstable system. The relation of the power flow Jacobian to 

Bifurcation and nose curves was presented in [9]. In [10], Singular Value Decomposition 

(SVD) is used to monitor trends toward singularity and instability in the system. Sources 

[11] and [12] show the effectiveness and reduced computational complexity of using the 

decoupled load-flow Jacobian for state estimation. The discrete Jacobian approximations 

derived in this dissertation utilize the decoupled Jacobian form for computational speed. 

The decoupled Jacobian only accounts for the partial derivative of real power with respect 

to bus voltage angle, 𝜕𝑃𝑖/𝜕𝛿𝑖, and the partial derivative of reactive power with respect to 

bus voltage 𝜕𝑄𝑖/𝜕|𝑉𝑗|. The significance of singularity is that when the inverse Jacobian is 

used to calculate the next iteration’s voltage magnitudes and angles, the operation cannot 

be completed due to the singularity. A zero singularity in the Jacobian will result in an 

infinite term when taking the inverse. This implies that even an infinite change in bus 

voltage angle will not change the real power output, and an infinite change in voltage 

magnitude will be unable to change the reactive power at a given bus. The terms that are 

leading to the singularity can also be analyzed to show system weak points during 

operation.  

If the system were known and all buses had a PMU placed in the system, the 

Jacobian could be fully generated for every cycle that the PMU data is returned. However, 

in large systems, this is not practical and would be expensive to implement and maintain. 

It is likely that the system PMUs are limited and spaced out, requiring different techniques 

to analyze the PMU data in real-time. Even with 150 PMUs present in a 3000-bus system, 

the computational time for convergence of the power flow Jacobian, iteratively calculated 
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during the Newton-Raphson power flow algorithm, would not be substantially reduced. 

Novel methods to mimic the power flow Jacobian are presented in Chapter 2 as the 

Decoupled Discrete-Time Jacobian Eigenvalue Approximation (DDJEA) and Expanded 

Discrete-Time Jacobian Approximation (EDDJA) methods. Chapter 5 presents a derivation 

to generate a mathematical system topology that can be used to perform Newton-Raphson 

state estimation. This topology is leveraged to generate two variants of the power flow 

Jacobian that are compared to determine system weak points and flag divergent system 

parameters. 

1.3 Prony Analysis and Matrix Pencil Method for Detection of Undamped Power 

Oscillations 

Another critical situation to consider is the fast and accurate detection of undamped 

or poorly damped power system oscillations. Sources [13-20] addressed the effectiveness 

of using Prony analysis to estimate power system modes. In [13], Prony analysis was 

compared to other methods to estimate the damping ratio and frequency of a power 

oscillation, including Matrix Pencil Method (MPM) and Hankel Total Least Square 

(HTLS) method. The slowest dominant system mode and the eigenvalues associated with 

this mode can be distinguished. Frequency domain decomposition (FDD) is applied to the 

power spectral density matrix and is compared with Prony Analysis to show that the FDD 

can adequately match the results of Prony Analysis with decreased computational expense; 

the methods were applied to ringdown data for a 17-machine model proving applicability 

for larger systems [14]. The electromechanical mode of a generator is approximated 

through Prony Analysis to identify inter-area oscillations [15]. Prony Analysis has been 
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applied to a Wide Area Monitoring Systems (WAMS) in order to estimate the dominant 

eigenvalue, frequency, and damping ratio [16]. Inter-area and electromechanical 

oscillations can cause cascading line tripping and blackouts if they are not detected. 

Overall, Prony Analysis is one of the most proven techniques to identify poorly damped 

oscillations. Further research also considers Matrix Pencil Method to cross compare with 

Prony Analysis. A major limitation of Prony Analysis that is not shared by the Matrix 

Pencil Method is that MPM does not have to guess the number of system modes or require 

any previous analysis to determine the adequate number of modes [17]. Although Prony 

Analysis properly models the fundamental frequency of a signal, HTLS and MPM 

outperform Prony when computing the damping ratio on signals with noise [18]. In Prony 

Analysis, the z-domain transfer function can easily be overdetermined. From the 

eigenvalues calculated by converting the z-domain function to state space, the eigenvalue 

that most closely matches the max in the power spectral density can be selected for a quick 

estimation. The scaling weights of each term can also be used to eliminate terms from the 

model in the case that the model is overdetermined. The number of terms is unknown, but 

[19] proposes a method to increase the number of terms until a minimum number of modes 

is found through a feedback loop. This research focuses on analyzing the real power at each 

bus to monitor dominant system modes, eigenvalues, and damping ratios to give valuable 

insight for distinguishing a healthy system from one that is marginally stable or presenting 

a trend toward instability. Although discussed for a different application in Section 1.4, 

wavelet transforms can also be used to extract the damping ratio from a signal of interest 
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[21][22]. Prony Analysis and MPM are evaluated in Chapter 3 with respect to both 

simulated and utility PMU data. 

1.4 Event Detection and Classification 

Detection and classification of events is crucial to understanding the cause of 

changes in the system.  Either detection or classification can prove difficult during system 

operation, depending on the complexity of the data and the event of interest. In [23], both 

modeling and analysis of a variety of power system events are discussed. These events 

encompass automatic control events, including resetting of governor or exciter setpoints, 

protection relay operation during fault, under-frequency relay operation, on-load tap 

changer switching, and shunt capacitor bank switching. In [23], manual control events are 

also addressed, including connection or disconnection of generators, transmission lines, 

shunt capacitors, and FACTs devices. Several autonomous disturbance events are 

considered, including load changes, tripping of generator due to fault, tripping of 

transmission line due to fault, and lightning strike.  In [24], a combined approach utilizing 

a wavelet transform and neural network is used to identify and classify breaker switching, 

capacitor switching, low impedance fault, primary arc, and lightning strike events. It should 

be noted that some events, such as transmission line tripping due to fault, can be interpreted 

as two overlapping events or a single consolidated event. In [25], a methodology using 

supervised machine learning is proposed to detect the presence of a fault, define the fault 

type (single line to ground, line to line, and three phase to ground), and determine if 

redundant identification can be made for other PMUs with visibility of the event. Some 

events can pose challenges to simulate accurately, such as high impedance faults (HIFs); 



 7 

HIF simulation requires a complex non-linear model, like the mathematical model 

proposed in [26].  HIFs are truly only defined for distribution systems and are not 

considered in the transmission system simulations, but it was essential to the scope of this 

dissertation to evaluate a tool that has been proven capable of distinguishing HIF from 

other system events when analyzing PMU data. 

Some PMU applications solely focus on event detection [22][27-30]. In [27], a 

machine learning algorithm considering modal dynamics is built to support real-time event 

detection.  It is stated in [27] that event identification of a wide range of events is a more 

difficult problem to solve due to system nonlinearity, so the derived methodology focuses 

solely on detection. Methodologies developed in [22][28] leveraged the wavelet transform. 

In [28], the developed algorithm can classify the event as a real or reactive power event, 

but a more refined classification is not provided; the general location of the event can also 

be determined. The wavelet transform is used in [22] to monitor system stability by 

calculating the damping ratio for real power; the advantages of the multilevel 

decomposition are also addressed for distinguishing between two events that occur within 

close proximity to each other. Statistical analysis and the peak valley algorithm are utilized 

in [29] for general event detection. A combination of the short-time Fourier transform 

(STFT), residual modelling, and linear regression were applied in [30] for comprehensive 

event detection capabilities. 

The methodologies detailed in [24-25][31-40] address both event detection and 

event classification utilizing PMU data, where the event classification is often limited to a 

subset of defined events. The application developed in [31] analyzed the third order 
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harmonic and effects on transformer vector groups to accurately distinguish high 

impedance fault events. Wavelet transforms were utilized in [24][32]. The Morlet wavelet 

transform was shown to be effective when used to analyze wide area monitoring systems 

for identification and classification of poorly damped inter-area and electromechanical 

oscillations, showing characteristics in the 0.1-0.8Hz range [32].  Applications involving 

neural networks were also demonstrated to be effective for both event detection and 

classification, assuming high quality data labels [33-36].  The applications in [33][34] are 

tailored to accurately detect and classify two specific events: malfunctioned capacitor bank 

switching and malfunctioned regulator on-load tap changer switching. The convolutional 

neural network algorithms in [35][36] were designed to detect and classify more general 

system behavior, such as normal operation, line fault, line outage, transformer outage, and 

frequency and oscillation events. Machine learning applications for event detection and 

classification are detailed in [25][37].  As previously noted, [25] implemented targeted 

classification relating to fault types and affected system areas. In [37], the classification 

algorithm was built considering four types of logged events: line outage, transformer 

outage, frequency event, and oscillation event. Additional statistical analytics methods 

were considered for accurate detection and classification of system events, such as 

swinging door trending [38], density based spatial clustering of applications with noise 

combined with a decision tree considering power system analysis [39], and a combination 

of spectral kurtosis and support vector machines considering short-term energy and group 

delay [40]. 



 9 

Due to the high impedance fault being one of the most difficult events to accurately 

detect and classify, additional research was focused on finding methodologies suited to 

accurately identify HIFs in transient data [41-48]. The high resistive value, non-linearity 

of resistance, and low current contribution make distinguishing this event from regular 

system operation difficult. Wavelet transforms are utilized in [41-44] to distinguish HIFs 

from other system events through decomposition of transient data sets. The use of statistical 

analysis and pattern recognition, in addition to the discrete wavelet transform, to detect 

HIF was presented in [43][44]. Time domain approaches, such as ground ratio relays and 

harmonic distortions, were used in [45][46] for HIF detection. However, these approaches 

can be ineffective when the system is not balanced or the HIF does not draw enough current 

to cause a significant deviation. Kalman filtering was used in [47], but the method relies 

on several assumptions to be related back to the time domain. The Choi–Williams 

distribution is used in [46], instead of the wavelet transform, for purposes of speed and 

effectiveness, but the proposed algorithm only works in radial systems and does not take 

into account current distortion of a real power system. 

Depending on the selection of the mother wavelet, the wavelet transform has been 

proven effective for both event detection and classification for a variety of 

implementations.  Wavelet transforms were also proven useful for HIF detection in both 

PMU and transient datasets.  Although HIF detection is not considered in transmission 

systems, discrete wavelet transforms are established as a viable candidate for high accuracy 

event detection, with the ability to identify more subtle event signatures.  Utilizing the 

wavelet transform allows for a relation between the time-domain and frequency domain. 
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Frequency domain solutions can be difficult to relate changes in fundamental frequency 

back to the time domain. The wavelet transform circumvents this issue, relating both the 

time and frequency domain through a multi-level decomposition of the input signal to 

various cutoff frequencies. Due to this, the wavelet transform was selected to build the 

event detection and classification methodology explored in this dissertation.  

1.5 Bridging the Gap in Model-Free Applications 

PMUs stream time synchronized data at a report rate that significantly exceeds 

supervisory control and data acquisition (SCADA) measurements and traditional state 

estimation solutions, making PMUs more fit to track power system dynamics in real-time 

[2]. In order to fully leverage the high report rate and data resolution of the PMU devices, 

applications need to converge near real-time to fully consume the PMU data available. 

Model-free applications eliminate the requirement to align and integrate system topology 

for implementation and can be designed for fast convergence. However, model-free 

applications may lose context to take targeted actions in the real system. It is noted in [49] 

that the static state estimator for the Great Britain National Grid returns a full solution of 

all system states every 60 seconds. PMU data in [12] was leveraged to flag windows where 

transient behavior was present to trigger utilization of a different window for state 

estimation and improve accuracy, but the speed of convergence was not materially 

affected.  

There are a variety of model-based applications that are designed to be 

computationally efficient and consume more, or all, of the PMU data streams available. In 

[50-52], applications for linear state estimators are explored. In [50], a weighted least 
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square (WLS) solution implementing Gauss-Newton was developed to increase the 

computational speed of state estimation and reduce impact from bad measurements. A 

similar approach to fully utilize the PMU data in real-time for state estimation is developed 

in [51], using a least absolute value (LAV) estimator to increase performance in the 

presence of bad data. A proof of concept is demonstrated in [52] to show viability of using 

PMUs for a linear state estimator in the distribution system. These applications require 

detailed system topology, as well as full system observability, which will limit 

implementation in most systems. 

Hybrid state estimators utilize inputs from both SCADA and PMUs to improve 

calculation efficiency and accuracy compared to traditional state estimation [53-55]. In 

[53], bad data rejection and improvements to computational efficiency were accomplished 

by using a Schweppe-type estimator with an iteratively reweighted least squares solution. 

The solution convergence is increased by a factor of 1000 times in [54] by employing a K-

Nearest Neighbors (K-NNs) search on historical data to set an initial guess based on 

historical system states, with the application built on data sets back to 2005. A model-free 

state estimator is presented in [56] that uses a neural network, but this application requires 

abundant and clean historical data to be accurate. Although [53][54] appear to converge 

near real-time, a high degree of observability and historical data can limit implementation, 

and [55] was calculated to take 0.5 seconds to converge for a 181-bus test system. Hybrid 

state estimators are more practical for implementation in utility systems and present a 

valuable upgrade with respect to static state estimators, but implementation requires 

extensive data integration and may still be unable to consume the full report rate of PMUs. 
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Some model-based applications to assess voltage stability were presented in [57-

59]. In [57][58], a WAMS application is presented that can monitor voltage stability and 

considers dynamic conditions that are beyond the capabilities of static state estimation. In 

[59], a calculation is performed to monitor the system’s proximity to reactive generation 

thresholds. In addition to the admittance matrix, these applications require full 

observability and integration of simplified generator models [57][58] or generator limits 

[59]. Model-free applications to assess voltage stability are discussed in [60-63]. In 

[60][61], the Lyapunov exponents of voltage magnitudes are calculated to flag when a 

voltage signal is exponentially diverging. Although this implementation is computationally 

efficient, utilizing only the voltage magnitude does not leverage the full potential of the 

PMU data. Additionally, mitigation actions do not appear to be clear. A methodology to 

map changes in real and reactive power to changes in bus voltage magnitude and bus 

voltage angle is developed in [62][63]. It is shown that, when given a sufficient window 

length, SVD of the derived matrix results in a nearly identical maximum singular value 

when compared to implementing SVD on the true Jacobian matrix. The application was 

shown to be effective in identifying major events and topology changes in the real system. 

However, utilizing the data to mitigate unstable system conditions was unclear and for an 

IEEE 300 bus system, 8640 data samples took 100 seconds to process, which is reflective 

of the window length and performance required for processing PMU data from large 

systems. 

Chapter 5 presents the development of an application that derives a mathematical 

system topology and load flow to construct two Jacobian variants. These Jacobian variants 
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are analyzed via SVD and comparing the system state to detect system weak points, 

identify the type of instability (angular or voltage), and show that the application can be 

used to mitigate unstable load conditions. The application is designed to be scalable and 

flexible and accommodate the PMU measurements available in the system. There is no 

need for integration of historical datasets. Lastly, the computational efficiency and sub-

cycle convergence of the application is assessed to determine feasibility for large systems, 

with 112 PMUs from a large utility system integrated into the application. 

1.6 Additional Approaches and Addendums to Utilizing PMU Data 

Various other methods and algorithms to effectively utilize PMU data are presented 

in [64-68]. Quick detection of unstable conditions is necessary, but there is also a need to 

relay what the data means to both power engineers and system operators. Retrieving 

archived data related to events and system conditions has been a value application for 

system operators [64]. The National Renewable Energy Laboratory, a government 

institution, released a detailed explanation of viable methods for analyzing PMUs as well 

as explaining the output signals that PMUs return [65]; This text also details prominent 

analysis tools like Yule-Walker and Matrix Pencil Method. A very similar detailed 

reference is [41], with more focus on visualization and relation to system operators. The 

overwhelming amount of data processed by system operators is addressed in [66] with an 

algorithm that poses to archive system characteristics during a major event for cross 

comparison to present system operations, automated report generation after an event has 

occurred, and classifications of system characteristics with respect to previous events to 

aid in solution. This form of big data management takes a practical approach that appeals 
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to system operators. Another similar solution allows for simulation of previous events, 

permitting the system operator to change variables to the simulated system to discern what 

could have been done to change the outcome [67]. The methodology proposed in [68] 

utilizes the STFT and thresholds over a small moving window to detect certain system 

events, but then utilizes a combination of Yule Walker and MPM to detect anomalies for 

further offline analysis. In [2], a novel implementation of fuzzy logic was applied to PMU 

data to monitor voltage stability and enhance situational awareness through proposed PMU 

placement. PMU data is being used and researched with respect to a wide range of power 

system use cases and applications. Many tools and approaches have been developed to 

make use of the data or investigate the data’s viability to solve power system issues. The 

list of assumptions to create these methods can be very broad and can limit implementation 

in a practical system. The research conducted in this dissertation avoids assumptions that 

could limit sensible implementation. 

1.7 Overview of Dissertation Research Objectives 

The goal of this research is to develop real-time applications that can individually 

fulfill a desired component necessary for situational awareness, both succinctly and 

accurately. In order for this to be achieved, there must be methods that can correctly detect 

and identify system events. There must also be methods to give system stability bounds 

and system weak points. Then another set of methods can be used to identify slow system 

oscillations that are leading to unstable conditions, which are difficult to detect unless a 

specialized application is considered. Lastly, a methodology with flexibility and 
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practicality to identify and mitigate unstable system conditions in the real system needs to 

be considered. 

The Discrete-Time Decoupled Jacobian Eigenvalue Approximation (DDJEA) and 

the Expansion of the Decoupled Discrete-Time Eigenvalue Approximation (EDDJA) were 

established in [69] and [70] respectively. Chapter 2 of this dissertation is a detailed 

explanation and derivation of these methods. Least squares and linear regression are 

applied to PMU data in order gain a sense of connectivity for the EDDJA method. The 

concept of the power flow Jacobian was incorporated in this method by defining bounds 

for approaching singularity.  

A method to detect HIF through statistical analysis was presented in [71]. Although 

this method is not directly utilized due to limitations in identifying the variety of events, 

statistical analysis and Gaussian distributions are implemented when defining the cutoff 

values for the output of biorthogonal wavelet transforms. Chapter 3 presents the use of 

biorthogonal discrete wavelets to detect and classify system events. A novel application of 

the discrete wavelet transform to analyze real power, reactive power, bus voltage, bus 

voltage angle, phase current, and phase current angle is demonstrated. By comparing the 

peak wavelets during an event across each signal of interest, event detection and 

identification can be determined. Other time-domain techniques are incorporated to 

increase the accuracy of identification and decrease the possibility of an incorrect 

conclusion. The biorthogonal wavelet transform is also applied in an application utilizing 

a shorter window of observation (5 seconds). This modified application also employs 
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power system analytics in parallel to gain useful insight into system events and enhance 

situational awareness. 

Methodologies to calculate the dominant frequencies and damping ratios of the real 

power signal are discussed in Chapter 4. The Matrix Pencil Method (MPM) and Prony 

Analysis are compared to ascertain effectiveness and speed when calculating the dominant 

frequency and damping ratio of a signal. Both methods are powerful tools for identifying 

poorly damped oscillatory system modes. Performance with respect to a known signal, 

engineered to test reliability and detection of unstable parameters, and viability when 

applied to real utility data are assessed. 

Chapter 5 presents a novel application to create a reduced system topology, notated 

as the Mathematical Synthetic System Model (MSSM). Where Chapter 2 applies discrete 

approximations, Chapter 5 leverages the MSSM to derive power flow Jacobians through 

direct measurement and computation via the Newton-Raphson power flow algorithm. A 

novel methodology is presented that demonstrates the ability to detect system weak points 

and divergent parameters through SVD and comparison between the two Jacobian variants. 

The methodology is utilized to show immediate detection of unstable conditions and is 

leveraged to mitigate unstable load conditions. Computational efficiency is demonstrated 

for the IEEE 39 bus system, simulated with observability of the 10 generators. The 

methodology is also applied to real utility PMU data for an equivalent 20-machine and 50-

machine derivation. Flexibility and computational scalability of the algorithm is 

demonstrated further by incorporating 112 PMUs with different configurations from the 

utility dataset for real-time convergence. 
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CHAPTER 2 

2 CHAPTER TWO 

DEVELOPMENT OF A METHODOLOGY FOR INSTABILITY DETECTION USING 

DISCRETE JACOBIAN APPROXIMATION 

 

2.1 Discrete Jacobian Approximation for Real Power 

When system topology, connectivity, and loads are not known, the true power flow 

Newton-Raphson method and associated Jacobian matrix cannot be applied. However, it 

is possible to develop a reduced matrix that has a similar function as the decoupled 

Jacobian. More specifically, it would function as a discrete decoupled Jacobian eigenvalue 

approximation (DDJEA) matrix. This method is then expanded upon to show that even 

without system connectivity, a general sense of connectivity can be gained from the PMU 

data over large sample periods: this method is called the Expanded Discrete Decoupled 

Jacobian Approximation (EDDJA). A fundamental assumption for both methods is that the 

Jacobian should not change significantly between two cycles, unless under a significant 

system event. For the case of a fault, the Jacobian approximation of the previous cycle will 

have an increased error, but this can be used to aid in event detection. Both the DDJEA and 

EDDJA methods utilize a net-power approach. This is due to the lack of system 

connectivity and load information. However, after the derivation of the EDDJA matrix, it 

will be shown that mathematically it can carry out a similar function in the Newton 

Raphson method. This will be addressed after the derivation of the EDDJA matrix. In order 

to prove the effectiveness of these algorithms, they will be directly substituted into the 

Newton-Raphson method in place of the Jacobian to show that the approximation can 

produce almost identical results for a test case. For equations below, variable N represents 
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the total number of buses in the system, and variable n represents the total number of buses 

with a PMU installed.  The mathematical derivations detailed in this chapter were 

published in [69][70] as part of this research. The formal definition of the real power 

portion of the decoupled Jacobian is presented in Equation 1 and Equation 2. 

 ∆𝑃𝑖 = ∑
𝜕𝑃𝑖

𝜕𝛿𝑗

𝑁
𝑗=1 ∗ ∆𝛿𝑗 (1) 

   
𝜕𝑃𝑖

𝜕𝛿𝑗
= −|𝑌𝑖𝑗𝑉𝑖𝑉𝑗|sin (𝜃𝑖𝑗 + 𝛿𝑗 − 𝛿𝑖)(2) (2) 

Pi denotes the real power injection at bus (i) for a specific measurement. ΔPi denotes 

the difference between the target value and the value considering the current iteration’s 

values. With respect to the discrete matrices, ΔPi denotes the change between the current 

measurement and the previous measurement. Δδj is the difference of voltage angle at bus 

(j) between two measurements or iterations in radians. The partial derivative of real power 

at a bus (i) with respect to bus (j) voltage angle is shown in Equation 2. Yij denotes the 

Ybus p.u. admittance value between bus (i) and bus (j) in p.u. In the case of i=j, the Yij 

element is the diagonal term of the matrix at row (i). Vi and Vj are the voltages at bus (i) 

and bus(j), respectively, in p.u. Θij represents the phase angle for the Yij term in radians. 

The δi and δj terms are the voltage angles at buses (i) and (j), respectively, in radians. 

The proposed method utilizes a model-free approach to mimic the general form of 

the decoupled Jacobian without needing full system connectivity or loading conditions. 

The method was developed considering the use of only openPDC data as a window to the 

PMU output to assist in real-time situational awareness. For example, consider a 4000-bus 

system with 150 PMUs installed at a subset of selected buses. In this case, utilizing the 
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PMU data to aid Newton-Raphson iterations would not significantly increase the speed of 

convergence of the Jacobian matrix. Even if the algorithm was used to only create a 

decoupled power flow Jacobian, two matrices of size 4000x4000 would need to be 

generated (considering the aforementioned system size): one for real power and one for 

reactive power. This would lead to most of the PMU data never being used since the 

solution for the power flow Jacobian is unlikely to converge before the next measurement. 

Given that the system in this case is large, it is very possible that of the 150 installed PMUs, 

none of the PMUs are directly connected. This would lead to 0 terms in the off-diagonal 

when developing a reduced discrete Jacobian form. Furthermore, considering the other 

system buses is computationally expensive, so an approximation method would be helpful 

when considering a real-time application.  

For this, a new expression for ΔPi is required with some fundamental assumptions. 

This method assumes that the time step between measurements is small. Standard PMU 

measurements typically return at a 30Hz or 60Hz rate, which would return a measurement 

every one or two cycles. For one or two cycles, the power flow Jacobian should not change 

significantly unless under a major system event. The approximation method proposed will 

be inaccurate for large time steps of seconds or minutes. Since the model-free approach 

does not consider connectivity or topology, all changes in net power at a bus for the initial 

approximation are assumed to be due to the change in that particular bus’s voltage angle. 

This leads to an eigenvalue matrix that mimics the form of the power flow Jacobian. Instead 

of using N buses for the system, the reduced method only utilizes the n buses with PMUs 

installed. The time step will be denoted Δt. In order to test the viability of this method, the 
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DDJEA of the previous iteration will be used to predict the change in real power at the 

current time step. For purposes of notation, the prediction will be notated as (t+Δt). This is 

also the time at which the most recent measurement is being taken. Then the predicted and 

actual values will be compared to assess whether the approximation accurately predicts the 

next state when given either the change in real power or change in bus voltage angle. 

Equation 3 shows a general format and then Equations 4-8 demonstrate the rest of the 

derivation. 

   Δ𝑃𝑖(𝑡 + Δ𝑡) =
Δ𝑃𝑖(𝑡)

Δ𝛿𝑖(𝑡)
∗ Δ𝛿𝑖(𝑡 + Δ𝑡) (3) 

  Δ𝑃𝑖(𝑡 + Δ𝑡) =
𝑃𝑖(𝑡)−𝑃𝑖(𝑡−Δ𝑡)

𝛿𝑖(𝑡)−𝛿𝑖(𝑡−Δ𝑡)
∗ (𝛿𝑖(𝑡 + Δ𝑡) − 𝛿𝑖(𝑡)) (4) 

  𝑃𝑖𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑(𝑡 + Δ𝑡) = 𝑃𝑖𝑎𝑐𝑡𝑢𝑎𝑙(𝑡) + Δ𝑃𝑖(𝑡 + Δ𝑡) (5) 

  𝑃𝑖𝑎𝑐𝑡𝑢𝑎𝑙(𝑡 + Δ𝑡) =  |𝑉𝑖1| ∗ |𝐼𝑖1| ∗ cos(𝛿𝑉𝑖1 − 𝛿𝐼𝑖1) (6) 

  [
Δ𝑃1(𝑡 + Δ𝑡)

⋮
Δ𝑃𝑛(𝑡 + Δ𝑡)

] =

[
 
 
 
Δ𝑃1(𝑡)

Δ𝛿1(𝑡)
0 0

0 ⋱ 0

0 0
Δ𝑃𝑛(𝑡)

Δ𝛿𝑛(𝑡)]
 
 
 

[
Δ𝛿1(𝑡 + Δ𝑡)

⋮
Δ𝛿𝑛(𝑡 + Δ𝑡)

]  (7) 

  𝐷𝐷𝐽𝐸𝐴 =

[
 
 
 
Δ𝑃1(𝑡)

Δ𝛿1(𝑡)
0 0

0 ⋱ 0

0 0
Δ𝑃𝑛(𝑡)

Δ𝛿𝑛(𝑡)]
 
 
 

 (8) 

The Pipredicted term indicates the predicted power at bus (i) while the Piactual term 

represents the direct power measurement at a particular cycle for the same bus. It is 

important to emphasize that the most recent measurement in all of these derivations is 

considered to be at time (t+Δt). This would mean that δi(t) denotes the bus voltage phase 

angle at bus (i) of the previous measurement. Vi1 and Ii1 denote the positive sequence 
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voltage and current at bus (i) respectively. Similarly, δVi1 and δIi1 are the phase angles of 

the positive sequence bus voltage and current at bus (i).  

Equation 8 shows the form of the Discrete Decoupled Jacobian Eigenvalue 

approximation matrix. Equation 9 shows a similar representation to Equation 7. 

Equation 10 shows the format of the real power decoupled power flow Jacobian to cross 

compare with Equation 8. 

 [

∆𝑃1(𝑡 + ∆𝑡)

∆𝑃2(𝑡 + ∆𝑡)
⋮

∆𝑃𝑁(𝑡 + ∆𝑡)

] =

[
 
 
 
 
 
𝜕𝑃1

𝜕𝛿1

𝜕𝑃1

𝜕𝛿2
…

𝜕𝑃1

𝜕𝛿𝑁
𝜕𝑃2

𝜕𝛿1

𝜕𝑃2

𝜕𝛿2
…

𝜕𝑃2

𝜕𝛿𝑁

⋮ ⋮ ⋱ ⋮
𝜕𝑃𝑁

𝜕𝛿1

𝜕𝑃𝑁

𝜕𝛿2
…

𝜕𝑃𝑁

𝜕𝛿𝑁]
 
 
 
 
 

[

∆𝛿1(𝑡 + ∆𝑡)

∆𝛿2(𝑡 + ∆𝑡)
⋮

∆𝛿𝑁(𝑡 + ∆𝑡)

] (9) 

 𝐷𝑒𝑐𝑜𝑢𝑝𝑙𝑒𝑑 𝑅𝑒𝑎𝑙 𝑃𝑜𝑤𝑒𝑟 𝐽𝑎𝑐𝑜𝑏𝑖𝑎𝑛 =

[
 
 
 
 
 
𝜕𝑃1

𝜕𝛿1

𝜕𝑃1

𝜕𝛿2
…

𝜕𝑃1

𝜕𝛿𝑁
𝜕𝑃2

𝜕𝛿1

𝜕𝑃2

𝜕𝛿2
…

𝜕𝑃2

𝜕𝛿𝑁

⋮ ⋮ ⋱ ⋮
𝜕𝑃𝑁

𝜕𝛿1

𝜕𝑃𝑁

𝜕𝛿2
…

𝜕𝑃𝑁

𝜕𝛿𝑁]
 
 
 
 
 

 (10) 

For any buses that are not directly connected, the corresponding Ybus values will be 

zero. The Expansion of the Discrete Decoupled Jacobian Approximation (EDDJA) gives 

time-varying weights and values to off-diagonal terms by applying linear models to large 

sample sizes. These weights can help account for changes in system topology and events 

as they occur in real-time and modify the EDDJA values to reduce error from the algorithm. 

This brings back the consideration of connectivity to the discrete model. Off-diagonal 

terms are only zero for all measurements when the Ybus is zero in the traditional power flow 

Jacobian. These weighted terms in Equation 11 give a reduced form of system 

connectivity, allowing more than one element to predict the change in power at a bus. 
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Although the model is reduced, statistically significant terms can be used in the final 

representation to give a general sense of system connectivity not considered in the DDJEA 

method. The proposed final format of the EDDJA method is shown in Equation 11 and 

the EDDJA matrix is highlighted in Equation 13. Equation 12 illustrates the calculation 

for the change in real power at bus (i). 

[
∆𝑃1(𝑡 + ∆𝑡)

⋮
∆𝑃𝑛(𝑡 + ∆𝑡)

] =

[
 
 
 
 
 𝛼11(𝑡)

∆𝑃1(𝑡)

∆𝛿1(𝑡)
𝛼12(𝑡)

∆𝑃1(𝑡)

∆𝛿2(𝑡)
⋯ 𝛼1𝑛(𝑡)

∆𝑃1(𝑡)

∆𝛿𝑛(𝑡)

𝛼21(𝑡)
∆𝑃2(𝑡)

∆𝛿1(𝑡)
𝛼22(𝑡)

∆𝑃2(𝑡)

∆𝛿2(𝑡)
⋯ 𝛼2𝑛(𝑡)

∆𝑃1(𝑡)

∆𝛿1(𝑡)

⋮ ⋮ ⋱ ⋮

𝛼𝑛1(𝑡)
∆𝑃𝑛(𝑡)

∆𝛿1(𝑡)
𝛼𝑛2(𝑡)

∆𝑃𝑛(𝑡)

∆𝛿2(𝑡)
… 𝛼𝑛𝑛(𝑡)

∆𝑃𝑛(𝑡)

∆𝛿𝑛(𝑡)]
 
 
 
 
 

[
∆𝛿1(𝑡 + ∆𝑡)

⋮
∆𝛿𝑛(𝑡 + ∆𝑡)

] (11) 

  𝛥𝑃𝑖(𝑡 + 𝛥𝑡) = ∑ 𝛼𝑖𝑗(𝑡) ∗
𝛥𝑃𝑖(𝑡)

𝛥𝛿𝑗(𝑡)
∗ 𝛥𝛿𝑗(𝑡 + 𝛥𝑡) 

𝑛
𝑗=1  (12) 

 𝐸𝐷𝐷𝐽𝐴 =

[
 
 
 
 
 𝛼11(𝑡)

∆𝑃1(𝑡)

∆𝛿1(𝑡)
𝛼12(𝑡)

∆𝑃1(𝑡)

∆𝛿2(𝑡)
⋯ 𝛼1𝑛(𝑡)

∆𝑃1(𝑡)

∆𝛿𝑛(𝑡)

𝛼21(𝑡)
∆𝑃2(𝑡)

∆𝛿1(𝑡)
𝛼22(𝑡)

∆𝑃2(𝑡)

∆𝛿2(𝑡)
⋯ 𝛼2𝑛(𝑡)

∆𝑃1(𝑡)

∆𝛿1(𝑡)

⋮ ⋮ ⋱ ⋮

𝛼𝑛1(𝑡)
∆𝑃𝑛(𝑡)

∆𝛿1(𝑡)
𝛼𝑛2(𝑡)

∆𝑃𝑛(𝑡)

∆𝛿2(𝑡)
… 𝛼𝑛𝑛(𝑡)

∆𝑃𝑛(𝑡)

∆𝛿𝑛(𝑡)]
 
 
 
 
 

 (13) 

Once terms are shown to be statistically significant, a time-varying weight is given 

to each term. This weight is calculated through a Least Squares method using 

overdetermined equations. The number of statistically significant terms and the role these 

terms play in accuracy of the model will be discussed after the derivation. The αij term 

denotes the time varying weights associated with each term in the EDDJA matrix. Unlike 

the Ybus terms, α terms change between every cycle, but this is due to their function in also 

accounting for variability in the reduced system. 

Unlike DDJEA, which is a real-time application with no start up or offline analysis 

required, EDDJA requires offline analysis over a large data set in order to determine 
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statistically significant terms. Linear models must be built for every bus with a PMU 

installed in the system. Consider a 20-minute window where PMU measurements are read. 

This would result in a [35,999 x n ] matrix, at a 30 Hz report rate, for each bus with a PMU 

in the system in order to determine whether each column is statistically significant when 

predicting the real power change. The linear model is derived in Equations 14-25. 

 Δ𝑃𝑖𝑙𝑖𝑛𝑒𝑎𝑟 𝑚𝑜𝑑𝑒𝑙 =  𝐵0 + 𝐵1 ∗ 𝑋𝑖1 + 𝐵2 ∗ 𝑋𝑖2…+ 𝐵𝑛 ∗ 𝑋𝑖𝑛 (14) 

Equation 14 builds a linear model for the change in real power at bus (i). In this 

equation, the (i) term references the particular bus number of interest when constructing 

the linear model. The (j) term denotes the bus being analyzed to determine if it is 

statistically significant to bus (i). Each 𝑋𝑖𝑗 term can be expanded as shown in Equation 

15. The specific case is given considering whether the column vector used to determine 

whether the PMU at bus (2) can be used to determine the change in power at bus (1). The 

36,000 prior measures are utilized when constructing this column vector. 

   𝑋12𝑠𝑎𝑚𝑝𝑙𝑒𝑠(𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛 35999 𝑥 1) =

[
 
 
 
 

𝑥12(𝑡 + Δ𝑡)

𝑥12(𝑡)

𝑥12(𝑡 − Δ𝑡)
⋮

𝑥12(𝑡 − 35,997Δ𝑡)]
 
 
 
 

  (15) 

 𝑥12(𝑡 + Δ𝑡) =
Δ𝑃1(𝑡)

Δ𝛿2(𝑡)
∗ Δ𝛿2(𝑡 + Δ𝑡) (16) 

  Δ𝑃1𝑠𝑎𝑚𝑝𝑙𝑒𝑠(𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑠 35999 𝑥 1) =

[
 
 
 
 

Δ𝑃1𝑎𝑐𝑡𝑢𝑎𝑙(𝑡 + Δ𝑡)

Δ𝑃1𝑎𝑐𝑡𝑢𝑎𝑙(𝑡)

Δ𝑃1𝑎𝑐𝑡𝑢𝑎𝑙(𝑡 − Δ𝑡)
⋮

Δ𝑃1𝑎𝑐𝑡𝑢𝑎𝑙(𝑡 − 35,997Δ𝑡)]
 
 
 
 

 (17) 
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The model is applied so that each bus is individually tested and analyzed in order 

to determine whether it is statistically significant to the overall model. Each xij term is 

effectively the product of the change in power at bus (i) divided by the change in bus 

voltage angle at bus (j) of the previous measurement in radians and the value of the bus 

voltage angle at bus (j) of the most recent observation. If this term were used without a 

weight, then all the change in power would be assumed to be influenced by bus (j). 

Equation 16 presents the definition of the independent variable for the linear model. The 

test was coded in R to build a linear model with all terms included. Each Xij term is a 

column vector that contains all xij terms as per Equation 15. The column vectors are used 

to predict the actual power change at the bus, held in a similar column vector shown in 

Equation 17. For each PMU, there are (n) Xij column vectors incorporated for the linear 

model to determine whether there are other buses than the diagonal term that can be used 

to reduce error from the model. Δ𝑃𝑖𝑠𝑎𝑚𝑝𝑙𝑒𝑠 is a single column vector that stores the actual 

change in power at bus (i) for all the time increments. The linear model is built so that the 

estimate of Δ𝑃𝑖 ̂ is minimized considering all instances T, where T is a specific point in time. 

Equation 18 shows the notation for estimating the change in power at PMU 1 considering 

all PMUs in the system. Equation 19 shows the general expression for how the data is 

related in R code. Equation 20 demonstrates the simple linear model relation more clearly, 

assuming that the linear model is true.  
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 𝛥𝑃1(𝑇)̂ = 𝛽10̂ + ∑ 𝛽1𝑗̂ ∗ 𝑋1𝑗(𝑇)
𝑛
𝑗=1  (18) 

   

[
 
 
 
 

Δ𝑃1𝑎𝑐𝑡𝑢𝑎𝑙(𝑡 + Δ𝑡)

Δ𝑃1𝑎𝑐𝑡𝑢𝑎𝑙(𝑡)

Δ𝑃1𝑎𝑐𝑡𝑢𝑎𝑙(𝑡 − Δ𝑡)
⋮

Δ𝑃1𝑎𝑐𝑡𝑢𝑎𝑙(𝑡 − 35,997Δ𝑡)]
 
 
 
 

⏞                

Δ𝑃1𝑠𝑎𝑚𝑝𝑙𝑒𝑠

   =

[
 
 
 
 
 
 

𝑥11(𝑡 + Δ𝑡)

𝑥11(𝑡)

𝑥11(𝑡 − Δ𝑡)
⋮

   𝑥11(𝑡 − 35,997Δ𝑡)   

⏞              
𝑋11

𝑥12(𝑡 + Δ𝑡)

𝑥12(𝑡)

𝑥12(𝑡 − Δ𝑡)
⋮

𝑥12(𝑡 − 35,997Δ𝑡)

⏞            
𝑋12

   

…
…
…
…
…

   

𝑥1𝑛(𝑡 + Δ𝑡)

𝑥12(𝑡)

𝑥1𝑛(𝑡 − Δ𝑡)
⋮

𝑥1𝑛(𝑡 − 35,997Δ𝑡)

⏞            
𝑋1𝑛

]
 
 
 
 
 
 

 (19) 

  Δ𝑃1𝑠𝑎𝑚𝑝𝑙𝑒𝑠
̂ = 𝛽0̂ + 𝛽11̂𝑋11 + 𝛽12̂𝑋12 + 𝛽13̂𝑋13…𝛽1𝑛̂𝑋1𝑛 (20) 

The appropriate 𝛽 values are approximated from the data to individually reduce the 

sum of least squares for each term in the model. The issue with this model, in regards the 

final format desired by Equation 11, is the 𝛽 values are constant, not time varying. 

However, these 𝛽 values can be individually tested to determine which PMUs are 

significant when estimating the change in real power at a bus. Furthermore, not all 𝛽 values 

used to build the model are statistically significant, so reducing them from the model 

increases efficiency. In order to determine significance, the pvalue of each term is calculated, 

as well as the pvalue of the overall model. When all unnecessary terms are dropped from the 

model, the final result must be tested for a sufficient pvalue.  

In many statistical applications, a pvalue less than 0.05 or 0.01 is sufficient to show 

that a term is statistically significant to the model. However, in this case there are factors 

to consider for lowering the required level of significance for both the terms and models. 
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The duality of adding all significant terms to the linear model is that it will not necessarily 

improve the accuracy when applied to the time-varying model. The nature of EDDJA and 

DDJEA matrices is that they fluctuate over time and their weights should similarly 

fluctuate. The 𝛽 values calculated to determine the linear model do not play a role in the 

implementation of the EDDJA matrix other than determining which terms should be 

included. Furthermore, the accuracy of the EDDJA method is dependent upon the 

assumption that matrix does not change drastically over a short period of time unless 

experiencing a system event. These terms do give a sense of a reduced system connectivity, 

but adding too many terms to the model is not ideal, as will be discussed in the application 

of overdetermined equations to predict temporary linear models by Least Squares 

Estimation. Computational speed is another concern when considering which values 

should be considered. If the model can be reduced without affecting the desired accuracy, 

that specific term should be given a weight of zero so that only the most significant terms 

are considered. Equation 21 and Equation 22 set in place the general criteria that were 

used when selecting the most significant terms. 

 𝐹𝑜𝑟 𝑝𝛽𝑖𝑗
> 0.00001, 𝛽𝑖𝑗 = 0 (21) 

 𝐹𝑜𝑟 𝑝𝑚𝑜𝑑𝑒𝑙𝑖 > 0.00001,     𝑅𝑒𝑗𝑒𝑐𝑡 𝐿𝑖𝑛𝑒𝑎𝑟 𝑀𝑜𝑑𝑒𝑙 (22) 

The term 𝑝𝛽𝑖𝑗
 represents the test statistic for an individual term relating the 

significance of bus(j) voltage angle when predicting the change in power at bus(i). Since 

the data being used is large, the mean of the data is assumed to be approximately Gaussian 

when considering the Central Limit Theorem [72][73]. The standard assumption is that for 

normal data, the distribution will be approximately Gaussian about the mean for a sample 
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term. A perfect Gaussian distribution will not be obtained by a finite amount of real data, 

but a large sample will have Gaussian properties about the mean. In this case, the sample 

size is much greater than 30 samples. The Gaussian distribution of each term is used to 

calculate a simple hypothesis test summarized in Equation 23.  

   𝐻0: 𝛽𝑖𝑗 = 0 ;  𝐻𝐴: 𝛽𝑖𝑗 ≠ 0 ; 𝛼 = 1𝑥10
−5 → 𝐹𝑜𝑟 𝑝𝛽𝑖𝑗

> 𝛼, 𝑟𝑒𝑗𝑒𝑐𝑡 𝐻0 (23) 

The H0 term is the null hypothesis, and the HA term is the alternative hypothesis. 

The α term is the level of significance for the model. The R code considers this test when 

calculating the pvalue via the summary of the linear model. The level of significance has a 

practical purpose: it limits the chance that the null hypothesis is rejected when it should not 

be rejected. In the context of this algorithm, the level of significance limits terms from 

being accepted into the final model when that individual element is not statistically 

significant and should be ignored. A level of significance of 1×10-5 creates an upper bound 

so that there is at most a 0.001% chance that any terms placed into the model should have 

been excluded. A similar way of looking at this is through confidence intervals. There is a 

confidence interval associated with each 𝛽𝑖𝑗 term. The confidence interval is set at  

(1-α)×100%. A 99.999% confidence interval is constructed which has a 99.999% chance, 

when using a level of significance of 𝛼 = 1 × 10−5, of enclosing the true value of the beta 

term. If zero is not in this confidence interval, then the term is assumed to be statistically 

significant. For any pvalue above this threshold, the null hypothesis will not be rejected, 

causing the weight for that term to be indefinitely set to zero. This would also imply that 

no sense of connectivity can be assumed between bus (i) and (j).  
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A similar test is applied to the overall linear model. If PMU 1, PMU 5, and PMU 

15 have β values with test statistics (p-values) lower than the specified level of significance, 

α, then resulting linear model would be as follows in Equation 24. 

 Δ𝑃1 = 𝛽11𝑋11 + 𝛽15𝑋15 + 𝛽1,15𝑋1,15 (24) 

 𝐹𝑜𝑟 𝑝𝑚𝑜𝑑𝑒𝑙1 < 𝛼  → 𝐴𝑠𝑠𝑢𝑚𝑒 𝑚𝑜𝑑𝑒𝑙 𝑖𝑠 𝑠𝑖𝑔𝑛𝑖𝑓𝑖𝑐𝑎𝑛𝑡  

The pvalue of the linear model is computed in software and the resulting test statistic 

is compared to the level of significance for the model itself presented in Equation 24. If 

the entire model is deemed statistically significant, then all significant terms are considered 

when building reduced connectivity for the system in relation to PMU (i).  

The entire process is summarized in Figure 2.1 to help aid in the overall 

understanding of how the model for each PMU is developed. Unless there is some conflict 

with the terms, the final model should meet the requirements. Otherwise, the model would 

need to be reduced further. In the event that too many terms are added to a predictive model 

for the change in real power at a PMU, the model would be reduced to only the most 

significant terms. The reason for this will be explained in the derivation of the αij terms. 
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Figure 2.1 Application of Linear Models to Derive EDDJA Significant Terms 

Another common way of referencing the effectiveness of a model is by looking at 

the coefficient of correlation, R2. The model is built over a large sample of fluctuating data; 

this is not necessarily ideal for producing a high R2, especially when considering that the 

data could contain events that caused fundamental terms to change entire orders of 

magnitude. This would cause the term to have one highly inaccurate reading around the 

time of the fault when using the last sample’s measurements to estimate the system’s 

behavior and several other inaccurate measurements as the system converges to a new 
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equilibrium following the event. Since the coefficient of correlation is a percentage of the 

variation in the model that can be explained [72], most models below R2 = 0.9 are 

disregarded. However, in this case it is important to recognize that this is not the case since 

extreme outliers can drastically affect this number. Considering real industry PMU data, 

the full linear model yielded a R2 value of 0.573. The pvalue for the model was calculated to 

be less than 2.2×10-16. From the R2 value alone, the model may not seem adequate, but the 

pvalue is the lowest possible value that R-code can compute, meaning the significance of the 

model is effectively 100%, with a pvalue approaching a limit close to zero. A true value of 0 

can never be reached, as per the nature of the Gaussian distribution. The reduced model 

had an even more unsettling R2 value of 0.091 over the entire period of 4225 sample 

measurements per PMU channel, but the pvalue of the model was not changed by the 

reduction, remaining at less than 2.2×10-16. By looking at the data over a shorter time span, 

it was shown that an outlier was the source of error. If only the first 100 measurements 

were considered, the full model (53 PMUs) yielded an R2 value of 1. The reduced model, 

considering only two PMUs, produced an R2 value of 0.9996 when building the linear 

regression with only the first 100 measurements. The pvalue for both models remained the 

same at 2.2×10-16. When the first thousand measurements were considered for reduced 

linear model, the R2 value of the model plummeted to 0.033 and a pvalue of 4.32×10-8 with 

a near singularity in the EDDJA matrix being the culprit. However, when the set of (1000 

to 2000) measurements were considered for building the reduced model, the result yielded 

an R2 of 0.953 and a pvalue at the minimum possible value. Along smaller time segments, a 

linear model will not be affected by outliers in the data unless those outliers are enclosed 
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in the sample set. This is the basis for applying the Least Squares estimation over short 

time periods in order to reduce error in the EDDJA itself. Although the Least Squares 

approximation is not time-varying at a particular point, building a linear model of a set 

length that shifts through the data allows the weights in the EDDJA method to update. 

Jacobians can change drastically over time so applying a static or constant relationship 

between buses with PMUs over a large period of time is not reasonable. 

Once the significant terms of each PMU are determined, these terms are placed 

back into the EDDJA matrix. All other terms are set to zero. Consider a case where the 

system contains 4 PMUs. PMU 1 and PMU 4 are derived to be significant to each other. 

Likewise, PMU 2 and PMU 3 are shown to be linearly related in the regression model. 

Equation 25 shows the format of the EDDJA method considering these relationships.  

 

[
 
 
 
∆𝑃1(𝑡 + ∆𝑡)

∆𝑃2(𝑡 + ∆𝑡)

∆𝑃3(𝑡 + ∆𝑡)

∆𝑃4(𝑡 + ∆𝑡)]
 
 
 

=

   

[
 
 
 
 
 
 𝛼11(𝑡)

∆𝑃1(𝑡)

∆𝛿1(𝑡)
0 0 𝛼14(𝑡)

∆𝑃1(𝑡)

∆𝛿4(𝑡)

0 𝛼22(𝑡)
∆𝑃2(𝑡)

∆𝛿2(𝑡)
𝛼23(𝑡)

∆𝑃2(𝑡)

∆𝛿3(𝑡)
0

0 𝛼32(𝑡)
∆𝑃3(𝑡)

∆𝛿2(𝑡)
𝛼33(𝑡)

∆𝑃3(𝑡)

∆𝛿3(𝑡)
0

𝛼41(𝑡)
∆𝑃4(𝑡)

∆𝛿1(𝑡)
0 0 𝛼44(𝑡)

∆𝑃4(𝑡)

∆𝛿4(𝑡)]
 
 
 
 
 
 

[
 
 
 
∆𝛿1(𝑡 + ∆𝑡)

∆𝛿2(𝑡 + ∆𝑡)

∆𝛿3(𝑡 + ∆𝑡)

∆𝛿4(𝑡 + ∆𝑡)]
 
 
 

   (25) 

A similar symmetry to the decoupled power flow Jacobian can be seen in Equation 

25, but this model considers only the buses with PMUs for analysis. In order to calculate 

the weighted coefficients of each row, a Least Squares estimate is applied. This is shown 
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for only terms to predict Δ𝑃1 in Equations 26-29. Both Equations 26 and 27 consider the 

notation defined in Equation 16. 

 [

∆𝑃1(𝑡 − 2∆𝑡)

∆𝑃1(𝑡 − ∆𝑡)

∆𝑃1(𝑡)
] = [

𝑥11(𝑡 − 2∆𝑡) 𝑥14(𝑡 − 2∆𝑡)

𝑥11(𝑡 − ∆𝑡) 𝑥14(𝑡 − ∆𝑡)

𝑥11(𝑡) 𝑥14(𝑡)
] [
𝛼11(𝑡)

𝛼14(𝑡)
] (26) 

  𝐴 = [

𝑥11(𝑡 − 2∆𝑡) 𝑥14(𝑡 − 2∆𝑡)

𝑥11(𝑡 − ∆𝑡) 𝑥14(𝑡 − ∆𝑡)

𝑥11(𝑡) 𝑥14(𝑡)
] (27) 

  𝐵 = [

∆𝑃1(𝑡 − 2∆𝑡)

∆𝑃1(𝑡 − ∆𝑡)

∆𝑃1(𝑡)
] (28) 

  [
𝛼11(𝑡)

𝛼14(𝑡)
] = (𝐴𝑇𝐴)−1 ∗ 𝐴𝑇 ∗ 𝐵 (29) 

Assume that Ns is the number of significant terms in a particular row. In order to 

run the EDDJA method, a window containing Ns+1 previous measurements is required to 

implement the matrix for situational awareness and stability assessment. This is where the 

number of PMUs selected for the model becomes important. The most significant 

advantage of this method is the rate at which PMU data is obtained. The entire method 

hinges on the assumption that the EDDJA matrix will remain similar over a short time 

period, unless a serious system event occurs that causes significant changes in the bus 

voltage, drastically affects the Ybus, or causes bus voltage angles to diverge quickly. These 

events would include events such as faults, line outages, or large load changes. Other 

system events like capacitor switching and load changes are standard system operation, so 

these events should not be flagged unless there is a slow trend toward instability and system 

collapse. By introducing the effect of samples that were previously measured, it is possible 
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to introduce error into the model if the window runs over an event. The DDJEA method is 

only dependent on the previous sample to estimate the next incoming value. The EDDJA 

method allows an Ns+1 size window where the measurements can be obscured by one 

significant event or quickly changing parameters. 

The number of terms in the EDDJA matrix should be reduced to only essential 

elements for two critical reasons. First, the accuracy of the method depends on how recent 

the measurement is. If a model was built with 10 terms in a single row, then there would 

be data as old as 0.37 seconds influencing the weights given to each term for a given row 

in the EDDJA matrix. This is not an ideal window when applying these weights to the most 

recent sample. Even if a model may be more accurate when estimating specific segments 

of time, the error introduced by a critical event causes error over the Ns+1 window and this 

can cause the method to be less effective than the DDJEA matrix. An ideal number appears 

to be 2-3 significant terms per row, if any of the off-diagonal terms can be statistically 

linked. Even though error can be introduced over short time periods from an extreme outlier 

in the data, the overall effect on the accuracy of considering the EDDJA matrix for both 

simulated and real data is presented in Table 2.1 and Table 2.2. When an extreme outlier 

is detected, a cross-comparison can be run between the two methods and the DDJEA 

method is implemented until the (Ns+1)×Δt window clears.  

Data was obtained from a Kundur Two-Area System [74] simulation over 90 

seconds with a fault simulated for 0.1 seconds and typical load changes. PMU data 

retrieved via openPDC from a utility was also considered to test whether the method could 

be applied to a large system. A total of 53 PMUs received complete measurements over 
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the 147.5 second sample, and the accuracy of the method is shown through application to 

both data sets in reference to predicting the ΔPi term of the next iteration. 

Table 2.1. DDJEA Accuracy for Real Power Estimation 

Calculation Source 

Percent Error of Real Power (Perr) for Measurements 

Mean Percent 

Error (Perr) 

Median Percent 

Error (Perr) 

Kundur Two-Area System 

Simulation 
0.054% 9.51×10-6% 

Utility PMU Data 

Measurements 
0.1977% 0.1003% 

 

Table 2.2. EDDJA Accuracy for Real Power Estimation 

Calculation Source 

Percent Error of Real Power (Perr) for Measurements 

Mean Percent 

Error (Perr) 

Median Percent 

Error (Perr) 

Kundur Two-Area System 

Simulation 
0.0012% 1.25×10-7% 

Utility PMU Data 

Measurements 
0.0034% 0.0013% 

 

Table 2.3 highlights the magnitude of error reduced from the system by using 

EDDJA compared to DDJEA. 

Table 2.3. EDDJA Error Reduction Compared to DDJEA 

Calculation Source 

Percent Error Reduction of Real Power (Perr ) 

Measurements 

Mean Percent Error 

Magnitude Reduction 

Median Percent Error 

Magnitude Reduction 

Kundur Two-Area 

System Simulation 
45x 76x 
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Calculation Source 

Percent Error Reduction of Real Power (Perr ) 

Measurements 

Mean Percent Error 

Magnitude Reduction 

Median Percent Error 

Magnitude Reduction 

Utility PMU Data 

Measurements 
58x 77x 

 

It can be observed from Table 2.1 and Table 2.2 that both matrices function to 

accurately predict the change in real power when using the change in bus voltage angle of 

the previous iteration as input. The performance of the algorithms is proof of their 

effectiveness in regard to accomplishing a similar function to the decoupled power flow 

Jacobian. Table 2.3 illustrates the magnitude of error reduced from the DDJEA model by 

implementing the EDDJA algorithm. For real power, the EDDJA method reduces a similar 

amount of error from both the simulation and the industry system in comparison to DDJEA. 

The error is greater when using either method on the PMU data from industry. This is 

mostly due to the complexity and amount of change constantly occurring in the real system 

in comparison to the simulated system. The real power output is kept constant for loads 

while the reactive power varies to meet system conditions. After the reactive power portion 

of the EDDJA matrix is derived in Section 2.2, a mathematical proof can be performed to 

show that the EDDJA matrix can be substituted into the Newton-Raphson method. 

2.2 Discrete Jacobian Derivation for Reactive Power Estimation 

Similar to the derivation for real power, the reactive power potion of the DDJEA 

matrix requires a substitution to mimic the format of the decoupled power flow Jacobian 



 36 

for reactive power presented in Equations 30-31. Shared notation in 2.2 continues the same 

format as 2.1.  

 Δ𝑄𝑖 = ∑ |𝑉𝑖| ∗
𝜕𝑄𝑖

𝜕|𝑉𝑗|

𝑁
𝑗=1 ∗ |

Δ𝑉𝑗

𝑉𝑗
| (30) 

  |Vi| ∗
𝜕𝑄𝑖

𝜕|𝑉𝑗|
= −|𝑉𝑖||𝑌𝑖𝑗𝑉𝑖𝑉𝑗| sin(𝜃𝑖𝑗 + 𝛿𝑗 − 𝛿𝑖) (31) 

The term ΔVj represents the change in per unit voltage at bus (j). The term ΔQi is 

the change in reactive power over one iteration of the Newton Raphson method. Since the 

PMU measurements are taken over a very short time period, the derivation can be written 

as follows in Equations 32-37. 

 𝑄𝑖𝑎𝑐𝑡𝑢𝑎𝑙(𝑡 + Δ𝑡) = 𝑄𝑖𝑎𝑐𝑡𝑢𝑎𝑙(𝑡) + Δ𝑄𝑖𝑎𝑐𝑡𝑢𝑎𝑙(𝑡 + Δ𝑡) (32) 

 𝑄𝑖𝑎𝑐𝑡𝑢𝑎𝑙(𝑡 + Δ𝑡) = 𝑉𝑖1 ∗ 𝐼𝑖1 ∗ sin(𝛿𝑣1𝑖 − 𝛿𝐼1𝑖) (33) 

 𝑄𝑒𝑟𝑟 =
𝑄𝑎𝑐𝑡𝑢𝑎𝑙−𝑄𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑

𝑄𝑎𝑐𝑡𝑢𝑎𝑙
∗ 100 (34) 

 Δ𝑄𝑖 (𝑡 + Δ𝑡) =
Δ𝑄𝑖(𝑡)

|Δ𝑉𝑖(𝑡)|
|𝑉𝑖(𝑡)| ∗

|Δ𝑉𝑖(𝑡+Δ𝑡)|

|𝑉𝑖(𝑡+Δ𝑡)|
 (35) 

 ∆𝑄𝑖(𝑡 + 1) =
𝑄𝑖(𝑡)−𝑄(𝑡−∆𝑡)

|𝑉𝑖(𝑡)−𝑉𝑖(𝑡−∆𝑡)| 
∗ |𝑉𝑖(𝑡)| ∗

|(𝑉𝑖(𝑡+∆𝑡)−𝑉𝑖(𝑡))|

|𝑉𝑖(𝑡+∆𝑡)|
 (36) 

 [
∆𝑄1(𝑡 + ∆𝑡)

⋮
∆𝑄𝑛(𝑡 + ∆𝑡)

] =

[
 
 
 
∆𝑄1(𝑡)

|∆𝑉1(𝑡)|
∗ |𝑉1(𝑡)| 0 0

0 ⋱ 0

0 0
∆𝑄𝑛(𝑡)

|∆𝑉𝑛(𝑡)|
∗ |𝑉𝑛(𝑡)|]

 
 
 

[
 
 
 |
∆𝑉1(𝑡+∆𝑡)

𝑉1(𝑡+∆𝑡)
|

⋮

|
∆𝑉𝑛(𝑡+∆𝑡)

𝑉𝑛(𝑡+∆𝑡)
|]
 
 
 

 (37) 

The performance of the EDDJA method is compared to the DDJEA method to 

assess how well they both predict the change in reactive power with the change in bus 

voltage as an input. Unlike the real power supplied to loads, the reactive power has more 

flexibility to balance voltage and system conditions. Equation 37 displays the reactive 



 37 

counterpart of the DDJEA expression. Then the off-diagonal terms need to be generated 

for the EDDJA method. In order to do so, the EDDJA matrix in Equation 39 should 

resemble the decoupled Jacobian for reactive power presented in Equation 38.  

  [
∆𝑄1(𝑡 + ∆𝑡)

⋮
∆𝑄𝑁(𝑡 + ∆𝑡)

] =

[
 
 
 
 
 
𝜕𝑄1

𝜕|𝑉1|
∗ |𝑉1|

𝜕𝑄1

𝜕|𝑉2|
∗ |𝑉1| …

𝜕𝑄1

𝜕|𝑉𝑛|
∗ |𝑉1|

𝜕𝑄2

𝜕|𝑉1|
∗ |𝑉2|

𝜕𝑄2

𝜕|𝑉2|
∗ |𝑉2| …

𝜕𝑄2

𝜕|𝑉𝑛|
∗ |𝑉2|

⋮ ⋮ ⋱ ⋮
𝜕𝑄𝑛

𝜕|𝑉1|
∗ 𝑉𝑛

𝜕𝑄𝑛

𝜕|𝑉2|
∗ |𝑉𝑛| …

𝜕𝑄𝑛

𝜕|𝑉𝑛|
∗ |𝑉𝑛|]

 
 
 
 
 

[
 
 
 
|∆𝑉1(𝑡+∆𝑡)|

|𝑉1(𝑡+∆𝑡)|

⋮
|∆𝑉𝑛(𝑡+∆𝑡)|

|𝑉𝑛(𝑡+∆𝑡)| ]
 
 
 

  (38) 

  [
∆𝑄1(𝑡 + ∆𝑡)

⋮
∆𝑄𝑛(𝑡 + ∆𝑡)

] =

[
 
 
 
 
 𝛼11(𝑡)

∆𝑄1(𝑡)

|∆𝑉1(𝑡)|
∗ |𝑉1(𝑡)| 𝛼12(𝑡)

∆𝑄1(𝑡)

|∆𝑉2(𝑡)|
∗ |𝑉1(𝑡)| ⋯ 𝛼1𝑛(𝑡)

∆𝑄1(𝑡)

|∆𝑉𝑛(𝑡)|
∗ |𝑉1(𝑡)|

𝛼21(𝑡)
∆𝑄2(𝑡)

|∆𝑉1(𝑡)|
∗ |𝑉2(𝑡)| 𝛼22(𝑡)

∆𝑄2(𝑡)

|∆𝑉2(𝑡)|
∗ |𝑉2(𝑡)| ⋯ 𝛼2𝑛(𝑡)

∆𝑄2(𝑡)

|∆𝑉𝑛(𝑡)|
∗ |𝑉2(𝑡)|

⋮ ⋮ ⋱ ⋮

𝛼𝑛1(𝑡)
∆𝑄𝑛(𝑡)

|∆𝑉1(𝑡)|
∗ |𝑉𝑛(𝑡)| 𝛼𝑛2(𝑡)

∆𝑄𝑛(𝑡)

|∆𝑉2(𝑡)|
∗ |𝑉𝑛(𝑡)| … 𝛼𝑛𝑛(𝑡)

∆𝑄𝑛(𝑡)

|∆𝑉𝑛(𝑡)|
∗ |𝑉𝑛(𝑡)|]

 
 
 
 
 

[
 
 
 
|∆𝑉1(𝑡+∆𝑡)|

|𝑉1(𝑡+∆𝑡)|

⋮
|∆𝑉𝑛(𝑡+∆𝑡)|

|𝑉𝑛(𝑡+∆𝑡)| ]
 
 
 

 (39) 

The method to implement the linear regression was explained in detail in Section 

2.1. The general definitions will be covered for consistency. All previous variables are 

denoted by a Q in order to differentiate the terminology in Equations 40-45, with all other 

notation previously described applying to these equations. The example is shown 

specifically for building the linear model to establish a sense of connectivity for PMU 1. 

The xij and Xij elements are also demonstrated to show how to build a column vector to 

determine if PMU 2 is statistically significant in determining the reactive power output of 

PMU 1. 
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 𝑋12𝑄𝑠𝑎𝑚𝑝𝑙𝑒𝑠(𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛 35999 𝑥 1)  =

[
 
 
 
 
 

𝑥12𝑄(𝑡 + Δ𝑡)

𝑥12𝑄(𝑡)

𝑥12𝑄(𝑡 − Δ𝑡)

⋮
𝑥12𝑄(𝑡 − 35,997Δ𝑡)]

 
 
 
 
 

  (40) 

  𝑥12𝑄(𝑡 + Δ𝑡) =
∆𝑄1(𝑡)

|∆𝑉2(𝑡)|
∗ |𝑉1(𝑡)| ∗ |

∆𝑉1(𝑡+∆𝑡)

𝑉1(𝑡+∆𝑡)
| (41) 

  Δ𝑄1𝑠𝑎𝑚𝑝𝑙𝑒𝑠(𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑠 35999 𝑥 1) =

[
 
 
 
 

Δ𝑄1𝑎𝑐𝑡𝑢𝑎𝑙(𝑡 + Δ𝑡)

Δ𝑄1𝑎𝑐𝑡𝑢𝑎𝑙(𝑡)

Δ𝑄1𝑎𝑐𝑡𝑢𝑎𝑙(𝑡 − Δ𝑡)
⋮

Δ𝑄1𝑎𝑐𝑡𝑢𝑎𝑙(𝑡 − 35,997Δ𝑡)]
 
 
 
 

  (42) 

  Δ𝑄1𝑠𝑎𝑚𝑝𝑙𝑒𝑠
̂ = 𝛽10𝑄̂ + 𝛽11𝑄̂𝑋11𝑄 + 𝛽12𝑄̂𝑋12𝑄 + 𝛽13𝑄̂𝑋13𝑄…𝛽1𝑛𝑄̂ (43) 

 𝐹𝑜𝑟 𝑝𝛽𝑖𝑗𝑄
> 1 ∗ 10−5, 𝛽𝑖𝑗𝑄 = 0 (44) 

  𝐹𝑜𝑟 𝑝𝑚𝑜𝑑𝑒𝑙𝑖𝑄 > 1 ∗ 10
−5,     𝑅𝑒𝑗𝑒𝑐𝑡 𝐿𝑖𝑛𝑒𝑎𝑟 𝑀𝑜𝑑𝑒𝑙 (45) 

When setting up the final matrix, all significant regression terms are considered in 

the model. For the sake of using the same example, it is assumed there are 4 PMUs in a 

system. PMU 1 and PMU 4 make up one pair of statistically correlated variables that is 

assumed to have some form of connectivity. PMU 2 and PMU 3 are also significant when 

determining the next system state at each PMU respectively. Equation 46 demonstrates 

the final product of the offline operations. 
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[
 
 
 
∆𝑄1(𝑡 + ∆𝑡)

∆𝑄2(𝑡 + ∆𝑡)

∆𝑄3(𝑡 + ∆𝑡)

∆𝑄4(𝑡 + ∆𝑡)]
 
 
 
=

[
 
 
 
 
 
 𝛼11(𝑡)

∆𝑄1(𝑡)

|∆𝑉1(𝑡)|
|𝑉1| 0 0 𝛼14(𝑡)

∆𝑄1(𝑡)

|∆𝑉4(𝑡)|
|𝑉1|

0 𝛼22(𝑡)
∆𝑄2(𝑡)

|∆𝑉2(𝑡)|
|𝑉2| 𝛼23(𝑡)

∆𝑄2(𝑡)

|∆𝑉3(𝑡)|
|𝑉2| 0

0 𝛼32(𝑡)
∆𝑄3(𝑡)

|∆𝑉2(𝑡)|
|𝑉3| 𝛼33(𝑡)

∆𝑄3(𝑡)

|∆𝑉3(𝑡)|
|𝑉3| 0

𝛼41(𝑡)
∆𝑄4(𝑡)

|∆𝑉1(𝑡)|
|𝑉4| 0 0 𝛼44(𝑡)

∆𝑄4(𝑡)

|∆𝑉4(𝑡)|
|𝑉4|]
 
 
 
 
 
 

[
 
 
 
|∆𝑉1(𝑡+∆𝑡)|

𝑉1(𝑡+∆𝑡)

⋮
∆𝑉𝑛(𝑡+∆𝑡)

𝑉𝑛(𝑡+∆𝑡) ]
 
 
 

 (46) 

Least squares analysis is then applied to find the time varying weights over an Ns+1 

running window for all rows. Table 2.4 and Table 2.5 show the mean and median absolute 

percent error of both the DDJEA and EDDJA methods, respectively, utilizing the same 

data sets that the real power portion of the EDDJA method was applied to. The 

effectiveness of EDDJA for removing error from the predicted values is shown in Table 

2.6. 

Table 2.4. DDJEA Accuracy for Reactive Power Estimation 

Calculation Source 

Percent Error of Predicted and Actual  

Reactive Power State (Qerr) 

Mean Percent Error Median Percent Error 

Kundur Two-Area System 

Simulation 
0.1884% 9.104×10-7% 

Utility PMU Data 

Measurements 
0.8916% 0.3342% 
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Table 2.5. EDDJA Accuracy for Reactive Power Estimation 

Calculation Source 

Percent Error of Predicted and Actual 

Reactive Power State (Qerr) 

Mean Percent Error Median Percent Error 

Kundur Two-Area 

System Simulation 
3.91×10-5% 1.137×10-11% 

Utility PMU Data 

Measurements 
0.1435% 0.1027% 

 

Table 2.6. EDDJA Error Reduction Compared to DDJEA for Reactive Power 

Calculation Source 

Percent Error Reduction 

of Real Power (Qerr ) Measurements 

Mean Percent Error 

Magnitude Reduction 

Median Percent Error 

Magnitude Reduction 

Kundur Two-Area 

System Simulation 
4,818x 80,070x 

Utility PMU Data 

Measurements 
6.21x 3.25x 

 

These results show that the simulation has a much more linear trend than the actual 

data obtained from industry. Although the EDDJA method was able to reduce a similar 

amount of error between both the simulated and industry case for real power, the algorithm 

was not able to reduce the same amount of error from the change in reactive power for 

industry data as it could for simulation when compared to the DDJEA method. This was 

expected due to the fluctuating nature of reactive power in a large-scale power system with 

dynamic load. The EDDJA model was still able to reduce error from the model despite the 

added complexity of the real PMU data. 
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Since the formal decoupled power flow Jacobian cannot be derived without system 

information, a more mathematically tangible way of proving the viability of this method to 

function similarly to the Jacobian is to replace all non-zero terms of the decoupled power 

flow Jacobian with EDDJA terms, utilizing the power flow Jacobian for an initial iteration. 

Then the final convergence of both matrices can be checked. Figure 2.2 shows the diagram 

for the system which will be analyzed and all pertinent system information. 

 

Figure 2.2. Three Bus Test System 

Since the voltage at bus (2) has a set value, the decoupled Jacobian does not require 

the Δ𝑄2 terms. The Newton Raphson method takes the form shown in Equation 47. Bus 

(1) is set as the swing bus with a constant voltage of 1∠0°. 

 [
Δ𝑃2
Δ𝑃3
ΔQ3

] =

[
 
 
 
 

 

𝜕𝑃2

𝜕𝛿2

𝜕𝑃2

𝜕𝛿3
0

𝜕𝑃3

𝜕𝛿2

𝜕𝑃3

𝜕𝛿3
0

0 0 |𝑉3|
𝜕𝑄3

𝜕|𝑉3| ]
 
 
 
 

[

Δ𝛿2
Δ𝛿3
|Δ𝑉3|

|𝑉3|

] (47) 
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The EDDJA matrix is substituted into the Newton Raphson algorithm in the format 

presented in Equation 48. 

 [

Δ𝑃2
𝑖

Δ𝑃3
𝑖

ΔQ3
𝑖

]  =

[
 
 
 
 
 
 

 

𝛼11
𝑖
Δ𝑃2𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛

𝑖

Δ𝛿2
𝑖 𝛼12

𝑖
Δ𝑃2𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛

𝑖

Δ𝛿3
𝑖 0

𝛼21
𝑖
Δ𝑃3

𝑖
𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛

Δ𝛿2
𝑖 𝛼22

𝑖
Δ𝑃3

𝑖
𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛

Δ𝛿3
𝑖 0

0 0 𝛼33
𝑖 |𝑉3

𝑖|
Δ𝑄3𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛

𝑖

Δ|𝑉3
𝑖| ]

 
 
 
 
 
 

[
 
 
 
Δ𝛿2

𝑖+1

Δ𝛿3
𝑖+1

|Δ𝑉3
𝑖+1|

|𝑉3
𝑖+1| ]
 
 
 

 (48) 

In the context of the substitution, Δ𝑃𝑙 and Δ𝑃𝑙𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛
𝑖  have different definitions. 

Δ𝑃𝑙
𝑖 is the difference between the final load/generation value, 𝑃𝑑𝑒𝑠𝑖𝑟𝑒𝑑, and the current 

value, 𝑃𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑
𝑖  at bus (𝑙). The notation for (i) now denotes the iteration value. The (i+1) 

value would be the next values in the iteration. Δ𝑃𝑙𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛
𝑖  is the difference between the 

current value obtained for real power at bus (𝑙) and the value calculated at bus (𝑙) during 

the previous iteration, as indicated in Equations 49 and 50. 

  Δ𝑃𝑙
𝑖 = 𝑃𝑑𝑒𝑠𝑖𝑟𝑒𝑑 − 𝑃𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑

𝑖  (49) 

  Δ𝑃𝑙𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛
𝑖 = 𝑃𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑

𝑖 − 𝑃𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑
𝑖−1  (50) 

The alphas are calculated using the inverse EDDJA function identically in the 

inverse EDDJA matrix. Every time a prediction is made, the matrix updates, as does the 

decoupled power flow Jacobian. All other steps are identical to the Newton-Raphson 

algorithm, but the EDDJA matrix is simply substituted in place of the Jacobian by applying 

least squares analysis and directly calculating discrete differences in key values between 

iterations. The final convergence of both algorithms is displayed in Table 2.7.  
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Table 2.7. EDDJA Applied in Newton Raphson Method 

Matrix Used V2 V3 P2 P3 Q3 

Decoupled 

Jacobian 
1 ∠ (3.4680°) 0.9226 ∠ (-3.9898°) 0.6000 -0.8000 -0.6000 

EDDJA 

Matrix 
1 ∠ (3.4680°) 0.9226 ∠ (-3.9897°) 0.6000 -0.8000 -0.6000 

 

This validates that the use of the EDDJA matrix can perform a similar function to 

the Jacobian if system connectivity and topology are known. The EDDJA matrix is not the 

decoupled power flow Jacobian, but it can be used in a modified implementation to perform 

an accurate substitution. Chapter 5 presents an expanded methodology to derive a reduced 

system model that can leverage PMU data to perform Newton-Raphson load flow analysis. 

2.3 Implementation of DDJEA and EDDJA for Instability Detection 

The traditional power flow Jacobian is used to ascertain the weak points of the 

system. This is done, as previously discussed in the introduction, by monitoring the 

Jacobian for singularity. Since these reduced matrices do take into account some 

fundamental assumptions like accounting for net power and only being applicable over a 

short period of time, tools must be developed to detect the presence of a singularity before 

one occurs. It is not practical to wait for conditions indicative of imminent system collapse 

before flagging the possible event. In a similar fashion to applying Singular Value 

Decomposition (SVD) to the power flow Jacobian, SVD and eigenvalue analysis can be 

applied to the matrices to ascertain when a singularity is being approached.  

In Newton-Raphson, a singular matrix is unable to be inverted or used to carry out 

power flow calculations. More practically, this indicates system instability. If the inverse 
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eigenvalue approaches infinity, then only an infinite change in bus voltage angle would 

translate to a finite change in power. Vice versa, no possible change in power would be 

able to change the bus voltage angle.  

In order to catch a singularity before one occurs in the EDDJA and DDJEA 

methods, some mathematical tools were developed. The eigenvalues of both matrices can 

be calculated over time and statistical analysis can be run to flag extreme outliers during 

operation. Assuming that the data is Gaussian about the mean for a large sample size, this 

also allows for calculations relating to the probability that an eigenvalue should be 

observed, even if it is outside the bounds of normal system operation. This analysis can 

also be used to give a definitive bound for regular system operations. When a change has 

occurred over a longer period of time, it is pertinent to flag trends in the data. The 

expressions below in Equations 51-62 can help to process the data. 

 𝐴𝐼𝐷𝐷𝐽𝐸𝐴𝑖(𝑡) = ∆ (
∆𝑃𝑖(𝑡)

∆𝛿𝑖(𝑡)
) = |(

∆𝑃𝑖(𝑡)

∆𝛿𝑖(𝑡)
−
∆𝑃𝑖(𝑡−∆𝑡)

∆𝛿𝑖(𝑡−∆𝑡)
 )|  − |(

∆𝑃𝑖(𝑡−∆𝑡)

∆𝛿𝑖(𝑡−∆𝑡)
−
∆𝑃𝑖(𝑡−2∆𝑡)

∆𝛿𝑖(𝑡−2∆𝑡)
)| (51) 

 |𝐴𝐼𝐷𝐷𝐽𝐸𝐴𝑖(𝑡)| − |𝐴𝐼𝐷𝐷𝐽𝐸𝐴𝑖(𝑡 − ∆𝑡)| > 0  
𝑦𝑖𝑒𝑙𝑑𝑠
→      𝑏𝑢𝑠(𝑖) 𝐷𝐷𝐽𝐸𝐴 𝑖𝑠 𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑛𝑔 (52) 

 (|
∆𝑃𝑖(𝑡)

∆𝛿𝑖(𝑡)
| − |

∆𝑃𝑖(𝑡−∆𝑡)

∆𝛿𝑖(𝑡−∆𝑡)
 |) > 0 

𝑦𝑖𝑒𝑙𝑑𝑠
→     𝑏𝑢𝑠(𝑖) 𝐷𝐷𝐽𝐸𝐴 𝑖𝑠 𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑖𝑛𝑔  (53) 

 𝐴𝐼𝐸𝐷𝐷𝐽𝐴𝑖(𝑡) = |(𝑒𝑖𝑔𝑖(𝑡) − 𝑒𝑖𝑔𝑖(𝑡 − ∆𝑡))|   − |(𝑒𝑖𝑔𝑖(𝑡 − ∆𝑡) − 𝑒𝑖𝑔𝑖(𝑡 − ∆2𝑡))| (54) 

 |𝐴𝐼𝐸𝐷𝐷𝐽𝐴𝑖(𝑡)| − |𝐴𝐼𝐸𝐷𝐷𝐽𝐴𝑖(𝑡 − ∆𝑡)| > 0  
𝑦𝑖𝑒𝑙𝑑𝑠
→      𝑏𝑢𝑠(𝑖) 𝐸𝐷𝐷𝐽𝐴 𝑖𝑠 𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑛𝑔 (55) 

 (|𝑒𝑖𝑔𝑖(𝑡)| − |𝑒𝑖𝑔𝑖(𝑡 − ∆𝑡) |) > 0 
𝑦𝑖𝑒𝑙𝑑𝑠
→     𝑏𝑢𝑠(𝑖) 𝐸𝐷𝐷𝐽𝐴 𝑖𝑠 𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑖𝑛𝑔 (56) 

  𝜇𝑒𝑖𝑔𝑖  ≅
1

𝑡𝑜𝑡𝑎𝑙
∑ |𝑒𝑖𝑔𝑖(𝑚 ∗ Δ𝑡)
𝑡𝑜𝑡𝑎𝑙
𝑚=0 | (57) 

 𝑠𝑒𝑖𝑔
2

𝑖
≅

1

𝑡𝑜𝑡𝑎𝑙−1
∑ (|𝑒𝑖𝑔𝑖(𝑚 ∗ Δ𝑡)| − 𝜇𝑒𝑖𝑔𝑖)

2𝑡𝑜𝑡𝑎𝑙
𝑚=0  (58) 
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 |𝑒𝑖𝑔𝑖(𝑡 + Δ𝑡)| > 𝜇𝑒𝑖𝑔𝑖 + 𝐼𝑄𝑅 ∗ 1.5 →      𝐹𝑙𝑎𝑔 𝑂𝑢𝑡𝑙𝑖𝑒𝑟 (59) 

  |𝑒𝑖𝑔𝑖(𝑡 + Δ𝑡)| < 𝜇𝑒𝑖𝑔𝑖 −  𝐼𝑄𝑅 ∗ 1.5 →      𝐹𝑙𝑎𝑔 𝑂𝑢𝑡𝑙𝑖𝑒𝑟 (60)  

   |𝑒𝑖𝑔𝑖(𝑡 + Δ𝑡)| > 𝜇𝑒𝑖𝑔𝑖 + 2.5√𝑠𝑒𝑖𝑔
2

𝑖
  →    𝐹𝑙𝑎𝑔 𝐴𝑛𝑜𝑚𝑜𝑙𝑦 (61) 

 | 𝑒𝑖𝑔𝑖(𝑡 + Δ𝑡)| < 𝜇𝑒𝑖𝑔𝑖 − 2.5√𝑠𝑒𝑖𝑔
2

𝑖
  →    𝐹𝑙𝑎𝑔 𝐴𝑛𝑜𝑚𝑜𝑙𝑦 (62) 

Where: 

𝐴𝐼𝐷𝐷𝐽𝐸𝐴𝑖 is the acceleration indicator for the DDJEA method at bus (i), and 

𝐴𝐼𝐸𝐷𝐷𝐽𝐴𝑖 is the acceleration indicator for the EDDJA method at bus (i).  

The variable 𝑒𝑖𝑔𝑖(𝑡 + Δ𝑡) is the eigenvalue of the EDDJA method at Bus (i) for 

the most present measurement. Both of these variables serve a similar purpose. By 

comparing the eigenvalues of each matrix respectively, a value greater than zero in 

Equations 52 and 55 indicates that the eigenvalue at that particular bus is accelerating. 

Equations 53 and 56 are used to determine whether the eigenvalues are simultaneously 

increasing or decreasing in magnitude. The term  𝜇𝑒𝑖𝑔𝑖 represents the mean magnitude that 

a particular bus eigenvalue takes. Assuming a large sample size from the incoming data, 

the data will be approximately Gaussian around the mean, allowing probabilities to be 

calculated even if they have not been observed if the standard deviation is known. The term 

𝑠𝑒𝑖𝑔
2

𝑖
 is the variance of the eigenvalue at bus(i). This term can also be used to find the 

standard deviation which is √𝑠𝑒𝑖𝑔
2

𝑖
. IQR is the interquartile range, or the range between the 

75th Percentile and 25th percentile of the data. These terms can be used to help determine 

outliers in the incoming data. When an eigenvalue falls outside of the bounds for 
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determining an outlier, the value should be monitored and in linear models, any nearly 

singular should be removed from the Ns+1 window. If the eigenvalue at a specific point in 

time is not in either of the bounds presented in Equations 59 and 60, then the system is 

running within the bounds of typical operation. When the eigenvalue falls outside of these 

bounds it should be analyzed for any behavior that is divergent from the mean, especially 

if the divergence is accompanied by acceleration. When the measurement falls outside of 

the ranges presented in Equations 61 and 62 the bus should be closely monitored and flag 

if there is any further divergence from the mean. Consulting the Z-norm, it is clear that the 

chances of observing an eigenvalue outside of 2.5 standard deviations from the mean is 

approximately 1%. If there are multiple measurements that flag an anomaly with a 

divergent trend, then system instability will eventually occur if conditions do not resolve.  

The criteria for flagging a bus eigenvalue can have several conditions once the 

eigenvalue is outside of the IQR centered on the mean. An eigenvalue increasing and 

accelerating outside of normal system operations will cause instability to occur quickly if 

the value is diverging from the mean. This necessitates an immediate solution. Likewise, 

an eigenvalue accelerating and decreasing outside of the normal system operation range 

will cause the system to go unstable quickly if the conditions do not improve. Other 

persistent divergent trends that show a slow trend away from the mean should also be 

flagged, since these could be indicative of inter-area power oscillations that are slowly 

going unstable or an unstable load condition. If the eigenvalue is increasing and 

accelerating toward the mean, then the system is instead returning to equilibrium. This 

allows system operators to sort convergent positive trends from divergent unstable trends. 
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Once an unstable eigenvalue is identified, the EDDJA matrix elements can be analyzed to 

determine which terms are most critically driving the change, as well as whether dynamic 

or voltage instability will occur if conditions do not change. Dynamic instability trends in 

the real power portion of the EDDJA matrix and voltage instability trends in the reactive 

power portion of the EDDJA matrix can be analyzed further. Event identification is 

addressed in a later chapter. The general process for using DDJEA and EDDJA for 

instability detection is summarized in Figure 2.3. 

Start

Generate DDJEA until 
Running window M+1 is met 

for EDDJA

Is there a Major Event 
or Critically Unstable 

Eigenvalue?

Apply Least Squares on 
Significant Terms and 

Generate EDDJA for time step

Perform SVD to 
obtain Eigenvalues 

and sensitivity zones

Flag Critical:
Return Event 

Type, location, 
and 

parameters

Flag Critical: Parameters will 
result in instability if not 

corrected;
Return unstable parameter

Are eigenvalues 
accelerating away 
from equilibrium

?

Next 
Measurement

Have eigenvalues  
been slowly 
increasing?

Next 
Measurement

Check system 
modes with 

Prony Analysis 
to verify poorly 

damped 
oscillation

NONO

NO

YES

YES
YES

 

Figure 2.3. Utilizing the EDDJA Algorithm for Instability Detection 

This process was applied to a simulated data set for both the EDDJA and DDJEA 

methods for an unstable case in order to determine how effectively they could relay the 
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urgency once an unstable condition has been introduced. Figure 2.4 and Figure 2.5 show 

the output that can be derived from the methods to determine an unstable eigenvalue and 

how accurately these methods can relay a need for the operators to act. A fault is placed 

into the system at the 1500th measurement at PMU 4. Table 2.8 is used to decode the 

meaning of the values at each measurement. Figure 2.4 shows the output of the DDJEA 

algorithm. Figure 2.5 shows the output of the EDDJA algorithm, highlighting its 

advantages in identifying the unstable eigenvalue. 

 

Figure 2.4. DDJEA Analysis Output for Unstable Case 
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Figure 2.5. EDDJA Analysis Output for Unstable Case 

Table 2.8. DDJEA and EDDJA Analysis Code Value Interpretation 

Code 

Value 

Figure 2.4 and Figure 2.5 Decode Table 

Interpretation of Value Action 

0 System is at equilibrium range No action necessary 

5 Bus eigenvalue is converging to a new equilibrium point No action necessary 

10 Slightly divergent trends detected in Eigenvalue 
No action unless this 

pattern continues 

15 Eigenvalue is converging from unstable parameters 

No action  

unless divergence  

occurs after event 

20 
Bus eigenvalue is marginally converging from unstable 

parameters 
FLAG 

25 Eigenvalue at bus is increasing toward dynamic instability FLAG CRITICAL 

30 Eigenvalue is accelerating toward dynamic instability FLAG CRITICAL 

35 Dynamic and voltage instability parameters detected FLAG CRITICAL 

40 
Approaching singularity; 

System will go unstable soon without solution 
FLAG CRITICAL 

50 Major system event and eigenvalue in range of singularity 
FLAG  

HIGHEST PRIORITY 
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The EDDJA algorithm more accurately and reliably shows the unstable eigenvalue. 

Any value greater than 15 can cause instability eventually, so both methods are adequate 

when identifying the bus causing the unstable condition. The EDDJA method has two 

advantages. Since the matrix encompasses a sense of connectivity between buses, both the 

location and cause are more identifiable. Not only will the bus most sensitive to the event 

be flagged, but the role of other buses and parameters can be used to address the particular 

issue. Furthermore, the EDDJA matrix yields eigenvalues that more accurately reflect the 

system state. With the increased number of terms, the cause of the eigenvalue’s divergence 

can be analyzed using more data so that a more effective solution can be reached. Event 

identification and complimentary methods will be addressed in the next chapters. EDDJA 

and DDJEA both excel in rapid event detection. The deviation of the eigenvalue from the 

range it should be able to take assist when identifying an immediate threat. Although the 

methods do not function as well for their intended purpose of prediction during serious 

events, near singularities and large deviations in the eigenvalue that occur during such 

events also function to identify critical threats within one cycle. Slow trends toward 

instability can be flagged by monitoring which eigenvalues are slowly changing and 

diverging from any plausible equilibrium point.  

Chapter 5 bridges the gap between model-free and model-based applications 

analyzing the power flow Jacobian. A reduced system model is created, with a 

mathematical YBus and modelled loads. Differences in current between correlated buses are 

explained with current injections modelled as an equivalent impedance. Ultimately, the 

power flow Jacobian is classically derived leveraging this mathematical model and variants 
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of the power flow Jacobian are analyzed to determine system weak points and divergent 

parameters, including an actionable process for mitigating unstable parameters. 
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CHAPTER THREE 

3 CHAPTER THREE 

POWER SYSTEM EVENT DETECTION AND CLASSIFICATION UTILIZING THE 

BIORTHOGONAL WAVELET 

 

Event detection and classification is fundamental to understanding the cause of 

system changes. If the events leading up to undesirable or unstable parameters can be 

articulated, then the appropriate solution will often be much easier for operators to discern 

and implement. The wavelet transform combines a time-domain and frequency-domain 

approach by breaking down the signal through an effective low pass and high pass 

decomposition. The general format of the wavelet transform is described in Equation 63.  

 𝑊𝜓(𝑎, 𝑑) = ∫ 𝑥(𝑡)𝜓𝑎,𝑑(𝑡)𝑑𝑡
∞

−∞
 (63) 

𝜓(𝑡) is the mother wavelet function, with 𝜓𝑎,𝑑 being made up of orthonormal basis 

vectors to decompose x(t), the desired signal for analysis. The proposed methodology will 

utilize the 1-D biorthogonal discrete wavelet transform. This will ultimately result in a high 

and low frequency component decomposition. The general equations for deriving the 

discrete wavelet transform coefficients are shown below in Equations 64-68 [75]. 

  𝑓(𝑡) =  ∑ 𝑎0[𝑛]𝜙(𝑡 − 𝑛)
∞
𝑛=−∞  (64) 

  𝑎𝑗+1[𝑛] =  ∑ ℎ[𝑘 − 2𝑛]𝑎𝑗[𝑘]
∞
𝑘=−∞  (65) 

  𝑑𝑗+1[𝑛] =  ∑ 𝑔[𝑘 − 2𝑛]𝑎𝑗[𝑘]
∞
𝑘=−∞  (66) 

  𝜙(𝑡) = √2 ∗ ∑ ℎ[𝑛]𝜙(2𝑡 − 𝑛)∞
𝑛=−∞  (67) 

 𝜓(𝑡) = √2 ∑ 𝑔[𝑛]𝜙(2𝑡 − 𝑛)∞
𝑛=−∞  (68) 

In Equation 64, 𝑎0[𝑛] is the discrete sampled signal of f(t). The term 𝜙(𝑡 − 𝑛) is 

an orthonormal vector to the mother wavelet, 𝜓(𝑡). Equation 65 shows the formula for 
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the approximation coefficients, and Equation 66 shows the formula for the detail 

coefficients. The function ℎ[𝑛] is a low pass filter and 𝑔[𝑛] denotes a high pass filter.  

The identification and classification of events during system operation is vital when 

investigating the cause of undesirable system parameters to facilitate an appropriate 

solution. The objective was to detect and identify faults, load switching, capacitor 

switching, and breaker operation. Simultaneous events, or events in close proximity, were 

not considered.  Additionally, only the subset of in-scope events is incorporated into this 

derivation to demonstrate the process. Wavelet transforms have been applied to transient 

and PMU data for accurate detection of a variety of system events, including HIF. It should 

be noted that HIFs in simulation are non-linear, require complex models to simulate, and 

are only defined for distribution systems, excluding them from the scope of this 

transmission application. Regardless, identification of HIFs demonstrated that the wavelet 

transform should be sufficient to distinguish more pronounced system events. Alternative 

solutions leveraging machine learning or neural networks require intensive training before 

a model can be built, and these models may not work on another system. This section seeks 

to build an intuitive and repeatable approach that can relate the frequency and time domain 

characteristics of the PMU signals and overlap power system fundamentals for reliable 

event detection and identification. In order to facilitate this objective, a set of measured 

and derived signals from each PMU were analyzed after biorthogonal wavelet transform 

decomposition. The “bior3.5” wavelet transform from the Matlab wavelet toolbox was 

used for the decompositions [76]. The Kundur Two-Area system [74], shown in Figure 

3.1, was used for the following test case, with 4 PMUs placed in the system near the 
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generators. The model is built using Power Systems Simulator in Matlab and has inputs for 

various power system stabilizer models [76]. This model is also ideal for monitoring power 

oscillations. 

 

Figure 3.1. Kundur Two-Area System Diagram [74] 

The biorthogonal wavelet transform was applied to signals for real power, reactive 

power, bus voltage magnitude, discrete derivative of bus voltage angle, discrete derivative 

of current, discrete derivative of current angle, and frequency. The high pass wavelet 

coefficients, from Equation 66, were analyzed over a moving window in order to gain 

insight into events from the PMU data directly. In each analyzed window, the values 

returned are the local peak wavelet coefficients, recorded only when a threshold value has 

been crossed, indicating an event. For normal system operation, the peak wavelet 

coefficient is approximately zero. Once an event has been detected, the peak value is held 

for a few cycles until the peak wavelet coefficient returns to approximately zero and drops 

below the threshold. The wavelet coefficients are influenced by both the size of the data 
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window used for computation and the magnitudes of the p.u. values for the current and 

voltage. Larger loads will change the current profile of the system and p.u. bus voltages 

significantly. A safe threshold for the detail coefficient relating to p.u. real power was 

determined to be 0.001, where any high pass coefficient value less than this threshold is 

disregarded as noise.  Any high pass coefficient value over this threshold is assumed to be 

an event and is processed for classification. Although this bound is sufficient as an initial 

guess, the threshold should be tested considering the target system data and desired window 

length to calculate the standard deviation of the wavelet coefficients from 0. The general 

methodology was initially published in [70] as part of this research. 

The application of this methodology to detect and classify events requires 

calculating and analyzing the peak wavelet coefficients of each signal of interest during a 

system event. These coefficients, listed below, are analyzed in order to positively identify 

the event.  

𝛼𝑃 The peak wavelet coefficient associated with the real power signal 

𝛼𝑄 The peak wavelet coefficient associated with the reactive power signal 

𝛼𝑉 The peak wavelet coefficient associated with the positive sequence voltage 

magnitude signal 

𝛼𝐼 The peak wavelet coefficient associated with the current magnitude 

𝛼𝐹 The peak wavelet coefficient associated with the frequency signal 

𝛼𝑉ΔΘ The peak wavelet coefficient associated with the discrete derivative of bus 

voltage phase angle 

𝛼𝐼ΔΘ The peak wavelet coefficient associated with the discrete derivative of 

current phase angle 

𝛼𝑒𝑣𝑒𝑛𝑡𝑚𝑖𝑛 This is the threshold for the real power wavelet coefficient used to 

determine an event, many orders above system noise 

𝛼𝑐𝑎𝑝𝑐𝑢𝑡𝑜𝑓𝑓 Lower wavelet bound for typical system capacitors with respect to 𝛼𝑃 
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 𝛼𝑃/𝑄 =
𝛼𝑃

𝛼𝑄
 (69) 

𝛼𝑃/𝑄 Gives a margin to easily detect line removals; All other events fall near 1 

𝛼𝐹𝐶𝐿 Calculated by creating a gaussian distribution over a range of data to 

ascertain a value of 𝛼𝑃/𝑄  not within the range of other events (Typically 

greater than 10 but often over 1000) 

 𝛼𝑉ΔΘ𝑁 =
𝛼𝑉ΔΘ

0.001
  →   𝑇ℎ𝑖𝑠 𝑖𝑠 𝑗𝑢𝑠𝑡 𝑎𝑛 𝑎𝑝𝑝𝑙𝑖𝑒𝑑 𝑤𝑒𝑖𝑔ℎ𝑡 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑙𝑜𝑔𝑖𝑐𝑎𝑙 𝑡𝑒𝑠𝑡𝑠 (70) 

 𝛼𝐼ΔΘ𝑁 =
𝛼𝐼ΔΘ

0.001
 (71) 

The term 𝛼𝐿𝑆 is used to confirm a load switch event. In instances where a load 

switch cannot be confirmed, the event will be considered undefined with respect to the 

reference PMU and the decision will be deferred, if applicable, to analysis of other PMU 

devices. 

  𝛼𝐿𝑆 =
𝛼𝑉ΔΘ

𝛼𝐼ΔΘ
 (72) 

Figure 3.2 shows the general algorithm for the method of applying the biorthogonal 

wavelet transform for event detection and identification.  

This model does have some considerations to be reliable. In order to get an accurate 

result, the window used for analysis must be large, which could exclude the method from 

being applied to larger power systems due to constraints on real-time convergence, 

although particular signals of interest can be supported for real-time processing and 

overlapping windows can be configured to consume all incoming PMU data. There are an 

infinite number of analog values that loads, capacitors, and fault impedances can assume. 

The intention of this method is to provide reliable classification most of the time for 

significant events of interest. Additional considerations can always be made to 

accommodate an important edge case that occasionally is misclassified. 
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Figure 3.2. Biorthogonal Wavelet Event Identification and Classification 

The methodology shown in Figure 3.2 does not take into account simultaneous, or 

nearly simultaneous, events, such as dropping a load and then immediately switching on a 

capacitor or opening line breakers to clear an active fault. The classification derived from 

this methodology will likely favor the event with a greater system impact. The output of 

the above method has also been compared to the error experienced by applying the DDJEA 
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and EDDJA matrices to estimate the change in real power, as prediction errors typically 

occur during major events.  Some derived wavelet coefficient variables consider time-

domain power system analysis in their construction. By considering time-domain power 

system analysis in parallel, a smaller window can be used for calculating the wavelet 

coefficients. This leads to decreased computation time to execute the wavelet 

decomposition.  

When analyzing the different event types, low impedance faults stand out from 

other considered events. For faults, the peak values of the high pass wavelet coefficient 

relating to both real and reactive power are significantly larger than the other system events 

being considered. Typical faults, with resistance near zero, also have the most significant 

impact on the peak value of the frequency wavelet coefficient; faults have a profoundly 

negative effect on system frequency when compared to other events being considered. 

Time-domain analysis can be accurately applied in the same cycle that a possible fault is 

detected since bus voltage will drop significantly below the previous measurement and real 

power will generally experience a large change. Since faults may be cleared by protection 

or dissipate within a short timeframe, a conservative threshold of approximately 0.1 p.u. 

voltage drop between two measurements is reasonable to consider flagging a fault. This is 

due to the possibility that for a 30Hz signal, a fault could fall at the beginning of a cycle, 

clearing before the measurements reflect the full impact on voltage. The zero-sequence 

current can also be calculated from the line currents at a bus, indicating the presence of a 

ground fault. Time domain analysis can be sufficient, when coupled with the wavelet 

decomposition, to decrease the minimum window size without forfeiting reliability.  



 59 

A differentiation that can be difficult to make when analyzing the PMU data strictly 

through the wavelet transform is when a capacitor is switched on or a load is switched off. 

Unless the PMU is directly on the load bus, the trend tends to be that the real power and 

voltage both increase the first few cycles after the load is removed from the circuit. 

Furthermore, the reactive power, as measured at generators, will often reflect an immediate 

decrease.  These three qualities are more typically associated with a capacitor switching 

on. Finding some topology differences in the wavelets was crucial. From the perspective 

of the power system, capacitors tend to have a more significant signature with respect to 

the reactive power than real power.  Similarly, loads will tend to have a more noticeable 

impact on the real power measured at a bus. Independent of load, a term was defined to 

help distinguish the capacitor switching event from a load event.  

 𝛼𝐻𝐶 =
𝛼𝐼𝛼𝐹

𝛼𝑉
2∗𝛼𝑉ΔΘ

2  (73) 

With this variable in place, a reference is drawn for distinguishing between 

switching a capacitor on and load removal, or vice versa. There is also a distinction that 

has to be made between a large load increase and a load increase due to normal operation, 

as one has significantly more impact on the system. For a low impedance fault, the wavelet 

coefficients for the real and reactive power wavelet decomposition will have opposite 

slopes in reference to the most recent coefficient. The same trend applies to a normal 

system load. When a load substantially increases, both the reactive and real power wavelet 

coefficients will have aligned slopes immediately after being introduced. 

𝐺𝑖𝑣𝑒𝑛 𝐸𝑣𝑒𝑛𝑡:  𝛼𝑃(𝑛 + 1) > 𝛼𝑃(𝑛)   &  𝛼𝑄(𝑛 + 1) > 𝛼𝑄(𝑛) → 𝐿𝑎𝑟𝑔𝑒 𝐿𝑜𝑎𝑑 (74) 

                           𝛼𝑃(𝑛 + 1) < 𝛼𝑃(𝑛)   &  𝛼𝑄(𝑛 + 1) < 𝛼𝑄(𝑛) → 𝐿𝑎𝑟𝑔𝑒 𝐿𝑜𝑎𝑑 
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This seems counterintuitive, but from the measurements of PMUs that are not 

directly on the loaded bus, the general trend in the system is that there will be a net real 

power increase in the system and a decrease in bus voltages. Due to accounting for the 

load, there will be an increase in reactive power for the system. The real power and reactive 

power high pass wavelet coefficients can be seen in Figure 3.3 for visualization of detail 

coefficients during a fault event. 

 

Figure 3.3. Real and Reactive Wavelet Coefficients during Fault Event 

In the case of a heavy load, both the 𝛼𝐻𝐶 and 𝛼𝐿𝑆 term can be used to help positively 

identify a load switch event. In cases where the real and reactive power detail wavelet 

coefficients are not linearly related in their trajectory post-event, it would suffice to analyze 

the system’s real power and bus voltage differences from the prior measurement, since a 

fault will have a more abrupt signature than a large load event. A standard increase in load 

is easily distinguished from a fault since the peak real and reactive power wavelets are well 

below the threshold for faults or capacitor switching.  
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The EDDJA and DDJEA methods also can be used adjacently to indicate when a 

major event has occurred, or the system conditions have changed significantly from the 

assumptions that were made to build the matrices. The primary assumption of both matrices 

is that the true power flow Jacobian should not change drastically between two cycles 

unless a system event has occurred, driving the solution away from the previous 

equilibrium point. This error should be more pronounced in the DDJEA matrix, as a 

corrective step to increase accuracy is not considered in its construction. This error is an 

indication that the model is unable to approximate the behavior of the system, generally 

coinciding with a fundamental change or event. Figure 3.4 shows the relation of errors in 

the DDJEA eigenvalues to simulated system events.   

 

Figure 3.4. DDJEA Estimation Error as an Indicator of System Event 

The highest errors over this sample period are due to faults in the system. Choosing 

to flag at any value greater than or equal to 5% error, every low impedance faulted case 

and several of the switching operations would be detected as a system event. There were 
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no false flags on this test case. System events that the model was able to adequately 

compensate for or that cause a negligible disturbance in the DDJEA estimation would not 

be flagged. The magnitude of the real power detail coefficient for a utility dataset was also 

assessed for the signal shown in Figure 3.5. The threshold of 0.001, previously stated for 

the high pass real power wavelet coefficient, is sufficient to avoid unnecessary processing, 

as the maximum absolute value of αP for the utility real power signal, where no events were 

present, was 0.000197. As this value is below the threshold, no event will be detected over 

the observable window and no further analysis will be triggered. 

 

Figure 3.5. Reference Utility PMU Power Signal Processed 

3.1 Wavelet Event Classification Utilizing a Reduced Observability Window 

Considering an i9-12900HK 2.5GHz processor and no dedicated optimization, the 

computational time to implement biorthogonal wavelet event classification for the previous 

algorithm is 0.0028 seconds for simulated data containing events and 0.0016 seconds for 
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utility data containing no events. The computational times are calculated in Matlab code 

for a single PMU. It is clear that the presence of events increases computational time, so 

0.0028 seconds is used as the estimate. A modified methodology for event classification 

utilizing a shorter window of observability, 5 seconds with 150 data set reports, is assessed 

to decrease the computational burden and increase the methodology’s usefulness for near 

real-time event classification. It should be noted that the computational time to process all 

signals from an individual PMU is reduced to 0.0008 seconds using this shorter time 

window for analysis. Since a smaller window is considered, a practical approach to 

analyzing the PMU signals with respect to the power system physics is implemented in 

parallel to assist in reliable event classification. Given the shorter window, a delay is 

introduced to monitor system behavior for more reliable identification during some events, 

such as distinguishing a load switch from a capacitor switch. The modified approach is 

displayed in Figure 3.6 for use of the smaller time window. Some of the new variables are 

defined below (Equations 75 and 76).  
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Figure 3.6. Modified Methodology for Event Classification with Reduced Wavelet Window 

 |Δ𝑃10| = |𝑃(𝑡𝑒𝑣𝑒𝑛𝑡) − 𝑃(𝑡𝑒𝑣𝑒𝑛𝑡 + 10Δ𝑡)| (75) 

 |Δ𝑄10| = |𝑄(𝑡𝑒𝑣𝑒𝑛𝑡) − 𝑄(𝑡𝑒𝑣𝑒𝑛𝑡 + 10Δ𝑡)| (76) 

Equations 75 and 76 derive two useful variables for determining whether a 

capacitor switch or load switch has occurred. For the time-step that an event is identified, 

tevent, the per unit real and reactive power at each PMU is recorded, P(tevent) and Q(tevent). If 

the final decision is between a load or capacitor event, the real and reactive power are 

sampled 10 measurements later to determine the net change in the real and reactive power 

values, ΔP10 and ΔQ10. The reason this is reliable is that load events will typically have a 
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notably larger impact on net real power in the system after transients resolve. Similarly, 

capacitive events will typically have a notably larger impact to net reactive power, 

regardless of where the signal is measured from. SPmu is used to denote the mean p.u. 

complex power, considering 10 measurements prior to an event. ΔVPmu denotes the 

absolute per unit change in voltage between the sample where an event is detected and the 

prior measurement. The variable αDQ denotes the peak wavelet coefficient associated with 

the discrete derivative of the reactive power signal between two measurements. This 

variable was utilized with the shorter window to assist with sorting events that have less 

pronounced impact between measurements on the reactive power signal. 

Event classification is essential for situational awareness, but there are some events 

where a short delay to confirm identification is acceptable. Faults are typically cleared by 

protection devices in a sub-second timeframe. The full and reduced wavelet event detection 

and classification methodologies discussed in this chapter converge in real-time for fault 

classification. When applicable, all other event classifications converge in an acceptable 

timeframe to log an event for later reference by system operators. With respect to wide 

deployment, utilizing a reduced window length has computational advantages. For either 

case, wide deployment in a large system would require architecture considerations to 

support near real-time event detection and classification, but implementation of either 

methodology is sufficient and accurate for its stated purpose. 
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CHAPTER 4 

4 CHAPTER FOUR 

APPLICATIONS TO DETECT POORLY DAMPED POWER SYSTEM 

OSCILLATIONS 

 

4.1 Objective Overview 

As previously referenced, inter-area and electromechanical oscillations tend to have 

a frequency in the 0.1-0.8Hz range. Oscillations between 0.1-2 Hz tend to be caused by 

heavy loading conditions, inter-area load flows, or faults as consistent power to loads is 

generated. Several methods can be employed to estimate the dominant eigenvalues of a 

signal. From the eigenvalues, the damping ratio and frequency of the signal at that 

particular eigenvalue can be obtained. The methodologies of interest model oscillatory 

modes and damping factors by representing the signal in one of the following forms: 

Equations 77-79. 

  𝑦(𝑘) =  ∑ 𝑅𝑖 ∗ 𝑧𝑖
𝑘𝑛

𝑖=1  (77) 

  𝑦(𝑡) =  ∑ 𝑅𝑖 ∗ 𝑒
𝜆𝑖𝑡𝑛

𝑖=1  (78) 

    𝑦(𝑠) = ∑
𝑅𝑖

𝑠−𝜆𝑖

𝑛
𝑖=1    , 𝑤ℎ𝑒𝑟𝑒 𝑠 = 𝑗𝜔 (79) 

In the above equations, Ri is the residue for each individual eigenvalue 𝜆𝑖. This 

term will take a complex value for complex eigenvalues. Equations 80-82 show further 

relations to determine where the eigenvalue and damping ratio are ultimately derived. This 

term also gives a sense of weight to the term. In the case of Prony Analysis, the model 

order is selected without being known between iterations so a reasonable guess to enclose 

all important modes is selected and hardcoded as a predetermined system order. For Prony 

Analysis, it is ideal to over-determine the number of modes and discard those eigenvalues 
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with low residue terms. Other methods of interest do not share this drawback of Prony 

Analysis. 

 𝑧𝑖 = 𝑒
𝜆𝑖∗Δ𝑡 (80) 

 𝜆𝑖 =
ln(𝑧𝑖)

Δ𝑡
 (81) 

 𝜆𝑖 = 𝜎𝑖 + 𝑗𝜔𝑖 (82) 

The time step between samples is denoted as Δt. The eigenvalues can be determined 

once zi is found by taking the natural log and dividing by the time step. The sampling 

frequency, fs, is 30Hz for PMUs, making the time step 1/30 for individual measurements. 

Each model proposed will use a window of 300 measurements so that the slowest system 

modes of interest, approximately around 0.1 Hz, can be adequately modelled by the data. 

Since the Nyquist frequency must be considered, these methods will be able to return 

oscillatory data for the 0-15Hz range, with a more conservative lower cutoff of 0.1Hz when 

identifying the mode characteristics. The methods analyzed in this paper are the Matrix 

Pencil Method (MPM) and Prony Analysis. These methods have a different way of 

expressing the data set in order to approximate the system modes at a given bus. Since 

system topology is not considered, regional monitoring will be done by flagging the 

monitored regions for poorly damped oscillatory modes while checking the frequency at 

which these modes occur. Damping ratios of slow system modes under 3% must be 

identified and flagged in parallel with more dynamic conditions.  

The term 𝜎𝑖  is the real portion of the estimated eigenvalue 𝜆𝑖. Similarly, the term 

𝜔𝑖 is the imaginary component of the complex eigenvalue. In cases where there is no 

oscillatory mode, 𝜔𝑖 will be zero. These cases are not a part of the study unless they are 
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positive, indicating instability, or approaching zero while having a significant residue 

value. The calculation of the damping ratio and associated frequency are shown in 

Equation 83 and Equation 84 respectively.  

 𝐷𝑅 = −
𝜎𝑖

√𝜎𝑖
2+𝜔𝑖

2
 (83) 

 𝑓𝑖 =
𝜔𝑖

2𝜋 
 (84) 

There are various methods to attain the exponentials. Each method has a different 

way to solve for the valid parameters and reduce noisy modes or invalid parameters from 

the model. Prony analysis and MPM will be discussed in detail below. The computational 

expense and advantages of each method will also be discussed. 

4.2 Prony Analysis Method 

Prony Analysis is one of the most well-known techniques to approximate power 

system modes. A significant drawback of Prony Analysis is that the number of system 

modes is not known before implementation. Consider in the following equations that (n) is 

the number of selected system modes and (N) is the total number of measurements over a 

moving window. Equation 85 shows the format of the signal of interest, the real power at 

a bus. Equation 86 shows in intermediate step to solving for the poles during a sample 

iteration. 

 𝑠𝑖𝑔𝑛𝑎𝑙 𝑜𝑓 𝑖𝑛𝑡𝑒𝑟𝑒𝑠𝑡 → 𝑦 = 𝑃𝑜𝑤𝑒𝑟(𝑚𝑜𝑠𝑡 𝑟𝑒𝑐𝑒𝑛𝑡 300 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡𝑠)1𝑥300 (85) 

 

[
 
 
 
 
𝑦(𝑛)

𝑦(𝑛 + 1)
𝑦(𝑛 + 2)

⋮
𝑦(𝑁 − 1)]

 
 
 
 

=

[
 
 
 
 

 

𝑦(𝑛 − 1) 𝑦(𝑛 − 2) 𝑦(𝑛 − 3) … 𝑦(0)
𝑦(𝑛 − 2) 𝑦(𝑛 − 3) 𝑦(𝑛 − 4) … 𝑦(1)
𝑦(𝑛 − 3) 𝑦(𝑛 − 4) 𝑦(𝑛 − 5) … 𝑦(2)

⋮ ⋮ ⋮ … ⋮
𝑦(𝑁 − 2) 𝑦(𝑁 − 3) 𝑦(𝑁 − 4) … 𝑦(𝑁 − 𝑛 − 1)

  

]
 
 
 
 

  

[
 
 
 
 
𝛼1
𝛼2
𝛼3
⋮
𝛼𝑛]
 
 
 
 

 (86) 
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In order to attain the discrete eigenvalues, the matrix containing 𝛼 terms needs to 

be solved. The pseudoinverse is an ideal function for this since the matrix is not square and 

using least squares did not yield consistent results. Once this is done, the alpha values can 

be inserted into Equation 87 to solve for the discrete eigenvalues, z1 through zn. 

 𝑧𝑛 − (𝛼1𝑧
𝑛−1 + 𝛼2𝑧

𝑛−2 + 𝛼3𝑧
𝑛−3 + 𝛼4𝑧

𝑛−4…+𝛼𝑛−1𝑧
1 +  𝑎𝑛) = 0 (87) 

The residues, Ri, can be calculated for the Prony analysis method by applying 

Equation 88. Consider z1 as the eigenvalue associated with the first row and zn as the 

eigenvalue of the nth row.  

 

[
 
 
 
 
𝑦(𝑛)

𝑦(𝑛 + 1)
𝑦(𝑛 + 2)

⋮
𝑦(𝑁 − 1)]

 
 
 
 

=

[
 
 
 
 

 

1 1 1 … 1
𝑧1 𝑧2 𝑧3 … 𝑧𝑛
𝑧1
2 𝑧2

2 𝑧3
2 … 𝑧𝑛

2

⋮ ⋮ ⋮ … ⋮
𝑧1
𝑁−1 𝑧2

𝑁−1 𝑧3
𝑁−1 … 𝑧𝑛

𝑁−1

 

]
 
 
 
 

  

[
 
 
 
 
𝑅1
𝑅2
𝑅3
⋮
𝑅𝑛]
 
 
 
 

 (88) 

The pseudo-inverse can be implemented, and the residue values can be solved. 

Extremely low residue values indicate that the term is modelling noise in the system, and 

residue values with a very low value can be removed from the model. Prony Analysis is 

not as robust when predicting the correct system eigenvalue and damping ratio with a 

significant amount of noise present. Unlike MPM, discussed further in Section 4.3, there is 

no consideration in the classic Prony Analysis application for separating the data into 

groups containing noise and those terms without noise. This means that the calculation for 

the terms containing noise occurs before these terms can be identified through residues as 

insignificant. Prony Analysis is computationally expensive when compared to other 

methods used to calculate the damping ratio; however, if the number of oscillatory modes 

to monitor is significantly high, it does leave the user with more modes to analyze. Once 
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the discrete eigenvalues are found, Equation 81 can be applied to solve for the continuous 

time eigenvalues 𝜆𝑖. For each iteration, the peak residue is identified. Then the residue of 

each individual mode is compared to the peak residue by a ratio.  

 
|𝑅𝑖|

|𝑅𝑝𝑒𝑎𝑘|
> 10−4 (89) 

Equation 89 presents a ratio that was used in the process of refining and selecting 

valid modes so that only those contributing to the model with some level of significance 

are added to the overall model. This was a methodology applied to this implementation for 

this data which was effective. It is not a defined standard, but practice has shown that 

throwing out any values below this margin will not yield a significant error. The main 

points to consider when evaluating this method for real-time implementation are accuracy 

and computational speed. The model order for Prony Analysis was set to 0.4×N. This 

selection agrees with the pencil length of N/3 to N/2 for the MPM [77]. Unlike MPM all 

modes will be calculated. Even though the window only spans 300 measurements, 

calculating the eigenvalues for a 120-order model becomes tedious. This limits the 

effectiveness of Prony Analysis as an online application. Resiliency to noise is another 

problem that must be addressed since Prony Analysis is at a disadvantage to methods that 

reduce system order significantly before calculating the terms not generated by noise. 

4.3 Matrix Pencil Method 

MPM has some notable advantages over Prony Analysis. First and foremost, MPM 

is faster. The pencil parameter, L, is set to some value between N/3 to N/2 in order to 

effectively approximate the minimum number of eigenvalues and eliminate noise from the 

model. For Prony analysis, the L parameter was technically used, but there was no 
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reduction in system order. The filtering process is a biproduct of an effective L pencil 

parameter and using singular value decomposition (SVD), which will be seen below. The 

overall matrix is shown in Equation 90, which is the matrix of inputs containing noise. 

 𝑌 =

[
 
 
 
 

 

𝑦(0) 𝑦(1) 𝑦(2) … 𝑦(𝐿)
𝑦(1) 𝑦(2) 𝑦(3) … 𝑦(𝐿 + 1)
𝑦(2) 𝑦(3) 𝑦(4) … 𝑦(𝐿 + 2)
⋮ ⋮ ⋮ … ⋮

𝑦(𝑁 − 𝐿 − 1) 𝑦(𝑁 − 𝐿) 𝑦(𝑁 − 𝐿 + 1) … 𝑦(𝑁 − 1)

  

]
 
 
 
 

 (90) 

The Y matrix has a size of (N-L) x (L+1). The end goal is to separate noise from 

the rest of the input. The theory behind this method is presented in Equations 91-99. The 

data is desired to be broken down into noise free matrices with all x(k) terms being noise 

free.  

 𝑌1 =

[
 
 
 
 

 

𝑥(0) 𝑥(1) 𝑥(2) … 𝑥(𝐿 − 1)

𝑥(1) 𝑥(2) 𝑥(3) … 𝑥(𝐿)

𝑥(2) 𝑥(3) 𝑥(4) … 𝑥(𝐿 + 1)
⋮ ⋮ ⋮ … ⋮

𝑥(𝑁 − 𝐿 − 1) 𝑥(𝑁 − 𝐿) 𝑥(𝑁 − 𝐿 + 1) … 𝑥(𝑁 − 2)

  

]
 
 
 
 

 (91) 

 𝑌2 =

[
 
 
 
 

 

𝑥(1) 𝑥(2) 𝑥(3) … 𝑥(𝐿)

𝑥(2) 𝑥(3) 𝑥(4) … 𝑥(𝐿 + 1)

𝑥(3) 𝑥(4) 𝑥(5) … 𝑥(𝐿 + 2)
⋮ ⋮ ⋮ … ⋮

𝑥(𝑁 − 𝐿) 𝑥(𝑁 − 𝐿 + 1) 𝑥(𝑁 − 𝐿 + 2) … 𝑥(𝑁 − 1)

  

]
 
 
 
 

 (92) 

These matrices are both size (N-L)xL and are noiseless partial representations of 

the full Y matrix, which includes noise. Both matrices have one less column than the 

original input that these matrices are jointly modelling without noise. Y1 is the original Y 

matrix with the last row removed. Y2 is simply the original Y matrix with the first row 

removed.  
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 𝑌1 = [𝑍1][𝑅][𝑍2] (93) 

 𝑌2 = [𝑍1][𝑅][𝑍0][𝑍2] (94) 

 𝑍0 =  

[
 
 
 
 

 

𝑧1 0 0 ⋯ 0
0 𝑧2 0 … 0
0 0 𝑧3 … 0
… … ⋯ ⋱ 0
0 0 0 ⋯ 𝑧𝑀]

 
 
 
 

 , 𝑠𝑖𝑧𝑒 𝑀 𝑥 𝑀 (95) 

 𝑍1 =  

[
 
 
 
 

 

1 1 1 … 1
𝑧1 𝑧2 𝑧3 … 𝑧𝑀
𝑧1
2 𝑧2

2 𝑧3
2 ⋯ 𝑧𝑀2

⋮ ⋮ ⋮ ⋯ ⋮
𝑧1
𝑁−𝐿−1 𝑧2

𝑁−𝐿−1 𝑧3
𝑁−𝐿−1 … 𝑧𝑀

𝑁−𝐿−1]
 
 
 
 

 , 𝑠𝑖𝑧𝑒 (𝑁 − 𝐿) 𝑥 𝑀 (96) 

 𝑍2 =  

[
 
 
 
 
 

 

1 𝑧1 𝑧1
2 … 𝑧1

𝐿−1

1 𝑧2 𝑧2
2 … 𝑧2

𝐿−1

1 𝑧3 𝑧3
2 ⋯ 𝑧3

𝐿−1

⋮ ⋮ ⋮ ⋯ ⋮
1 𝑧𝑀 𝑧𝑀

2 … 𝑧𝑀
𝐿−1]
 
 
 
 
 

, 𝑠𝑖𝑧𝑒 𝑀 𝑥 𝐿 (97) 

 𝑅 =   

[
 
 
 
 

 

𝑅1 0 0 ⋯ 0
0 𝑅2 0 … 0
0 0 𝑅3 … 0
… … ⋯ ⋱ 0
0 0 0 ⋯ 𝑅𝑀]

 
 
 
 

   , 𝑠𝑖𝑧𝑒 𝑀 𝑥 𝑀 (98) 

These matrices can be used in Equation 99 to form the matrix pencil. 

 𝑌2 − 𝜆𝑌1 = 𝑍1𝑅 [𝑍0 − 𝜆𝐼] 𝑍2     → det (𝑌1
𝑃𝐼𝑌2 − 𝜆𝐼) = 0 (99) 

I is the MxM identity matrix. Assuming that M is less than L, then the rank of the 

eigenvalue matrix is M. This is also the rank of the desired noiseless matrix, considering 

only the eigenvalues of interest. 𝑌1
𝑃𝐼 is the pseudo-inverse of 𝑌1.  

In order to implement the matrix pencil method, SVD is applied to the Y matrix as 

in Equation 100.  

 𝑌 = 𝑈 Σ 𝑉∗ (100) 
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The notation 𝑉∗ denotes the conjugate transpose of V. Both U and V are unitary 

matrices, where the columns of U are the left singular vectors, and the columns of V are 

the right singular vectors. The V matrix will be leveraged when generating the noiseless 

eigenvalues of interest. The value of M is determined before the final eigenvalues are 

solved for. There are several ways of justifying this, but the simplest way is to normalize 

the singular value matrix sigmas. Then a cutoff threshold is set for the data. This threshold 

tends to be set at some ratio to the largest singular value. Since the sigma values have been 

normalized, the largest singular value will be 1. In the code implemented, 10-4 was used as 

a cutoff threshold. Equations 101-104 further clarify these relationships. 

 Σnorm = 
Σ

𝜎𝑚𝑎𝑥
 (101) 

 Σ𝑖𝑟𝑎𝑡𝑖𝑜 =
𝜎𝑖𝑛𝑜𝑟𝑚
𝜎𝑚𝑎𝑥𝑛𝑜𝑟𝑚

=
𝜎𝑖𝑛𝑜𝑟𝑚
1

 (102) 

 Σ𝑖𝑟𝑎𝑡𝑖𝑜 < 10
−4 →   𝑁𝑜𝑖𝑠𝑒  ∴  𝑅𝑒𝑚𝑜𝑣𝑒 𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡  (𝑀 𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑒𝑑) (103) 

 𝑀 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝜎𝑖𝑛𝑜𝑟𝑚  𝑣𝑎𝑙𝑢𝑒𝑠 𝑎𝑐𝑐𝑒𝑝𝑡𝑒𝑑 (104) 

In order to derive the eigenvalues of 𝑌1
𝑃𝐼𝑌2, the relationship to the V matrix is 

needed. 

 𝑉𝑀𝑃𝑀 = 𝑉
∗(1:𝑚) (105) 

VMPM is the matrix that will be utilized for the MPM algorithm. It is the first 8 

columns of the conjugate transpose of V. Equations 106-108 present the definitions for 

the last variables needed to solve for the system modes. 

 𝑉𝑀𝑃𝑀 = [𝑣1 𝑣2 𝑣3…𝑣𝑀] (106) 

 𝑉1 = [𝑣1 𝑣2…𝑣𝑀−1] (107) 
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 𝑉2 = [𝑣2 𝑣3…𝑣𝑀 ] (108) 

The terms v1 through vn are column vectors of the VMPM matrix. V1 is the VMPM 

matrix with the last column removed and V2 is the VMPM matrix with the first column 

removed.  

 𝑌1
𝑃𝐼𝑌2 =  𝑉1

𝑃𝐼𝑉2 (109) 

The eigenvalues of the constructed V1 and V2 matrices as presented are equivalent 

to the Y1 and Y2 matrices, given the same relation as Equation 109. Once the z poles are 

solved through this method, each the residues can be calculated through solving Equation 

110. 

 

[
 
 
 
 
𝑦(0)

𝑦(𝑛 + 1)
𝑦(𝑛 + 2)

⋮
𝑦(𝑁 − 1)]

 
 
 
 

=

[
 
 
 
 

 

1 1 1 … 1
𝑧1 𝑧2 𝑧3 … 𝑧𝑀
𝑧1
2 𝑧2

2 𝑧3
2 … 𝑧𝑀

2

⋮ ⋮ ⋮ … ⋮
𝑧1
𝑁−1 𝑧2

𝑁−1 𝑧3
𝑁−1 … 𝑧𝑀

𝑁−1

  

]
 
 
 
 

  

[
 
 
 
 
𝑅1
𝑅2
𝑅3
⋮
𝑅𝑀]
 
 
 
 

 (110) 

Since M should be less than L, cases where M is substantially large or equal to M 

are an indication that the model is not accurately estimating the modes. The solution for 

the residues is similar to Prony Analysis, but M is typically significantly smaller than the 

(n) modes used to build the Prony model. 

4.4 Comparison of MPM and Prony Analysis 

Prony Analysis has the advantage of increased computational power and higher 

system order, but this comes at a steep price when considering an algorithm for real-time 

operation. Prony Analysis is not ideal for analyzing noisy signals when compared to MPM. 

The system order of Prony is many magnitudes higher. The test system under study is the 

Kundur Two-Area system, which can simulate oscillations after major events. MPM is 
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more robust when working with noisy signals. The measurements from industry PMUs 

have a highly nonlinear characterization, even when compared to a circuit with simulated 

faults, standard load switches, and heavy loads. Both methods detected undamped power 

oscillations for simulated data, but the timing of the methods was not identical when 

registering both a frequency in the desired range of 0.1-0.8Hz and a damping ratio under 

5%. Since the MPM is not as influenced by noise when calculating the damping ratio, a 

filter was applied to highlight specific frequency ranges and test whether Prony Analysis 

would benefit from the procedure. The unfiltered and filtered cases were compared to 

decide whether applying a filter to the power signal improves computational time or the 

accuracy of the estimates for Prony Analysis.  

First the result of the unfiltered case should be discussed. Figure 4.1 shows the 

dominant low frequency calculated through the MPM bounded by the two eigenvalues in 

the Prony Analysis matrix. The first eigenvalue is the closest eigenvalue generated by the 

method to the MPM eigenvalue in question. The second eigenvalue of interest from the 

Prony Analysis method is the eigenvalue that is approximately the eigenvalue within a 

bounded region that exhibits a similar damping ratio trend. The trends are difficult to see 

in Figure 4.1, but Figure 4.2 and Figure 4.3 show the individual relationships. 
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Figure 4.1. Prony Analysis Bounding MPM After Event 

 

Figure 4.2. Matrix Pencil and Prony Analysis Estimate for Lowest Frequency 
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Figure 4.3. MPM and Prony Estimate for Damping Ratio Associated with Lowest Frequency 

Figure 4.1 demonstrates the full relationship between the methods and their 

underlying output. Even under significant system noise, by using both of the closest 

eigenvalues from Prony Analysis as a weighted bound, the MPM output is roughly 

mimicked in Figure 4.2 for dominant frequency above 0.1Hz and in Figure 4.3 for the 

associated damping ratio of the focused eigenvalue. 

Prony Analysis gives an adequate model but even with modifications, MPM 

performs better under system noise. There is a direct relationship that can be drawn 

between the methods. An early attempt at pre-filtering the data was applied to estimate 

whether even under system noise, Prony Analysis could achieve nearly the name 

eigenvalues consistently. A low pass filter was applied to primarily pass frequencies 

between 0-6Hz. Several bandpass filters were also tested for performance and 

computational speed. Below is the comparison of running MPM on the original signal and 

applying Prony analysis to a filtered signal with a pass range of 0.1Hz to 6 Hz. The decibel 
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magnitude of the filter is presented in Figure 4.4. A Hamming window was applied for a 

nearly perfect bandpass filter requiring a moving window length of 401 samples to 

implement the filter to specification. The Hamming window was selected due to its high 

attenuation on the stopband while having a relatively short transition period from 0 to peak. 
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Figure 4.4. Bandpass Filter Using Hamming Window 

The time to apply the filter to data was insignificant: even a large sample, 1500 

measurements, was not time consuming at about 0.001 second to execute. The “filter” 

function in Matlab was used to recreate the original signal with the filter applied. There 

were obvious obstacles with this implementation such as accounting for a time difference 

despite having the same sample size. The primary concern was to reduce the time for Prony 

analysis to accurately analyze the sample. This method does distort the original data, but 
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the point was to manipulate it in such a way that Prony might be faster. The bandpass filter 

had the noticeable effect of removing the low frequencies. These frequencies included 

changing constants and magnitudes. 

For the filtered signal presented in Figure 4.5, all low and high frequencies were 

removed. From experience, the signals with a high frequency are rarely of interest to 

oscillation monitoring, and most oscillations below 0.1Hz have a small residue. The 

estimate of the lowest significant system frequency and damping ratio are shown in Figure 

4.6 and Figure 4.7, respectively. The oscillatory modes and damping ratio can change very 

quickly given system conditions of a large load or fault. The filter was ultimately 

ineffective when trying to reduce computation time. For some cases, a filter would increase 

the speed temporarily but then impede the system later. Several different filters were tested 

with a plethora of parameters. According to the tic/toc function on Matlab, for a window 

length of 300 measurements, MPM would perform between 10-100 times faster on 

simulated data, including both regular operation and simulated system events. 

 

Figure 4.5. Filtered Real Power Signal (Bottom) vs. Original Real Power Signal (Top) 
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Figure 4.6. MPM vs Prony Analysis Applied to Filtered Signal for Frequency Estimation 

 

Figure 4.7. MPM vs Prony Analysis Applied to Filtered Signal for DR Estimation 

The time difference between the methods is not substantial until an event occurs. 

Most MPM outputs resulted in between 1-5 oscillatory modes with excellent estimation of 

the (n+1) discrete time step.  

Next, a mathematical oscillation is generated as the input signal for both MPM and 

Prony Analysis. This power signal, shown in Equation 112, contains an unstable mode at 
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0.8Hz with a positive real exponent, causing the signal magnitude to increase similarly to 

a real unstable power oscillation. The signal also contains two damped modes at 0.4 and 

10 Hz. The resulting real power signal can be seen in Figure 4.8. 

 𝑃(𝑡) = 𝑒0.1∗𝑡 ∗ cos(2𝜋 ∗ 0.8𝑡) + 3𝑒−2𝑡 cos(2𝜋 ∗ 0.4𝑡) + 2𝑒−0.5𝑡 cos(2𝜋 ∗ 10𝑡) (112) 

 

Figure 4.8. Mathematically Derived Unstable Real Power Oscillation 

Since the signal is known, the estimation by both MPM and Prony Analysis for the 

dominant frequencies and real component of the eigenvalue can be compared. The analysis 

starts at 10 seconds, consistent with the required 10 second running window to identify 

0.1Hz oscillations. Figure 4.9 and Figure 4.10 show the dominant frequencies detected 

for MPM and Prony Analysis, respectively. 
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Figure 4.9. MPM Dominant Frequency Estimates for Unstable Power Signal 

 

Figure 4.10. Prony Analysis Dominant Frequency Estimates for Unstable Power Signal 
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MPM detects two of the dominant frequencies over the observable window of 

analysis. The mode associated with 0.4Hz quickly decays and is processed as noise. Prony 

Analysis also excludes the frequency at 0.4 Hz, as the residue is below the threshold. Prony 

Analysis and MPM detect the frequency associated with the unstable mode at 0.8 Hz. It 

should be noted that as the oscillation grew in magnitude, Prony Analysis did lose 

capability to detect the 10 Hz oscillation in Figure 4.10, which was reported by MPM over 

the entire timeframe in Figure 4.9. Figure 4.11 and Figure 4.12 show each method’s 

capability to accurately estimate the real component of the eigenvalues associated with the 

dominant frequencies. 

 

Figure 4.11. MPM Estimate of Real Eigenvalue Component 
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Figure 4.12. Prony Analysis Estimate of Real Eigenvalue Component 

From Figure 4.11 and Figure 4.12, it can be noted that both MPM and Prony 

Analysis estimate the unstable mode adequately, which is undamped with a value of 0.1, 

over the analyzed window. In this case, Prony Analysis accurately estimates the positive 

magnitude slightly faster than MPM. However, as the simulation continues, MPM 

maintains accurate estimates of the real component of both dominant modes. Since MPM 

processes the quickly decaying frequency as noise, but the signal does initially have 

observable magnitude, the initial inaccuracy of MPM is acceptable and is quickly rectified. 

MPM shows more robust and consistent mode identification and estimation considering 

the entire time window. 

The real power signal from a utility PMU device can be seen in Figure 4.13. This 

signal is significantly more complex, so the speed and performance of MPM and Prony 

Analysis applied to this data is more valuable to implementation in real utility systems. 
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Figure 4.13. Real Power Signal for Analysis from a Utility PMU 

Figure 4.14 shows the lowest frequency associated with the dominant modes and 

the corresponding damping ratio, estimated by MPM. The frequencies and damping ratios 

from MPM were more consistent for the utility real power data. The closest frequency 

associated with a dominant mode from the Prony Analysis output, as well as the associated 

damping ratio, are shown in Figure 4.15 for comparison. 
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Figure 4.14. MPM Lowest Frequency and Associated Damping Ratio for a Dominant Mode 

 

Figure 4.15. Prony Analysis Closest Dominant Frequency and Associated Damping Ratio for a 

Dominant Mode 
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MPM produces more consistent frequency estimates and shows lower volatility 

when estimating the lowest observable frequency with an associated damping ratio. 

Calculated from Matlab code, MPM was able to perform all analysis in 0.0053 seconds on 

average for the utility power signal. Prony Analysis converged in 0.0192 seconds for the 

utility power signal, requiring about 3.5x more computational time on average for 

processing real PMU data streams. The previously developed filters for electromechanical 

modes would not meaningfully increase computational speed or estimation for the Prony 

method, as the dominant frequency was outside of the filter bounds and Prony analysis 

derives a 120-order model before removing insignificant residues. MPM applies SVD to 

estimate only the modes associated with a theoretical noiseless signal. This also makes 

MPM more robust if noise is introduced to the signal. Both MPM and Prony Analysis are 

within bounds for near real-time computation when considering individual signals. Any 

application attempting to monitor a sufficiently large number of signals would need to 

consider a dedicated system and architecture. Alternatively, a moving window, such as 1 

second, could be used to fully consume all incoming PMU data generated over the past 10 

seconds. If executed on a large number of power signals, MPM presents a more robust and 

computationally efficient solution for utility implementation. 

 

  



 88 

CHAPTER FIVE 

5 CHAPTER FIVE 

SITUATIONAL AWARENESS METHODOLOGY FOR SYSTEM WEAK POINT 

IDENTIFICATION AND INSTABILITY MITIGATION 

 

This chapter seeks to bridge the gap between the model-free applications and the 

model-based applications that require access to the system topology. Chapter 5 presents an 

enhanced application and proves a more robust process than the derivation in Chapter 2. 

The methodology detailed in this section derives a synthetic mathematical system model 

that can iteratively update as new information becomes available or topology changes, to 

generate two Jacobian variants, directly measured from available PMU devices and 

iteratively calculated via the Newton-Raphson algorithm. The simulations are carried out 

with some limited assumptions about the system topology, but these assumptions are not 

required to execute the application. These assumptions were meant to be easily integrated 

into a utility setting, as these assumptions would be reasonably met without requiring any 

detailed system topology or the admittance matrix: 

• PMUs in close proximity to major generators are known; flags for these generators 

can be articulated to system operators. 

• Additional PMUs not indicated in proximity to system generators can be 

distinguished as separate from the PMU devices assigned to a major generator; if 

the PMU is still in general proximity to a generator, it can be assigned to that 

generator indirectly. 



 89 

o A mathematical approach to designate PMUs in either close proximity or 

redundant PMUs is presented when processing utility PMU data for 112 

signals. 

This methodology does not have any minimum observability requirements. The 

accuracy and potential of this methodology do increase as key points in the system become 

observable. In particular, observability of major generators allows for more thorough 

identification of unstable conditions and the nature of instability (angular instability or 

voltage collapse). Simulated case studies were performed assuming observability of all 

generators. PMU data from a real and sufficiently large utility system is also incorporated 

to test the methodology’s performance for real and simulated data. Bad data detection is 

not considered and was not a focus of research in this dissertation. However, errors are 

introduced by utilizing outdated measurements when forming the MSSM for applied state 

estimation computations, and the accuracy and speed of the resulting state estimation is 

quantified. This methodology is intended to act as a mathematical linear state estimator. 

Due to this and the function to flag unstable system conditions, this application is extremely 

time sensitive and is intended to provide a solution in real-time for all PMU measurements 

available in a system. 

5.1 General Format for the Mathematical Synthetic System Model 

Approximation (MSSM) 

The MSSM is a mathematically generated topology designed so that it can 

incorporate available or desired PMU measurements. The construction is designed for 

computational simplicity and to prioritize, if known, any PMUs located on generators. 
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Additional PMUs in proximity or throughout the system are also considered. The model 

shown in Figure 5.1 may be modified for additional factors, but the computational 

efficiency and accuracy achieved by leveraging this model are reviewed in Sections 5.4 

and 5.5. This model does lose observability in large systems if very few of the generators 

are observable, no PMU is in proximity to an event, or net generation cannot be aligned 

with critical changes to load data. The derived model is useful for monitoring the stable 

state of the system generators and determining when unstable parameters have been 

introduced to the system. 
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Figure 5.1. MSSM General Format 

Brief definitions and explanations for the variables in this theoretical model 

include: 

• V’slack – This is the phasor voltage of the theoretical master slack bus; the magnitude 

is flexible and can be set higher than V’G-pmu measurements, but typically the 
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positive sequence would be set in the range of 1.00-1.05 p.u. V and the bus voltage 

positive sequence phase angle would be set to 0 radians. 

• V’G1-pmu, V’G2-pmu, VGN-pmu – Each of these variables represents the phasor values 

for voltages measured by generator PMUs; these individual generators are 

accounted for in the derived model as buses with a relationship to the theoretical 

master slack bus.  

o If not known, V’B-pmu measurements can also be substituted. 

• IG-total – This variable represents the sum of all currents measured by the PMUs 

observing generators. 

• IG1, IG2 … IGN – Each of these variables represents the phasor currents measured at 

the PMUs on the corresponding generators. 

• ZG1, ZG2 … ZGN, ZB1 … – Each of these variables represents the impedance 

calculated to explain the voltage drop from the theoretical master slack bus to the 

generator phasor voltages (or first bus assigned to a branch), considering the 

particular generator’s phasor currents. 

• V’B1-pmu … V’BM-pmu – These variables represent the phasor voltages for additional 

buses with PMUs in close proximity to a generator, or other system buses. 

• IB1-G1 … IBM-GN, IB3-B2 – These variables are derived to account for any difference 

in the current from the measured generator current to an additional bus as the 

current flows to a net load; in cases where there are multiple buses with PMUs 

grouped in close proximity to a generator, this variable can expand to IB1-B2 to 

explain any difference in current as the model increases in complexity. 
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• IB1 … IBn – These variables represent the phasor currents measured by buses 

assigned proximity to the generator PMUs. 

• ZG1-B1, ZB1-B2 … ZGN-BM – These variables represent the calculated impedance to 

account for voltage drops between buses assigned proximity to a generator. 

• LoadG1, LoadG2 … LoadGN – These variables represent the system load contributed 

for the branch relating to each generator, accounting for any differences in net load 

through injection along the circuit. 

The general configuration of the MSSM, shown in Figure 5.1, is flexible and is 

designed to handle any number of generator PMUs and any number of PMUs installed at 

other buses throughout the system. This derivation can effectively be done considering all 

PMUs as bus PMUs. V’slack functions as a mathematical system reference for any derived 

configuration. The parameters of the MSSM can be iteratively updated as new PMU 

measurements become available. 

5.2 Deriving the Synthetic Model Jacobian Approximation 

As previously discussed, the Jacobian matrix, iteratively calculated during 

Newton-Raphson state estimation, has been utilized to assess system stability by 

monitoring eigenvalues and developing singularities of the inverse Jacobian [8][9]. 

Traditional computation of the power flow Jacobian requires system topology for 

implementation. The MSSM is leveraged to generate YBus components so that a model-

free solution can apply similar analytics. Equations 113-116 show the derivation for the 

Jacobian matrix considering a MSSM configuration with PMUs located at generators 1 to 
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N. All YBus and voltage magnitudes are per unit values derived from the MSSM, and the 

bus voltage angles are in radians. 

 𝑃𝑛 = |𝑉𝑛| ∑ |𝑌𝑛𝑗| ∗ |𝑉𝑗| ∗ cos(𝛿𝑛 − 𝛿𝑗 − 𝜃𝑛𝑗)
𝑁
𝑗=1  (113) 

 𝑄𝑛 = |𝑉𝑛| ∑ |𝑌𝑛𝑗| ∗ |𝑉𝑗| ∗ sin(𝛿𝑛 − 𝛿𝑗 − 𝜃𝑛𝑗)
𝑁
𝑗=1  (114) 
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 (115) 

 𝐽4 =
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 ,    𝐽 = [
𝐽1 𝐽2
𝐽3 𝐽4

 ] (116) 

As this method only considers YBus and voltages from the MSSM model rather than 

the actual system topology, and these measurements are known for each iteration, the first 

Jacobian variant can be derived by direct measurement every time PMU measurements are 

received. This is separate from computing the power flow Jacobian iteratively during 

Newton-Raphson state estimation. The Jacobian computed directly from measured PMU 

values and the MSSM topology is notated in this dissertation as the Synthetic Model 

Jacobian Approximation (SMJA) matrix. 

 𝑆𝑀𝐽𝐴 = [
𝐽1 𝐽2
𝐽3 𝐽4

 ] , 𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑑 (117) 

5.3 Deriving the Synthetic Model Power Flow Jacobian 

In addition to direct measurement, the MSSM YBus and derived load conditions can 

be used to iteratively compute a power flow Jacobian matrix. For this implementation, the 

PMU at generator 1, or the first PMU available, is set as a reference. The voltage magnitude 
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and bus voltage phase angles for all other PMUs are iteratively calculated from an initial 

start value. This results in a second Jacobian variant calculated via Newton-Raphson power 

flow. The first iteration considers the initial conditions in Equations 118-120. The notation 

“(k)” has been added to indicate that the voltage magnitudes and bus voltage phase angles 

are iteratively calculated and separate from the value measured by the PMU. All variables 

considering these iteratively calculated values are also denoted with notation “(k)” for the 

current iteration. The iteration is incrementally increased until the solution converges 

below a specified error. Additionally, all notation is built around PMUs observing 

generators, but bus PMUs can be substituted into the derived equations if generator 

locations are not known. 

 𝑉1(𝑘) =  𝑉𝐺1 , 𝛿1(𝑘) = 𝛿𝐺1    (118) 

 𝑉2(𝑘), 𝑉3(𝑘),…𝑉𝑁(𝑘)  =  𝑉𝑠𝑡𝑎𝑟𝑡 (119) 

 𝛿2(𝑘), 𝛿3(𝑘), …𝛿𝑁(𝑘)  = 𝛿𝑠𝑡𝑎𝑟𝑡 (120) 

The values for V1(k) and δ1(k) are held constant during the iterations. The initial 

conditions in Equations 118-120 are applied to the first iteration of Equations 121-123. 

Equation 120 is used to update the voltage magnitudes and bus voltage angles for the 

subsequent iteration. The values of Vstart and δstart would typically be 1 p.u. and 0 radians, 

respectively, but can be individually modified based on other preferences or considerations. 
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 (121) 
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For Equation 121, P1 through PN and Q1 through QN consider direct PMU 

measurements and the MSSM YBus, solving Equations 113 and 114. P1(k) through PN(k) 

and Q1(k) through QN(k) consider the V(k) and δ(k) variable values of the present iteration 

and the MSSM YBus, solving Equations 113 and 114. 
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−1
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 (122) 

Similarly, in Equation 122, the individual calculated Jacobian matrices, with 

notation J(k), are determined using the MSSM YBus and present iteration of V(k) and δ(k) 

variables applied to Equations 115-116.  
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 (123) 

The changes to the calculated bus voltage magnitude and bus voltage angle are used 

to update all values for the next iteration via Equation 123. 

 𝐼𝑓
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|

|
< 𝜖
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 , 𝑘 = 𝑘 + 1, 𝐸𝑛𝑑 (124) 

Equation 124 evaluates Equation 121 considering the updated variables. When 

the absolute difference of all real and reactive power estimates is below the set threshold 



 97 

error, ε, the final values of all V(k) and δ(k) variables are returned from the iterative 

process. The threshold error is set to a target value, such as 0.0001. 

 𝐼𝑓
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Δ𝑃1(𝑘 + 1)

⋮
Δ𝑃𝑁(𝑘 + 1)

Δ𝑄1(𝑘 + 1)
⋮
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|

|
> 𝜖

)

 
 
 
 , 𝑘 = 𝑘 + 1, 𝐶𝑜𝑛𝑡𝑖𝑛𝑢𝑒 (125) 

If any variables exceed the specified threshold error, the iteration is updated in 

Equation 125 and the process is repeated from Equation 121, considering the updated 

V(k) and δ(k) variables. This is iteratively implemented until the condition in Equation 

124 is satisfied. 

The final values of the V(k) and δ(k) variables, as well as the MSSM YBus, are 

leveraged to derive a calculated Jacobian, referred to in this paper as the Synthetic Model 

Power Flow Jacobian (SMPFJ). Equation 126 shows this relationship. 

 𝑆𝑀𝑃𝐹𝐽 = [
𝐽1(𝑘) 𝐽2(𝑘)
𝐽3(𝑘) 𝐽4(𝑘)

 ] , 𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑣𝑒𝑙𝑦 𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑 (126) 

The iterative calculation of the load-flow Jacobian, performed when generating the 

SMPFJ matrix, intrinsically assumes infinite inertia for the reference generator and all 

loads modelled as constant power [8]. No generator in the physical system can provide 

infinite inertia, and loads are generally more complex than constant power, but these 

assumptions are made when solving the standard load-flow Jacobian. Due to this, during 

events that place dynamic stress on the system, such as bus faults and large load increases, 

the iteratively calculated solution may converge to a more ideal state than realized. Under 

normal and stable system conditions, the SMJA and SMPFJ should be effectively identical, 
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and this will be reflected in the accuracy of SMPFJ to perform state estimation, assessed 

in the case studies for both simulated and real PMU data. 

The SMJA and SMPFJ are both mathematical models leveraging MSSM for the 

admittance matrix; however, due to the assumptions made when deriving the SMPFJ 

matrix, the resulting calculations for the system states may yield more optimistic estimates 

during periods where unstable parameters are present in the model. It is noted in [8] that 

maximum loadability derived from the Jacobian should be considered an optimistic upper 

bound. Phrased differently, the conditions that will make the real system unstable occur 

before theoretical limits are met. Due to this, the SMJA, which is derived from the PMU 

measurements rather than iterative calculation, is used in the implementation of SVD to 

track developing singularities. 

Once both the SMPFJ and SMJA have been formed, singular value decomposition 

can be applied for the SMJA matrix, as summarized in Equations 127-129, to monitor 

trends in the corresponding Σ matrix. The diagonal values in Equation 129, sigmas, are of 

particular importance in future figures that monitor the magnitude of the smallest sigmas 

along the diagonal. As one or many of these sigmas decrease toward zero, the inverse 

power flow Jacobian will trend toward singularity, indicative of instability.  

 𝑆𝑀𝐽𝐴 = 𝑈Σ𝑉∗ (127) 

 𝑈𝑈∗ = 𝑉𝑉∗ = 𝐼 (128) 

 Σ = [

𝑠1 0 ⋯  0
0 𝑠2 0   0
⋮
0

0
0

⋱   0
 0 𝑠𝑛

] (129) 
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The magnitude of the smallest sigmas, in addition to general trends for all sigmas 

related to the system, are critical to determining instability. These sigmas are processed for 

each time step, and any decrease of more than 80 percent from operating norm in any of 

the lowest 10 sigmas generates a flag, triggering additional analysis. A decrease of more 

than 90 percent from operating norm in the lowest sigma is also flagged as immediately 

critical and triggers additional analysis. Decreases of more than 50 percent for any sigma 

are broadly monitored but do not immediately generate a flag. Since the operating 

conditions can change over time and a stressed system is occasionally expected, a 

comparison between the values used to form the SMJA and SMPFJ matrices is conducted 

in parallel to determine if divergent conditions are developing or changes in sigmas are due 

to short term volatility while a new system equilibrium point is reached. The PMU voltage 

magnitudes and bus voltage angles are compared to determine divergence between the 

measured state and the calculated state. 

 | [
𝑉𝐺1
⋮
𝑉𝐺𝑁

] − [
𝑉𝐺1(𝑘)
⋮

𝑉𝐺𝑁(𝑘)
] | > Δ𝑉𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑   (130) 

For clarity in Equation 130, VG1 is the direct measurement of the voltage 

magnitude relating to the PMU streaming data for generator 1, or if alternative notation is 

considered, bus 1. The variable VG1(k) is the voltage magnitude for the bus at generator 1 

computed when forming the SMPFJ matrix. Similar notation is used in Equation 131 

regarding the bus voltage angles. 

 | [
𝛿𝐺1
⋮
𝛿𝐺𝑁

] − [
𝛿𝐺1(𝑘)
⋮

𝛿𝐺𝑁(𝑘)
] | > Δ𝛿𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 (131) 
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Small variations between the calculated and measured states are expected, but this 

difference was found to be miniscule during steady state operation. For the Sections 5.4 

and 5.5, a voltage threshold of 0.05 p.u. and a bus voltage angle threshold of 0.1 radians 

were used to flag critical divergence. When unstable parameters are introduced and not 

cleared, the two solutions will increasingly diverge until system instability occurs, which 

will be visually shown in figures summarizing flags for voltage and angular instability 

through in Section 5.4. 

Figure 5.2 demonstrates a robust algorithm to monitor developing singularities in 

the inverse SMJA matrix, monitor divergence from the calculated system state, and enter 

mitigation protocols when persistent unstable conditions are identified. Figure 5.3 

demonstrates the logic to implement load shedding when conditions are caused by the 

addition of an unstable load. When the parameters are passed from Figure 5.2, the net real 

and reactive power generation is cross referenced to any system load increases to ensure 

that the net increases can be attributed to a corresponding load.  
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Generate the Synthetic 
System Model from PMU 

Measurements for present 
timestamp.

Calculate the SMJA and 
SMPFJ.  (This additionally 

calculates the generator/bus 
voltage magnitudes and 

angles for the stable system 
state)

Do all generator voltage 
magnitudes and angles align 
with the stable system state 

calculation?

Apply Singular Value 
Decomposition to both the 

SMJA and SMPFJ. 

Are there any near 
singular values or decreases 
in sigma greater than 50% 

from the prior 
system state?

Compile known changes to 
system topology or load to be 

sent to system operator if 
conditions do not approve.

Log the generator associated 
with the decreasing 

eigenvalue.
YES

NO

Enter Mitigation Protocols

NO

YES

 

Figure 5.2. Process for Detection of Near Singularities and Flags for Divergence 
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Figure 5.3. Process for Mitigation of Unstable Load Conditions 
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A major disturbance to the generator eigenvalues sets an initial reference time, Tref0. 

If the SMJA and SMPFJ matrices are continually diverging for a time greater than TThreshold, 

the flag will be considered critical even if the individual thresholds for voltage magnitude 

and bus voltage angle are not met, per Equation 132. TThreshold is set to 0.5 seconds for the 

case studies. 

 𝑇𝑟𝑒𝑓 >  𝑇𝑟𝑒𝑓0 + 𝑇𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 (132) 

The implementation of load shedding in Figure 5.3 is not meant to replace existing 

load shedding methods. The load shedding implemented in the case studies is primarily 

meant to show that the SMJA and SMPFJ matrices can be utilized to mitigate unstable 

parameters. Section 5.4 presents the results of this novel methodology to detect unstable 

system conditions, identify system weak points and diverging parameters, and mitigate 

instability in simulated case studies. The methodology is also assessed in Section 5.5, 

applied to real utility PMU data, to show the versatility and computational efficiency of 

the methodology when applied to more complex and realistic data streams for state 

estimation and analysis of the SMJA and SMPFJ matrices. The computational efficiency 

and accuracy of this method are quantified for both simulated and real utility data. 

5.4 SMJA and SMPFJ Case Study Validation Using Simulated Data 

The IEEE 39 Bus System, specifically the MathWorks Simulink 10-machine New-

England system [78], was used to generate data for three simulated case studies. These case 

studies obtain test data for various system events to assess accurate detection and mitigation 

of unstable parameters, validating the methodology. In this study, the PMUs were placed 

at the bus after every generator transformer and returned sequence phasor data at a 30 Hz 
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report rate. This paper investigates mitigation of developing unstable conditions that lead 

to instability over the span of seconds rather than a few cycles. Although PMUs can be 

configured to clear events such as faults, these applications tend to require edge computing 

and consider contingencies that typical protection devices do not handle, such as utilizing 

PMU data to de-energize circuits where a falling conductor is detected prior to hitting the 

ground [79]. For typical fault conditions, protection devices will clear the fault more 

quickly and reliably. Mitigation of fault conditions is not considered, as this methodology 

is being shown as a proof of concept and not as a substitute to typical protection requiring 

a high-speed, sub-cycle command to open a circuit breaker. However, the ability to 

immediately detect the unstable parameters caused by a fault, show the flag’s removal if 

unstable parameters are cleared, and record persistence of unstable parameters when the 

system is collapsing, are of interest and are demonstrated below.  

5.4.1 Instability Due to Fault 

Case Study 5.4.1 focuses on the fast detection of angular and voltage instability 

following different fault events. The events are summarized in Table 5.1. The initial three 

faults have a duration of 3 cycles, while the final constant fault at Bus 19 leads to system 

collapse.  
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Table 5.1. Sequence of Events for Case Study 5.4.1 

Event Location 
Start Time of Event 

(S) 

End Time of Event 

(S) 

Fault Bus 16 20 20.05 

Fault Bus 1 50 50.05 

Fault Bus 6 100 100.05 

Fault Bus 19 180 N/A (Continuous) 

 

Figure 5.4 visualizes the disturbance to the lowest 10 sigmas generated by applying 

singular value decomposition to the SMJA matrix. For the first three faults at 20, 50, and 

100 seconds, the sigmas decline after the fault is introduced, oscillating, and returning to 

the previous steady state value over time after the fault is cleared. The sub-plot in Figure 

5.4, a zoom window during system collapse, shows the values of the lowest 10 sigmas 

during the constant fault at 180 seconds. In this case, the sigmas decline and a near 

singularity can be seen immediately before the real system collapses. 

Figure 5.5 shows that for all four faults, voltage divergence in the calculated and 

measured values was detected at one or more generators within one measurement of the 

fault being applied. 
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Figure 5.4. Visualization of the Generators’ Lowest 10 SVD Sigmas During Faulted Conditions 

(With Zoom Window) 

 

Figure 5.5. Flags for Generator Voltage Magnitude Divergence 
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Since the first three faults have a duration of 3 cycles and the PMUs are configured 

to a 30Hz report rate, a maximum of 2 measurements could contain the fault signature at 

20, 50, and 100 seconds. In these cases, voltage instability was not identified for the initial 

measurement, as the faulted conditions were not yet reflected in the PMU signal. However, 

a flag for voltage instability was detected for at least one generator in the following 

measurement for all faults before they were cleared. Figure 5.6 shows the detection of 

divergent voltage magnitudes for the PMUs located at generators 3, 4, 5, and 6 at 20.033 

seconds. In the next measurement at 20.067 seconds, where the fault has already been 

cleared, divergence in the voltage magnitudes derived from the SMJA and SMPFJ matrices 

is no longer present. 

 

Figure 5.6. Voltage Mag. Divergence Flags – Demonstration of Flags Resolving after Fault is Cleared 
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Figure 5.7 illustrates the voltage divergence when comparing values derived from 

the SMJA and SMPFJ matrices during the fault applied after 100 seconds for the PMU at 

generator 2. This is an underlying component to determining the flags in Equation 130. 

 

Figure 5.7. Voltage Mag. Divergence – Demonstration of SMJA and SMPFJ Divergence During 

Unstable Parameters 

In Figure 5.8, divergence in generator bus voltage magnitude parameters can be 

seen within one PMU measurement following a constant fault applied at Bus 19 for the 

PMUs at generators 3 and 4. After 8 more consecutive measurements (16 cycles), voltage 

instability is also detected at generators 5 and 6. These flags are constant following initial 

identification at all four generators until the system collapses. 
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Figure 5.8. Continuous Voltage Magnitude Divergence Flags Until System Instability 

In addition to flags for voltage magnitude, flags for divergence in generator bus 

voltage angle are critical to determine a system health. These flags may occur at different 

times or independent of each other, subject to the system conditions. Divergence in the 

generator bus voltage angles is not detected for the fault at 100 seconds. Angular instability 

is detected for the PMU located at generator 10 during the fault at 50 seconds and the PMUs 

located at generators 3, 4, 5, and 6 during the temporary fault at 20 seconds and constant 

fault at 180 seconds. These characteristics can be seen at a high level in Figure 5.9, and 

Figure 5.10 shows higher resolution of the flags during the constant fault leading to 

instability.  
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Figure 5.9. Flags for Generator Voltage Angle Divergence 

 

Figure 5.10. Generator Bus Voltage Angle Divergence Flags During Continuous Fault Condition 

Until System Instability 
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The divergence in bus voltage angle at generator 5, comparing bus voltage angles 

used to construct the SMJA and SMPFJ matrices, is displayed in Figure 5.11 for the first 

fault event. As SMPFJ is calculated with the assumption of infinite inertia, the calculated 

model converged to a more ideal state than the system realized. After the fault clears, the 

divergence between the calculated and measured parameters immediately resolves. 

 

 

Figure 5.11. Generator Bus Voltage Angle Divergence – Demonstration of SMJA and SMPFJ 

Divergence During Unstable Parameters 

Flags for voltage and angular instability can be used jointly to identify the impacted 

generator(s) and determine the nature of the unstable conditions. For all faults, unstable 

conditions were detected and flagged within one measurement of the event. For faults that 

were cleared, flags were not seen in the next measurement. With respect to the introduction 

of a constant fault, flags were persistent, once detected, until system collapse occurred. 
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The mean and median computational speed for the construction of the MSSM YBus 

and associated parameters, SMJA matrix with SVD analysis, and calculation of the SMPFJ 

matrix with analysis for divergence against the SMJA matrix are shown in Table 5.2. Note 

that these calculations were made with an i9-12900HK 2.50GHz processor. Coding in 

Matlab was implemented to capture the computation times of the individual processes. 

Table 5.3 shows the accuracy of using the SMPFJ as a state estimator considering three 

contingencies: MSSM constructed from the most recent measurement, MSSM constructed 

with measurements delayed 12 cycles, MSSM constructed with measurements delayed 60 

cycles. The loading is still derived from the present measurement. The MSSM with no 

delay would ideally be used for actual state estimation applications and comparisons, but 

the mean and median absolute errors using unideal or delayed data show the viability of 

the method to perform state estimation with excellent precision considering old or 

imperfect data.  

Table 5.2. Computational Efficiency- Case Study 5.4.1 

Computed Process 
Mean Computation 

Time (S) 

Median Computation 

Time (S) 

MSSM YBus Generation 1.22x10-5 1.15x10-5 

SMJA Calculation and 

SVD Analysis 
2.61 x 10-5 2.55 x 10-5 

SMPFJ Calculation and 

Analysis 
1.81 x 10-4 1.79 x 10-4 
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Table 5.3. SMPFJ State Estimation Accuracy: Case Study 5.4.1 

Measurement –  
MSSM 

Parameter 

Absolute Mean 

Percent Error (%) 

Absolute Median 

Percent Error (%) 

Estimated Voltage 

Magnitude Error 

No  

MSSM Delay 
0.0574 1.68 x 10-8 

12 cycle  

MSSM Delay 
0.3864 6.46 x 10-5 

60 cycle  

MSSM Delay 
0.6428 1.394 x 10-4 

Estimated Bus 

Voltage Angle Error  

No  

MSSM Delay 
0.0693 5.805 x 10-8 

12 cycle  

MSSM Delay 
0.5060 1.228 x 10-4 

60 cycle  

MSSM Delay 
0.7868 2.401 x 10-4 

 

These simulated case studies contain a high density of serious system events, which 

are expected to reflect error in the values derived from the SMPFJ matrix. Considering a 

delayed MSSM model will further introduce a source of error. The median error in Table 

5.3 is more appropriate when considering the expected accuracy for the majority of 

measurements, as state estimation performed with this methodology will yield noticeable 

error on the rare conditions that unstable parameters are present. Despite the abnormally 

frequent major events simulated, the state estimation accuracy is very high precision over 

the simulation. Case studies in Section 5.5, which are run on streamed utility PMU data, 

are a proper reflection of the expected accuracy when this methodology is applied to real 

system data containing less frequent major system events but having more short-term 

volatility of the signal. The results in Table 5.2 show that the methodology is 

computationally efficient and only required 1/76th of a cycle to resolve all processes for the 
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simulated case. Table 5.3 demonstrates that the accuracy of the method is acceptable as a 

state estimator, considering both present and delayed data in the implementation. 

5.4.2 Instability Due to Load 

Case Study 5.4.2 focuses on the detection of unstable load conditions. The initial 

fault from Case Study 5.4.1 was kept in the model, but all other faults were removed. A 

load at Bus 27 was incrementally increased until system instability occurred. The events 

are summarized in Table 5.4. The loads were deliberately incremented by large values to 

encourage system instability within a reasonable number of updates. 

Table 5.4. Sequence of Events for Case Study 5.4.2 

Event Location 
Start Time of Event 

(S) 

End Time of Event 

(S) 

Fault Bus 16 20 20.05 

Load Increase: 

3000e6/800e6 

MW/MVAR 

Bus 27 200 N/A (Continuous) 

Load Increase: 

4000e6/1000e6 

MW/MVAR 

Bus 27 240 N/A (Continuous) 

Load Increase: 

6000e6/1500e6 

MW/MVAR 

Bus 27 300 N/A (Continuous) 

 

Figure 5.12 visualizes the lowest 10 sigmas relating to the SMJA matrix, with the 

zoom window in the sub-plot showing a higher resolution snapshot during the final load 

increase that caused system instability. It can be noted that a near-singularity is observed 

at the same measurement where the SMJA and SMPFJ show critical divergence.  
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Figure 5.12. Visualization of the Generators’ Lowest 10 SVD Sigmas During Case Study 5.4.2 

Faulted Conditions and Increasing Load (With Zoom Window) 

Figure 5.13 shows the flags for voltage instability over the simulation window. 

Figure 5.14 and Figure 5.15 show higher resolution snapshots of the flags for voltage 

magnitude and angular instability, respectively, during the unstable load condition. 
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Figure 5.13. Unstable Load – Flags for Generator Voltage Magnitude Divergence 

 

Figure 5.14. Unstable Load – Generator Voltage Magnitude Divergence Flags During Instability 
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Figure 5.15. Unstable Load – Generator Bus Voltage Angle Divergence Flags During Instability 

Both voltage and angular instability flags are detected at nearly the same point in 

time shortly after the unstable load event, with Figure 5.14 showing a critical flag one 

measurement sooner in the voltage magnitude divergence. A disturbance in the sigmas can 

be detected at 300 seconds and correlated with the load increase. The resulting divergence 

in the SMJA and SMPFJ matrices can be directly correlated to this event.  

Figure 5.16 shows the development of angular instability, with the measured bus 

voltage angle for the PMU observing generator 8 diverging until angular instability occurs, 

consistent with the system weak point identification shown in the prior two figures. 
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Figure 5.16. Unstable Load – Generator Voltage Angle During Instability 

The computational speed and state estimation accuracy for the unstable load 

simulation data are shown in Table 5.5 and Table 5.6. 

Table 5.5. Computational Efficiency- Case Study 5.4.2 

Computed Process 
Mean Computation 

Time (S) 

Median Computation 

Time (S) 

MSSM YBus Generation 9.66x10-6 9.40x10-6 

SMJA Calculation and 

SVD Analysis 
2.31 x 10-5 2.27 x 10-5 

SMPFJ Calculation and 

Analysis 
1.59 x 10-4 1.64 x 10-4 
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Table 5.6. SMPFJ State Estimation Accuracy: Case Study 5.4.2 

Measurement – 
MSSM 

Parameter 

Absolute Mean 

Percent Error (%) 

Absolute Median 

Percent Error (%) 

Estimated Voltage 

Magnitude Error 

No 

MSSM Delay 
0.0195 1.68 x 10-7 

12 cycle 

MSSM Delay 
0.4050 9.09 x 10-6 

60 cycle 

MSSM Delay 
0.7678 3.74 x 10-5 

Estimated Bus 

Voltage Angle Error 

No 

MSSM Delay 
0.0233 5.804 x 10-8 

12 cycle 

MSSM Delay 
0.4777 1.110 x 10-5 

60 cycle 

MSSM Delay 
0.8776 4.66 x 10-5 

 

5.4.3 Mitigation of Instability Due to Load 

Case Study 5.4.3 explores a process to mitigate the unstable load conditions in 

Section 5.4.2. The methodology to detect and mitigate unstable load conditions is detailed 

in Figure 5.2 and Figure 5.3. Considering the flags for bus voltage magnitude and phase 

angle, the command to drop the unstable load condition is issued at 300.633 seconds. 

Assuming a delay for the breaker to open, load shedding is implemented at 300.75 seconds. 

This also shows that a delay in implementing a mitigating action derived from this 

methodology can still result in a stable system. Table 5.7 summarizes the sequence of 

events for the simulation. 
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Table 5.7. Sequence of Events for Case Study 5.4.3 

Event Location 
Start Time of Event 

(S) 

End Time of Event 

(S) 

Fault Bus 16 20 20.05 

Load Increase: 

3000e6/800e6 

MW/MVAR 

Bus 27 200 N/A (Continuous) 

Load Increase: 

4000e6/1000e6 

MW/MVAR 

Bus 27 240 N/A (Continuous) 

Load Increase: 

6000e6/1500e6 

MW/MVAR 

Bus 27 300 (*)300.75 

Mitigation Action: 

Load Shedding 
Bus 27 (*)300.75 N/A 

 

Figure 5.17 visualizes the ten lowest system sigmas during the simulation. After 

load shedding occurs, it can be observed that the system sigmas are able to return to 

approximately the same values as the prior system state before the unstable load condition 

was introduced. 
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Figure 5.17. Visualization of the Generators’ Lowest 10 SVD Sigmas During Case Study 5.4.3 – 

Unstable Load Mitigation 

Figure 5.18 visualizes that the flags for angular instability clear shortly after the 

unstable load is removed from the model, allowing the system to reach a stable state. The 

measured bus voltage angle for the PMU at generator 8 can be seen in Figure 5.19 

converging to a stable solution after load shedding is implemented. 
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Figure 5.18. Stable Case – Generator Voltage Angle Divergence Flags 

 

Figure 5.19. Stable Case – Generator Voltage Before and After Load Shedding of Unstable Load 

Condition 
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This case study demonstrates that the MSSM, SMJA, and SMPFJ can be utilized 

with singular value decomposition and comparison of the Jacobian variants to determine 

the cause of instability, identify system weak points, and implement appropriate actions to 

mitigate unstable conditions. The computational speed and state estimation accuracy for 

case study 5.4.3 data are shown in Table 5.8 and Table 5.9. 

Table 5.8. Computational Efficiency- Case Study 5.4.3 

Computed Process 
Mean Computation  

Time (S) 

Median Computation 

Time (S) 

MSSM YBus Generation 9.93x10-6 9.50x10-6 

SMJA Calculation and 

SVD Analysis 
2.38 x 10-5 2.33 x 10-5 

SMPFJ Calculation and 

Analysis 
1.59 x 10-4 1.67 x 10-4 

 

Table 5.9. SMPFJ State Estimation Accuracy: Case Study 5.4.3 

Measurement 
MSSM 

Parameter 

Absolute Mean 

Percent Error (%) 

Absolute Median 

Percent Error (%) 

Estimated Voltage 

Magnitude Error 

No  

MSSM Delay 
0.0036 1.68 x 10-7 

12 cycle 

MSSM Delay 
0.4367 5.09 x 10-5 

60 cycle 

MSSM Delay 
0.7528 2.40 x 10-4 

Estimated Bus 

Voltage Angle Error 

No  

MSSM Delay 
0.0030 5.860 x 10-8 

12 cycle  

MSSM Delay 
0.5157 1.680 x 10-5 

60 cycle  

MSSM Delay 
0.8653 7.10 x 10-5 
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5.5 SMJA and SMPFJ Case Study Validation Using Utility PMU Data 

Streamed PMU data from a large utility system was considered to assess the 

methodology’s accuracy and computational efficiency with respect to real PMU data 

streams and data that originates from a larger system. Fifty PMUs from the transmission 

system were selected for analysis of approximate equivalent machine models. These fifty 

PMUs produced positive real power over the entire timeframe that the data stream was 

sampled, making them more appropriate mathematically to test performance of higher 

machine models than were simulated, shown in Figure 5.20 with 100MVA as the base 

value. This dataset is considered computationally equivalent to 50 machines from a large 

system, showing the potential of this methodology to handle larger systems and more 

complex data. A sub-set of 20 PMUs from these 50 PMUs is processed to show the 

methodology’s flexibility to perform analysis and state estimation when considering a 

reduced number of available measurements. These two datasets are considered in the first 

two studies. 

 

Figure 5.20. Real Power Signals for Utility 50 PMU Dataset 
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In order to demonstrate the algorithm’s general flexibility and scalability, all 

available PMU measurements were considered in the final use case. Of the 124 total 

available PMU data streams, 112 PMU streams were selected for further processing, as 12 

devices had a combination of sustained time synchronization issues or significant data 

dropouts. An algorithm to relate redundant measurements, such as two devices on each 

side of a transformer, is also presented, and a process to modify the MSSM construction is 

shown. Although the utility dataset does not include unstable parameters, the accuracy of 

calculated system state estimation is assessed considering the most recent and historical 

MSSM models. Computational efficiency is also assessed. 

5.5.1 20-Machine Equivalent Utility Dataset Analysis 

This first case study analyzes the 20 PMU measurement sub-set of the total 50 PMU 

measurements selected for positive real power delivery. This demonstrates the flexibility 

of this method to perform state estimation and stability analysis on a sub-set of available 

measurements, as well as scalability of the solution as more generators or buses are 

incorporated into the mathematical model. For simplicity, all PMUs will be referred to in 

Sections 5.5.1 and 5.5.2 as monitoring or observing generator’s 1 through 50.  

For all calculations and measurements in this section, the resulting SMJA and 

SMJAC matrices were approximately identical, resulting in no flags for any PMU 

generator voltage magnitude or generator bus voltage angle. Figure 5.21 shows the bus 

voltage magnitude estimate and measurement for generator 9, considering a 12-cycle delay 

in the MSSM. Figure 5.22 shows the estimate and measurement for the bus voltage angle 
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at generator 9, considering the same delay in the MSSM. The computational speed and 

state estimation accuracy for Section 5.5.1 data are shown in Table 5.10 and Table 5.11. 

 

Figure 5.21. Generator 9 PMU Bus Voltage Magnitude – Estimate vs. Measurement Considering 12-

Cycle Delay 

 

Figure 5.22. Generator 9 PMU Bus Voltage Angle– Estimate vs. Measurement Considering 12-Cycle 

Delay 
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Table 5.10. Computational Efficiency- Case Study 5.5.1 

Computed Process 
Mean Computation 

Time (S) 

Median Computation 

Time (S) 

MSSM YBus Generation 1.48 x 10-5 1.40x10-5 

SMJA Calculation and 

SVD Analysis 
3.51 x 10-5 3.4 x 10-5 

SMPFJ Calculation and 

Analysis 
2.36 x 10-4 2.34 x 10-4 

 

Table 5.11. SMPFJ State Estimation Accuracy: Case Study 5.5.1 

Measurement 
MSSM 

Parameter 

Absolute Mean 

Percent Error (%) 

Absolute Median 

Percent Error (%) 

Estimated Voltage 

Magnitude Error 

No MSSM Delay 5.97 x 10-6 5.92 x 10-6 

12 cycle MSSM 

Delay 
0.0511 0.0425 

60 cycle MSSM 

Delay 
0.0722 0.0609 

Estimated Bus 

Voltage Angle Error 

No MSSM Delay 4.62 x 10-6 4.56 x 10-6 

12 cycle MSSM 

Delay 
0.0376 0.0313 

60 cycle MSSM 

Delay 
0.0648 0.0538 

 

5.5.2 50-Machine Equivalent Utility Dataset Analysis 

The analysis of this section considers the entire set of 50 PMUs selected from the 

utility data to test computational speed and accuracy of a 50-machine equivalent model. 

There was no divergence in the SMJA and SMPFJ to flag unstable conditions detected for 

any of the 50 PMU devices. The computational speed and state estimation accuracy for 
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Section 5.5.2 data are shown in Table 5.12 and Table 5.13. The lowest 10 sigmas generated 

by applying SVD to the SMJA is shown in Figure 5.23 to demonstrate output for real 

system data. Conclusions from this data will be discussed at the end of Section 5.5.3. 

 

Figure 5.23. Visualization of Lowest 10 Sigmas from SVD – 50-Machine Equivalent 

Table 5.12. Computational Efficiency- Case Study 5.5.2 

Computed Process 
Mean Computation  

Time (S) 

Median Computation 

Time (S) 

MSSM YBus Generation 3.25 x 10-5 3.06x10-5 

SMJA Calculation and 

SVD Analysis 
1.01 x 10-4 9.72 x 10-5 

SMPFJ Calculation and 

Analysis 
7.96 x 10-4 7.52 x 10-4 
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Table 5.13. SMPFJ State Estimation Accuracy: Case Study 5.5.2 

Measurement – 
MSSM 

Parameter 

Absolute Mean 

Percent Error (%) 

Absolute Median 

Percent Error (%) 

Estimated Voltage 

Magnitude Error 

No  

MSSM Delay 
1.47 x 10-4 2.13 x 10-4 

12 cycle  

MSSM Delay 
0.0609 0.0505 

60 cycle  

MSSM Delay 
0.0953 0.0801 

Estimated Bus 

Voltage Angle Error 

No  

MSSM Delay 
1.13 x 10-4 1.57 x 10-4 

12 cycle  

MSSM Delay 
0.0413 0.0343 

60 cycle  

MSSM Delay 
0.0737 0.0612 

 

5.5.3 Analysis of 112 PMU Utility Dataset 

The final case study of this chapter analyzes data from 112 utility PMU devices. 

The generation of the initial MSSM considers all PMUs to be bus PMUs modelled on 

individual branches. Table 5.14 and Table 5.15 show the computational speed and 

accuracy when considering each PMU as a bus PMU in the derivation. 

Table 5.14. Computational Efficiency- Case Study 5.5.3 

Computed Process 
Mean Computation 

Time (S) 

Median Computation 

Time (S) 

MSSM YBus Generation 7.595 x 10-5 7.470 x 10-5 

SMJA Calculation and 

SVD Analysis 
2.349 x 10-4 2.291 x 10-4 

SMPFJ Calculation and 

Analysis 
0.0023 0.0022 
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Table 5.15. SMPFJ State Estimation Accuracy: Case Study 5.5.3 

Measurement 
MSSM 

Parameter 

Absolute Mean 

Percent Error (%) 

Absolute Median 

Percent Error (%) 

Estimated Voltage 

Magnitude Error 

No  

MSSM Delay 
5.84 x 10-4 2.43 x 10-4 

12 cycle  

MSSM Delay 
0.0637 0.0455 

60 cycle  

MSSM Delay 
0.1040 0.0708 

Estimated Bus 

Voltage Angle Error  

No  

MSSM Delay 
6.39 x 10-4 3.07 x 10-4 

12 cycle  

MSSM Delay 
0.0468 0.0351 

60 cycle  

MSSM Delay 
0.0865 0.0647 

  

In utility data, PMUs that are effectively redundant are often installed at key points 

in the system. An example of this is often installation of PMUs on both sides of a critical 

transformer. If not provided, these redundant devices can be mathematically determined 

by analyzing the signals. Given real-world implementation, sources of error can be 

introduced by various factors, such as the classification and accuracy of instrument 

transformers used by devices supporting PMU functionality to measure the voltage and 

current magnitudes [80]. It is very possible and likely that two PMUs on opposite sides of 

a transmission line will see a difference in the current magnitude and phase angle if they 

are connected to CTs with about a 1% error. If PMUs utilize protection class CTs, the error 

can be higher, and will be assumed at about 5%. A key assumption of the described process 

is that redundant PMU devices should have a real power signal that is highly correlated. 

Regardless of the error for instrumentation, the behavior of the near power signal should 
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be highly correlated over time between two redundant devices. Assuming a sufficiently 

large window of “n” total reports (1000 or more should be sufficient), the discrete 

derivative of real power is calculated for each PMU (i) in Equation 133.  

 Δ𝑃𝑖 = ∑ 𝑃𝑖(𝑘 + 1) − 𝑃𝑖(𝑘)
𝑁
𝑘=2  (133) 

To be conservative, assuming approximately a 5% error for each PMUs current 

value, a 10% error threshold is used for the mean real power values. For each PMU, a 

comparison is run to identify all PMUs that have a mean real power within a range of 10% 

of the target PMU and a standard deviation in the real power signal within 10% of the target 

bus’s power signal standard deviation. If a list of “L” PMUs exists fitting these criteria, a 

least absolute value algorithm is applied to see which discrete derivative of power most 

closely matches the target signal. The output of Equation 134 is the other system PMU 

meeting the aforementioned criteria with the least absolute value in the discrete real power 

derivative with respect to PMUi. 

 Pairi = 𝐿𝐴𝑉(∑ ∑ |𝛥𝑃𝑖(𝑘) − 
𝑁
𝑘=1

𝐿
𝑙=1 Δ𝑃𝑙(𝑘)|) (134) 

Lastly, in order for a pair of redundant PMUs to be determined, the match must be 

mutual, meaning that if a match is made for PMU1 determining PMU2 to be the optimal 

redundant pair, then for PMU2, a match will need to be made to PMU1 as the optimal 

redundant pair. 

With respect to the SMJA and SMPFJ matrices, determining pairs can be used to 

decrease computational complexity if paired PMU measurements are nearly identical 

during an iteration. An example of redundant pairs is shown in Figure 5.24 for the PMU2 

and PMU56. 
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Figure 5.24. Real Power with Respect to Identified Redundant Pairs – PMU 2 and PMU 56 

For the utility PMU dataset, 39 pairs were determined. In order to accommodate 

these pairs, the MSSM matrix can be modified per Figure 5.25, with all pairs being 

grouped together on their respective branches. 
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Figure 5.25. Modified MSSM Configuration for Redundant Pairs in Utility Data 
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Table 5.16 and Table 5.17 show the computational speed and accuracy 

considering the MSSM accounting for the redundant PMU pairs. 

Table 5.16. Computational Efficiency Considering Redundancy – 112 Bus Case 

Computed Process 
Mean Computation Time 

(S) 

Median Computation 

Time (S) 

MSSM YBus Generation 1.503 × 10-4 1.476 × 10-4 

SMJA Calculation and 

SVD Analysis 
4.616 × 10-4 4.560 × 10-4 

SMPFJ Calculation and 

Analysis 
0.0030 0.0030 

 

Table 5.17. SMPFJ State Estimation Accuracy Considering Redundancy – 112 Bus 

Measurement – 
MSSM 

Parameter 

Absolute Mean 

Percent Error (%) 

Absolute Median 

Percent Error (%) 

Estimated Voltage 

Magnitude Error 

No MSSM 

Delay 
5.30 × 10-4 1.59 × 10-4 

Estimated Bus 

Voltage Angle Error 

No MSSM 

Delay 
7.94 × 10-4 2.19 × 10-4 

 

Table 5.15 and Table 5.17 demonstrate that the methodology can process and 

accurately estimate the system state of 112 PMUs from a large utility system without full 

observability. This also includes analysis for unstable parameters in the system, but all 

parameters were well within stable calculations during the analyzed timeframe. 

Considering the mean computation time, all calculations for 112 PMUs, without redundant 

pairing, require approximately 0.0026 seconds to fully converge and complete all analysis 

of the Jacobian matrix variants. Utilizing redundant pairs in the MSSM model is shown to 

increase computation time (0.0031 seconds) if applied as shown, but this implementation 
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does appear to marginally increase accuracy and could be leveraged in real system. Section 

5.4 demonstrated the methodologies robust capabilities to detect unstable parameters and 

accurately identify impacted system weak points. Section 5.5 proves the viability of the 

methodology to scale to larger systems while maintaining real-time convergence. Given 

the computing power of the i9-12900HK 2.50GHz processor that executed the code in 

these studies, the methodology would be able to process data prior to the next report rate 

for a much larger system, not requiring an upgrade in processor or code efficiency until 

approximately 1000 PMU data streams. The accuracy of utilizing the SMPFJ matrix to 

perform state estimation is shown to be excellent, even when utilizing out of date MSSM 

model information. Despite the added complexity in the signals, the proposed method was 

able to perform more accurate state estimation for the utility PMU data than the simulated 

case studies. This can be attributed to the simulated data containing an abnormal frequency 

of major system events and unstable parameters.  
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CHAPTER SIX 

6 CHAPTER SIX 

CONCLUSION 

 

The research and applications detailed in this dissertation are built to only require 

the existing PMU data streams, providing system operators with a comprehensive real-time 

situational awareness solution. The individual tools developed and evaluated as part of this 

research provide focused solutions to significant problems encountered by power system 

operators. PMUs provide high-resolution data at a report rate that significantly exceeds the 

convergence of state estimation and traditional stability monitoring. Considerable progress 

has been made to decrease computation times of these traditional solutions, but for 

applications requiring system topology integration, the full report rate of the PMU data is 

typically not consumed. Development of very robust and efficient model-based 

applications have been established to utilize PMU data in real-time, but these applications 

require nearly the full system to be observable. They can also require detailed alignment 

of external data sources to the PMU data. Although full system observability is ideal, it is 

costly to implement and maintain. Utilities will often strategically place PMUs at critical 

points in the system to gain targeted observability. These sub-systems contain valuable 

data that is often overlooked if the full report rate is not analyzed. It is vital that tools are 

developed to support successful real-world deployment. 

Matrix Pencil Method and Prony Analysis were evaluated with respect to both 

simulated and utility PMU data for reliable detection of unstable or poorly damped 

oscillations of interest.  These oscillations tend to be slow and are generally missed by 

other stability monitoring applications until the oscillation has already started to cause 
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stability issues in the system. MPM was determined to provide more robust and 

computationally efficient modal estimation capabilities for real-world implementation. A 

methodology utilizing the biorthogonal wavelet transform and power system analysis was 

able to detect and classify a set of system events, which is necessary to aid system operators 

in their understanding of the current system conditions. The application was initially built 

considering a larger window length for analysis. A modified implementation considering 

a shorter window length, 5 seconds, was also developed to decrease the time for solution 

convergence. Both applications were able to detect and classify faults, load switching, 

capacitor switching, and line outage, converging effectively in real-time.  The application 

with a smaller window length and shorter solution time will likely be preferred for large 

scale implementation. The discrete Jacobian approximations in Chapter 2 provide the 

capability to immediately detect and flag unstable system conditions. The Jacobian variants 

derived in Chapter 5 augment these capabilities by providing the mathematical framework 

to monitor developing singularities in the Jacobian matrix variants, determine impacted 

system parameters, identify weak points in the system, and perform state estimation. 

Additionally, the novel method derived in Chapter 5 constitutes the most significant 

contribution of this dissertation, providing context to the real system that can be used to 

assist in mitigation of unstable system parameters.  

As power systems continue to evolve, the availability of synchronized 

measurement technology will increase. It is likely that new assumptions regarding data 

availability and system observability can be integrated for applications built to support real-

world systems. With improved assumptions and additional data availability, the 
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methodologies developed in this research could be augmented. For example, the MSSM 

could be modified to consider 80% system observability, with all major generators and 

loads observable. This would significantly increase the guaranteed effectiveness of the 

methodology and the MSSM construction could be optimized to consider new 

assumptions.  New techniques to analyze the derived Jacobian variants could also be 

explored to assist in mitigation measures as unstable system parameters are detected. 

The methodologies evaluated and developed as part of this research were successful 

at providing model-free solutions relevant to system operators for situational awareness. 

These methodologies are compatible with both simulated and utility PMU data, and they 

were developed to be capable of consuming the full report rate of all PMUs in a real-world 

system, either converging sub-cycle or within a reasonable timeframe to allow overlapping 

windows of analysis. The methodology developed in Chapter 5 was able to bridge the gap 

between a model-free and model-based methodology by substituting a synthetic 

mathematical model and deriving a novel way to detect system divergence.  Ultimately, 

this methodology was able to mitigate instability in the real system, something that is often 

abstract or unclear in many model-free PMU applications.  In the future, it may be possible 

to improve the Jacobian variant or MSSM construction to align with the true power flow 

Jacobian of a system more closely. 
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