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Abstract

The increasing popularity of electric vehicles (EVs) is driven by their compatibility with

sustainable energy goals. However, the decline in the performance of energy storage systems, such as

batteries, due to their degradation puts EVs and hybrid electric vehicles (HEVs) at a disadvantage

compared to traditional internal combustion engine (ICE) vehicles. The batteries used in these

vehicles have limited life. The degradation of the battery is accelerated by the operating conditions

of the vehicle, which further reduces its life and increases the reliability and economic concerns for

the vehicle’s operation.

The aging mechanism inside a battery cannot be eliminated but can be minimized depending

on the vehicle’s operating conditions and different control mechanisms that can alter the operating

conditions. Different operating conditions affect the aging mechanism differently. Knowing the

factors and how they impact battery capacity is crucial for minimizing degradation. This dissertation

presents the detailed degradation mechanism inside the battery and the major factors responsible

for the degradation, along with their effects on the battery during the operation of EVs. Then,

to abate the degradation mechanism, a prognostic-based control framework (PBCF) for HEVs is

proposed. Also, this framework reduces the overall cost of operating HEVs by taking into account

the degradation of the energy storage systems. The strategy utilizes a degradation forecasting model

of energy storage systems to predict their degradation paths. Analytical and data-driven approaches

are used to find the degradation path of the energy storage systems as follows:

• Markov Chain Model

• Neural Network Model

These two models employ distinct datasets to validate the feasibility of the proposed strat-

egy. The predicted degradation rate is then used to control the HEV via its energy management
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(EM) system in order to reduce the degradation of energy storage systems. During the simulation,

three distinct operating scenarios are developed to observe their effects on battery degradation and

the response of the proposed control strategy PBCF.
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BEV Battery Electric Vehicle

BMS Battery Management System

CAN Controller Area Network

CAN-H CAN High

CHIL Controller-Hardware-In-the-Loop

CAN-L CAN Low

DF Degradation Forecasting

DLC Device Level Control

DoD Depth of Discharge

DoE Department of Energy

DNN Deep Neural Network

DP Dynamic Programming

DRTS Digital Real-time Simulator

ECU Electronic Control Unit

EM Energy Management
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ESS Energy Storage System

EV Electric Vehicle

FEV Full Electric Vehicle

FL Forecasting Layer
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HEV Hybrid Electric Vehicle
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HIL Hardware-in-the-Loop
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ICE Internal Combustion Engine

Li-ion Lithium ion

LSTM Long Short Term Memory

NN Neural Network

NiMH Nickel-Metal Hydride

NS Numerical Simulation

PBCF Prognostic-based Control Framework

PHEV Plug-in Hybrid Electric Vehicle

PM Power Management

PMP Pontryagin’s Minimum Principle

RT-COOL Real-Time Control and Optimization Laboratory

RNN Recurrent Neural Network

RUL Remaining Useful Life

SNL Sandia National Laboratory

SoC State of Charge

SoH State of Health

V2G Vehicle-to-Grid

V2V Vehicle-to-Vehicle

6



Chapter 1

Introduction

The fluctuating cost of non-renewable energy resources, concern over global greenhouse gas emis-

sions, and rigorous rules and regulations for vehicle emissions have prompted research toward clean and green

transportation systems [1]. [2] provides data that shows the transportation sector accounts for a larger share

of overall energy consumption (i.e., 26%). This consumption is attributable to the millions of conventional

automobiles that use internal combustion engine (ICE), which run on fossil fuels (petroleum products) and

emit carbon dioxide, hydrocarbon, sulphur oxides, and carbon monoxide as a byproduct. These gases give

rise to the pollution that is hazardous to both the environment and living organisms and contributes to

the production of greenhouse gases (GHG), which have a significant impact on global warming. In 2020,

CO2 emission from energy consumption in the United States was found to be 4.6 billion metric tons (Bmt)

(decreased by 11% from 2019 due to the impact of COVID-19) [3]. Petroleum consumption accounted for

45% of CO2 emissions and about 77% of petroleum CO2 emissions occurred in the transportation sector

[3]. Also, light and medium vehicles (weighing up to 26,000 pounds) contribute heavily to GHG emissions

(more than 80%) as per the report provided by the United States Environmental Protection Agency (EPA)

[4]. The extensive depletion of fossil fuels, issues related to global warming, and erratic rise in the price

of these fossil fuels have given rise to the development of distributed energy resources [5], along with the

Electric Vehicles (EVs). Such vehicles have a positive effect on the environment by reducing gas emissions

and deviating toward clean and green technology as demanded by modern society [6]. As a result, more

EVs, hybrid electric vehicles (HEVs), and plug-in hybrid electric vehicles (PHEVs) are being produced and

used day-by-day as alternatives to conventional vehicles powered by ICEs. [7, 8, 9].

The EVs, whether battery electric vehicles (BEVs) or other kinds of EVs, are considered next-

generation transportation that uses alternative energy storage systems (ESSs) to replace or in conjunction
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with ICE. For this transportation to gain popularity and replace conventional ICE vehicles, the ESS must

maintain high capacity and power capabilities along with safe operation for more than ten years [10].

The selection of an appropriate ESS for an HEV or full electric vehicle (FEV) is influenced by

several factors. Figure 1.1 provides an overview of critical considerations while choosing an ESS. The cost

of the ESS has a direct impact on the overall vehicle cost, constituting around 30% of the total vehicle cost

[11]. Thus, a lower cost for the selected ESS results in a more economical vehicle. The size of the chosen ESS

directly influences the vehicle’s design. It is essential to consider the size of the ESS, as the overall size of

the HEV depends on it. Given the weight and volume constraints within the vehicle, an ESS with a smaller

size and weight is the most suitable option. Another crucial criterion is the lifecycle of the ESS. Different

ESS technologies have varying lifecycles, and selecting a system with a longer lifetime is advantageous for

HEV/FEV applications. As the vehicle operates under high speeds and extreme conditions, it is crucial for

the selected ESS to withstand these demanding operating conditions and operate safely. Power density and

energy density are critical metrics determining the selection of an ESS. Higher power and energy densities

make a particular ESS more suitable for EV applications. These metrics measure the ability of the system

to deliver power and store energy efficiently.

It is important to note that finding an ESS that meets all of these criteria is challenging. Therefore,

trade-offs are inevitable, and a specific ESS is chosen to fulfill the majority of these criteria, considering the

specific requirements of the vehicle.

Figure 1.1: Important metrics for a ESS in HEV/FEV.

There are several ESSs available in the market. Flywheel, fuel cell, supercapacitor (SC), and battery

are the most common ESS, which have their own inherent properties. Figure 1.2 compares these ESS in

terms of energy density and power density, whereas Figure 1.3 compares with broad parameters based on
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the data provided by [12] and [13], respectively. Fuel cells exhibit higher energy density compared to other

ESS; however, they are seldom used in HEVs. This is primarily due to the expensive manufacturing cost

of fuel cells, which surpasses that of internal combustion engines [14]. Additionally, storing hydrogen gas

at room temperature and pressure in vehicles poses challenges, as hydrogen is flammable and necessitates a

continuous fuel supply. Supercapacitors excel in power density but fall short in terms of energy density for

EV applications. Among the available ESS options, batteries currently dominate as the preferred choice for

energy storage in EVs. This is attributed to their high energy density, compact size, and reliability [12].

Figure 1.2: Comparison between various ESS in terms of energy density and power density [15].

Figure 1.3: Comparison of attributes of various ESS [15].

There are different types of batteries with different specifications. Lead acid batteries have been in
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use since the 1900s due to their durability, affordability, inherent safety features, and tolerance to temperature

variations [16]. However, overcharging of these batteries leads to water loss as hydrogen is produced at the

positive electrode [17]. The use of lead as current collectors in these batteries results in low energy density

and susceptibility to corrosion when exposed to a sulfuric acid electrolyte. As a result, lead-acid batteries

are not commonly employed in automotive applications due to their extended charging time and heavy

weight, in addition to these concerns. Nevertheless, lead-acid batteries still find wide usage in cost-sensitive

applications where low energy density and limited cycle life are not significant factors. These applications

prioritize ruggedness and tolerance to abuse. Examples of such applications include automotive starting

systems, lighting applications, and battery-powered uninterruptible power supplies (UPS).

NiMH (Nickel-metal hydride) batteries replaced lead-acid batteries in EV applications due to their

higher energy density, which is twice that of lead-acid batteries. Additionally, the components of NiMH

batteries are environmentally benign and can be recycled [12]. NiMH batteries offer improved safety features

compared to lead-acid batteries, as they can operate at higher voltages, have a wide operating temperature

range, and are resistant to overcharging and discharging. However, one drawback of NiMH chemistry is

its relatively high self-discharge rate. When overcharged, NiMH batteries utilize excess energy to split

and recombine water, making them maintenance-free [17]. Nevertheless, if these batteries are charged at

excessively high rates, hydrogen buildup may occur, leading to cell rupture due to the generation of excessive

heat. Over-discharging can also result in reverse polarization of the cell, causing a reduction in capacity.

Furthermore, NiMH batteries exhibit unsatisfactory performance at low temperatures [17].

The most promising choice among existing battery technologies applicable to EVs is lithium-ion

(Li-ion) batteries, which are also now regarded as the best option for developing future-generation EVs.

Li-ion batteries are emerging as the best fit for EVs as they have a higher energy density than any other

battery technologies, higher power density, good high-temperature performance, and, most importantly, are

lighter and smaller than other batteries, which can also be seen in Figures 1.2 and 1.3, respectively. These

batteries have high energy-to-weight ratios, no memory effect, and a low self-discharge, due to which they

are replacing NiMH batteries. They can operate in a wide range of state of charge (SoC) while maintaining

a long cycle life [18]. Also, the operating voltage of Li-ion batteries is high (3.7V on average). The only

disadvantage compared with NiMH batteries is that they require a protection circuit or battery management

system (BMS) and are expensive [13, 17]. However, the cost of Li-ion battery production for a large number

of HEVs is less than that of NiMH battery which is shown by Figure 1.4 [13].
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Figure 1.4: NiMH and Li-ion HEV cell cost as a function of vehicle production volume [13].

1.1 Need of HEV

HEVs are those vehicles that utilize multiple energy sources to provide propulsion power. There

are various types of HEVs based on this concept, including engine and fuel cell, battery and fuel cell, engine

battery and capacitor, battery and flywheel, and battery and battery hybrids [19]. HEVs, powered by

alternative sources and enabled by high-efficiency electric motors and controllers, offer a clean, efficient, and

environmentally friendly transportation solution. They create a clean environment and reduce operating

costs compared to gas-powered vehicles. Significant advancements in power electronics technology have

enhanced the reliability and efficiency of HEVs [20, 21, 22].

The most common type of HEV combines an ICE and an electric motor to propel the vehicle.

Depending on the way the ICE and motor contribute to the vehicle’s transmission, HEVs can be classified

into different architectures, such as series hybrids, parallel hybrids, series-parallel hybrids, and complex

hybrids.

The Series HEV is a straightforward hybrid vehicle design where the ICE is not directly connected

to the drivetrain. Instead, the engine’s output is converted into electricity through a generator. This

generated electricity is then used either to charge a battery or to power an electric motor that drives the

vehicle’s wheels. In this configuration, three propulsion devices are employed: the engine, the motor, and

the generator [20]. One of the main advantages of this design is the flexibility it offers due to the absence

of a direct connection between the wheels and the ICE. This allows for easy control of power distribution

to each wheel and simplifies traction control. However, a drawback of this type of HEV is the requirement

for separate motor-generator sets. The combined efficiency of these sets is generally lower than that of a

conventional transmission [23]. In this dissertation series HEV is used to verify the proposed strategy.
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In addition to the vehicle architecture, HEVs can be categorized based on the desired level of

hybridization. The cost of an HEV under these categories is influenced by the capacity of ESS utilized in

the vehicle. The concept of hybridization factor (HF), as introduced in [23], allows for the classification of

HEVs on a spectrum between HF=0 (representing an ICE vehicle) and HF=1 (representing an FEV). The

hybridization factor (HF) can be expressed as a measure of power supplied by the ICE and motor as

HF = PEM

PEM + PICE
(1.1)

where, PEM = Peak power of electric motor and PICE= is the peak power of ICE.

According to this hybridization factor, that determines the amount of electric power fed by an

electric motor, HEV can be classified into the following categories:

• Micro Hybrid

• Mild Hybrid

• Full Hybrid

PHEVs (Plug-in Hybrid Electric Vehicles) share similarities with conventional hybrid vehicles, in-

corporating both an engine and an electric motor. These vehicles can recharge their batteries through

regenerative braking or using the engine. However, there are key distinctions that set PHEVs apart from

regular HEVs. The primary difference lies in the presence of an additional charging port on the PHEV.

This port allows the battery to be charged from an external power supply, granting the vehicle the ability

to be plugged in. Furthermore, PHEVs typically possess higher-capacity batteries compared to their HEV

counterparts. This larger battery capacity enables PHEVs to travel significantly longer distances using the

electric motor alone, providing enhanced electric-only driving capabilities.

FEVs or HEVs are considered viable solutions to reduce petroleum consumption and GHG emis-

sions. While FEVs may be the preferred option over HEVs for this purpose, their adoption can face challenges

for three primary reasons: infrastructure support, battery supply, and public assurance during the transition

from ICE vehicles to FEVs. The lack of infrastructure support for FEVs poses a significant hurdle. The

establishment of numerous charging stations in various locations is necessary, requiring the expansion and

modernization of electrical grids to ensure a reliable power supply to these stations. Additionally, the shift to

FEVs necessitates extensive supply chains for ESSs, particularly batteries. The mining and transportation

of minerals for these batteries can be a logistical challenge, especially considering the dominance of China

in lithium battery supply chains. Public confidence in shifting from ICE to FEVs is another important

consideration. Range anxiety, stemming from concerns about the limited range of FEVs due to battery

degradation, often raises apprehension among consumers. Overcoming this anxiety and assuring the public

about the reliability and convenience of FEVs is crucial for their widespread adoption.
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Considering these factors, the transition to FEVs will require time and effort. In the meantime,

HEVs emerge as a favorable solution. Current data support this notion, as shown in Figure 1.5, illustrating

the different types of EV sales in the US from 2000 to 2021. According to the US Department of Energy

(DOE) [24], more than 65% of the total EVs sold in 2021 were HEVs. Presently, around 74% of registered

EVs in the US are HEVs, while PHEVs and FEVs make up 9% and 17%, respectively [24]. A notable

observation from Figure 1.5 is that the number of EV sales has doubled from 2020 to 2021.

Figure 1.5: EV sales over the years [24].

1.2 Challenges in EVs/HEVs

The components used in a vehicle degrade with time due to the vehicle’s operation. As a result,

these components’ output is compromised, which could make the vehicle’s operation unreliable. One of these

components is the ESS utilized in EVs and HEVs. Compared to a gasoline-powered car, the initial cost of

an electrified vehicle is typically higher. Nearly 30% of the overall cost of the vehicle goes toward ESS [25].

The ESS degradation raises concerns regarding electrified vehicles’ system dependability and viability. As a

result, there will be a significant impact on economic goals from ESS deterioration.

The degradation of the battery results in a decrease in its capacity, and when the capacity drops

13



below 80%, the reliability of the vehicle operation becomes questionable. This implies that for the vehicle to

operate reliably, the battery’s operational range should fall within 80% to 100% of its initial capacity. After

the battery’s capacity reaches 80%, the battery needs to be replaced [26]. However, replacing the battery

would lead to a significant increase in the vehicle’s operational costs, making it an uneconomical.

Figure 1.6: Control architecture in existing HEVs.

The degradation of the battery used in HEV can be minimized by controlling the vehicle’s operation

scenario. The presence of multiple sources in the vehicle demands energy management (EM), as shown in

Figure 1.6. The techniques used by the EM have an impact on the rate at which the battery of an HEV

degrades [27]. This observation supports the idea that EM plays a crucial role in controlling the power from

multiple power-generating sources in the vehicle. Several operational factors, such as temperature, depth of

discharge, charging, and discharging currents, influence a battery’s degradation. Therefore, it is advisable

to consider operational conditions while modeling the degradation of the battery [15]. The techniques

or algorithms used in an EM can be regarded as a viable option for preventing or reducing component

degradation. However, integrating the operational conditions for battery aging into the objective function of

an EM system poses challenges, as it adds complexity to the system. Additionally, it is essential to consider

the primary objective of the EM system, which is to minimize fuel consumption costs.
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1.3 Dissertation Problems and Approaches

Battery degradation poses significant challenges in the context of EVs and HEVs. As these vehicles

heavily rely on the performance and longevity of the ESS, any degradation in the battery leads to reduced

range, diminished power output, and increased operating costs. The detrimental effects of battery degra-

dation impact the economic viability and long-term reliability of the vehicle. Therefore, there is a critical

need to address this issue and develop strategies that minimize battery degradation, ensuring extended

operational efficiency and cost-effectiveness.

The aim of minimizing battery degradation in EVs and HEVs brings forth various advantages,

encompassing long-term cost reduction and enhanced operational reliability. This dissertation is primarily

dedicated to minimizing the degradation of the ESS employed in HEVs, striving for economic viability

and prolonged operational reliability. To attain this objective, different algorithms are employed within an

EM system. Furthermore, additional devices, such as supercapacitors, are integrated with the battery to

mitigate degradation. A distinctive focus of this dissertation involves the incorporation of a Degradation

Forecasting (DF) layer into the HEV’s control architecture, which is positioned above the EM layer. This

layer effectively addresses battery deterioration without requiring additional devices that might escalate

vehicle costs. Importantly, the proposed strategy is formulated for real-time implementation.

The following section discusses the problem statement and briefly presents the proposed approaches.

1.3.1 EM’s Optimization Problem

The presence of multiple energy-generating sources in HEVs demand for an EM [28, 29]. The

primary function of EM is to allocate power among various energy sources within a vehicle, optimizing an

objective function in a well-defined manner while also satisfying the specified constraints [30].

Recently, several research has been done to improve the optimization function of the EM. EM

techniques can be broadly classified into four main categories, namely, predictive control method, learning

method, heuristic method, and globally optimum approach [31]. Utilizing globally optimal methods can lead

to minimum fuel consumption when provided with complete information regarding future power demand

[32, 33]. Among different algorithms, dynamic programming (DP) and Pontryagin’s minimum principle

(PMP) are the most commonly used algorithms [30, 34, 35]. The primary limitations of DP implementation

are the curse of dimensionality and the considerable computing overhead requirement. Although several

DP approximation techniques can alleviate the computational burden, they are still not currently suitable

for real-time EM problem-solving [6]. And, for PMP, the iterative nature of the two-point boundary value

problem (TPBVP) arising from it leads to longer computation times [36]. The non-convex nature of the

optimization problem makes achieving global optimality in distributed energy management a challenging
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task in current research.

The approach taken in this dissertation involves the development of an optimization algorithm

capable of real-time operation. The objective is to efficiently address the constraints associated with the EM

strategy, specifically the reduction of fuel consumption cost. In order to accomplish this, a set of constraints

is established to govern the operation of the HEV within a specified range, emulating real-world vehicle

conditions.

The optimization problem is formulated as a constrained optimization problem, which means that

there are certain conditions and limitations that must be satisfied. The constraints considered for the EM

in this dissertation are related to the power limits of the generator or engine and the battery, the total load

power, and the state of charge (SoC) of the battery. These constraints ensure that the operation of the HEV

remains within a specific range. The goal of the objective function of the EM is to determine the optimal

power distribution between the battery and the ICE of the vehicle in order to minimize fuel consumption.

The detail explanation of the EM is provided in Chapter 4.

1.3.2 Integrating Degradation Forecasting into Control Architecture of

HEV

In recent years, forecasting has gained considerable attention due to its importance and advance-

ments in forecasting and prediction technologies. This has led to the emergence of various forecasting

algorithms, such as linear regression, neural networks, and support vector machines. More recently, there

has been a growing interest in the degradation forecasting of components used in different sectors. Accurate

predictions of component degradation can provide valuable insights for system planning, especially timely

maintenance, and prevent potential severe events for the reliable operation of the system. The ability to fore-

cast future events with precision enables systems to make well-prepared plans and mitigate potential risks.

This has motivated researchers to explore degradation forecasting techniques alongside other forecasting

domains.

To ensure optimal system reliability, it is crucial to develop degradation models in conjunction with

suitable decision-making strategies. These strategies enable the integration of component status information

with control processes, ultimately contributing to the system’s overall reliability. In the automotive sector,

real-time control and management activities should encompass planning activities, such as maintenance and

unit commitment, in an automated and collaborative manner.

By taking these factors into account, the integration of a forecasting layer into the hierarchical

control architecture of a HEV can effectively monitor the degradation of vehicle components, the battery in

this dissertation. This integration enables the implementation of degradation models and suitable decision-
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making strategies to incorporate component status information into the control system. The developed DF

layer considers the degradation of battery used in the vehicle and serves the following purposes:

1. Provides the cost of degradation to the EM so that it can take action to minimize degradation

2. Enhances the reliability of vehicle operation by monitoring the state of health (SoH) of the battery

3. Reduces the overall operating cost of the vehicle.

1.4 Dissertation Organization

This dissertation has seven chapters. Figure 1.7 shows the dissertation chapter flow. The following

lists and briefly summarizes the chapters.

Figure 1.7: Dissertation chapter flow.

Chapter 1: Introduction

In this chapter, the growing importance of electrified vehicles in the current era will be addressed. De-

tailed discussions are provided to highlight why Li-ion batteries are considered the most suitable choice for

automotive applications. Additionally, the chapter gives a summary of existing challenges associated with

energy management design from a degradation perspective. These challenges serve as motivation for this

dissertation. To summarize, the following problems are identified and outlined as follows:

• The main objective of an EM is to reduce fuel consumption and does not consider the degradation of

components used in the vehicle

• This dissertation proposes a strategy named prognostic-based control framework (PBCF) that inte-

grates an additional upper layer to the EM layer in the control architecture to achieve the following

aspects:

– Minimize the degradation of components (i.e., battery in this dissertation)
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– Minimize the overall operating cost of the vehicle

– Increase the reliability of operation of the vehicle through monitoring the real-time status of the

vehicle’s components.

Chapter 2: Battery Degradation and Factors Affecting Battery Degradation

In this chapter, a comprehensive survey of the literature on battery degradation will be presented. The

aim is to understand the underlying reasons behind this phenomenon. Also, it will provide a detailed

exploration of the various factors that contribute to battery degradation in EVs/HEVs. The emphasis will

be on understanding the impact of these factors on the overall lifecycle count of the battery. Through a

comprehensive analysis, the aim is to gain insights into the specific factors that influence battery degradation

and ultimately affect the longevity of the battery in EVs/HEVs and use these information in modeling the

degradation of the battery.

Chapter 3: Analytical and Data-Driven Degradation Models

The battery’s health in EVs must be closely monitored and predicted in real time for reliable operation and

timely maintenance of the vehicle. In recent years, there has been significant improvement in estimating the

life of a battery using different degradation models. In this dissertation, analytical and data-driven methods

are used to model the degradation of the battery, and the techniques used to model the degradation will be

explained in detail in this chapter.

Chapter 4: Prognostic-based Control Framework for Degradation Abatement

In this chapter, the control strategy proposed in this dissertation will be elucidated. Specifically, the integra-

tion of a degradation forecasting (DF) layer into the control architecture of the HEV will be described. This

section will provide a comprehensive explanation of the procedure involved in implementing this strategy,

outlining the steps and processes in detail. The aim is to offer a thorough understanding of how the proposed

control strategy operates within the HEV system.

Chapter 5: Numerical Simulation Results

Within this chapter, numerical simulations will be presented to showcase the efficacy of the strategy pro-

posed in Chapter 4. The simulations serve as practical demonstrations that illustrate the effectiveness and

performance of the proposed architecture in MATLAB/Simulink.

Chapter 6: CHIL Experiment

Chapter 5 focuses on the verification of the simulation using MATLAB/Simulink on a personal computer.

However, this section goes beyond simulation and presents a real-time implementation of the proposed

strategy. Specifically, a controller-hardware-in-loop (CHIL) experiment is conducted in the RT-COOL lab

at Clemson University, and the details of this experiment will be thoroughly discussed in this chapter.

Chapter 7: Conclusion and Future Work
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This section concludes this dissertation.

The overall sections explained in the chapter above are shown graphically in Figure 1.8.

Figure 1.8: Steps followed to complete the dissertation.
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Chapter 2

Battery Degradation and Factors

Affecting Battery Degradation

Nomenclature

Ah Ampere-hour
BMS Battery management system
C-rate Charging/ Discharging current rate
DoD Depth of discharge
Li-ion Lithium ion
LFP Lithium iron phosphate
LLI Loss of lithium inventory
LAM Loss of active materials
NiMH Nickel-metal hydride
OR Ohmic resistance
PR Polarized resistance
SEI Solid-electrolyte interphase
SNL Sandia national laboratory
SoC State of charge
SoH State of health
Q Battery capacity
Qloss Battery capacity loss

2.1 Literature Review in Battery Degradation

The battery is a critical component of an EV, and being one of the most expensive components,

it must be thoroughly vetted and operated. The major challenge for the auto industry is to reduce the
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cost of the battery and increase the operating life cycle. To achieve the economic viability of an EV, it is

required to have a long battery lifetime. The lifetime of a battery depends on how it’s been operated and is

a complex mechanism [37]. Battery degradation is one of the limiting factors in battery lifetime, therefore,

this mechanism must be thoroughly investigated and reduced in order to extend the battery’s lifespan.

The battery’s lifetime is the length of time it operates to meet the demands of a particular appli-

cation. In EV applications, the battery’s lifecycle is short compared to other components and is considered

reliable until it reaches 80% of its initial capacity [38, 39]. A long battery life is necessary for an EV to be

economically viable since the battery costs 30% of the price of an EV [40, 11]. The lifetime of a battery

depends on its operation and how fast it degrades, which is a complex mechanism [37]. Two prominent

metrics are used to assess the level of battery degradation known as capacity fade and power fade. The

use of EVs and HEVs for intense cycling results in the degradation of Li-ion batteries, leading to a gradual

decline in their capacity to store energy and deliver power. This is commonly known as capacity fade and

power fade.

• Capacity fade refers to the reduction in the energy storage capacity of a cell caused by its degradation.

A capacity fade emerges as a gradual decline in the amount of battery capacity that can be discharged

throughout a battery’s lifespan. It is crucial because it depicts the decline in an electric vehicle’s

usable range.

• Power fade is defined as the decrease in cell power resulting from an increase in cell resistance due to the

effects of aging. It is the gradual reduction in a battery’s power capacity caused by a steady increase

in the battery’s cell impedance over time. Power fade is essential for applications in automobiles since

it determines how much power the battery can deliver without lowering vehicle speed or activating an

engine or power extender.

To analyze the decline in battery capacity, there should be a fundamental understanding of how

a Li-ion battery works. A Li-ion cell is shown in Figure 2.1 which consists of a cathode, an anode, a

separator, and an electrolyte. The electrolyte facilitates lithium ions to travel between the electrodes, while

the separator separates the anode and cathode, preventing shorting between them. During charging, the

lithium ions move from the cathode on the positive side of the battery to the anode. Similarly, during

discharging, the lithium ions move from the anode to the cathode. From the initial charge, lithium ions

react with the solvents of the electrolyte to form a layer known as solid electrolyte interphase (SEI), whose

formation plays a vital role in the degradation of the battery [41], which will be discussed in detail further.

The cathode composition used gives the name of the type of lithium battery. Lithium metal oxides

such as Lithium Cobalt Oxide (LCO), Nickel Cobalt Aluminum Oxide (NCA), Lithium Cobalt Phosphate

(LCP), Nickel Cobalt Manganese Oxide (NCM), Lithium Manganese Oxide (LMO), Lithium Iron Phosphate
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Figure 2.1: Principle of operation of Li-ion battery [13].

(LFP), Lithium Iron Fluorosulphate (LFSF) and Lithium Titanium Sulphide (LTS) have been used as

cathode materials owing to their high capacity for lithium intercalation and compatible chemical and physical

properties (e.g., for the reversibility of the intercalation reactions) necessary for the movement of lithium

ion [42].

The most common material used for anode in lithium batteries is graphite due to its high nega-

tive potential. The separator is a porous membrane between the cathode and anode which plays a vital

role as it prevents the battery from short circuits but allows lithium ions to pass through it. Li-ion bat-

tery’s most popular separator materials are made of microporous polyolefin films such as polyethylene (PE),

polypropylene (PP), or laminates of polyethylene and polypropylene, offering outstanding chemical stabil-

ity, mechanical properties, and acceptable cost. The electrolyte infills the space between the separator and

electrodes. The electrolyte formulation in lithium batteries is dependent on the electrode materials and

operating conditions. The typical electrolyte for lithium batteries is made of a flammable carbonate-based

organic solvent such as ethylene carbonate (EC), dimethyl carbonate (DMC), diethyl carbonate (DEC) and

ethyl methyl carbonate (EMC), and/or propylene carbonate (PC), with additives including lithium hexaflu-

orophosphate (LiFP6), lithium hexafluoro arsenate monohydrate (LiAsF6), lithium perchlorate (LiClO4),

and lithium tetrafluoroborate (LiBF4) to improve cycling [43].

During cycling, side reactions occur in the battery system, and an amount of recyclable active

particles irreversibly precipitates in the form of an insoluble SEI file. In addition, the degradation of

electrolytes and contact loss between the electrode and the current collector also contribute to the increase

of cell resistance. Finally, aged batteries display a reduction in the ability to store energy and deliver power;
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performance metrics correlate with a loss in capacity and an increase in internal resistance. During battery

cycling, side reactions take place in the system, precipitating a certain amount of recyclable active particles

as an insoluble SEI, which cannot be recovered. Moreover, the degradation of the electrolyte and the loss of

contact between the electrode and the current collector further contribute to an increase in cell resistance.

Ultimately, batteries that have undergone aging exhibit a decline in their capacity to store energy and

deliver power, with performance metrics correlated with a decrease in capacity and an increase in internal

resistance. To understand the degradation mechanism of a battery, a Li-ion battery is examined since it is a

commonly used battery in EVs and has various advantages over the other batteries, as discussed in Chapter

1. Once the battery has been manufactured, it will start to degrade, and different phases of this mechanism

are shown in Figure 2.2 [44]. It’s worth noting that once the battery reaches 80% of its initial capacity, it

can be repurposed as a storage system in power grids. It can be utilized for backup purposes or to assist in

frequency regulation, ensuring stability and reliability in the electrical grid.

Figure 2.2: Different phases of battery degradation during its lifetime [15].

The Li-ion battery is a complex system to understand, and the aging mechanism is even more com-

plicated. A single factor does not cause capacity and power to fade away but involves several processes and

interactions [45, 46]. Battery degradation is determined by different mechanisms and processes depending

on the components and chemistry within them. Due to the complex, nonlinear, and path-dependent nature

of battery degradation, the aging mechanisms are challenging to analyze and mitigate [47, 48]. According

to study [45], the aging trajectories of Li-ion batteries are categorized as linear, sublinear, or superlinear,

which are displayed as capacity vs. cycle number or something comparable. Battery aging trajectories are

frequently linear or sublinear [49, 50]. Sublinear degradation is commonly considered to be due to side
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reactions like SEI growth, which grows nearly with the square root of time or cycle number due to its

self-passivating nature. While this degradation is mainly unavoidable, the decelerating degradation rate is

a fortunate property for long-lifetime applications. However, the degradation of superlinear batteries is also

frequently noticed. They go by several names in different battery literature as knee [51], rollover failure [50],

nonlinear aging [52], sudden death [53], saturation [54], second-stage degradation, or two-phase degradation

[55], capacity plunge [56], or drop-off [57]. In addition, knees present difficulties for precise onboard state-

of-health estimation because batteries with identical states of health could have different remaining useful

lives. Avoiding or delaying knees is essential to ensuring long battery lifetimes.

Figure 2.3 shows the different degradation mechanisms in a Li-ion battery cell, where the infor-

mation provided by [58] and [59] was used to draw this figure. General deterioration is influenced by side

reactions, structural changes, and altering chemical compositions. Loss of lithium inventory LLI [46], loss of

active materials LAM [46], and loss of electrolyte [57, 60] are the three primary degradation modes identified

in the battery aging mechanism [61]. Side reactions at the electrode/electrolyte interfaces, which perma-

nently consume cyclable lithium and produce resistive layers of lithium oxides in the cell, are the primary

cause of degradation [59]. The capacity of the cell is reduced (capacity fade) because these Li-ions are no

longer cyclable for the intercalation process. Another prominent reason for degradation is the LAM due

to electrode delamination, metal dissolution, particle isolation, structural disorder, and film formation [58].

Graphite exfoliation, electrode particle cracking, and dead lithium obstructing the active site pathway reduce

the active mass on the negative electrode [62]. Similarly, transition metal dissolution, structural disordering,

and electrode particle cracking reduce the active mass of the positive electrode [63, 58, 64, 65]. Electrolyte

loss is another key source of deterioration; accumulated lithium on the negative electrode surface interacts

with the electrolyte and consumes it [57, 66]. At the end of the battery’s life, the reduction of the electrolyte

content results in capacity and power fading. The increase in resistance caused by passive film develop-

ment of the lithium oxides and electrical disconnects between the electrode subcomponents are additional

sources of degradation. The most detrimental aging mechanisms impacting graphite anode electrodes are

SEI film growth, binder decomposition, and irreversible plating [67]. All these degradation mechanisms can

be broadly divided into the following categories:

2.1.1 Loss of free Lithium ions

Lithium ions move from the negative electrode to the positive electrode during discharging and

from the positive electrode to the negative electrode during charging in the presence of an electrolyte.

While moving from negative electrode to positive electrode and vice-versa, the free Li-ions are consumed by

parasitic reactions like SEI formation, decomposition reactions, and lithium plating. Due to these reactions,
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Figure 2.3: Degradation mechanism in Li-ion battery cells [15].

free Li-ions are no longer available for cycling between the positive and negative electrode, resulting in

capacity fade and power fade [59]. Two major issues that consume Li-ions during the aging mechanism are

described as follows.

2.1.1.1 Solid Electrolyte Interphase

SEI is usually a protective layer formed on the surface of a negative electrode with unique properties

that are permeable for lithium ions but impermeable for other electrolyte components and electrons. Typi-

cally, the SEI layer protects the electrolyte component from further reduction and the charged electrode from

corrosion [60]. Li-ions and other small species can pass through the resultant SEI layer, while bigger species

cannot interact with the negative electrode. However, by restricting Li-ion transport and resisting volume

changes within the graphitic layers of the negative electrode, the SEI layer can slow down intercalation

kinetics at the electrode/electrolyte interface. The SEI layer may break as a result of such a volume change,

further exposing the active material in the graphite to reduction processes. The restricted transportation of

Li-ions will increase charge-transfer resistance within the battery cell. Also, the consumption of electrolytic

compounds decreases charge-transfer capabilities and increases cell impedance.

During the operation of the battery, this SEI layer affects the battery performance in terms of

reversible capacity, Coulombic efficiency, and cycling stability [68]. When Li-ions move from the negative

electrode to the positive electrode, and vice-versa, they react with the electrolyte to form an additional

layer of SEI at the negative electrode, making the SEI layer unstable and increasing its thickness [69]. This
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layer grows with time or the number of charging and discharging cycles. When there is chronic charging

and discharging of a battery, there is frequent movement of free lithium ions which eventually increases the

size of the SEI layer. Due to this, a large number of lithium ions get trapped in this layer and ultimately

decrease the battery’s capacity [70]. As the thickness of this layer increases, the battery’s internal resistance

also increases. This SEI layer’s growth rate is higher at the early age of the battery and decreases as this

layer becomes stable. During the initial 400 cycles, the SEI experiences significant growth. However, after

this point and until the battery reaches 80% of its capacity (i.e., EOL), the SEI growth is at a constant rate.

When the battery reaches its end of life (EOL), again, the growth of this layer increases rapidly [71], which

is not shown in the figure. The SEI formation is believed to be the significant factor affecting the battery

cycle life as it consumes the free movable lithium ions and provides resistance to the movement of these ions

[72, 57].

High operating temperatures that drive the kinetics of the exothermic parasitic process might

increase SEI formation. Furthermore, elevated temperature can change the SEI into lithium salts that are

less permeable to lithium ions. On the other hand, a low-temperature operation can reduce the excess

lithium ions present at the interface due to slower ion transit, limiting SEI development. Operating the

battery at low SoC (i.e., < 20%) or at high SoC (i.e., >80%) can further promote SEI growth because of

the increased potential gradient between the active material and the electrolyte. Also, the high charging

current can accelerate the growth of the SEI layer due to the high amount of electrons and Li-ions present

at the interface.

Study [71] developed a model for the formation of SEI film inside a battery cell and is given by

(2.1). Here, L is the battery life, αsei is the portion of charge capacity irreversibly consumed, fd,1 is the life

lost in one unit of time. The detailed calculation of all these parameters is provided in [71].

L = 1 − αseie
−Nβseifd,1 − (1 − αsei)e−Nfd,1 . (2.1)

2.1.1.2 Lithium plating

Lithium plating is a well-known and innately destructive aging mechanism in Li-ion batteries.

It is the deposition of metallic lithium on the graphite negative electrode surface [73]. Lithium plating

is considered severe because it not only promotes degradation but also negatively impacts the battery’s

safety [74]. From a safety perspective, lithium plating in Li-ion batteries can be dangerous as it may result

in thermal runaway. This can cause the battery to overheat, catch fire, or even explode. During lithium

plating, the electrolyte in the battery is reduced and deposited onto the negative electrode’s surface, creating

a coating of metallic lithium. Due to this, the battery may experience a short circuit that might result in
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a thermal runaway. This can cause the battery to heat up rapidly and produce gases that could cause the

battery to rupture or explode [74, 75].

Low operating temperatures, high SoC, high charge currents or fast charging, and high cell voltage

are some of the fundamental causes that give rise to lithium plating [59]. While operating the battery at

low temperatures, the SEI layer’s ability to diffuse lithium is reduced, which enhances the concentration

of lithium ions at the electrode/electrolyte interface. Usually, during fast charging, the Li-ions can deposit

on the surface of the negative electrode instead of being intercalated between the graphite’s atomic layers

[76]. These deposited Li-ions can be reversible or irreversible. The irreversible portion of Li-ions reacts

with electrolytes to form a secondary layer of SEI that increases the thickness of this layer and increases

the internal resistance of the battery cell [75]. Since the free Li-ions are captured to form the SEI layer,

it also decreases the energy density of the battery cell. The irreversible portion accelerates the capacity

fade, and in the severe case, the accumulated Li-ions might form a dendrite [77]. The formation of lithium

dendrites during the lithium plating can cause the tearing of the separator, subsequent short circuits, and

instant battery failure. On the other hand, the reversible portion can cause lithium stripping, which is the

process where the deposited Li-ions with an electrical contact on the negative electrode interface experience

a charge transfer reaction into the electrolyte and then re-intercalate into the negative electrode [45]. This

process occurs throughout the discharge or rest period [78, 79]. Lithium plating is also likely to occur when

the capacity of the two electrodes is unbalanced or when the positive electrode is physically bigger than

the negatively charged electrode [80]. When the electrodes are unbalanced, it promotes lithium plating by

polarizing the negative electrode to low potentials. Lithium deposits build up on the negative electrode’s

edges when the positive electrodes are bigger [45].

The harsh operating conditions, such as high C-rates, charging at a high SoC, and charging at low

temperatures, give rise to lithium plating [81]. Due to these harsh conditions, charge transfer kinetics in

the electrolyte and solid-state diffusion is delayed, leading the negative electrode potential to fall below the

potential of lithium metal, allowing lithium plating to occur. At low temperatures, the power and energy

densities of Li-ion batteries are lowered, especially during the charging process, due to three key factors:

1. low ionic conductivity in the electrolyte; 2. poor Li-ion solid diffusivity in the electrode; 3. slow charge

transfer rate [82]. Similarly, a high SoC is a condition where the current continues to flow to the battery

even though the battery is already full [83]. At such conditions, it is easier for Li-ion to concentrate on the

negative electrode surface and exceeds the maximum allowable limit reaching a saturation level. While doing

so, dendrite structures are seen in the cells that penetrate the porous separator, resulting in micro-internal

short-circuit [84]. The results from [85] show how to avoid lithium plating, which can be achieved by using

the battery at increased temperature, low currents, and SoC.
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2.1.2 Loss of active materials

When the battery is used for multiple cycles, there will be a point where there is no active mass

of negative electrode and positive electrode for the insertion of lithium due to particle cracking, blocking

of active sites by resistive surface layers, and structure disordering. These are the phenomenon that causes

capacity and power to fade [59]. Depending on the level of lithiation and the afflicted electrode, LAM can

be categorized into four groups [46].

• First, the origin of LAM can be the separation of the active material grains from the electrode’s ionic

or electronic conduction network [86]

• The second is the transition metal’s dissolution into the electrolyte solution [87]

• The third is a change in the composition of the electrode [88], and

• The fourth is a modification to the crystal structure of the active material that decreases the degree

of lithiation [89].

The LAM is primarily responsible for the degradation of positive electrodes. The structural dis-

ordering of the oxide, the dissolving of the metallic ions, and surface modifications such as fracture are

examples of the physical degradation of the active materials. High voltages and temperatures increase the

electrolyte’s disintegration of the oxide particles, raising the impedance. The dissolved species can either

move through the electrolyte to interact with the negative electrode SEI, or they can precipitate into new

phases on the positive electrode. In either case, the LAM is responsible for lowering the capacity of the pos-

itive electrode, which ultimately reduces the cell’s capacity. Also, the insertion and extraction of Li-ions put

stress and strain on the active material, which leads to micro-cracking. However, due to the bulk amount of

active materials, only a minor aging mechanism is expected to occur. The volume change of graphite during

Li-ion penetration and removal is not considered significant (typically in the range of 10% or less), and only

a minor negative impact on the material’s reversibility is expected as a consequence [90]. The structural

changes can cause mechanical stress on C-C bonds resulting in cracking or some other structural damage

which will have a minor impact on cell aging. But due to solvent co-intercalation, electrolyte reduction

inside graphite, and/or gas evolution inside graphite, graphite exfoliation, and graphite particle cracking

would most likely result in fast electrode deterioration [90].

Figure 2.4 shows different working conditions of a Li-ion battery and the degradation mechanism

associated with that operating condition along with its effect in a graphical form which is a summary of

details provided in studies [58] and [59].

The degradation of a Li-ion battery can be characterized by a decrease in capacity over repeated

charge and discharge cycles. Capacity is the amount of electrical charge the battery can store when fully
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Figure 2.4: Cause and effect of degradation mechanisms and associated degradation modes [15].

charged. For batteries, 80% of the initial capacity is referred to as the point after which it tends to exhibit

an exponential decay of capacity and is considered an unreliable power source after this point for EV

application [91]. One issue that always comes with battery is self-discharging. Self-discharging means the

battery experiences a loss of energy even when it is in an inactive state. It is due to the chemical reactions

inside the battery, even though there is no connection between the electrodes. Because of self-discharging,

batteries initially have less than a full charge in their first cycle. Generally, the self-discharge for lithium

batteries is minimal compared with other types of batteries, about 5% in the first 24 hours and around

1%-2% per month [92].

Besides this self-discharge, a battery’s capacity is decreased due to the successive and complex

set of dynamic chemical and physical processes that slowly reduce the number of mobile lithium ions and

other factors discussed in Section 2.2. High current rates, high discharge conditions, and extreme operating

temperatures are the most common factors which put a lot of stress on the battery of EVs [91]. In order

to minimize the degradation mechanism and ensure the long-term lifecycle of a battery, the degradation

behavior must be thoroughly analyzed.

Once the battery is in use, the degradation process begins, and there are two types of aging

mechanisms: calendar aging and cycling aging. Calendar aging occurs when the battery is in rest condition;

there are no continuous charging and discharging cycles. Cycling aging occurs when the battery is used
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and depends on the frequency of charging and discharging cycles. Calendar aging begins shortly after the

batteries are made and progresses over time, whereas cycling aging occurs when the battery is employed and

depends on its operating conditions.

In modern Li-ion batteries, the main issue in calendar aging is the formation of the SEI layer on the

negative electrode [93]. SEI formation is accelerated at high levels of temperature and SoC that gives rise

to the impedance of the battery resulting in lower activation energy [94]. The capacity loss of the battery

when stored at a different level of SoC can be calculated using a semi-empirical equation (2.2) proposed by

[95, 96] with the value of the parameter provided by the study [97].

Qloss = α1.exp(β1.T −1).α2.exp(β2.SoC).t0.5 (2.2)

Figure 2.5: Effect of SoC on calendar aging [15].

In this model, t is the storage time in days, T is the storage temperature, and α1, β1, α2, and

β2 are the fitting parameters. Using this model, the capacity fade of the battery when stored for a long

period of time at different storage SoC can be calculated and is shown in Figure 2.5 [96]. The capacity

fade is calculated by varying the SoC from 20% to 100% at a constant temperature of 25◦C. For an equal

temperature of 25◦C, the capacity loss is not the same at different SoC. The amount of ions on the electrode

is given by SoC. A high SoC implies large potential disequilibrium at the electrode/electrolyte interface,

which stimulates chemical reactions. Clearly, it can be concluded from the figure that the capacity loss of

the battery goes on increasing as the storage SoC of the battery is increased, which is also verified in [98]
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and [99].

Similarly, the effect of temperature on the calendar aging of a battery is investigated in [71], and its

result is shown in Figure 2.6. The battery is stored at five different temperatures from 15◦C to 55◦C, keeping

the SoC at 50%. Looking at the figure, it can be inferred that as the temperature increases, the capacity

loss of the battery also increases. Study [100] has derived a mathematical model represented by (2.3) to find

the capacity loss of a battery cell due to temperature, SoC, and time individually during calendar aging.

ktemp,Qloss denotes the influence of temperature, σ denotes the influence of SoC, and t denotes the influence

of time.

Qloss(T, σ, t)[%] = ktemp,Qloss .(σ).
√

t (2.3)

Figure 2.6: Effect of temperature on calendar aging [71].

The temperature influence factor ktemp,Qloss can be modeled using Arrhenius equation as given by

(2.4). Arrhenius equation is generally used to model the dependency of temperature on the aging of battery

as done in studies [101], and [102]. The value of kref,Qloss can be calculated by dividing the measured value

of Qloss at the end of the aging study from the test point with T = 25◦C and soc= 100%.

ktemp,Qloss = kref,Qloss .exp

(
−Ea,Qloss

R

(
1
T

− 1
Tref

))
(2.4)

The impact of temperature on the capacity loss based on the experimental data and developed

mathematical model is shown in Figure 2.7. This figure is plotted based on the experimental data and
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(2.3) and (2.4) provided in [100]. The analysis from this study and Figure 2.7 concludes that the storage

of batteries at high temperatures results in higher capacity loss. Also, the result of one year study of a 2.3

Ah graphite/lithium-iron-phosphate (LFP) cell under storage conditions at 25◦C and 45◦C was presented

in [103]. The result found that the aging was sensitive to temperature, and the battery cell operated at

45◦C had capacity loss up to four times more than the battery cell operated at 25◦C. This capacity fade

was dominated by the loss of cyclable Li-ions along with a minor loss of graphite active material.

Figure 2.7: Impact of temperature on calendar aging based on experimental data and developed
model [100].

Several studies have been conducted on Li-ion batteries at various operating temperatures, charging

and discharging current rates, and DoD to determine their impact on battery aging. All these factors have a

different impact on the battery that accelerates the aging mechanism. Knowing these factors and how they

affect battery capacity is vital for minimizing battery capacity loss. One common parameter associated with

all these factors that have a severe impact on battery degradation is internal resistance [104]. The change

in internal resistance with the change of aforementioned parameters is examined in detail in [105]. The

resistance in a Li-ion battery can be divided into two categories: ohmic resistance (OR) and polarization

resistance (PR) [105, 106]. The first one includes electrolyte materials resistance, electrolyte resistance,

separator resistance, and contact resistance, whereas the second is the resistance caused by polarization

in the electrochemical reaction [107]. The change in these resistances with the increase in cycle number,

along with the capacity fade, is shown in Figure 2.8 [105]. It can be analyzed from this figure that with the

increase in cycle number, both the resistances (OR and PR) of the battery increase, whereas the battery’s
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capacity starts to decline. There are several factors that stimulate battery degradation, which is already

summarized in Figure 2.4, where different causes of degradation are shown along with their effects on the

battery. Predicting the degradation rate and remaining lifetime of a battery is a demanding task due to the

complex nature of the degradation process. However, to ensure reliable operation and timely maintenance,

it is essential to determine the remaining lifetime of a battery.

Figure 2.8: Change in parameters of battery with cycle count [105].

The most common factors that affect the battery capacity and give rise to degradation are [108]:

1 Temperature

2 Discharging current

3 Charging current

4 Depth of Discharge (DoD)

These parameters have impacts depending on the mode of operation of the battery. If the battery

is stored for some time, then the temperature and SoC of the battery have a great impact on its degrada-

tion. When the battery is in operation, all these factors have different effects on the battery and result in

degradation. The battery in EVs is subjected to various stresses due to high current rates, deep discharge

conditions, and operating temperatures. Table 2.1 provides a summary of the impact of these factors on

the degradation of the battery, along with the corresponding references that were used to investigate their

effects. The subsequent subsections delve into a detailed discussion of these factors.
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Table 2.1: Factors affecting battery degradation

Factors Affects Causes

High Temperature

Anode

Mechanical instability due to decomposition of blinder
Growth in SEI layer and decrease in accessible surface area
due to SEI growth
Electrolyte decomposition resulting in loss of cyclable
lithium and further SEI growth
Parasitic side reactions exposing fresh graphite to elec-
trolyte and increased SEI growth
Phase change in active material due to metal dissolution

Cathode

Increase in phase changes in active material
Blinder decomposition
Increase in phase changes in active material
Loss of cyclable lithium and gas evolution due to oxidation
of electrolyte

Low Temperature Anode Lithium plating during charging at high SoC

High Current Rates

Anode

Metallic lithium plating and subsequent electrolyte decom-
position by metallic lithium
SEI growth at locations where Li metal is exposed to elec-
trolyte
Contact loss of active material particles and particle crack-
ing due to volume changes
Expose of fresh graphite to the electrolyte and further SEI
growth

Cathode

Trasnsition metal dissolution
Active material crumbling
Volume changes and tensile compressive stresses causing
particle cracking

High DoD Both Anode
and Cathode

Particle cracking due to mechanical stress caused by vol-
ume changes
Contact loss of active material particles due to volume
change during cycling

Both Anode
and Cathode Blinder formation

Electrolyte decomposition

High SoC Anode Lithium plating at high charging rates

Cathode Current collector corrosion

Both Anode
and Cathode

Blinder formation
Electrolyte decomposition

Low SoC Anode Current collector corrosion

Cathode Transition metal dissolution
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2.2 Factors Affecting Battery Degradation

2.2.1 Temperature

Temperature is a crucial factor that significantly impacts the health, performance, cycle lifetime,

and safe operation of Li-ion batteries [109]. As the temperature in the battery changes, the chemical

reaction inside the battery changes. One of the positive impacts of higher temperature on the battery is

that it increases the performance and storage capacity of the battery [109]. This is because the electrolyte

conductivity increases and the electrode wetting characteristics are improved at higher temperatures [110].

When the temperature was raised from 25◦C to 45◦C in [109], the maximum storage capacity rose by 20%.

However, this increase in capacity comes at a cost, reducing the battery’s longevity. Similarly, the operation

of the battery under low temperatures is not favorable as it leads to faster aging of the battery [111].

The effect of temperature on different components of the battery is the reason behind the degrada-

tion. The study of the impact of high temperatures on lithium batteries from [112] concludes that a blinder

layer is formed on the positive electrode’s surface, resulting in poor Li-ion intercalation. Also, the change

in the composition of the SEI layer depends on the operating temperature, which is different at different

operating temperatures [113]. The X-RAY analysis in this study showed that the capacity loss is mainly

related to the sei film growth on the negative electrode. The elevated temperature escalates the formation of

the sei layer on the negative electrode [114]. The formation of the sei layer was the main contributor to the

increase in the cell’s internal resistance [115]. This decreases the performance of the battery by reducing its

efficiency. Similarly, Lithium plating and subsequent interaction with the electrolyte, resulting in the loss of

cyclable lithium, is the most common aging mechanism at low temperatures [116].

To investigate the apparent effect of temperature on the lifecycle of the battery, the study [91] is

considered as a reference. The tests is carried out at four distinct temperatures: 40◦C, 25◦C, 0◦C, and

−18◦C, with the results displayed in figure 2.9. When the temperature is at room temperature (25◦C),

the cycle count of the battery is maximum at 2600. The cycle count of the battery diminishes when the

temperature rises over this point. It was found to be 1850 at 45◦C, and the cycle count continues to plummet

as the temperature rises. The instability of the SEI causes the battery’s lifespan to decline beyond 25◦C

because the SEI layer consumes free Li-ions during each charge cycle, reducing the number of free Li-ions

available to represent the battery’s capacity. Also, with the instability of SEI, the internal resistance of the

cathode surface will increase, and there will be a mismatch in the electrochemical process of the battery,

due to which the lifecycle of the battery decreases, and the capacity fade increases [110]. The cycle count of

the battery will decrease when the temperature drops below the ambient temperature. The cycle count was

lowered to 2070 when the temperature reached 0°C. The battery’s life cycle is substantially reduced when

35



the temperature drops beyond this point; at −18◦C, the cycle count was found to be only 200.

Figure 2.9: Effect of temperature on lifecycle [91].

The impact of temperature on the dataset considered in this dissertation is investigated. The dataset

used in this study comprises data collected from laboratory experiments conducted at the University of

Wisconsin-Madison, focusing on different 2.9 Ah Panasonic 18650 PF battery cells. Figure 2.10 illustrates the

effect of temperature on five of these battery cells, specifically at temperatures of −20◦C, −10◦C, 0◦C, 10◦C,

and 25◦C. Upon analysis, it is observed that the battery cell operated at −20◦C exhibits the most rapid

degradation path, followed by the battery cell operated at −10◦C. Conversely, the battery operated at

ambient temperature 25◦C demonstrates the slowest degradation path. These findings align with the analysis

conducted in a previous study [91] and are consistent with the results reported in the paper [15].

The second dataset considered in this dissertation is obtained from Sandia National Laboratory

(SNL), featuring different 1.1 Ah LFP 18650 battery cells. Figure 2.11 illustrates the impact of temperature

on the degradation path of these battery cells, considering a total of 10 cells. Specifically, the figure showcases

two cells operated at 15◦C, four cells operated at 25◦C, and four cells operated at 35◦C. Notably, the figure

demonstrates that the degradation paths of battery cells at the same temperature vary, highlighting the

complex nature of degradation mechanisms within batteries. This complexity is influenced by multiple

factors, as explained in Chapter 1. It is observed that as the battery temperature increases, the degradation

rate accelerates. At 15◦C, the battery exhibits a slower degradation rate, while at 35◦Cs, the battery
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Figure 2.10: Impact of temperature on capacity of battery for University of Wisconsin-Madison
dataset.

experiences the fastest degradation path. These observations are consistent with the findings of studies [91]

and [15]. The underlying reasons for battery degradation are elaborated in detail in the paper [15], which

was published during the period of this dissertation. This paper provides comprehensive insights into the

degradation mechanisms and factors contributing to battery performance decline.

2.2.2 Discharging Currents

The discharge current is the amount of current at which the battery is being discharged. The

discharge current rate is expressed as Q/h rate, where Q is rated battery capacity, and h is discharge

time in hours. Sometimes discharge and charge rate is defined as C-rate, where 1C rate means that the

discharge/charge current will discharge/charge the entire battery in 1 hour. The cycle count of a battery

depends on the rate at which the battery is discharged. Numerous literature [117, 118, 119, 120] state

that the discharge rate greatly impacts the performance and different amounts of discharge current have a

different impact on the degradation of the battery.

The primary reason behind this higher capacity fade is the increase in loss of secondary material

(i.e., carbon) at higher C-rates which is verified in study [121]. In the third case of this study, when C-rate

was 3C, out of the total capacity loss of 16.9% of the whole cell, 10.6% of the capacity loss was due to the

carbon electrode material alone. This increase in capacity fade at a higher discharge current for the carbon
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Figure 2.11: Impact of temperature on capacity of battery for SNL battery dataset.

material was correlated to the increase of the internal resistance [122]. Hence, one way to reduce the capacity

fade in a battery is by reducing the amount of discharge current that is fed by the battery to the load [123].

The capacity fade of the battery under high discharge current is again correlated to the increase in

internal resistance [124]. Studies [91] and [122] analyzed the deviation in the internal resistance of a battery.

They found that with the increase in discharge current, there is an increase in internal resistance, which

increases the temperature of the battery and further decreases the capacity of the battery. This effect of

change in internal resistance with the change in discharge current is further verified in [105], [125], and [126].

All the degradation mechanism is explained in the study [15], which is one of the reference paper for writing

this dissertation.

An in-depth analysis of the impact of discharge current on battery cell performance is conducted

using the dataset used in this dissertation. The aim is to understand how different discharge rates affect the

degradation behavior of the battery cells. The dataset obtained from SNL for different discharge currents

is shown in Figure 2.12. This figure shows the degradation paths of nine distinct battery cells, subjected

to three different discharge rates. The figure presents the degradation paths of four cells under a 1C-rate

discharge, two cells under a 2C-rate discharge, and three cells under a 3C-rate discharge. By observing the

degradation paths, a clear trend emerges: higher discharge currents lead to accelerated battery degradation.

The impact of discharge current on battery performance is significant. As the discharge current increases,
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the degradation of the battery becomes more pronounced. This correlation suggests that higher discharge

currents impose greater stress on the battery cells, resulting in faster degradation and reduced overall lifespan

as explained in the studies [15].

Figure 2.12: Impact of discharge current on the capacity of battery cells.

2.2.3 Charging Current

Most EVs and commercial batteries have been using the concept of fast charging [127]. Vehicle

charging time is a crucial factor in the adoption of EVs. Long charging time, usually more than 30 minutes,

strongly reduces the sales of EVs [128]. This is because it increases waiting time in the queues, which acts

as a barrier to EV adoption [129]. This is why all EV manufacturing companies are shifting towards fast or

ultra fast-charging systems for their vehicles [130]. The U.S . Department of Energy has classified charging

of electric vehicles into three levels:

• Level 1 is regular charging, which happens when the charge power is less than 5 kW,

• Level 2 is fast charging, which occurs when the charge power is between 5 kW and 50 kW, and

• Level 3 is super-fast charging, which occurs when the charge power is higher than 50 kW [131, 132].

An off-board charger is used for Level 3 charging, which means the charger is located outside the car. Because

of the high-power charging levels of Level 3 charging, carrying the requisite power electronics onboard is

unfeasible owing to space limits. To overcome this limitation and reduce the mass, a Level 3 charge usually
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conveys the DC power to the vehicle, whereas Level 1 and Level 2 charging usually have onboard electronic

converters that allow AC energy transmission [133].

Most EVs use Level 2 chargers, and Level 3 chargers are in the adoption phase. With the use

of an AC level 2 charger, the LLI, and LAM in the negative electrode were found to be the primary

aging modes in the cells in the study [134]. These fast-charging technologies can help to increase EV

adoption but can have a serious impact on the battery. High charging currents result in increased heat

generation, which can lead to elevated operating temperatures. Excessive heat can degrade the battery’s

active materials, reduce electrolyte stability, and accelerate chemical reactions contributing to degradation

processes. Elevated temperatures can also lead to thermal runaway and safety concerns in extreme cases.

Hence, there should be a better understanding of the effects of fast charging on Li-ion batteries [125, 23].

Studies [135, 136, 137, 138] investigated the effect of fast charging on Li-ion batteries and observed a more

robust capacity fade at higher charging rates. Also, fast charging at a low temperature has a negative

impact on the battery [9, 139]. Several failure modes were noted at a high charging current rate after

the postmortem analysis of the cells, like lithium plating, graphite exfoliation, jelly-roll deformation, active

materials crumbling, aluminum corrosion, and an abnormal SEI formation [140, 141]. The capacity loss is

mainly due to the lithium plating that causes irreversible loss of cyclable lithium [142]. Under high charge

current or fast charging, heat generation within the cell accelerates the side reactions [143]. Lithium plating,

ohmic heat, and increase in impedance are significant issues during fast charging that deteriorates the battery

faster [23]. The studies of X-ray diffraction analysis (XRD), transmission electron microscopy (TEM), and

scanning electron microscope (SEM) on the individual electrodes done in [144], indicate that the capacity

fade during rapid charging and discharging of the battery can be correlated to two leading causes. First,

the formation of the defects such as cation disorder and cracks in the positive electrode’s active material

LiCoO2. Second, the continuous increase in the passive film thickness on the negative electrode is due to

the reduction of the electrolyte.

Also, overcharging a battery is another issue during the operation of EVs. Paper [145] investigates

the overcharge-induced capacity fading behavior of 20Ah commercial pouch Li-ion batteries with NCM +

LMO as a positive electrode and graphite as a negative electrode. A prognostic/mechanistic model and

incremental capacity analysis were used to investigate the capacity deterioration process (ICA). This model

was used to calculate the LAM in the positive and negative electrodes and the LLI at various overcharge

phases. The analysis shows no noticeable capacity degradation until overcharged to 120% SoC. Above this

SoC, LLI occurs as a result of lithium deposition, with LAM in the LiyMn2O4 of the composite positive

electrode [146]. The thickening of the SEI film is confirmed by the increase in internal resistance. When

the battery is overcharged above 140% SoC, LAM occurs in both the positive and negative electrode. Also,
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due to the electrolyte oxidation, the battery starts to swell. When the battery was overcharged to 150% or

more SoC, the battery cell started to rupture, with all the stored energy released instantly due to an internal

short circuit, and pinholes on the separator surface was observed after dissembling the batteries.

Similar to the impact of discharge current, the charging current also plays a significant role in

the lifecycle count of the battery. Like the discharging current, a higher charging current leads to faster

degradation of the battery. To further investigate the influence of charging current, the dataset from the

University of Wisconsin-Madison is utilized. The dataset includes different drive cycle data (that will be

explained in detail in Chapter 3), which involve varying discharging and charging rates applied to the bat-

tery. This allows for a comprehensive analysis of the impact of both charging and discharging currents on

battery degradation. Figure 2.13 illustrates the degradation paths of nine distinct battery cells subjected

to different drive cycles, which can be correlated with the corresponding charging and discharging currents.

Each cell exhibits a unique degradation path, influenced by the specific charging and discharging currents

associated with the drive cycle. Notably, cells subjected to lower charging/discharging currents exhibit a

slower degradation path, while cells exposed to higher charging/discharging currents display a faster degra-

dation path. This correlation further supports the understanding that a higher charging current accelerates

battery degradation.
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Figure 2.13: Impact of charging and discharge current on the capacity of battery cells.
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2.2.4 Depth of Discharge

The DoD is the portion of electrical charge discharged or charged during a cycle with respect to

the maximum possible charge that a battery can hold. Or, in simple words, it is the percentage of battery

capacity (rated capacity) to which a battery is discharged. Generally, the withdrawal of at least 80% of

battery capacity is referred to as a deep discharge [91, 147]. A higher DoD indicates higher discharge of the

battery, accelerating the battery aging and increasing the battery life cycle cost [148]. The study [149] finds

that the deep discharging of batteries used in PHEV for bulk energy services during vehicle-to-grid (V2G)

operation led to the annual replacement of battery packs across all EV charging regimes. Nevertheless, when

compared to PHEV, charged opportunistically at home or worked, the battery pack was replaced once in 3

years. This concludes that the regular deep discharge of the battery can reduce the life span by more than

one-third. These phenomena are mainly due to the degradation of a positive electrode and growth of the

SEI layer [150].

The change in DoD in a Li-ion battery cell can be electrically linked with the change in internal

resistance. The internal resistance of the battery increases with the degree of DoD [91]. The percentage

increase in internal resistance is lowest for the battery cell that was discharged at 20% DoD, which was

found to be 112%. In contrast, the battery cell that was fully discharged (100%) had the highest percentage

increase in the internal resistance of 132%. The higher the DoD, the higher the increase in internal resistance,

which further assists in the battery’s aging mechanism, which is further verified in [151, 152, 153].

Figure 2.14 illustrates the impact of Depth of Discharge (DoD) on battery degradation using the

SNL dataset. The plot displays the degradation paths of three battery cells operated at a constant tem-

perature of 25◦C, with consistent charging and discharging rates of 0.5C and 3C, respectively. The cells

were subjected to three different DoD levels: 100%, 60%, and 20%. It can be observed that the battery cell

discharged to its full capacity (DoD = 100%) experiences the most rapid degradation, while the cell with a

DoD of 20% exhibits the least degradation. These results align with the findings reported in various research

papers, which underscores their relevance in the context of this dissertation.

In this Chapter, a comprehensive review of the factors that impact the degradation and lifecycle

count of batteries is done. These factors are crucial in understanding the behavior of batteries and predicting

their degradation paths. To ensure the accuracy and reliability of the dataset employed in this dissertation,

the degradation pattern under different factors from several studies is also compared and verified in this

Chapter. Among the various factors considered, temperature plays a significant role in battery degradation.

Fluctuations in temperature can accelerate the degradation process and reduce the overall lifecycle count.

Charging current and discharging current are additional factors that influence battery performance and

degradation. Higher currents can cause increased stress on the battery, leading to faster degradation and a
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Figure 2.14: Impact of DoD on the capacity loss of battery cells.

shorter lifecycle. DoD is another critical factor considered in this analysis. Deep discharge can lead to more

severe degradation, impacting the overall performance and lifespan of the battery. By incorporating these

factors into the degradation model (explained in detail in Chapter 3), this dissertation predicts the degra-

dation path of batteries more accurately and assesses the impact of different factors on their performance.
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Chapter 3

Analytical and Data-Driven

Degradation Models

Nomenclature

Ah Ampere-hour
K Number of time instants
Qloss Percentage of battery capacity loss,
s Power source index
T Transition matrix
de

s Estimated degradation signal of power source s
da

s Actual degradation signal of power source s
σs Error of degradation estimation
λ Degradation rate
Ps Maximum expected capacity of component s
∆s Loss of capacity
ρs Cost per unit of component s
δtrain Training dataset
δtest Testing dataset
δvalidation Validating dataset

3.1 Literature Review in Degradation Modeling

Battery safety and reliability are crucial for the operation of EVs. The fundamental restriction

of Li-ion-based EV batteries is aging since the battery goes through a complicated degradation process

throughout the operation of the vehicle. The degradation occurs over time, resulting in a lower driving
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range due to reduced capacity. The operating conditions or factors giving rise to degradation are explained

in detail in Chapter 2. Battery states, battery aging, driving behavior, and environmental conditions are

all possible, relevant elements influencing EV usage and energy consumption. The expensive ESS, which

accounts for a large portion of the entire cost of an EV, and the restrictive driving environment, which limits

the performance and acceptance of EVs, are two concerns in the battery application. As a result, minimizing

the degradation through precise modeling, extending battery life, and optimizing battery capacity are the

primary objectives for maximizing EV lifetime value. One of the most challenging tasks in modeling the

degradation trend of an EV battery is identifying the factors that contribute to it. The major factors lead-

ing to degradation are already explained, and these factors have a different impact on the battery, making

it challenging to establish a degradation model through existing methods. The diversity and number of

research literature on battery degradation give useful information that analyzes EV battery aging mecha-

nisms, impacts, and features. Several researchers studied the approaches used to simulate the degradation

mechanisms in EV batteries based on the explored factors.

In every system, components degrade over time, some degrading faster than others based on their

robustness and application. In HEV, there are several components whose life cycle count decreases once the

vehicle is in operation. However, this study is focused on the degradation of the power-generating sources

present in the HEVs. While ICE can also degrade, batteries are particularly prone to it. This study focuses

on battery degradation since HEVs with high hybridization factors (HF) are used nowadays. This means

batteries with higher capacity are used and can cost up to 30% of the price of the entire vehicle as mentioned

previously.

In automotive applications, the battery’s lifecycle is shorter compared to other components, and

it is considered unreliable to operate after it reaches 80% of its initial capacity. The initial cost of a

battery is high, so it is necessary to have a longer life for the operation of the vehicle to be economically

viable. A battery’s lifetime depends on its operation and degradation rate, which is a complex mechanism.

Battery degradation is a significant limiting factor in battery lifetime; thus, it is essential to investigate this

mechanism thoroughly and reduce it to extend the battery’s lifetime.

Several factors stimulate battery degradation, and predicting the degradation path of a battery is a

demanding task due to the complex nature of the process. However, it is crucial to determine the degradation

path to ensure reliable operation and timely maintenance. Identifying the factors that accelerate the aging

process can help to minimize the degradation process. The most common factors that affect battery capacity

and give rise to degradation are temperature, discharging current, charging current, and DoD [15]. These

parameters have impacts depending on the mode of operation of the battery or vehicle. When the battery

or vehicle is in operation, all these factors have different effects on the battery and result in degradation.
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The battery in EVs is subjected to various stresses due to these extreme factors.

The battery’s health in EVs must be closely monitored and predicted in real time for reliable

operation and timely maintenance of the vehicle [154]. In recent years, there has been significant improvement

in estimating the life of a battery using different degradation models. They can be classified into different

categories where the literature [155, 156, 157] groups the methods into three main categories

1. Model-based approach,

2. Data-driven approach, and

3. Hybrid approach.

The model-based approaches are based on physics-based modeling of degradation behavior, in

which an empirical model is built to represent the system’s diminishing path based on the real diffusion

phenomenon. This model demonstrates the degrading behavior of a battery using a combination of algebraic

and differential equations or an empirical equation. Since the deterioration of the battery is nonlinear,

predicting long-term performance can be rugged [158]. The main drawback of this model is its lack of

flexibility and parametrization difficulty. It can easily lead to poor model design due to a lack of prior

understanding of the system. To construct a robust model, the designer must have a proper understanding

of the numerous aspects of the system, including mechanical, electrical, electronic, chemical, and other

physical characteristics.

Data-driven approaches (commonly known as black-box models) are based on empirical observations

with little or no understanding of the underlying processes. This method depends heavily on evaluating data

from the process; therefore, designers do not need to gain a thorough, domain-specific grasp of the background

process to use it. The data-driven method uses statistical theories or machine learning techniques to derive a

model from measured data [159]. This method creates a mathematical model from data gathered in the lab

through large-scale testing under various aging circumstances, rather than utilizing a specific physical-based

model, and forecasts the battery’s deterioration trajectory. It has lately become the most popular method

since it is more adaptable and practical and removes the need for sophisticated physics-based models. These

models are self-adaptive, model-free, and have the ability to learn from previous data on their own. Data-

driven approaches include techniques such as artificial intelligence, statistical analysis, Wiener process, and

signal processing [59].

The data-driven approaches rely heavily on data; therefore, the model’s accuracy and effectiveness

are mainly determined by the data quality. Unbalanced data, for example, might lead to decision-making

bias (also known as overfitting and underfitting) in a model. In essence, if a large amount of relevant data

is readily accessible, a data-driven strategy would be beneficial. However, in the absence of this data, the

application of a data-driven strategy would be limited. Recently the concept of featured-based data-driven
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Figure 3.1: Methods for modeling battery degradation.

models has been widespread. In this technique, certain features are retrieved from the voltage and current

during the preprocessing stage using knowledge about the behavior of the cell’s physical properties. Then,

these attributes are used as a input to the algorithm used in the process. This method has the advantage

of producing less complex inputs by preprocessing the raw data that is supplied for the input. Studies

[160, 161, 162] have used this concept of feature-based data-driven models to predict the RUL of the battery.

Also, the study [163] explains the concept of generating synthetic data that are equivalent to the actual

battery data for the data-driven approach. The generated datasets were compared to the battery’s actual

behavior, which yielded identical results. These large synthetic datasets can be used to train algorithms for

data-driven approaches and diagnoses. As a result, these datasets can help evaluate various algorithms and

enhance these techniques.

Similarly, the hybrid method incorporates the strengths of both model-based and data-driven mod-

els. This method is useful when there is limited or biased data, as the data-driven method can lead to

imprecise forecasts or wholly misleading outcomes. In battery life estimation, hybrid techniques that com-

bine model-based and data-driven methods to produce accurate forecasts have become a hotspot of study.

The main advantage of this method is that it can extrapolate beyond the training data more precisely than

the data-driven method. The use of this approach in studies [164, 165, 166] demonstrated promising results.

The only issue to adopt this approach is lack of openly available field data, which should be validated with

the results obtained from lab data [167]. All these three methods are summarized in Figure 3.1.

As discussed in Section 2.2, various factors give rise to the degradation of the battery. Each factor

has a different impact on the aging mechanism. The cycle life experiment conducted under one operating
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condition for a battery may not be valid for other operating conditions, making it difficult to predict the

RUL of the battery. To conduct experiments at continuously varying operating conditions would cost years

of testing, causing such experiments to become infeasible. The development of precise battery performance

and life prediction models would be hampered by the absence of comprehensive experimental data. However,

despite the lack of degradation data, several types of studies have been conducted on accurately forecasting

the cycle life of a battery. A dynamic battery degradation capacity model based on a semi-empirical equation

has been used in several studies like [71, 168, 169, 170]. In this model, the effect of four parameters are

considered, which are time, temperature, DOD, and discharge current rate. This semi-empirical model

is based on the original formula of the Arrhenius degradation model shown in (3.1). Here, Qloss is the

percentage of battery capacity loss, A is the pre-exponential factor, Ea is the activation energy, 78.06 (J), R

is the gas constant, 8.314 J/mol/K, Tbat is the absolute temperature of battery(K), Ah is the Ah-throughput,

z is the time factor, CRate is the battery discharge rate, B is the compensation factor of CRate

Qloss = Ae
−
(

Ea+B.CRAT E
RTbat

)
(Ah)z (3.1)

According to the cumulative damage theory, the capacity fade model of the battery illustrated by

the aforementioned equation can be utilized to predict battery degradation [171]. The dynamic degradation

model’s discrete formula is given by (3.2) as done in [172].

Qloss,p+1 − Qloss,p = ∆AhzA( 1
z )e

(
− Ea+B∗CRAT E

RTbat

)
(Qloss,p)

z−1
z (3.2)

Here, Qloss,p and Qloss,p+1 are the accumulated battery capacity loss at instantaneous time tp and

tp+1, and ∆Ah is the Ah-throughput from tp and tp+1, which can be found by using (3.3)

∆Ah = 1
3600

∫ tp+1

tp

|Ibat| dt (3.3)

The modeling technique described above focuses solely on temperature and discharging current as

factors influencing battery capacity loss. However, it is important to acknowledge that these factors are

not the sole contributors to capacity loss in batteries used in EVs, as discussed in Chapter 2 and study

[15]. Other significant factors, namely charging current and DoD, as highlighted in [15], should also be

incorporated into the modeling technique to enhance prediction accuracy.

Therefore, this dissertation employs analytical and data-driven approaches. The analytical method

employs a Markov-chain-based model, while the data-driven method utilizes three prediction techniques with

NNs to model the degradation path and predict battery capacity loss. This is achieved by implementing the

following models:
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• Markov Chain Model

• Neural Network Models

– Feedforward Neural Network (FNN)

– Recurrent Neural Network (RNN)

– Deep Neural Network (DNN)

In data-driven approaches, such as the ones mentioned above, training data is essential for develop-

ing a predictive model that can accurately estimate future battery degradation. However, predicting battery

degradation in EVs poses a significant challenge due to the scarcity of available battery data. While insti-

tutions like NASA Ames, the University of Maryland, Stanford University, and the Hawaii Natural Energy

Institute provide lab conducted battery data, access to real-world battery data used in EVs is limited. This

restricted access to actual EV battery data has been a persistent issue for researchers.

To address this limitation, the data utilized in this dissertation were obtained from two distinct lab-

oratories. By employing datasets from different laboratory settings, the aim was to validate the effectiveness

of the proposed methodology irrespective of whether the data originated from a controlled lab environment

or actual EVs. This approach ensures that the proposed method remains robust and applicable in vari-

ous scenarios, providing insights into battery degradation prediction that can be beneficial across different

contexts.

3.2 Battery Datasets

This dissertation utilizes two distinct battery datasets obtained from different laboratories, namely

• Sandia National Laboratory (SNL)

• University of Wisconsin-Madison

The Sandia National Laboratory conducted extensive testing on three chemistries of 18650 form

cells: LFP from A123 Systems (APR18650M1A, 1.1 Ah), NCA from Panasonic (NCR18650B, 3.2 Ah), and

NMC from LG Chem (18650HG2, 3 Ah) [173]. This dataset contains a total of 86 cells, comprising 30 LFP

cells, 24 NCA cells, and 32 NMC cells. The resulting dataset from this research is publicly accessible on

the battery archive website [174]. For the purpose of this dissertation, 30 LFP cells of 1.1 Ah from this

laboratory are utilized for training the Markov chain model, which is elaborated on in detail in Section 3.3.

During the testing phase, the cells underwent cycling at various temperatures (15◦C, 25◦C, and

35◦C) with different depths of discharge (DoDs) ranging from 0% to 100%, 20% to 80%, and 40% to 60%,

respectively. Various discharge currents (0.5C, 1C, 2C, and 3C) were also applied. For each combination of
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temperature, DoD, and discharge current (12 groups), at least two cells from each chemistry were cycled. All

cells were charged at a fixed rate of 0.5C. The cycling process continued until the cells reached their end-of-

life (80% state of health). The dataset encompasses in-cycle measurements of current, voltage, temperature,

capacity (Ah), and energy (Wh). Additionally, it provides per-cycle measurements of the charged and

discharged capacity within the designated DoD range, along with other relevant summary statistics.

Similarly, the University of Wisconsin-Madison’s battery research group released a battery testing

dataset encompassing four commonly used driving cycles: US06, HWFET, UDDS, and LA92. This dataset

is available on the Mendeley data website [175]. It consists of data collected from different 2.9 Ah NCA

Panasonic 18650PF cells. The cell underwent cycling based on the aforementioned driving cycles, along with

additional cycles labeled as Cycle 1, Cycle 2, Cycle 3, Cycle 4, and NN. These nine cycles systematically

covered a range of temperatures ( 25◦C, 10◦C, 0◦C, −10◦C, and −20◦C, in that order). The accompanying

"ReadMe" file provided with the dataset provides a comprehensive description of the experimental procedures.

The dataset includes characterization data obtained from Hybrid Power Pulse Characterization (HPPC)

and electrochemical impedance spectroscopy (EIS) tests. Additionally, it contains in-cycle measurements

captured during the driving cycles, including voltage, current, capacity, energy, and temperature. The data

is available in both ’.mat’ and ’.csv’ file formats, and it follows a well-structured organization based on

temperature, test type, and drive cycle.

This dataset is utilized to train the NNs mentioned earlier in this dissertation. The voltage, current,

capacity, and temperature data are used as inputs to the NNs, while the capacity serves as the output from

the NNs.

3.3 Markov Chain based Degradation Model

The binary model is widely used to represent a system as either a working or failing state because

of its simplicity and computational efficiency. However, the multistate model is often used instead of a

binary model to provide a more accurate representation of the system. This increases the granularity of

the binary model. A model with four states is chosen as a compromise between precision and complexity

because increasing the number of states can lead to a more complex and computationally demanding model.

In various studies, components have been represented using a multi-state model with four states to

represent the system accurately. For instance, a component has been represented using four states as perfect,

useful, pseudo-fault, and fault in [176]. Similarly, transformers have been described using four states, namely

good, fair, poor, and very poor, in study [177]. In [178], drivetrain components of wind turbines have been

represented by normal working, degraded, critical, and functional failure states. Moreover, in [48], different

power-generating sources in microgrids have been defined as four states denoted by the number 1,2,3,4. In
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line with these studies, this dissertation also follows a multistate model where four states are defined based

on a component’s degradation signal de
s(tk). Where, de

s(tk) represents the degradation signal of source s at

time tk which is the sum of actual degradation da
s(tk) and the error of the estimation σs(tk) represented as

follow:

de
s(tk) = da

s(tk) + σs(tk) (3.4)

The assumptions for the degradation are formally stated as follows:

Assumption

1. There is no improvement in the degradation of a component between two consecutive maintenance or

repair times.

2. The maximum of the actual degradation da
s(tk) is 1.

3. Between two consecutive maintenance or repair times, the actual degradation da
s(tk) exhibits a mono-

tonically decreasing behavior.

The degradation signals in study [48] were converted into 4 states by dividing the range of signals

into intervals and assigning each interval a specific state. Similar approach is followed in this dissertation

and adopts 4 states, namely perfect, good, degraded, and unreliable, each represented by a maximum

capacity. The conversion of degradation signals into states is defined in the following points. Additionally,

for batteries used in automotive applications, they are typically used from 100% to 80%. Therefore, this

dissertation specifically defines four states based on the remaining capacity of the battery (ρx = Qrem), as

follows:

• State 1 (Perfect): In this state, the hard constraint for this state is da
s(tk) ≥ ρ1. For the battery,

ρ1 = 90%.

• State 2 (Good): In this state, the hard constraint for this state is ρ1 ≥ da
s(tk) ≥ ρ2. For the battery,

ρ1 = 90% and ρ2 = 85%.

• State 3 (Degraded): In this state, the hard constraint for this state is ρ2 ≥ da
s(tk) ≥ ρ3. For the

battery, ρ2 = 85% and ρ3 = 80%.

• State 4 (Unreliable): In this state, the hard constraint for this state is ρ3 ≥ da
s(tk). For the battery,

ρ3 = 80%. When the battery reaches this state, the operation of battery in EV application is considered

unreliable and needs to be replaced.

Based on the above observations, a degradation model that is dependent on load is utilized. The

model is designed using a Markov chain and comprises four states to predict the degradation process of a
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component. Markov chain is a valuable algorithm for anticipating future outcomes. One merit of leveraging

these tools lies in their simplistic design, making them easily understandable to multiple user levels, even

those with no background in statistical methods. Apart from their approachability feature, these models

boast flexibility regarding modeling various nuances. They can integrate diverse inputs such as historical

data, which enhance precision towards future predictions significantly. Markov chain models also possess

commendable computational efficiency, acting as a considerable strength concerning substantial data systems

management requirements- particularly in real-time applications calling for rapid and precise prognoses.

Consequently, this technique’s wide-ranging adaptability, teamed with speed and ease of use, secure its

applicability across multiple applications [179].

Modeling the degradation process of a component can be a challenging task due to the influence

of future operating conditions in addition to the current state of the component. To address this issue,

this study utilizes a degradation model based on Markov chain theory. The Markov chain model takes into

account the future operating conditions, allowing for a more accurate representation of the degradation

process of the component.

Let xs,i denote the probability that the component s is at state i, i ∈ {1, 2, 3, 4}, where xs is the

vector of all xs,i, i.e., xs = [xs,1, xs,2, xs,3, xs,4]. Therefore, for the Markov model depicted in Figure 3.2,

the transition from state xs at time tk to xs at time tk+1 is mathematically represented by the following

formula:

xs(tk+1) = xs(tk)T (3.5)

where T is the transition matrix

T =


π11 π12 π13 π14

π21 π22 π23 π24

π31 π32 π33 π34

π41 π42 π43 π44

 (3.6)

Figure 3.2: Markov’s chain degradation prediction model.

The transition matrix in the above model is now derived. It is typically assumed that the sojourn
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time in a state is the exponential distribution [180]. Denote λij as the degradation rate from state i to state

j, with i ̸= j. The following equation can be obtained by looking at the inflow and outflow of state i in

Figure 3.2 (a):

dxi(t)
dt

= −xi(t)
4∑

j=i+1

λij +
i−1∑
j=1

xj(t)λji (3.7)

In (3.7), the term xi(t)
∑4

j=i+1 λij denotes the intensity of transitioning from state i to the other

states. Similarly, the term
∑i−1

j=1 xj(t)λji denotes the intensity of transitioning to state i from the other

states. Solving (3.7) and discretizing the solutions with sampling time ∆t, following equations can be

obtained [181]

π11 = e−(λ14+λ13+λ12)∆t (3.8a)

π12 = λ12

λ14 + λ13 + λ12
(1 − e−(λ14+λ13+λ12)∆t) (3.8b)

π13 = λ13

λ14 + λ13 + λ12
(1 − e−(λ14+λ13+λ1,2)∆t) (3.8c)

π14 = λ1,4

λ1,4 + λ13 + λ12
(1 − e−(λ14+λ13+λ12)∆t) (3.8d)

π21 = 0 (3.8e)

π22 = e−(λ23+λ24)∆t (3.8f)

π23 = λ23

λ23 + λ24
(1 − e−(λ23+λ24)∆t) (3.8g)

π24 = λ24

λ23 + λ24
(1 − e−(λ23+λ24)∆t) (3.8h)

π31 = 0 (3.8i)

π32 = 0 (3.8j)

π33 = e−λ34∆t (3.8k)

π34 = 1 − e−λ34∆t (3.8l)

π41 = 0 (3.8m)

π42 = 0 (3.8n)

π43 = 0 (3.8o)

π44 = 1 (3.8p)

This study assumes that a component’s degradation rate remains constant when the load is at or

below P norm. However, the degradation rate increases exponentially once the load surpasses P norm. This
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assumption is based on the fact that the operating temperature of the component starts to rise exponentially

as the load increases from this point, resulting in an exponential increase in the degradation rate [48, 182,

183]. It should be noted that the control system includes an EM and thus limits P to be less than its

maximum capacity P , which is one of the optimization constraints. λij represents the degradation rate

when the component operates in the range of P < Pnorm, while λij represents the degradation rate when

the component operates at the maximum capacity P . The degradation rate when the component operates

between Pnorm and P is calculated as follows.

λij = ηeζP (3.9)

where,

ζ =
ln(λij/λij)
P norm − P

(3.10a)

η =
λij

eζP norm . (3.10b)

3.4 Neural Network based Degradation Model

Artificial neural networks (ANNs) have become a popular tool for modeling complex systems and

making predictions based on data. This algorithm is designed to mathematically mimic the neural activity

of the brain through a network of interconnected neurons. The NN’s internal structure consists of a large

number of these neurons, as shown by circles in Figure 3.3, which shows a simplified NN.

NNs are created to learn from data and then make predictions based on that learning. Neurons are

the center of a NN, the fundamental computing units that process input data and generate output. Weighted

connections link neurons to one another, creating a network of interconnected nodes. Each neuron in the

network gets information from one or more other neurons, processes that information, and then transmits

the outcome to one or more other neurons [184, 185].

To predict the degradation paths of the component, a degradation model based on NN is con-

structed. The degradation of the component is impacted by its working conditions. For example, the

degradation path of the battery is impacted by the working temperature, charging and discharging cycles,

and depth of discharge [15]. In the previous Section 3.3, Markov chain-based model is used to predict the

degradation path. However, there are several drawbacks of Markov Chain models, which are highlighted by

the following points:

• Assumption of independence: Markov chain models assume that the future state is only deter-
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mined by the present state and ignores other factors. This can be a limitation in cases where there are

other factors that influence the future state, such as external events or changes in the environment.

• Static data-generating system: Markov chain models assume that the data-generating system is

static, meaning that the relationships between the variables do not change over time. This can be a

limitation in cases where the relationships between the variables are dynamic and change over time

which can make the predictions less reliable.

• Overfitting: Markov chain models have a tendency to overfit data, meaning that they learn the

patterns in the training data too well and are not able to generalize to new data. This can lead to

incorrect predictions when the model is used to make predictions on new data.

• Difficulty modeling complex relationships: Markov chain models have difficulty modeling com-

plex non-linear relationships. This can be a limitation in cases where the relationships between the

variables are complex and non-linear.

• Computational complexity: The need to compute the transition matrix can slow down the com-

putational process. This can be a limitation in cases where the model is being used to make real-time

predictions.

In addition to these limitations, Markov chain models can also be sensitive to the choice of parameters and

the quality of the data. As a result, it is important to consider Markov chain models’ limitations before

using them for future prediction.

There has been a significant enhancement in model-free/data-driven algorithms, like NNs in re-

cent years. These algorithms offer a range of benefits, including their ability to model complex non-linear

relationships between inputs and outputs, resulting in their suitability for a variety of applications. Further-

more, they have the capability to generalize from training data to new, unseen data, making them practical

for real-world scenarios. Additionally, NNs can automatically extract relevant features from input data, re-

ducing the requirement for manual feature engineering. They are also well-suited for big data applications,

as they can handle large amounts of data. Finally, they are able to learn from unstructured data, such

as images, audio, and text, broadening the range of problems they can be used to solve [186]. Hence, in

this section, instead of Markov’s chain model, a more advanced learning algorithm, i.e., a NN (data-driven

method), is used to predict the degradation path of the battery.

3.4.1 Feedforward Neural Network (FNN)

This section uses a three-layer feedforward NN architecture consisting of an input layer, a hidden

layer, and an output layer to predict battery capacity loss, as shown in Figure 3.3. Before feeding the data to
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the model, they are pre-processed, and the necessary features, voltage, current, temperature, and capacity,

are extracted. The NN’s input layer accepts three inputs, namely current, voltage, and temperature, while

the output layer predicts the capacity of the battery. The number of hidden layers is one, and the number

of neurons is 32. The reason for choosing 32 hidden neurons is to compare the results with LSTM and DNN

networks where they also use 32 number of neurons in hidden layers. The following sets of data denote the

separation of data into training, testing, and validating data

Figure 3.3: A simple neural network with three inputs and one output .

δtrain = [(x1, Y1), (x2, Y2), (x3, Y3)...............(xn, Yn)] (3.11)

δtest = [(xn+1, Yn+1), (xn+2, Yn+2), (xn+3, Yn+3)...............(xs, Ys)] (3.12)

δvalidation = [(xs+1, Ys+1), (xs+2, Ys+2), (xs+3, Ys+3)...............(xt, Yt)] (3.13)

where, x and Y represent the data extracted from the raw data. x is the input to the NN and has

three variables voltage, current, and temperature as xi = (Vi, ii, Ti). Similarly, Y is the output from the

network, which represents the capacity of the battery. The δtrain is used to train the NN, whereas δtest and

δvalidation are used to test and validate the model developed using train data sets.
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3.4.2 Recurrent Neural Network (RNN)

A recurrent layer consists of specific neurons that have recurrent connections, allowing them to

retain information from previous time steps, usually just one. This type of computational cell is highly

advantageous when there is a need to capture the temporal dynamics of a sequence of inputs [187]. In many

cases, the output value is influenced by the historical context of the corresponding inputs. However, models

like MLPs, as discussed earlier, are stateless, meaning their output is solely determined by the current input.

To address this limitation, recurrent Neural Networks (RNNs) offer an internal memory mechanism that can

capture both short-term and long-term dependencies, enabling them to retain and utilize information from

previous time steps [188].

LSTM, which stands for Long Short-Term Memory, is a specific type of RNN that addresses the

challenges posed by the vanishing gradient problem and the need to capture long-term dependencies in

sequential data. LSTM has demonstrated its effectiveness in various applications, such as time series pre-

diction, speech recognition, and natural language processing [189]The key aspect that sets LSTM apart is

its utilization of memory cells, which enable the network to retain information across long sequences. These

memory cells are updated at each time step, allowing them to store and preserve information from previous

time steps. By incorporating this memory mechanism, LSTM can learn and capture long-term dependencies

that would otherwise be challenging for traditional RNNs.

The LSTM architecture includes various components that regulate the flow of information. The

input gate controls the intake of new information into the memory cell, while the forget gate decides which

parts of the previous memory cell state should be discarded. The memory cell stores information from

previous time steps and is updated based on the input and forget gates. The output gate determines the

final output of the LSTM cell by combining the current input, previous hidden state, and updated memory

cell state. These components work together to manage the flow and storage of information within the LSTM

model.

The detailed explanation and derivation of the equation for each gate and cell are obtained from

[190]. The LSTM NN model is constructed and trained using the PyTorch library with a specific configuration

in Python and deployed in Raspberry Pi 4 Model B, which is shown in Figure 3.4. The first layer added to

the model is an LSTM layer. LSTM is a type of RNN layer that is designed to handle sequential data and

capture long-term dependencies. In this case, the LSTM layer has 32 units (or nodes), and the input shape

is specified as (1, 3), indicating that the input data has a sequence length of 1 and three features, which

are current, voltage, and temperature, respectively. The next layer added is a dense layer with a single

unit. This layer is a fully connected layer, which means that each neuron in this layer is connected to every

neuron in the previous layer. The dense layer is commonly used for the final output layer in regression tasks.
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Figure 3.4: Neural network considered for LSTM.

Here, the goal is to predict the capacity loss of the battery. The model is compiled using the mean squared

error (MSE) as the loss function and the Adam optimizer. The MSE loss function measures the average

squared difference between predicted and true output values. During training, the model uses the Adam

optimizer, which is a popular optimization algorithm known for its effectiveness in updating the model’s

parameters based on the calculated gradients. The Adam optimizer adjusts the parameters of the LSTM

model to minimize the defined loss function. The forward function, which is responsible for executing the

forward pass of the model, is used in the code. It takes the input data, passes it through the LSTM layer to

obtain the hidden state, and then applies the fully connected layer to generate the model output.

The model is trained and developed using the PyTorch library, which takes the training data and

corresponding target values as defined in (3.11). The training is performed for 100 epochs, where the entire

training dataset is passed through the network 100 times. During training, the model adjusts its internal

parameters to minimize the defined loss function and improve its predictive performance.

3.4.3 Deep Neural Network (DNN)

Deep Neural Networks (DNNs) are a type of ANN that have multiple hidden layers between the

input and output layers. The number of hidden layers is what makes a DNN "deep." The more hidden layers
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a DNN has, the more complex patterns and representations it can learn from data. DNNs have gained

significant popularity in recent years and have been deployed successfully in various domains, including

computer vision, natural language processing, speech recognition, and many other machine-learning tasks.

The reasons why DNNs have been so successful are that they can learn complex patterns and representations

from data, they can be trained on large amounts of data, and also they are able to generalize to new data

[191].

Figure 3.5: Neural Network model considered for DNN.

In this dissertation, a DNN for the degradation prediction is created using Python and run in a

Raspberry Pi 4 Model B. The network diagram is shown in Figure 3.5. The Sequential function is utilized

to create a sequential model, ensuring that layers are sequentially stacked. The model’s first dense layer

consists of 32 neurons. The input data contains three features, namely voltage, current, and temperature,

as mentioned earlier for the two cases. The activation function applied in this layer is the sigmoid function,

introducing non-linearity and enhancing the model’s capacity to learn complex relationships within the data.

A second dense layer with 16 neurons is used model. The Rectified Linear Unit (ReLU) activation function

is employed in this layer. ReLU is commonly used in hidden layers as it enables the model to learn intricate

non-linear relationships, contributing to enhanced predictive performance. Finally, the output comprises a

single neuron, as the regression task aims to predict the capacity loss of the battery. No activation function

is specified for the output layer, ensuring that it produces raw output values, directly representing the

predicted continuous output.

The MSE is chosen as the loss function, which measures the average squared difference between the

predicted output from the model and the actual output values obtained from the lab. The Adam optimizer
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is employed, which adapts the learning rate during training to update the model’s weights more efficiently,

as explained earlier so that it would be easy to compare the prediction results among these three techniques.

The model for DNN is trained and created using the training dataset and corresponding target

values as given by (3.11). The training process iterates over the entire dataset 100 times. During training,

the model’s parameters, including weights and biases, are adjusted using backpropagation and gradient

descent. The goal is to minimize the defined loss function (i.e., MSE), thereby improving the model’s ability

to predict continuous outputs accurately.

There are different numerical algorithms that can be employed to optimize θ , including Levenberg-

Marquardt (LM), Adaptive Moment Estimation (Adam), Adagrad, Broyden-Fletcher-Goldfarb-Shanno (BFGS)

and Stochastic Gradient Descent (SGD) [186]. Here, Adam optimizer algorithm is used in all of these three

networks mentioned above. Adam is an optimization algorithm that builds upon stochastic gradient descent

(SGD) to efficiently handle non-convex problems. It offers faster convergence and requires fewer computa-

tional resources than other optimization methods. Particularly, Adam excels in scenarios with large datasets,

as it maintains more accurate gradients over multiple iterations of learning. By integrating the benefits of

two other stochastic gradient techniques, namely Adaptive Gradients and Root Mean Square Propagation,

Adam presents a novel learning approach that effectively optimizes various types of NNs.

Now, the main objective is to minimize the estimation error J(θ) and the difference between the

actual capacity and the estimated capacity from the NN denoted by f(xi, θ)

J(θ) = 1
2

n∑
i=1

(f(xi, θ) − Yi)2 (3.14)

Now, Adam algorithm is used for efficient stochastic optimization, which uses following equations

to update the parameter θ.

mt = β1 ∗ mt−1 + (1 − β1) ∗ gt (3.15a)

θt := θt−1 − α.mt (3.15b)

vt = β2 ∗ vt−1 + (1 − beta2) ∗ g2
t (3.15c)

m̂t = mt

(1 − βt
1) (3.15d)

v̂t = vt

(1 − βt
2) (3.15e)

θt = θt−1 − α ∗ m̂t√
(v̂t + ϵ)

(3.15f)

where, gt is the gradient obtained by the derivation of the objective function. mt is the moving
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average of the gradients which is used to update the parameter θ. vt is the moving average of the squared

gradients m̂t is the bias-corrected moving average of the gradients, v̂t is the bias-corrected moving average

of the squared gradients, wt is the weight at iteration t, α is the learning rate, and ϵ is a small constant to

prevent division by zero. The term β (β1 and β2) are the decay rate of the average of the gradients, which

controls the moving average and its value is between [0,1) [192]. The main objective here is not to develop

new learning algorithms for the NN, but rather to utilize existing algorithms to determine the capacity loss.

To achieve this, accurate data is collected to serve as the input and output of the network. The details

about the NNs and optimizer are taken from [192, 193], which can be referred to for further details.
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Chapter 4

Prognostic-based Control

Framework for Degradation

Abatement in HEV

Nomenclature

CHIL Controller-Hardware-In-the-Loop
DF Degradation forecasting
EM Energy management
PBCF Prognostic-based control framework
cF Cost of fuel
fs(Ps) Objective function based on fuel cost for EM
fd

s (Ps) Degradation cost sent by DF layer

This chapter introduces a framework for degradation forecasting and abatement. The primary focus

of this section is to provide a detailed discussion of the proposed strategy and highlight its key objectives,

which revolve around minimizing the total degradation cost. The HEV model considered in this dissertation

is explained first to establish a foundation for the framework. Then, a critical analysis of the drawbacks

and limitations of the traditional control strategy is done. By highlighting these shortcomings, an improved

strategy is proposed to address the challenges effectively. A detailed explanation is provided for the proposed

strategy, which uses two distinct methods for predicting degradation.

62



4.1 Electrical Model of Hybrid Electric Vehicle

Hybrid electric vehicles (HEVs) are becoming increasingly popular as they offer a more sustainable

solution to transportation. HEVs use multiple energy sources to provide propulsion power, with at least one

of them delivering electrical energy to drive an electric motor. HEVs can be classified into different types

depending on the sources of energy and the architecture used to deliver the power. The most common type

of HEV uses an internal combustion engine (ICE) and a battery as a source of power to meet the vehicle’s

power demands. Depending on how ICE and electric motor contribute to a vehicle’s transmission, HEVs

can be classified into different architectures, such as series hybrid, parallel hybrid, series-parallel hybrid, and

complex hybrid [194].

This dissertation considers a series hybrid architecture due to its simplicity and flexibility in control.

In a series HEV, the ICE is not connected directly to the drivetrain. Instead, its output is converted into

electricity via a generator. The electricity generated is then used to either charge a battery or power an

electric motor that drives the vehicle’s wheels. This configuration allows for greater control over the power

delivered to each wheel, which simplifies traction control [195, 196]. Figure 4.1 shows a configuration of a

series HEV, which includes an engine and a battery as power-generating sources. The use of power electronics

technology has greatly improved the efficiency and reliability of HEVs. The series hybrid architecture offers

several benefits, including improved fuel efficiency, reduced emissions, and greater control over the power

delivered to each wheel. Additionally, the lack of direct connection between the ICE and the drivetrain

allows for greater flexibility in control and simplifies the traction control [185].

Figure 4.1: Series HEV powertrain configuration considered in this dissertation.

A brief discussion of the electrical model is presented here. The model houses a 600 VDC bus

powered by an ICE and an ESS. As can be seen in the figure, energy sources and loads are decoupled from
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the bus by the power electronics converter interface. The development of power electronics devices has

played an important role in the development of electrified vehicles [197, 198]. This design is economically

feasible because of recent advancements in power electronics and the reduction in power electronic device

costs [199, 200, 201]. Because of the decoupling, the implementation of EM is eased as the issues of power

split in HEVs are relaxed. In particular, this design allows various constraints in EM due to the dynamics

of propulsion loads and the ICE to be relaxed. This design also contains a V2X outlet, which allows the

vehicle-to-grid (V2G) and the vehicle-to-vehicle (V2V) mode [202].

The series HEV model considered in this project is developed based on the power flow equation of

the vehicle and deployed in MATLAB/Simulink in Chapters 5 and the digital real-time simulator (DRTS)

Typhoon HIL 606 for real-time simulation in Chapters 6, respectively. No vehicle dynamics are considered

to ease the complexity of the vehicle. The vehicle is driven by predefined drive cycles. All the parameters

of the HEV needed to find the propulsion power using Ansys Motor-CAD for the drive cycles are used from

study [203]. The battery’s state of charge (SoC) is obtained mathematically based on the amount of power

it is supplying to the vehicle as allocated by the EM.

ibat = Pbat

Vdc
(4.1a)

˙SoCbat =

− 1
ηcoul

ibat(t)
Qnorm

if ibat(tk) < 0

−ηcoul
ibat(t)
Qnorm

if ibat(tk) > 0
(4.1b)

where Pbat is the power allocated by the EM to be supplied by the battery, Vdc is the DC link

voltage, which is assumed to be constant to 600V , ηcoul is the Coulombic efficiency or charge efficiency,

which accounts for charge losses and depends on current operating conditions [204], and Qnorm is the

nominal capacity of the battery.

The initial SoC of the battery is considered to be 80% and the SoC is varied between predefined

boundaries of lower and upper limits of 40% and 80% for the efficient operation of the battery as shown by

4.2.

SoCbat ≤ SoCbat ≤ SoCbat (4.2)

4.2 Energy Management

The series HEV explained above consists of an ICE and an ESS i.e., a battery supplying the power

demanded by the vehicle for its operation. Here, due to the presence of multiple power-generating sources
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in the vehicle, it demands EM system. The objective of the EM is to distribute the power demanded by

the vehicles among ICE and other ESSs by reducing the overall fuel consumption [30]. Recently, several

research has been done to improve the optimization function of the EM [205, 206]. EM techniques can be

broadly classified into four main categories, namely, predictive control method, learning method, heuristic

method, and globally optimum approach [31]. Utilizing globally optimal methods can lead to minimum fuel

consumption when provided with complete information regarding future power demand [32, 33]. Among

different algorithms, dynamic programming (DP) and Pontryagin’s minimum principle (PMP) are the most

commonly used algorithms [30, 34, 35]. The primary limitations of DP implementation are the curse of

dimensionality and the considerable computing overhead required. Although several DP approximation

techniques can alleviate the computational burden, they are still not currently suitable for real-time EM

problem-solving [6]. And, for PMP, the iterative nature of the two-point boundary value problem (TPBVP)

arising from it leads to longer computation times [36]. The non-convex nature of the optimization problem

makes achieving global optimality in distributed energy management a challenging task in current research.

A dual-objective approach for distributed energy management is proposed in [207]. The approach involves

two distinct steps. In the initial phase, several requirements of the EM optimization problem are relaxed

to employ a method that converges to global optimality. The findings of the first stage are then utilized

to modify the constraints of the overall optimization problem. The utilization of EMs in HEVs is common

due to their ability to save fuel [33]. However, it is important to note that various powertrain configurations

may require different optimization formulations for EM, resulting in different strategies. In the case of a

series HEV shown in Figure 4.1 (explained in detail in Section 4.1), the optimization of EM can be generally

presented as follows where an optimization function is used whose objective is to reduce the fuel cost.

min
∑
s∈S

fs

(
Ps(tk)

)
(4.3a)

Ps(tk) ∈ P (4.3b)

xs(tk) ∈ X (4.3c)

where tk is the time instant in the discrete domain, S is the set of indices of energy sources, and

Ps(tk) is power generated by source s at tk, xk(tk) is the set of states of system s, and P and X are

correspondingly the constraints set of Ps(tk) and xs(tk). For the sake of presentation, tk is omitted. Besides

these there are several constraints which should be considered and is explained in detail in this section.

The optimization problem used as the EM is a constrained optimization, where different constraints

are considered for the EM. The constraints include the power limits of the vehicle’s sources, the total load
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demanded, and the state of charge (SoC) of the battery. To solve the optimization problem, SQP (Sequential

Quadratic Programming) algorithm is used. SQP is an iterative method designed for solving nonlinear

programming problems with constraints. It aims to find the minimum or maximum of an objective function

while adhering to the specified constraints. The SQP algorithm follows a sequential approach, where it

approximates the original constrained optimization problem using a sequence of quadratic subproblems.

During each iteration, it solves a quadratic subproblem that serves as an approximation to the original

problem. The solution obtained from the subproblem is then used to update the current solution. The main

steps of the SQP algorithm can be summarized as follows:

• Initialization: Begin with an initial feasible solution and set the iteration counter to zero.

• Quadratic Programming: Solve a quadratic programming subproblem, which is derived by linearizing

the objective function and constraints around the current solution and constructing a quadratic model.

• Update: Update the current solution using the solution obtained from the quadratic subproblem.

This update step determines both the direction and magnitude of the adjustment made to the current

solution.

• Convergence Check: Examine convergence criteria to determine whether the algorithm should ter-

minate. These criteria often involve assessing the changes in the objective function, constraints, and

other stopping conditions.

• Iteration: If the convergence criteria are not met, increase the iteration counter and repeat steps 2 to

4 with the updated solution.

The SQP algorithm combines concepts from gradient-based methods, utilizing gradients of the

objective and constraint functions, as well as quadratic programming techniques involving the solution of

a sequence of quadratic subproblems. This approach proves effective for solving nonlinear optimization

problems encompassing both equality and inequality constraints.

4.2.0.1 Cost Function

The power supplied by the ICE (PICE) and the battery (PBat) sources can be adjusted to gain

economic objectives formed in the following function:

fs(Ps) =cF
(

αs(Ps)2 + βsPs + γs

)
, αs > 0 (4.4)

where cF ($/gallon) is the cost of fuel. Ps represents the power supplies by the sources present in the vehicle

(i.e., PBat and PICE ). αs represents the quadratic term in the cost function. It is a positive parameter
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(αs > 0) that influences the curvature of the cost function. A higher value of αs increases the weight of

the quadratic term in the cost function, making the optimization process more sensitive to deviations from

the desired reference powers. βs represents the linear term in the cost function. It captures the impact

of the reference powers (Ps) on the overall cost. The value of βs determines the weight of the linear term

in the cost function. It can be positive or negative, indicating the preference for a specific power split or

penalizing deviations from the desired split. And finally, γs represents the constant term in the cost function.

It represents any additional costs or benefits associated with the power split that is not captured by the

quadratic or linear terms.

It is worth noting that every energy source has its generation capacity limits. Therefore, one of the

constraints of (4.3b) is lower and upper generation limits as

Pbat ≤ Pbat ≤ Pbat (4.5a)

PICE ≤ PICE ≤ PICE (4.5b)

The main goal of powertrains is to supply loads properly. The total generation should be met the

total load and any losses as shown in figure 4.2. With the considered configuration, the following constraint

can be formed.

Pbat + PICE = PAC load + PDC load + Ppropulsion + PV 2X + Ploss (4.6)

where Pbat is power generated by the battery, PICE is power generated by the ICE, PAC load is AC load,

PDC load is DC load, Ppropulsion is propulsion load, PV 2X is power used for V2X mode, and Ploss is the total

loss.

Figure 4.2: Power flow model.

Each system has its own internal constraints, i.e., (4.3b) and (4.3c). The components considered

in this study are ICE and battery; hence, the following constraints are assumed for these power-generating

sources.
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|PICE(tk+1) − PICE(tk))| < rrICE (4.7a)

|Pbat(tk+1) − Pbat(tk)| < rrbat (4.7b)

SoCbat ≤ SoCbat ≤ SoCbat (4.7c)

SOCbat(tk+1) = SOCbat(tk) − δT ibat

Qnom
(4.7d)

where δT = tk+1 − tk. Constraints (4.7a) and (4.7b) are understood both the battery and the ICE

have ramp rate limits when adjusting their generation. Constraints (4.7c) and (4.7d) are the battery’s State

of Charge (SoC) constraints.

The main goal of this EM is to efficiently distribute power between the power-generating sources in

order to achieve economic objectives while also taking into account the limitations of the system [27]. EM

considers fuel consumption as an economic objective and tries to reduce it by allocating more power to the

battery.

However, fuel cost is not only the operating cost of the vehicle; the degradation of the components

should also be included in the operating cost of the vehicle. For example, when the EM allocates additional

power to the battery to minimize fuel consumption, the battery experiences accelerated degradation. Con-

sequently, this results in the economically unviable operation of the vehicle, as the accelerated deterioration

necessitates the faster replacement of the battery. It’s noteworthy that the battery stands out as one of the

costly components of the vehicle.

Therefore, the following two observations can be summarized from the EM’s optimization problem:

• Observation 1: EM looks into the operating condition of the vehicle and calculates the power references

to be supplied by the multiple sources into the vehicle.

• Observation 2: The amount of power supplied by the sources or operating condition of the components

impacts its degradation process. The higher the power supplied or power flow from the source or

components, the higher is the degradation rate. For example, in batteries, higher the amount of

charging/discharging current higher is the degradation [15].

Over time, the capacity of components decreases due to degradation, and different components

may degrade at different rates. As a result, it is essential to factor in degradation costs when optimizing

operating costs based on the degradation path of the components. Energy management can help regulate

component degradation in a way that satisfies vehicle load demands.
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4.3 Prognostic-based Control Framework

The decreasing cost and increasing capability of computational devices have enabled the widespread

use of power electronic devices in vehicles, making it easier to implement computationally intensive algo-

rithms and strategies for efficient vehicle operation. This includes optimization and forecasting functionali-

ties, which are essential for effective vehicle control. In this section, a hierarchical control strategy (shown in

Figure 4.3) with an upper layer to an EM layer of degradation forecasting (DF) is introduced, and the opera-

tion of each layer is explained in detail. This multilevel control strategy takes advantage of the developments

in computational technology, allowing for cost-effective and efficient vehicle operation.

Figure 4.3: Hierarchical control architecture.

The conventional HEV architecture, depicted in Figure 1.6 in Chapter 1, primarily focuses on

vehicle control without considering the degradation of its components. The main objective of this control

system is to minimize fuel costs, as discussed earlier. A multilevel control architecture is proposed to address
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this limitation and incorporate degradation-aware control. This architecture consists of two layers and the

HEV model, where each layer serves a distinct purpose.

The first layer is the degradation forecasting layer (DF), which utilizes degradation prediction

models to estimate the degradation levels of various components within the vehicle. By leveraging these

models, the DF layer provides valuable insights into the expected degradation behavior and performance of

the components over time. The second layer is the energy management (EM) layer, which is responsible for

power allocation among the different sources within the HEV. This layer takes into account the predicted

degradation cost obtained from the DF layer and optimizes power distribution to minimize the impact of

degradation on system performance. The process of including the degradation cost of the components into

the objective function of EM is explained in Section 4.3.2. The final is the HEV model, which integrates the

control strategies developed in the previous layers and enables the effective operation of the HEV system

based on the insights gained from degradation forecasting and energy management.

The integration of the degradation forecasting layer into the control architecture of the HEV that

can communicate with both the vehicle and EM is called the prognostic-based control framework (PBCF)

in this dissertation. This framework redefines the objective function of energy management and aims to

enhance the overall performance and longevity of the HEV system by considering the degradation of its

components (especially the battery) and minimizing them.

4.3.1 Degradation Forecasting Layer

The primary contribution of this dissertation lies in the innovative integration of the degradation

forecasting (DF) layer within the control architecture of the hybrid electric vehicle. Also, this dissertation

explores the prediction of battery degradation using two different algorithms, as discussed in detail in Chapter

3. The objective is to design a degradation forecasting layer that incorporates these algorithms effectively

into the control architecture of an HEV. The first algorithm employed is the Markov chain model, whereas

the second one is the NNs.

4.3.1.1 Markov Chain based Degradation Model

In the degradation forecasting layer the data from SNL is used to construct a model capable

of predicting the battery’s degradation path and the overall steps for this technique is shown in Figure

4.4. To begin, the battery dataset undergoes a preprocessing step to extract and filter out four crucial

parameters: voltage, current, temperature, and capacity. These parameters play a vital role in understanding

the battery’s behavior and degradation patterns. Once the relevant data is extracted, it is utilized to train

and develop a Markov chain model.
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Figure 4.4: Overall schematic diagram of the proposed system using Markov chain model.

The Markov chain model captures the transitions and dependencies between different degradation

states of the battery as explained in 3.3. By analyzing the historical data from SNL, the model learns

the probabilities of transitioning between various degradation levels. This information forms the basis for

predicting the future degradation trajectory of the battery. After constructing the Markov chain model, it

is integrated into the DF layer. This layer acts as the interface between the HEV model and the EM of the

overall control system. It utilizes the developed Markov chain model to forecast the battery’s degradation,

taking into account the current operating conditions and the historical data captured during training.

The predictions generated by the DF layer are then sent into the EM. By incorporating the degra-

dation cost, which is obtained from the predicted degradation of the battery, into the objective function of

the EM system, the EM optimizes the power allocation between the ICE and the battery. This optimization

aims to minimize the degradation and maximize the overall system performance.
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4.3.1.2 Maximum capacity expectation degradation (Markov chain model)

The degradation prediction layer outputs the degradation rate cost, which is then incorporated into

the objective function of the EM layer. While the previous section and Chapter 2 focused on explaining

the prediction of the degradation path, this section will now elaborate on the approach for determining the

degradation cost, which serves as the output from the DF layer. The approach is to incorporate a cost factor

based on the degradation results into the objective cost of the EM. To quantify the degradation of component

capacity, a new parameter is introduced as follows: Let Ps(tk) denote the maximum expected capacity of

component s at time tk resulting from the degradation prediction. This parameter is mathematically defined

as:

Ps(tk) =
4∑

i=1

xi(tk)Pi (4.8)

The aim is to quantify the degradation of Ps(tk) over a period of time. Assuming the forecast of

component degradation is made from t0 to tk, a metric ∆s(tK) is presented to gauge the decline in the

capacity of component s from t0 to tk.

∆s(tK) = Ps(t0) − Ps(tK) (4.9)

Let ρs denote the cost per unit of capacity of component s at the initial time. The degradation

cost is penalized by adding the following term to the objective cost of the EM.

fd
s (Ps) = ρs∆sPs (4.10)

Now, how this degradation cost fd
s (Ps) is added into the objective function of the EM as shown in

Section 4.3.2.

4.3.1.3 Neural Network based Degradation Model

In the DF layer of the proposed system, the dataset obtained from the University of Wisconsin-

Madison is utilized to construct the neural network (NN) models. The primary objective of this layer is to

accurately predict the degradation rate of the battery using a data-driven technique, i.e., Neural Networks.

The overall steps involved in PBCF using NNs are illustrated in Figure 4.5.

To begin, the dataset undergoes a preprocessing stage where it is carefully prepared for training

and testing the NN models. The data is divided into three subsets: training, testing, and validation sets.

Approximately 70% of the total data is allocated as the training dataset, which is used to train the NN

models. This allows the models to learn and capture the underlying patterns and relationships between
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Figure 4.5: Overall schematic diagram of the proposed system using NNs.

the battery’s performance parameters, such as voltage, current, temperature, and capacity. The remaining

30% of the dataset is split equally between the testing and validation sets. The testing dataset is used to

evaluate the performance of the trained models by comparing their predictions with the actual outputs. The

validation dataset, on the other hand, is used to fine-tune the models and make adjustments if necessary.

During the training process, the NN models are iteratively adjusted and optimized using various

techniques, as explained in Chapter 3. The goal is to minimize the prediction errors and enhance the

accuracy of the degradation forecasts. If the model’s performance on the validation dataset is satisfactory,

indicating good generalization and predictive capability, the model is considered suitable for integration into

the DF layer. However, if the model’s performance falls short of the desired level, adjustments are made to

the architecture of the NN models, particularly the number of neurons in the hidden layer. The models are

then retrained using the updated architecture, and the performance evaluation process is repeated. This

iterative procedure continues until a satisfactory level of accuracy is achieved, ensuring that the NN models
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effectively capture the complex degradation patterns of the battery.

Once a suitable NN model is obtained, it is incorporated into the DF layer. This layer utilizes

the trained NN model to predict the degradation path of the battery. By analyzing the input parameters,

such as voltage, current, and temperature, the DF layer generates accurate capacity loss predictions. As

explained earlier, this capacity loss is used to find the degradation rate cost which is then fed into the EM

layer. The action of EM after obtaining this degradation rate cost is explained in the Section 4.3.2.

4.3.1.4 Maximum capacity expectation degradation (NN model)

The degradation prediction layer outputs the degradation rate cost, which is then incorporated into

the objective function of the EM layer similar to as discussed in Section 4.3.1.2. The difference from the

Markov Chain in predicting the degradation capacity using NNs is that, after running the simulation from

time t0 to tk, the output from the network is the capacity loss by the battery during this period which is

given by ∆s(tK) as follow:

∆s(tK) = ∆Ps(tk) (4.11)

Let Ps(t0) represent the maximum capacity of component s at the beginning when time is t0, Ps(tk)

be the remaining capacity of the component s at time tk. Then, the remaining capacity of the battery can

be obtained as follows.

Ps(tK) = Ps(t0) − ∆s(tK) (4.12)

Now, if ρs denotes the cost per unit of capacity of component s at the initial time similar to (4.9).

Then, the degradation cost is penalized by adding the following term to the objective cost of the EM.

fd
s (Ps) = ρs∆sPs (4.13)

The utilization of this degradation cost fd
s (Ps) in this dissertation is explained in detail in the

following Section 4.3.2.

4.3.2 Reconfiguration of EM’s optimization problem

The calculation of degradation cost fd
s (Ps) using the Markov Chain model and NN models are

discussed in detail in previous sections and is given by (4.10) and (4.13), respectively. Now, in this section

how this cost is included into the objective function of EM is discussed. The proposed system is graphically

represented in Figure 4.6, where a Markov chain model or NNs are trained and utilized to predict the
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component’s degradation, and subsequently, the degradation cost is calculated in the degradation forecasting

layer. The degradation cost is then incorporated into the EM’s objective function, as shown in (4.14a) and

(4.14b), through the proposed mechanism called the Prognostic-based control framework.

min
∑
s∈S

(
fs

(
Ps(tk)

)
+ fd

s (Ps)
)

(4.14a)

min
∑
s∈S

(
fs

(
Ps(tk)

)
+ ρs∆sPs

)
(4.14b)

Figure 4.6: Prognostic-based control framework.

Figure 4.7 shows the process involved in PBCF to update the objective function of the EM. Initially,

the EM distributes power between the battery and the engine with the goal of minimizing fuel consumption.
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Figure 4.7: Diagram for updating the objective function of EM in PBCF.

Utilizing the power allocated to the battery, the degradation prediction model within the DF layer forecasts

the degradation rate and computes the associated degradation cost using equations (4.10) or (4.13). Subse-

quently, based on the degradation cost, the objective function of the EM is adjusted as given by (4.14a) or

(4.14b), leading to a reallocation of power between the sources.
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Chapter 5

Numerical Simulation Results

This chapter presents and thoroughly discusses the results of the simulation conducted on MAT-

LAB/Simulink for the proposed system. The numerical simulation is divided into two sections depending

upon the technique used to predict the battery degradation: the utilization of the Markov chain and Neural

Network models for predicting battery degradation.

5.1 System Description

Numerical simulations are used to validate the proposed framework on a personal computer. The

HEV powertrain, illustrated in Figure 4.1 with two power sources, ICE and battery, is used for this purpose.

Since this dissertation focuses on reconfiguring the objective function of EM through the proposed framework,

an HEV model based on the power flow equation is developed in MATLAB/Simulink. It does not consider

the system’s dynamics for simplicity and reduced complexity while deploying it on MATLAB/Simulink or

to a real-time simulator. All vehicle parameters are considered from the study [203], which is then used to

calculate the propulsion power for the US06 and WLTP drive cycles using Ansys Motor-CAD. Figure 5.1

illustrates a sample of the propulsion load for the US06 drive cycle used in this study. The vehicle operates

for 598 seconds and 8.01 miles in one drive cycle. The HEV’s ICE capacity can generate up to 180 kW to

provide the DC bus, and the battery has a capacity of 73 kWh. The propulsion load is typically the highest

among the other loads when operating vehicles. In this dissertation, a few samples of propulsion loads are

used. Also, the SoC of the battery is operated within certain limits, where the minimum SoC is 40%, and

the maximum SoC is 90%.
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Figure 5.1: Sample of propulsion load.

5.2 Markov Chain based Model

5.2.1 Degradation data

Accessing battery degradation data used in HEVs/EVs by the automotive industry is challenging

since it is kept confidential. Therefore, in this section for the Markov Chain model, SNL datasets are utilized,

as discussed previously. The battery cell data on degradation is used to develop the degradation model,

which was already explained in Chapter 3, Section 3.3, and then scaled up to the battery capacity used

in this study. From the generated data, different degradation paths for different cells are used to obtain

minimum degradation intensity matrix λ = [λij ]4x4 using Algorithm 1. Algorithm 1 utilizes the array dy to

store a degradation path while the array Sy holds the state of all elements in dy . Y denotes the total number

of generated degradation paths. The algorithm is designed to calculate the transition probability from state

i to state j. Additionally, the maximum degradation intensity matrix λ = [λij ]4x4 can also be computed

using this algorithm. Similarly, the Wiener process is used to model ICE degradation, as explained in detail

in the study [48]. The same model is used in this dissertation, with the efficiency curve given by (5.1). The

model and the code are developed and deployed in MATLAB/Simulink in this section.

f(x) = 0.00052x2 + 0.0152x + 0.65 (5.1)

To evaluate the economic feasibility of the proposed framework, it is essential to consider the initial

costs of both the ICE and battery. According to recent reports from [208], the average cost per kWh of

the Li-ion battery used in EVs is around $151 in 2023. Furthermore, the cost of the ICE is considered
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approximately $7000 [11].

Algorithm 1 Training minimum degradation intensity matrix
1. Input: Degradation paths dy, y ∈ {1, ...., Y }
2. Initialize: λ = [0]4x4
3. for y := 1 to Y do

Assign state for dy(l) : Sy(l) = i, i = 1 or i = 2 or i = 3
or i = 4

for l := 2 to length(dy) − 1 do
Assign state for dy(l) : Sy(l) = i, i = 1 or i = 2
or i = 3 or i = 4
λ(Sy(l − 1), Sy(l)) = λ(Sy)(l − 1), Sy(l) + 1

end
end

4. Normalize λ
5. return λ

5.2.2 Numerical simulation results and discussion

The simulation is conducted to evaluate the effectiveness of the PBCF in minimizing degradation

and optimizing the operation of the HEV. The result compares two simulations: one without implementing

the PBCF and another with the PBCF strategy integrated into the system.

If the PBCF is not applied, the DF layer, responsible for predicting vehicle component degradation,

remains inactive. Conversely, with PBCF implementation, the DF layer integrates a Markov chain model to

anticipate degradation. The predicted degradation cost obtained from the DF layer is then integrated into

the objective function of the EM system as explained in Chapter 4, Section 4.3.2, which allocates the power

among the sources in the HEV. Figure 5.2 illustrates the power allocation by the EM with and without

PBCF.

During the simulation, the degradation forecasting is performed for both the battery and the ICE at

a temperature of 25◦C after running 75 drive cycles. Figure 5.3 analyzes and presents the simulation results.

Figure 5.3a clearly demonstrates the positive impact of the PBCF strategy on the battery degradation path.

The implementation of degradation prediction allows the system to make proactive decisions on power

allocation, thereby reducing the stress on the battery and slowing down its degradation rate. On the other

hand, as shown in Figure 5.3b, no significant change is observed in the ICE degradation path. This can

be explained by the relatively gradual degradation of the ICE compared to the battery, as ICE tends to

have a longer lifespan. Furthermore, due to the limitation of the simulation to only 75 cycles, no notable

enhancement is observed in the minimization of degradation of the ICE. For this reason, the results in the

subsequent cases do not display the degradation of the ICE but instead concentrate solely on the degradation

of the battery.
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(a) (b)

Figure 5.2: Power allocation by EM: (a) without PBCF (b) With PBCF.

Figure 5.3c provides valuable insights into the economic implications of implementing the PBCF

strategy. The results show a reduction in the degradation costs of both the battery and the ICE, amounting

to $10.8045. However, it is important to note that there is an increase in fuel cost of $5.9808 due to the

higher power supplied by the ICE, which can be seen in Figure 5.2b. Nevertheless, when considering the

overall operating costs, the PBCF strategy resulted in a net reduction of $4.8237 after 75 drive cycles.

These findings highlight the potential benefits of the PBCF strategy in terms of prolonging the

lifespan of the battery, reducing degradation costs, and optimizing the operation of the HEV. By effectively

mitigating battery degradation, the PBCF strategy offers promising prospects for improving the performance

and longevity of HEV systems, ultimately leading to cost savings and enhanced sustainability.

5.3 Neural Network based Model

In Chapter 3, three different neural network architectures are employed to forecast the degradation

trajectory of the battery. A distinct battery dataset, not utilized during the model’s training, testing, and

validation phases, is employed to compare the predictions of these three networks. Figure 5.4 depicts the

forecasted degradation paths generated by these networks alongside the actual degradation path of the

battery.

Upon analyzing Figure 5.4, it becomes apparent that all three techniques exhibit good prediction

performance. However, the FNN exhibits the least accurate predictions while comparing the three networks.

On the other hand, both the LSTM and DNN models demonstrate similar fitting capabilities. To assess

the models more comprehensively, metrics such as mean absolute error (MAE), mean square error (MSE),
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Figure 5.3: Simulation results: (a) Battery degradation abatement (b) ICE degradation abatement
(c) Cost savings by the proposed PBCF.

and R-squared (R2) are used, which are calculated using (5.2). The MAE provides an absolute measure of

prediction accuracy, while the R2 value indicates how well the model captures the variability in the data.
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Figure 5.4: Degradation prediction using different NNs.
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Table 5.1 compares the fitting of the three different networks. The first three rows display the

MAE, MSE, and R2 values for the testing dataset used during model training, while the last three rows

exhibit the MAE, MSE, and R2 values for the unseen data that was not part of the training, testing, and

validation process. It is evident from the table that the LSTM network outperforms the other two networks,

exhibiting lower MAE values and higher R2 values for both the training/testing dataset and the unseen

dataset. Additionally, the DNN model demonstrates the second-best fitting performance, while the FNN

lags behind in terms of accuracy.

Looking at the development of the networks, DNN might be considered an advanced network

compared to LSTM networks. However, it’s important to experiment with different network architectures

and evaluate their performance on the specific task and dataset. There is no one-size-fits-all answer, and the

performance of DNNs and LSTM networks can vary depending on the context. DNNs do not always give
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Table 5.1: Comparison of different NNs

Parameters FNN RNN (LSTM) DNN
MAE 0.0789 0.0687 0.0697
MSE 0.0129 0.0091 0.0096
R-square 0.9743 0.984 0.9808
MAE (new data) 0.8167 0.0728 0.0882
MSE (new data) 0.0212 0.0088 0.0119
R-square (new data) 0.9556 0.9860 0.9749

better results than LSTM networks. The choice of the network architecture depends on the specific task,

the characteristics of the data, and the available resources.

If the data has a sequential nature, such as a time series, LSTM networks are specifically designed to

handle such sequences. LSTM networks excel at capturing long-term dependencies and modeling temporal

patterns. Their memory mechanism allows them to retain information over time, making them particularly

effective for tasks involving sequential data. LSTM networks have a distinct advantage in capturing context

and understanding dependencies between elements in a sequence. They can learn to remember important

information from the past and selectively forget irrelevant details. Hence, in this analysis from Figure 5.4

and Table 5.1, the LSTM model exhibits superior prediction performance compared to the DNN due to the

sequential nature of the battery degradation dataset.

To ensure the robustness and generalizability of the proposed framework, the Markov Chain-based

model is simulated using the US06 drive cycle, while the neural network-based models undergo simulation us-

ing two different drive cycles. The first drive cycle utilized is the US06, while the second drive cycle combines

the US06 and WLTP drive cycles, providing a comprehensive evaluation of the framework’s performance

across different driving scenarios. Additional information about the combined drive cycle is elaborated upon

in Section 5.3.2.

5.3.1 Case-I

The US06 drive cycle, previously depicted in Figure 5.10, is employed in this study, consisting of

a total duration of 598 seconds and covering a distance of 8.01 miles per cycle. The simulation is run for

75 consecutive drive cycles, equivalent to a total distance of 600 miles. The LSTM NN degradation model

developed in Chapter 3, Section 3.4 is utilized to predict the degradation path in this section, and the power

allocation by the EM after implementing the PBCF is illustrated in Figure 5.5. It is worth noting that the

power allocation without PBCF remains consistent with the depiction in Figure 5.2a, as discussed in Section

4.3.2 of Chapter 4.

The implementation of PBCF results in a notable change in the power supplied by the battery and
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Figure 5.5: Power allocation by EM after the implementation of PBCF.

the engine. This is evident from the graph presented in Figure 5.5, where the ICE also supplies additional

power compared to the previous case (i.e, without PBCF) to meet the vehicle’s load demand and charge the

battery. To further validate this observation, the SoC of the battery can be observed in Figure 5.6. In the

case of the PBCF applied vehicle, after conducting simulations for 75 drive cycles, the battery’s SoC reaches

76%. On the other hand, in the non-PBCF scenario, the SoC decreases to 65%. Hence, implementing the

PBCF leads to more frequent battery charging at shorter intervals. The increased charging frequency allows

the battery to maintain a higher SoC.

Figure 5.6: SoC of battery with and without PBCF.

Lastly, Figure 5.7 showcases a reduction in the degradation path after implementing PBCF. The
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(a)

(b)

Figure 5.7: (a) Degradation abatement of battery using PBCF. (b) Cost savings after implementing
PBCF.

capacity loss of the battery without PBCF is found to be 0.3425%, whereas the capacity loss with PBCF is

observed to be 0.1961% after driving for 75 drive cycles, which results in a saving of 0.1464% capacity loss.

Figure 5.7b provides valuable insights into the economic implications of implementing the PBCF strategy.

The results show a reduction in the degradation costs of the battery, amounting to $16.13. However, it

is important to note that there is an increase in fuel cost of $6.7019 due to the higher power supplied by

the ICE. Nevertheless, when considering the overall operating costs, the PBCF strategy resulted in a net

reduction of $9.4357 after 75 drive cycles.

5.3.2 Case-II

To evaluate the feasibility and effectiveness of the proposed strategy across various driving scenarios,

a drive cycle is created by combining the characteristics of two distinct drive cycles: the US06 and WLTP

drive cycles. The inclusion of the WLTP drive cycle is driven by its ability to replicate real-world driving
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conditions, incorporating a range of driving maneuvers such as starts, accelerations, and stops within a

controlled environment, which is shown in Figure 5.8.

Figure 5.8: Sample of propulsion load for combined drive cycle.

In the combined drive cycle, the vehicle initially runs to the US06 drive cycle for a duration of 598

seconds, simulating specific driving conditions and patterns. Following this period, the WLTP drive cycle

is seamlessly integrated, extending for a duration of 1800 seconds. Throughout this combined drive cycle,

the vehicle covers a total distance of 22.46 miles. The vehicle operates under the US06 drive cycle for 8.01

miles, replicating the corresponding driving conditions and load profiles associated with this specific drive

cycle. Subsequently, the vehicle transitions to the WLTP drive cycle, covering an additional distance of

14.45 miles.

To capture the propulsion load profile demanded by this combined drive cycle, an in-depth analysis

is conducted using Ansys Motor-CAD, considering the dynamics of an HEV from study [203]. The load

profile, as illustrated in Figure 5.8, provides valuable insights into the power demands and fluctuations

experienced by the vehicle throughout the combined drive cycle.

The power allocation strategy of the EM is depicted in Figure 5.9. Initially, during the US06 drive

cycle, the power distribution involves the battery supplying a significant portion of the demanded power

while the ICE supplements the remaining power required by the vehicle. This allocation scheme remains

consistent with the previous section’s discussion.

However, as the drive cycle transitions to the WLTP phase beyond 598 seconds, a different power

allocation pattern emerges. During this phase, the power demand from the vehicle decreases, and the battery

becomes capable of meeting the vehicle’s power requirements independently until 2100 seconds. The ICE

remains inactive until the power demand exceeds the battery’s capacity, at which point it engages to fulfill
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(a) (b)

Figure 5.9: Power allocation by EM: (a) without PBCF (b) With PBCF.

the additional power needs.

Consequently, the battery predominantly supplies power throughout the drive cycle, with minimal

instances of charging. Upon implementing the PBCF, the power allocation undergoes adjustment, resulting

in the ICE contributing power and charging the battery more frequently, as depicted in Figure 5.9b. This

reallocation of power improves the state of charge (SoC) of the battery. Without PBCF, after 27 drive cycles,

the battery’s SoC is recorded at 62%, whereas with the application of PBCF, the battery’s SoC reaches 68%.

Figure 5.10: SoC of battery with and without PBCF.

Furthermore, Figure 5.11a showcases a reduction in the degradation path after implementing PBCF.

The capacity loss of the battery without PBCF is found to be 0.4588%, whereas the capacity loss with PBCF
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is observed to be 0.2856% after driving for 27 drive cycles. Hence, the capacity loss saving of 0.1732% is

achieved after the implementation of PBCF. Figure 5.11b provides valuable insights into the economic

implications of implementing the PBCF strategy. The results show a reduction in the degradation costs of

the battery, amounting to $19.47. However, it is important to note that there is an increase in fuel cost of

$8.49 due to the higher power supplied by the ICE. Nevertheless, when considering the overall operating

costs, the PBCF strategy resulted in a net reduction of $10.98 after 27 drive cycles.

(a)

(b)

Figure 5.11: (a) Degradation abatement of battery using PBCF (b) Cost saving using PBCF.
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Chapter 6

Controller Hardware in Loop

The controller hardware-in-the-loop (CHIL) experiments are conducted to test and validate algo-

rithms or frameworks in real-time systems using real-time simulators and controllers [209, 210, 211]. This

chapter presents and thoroughly discusses the real-time implementation of the proposed strategy. The im-

plementation of the proposed strategy is demonstrated through a CHIL experiment conducted on a series

HEV system, as explained in Section 4.1. The equipment from Clemson University’s Real-time Control

and Optimization Laboratory (RT-COOL) is used to integrate the DF layer with the EM for implementing

PBCF. The objective of a CHIL experiment utilizing laboratory equipment is to demonstrate the viability

of implementing the proposed framework in real-time application and efficient integration of DF layer with

the existing EM layer. The subsequent section presents further information on the CHIL implementation

and the experimental outcomes.

6.1 System Modeling

The series HEV is simulated in the schematic editor in Typhoon HIL control center software. HEV

model based on the power flow equation is developed in the schematic editor. This model is then compiled and

loaded into HIL SCADA, which is then deployed into the DRTS Typhoon HIL 606. In Section 4.1, a model

is developed using the power flow equation instead of developing a comprehensive vehicle dynamic model.

In this dissertation, the identical model is utilized in Typhoon, as the primary focus of this dissertation is

on formulating a control strategy for distributing power among multiple sources to meet the vehicle’s load

demand rather than delving into an examination of the vehicle’s dynamics. This approach simplifies the

model’s complexity in contrast to utilizing the complete dynamic model of the vehicle.

In order to manage multiple power sources in a vehicle, an EM is necessary, as discussed in Chapter
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Figure 6.1: CHIL implementation for real-time PBCF.

4, Section 4.2. In the automotive industry, EM algorithms are typically deployed in a controller called

Electronic Control Units (ECUs). Here, a Raspberry Pi 4 Model B is used as the ECU to run the EM

algorithm, whose objective is to reduce fuel cost. The real operating parameters from the HEV model (i.e.,

Typhoon) are sent to the Raspberry Pi, which runs the EM algorithm to determine the optimal reference

power to be supplied by the battery and ICE. This reference power is then sent back to the Typhoon.

The EM employs three threads running in parallel (utilizing three out of the four cores of the

Raspberry Pi). The first thread waits for the signal (whether the system has started or not) to begin the

EM algorithm, while the second thread handles communication protocol, receiving the battery’s SoC and

all the loads demanded by the vehicle. Finally, the third thread runs the EM algorithm and returns the

reference power back to Typhoon using the communication protocol deployed in the second thread. The

standard communication protocol used in the vehicles is Controller Area Network (CAN) communication.

Therefore, this dissertation uses CAN communication to transfer data between the simulator and the ECUs.

Figure 6.1 illustrates the implementation of the proposed strategy in real-time through a CHIL setup.
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6.2 Integrating Degradation Forecasting into the EM

The previous section explains the EM’s approach, which aims to minimize fuel costs and allocate

power across each source used in the vehicle. The EM, however, won’t evaluate the degradation of the

components, which may increase the vehicle’s overall running costs. The DF layer is integrated above the

EM for this reason. Now, the reference powers generated by the EM are fed into the HEV model and also

to the DF layer to predict the degradation of the components using CAN communication.

The proposed DF algorithm is developed using the Python environment and is deployed in a real-

time ECU, the Raspberry Pi 4 Model B. This ECU receives signals from another ECU that hosts the EM

and DRTS, where the HEV model is deployed. Depending on the signals received, the ECU predicts the

degradation rate using the developed Markov chain model and Neural Network models, as explained in

Chapter 3. The trained models (either the Markov Chain model or Neural Network models) are obtained

from a computer acting as a server, with its functionalities implemented using a Python script. The server’s

functionalities involve storing and training data using Algorithm 1 to obtain the maximum and minimum

degradation intensity matrices for each information source for the Markov Chain model and storing and

training data for Neural Network models. Additionally, it sends trained models whenever the real-time

controller that implements the DF requests them and stores the necessary scripts for the EM and DF in

their respective controllers. Finally, the DF controller collaborates with the server to run the degradation

model and predict the components’ degradation rate.

The degradation cost is estimated using (4.10) and (4.13), based on the degradation path and the

capacity lost over time. This cost is then transmitted to the EM, which incorporates it as a penalized

degradation cost in its objective function as given by (4.14a) and (4.14b) and adjusts the power allocation

between the sources accordingly. The communication between the ECUs and the DRTS is facilitated through

CAN communication, which is explained in the following Section 6.3.

6.3 Communication

Controller Area Network (CAN) is a widely used communication protocol for transferring data in

automotive and industrial applications. In a CAN network, data is transferred between different ECUs, also

known as nodes, through two wires: CAN HIGH (CAN-H) and CAN LOW (CAN-L).

All the nodes are connected to the CAN bus, and when a node wants to transmit data, it checks

the bus to ensure it is idle. If the bus is free, the node begins transmitting its message by placing it on the

bus. Each node on the network receives the message and checks the identifier. Here each message consists

of an identifier, which specifies the priority and content of the message and the data to be transferred. In
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this study, there are three nodes as follows:

• Typhoon (HEV Model)

• Raspberry Pi (ECU-1, EM)

• Raspberry Pi (ECU-2, DF)

Data transmission in a CAN involves the dissemination of data from one node to the CAN bus,

which can be accessed by all other nodes in the network. In this study, to establish a CAN network, Typhoon

utilizes its own interface, employing CAN send and CAN receive blocks for data transmission. For targeted

communication, a designated message-id is assigned to transmit data to specific ECUs such as ECU-1 (EM)

and ECU-2 (DF). On the receiving end, the message-id is verified to ensure that the respective ECU receives

the intended data. Similarly, in Raspberry Pis, Python code is written to facilitate data exchange through

the CAN bus. This approach enables each of the aforementioned nodes to transmit and receive signals using

specific message-ids, ensuring reliable communication while mitigating interference. The establishment of a

communication system between different devices in RT-COOL is illustrated in Figure 6.2.

Figure 6.2: CHIL implementation of PBCF in real-time on actual components in RT-COOL.

6.4 Visualization

For the purpose of visualization, an interface called the human-machine interface (HMI) is devel-

oped. This interface is implemented through a HIL SCADA window in the Typhoon control center and a

Python visualization environment. The Typhoon collects operational data from the host PC, the simulator,

and all ECUs, including the EM and DF controllers, and presents them on the SCADA window. The HMI
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consists of four primary screens: the control screen, HEV monitoring screen, energy management screen,

and degradation forecasting screen.

Figure 6.3: Real-Time implementation control screen.

The control screen provides a start/stop button that allows users to initiate or halt the real-time

simulation. When the start button is pressed, a Python script associated with the control screen is triggered.

This script contains all the required inputs for the CHIL system, including IP addresses for the various

controllers (ECUs), simulators, and the host PC. Also, separate message IDs for the CAN communication to

send the data between Typhoon, ECU-1 (EM), and ECU-2 (DF) are predefined in this script. Upon pressing

the start button, the system performs several automated tasks. Firstly, it logs into the controllers and copies

the necessary files to execute the EM and DF functions onto the designated Raspberry Pi. Additionally, the

EM and degradation prediction processes are automatically initiated on both Raspberry Pis. As a result,

data begins to flow through the CAN bus, enabling visualization of this data within the Typhoon SCADA

window.

The HEV monitoring screen displays the loads demanded by the series HEV, the vehicle speed,

and the SoC of the vehicle’s battery. The loads like AC, DC, V2X connection load, and losses in the vehicle

depend on the user. Hence the HEV model is developed in such a way that the users can control all the loads

in real-time on the vehicle, except the propulsion load, as it follows a predefined drive cycle. The energy

management screen shows the data transmitted by the EM controller to the Typhoon, which displays the

power allocated by the EM to the battery and ICE to match the power demanded by the vehicle. Lastly, the

degradation forecasting screen presents the battery’s degradation path, remaining capacity received from

the DF controller and also displays the degradation rate cost, fuel cost, and total savings achieved through

the proposed control strategy. The main control implementation screen is displayed in Figure 6.3. After
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Figure 6.4: Visualization screen for CHIL experiment in SCADA window in Typhoon control center.

Figure 6.5: HMI display for HEV model parameters in real-time.
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Figure 6.6: HMI display for EM layer in real-time.

Figure 6.7: HMI display for DF layer in real-time.

pressing the start button, the CHIL experiment begins operating. Prior to pressing the start button, the

user must select the Python executable file, as all the codes are written in Python, and choose the directory

containing all the necessary codes for running the project in the CHIL folder shown in the figure. Figure

6.4 illustrates the main monitoring screen, which consists of three subsections: HEV monitoring, Energy
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Management layer, and Degradation Forecasting Layer. Each subsection presents results from different

controllers. Figure 6.5 displays the parameters of an HEV considered in this project. Figure 6.6 shows the

optimized results sent from the EM layer to the Typhoon, while Figure 6.7 presents the results from the DF

layer. As mentioned earlier, all data exchange between the ECUs and the DRTS is carried out using CAN

communication.

6.5 Experimental Results

The constructed CHIL system described in Figures 6.1 and 6.2 is run, and the two layers, EM and

DF, along with the HEV model, work synergically. Figure 6.6 shows that the proposed EM is running in

real-time, and the ECU sends the data to Typhoon with the reference powers to be supplied by the ICE and

battery to drive the power train. Also, in Figure 6.7, degradation signals are sent from the DF controller to

HMI running in the Typhoon for displaying. It is noted that the fuel cost is increased after implementing

the proposed strategy. However, the algebraic sum of degradation cost and fuel cost is positive, implying

that the overall operating cost of the vehicle is reduced. Hence, the experimental results obtained from the

CHIL experiment also conclude the same result obtained from the numerical simulations, as described in

Chapter 5. The detailed discussion of the outcomes for each of the three scenarios outlined in Chapter 5 is

presented below for the CHIL experiment.

6.5.1 Markov Chain-based Model

In line with the explanations provided in Chapter 5, the utilization of a Markov chain model for

forecasting battery degradation is executed in real-time in this Chapter. Instead of running this model in

MATLAB, it is deployed on a Raspberry Pi. This predictive model facilitates the computation of degradation

rate cost, which is subsequently transmitted to the EM controller via CAN communication. Depending upon

the received cost, the EM reallocates the power among the different sources. The comparison between the

power allocations by the EM before and after the implementation of PBCF are depicted in Figures 6.8a and

6.8b.

These figures closely resemble the graphs in Figure 5.2a and 5.2b. Upon subjecting the simulation

to 75 drive cycles, equivalent to 600 miles, the analysis shows a $8.2490 reduction in degradation costs.

Notably, there is a $4.9216 rise in fuel costs; however, the net outcome remains a saving of $3.33. While this

value slightly deviates from the findings in Chapter 5, Section 5.2. The recorded values from the real-time

implementation are only slightly lower than those of the MATLAB implementation; nevertheless, both sets

of results arrived at the same conclusion. It’s important to highlight that the CHIL experiment effectively
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(a) (b)

Figure 6.8: Power allocation by EM: (a) without PBCF (b) With PBCF.

curtails the real-time battery degradation trajectory and concurrently decreases the overall operational

expenses of the vehicle. The degradation path followed by the battery with and without PBCF is shown

in Figure 6.9a, which clearly shows that after implementing the PBCF, the degradation of the battery is

(a)

(b) (c)

Figure 6.9: (a) Degradation abatement of battery using PBCF (b)&(c) Cost saving using PBCF.
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reduced. Figure 6.9b provides an overview of the cost savings achieved after implementing PBCF after 75

drive cycles. Additionally, Figure 6.9c depicts the cost savings corresponding to the number of drive cycles.

6.5.2 Neural Network based Model (Case-I)

In relation to the second scenario detailed in Chapter 5, this scenario involves utilizing a Neural

Network model for predicting battery degradation paths. The real-time simulation process for this specific

scenario closely parallels the methodology discussed in the previous case outlined in Section 6.5.1. The

primary difference lies in the operation of ECU-2, i.e., Raspberry Pi operated as a DF layer, where the

Neural Network model is employed instead of the previously used Markov chain model.

Graphs illustrating the power allocations performed by the EM before and after the incorporation

of the PBCF are presented in Figures 6.10a and 6.10b. During the real-time implementation after applying

PBCF, there are variations in power allocation compared to the allocations performed solely in MATLAB,

as evident from Figures 5.5 and 6.10b, respectively. Nevertheless, the principle of engine load sharing is

upheld, and there is consistency in the average power delivered by both the engine and the battery in both

simulation scenarios.

(a) (b)

Figure 6.10: Power allocation by EM: (a) without PBCF (b) With PBCF.

Upon subjecting the simulation to a total of 75 drive cycles, equivalent to covering a distance of 600

miles, the resulting battery degradation trajectory, as well as the overall implications for degradation and

fuel costs, are visually depicted in Figures 6.11a and 6.11b. The real-time experiment predicts a reduction

of $16.094 in degradation costs. Notably, there is a $6.7848 increase in fuel expenses due to the heightened

contribution of power by the engine. Despite this, the net saving amounts to $9.3125. In comparison to the

analysis done in Chapter 5, specifically in Section 5.3.1, these savings values demonstrate a consistent level
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of similarity. Also, Figure 6.11c depicts the cost savings corresponding to the number of drive cycles.

(a)

(b) (c)

Figure 6.11: (a) Degradation abatement of battery using PBCF (b) & (c) Cost saving using PBCF.

6.5.3 Neural Network-based Model (Case-II)

Similarly, for the third scenario, as explained in Chapter 5, a new combined drive cycle is employed,

using US06 and WLTP, which accentuates battery degradation. The real-time simulation for this particular

scenario is similar; however, the drive cycle utilized in Typhoon to operate the HEV is modified, with

everything else remaining consistent, as compared to Sections 6.5.1 and 6.5.2.

Graphs illustrating power allocations by the EM before and after the integration of the PBCF

are presented in Figures 6.12a and 6.12b. While Figure 6.12a bears a resemblance to Figure 5.9a from

chapter 5, there exists a disparity in the graph portrayed in Figure 5.9b, as it diverges from the real-time

implementation depicted in Figure 6.12b. However, the concept of sharing the load by the engine is followed

in both cases.

After subjecting the simulation to 27 drive cycles, corresponding to a distance of 606 miles, the

analysis discloses a $19.63 reduction in degradation costs. Noteworthy is the $7.11 increase in fuel expenses as
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(a) (b)

Figure 6.12: Power allocation by EM: (a) without PBCF (b) With PBCF.

the engine supplies more power; nevertheless, the net saving is $12.52. While comparing these findings with

those in Chapter 6, Section 5.3.2, the savings values exhibit a minor elevation while maintaining proximity.

Also, Figure 6.13c depicts the cost savings corresponding to the number of drive cycles.

(a)

(b) (c)

Figure 6.13: (a) Degradation abatement of battery using PBCF (b)&(c) Cost saving using PBCF.
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It is crucial to emphasize that this approach successfully addresses battery degradation trajectories

in real-time, concurrently reducing the overall operational costs of the vehicle. Moreover, a consistent

observation in all three real-time scenario simulations is that higher levels of battery degradation align with

increased savings following the implementation of PBCF.

6.6 Comparison with Numerical Simulation Results

The collective outcomes derived from both the MATLAB/Simulink simulation and the CHIL ex-

periment are presented in Table 6.1. For the Markov-chain based degradation model, there exist slight

disparities in the results obtained from the NS and CHIL experiments. Nonetheless, these differences are

minor, and the fundamental concept of the PBCF strategy is upheld: battery degradation is reduced in both

simulation environments. Additionally, the results for Neural Network case I and case II exhibit remarkable

similarity for the other two scenarios, with only marginal distinctions between NS and CHIL experiments.

Table 6.1: Comparison of Simulation Results from MATLAB and CHIL Experiment

Methods Markov Chain Neural Network Neural Network
(Case-I) (Case-II)

Capacity Loss Saving (NS) 0.0981% 0.1464% 0.1732%
Capacity Loss Saving (CHIL) 0.0749% 0.1460% 0.1787%
Degradation Cost (NS) $10.8045 $15.82 $19.47
Degradation Cost (CHIL) $8.2590 $16.094 $19.63
Fuel Cost (NS) -$5.9808 -$6.7019 -$8.49
Fuel Cost (CHIL) -$4.9216 -$6.7848 -$7.11
Total Saving (NS) $4.8237 $9.1181 $10.98
Total Saving (CHIL) $3.33 $9.3125 $12.52

Hence, we can deduce that the results from both simulations align, confirming that the implemen-

tation of the PBCF effectively mitigates battery degradation in HEVs, simultaneously reducing the overall

operational costs of the vehicle. Furthermore, it’s worth noting that the degree of battery degradation

directly corresponds to the extent of savings achieved upon integrating the PBCF.
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Chapter 7

Conclusion

The primary objective of this dissertation is to develop a control framework, named as the prognostic-

based control framework (PBCF), for hybrid electric vehicles (HEVs). The framework aims to mitigate bat-

tery degradation in the vehicle and simultaneously minimize the vehicle’s overall operating cost. To achieve

this objective, several existing challenges need to be addressed. First and foremost, predicting the battery’s

degradation path, considering all contributing factors, remains a significant hurdle. Additionally, there is

a notable absence of a degradation forecasting layer seamlessly integrated into the control architecture of

HEVs. Another critical challenge involves finding a mechanism to incorporate insights from the degradation

prediction into the objective function of the energy management (EM) system. This integration is essential

for enabling real-time operation of the updated EM.

1. The prediction of the battery’s degradation path, encompassing all the contributing factors, remains

a significant issue.

2. The absence of a degradation forecasting framework that seamlessly integrates into the control archi-

tecture of HEVs is a notable gap.

3. A crucial challenge involves devising a mechanism to incorporate the findings from degradation predic-

tion layer (obtained from point 2) into the objective function of the energy management (EM) system

and enable real-time operation of the updated EM.

To address the identified gap, this dissertation make the following contributions:

• In Chapter 3, analytical and data-driven degradation modeling techniques are introduced to predict

the battery’s degradation path while considering four major factors that contribute to degradation. For

the analytical method, a Markov chain-based model is employed to predict the battery’s degradation
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behaviors, utilizing a multi-state model. Additionally, for the data-driven method, three distinct

neural networks are developed to forecast the battery’s degradation path.

• In Chapter 4, a prognostic-based control framework (PBCF) is proposed. This framework includes a

degradation forecasting layer that predicts the battery’s degradation based on the vehicle’s operating

conditions. The degradation forecasting layer is integrated into the existing control architecture of

the HEV as an upper layer of the energy management system (EM). By implementing this strategy,

the battery degradation and overall operating cost of the vehicle are reduced, while maintaining the

vehicle’s performance.

• In Chapter 5 and 6 Simulations using MATLAB/Simulink and CHIL experiment are performed to

validate the proposed strategy PBCF, respectively. To validate and assess the viability of the proposed

framework, three distinct scenarios with varying levels of battery degradation and different drive cycles

are employed.

By addressing these research challenges and presenting the proposed solutions, this dissertation

makes a significant contribution to the advancement of PBCF for HEVs. It introduces capabilities for real-

time degradation prediction and minimization, resulting in a reduction in the overall operating cost of the

vehicle and an extension of the battery lifespan. Notably, the implementation of PBCF leads to higher

savings on the overall vehicle operation, particularly as the battery degradation increases.
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