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Abstract

We introduce two global-in-time domain decomposition methods, namely the Steklov-Poincare

method and Schwarz waveform relaxation (SWR) method using Robin transmission conditions (or

the Robin method), for solving fluid-structure interaction systems involving elastic, porous, or poroe-

lastic structure. These methods allow us to formulate the coupled system as a space-time interface

problem and apply iterative algorithms directly to the evolutionary problem. Each time-dependent

fluid and the structure subdomain problem is solved independently, which enables the use of different

time discretization schemes and time step sizes in the subsystems. This leads to an efficient way of

simulating time-dependent multiphysics phenomena.

For the fluid-porous structure interaction system, we consider the SWR method. The cou-

pled system is formulated as a time-dependent interface problem based on Robin-Robin transmission

conditions, for which the decoupling SWR algorithm is proposed and proved for convergence. For the

fluid-poroelastic structure interaction (FPSI) system, we use interface conditions to define Steklov-

Poincare type operators. These operators are used to transform the coupled system into a non-linear

space-time interface problem, which is then solved using a nested iteration algorithm. For the sys-

tem that involves elastic structure, we implement both the Steklov-Poincare method and the SWR

method.

Additionally, we present a temporal numerical discretization scheme for the interaction

between a 3D fluid and a 2D plate structure. We show the stability of this scheme and propose

a numerical algorithm that sequentially solves the fluid and plate subsystems through an effective

decoupling approach. We perform numerical tests using P2Morley elements for the plate subproblem

that involves the biharmonic operator.

Numerical tests are presented for both non-physical and physical problems with various

mesh sizes and time step sizes to illustrate the accuracy and efficiency of the proposed methods.
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Chapter 1

Introduction

Fluid-structure interaction (FSI) problems represent complex multiphysics phenomena that

lie at the intersection of fluid dynamics and structural mechanics. The intricate interplay between

these two disciplines gives rise to challenges and opportunities with far-reaching implications across

diverse fields. Within FSI scenarios, the structures involved can exhibit a range of properties,

including elasticity, porosity, or poroelasticity.

Modeling and applications In the FSI problems involving elastic structure, the fluid flow, and

structure are coupled through the continuity of traction force and velocity on the interface. Such

systems have a wide range of applications in various fields, including manufacturing, energy, aeroe-

lasticity, defense, and biology [11, 17, 25, 34, 58, 62, 71, 91, 99]. In engineering, such models are

considered in designing inkjet printers, blades for wind turbines, airplane wings, combustion cham-

bers in engines, and offshore oil rigs. In biology, such systems are often considered in studying

blood flow through vessels. Similarly, the FSI systems involving porous structure are modeled using

Navier-Stokes (or Stokes)-Darcy system, where the Stokes equations represent an incompressible

fluid and the Darcy equations represent a flow through a porous medium. Such models are of-

ten considered for studying groundwater flows problems [37, 39], filtration [93], flows in a vuggy

porous medium [3, 4], and also for understanding impact of stream pollution in water supply [75]

and other issues involving water contamination. In health sciences, the Stokes and Darcy equations

are used to model filtrations involved in the pharmaceutical and chemical fields [57], biofluid-organ

interactions or the movement of blood within vessels [36]. The interaction between free fluid and

1



a poroelastic structure is modeled using Stokes-Biot system and has a wide range of applications

that include predicting gas and oil extraction from naturally or hydraulically fractured reservoirs,

modeling groundwater flow, fluid flows through aquifers, blood flows through vessels, interfacial flow

of aqueous humor and many more [24, 89, 87, 101, 50, 87].

Monolithic and decoupled schemes The FSI system is considered as a coupled monolithic

system in [8, 60, 68, 81, 82]. In such an approach, the computational complexity arises from solving

a large matrix system, necessitating the use of an efficient and suitable preconditioner for the dis-

cretized system [82]. An alternative approach involves decoupling the fluid and structure subsystems

[6, 10, 15, 21, 20, 22, 43, 44, 73, 79, 88]. Implementing such methods, despite their advantages of using

partitioned solvers and smaller matrices for each subsystem, can pose challenges in achieving efficient

iteration between the two subsystems. The Stokes-Darcy system is studied as a coupled monolithic

system in [3, 4, 57], and some decoupled algorithms are investigated in [14, 23, 26, 67, 94, 97].

Fully coupled approaches include the use of new finite element spaces [3, 4], Lagrange multiplier

spaces [7, 42, 52, 75], or fully discontinuous approximations [95] to approximate the coupled Stokes-

Darcy system. The FSI system involving poroelastic structure has been studied using a monolithic

scheme in [2] where the Stokes equations are coupled with the quasi-static Biot system based on

the Lagrange multiplier method. The proposed monolithic scheme was analyzed for stability and

error estimation. A nonlinear Stokes-Biot system was considered for the analysis of well-posedness

in [1], where stability and error estimates of its semi-discrete system were also proved. A coupled

Navier-Stokes and Biot system was analyzed in [30] for the existence and stability of a weak solution

under a small data assumption. Most decoupling strategies employ domain decomposition (DD)

techniques to allow the use of optimized algorithms for the fluid and structure subproblems.

Classical domain decomposition(DD) methods There have been extensive studies on do-

main decomposition (DD) techniques for FSI involving elastic structure in the literature. Various

approaches have been considered, including explicit schemes [22, 43] and semi-implicit schemes

[10, 44, 92]. Many implicit DD methods have also been investigated for better stability of the

numerical solution. For example, an implicit DD method based on optimization is considered in

[88], for both linear and nonlinear elastic formulations for the structure. There, the stress force on

the interface is used as a Neumann control, which is updated until the stress discontinuity on the

2



interface is sufficiently small, by enforcing the continuity of velocity through a Dirichlet boundary

condition for the fluid subsystem. This process requires solving the subsystems in serial. Another

optimization approach for FSI is explored in [73] by formulating the FSI problem as a least squares

problem, where the jump in the velocities of the two substructures is minimized by a Neumann

control enforcing the continuity of stress on the interface. In [98], the hybridizable discontinuous

Galerkin (HDG) finite element method is used in the simulation of FSI. The coupling between an

underlying incompressible fluid and an embedded solid is formulated through the overlapping do-

main decomposition method in conjunction with a mortar approach in [61]. A fictitious domain

approach, where the fluid velocity and pressure are extended into the solid domain by introducing

new unknowns, has been applied to study FSI in [6, 15, 79]. In [20] a splitting scheme based on

Robin conditions is analyzed with an additional variable representing the structure velocity. How-

ever, the splitting method used in [20] does not discretize in space, giving several possibilities for

spatial discretization. The splitting scheme utilizes a common Robin parameter is utilized for both

fluid and structure sub-problems. This approach uses common time steps for the fluid and the

structure sub-problems, and the loosely coupled subproblems are solved at each time step. For the

stability analysis in the continuous case variable η̇ is introduced that represents the velocity of the

fluid in the structure problem. In [21], the finite element approximation of the DD formulation

introduced in [20] is analyzed, and an error estimate is derived for the fully discretized system.

Loosely coupled schemes based on interface conditions of Robin type are also found in [54] for the

time-discretized FSI system, where the choice of optimal Robin parameters is analyzed. The mor-

tar space methods are considered in [14, 47, 51], where unmatched meshes on the interface and

subdomains are used. Optimization-based DD methods are introduced in [41, 94], and two grid ap-

proaches are studied in [23, 85]. The boundary integral method and decoupled marching schemes are

introduced in [16, 100] and [86], respectively. In [26, 33] DD methods using Robin-Robin conditions

are discussed for the Stokes equations coupled with the Darcy equation in the primal form. There,

iterative algorithms are analyzed for convergence and numerically tested with various Robin param-

eters. More DD works using Robin-Robin conditions for the stationary Stokes-Darcy system can be

found in [38, 40, 49], where the decoupling schemes are based on the optimized Schwarz method.

The non-stationary Stokes-Darcy problem is studied using the Crank–Nicolson method in [32]. Two

parallel, non-iterative, multi-physics DD methods are proposed to solve a coupled time-dependent

Stokes-Darcy system [27]. The FSI system involving poroelastic structures has also been studied
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using various decoupling methods [9, 74, 19, 31, 103, 102, 56, 55]. Bukac et al. [19] have studied

an explicit numerical algorithm based on an operator splitting approach for the interaction between

a fluid and a multilayered poroelastic structure. In [31], a decoupling method was developed and

analyzed for the Stokes-Biot system based on optimization. In that approach, the problem was

formulated as a constrained optimization problem, and the first-order finite difference approximated

the structure velocity in interface conditions. In [74], the second-order time discretization decou-

pling schemes were implemented in a nonlinear Stokes-Biot system. The fluid-poroelastic structure

interaction (FPSI) system is studied by applying dual-mixed formulations in both fluid and struc-

ture domains in [28]. In this approach, the symmetry of the Stokes and poroelastic stress tensors is

imposed by setting the vorticity and structure rotation tensors as auxiliary unknowns. The noncon-

forming Crouzeix–Raviart (C–R) element discretization is used for solving the stationary coupled

Stokes–Biot flows in [104]. In [13], a staggered finite element procedure is developed for the cou-

pling of a free viscous flow with a deformable porous medium, in which interface phenomena related

to the skin effect can be incorporated. An augmented fully mixed formulation for the quasistatic

Navier–Stokes–Biot model is studied in [77]. In [78], a mixed elasticity formulation is considered to

study the FPSI system.

Motivation for global-in-time DD method In classical DD approaches for time-dependent

problems, model equations are discretized in time first, and then DD methods are used at each

time step. A uniform time step is usually considered in such approaches. Since the time scales in

the fluid domain and structure domain could be largely different, it is inefficient to use a uniform

time step throughout the entire time domain. Another approach used in some recent works for

time-dependent problems is based on global-in-time or space-time DD methods in which iterative

algorithms are directly applied to the evolutionary problem. Consequently, each time-dependent

subdomain problem is solved independently, leading to an efficient way to simulate time-dependent

phenomena as different time discretization schemes and time step sizes can be used in the subsys-

tems. The space-time DD approach has been extensively investigated for the single physics porous

medium flows (see [63, 65, 70] and the references therein) and recently studied for the Stokes-Darcy

systems [66, 67]. In [67], a global-in-time DD method based on the physical transmission conditions

is developed for the nonlinear Stokes-Darcy coupling. A time-dependent Steklov-Poincaré type oper-

ator was constructed, and non-matching time grids were implemented with the use of L2 projection

4



functions to exchange data on the space-time interface between different time grids.

The content and structure of this Dissertation This dissertation mainly aims to study the

global-in-time DD methods introduced in [67] for FSI systems using nonconforming time discretiza-

tion. We consider two global-in-time domain decomposition methods [64], the Steklov-Poincare

method and the Schwarz waveform relaxation (SWR) method based on Robin transmission condi-

tions, also known as the Robin method.

In part I we study both global-in-time DD methods mentioned above for an FSI system

with elastic structure using nonconforming time discretization. In the Steklov-Poincaré operator

method, we introduce a Lagrange multiplier and derive the weak formulation of the fluid-structure

system where one of the interface conditions is imposed through the use of a Lagrange multiplier.

The remaining interface condition is used to define Steklov-Poincaré type operators that help in

formulating a time-dependent interface problem which is solved using an iterative method. In the

SWR method, the coupled system is formulated as a time-dependent interface problem based on

Robin–Robin transmission conditions, for which the decoupling SWR algorithm is proposed and

proved for convergence.

In part II, we study the SWR method with Robin transmission conditions, for the mixed

formulation of the non-stationary Stokes-Darcy system using nonconforming time discretization.

Similar to part I, the coupled system is formulated as a time-dependent interface problem based

on Robin–Robin transmission conditions, for which the decoupling SWR algorithm is proposed and

proved for convergence. Additionally, we discuss how the choice of the Robin coefficients affects the

accuracy of numerical solutions in our numerical experiments. Further, we show that the problems

with a large difference in local time scales, e.g., low permeability in the Darcy region, can be efficiently

solved by the method under discussion.

In part III, we implement the Steklov-Poincare global-in-time domain decomposition ap-

proach to the FPSI system. We use interface conditions to define Steklov-Poincare type operators

that transform coupled systems into a nonlinear space-time interface problem. Such a nonlinear

space-time interface problem is then solved using a nested iteration algorithm. We present several

computational experiments using a non-physical problem and problems from hemodynamic and geo-

science applications to verify the convergence theory, illustrate the behavior of the method, and study

the robustness of the method with respect to the physical parameters. It’s worth highlighting that
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the space-time domain decomposition approach is fully implicit in time, allowing for the utilization

of not only different time steps but also significantly larger time step sizes without compromising

stability.

Additionally, in part IV, we propose a temporal numerical discretization scheme for the

3D fluid - 2D plate structure interaction system. We show the stability of the scheme and propose

a numerical algorithm that sequentially solves the fluid and plate subsystems through an effective

decoupling strategy. The biharmonic operator within the plate model presents a numerical challenge

that arises from the necessity of utilizing finite elements of class C1 for accurate approximation. Such

issues can be handled by either using mixed finite element methods or by using non-conforming

methods using Morley elements [76, 83, 84]. We chose the latter by using P2−Morley elements[46]

for the plate subproblem in all the numerical simulations. We perform the numerical experiments

firstly using time-dependent manufactured solutions and secondly considering the free vibration of

the plate to show the accuracy of the algorithm.

Finally, a conclusion is given summarizing the results of this dissertation and detailing future

work and the areas that still need attention.
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Part I

Fluid/Elastic Structure
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Chapter 2

Model equations

The FSI problem involves coupling an incompressible Newtonian fluid with a linear elastic

structure. To simplify the problem and conduct a rigorous analysis, we assume that the fluid is

governed by the linear Stokes equations in a fixed domain. However, the proposed DD schemes can

be extended to a nonlinear FSI system, as demonstrated in [67]. See Remark 3.1.1 for more details.

Suppose the domain under consideration comprises two bounded regions Ωf ,Ωs ∈ RI d, d =

2, 3, separated by the common interface Γ. See Figure 2.1. The free fluid occupies the first region

Ωf and has boundary ∂Γf = Γf ∪ Γ. A saturated elastic structure occupies the second region Ωs

with the boundary ∂Γs = Γs ∪ Γ.

ns

nf

Γs

Γf

Ωf

Ωs

Γ

Figure 2.1: Two-dimensional domain formed by FSI system
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Consider the fluid equations:

ρf∂tu− 2νf ∇ ·D(u) +∇p = ff in Ωf × (0, T ) , (2.0.1)

∇ · u = 0 in Ωf × (0, T ) , (2.0.2)

u = 0 in Γf × (0, T ) , (2.0.3)

u(., 0) = u0 in Ωf , (2.0.4)

where u denotes the velocity vector of the fluid, p the pressure of the fluid, ρf the density of the

fluid, νf the fluid viscosity, and ff the body force acting on the fluid. Here, D(u) is the strain rate

tensor

D(u) =
1

2

(
∇u+ (∇u)T

)
and the Cauchy stress tensor is given by

σf = 2νf D(u)− pI.

The equation (2.0.1) represents the conservation of linear momentum, while equation (2.0.2) repre-

sents the conservation of mass. The elastic system is represented by:

ρs∂
2
t η − 2νs ∇ ·D(η)− λ∇(∇ · η) = fs in Ωs × (0, T ) , (2.0.5)

η = 0 in Γs × (0, T ) , (2.0.6)

η(., 0) = η0 in Ωs , (2.0.7)

∂tη(., 0) = η̄0 in Ωs , (2.0.8)

where η is the displacement of the structure and fs is the body force. The total stress tensor for the

elastic structure is given by

σs = 2νsD(η) + λ(∇ · η)I,

where νs and λ denote the Lamé constants. The density of the elastic structure is denoted by ρs.

The fluid and elastic models, (2.0.1)-(2.0.4) and (2.0.5)-(2.0.8), are coupled via the following
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interface conditions:

σfnf = −σsns on Γ× (0, T ) , (2.0.9)

∂tη = u on Γ× (0, T ) , (2.0.10)

where nf and ns denote outward unit normal vectors to Ωf and Ωs, respectively. These interface

conditions suffice to precisely couple the Stokes system (2.0.1)-(2.0.4) to the structure system (2.0.5)-

(2.0.8), imposing the balance of normal stresses and the continuity of velocity.

2.1 Weak formulation

To establish a weak formulation of the problem, we adopt standard notation for Sobolev

spaces and their associated norms and seminorms. For S ⊂ RI d, the norm for the Hilbert space

Hm(S) is denoted by ∥ · ∥m,S . For m = 0, (·, ·)S and ∥ · ∥S denote the inner product and the norm

in L2(S) respectively. Moreover, if S = Ωf or Ωs, and the context is clear, S will be omitted, i.e.,

(·, ·) = (·, ·)Ωf
or (·, ·)Ωs

for functions defined in Ωf and Ωs. For F ⊂ RI d−1 such that F ⊂ ∂Ωf∩∂Ωs,

we use ⟨·, ·⟩F to denote the duality pairing between H−1/2(F ) and H1/2(F ).

Define the function spaces for the fluid velocity u, the fluid pressure p, and the displacement

η as

X := {v ∈ H1(Ωf ) : v = 0 on Γf},

Q := L2(Ωf ),

Σ := {ξ ∈ H1(Ωs) : ξ = 0 on Γs}.

We also define the div-free space for the fluid velocity,

V := {v ∈ X : (q,∇ · v) = 0,∀q ∈ Q} .

The spaces V and Q satisfy the inf-sup condition,

inf
q∈Q

sup
v∈V

(q,∇ · v)
∥q∥∥∇v∥

≥ β > 0. (2.1.1)
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The variational formulation for the fluid-structure system (2.0.1)-(2.0.8) is given by: given the initial

conditions, find (u, p,η) ∈ (X, Q,Σ), for a.e. t ∈ (0, T ), such that

ρf (∂tu, v) + (2νfD(u), D(v))− (p,∇ · v)

= (ff ,v) +
〈
σfnf ,v

〉
Γ

∀v ∈ X , (2.1.2)

(q,∇ · u) = 0 ∀q ∈ Q , (2.1.3)

ρs

(
∂2
t η, ξ

)
+ 2νs(D(η), D(ξ)) + λ(∇ · η,∇ · ξ)

= (fs, ξ) + ⟨σsns, ξ⟩Γ ∀ξ ∈ Σ. (2.1.4)
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Chapter 3

Global-in-time domain

decomposition schemes

This chapter discusses time-dependent interface problems for the fluid-structure system,

from which global-in-time domain decomposition methods are developed.

3.1 Time-dependent Steklov-Poincaré operator

We introduce the Lagrange multiplier g ∈ Λ := H−1/2(Γ) representing

g := σfnf = −σsns on Γ× (0, T ) . (3.1.1)

The equations (2.1.2)-(2.1.4) are then rewritten as

ρf (∂tu, v) + (2νfD(u), D(v))− (p,∇ · v)

= (ff ,v) + ⟨g,v⟩Γ ∀v ∈ X , (3.1.2)

(q,∇ · u) = 0 ∀q ∈ Q , (3.1.3)

ρs

(
∂2
t η, ξ

)
+ 2νs(D(η), D(ξ)) + λ(∇ · η,∇ · ξ)

= (fs, ξ)− ⟨g, ξ⟩Γ ∀ξ ∈ Σ. (3.1.4)
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Let Λ∗ denote the dual space of Λ and define the following interface operators:

Sf : L2(0, T ;Λ) −→ L2(0, T ;Λ∗), Sf (g) = u(g)|Γ ,

Ss : L
2(0, T ;Λ) −→ L2(0, T ;Λ∗), Ss(g) = −∂η(g)

∂t
|Γ,

where u(g) and η(g) are the solutions to the Stokes problem (3.1.2)-(3.1.3) and the structure problem

(3.1.4). In (3.1.2)-(3.1.4), the interface condition (2.0.9) has been imposed through the use of a

common g, however, the interface condition (2.0.10) is not enforced. Therefore, the remaining

condition (2.0.10) leads to the following time-dependent interface problem:

for a.e t ∈ (0, T ), find g(t) ∈ L2(0, T,Λ) satisfying

∫ T

0

(
⟨Sf (g),v⟩+ ⟨Ss(g),v⟩

)
ds = 0 ∀v ∈ L2(0, T,Λ). (3.1.5)

The evolutionary interface problem (3.1.5) can be solved using iterative methods, e.g., a Krylov

method.

Remark 3.1.1. If the nonlinear Stokes or the Navier-Stokes equations are considered for the FSI

system, the interface operator is nonlinear, and an iteration formula for the nonlinear problem is

defined using the linearized fluid equations. See [67].

3.2 Robin transmission conditions and the space-time inter-

face problem

The two-sided Robin interface conditions on Γ are established by linearly combining equa-

tions (2.0.9) and (2.0.10) with coefficients of (αf , 1) and (−αs, 1), respectively, where αf , αs > 0

[54]:

gf := αfu+ σfnf = αf∂tη − σsns , (3.2.1)

gs := −αs∂tη − σsns = −αsu+ σfnf . (3.2.2)

Assume that gf and gs have the L2-regularity in space, to define an interface operator for the

variables and analyze the DD algorithm discussed later in this section. If we let gf be a Robin
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condition for the Stokes equations with the parameter αf > 0 as in the left-hand side of (3.2.1), the

corresponding weak formulation is given as follows: find (u, p) ∈ (X, Q), for a.e. t ∈ (0, T ), such

that

ρf (∂tu,v) + 2νf (D(u), D(v))− (p,∇ · v)

+αf (u,v)Γ = (ff ,v) + (gf ,v)Γ ∀v ∈ X , (3.2.3)

(q, (∇ · u) = 0 ∀q ∈ Q . (3.2.4)

Similarly, considering gs as a Robin condition for the elastic system with the parameter αs > 0 as

in (3.2.2), we have the weak formulation given by: find η ∈ Σ, for a.e. t ∈ (0, T ) satisfying

ρs

(
∂2
t η, ξ

)
+ 2νs(D(η), D(ξ)) + λ(∇ · η,∇ · ξ) + αs(∂tη, ξ)Γ

= (fs, ξ)− (gs, ξ)Γ, ∀ξ ∈ Σ. (3.2.5)

Denote by (u, p) =
(
u(gf , ff ,u0), p(gf , ff ,u0)

)
the solution to the Stokes problem (3.2.3)-

(3.2.4), and η = η(gs, fs,η0, η̄
0) the solution to the structure problem (3.2.5). To derive the interface

problem associated with the Robin conditions (3.2.1)-(3.2.2), we first define the interface operator:

R :
(
L2(0, T ; L2(Γ))

)2
→
(
L2(0, T ; L2(Γ))

)2
,

such that

R

 gf

gs

 =

 gs + (αs + αf )
(
∂tη(gs, fs,η0, η̄0)

)
|Γ

gf − (αf + αs)
(
u(gf , ff ,u0)

)
|Γ

 . (3.2.6)

The Robin transmission conditions (3.2.1)-(3.2.2) are then equivalent to the following space-time

interface problem for two interface variables gf and gs:

SR

 gf

gs

 = χR on Γ× (0, T ), (3.2.7)
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where

SR

 gf

gs

 =

 gf

gs

−

 gs + (αs + αf )
(
∂tη(gs,0,0,0)

)
|Γ

gf − (αf + αs)
(
u(gf ,0,0)

)
|Γ


and

χR =

 (αs + αf )
(
∂tη(0, fs,η0, η̄0)

)
|Γ

−(αf + αs)
(
u(0, ff ,u0)

)
|Γ

 .

The weak form of (3.2.7) reads as: find (gf ,gs) ∈
(
L2(0, T ; L2(Γ))

)2
, for a.e. t ∈ (0, T ), such that

∫ T

0

∫
Γ

SR

 gf

gs

 ·

 ξf

ξs


 dγ dt =

∫ T

0

∫
Γ

χR ·

 ξf

ξp


 dγ dt (3.2.8)

∀
(
ξf , ξp

)
∈
(
L2(0, T ; L2(Γ))

)2
.

The interface problem (3.2.8) is solvable by iterative methods such as GMRES and simple

Jacobi-type methods. We consider a Schwarz waveform relaxation (SWR) algorithm based on Robin

transmission conditions and show the convergence of the algorithm.

3.3 Schwarz waveform relaxation (SWR) algorithm and con-

vergence analysis

Consider the following SWR algorithm based on Robin transmission conditions: at the kth

iteration step we solve

ρf∂tu
k −∇ · (2νfD(uk)− pkI) = ff in Ωf × (0, T ) , (3.3.1)

∇ · uk = 0 in Ωf × (0, T ) , (3.3.2)

αfu
k + σk

fnf = αf∂tη
k−1 − σk−1

s ns on Γ× (0, T ) , (3.3.3)

for (uk, pk) satisfying the initial and boundary conditions (2.0.4), (2.0.3), and

ρs∂
2
t η

k − 2νs ∇ ·D(ηk)− λ∇(∇ · ηk) = fks in Ωs × (0, T ) , (3.3.4)

−αs∂tη
k − σk

sns = −αsu
k−1 + σk−1

f nf on Γ× (0, T ) (3.3.5)
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for ηk satisfying (2.0.6)-(2.0.8). The weak formulation of this decoupled system is written as: at the

kth iteration, find (uk, pk,ηk) ∈ (X, Q,Σ), for a.e. t ∈ (0, T ), such that

ρf

(
∂tu

k, v
)
+ (2νfD(uk), D(v))− (pk,∇ · v) + αf (u

k,v)Γ

= (ff ,v) +
(
αf∂tη

k−1 − σk−1
s ns,v

)
Γ

∀v ∈ X , (3.3.6)

(q,∇ · uk) = 0 ∀q ∈ Q , (3.3.7)

ρs

(
∂2
t η

k, ξ
)
+ 2νs(D(ηk), D(ξ)) + λ(∇ · ηk,∇ · ξ) + αs(∂tη

k, ξ)Γ

= (fs, ξ)− (−αsu
k−1 + σk−1

f nf , ξ)Γ, ∀ξ ∈ Σ. (3.3.8)

In the next theorem, we prove the convergence of the proposed algorithm.

Theorem 3.3.1. Suppose ff ∈ X∗, fs ∈ Σ∗ and αs ≥ αf > 0. If an initial (u0,η0, η̄0) is chosen

such that the Robin-Robin conditions (3.2.1), (3.2.2) are well-defined in L2(Γ) for a.e. t ∈ (0, T ),

then the weak formulation (3.3.6)-(3.3.8) generates a convergent sequence of iterates

(uk,ηk) ∈ L∞(0, T ;X)× L∞(0, T ;Σ).

With an additional regularity assumption for σsns the pressure pk also converges in L2(0, T ;Q).

Proof. Since the equations (3.3.6)-(3.3.8) are linear, we show that the iterate (uk, pk,ηk) converges

to zero in suitable norms by setting ff = u0 = 0 and fs = η0 = η̄0 = 0. Taking v = uk and q = pk

in (3.3.6) and (3.3.7), we get

ρf

(
∂tu

k, uk
)
+ (2νfD(uk), D(uk)) + αf (u

k,uk)Γ

=
(
αf∂tη

k−1 − σk−1
s ns,u

k
)
Γ
. (3.3.9)

Using the identity

(σk
fnf + αfu

k)2 − (σk
fnf − αsu

k)2 = 2(αf + αs)(σ
k
fnf )(u

k) + (α2
f − α2

s)(u
k)2 (3.3.10)
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and the Robin condition (3.3.3), we can rewrite (3.3.9) as

ρf

(
∂tu

k, uk
)
+ 2νf

∥∥∥D(uk)
∥∥∥2
Ωf

+
1

2(αf + αs)

∫
Γ

(σk
fnf − αsu

k)2 dγ

=
1

2(αf + αs)

∫
Γ

(σk
fnf + αfu

k)2 dγ +
1

2
(αs − αf )

∫
Γ

(uk)2 dγ

=
1

2(αf + αs)

∫
Γ

(−σk−1
s ns + αf∂tη

k−1)2 dγ +
1

2
(αs − αf )

∫
Γ

(uk)2 dγ. (3.3.11)

We then integrate over (0, t) for a.e. t ∈ (0, T ]. And, since uk ∈ H1(Ωf ), apply the trace theorem

and Young’s inequality to obtain,

ρf
2

∥∥∥uk
∥∥∥2
Ωf

+ 2νf

∫ t

0

∥∥∥D(uk)
∥∥∥2
Ωf

ds+
1

2(αf + αs)

∫ t

0

∫
Γ

(σk
fnf − αsu

k)2dγ ds

≤ 1

2(αf + αs)

∫ t

0

∫
Γ

(−σk−1
s ns + αf∂tη

k−1)2dγ ds+ C

∫ t

0

∥∥∥uk(s)
∥∥∥
Ωf

∥∥∥D(uk(s))
∥∥∥
Ωf

dγ ds

≤ 1

2(αf + αs)

∫ t

0

∫
Γ

(−σk−1
s ns + αf∂tη

k−1)2dγ ds

+C

∫ t

0

(
1

4ϵ

∥∥∥uk(s)
∥∥∥2
Ωf

+ ϵ
∥∥∥D(uk(s))

∥∥∥2
Ωf

)
ds (3.3.12)

for some constant C > 0 and ϵ > 0. Choosing ϵ = νf/C, we have

ρf
2

∥∥∥uk
∥∥∥2
Ωf

+ νf

∫ t

0

∥∥∥D(uk)
∥∥∥2
Ωf

ds+
1

2(αf + αs)

∫ t

0

∫
Γ

(σk
fnf − αsu

k)2dγ ds

≤ 1

2(αf + αs)

∫ t

0

∫
Γ

(−σk−1
s ns + αf∂tη

k−1)2dγ ds+ C

∫ t

0

∥∥∥uk(s)
∥∥∥2
Ωf

ds, (3.3.13)

where C = C
2
/(4νf ). Now, similarly for the structure part, taking ξ = ∂tη

k in (3.3.8),

ρs

(
∂2
t η

k, ∂tη
k
)
+ 2νs(D(ηk), D(∂tη

k)) + λ(∇ · ηk,∇ · ∂tηk) + αs(∂tη
k, ∂ηk)Γ

= −(−αsu
k−1 + σk−1

f nf , ∂tη
k)Γ. (3.3.14)

Using the identity

(−σk
sns − αs∂tη

k)2 − (−σk
sns + αf∂tη

k)2 = 2(αf + αs)(σ
k
sns)(∂tη

k) + (α2
s − α2

f )(∂tη
k)2 (3.3.15)
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and the Robin condition (3.3.5), (3.3.14) implies

ρs

(
∂2
t η

k, ∂tη
k
)
+ 2νs(D(ηk), ∂tD(ηk)) + λ(∇ · ηk, ∂t∇ · ηk)

+
αs − αf

2

∫
Γ

(∂tη
k)2 dγ +

1

2(αf + αs)

∫
Γ

(−σk
sns + αf∂tη

k)2 dγ

≤ 1

2(αf + αs)

∫
Γ

(−σk
sns − αs∂tη

k)2 dγ. (3.3.16)

Integrate over (0, t) for a.e. t ∈ (0, T ) and apply the Robin boundary conditions (3.3.5) to obtain

ρs
2

∥∥∥∂tηk
∥∥∥2
Ωs

+ νs

∥∥∥D(ηk)
∥∥∥2
Ωs

+
λ

2

∥∥∥∇ · ηk
∥∥∥2
Ωs

+
αs − αf

2

∫ t

0

∥∥∥∂tηk
∥∥∥2
Γ
ds

+
1

2(αf + αs)

∫ t

0

∫
Γ

(−σk
sns + αf∂tη

k)2 dγ ds

≤ 1

2(αf + αs)

∫ t

0

∫
Γ

(σk−1
f nf − αsu

k−1)2 dγ ds. (3.3.17)

Define, for all k ≥ 1 and for a.e. t ∈ (0, T ],

Ek(t) :=
ρf
2

∥∥∥uk(t)
∥∥∥2
Ωf

+ νf

∫ t

0

∥∥∥D(uk)
∥∥∥2
Ωf

ds+
ρs
2

∥∥∥∂tηk
∥∥∥2
Ωs

+νs

∥∥∥D(ηk)
∥∥∥2
Ωs

+
λ

2

∥∥∥∇ · ηk
∥∥∥2
Ωs

+
αs − αf

2

∫ t

0

∥∥∥∂tηk
∥∥∥2
Γ
ds,

Bk(t) :=
1

2(αf + αs)

∫ t

0

∥∥∥σk
fnf − αsu

k
∥∥∥2
Γ
ds

+
1

2(αf + αs)

∫ t

0

∥∥∥−σk
sns + αf∂tη

k
∥∥∥2
Γ
ds ,

where
αs−αf

2 ≥ 0 with the assumption αs ≥ αf . Adding (3.3.13) to (3.3.17) yields

Ek(t) +Bk(t) ≤ Bk−1(t) + C

∫ t

0

∥uk(s)∥2Ωf
ds ,

and summing over the iterates for any given K > 0, we obtain

K∑
k=1

Ek(t) ≤ B0(t) + C

K∑
k=1

∫ t

0

∥uk(s)∥2Ωf
ds. (3.3.18)

In (3.3.18)

B0(t) =
1

2(αf + αs)

∫ t

0

g0 ds,
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where g0 =
∥∥∥σ0

fnf − αsu
0
∥∥∥2
Γ
+
∥∥−σ0

sns + αf∂tη
0
∥∥2
Γ

is obtained by the initial guess. Now, the

definition of Ek(t) and (3.3.18) yield

ρf
2

K∑
k=1

∥uk(t)∥2Ωf
≤ B0(t) + C

K∑
k=1

∫ t

0

∥uk(s)∥2Ωf
ds,

and applying Gronwall’s lemma, we obtain

K∑
k=1

∥uk(t)∥2Ωf
≤ 2B0(T )

ρf
e

2CT
ρf (3.3.19)

for any K > 0 and a.e. t ∈ (0, T ). The inequality (3.3.19) implies that uk converges to 0 in

L∞(0, T ;L2(Ωf )) as k → ∞. Also, the inequalities (3.3.18) and (3.3.19) yield

K∑
k=1

(
νf

∫ t

0

∥∥∥D(uk)
∥∥∥2
Ωf

ds+
ρs
2

∥∥∥∂tηk
∥∥∥2
Ωs

+ νs

∥∥∥D(ηk)
∥∥∥2
Ωs

+
λ

2

∥∥∥∇ · ηk
∥∥∥2
Ωs

+
αs − αf

2

∫ t

0

∥∥∥∂tηk
∥∥∥2
Γ
ds

)
≤

(
1 +

2CT

ρf
e

2CT
ρf

)
B0(T ), (3.3.20)

which implies that D(uk), ∂tη
k, D(ηk), ∇ · ηk converge to 0 in L2(0, T ;L2(Ωf )), L

∞(0, T ;L2(Ωs)),

L∞(0, T ;L2(Ωs)), L
∞(0, T ;L2(Ωs)), respectively, as k → ∞. In addition, σk

sns converges to 0 in

L∞(0, T ;L2(Ωs)) by its definition, and using Poincaré-Friedrichs inequality, the convergence of ηk

to 0 in L∞(0, T ;L2(Ωs)) is obtained.

By the Robin condition (3.2.2) with gs ∈ L2(Γ), the trace σsns on Γ is in L2(Γ) for a.e.

t ∈ (0, T ). We prove the convergence of pk with additional regularity assumption that σsns is

H1(Ωs) for a.e. t ∈ (0, T ). First, we estimate a bound for the time derivative term in (3.3.6). For

v ∈ V the equation (3.3.6) is written as

ρf (∂tu
k,v) = −2νf (D(uk), D(v))− αf (u

k,v)Γ + (αf∂tη
k−1 − σk−1

s ns,v)Γ , (3.3.21)

and the right-hand side terms in (3.3.21) are bounded using Cauchy-Schwarz inequality, the trace

theorem, Korn’s inequality, Poincaré-Friedrichs inequality. Then, dividing both sides by ∥∇v∥Ωf

and taking supremum over v ∈ V, we have, for some constant Ĉ > 0,

ρf∥∂tuk∥V∗ ≤ Ĉ( ∥D(uk)∥Ωf
+ ∥∂tηk−1∥Γ + ∥σk−1

s ns∥Γ ) .
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The norm equivalence of ∥ · ∥X∗ and ∥ · ∥V∗ (see Lemma 1 in [53]) then implies, for some constant

C∗ > 0,

ρf∥∂tuk∥X∗ ≤ C∗( ∥D(uk)∥Ωf
+ ∥∂tηk−1∥Γ + ∥σk−1

s ns∥Γ ) . (3.3.22)

To estimate a bound for pk, consider (3.3.6) with v ∈ X. We isolate the pressure term,

divide by ∥∇v∥Ωf
, take supremum over v ∈ X. Then the inf-sup condition (2.1.1) and the estimate

(3.3.22) yield

β∥pk∥Ωf
≤ (1 + C∗)( ∥D(uk)∥Ωf

+ ∥∂tηk−1∥Γ + ∥σk−1
s ns∥Γ ) .

for some β > 0. If we square both sides, integrate over the interval (0, t) for a.e. t ∈ (0, T ), then

using the trace theorem,

β2

3(1 + C∗)2

∫ t

0

∥pk∥2Ωf
ds ≤

∫ t

0

( ∥D(uk)∥2Ωf
+ ∥∂tηk−1∥1,Ωs

∥∂tηk−1∥Ωs

+∥σk−1
s ns∥1,Ωs

∥σk−1
s ns∥Ωs

) ds . (3.3.23)

Now, ∥∂tηk−1∥1,Ωs
, ∥σk−1

s ns∥1,Ωs
< ∞ as ∂tη

k−1,σk−1
s ns ∈ H1(Ωs) for a.e. t ∈ (0, T ). Hence

the convergence of D(uk), ∂tη
k, σk

sns implies that

∫ t

0

∥pk∥2Ωf
ds converges to 0 as k → ∞, i.e., pk

converges to 0 in L2(0, T ;L2(Ωf )).
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Chapter 4

Nonconforming time discretization

The global-in-time DD approach allows the use of separate time discretizations in each sub-

domain because the local problems are still time-dependent. On the space-time interface, the transfer

of information between different time grids is achieved through a suitable projection technique.

4.1 Notation

Consider τf be a partition of time interval (0, T ) into subintervals for the Stokes domain.

Let Jm
f := (tm−1

f , tmf ] and step size ∆tmf := tmf − tm−1
f for m = 1, .....,Mf . The space of piecewise

constant functions in time on grid τf , with values in W = L2(Γ), is denoted by P0(τf ,W ):

P0(τf ,W ) = {ϕ : (0, T ) → W,ϕ is constant on Jm
f ∀m = 1, ....,Mf}.

Similarly, we define τs,Ms, J
n
s and ∆tns for the structure domain. To exchange data on the space-

time interface between different time grids, we introduce the L2 projection Πs,f from P0(τf ,W ) onto

P0(τs,W ) [66]:

Πs,f (ϕ)|Jn
s
=

1

|Jn
s |

Mf∑
l=1

∫
Jn
s ∩Jl

f

ϕ.

The projection Πf,s from P0(τs,W ) onto P0(τf ,W ) is also defined similarly.
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Figure 4.1: The fluid and structure domains
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Figure 4.2: Nonconforming time grids
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Figure 4.3: Projection of nonconforming time
grids in two dimensions

4.2 Semi-discrete FSI system and discrete convergence anal-

ysis

We discretize the FSI system in time as a parabolic problem using an additional variable

η̇ ∈ Σ, representing ∂tη. Using the backward Euler method, the semi-discrete FSI system with

Robin transmission conditions (3.2.1) and (3.2.2) is given by: for m = 1, .....,Mf

ρf (u
m − um−1) + ∆tmf (−2νf∇ ·D(um) +∇pmI) = fmf in Ωf , (4.2.1)

∇ · um = 0 in Ωf , (4.2.2)

∆tmf

(
αfu

m + σm
f nf

)
=

∫
Jm
f

Πf,s

(
αf η̇ − σsns

)
dt on Γ, (4.2.3)
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and for n = 1, .....,Ms

ρs(η̇
n − η̇n−1)− 2νs∆tns ∇ ·D(ηn)− λ∆tns∇(∇ · ηn) = fns in Ωs , (4.2.4)

(ηn − ηn−1)−∆tns η̇
n = 0 in Ωs (4.2.5)

∆tns (−αsη̇
n − σn

sns) =

∫
Jn
s

Πs,f

(
−αsu+ σfnf

)
dt on Γ, (4.2.6)

where (u, p) = (um, pm)
Mf

m=1 satisfies the boundary condition (2.0.3) and the initial condition (2.0.4),

and (η, η̇) = (ηn, η̇n)Ms
n=1 satisfies the boundary condition (2.0.6) and the initial conditions (2.0.7),

(2.0.8).

Next, we present the semi-discrete SWR algorithm and prove the convergence of the itera-

tions. Consider the following algorithm. In the kth iteration step, solve

ρf (u
k,m − uk,m−1) + ∆tmf (−2νf∇ ·D(uk,m) +∇pk,mI) = fmf in Ωf , (4.2.7)

∇ · uk,m = 0 in Ωf , (4.2.8)

∆tmf

(
αfu

k,m + σk,m
f nf

)
=

∫
Jm
f

Πf,s

(
αf η̇

k−1 − σk−1
s ns

)
dt on Γ, (4.2.9)

for (uk,m, pk,m) satisfying (2.0.3) and (2.0.4), where uk,0 = u0, uk,m := uk|Jm
f
, pk,m := pk|Jm

f
for

m = 1, .....,Mf , and

ρs(η̇
k,n − η̇k,n−1)− 2νs∆tns ∇ ·D(ηk,n)− λ∆tns∇(∇ · ηk,n) = fns in Ωs , (4.2.10)

(ηk,n − ηk,n−1)−∆tns η̇
k,n = 0 in Ωs, (4.2.11)

∆tns

(
−αsη̇

k,n − σk,n
s ns

)
=

∫
Jn
s

Πs,f

(
−αsu

k−1 + σk−1
f nf

)
dt on Γ (4.2.12)

for (ηk,n, η̇k,n) satisfying (2.0.6)-(2.0.8), where ηk,0 = η0, ηk,n := ηk|Jn
s

η̇k,0 = η̄0, η̇k,n := η̇k|Jn
s

for n = 1, .....,Ms. In the next theorem we show that the weak solution to (4.2.7)-(4.2.12) converges

to the weak solution of (4.2.1)-(4.2.5) as k → ∞.

Theorem 4.2.1. Suppose the initial guess (u0, p0,η0, η̇0) is chosen such that the Robin-Robin con-

ditions (4.2.9) and (4.2.12) are well-defined in L2(Γ). With an additional regularity assumption

for σsns and the condition that αf = αs, the weak formulation (4.2.7)-(4.2.12) defines a unique

23



sequence of iterates

(uk, pk,ηk, η̇k) ∈ P0(τf ,X)× P0(τf , Q)× P0(τs,Σ)× P0(τs,Σ)

that converges to the weak solution of (4.2.1)-(4.2.6).

Proof. Since the equations are linear, we can set ff = fs = u0 = η0 = η̇0 = 0, and proceed to derive

energy estimates following the proof of Theorem 3.3.1. We multiply the equations (4.2.7) and (4.2.8)

by uk,m and pk,m, respectively, use (3.3.10), and add the resulting equations together to obtain

ρf (u
k,m,uk,m)Ωf

− ρf (u
k,m−1,uk,m)Ωf

+ 2νf∆tmf

∥∥∥D(uk,m)
∥∥∥2
Ωf

+
∆tmf

2(αf + αs)

∥∥∥σk,m
f nf − αsu

k,m
∥∥∥2
Γ

≤
∆tmf

2(αf + αs)

∥∥∥σk,m
f nf + αfu

k,m
∥∥∥2
Γ
+

∆tmf
2

(αs − αf )
∥∥∥uk,m

∥∥∥2
Γ
. (4.2.13)

By using Cauchy-Schwarz inequality and 1
2 (a

2 − b2) ≤ a2 − ab, we can obtain

ρf
2

(
∥uk,m∥2Ωf

− ∥uk,m−1∥2Ωf

)
+ 2νf

∫
Jm
f

∥∥∥D(uk)
∥∥∥2
Ωf

dt

+
1

2(αf + αs)

∫
Jm
f

∥∥∥σk
fnf − αsu

k
∥∥∥2
Γ
dt

≤ 1

2(αf + αs)

∫
Jm
f

∥∥∥σk
fnf + αfu

k
∥∥∥2
Γ
dt+

(αs − αf )

2

∫
Jm
f

∥∥∥uk
∥∥∥2
Γ
dt. (4.2.14)

Next, multiply (4.2.10) by η̇k,n, integrate over Ωs and use (4.2.11) and (3.3.15) to have

ρs
2

(
∥η̇k,n∥2Ωs

− ∥η̇k,n−1∥2Ωs

)
+ νs

(∥∥∥D(ηk,n)
∥∥∥2
Ωs

−
∥∥∥D(ηk,n−1)

∥∥∥2
Ωs

)
+
λ

2

(∥∥∥∇ · ηk,n
∥∥∥2
Ωs

−
∥∥∥∇ · ηk,n−1

∥∥∥2
Ωs

)
+

1

2(αf + αs)

∫
Jn
s

∥∥∥−σk
sns + αf η̇

k
∥∥∥2
Γ
dt

≤ 1

2(αf + αs)

∫
Jn
s

∥∥∥−σk
sns − αsη̇

k
∥∥∥2
Γ
dt− (αs − αf )

2

∫
Jn
s

∥∥∥η̇k
∥∥∥2
Γ
dt. (4.2.15)

To eliminate the last terms of equations (4.2.14) and (4.2.15), we assume that αf = αs, since we

cannot use Gronwall’s lemma as for the continuous case. By summing these equations over the
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subintervals in (0, tmf ] and (0, tns ], respectively, we obtain

ρf
2
∥uk,m∥2Ωf

+ 2νf

∫ tmf

0

∥∥∥D(uk)
∥∥∥2
Ωf

dt+
1

2(αf + αs)

∫ tmf

0

∥∥∥σk
fnf − αsu

k
∥∥∥2
Γ
dt

≤ 1

2(αf + αs)

∫ tmf

0

∥∥∥σk
fnf + αfu

k
∥∥∥2
Γ
dt, (4.2.16)

and

ρs
2
∥η̇k,n∥2Ωs

+ νs

∥∥∥D(ηk,n)
∥∥∥2
Ωs

+
λ

2

∥∥∥∇ · ηk,n
∥∥∥2
Ωs

+
1

2(αf + αs)

∫ tns

0

∥∥∥−σk
sns + αf η̇

k
∥∥∥2
Γ
dt

≤ 1

2(αf + αs)

∫ tns

0

∥∥∥−σk
sns − αsη̇

k
∥∥∥2
Γ
dt. (4.2.17)

We add (4.2.16) and (4.2.17), apply the Robin conditions (4.2.9) and (4.2.12) and set tmf = tns = T

to obtain the following.

ρf
2
∥uk,Mf ∥2Ωf

+ 2νf

∫ T

0

∥∥∥D(uk)
∥∥∥2
Ωf

dt

ρs
2
∥η̇k,Ms∥2Ωs

+ νs

∥∥∥D(ηk,Ms)
∥∥∥2
Ωs

+
λ

2

∥∥∥∇ · ηk,Ms

∥∥∥2
Ωs

+
1

2(αf + αs)

∫ T

0

∥∥∥σk
fnf − αsu

k
∥∥∥2
Γ
dt+

1

2(αf + αs)

∫ T

0

∥∥∥−σk
sns + αf η̇

k
∥∥∥2
Γ
dt

≤ 1

2(αf + αs)

∫ T

0

∥∥∥σk
fnf + αfu

k
∥∥∥2
Γ
dt+

1

2(αf + αs)

∫ T

0

∥∥∥−σk
sns − αsη̇

k
∥∥∥2
Γ
dt

≤ 1

2(αf + αs)

∫ T

0

∥∥∥Πs,f (σ
k−1
f nf − αsu

k−1)
∥∥∥2
Γ
dt

+
1

2(αf + αs)

∫ T

0

∥∥∥Πf,s(−σk−1
s ns + αf η̇

k−1)
∥∥∥2
Γ
dt

≤ 1

2(αf + αs)

∫ T

0

∥∥∥σk−1
f nf − αsu

k−1
∥∥∥2
Γ
dt

+
1

2(αf + αs)

∫ T

0

∥∥∥−σk−1
s ns + αf η̇

k−1
∥∥∥2
Γ
dt . (4.2.18)

Then, for all k > 0

ρf
2
∥uk,Mf ∥2Ωf

+ 2νf

∫ T

0

∥∥∥D(uk)
∥∥∥2
Ωf

dt+
ρs
2
∥η̇k,Ms∥2Ωs

+ νs

∥∥∥D(ηk,Ms)
∥∥∥2
Ωs

+
λ

2

∥∥∥∇ · ηk,Ms

∥∥∥2
Ωs

+Bk ≤ Bk−1, (4.2.19)
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where

Bk =
1

2(αf + αs)

∫ T

0

∥∥∥σk
fnf − αsu

k
∥∥∥2
Γ
dt+

1

2(αf + αs)

∫ T

0

∥∥∥−σk
sns + αf η̇

k
∥∥∥2
Γ
dt .

By summing over the iterates k, we conclude that ∥uk,Mf ∥Ωf
,
∫ T

0
∥D(uk)∥2Ωf

dt, ∥D(ηk,Ms)∥Ωs
,
∥∥∇ · ηk,Ms

∥∥
Ωs

and ∥η̇k,Ms∥Ωs converge to 0 as k → ∞. This implies
∫ tmf
0

∥D(uk)∥2Ωf
dt converges to 0 as k →

∞ for all m = 1, 2, · · ·,Mf , and also ∥D(uk,m)∥Ωf
converges 0 for all m = 1, 2, · · ·,Mf , as

uk ∈ P0(τf ,X). Now using Poincaré-Friedrichs inequality, ∥uk,m∥Ωf
≤ CPF1∥D(uk,m)∥Ωf

and

∥ηk,Ms∥Ωs ≤ CPF2∥D(ηk,Ms)∥Ωs for some constants CPF1, CPF2 > 0, which implies ∥uk,m∥Ωf

converges to 0 for all m = 1, 2, · · ·,Mf , and ∥ηk,Ms∥Ωs
also converges to 0 as k → ∞.

Next, we show the convergence of ηk,n η̇k,n and D(ηk,n) in the L2 norm for all n =

1, 2, · · ·,Ms. We multiply (4.2.10) by η̇k,n−1, integrate over Ωs, and use Cauchy-Schwarz inequality

and the Trace theorem to obtain

∥η̇k,n−1∥2Ωs
≤ Cs1

(
∥η̇k,n∥Ωs

∥η̇k,n−1∥Ωs
+ ∥D(ηk,n)∥Ωs

∥D(η̇k,n−1∥Ωs

+∥σk,n
s ns∥1/21,Ωs

∥σk,n
s ns∥1/2Ωs

∥η̇k,n−1∥1/21,Ωs
∥η̇k,n−1∥1/2Ωs

)
, (4.2.20)

for some constant Cs1 > 0. Similarly, from (4.2.11), for some constant Cs2 > 0,

∥ηk,n−1∥Ωs ≤ Cs2(∥ηk,n∥Ωs + ∥η̇k,n∥Ωs) . (4.2.21)

For n = Ms, ∥σk,n
s ns∥Ωs in (4.2.20) converges to 0 as k → ∞ by its definition and the conver-

gence of ∥D(ηk,Ms)∥Ωs
, hence the last term in (4.2.20) converges to 0 if σk,n

s ns has H1 regularity.

Then, (4.2.20) and (4.2.21), together with the fact that ∥η̇k,Ms∥Ωs
and ∥ηk,Ms∥Ωs

converge to 0,

imply ∥η̇k,Ms−1∥Ωs and ∥ηk,Ms−1∥Ωs converge to 0 as k → ∞. Now, multiplying (4.2.10) by ηk,n,

integrating over Ωs and using Cauchy-Schwarz inequality, (4.2.12) and the Trace theorem,

∥D(ηk,n)∥2Ωs
+ ∥∇ · ηk,n∥2Ωs

≤ Cs3

(
∥η̇k,n∥Ωs

∥ηk,n∥Ωs
+ ∥η̇k,n−1∥Ωs

∥ηk,n∥Ωs

+∥Πs,f |Jn
s
(uk−1 + σk−1

f nf )∥Γ∥ηk,n∥1/21,Ωs
∥ηk,n∥1/2Ωs

)
(4.2.22)

for some Cs3 > 0. Since gf ∈ L2(Γ), the convergence of ∥ηk,Ms−1∥Ωs to 0 implies that ∥D(ηk,Ms−1)∥Ωs

converges to 0. Therefore, in this way, we can show that ∥ηk,n∥Ωs
, ∥η̇k,n∥Ωs

and ∥D(ηk,n)∥Ωs
con-

26



verge to 0 as k → ∞ for all n = 1, 2, . . . ,Ms.

To establish the convergence of pk,m, we follow a similar approach to the continuous case,

and obtain the following result for some β > 0:

β∥pk,m∥Ωf
≤ (1 + C∗)( ∥D(uk,m)∥Ωf

+ ∥Πf,sη̇
k−1,m∥Γ + ∥Πf,sσ

k−1,m
s ns∥Γ ) .

Squaring both sides and integrating over the interval (0, tmf ], we get, for all m

β2

3(1 + C∗)

∫ tmf

0

∥pk∥2Ωf
dt ≤

∫ tmf

0

∥D(uk)∥2Ωf
ds+

∫ T

0

∥η̇k−1∥1,Ωs
∥η̇k−1∥Ωs

ds

+

∫ T

0

∥σk−1
s ns∥1,Ωs

∥σk−1
s ns∥Ωs

ds . (4.2.23)

The last term in (4.2.23) converges to 0 by the regularity assumption for σsns and the convergence

of ∥D(ηk,n)∥Ωs
for all n = 1, 2, . . . ,Ms. Then, the convergence of

∫ tmf
0

∥pk∥2Ωf
dt to 0 as k → ∞

follows from the convergence of ∥D(uk,m)∥2Ωf
and ∥η̇k,n∥Ωs

for all m and n. Finally, we have that

∥pk,m∥Ωf
converges to 0 for all m = 1, 2, . . . ,Mf , as p

k ∈ P 0(τf , Q).

4.3 Numerical results

We provide two numerical examples to demonstrate the effectiveness of our proposed meth-

ods. The first example is a manufactured problem with a known solution, which we use to assess

the accuracy and efficiency of the methods. The second example is a benchmark problem from the

field of hemodynamics that has been previously considered in [73, 88]. For both examples, we use

GMRES to achieve fast convergence when solving the interface problem (3.1.5) or (3.2.8). The SWR

algorithm analyzed in Section 4 is a Jacobi-type iterative method, thus we expect fast convergence

to be achieved by GMRES.

4.3.1 Test 1 : With a Known Analytical Solution

Consider an example with a known exact solution, where the fluid subdomain is Ωf =

(0, 1) × (0, 1) and the structure subdomain is Ωs = (0, 1) × (1, 2). The interface between the two
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subdomains is given by Γ = {(x, y) : 0 < x < 1, y = 1}. The chosen exact solution is

u =

 cos (x+ t) sin (y + t) + sin (x+ t) cos (y + t)

− sin (x+ t) cos (y + t)− cos (x+ t) sin (y + t)


p = 2νf (sin (x+ t) sin (y + t)− cos (x+ t) cos (y + t)) + 2νs cos (x+ t) sin (y + t)

η =

sin (x+ t) sin (y + t)

cos (x+ t) cos (y + t)

 .

The constants, ρs, ρf , νs, νf , and λ, are set to unity. For the Robin conditions (3.2.1) and (3.2.2)

we choose αf = αp = 1, and the tolerance for GMRES is set to ϵ = 10−7.

We test the convergence of both methods in space using Taylor-Hood elements for the fluid

subproblem and P2 elements for the structure subproblem, along with nonconforming time grids. We

then repeat the test using MINI elements for the fluid and P1 element for the structure subproblem.

The errors at the final time T = 0.00025 are presented in Tables 4.1-4.3 for all variable, with expected

convergence rates shown. To test convergence with respect to different time steps, we use ∆tcoarse to

denote the coarse time step size and set the fine time step size to be ∆tfine = ∆tcoarse/2. Numerical

tests are performed using three different types of time grids:

1. Coarse conforming time grids: ∆tf = ∆ts = ∆tcoarse,

2. Fine conforming time grids: ∆tf = ∆ts = ∆tfine,

3. Nonconforming time grids: ∆tf = ∆tcoarse and ∆ts = ∆tfine.

First, the Steklov-Poincaré interface problem (3.1.5) is solved using Taylor-Hood and P2 elements

with h = 1
32 and the three types of time grids given above, with ∆tcoarse ∈ {0.2, 0.1, 0.05, 0.0025}.

Then the same test is repeated using MINI andP1 elements with h = 1
64 and ∆tcoarse ∈ {0.4, 0.2, 0.1, 0.05}.

Figures 4.4 and 4.5 demonstrate the first-order convergence of solutions, showing the errors at

T = 0.2 and T = 0.4, respectively. For the nonconforming time grids, ∆tf = ∆tcoarse and

∆ts = ∆tfine. Thus, as expected, the fluid velocity and pressure errors for the nonconforming

time grids are close to the errors of the conforming coarse grids, while the displacement errors are

between the errors of the conforming fine and coarse grids. We also solve the interface problem

(3.2.8) using Taylor-Hood and P2 elements with the same condition as (3.1.5). Figure 4.6 shows a

result similar to the result obtained by the Steklov-Poincaré method in Figure 4.4.
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Next, we compare the computer running times for both methods using conforming and

nonconforming time grids on a fixed mesh. Computer running times for both methods are presented

in Table 4.4 and Table 4.5. The tables show that the computer running times for the nonconforming

cases are close to the conforming coarse cases than the conforming fine cases for both methods,

demonstrating the efficiency of the proposed methods. We also examine the convergence behavior

of GMRES by various Robin parameters, αf and αs. Table 4.6 presents the number of iterations

for various αs values when αf is fixed to 1. The table indicates that a higher αs value yields faster

convergence of GMRES iterations. However, in an additional test, we observe that the convergence

of GMRES is not much affected by αf values.

h 1/4 1/8 1/16 1/32

L2 error 1.99e-04 1.94e-05 [3.36] 2.52e-06 [2.95] 3.32e-07 [2.93]u
H1 error 5.91e-03 1.21e-03 [2.28] 3.03e-04 [2.00] 7.49e-05 [2.01]

p L2 error 5.28e-03 1.05e-03 [2.32] 2.49e-04 [2.08] 6.52e-05 [1.93]

L2 error 2.21e-04 2.31e-05 [3.26] 2.39e-06 [3.28] 3.10e-07 [2.94]η
H1 error 6.51e-03 1.40e-03 [2.22] 3.02e-04 [2.21] 7.62e-05 [1.99]

Table 4.1: Errors by the Steklov-Poincaré method using Taylor-Hood and P2 elements, ∆tf =
0.000025 and ∆ts = 0.000050.

h 1/4 1/8 1/16 1/32

L2 error 8.35e-03 1.98e-03 [2.08] 4.64e-04 [2.09] 1.20e-04 [1.96]u
H1 error 2.18e-01 8.25e-02 [1.40] 3.60e-02 [1.20] 1.79e-02[1.00]

p L2 error 8.24e-01 1.85e-01 [2.16] 5.01e-02 [1.88] 1.08e-02 [2.22]

L2 error 6.35e-03 1.40e-03 [2.18] 3.46e-04 [2.02] 8.76e-05 [1.98]η
H1 error 8.24e-02 3.82e-02 [1.11] 1.90e-02 [1.00] 9.43e-03 [1.01]

Table 4.2: Errors by the Steklov-Poincaré method using MINI and P1 elements, ∆tf = 0.000025
and ∆ts = 0.000050.

h 1/4 1/8 1/16 1/32

L2 error 1.98e-04 1.92e-05 [3.36] 2.50e-06 [2.94] 3.26e-07 [2.94]u
H1 error 5.90e-03 1.21e-03 [2.29] 3.01e-04 [2.00] 7.48e-05 [2.01]

p L2 error 5.52e-03 1.10e-03 [2.33] 2.56e-04 [2.10] 6.97e-05 [1.88]

L2 error 2.22e-04 2.31e-05 [3.26] 2.39e-06 [3.28] 3.10e-07 [2.94]η
H1 error 6.51e-03 1.40e-03 [2.22] 3.02e-04 [2.21] 7.62e-05 [1.99]

Table 4.3: Errors by the Robin method (αf = αs = 1) using Taylor-Hood and P2 elements,
∆tf = 0.000050, ∆ts = 0.000025.
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∆t

Steklov-Poincaré Method Robin Method (αf = αp = 1)

Conforming Nonconforming Conforming Nonconforming

0.2 335

376

526

532

0.1 651

802

942

947

0.05 1324

1537

1765

1785

0.025 2630

3053

3331

3474

0.0125 5201 6937

Table 4.4: Comparison of the computer running times (in seconds) of conforming and nonconforming
time grids using Taylor-Hood and P2 elements with h = 1/32.

∆t

Steklov-Poincaré Method

∆t

Robin Method (αf = αp = 1)

Conforming Nonconforming Conforming Nonconforming

0.4 2224

2784

0.8 7958

8060

0.2 4476

5408

0.4 14670

15403

0.1 9468

11137

0.2 27961

28217

0.05 18405

19198

0.1 51483

53867

0.025 38525 0.05 115693

Table 4.5: Comparison of the computer running times (in seconds) of conforming and nonconforming
time grids using MINI and P1 elements with h = 1/64.

αs 1 3 5 10 50 100
Iteration number 31 25 22 20 18 18

Table 4.6: Number of GMRES iterations for T = 0.2 using (∆tf ,∆ts) = (0.025, 0.0125) and αf = 1.
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Figure 4.4: Errors at T = 0.2 by the Steklov-Poincaré method using Taylor-Hood and P2 elements
with h = 1/32.

4.3.2 Test 2 : Haemodynamic Experiment

In this example, we consider the blood flow problem reported in [73, 88]. The domain and

the boundary conditions used for the computation are depicted in Figure 4.7. The force b(t) applied

to the left fluid boundary in Figure 4.7 denotes the stress at the inlet at t seconds and is defined as:

b(t) =


(
−103

(
1− cos 2πt

0.025

)
, 0
)

t ≤ 0.025

(0, 0)) 0.025 < t < T.

The parameters used in this example are in accordance with the characteristics of blood flow in the

human body. The density of the fluid, ρf , is 1 g/cm3 and the viscosity of the fluid, νf , is 0.035

g/cm·s. The density of the structure, ρs, is 1.1 g/cm3. The Young’s Modulus of the structure, E,
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Figure 4.5: Errors at T = 0.4 by the Steklov-Poincaré method using MINI and P1 elements with
h = 1/64.

is 3× 106 dyne/cm2 and the Poisson ratio, ν, is 0.3. The Lame parameters λ and νs are defined as

follows:

λ =
νE

(1− 2ν)(1 + ν)
dyne/cm

2
, νs =

E

2(1 + ν)
dyne/cm

2
.

Both the fluid and structure have volume forces of fs = ff = 0 dyne/cm2. Due to the closely

matched densities between the fluid and the structure, the problem is significantly impacted by the

added mass effect. Thus, when using a DD method at each time step, as in most DD approaches

for FSI, additional relaxation steps may be necessary for solution stability, in addition to the use of

a very fine time grid [88].

We simulate this example using the Steklov-Poincaré method without encountering the

stability issue, as our local problems are still time-dependent. A uniform mesh is employed to

spatially discretize the domains of both the fluid and structure, with hx and hy representing the
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Figure 4.6: Errors at T = 0.2 by the Robin method (αf = αs = 1) using Taylor-Hood and P2
elements with h = 1/32.
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spatial discretization in the x and y directions. For this test, the fluid and structure are approximated

using MINI elements and P1 element, respectively. We use a time step of ∆tf = 2 × 10−4 for the

fluid subdomain and ∆ts = 1×10−4 for the structure subdomain, with the final time set at T = 0.1.

By setting hx = 0.1 cm and changing hy between 0.1 cm and 1
30 cm, we monitor the vertical

displacement at three distinct points on the interface (see Figure 4.8). We observe similar vertical

displacement at each point for all values of hy. In [73] and [88], it is observed that the solution

heavily depends on spatial discretization, and the vertical displacements in Figure 4.8 are similar to

their results obtained by fine spatial discretization. Furthermore, we report the interface velocity

errors, 1
2∥u− η̇∥2Γ for different mesh sizes of hy in Table 4.7 at the final time T = 0.1 seconds.

uN = b(t)

ηD = 0

uN = 0

ηD = 0

uD = 0

ηN = 0

Ωs = [0, 6]× [1, 1.1]

Ωf = [0, 6]× [0, 1]

Γ

Figure 4.7: Domain and boundary conditions for Test2

Figure 4.8: Vertical displacement at three points on the interface with: (1) hx = 0.1 cm, hy = 0.1
cm, (2) hx = 0.1 cm, hy = 0.05 cm, and (3) hx = 0.1 cm, hy = 1

30 cm
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Values of hy Interface Velocity Error

0.1 2.05e-04

0.05 8.23e-05

1

30
2.87e-05

Table 4.7: Errors in the continuity of velocity between subsystems for hx = 0.1cm.
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Part II

Fluid/Porous Structure
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Chapter 5

Model Equations

Suppose the domain under consideration is made up of two regions Ωf ,Ωp ⊂ RI d, d = 2, 3,

separated by the common interface Γ = ∂Ωf ∩ ∂Ωp. The first region Ωf is occupied by a free fluid

flow and has the Lipschitz boundary ∂Ωf = Γf
D ∪ Γ and the second region Ωp is occupied by a

saturated porous structure with the Lipschitz boundary ∂Ωp = Γp
N ∪ Γ (see Figure 5.1). For the

fluid flow in Ωf we consider the Stokes equations with no-slip boundary condition on Γf
D:

∂uf

∂t
− 2νf∇ ·D(uf ) +∇pf = ff in Ωf × (0, T ) , (5.0.1)

∇ · uf = 0 in Ωf × (0, T ) , (5.0.2)

uf = 0 on Γf
D × (0, T ), (5.0.3)

uf (·, 0) = uf0 in Ωf , (5.0.4)

np
nf

Γp
N

Γf
D

Γp
N

Γf
D

Γp
N

Γf
D

Ωf

Ωp
Γ

Figure 5.1: Stokes-Darcy domain
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where uf denotes the velocity vector, pf the pressure, νf the fluid viscosity, ff the body force acting

on the fluid and D(uf ) :=
1
2

(
∇uf + (∇uf )

T
)
the rate of strain tensor. The porous medium flow is

represented by the Darcy model with no-flux boundary condition on Γp
N :

µeffK
−1up +∇pp = 0 in Ωp × (0, T ) , (5.0.5)

∂

∂t
(s0pp) +∇ · up = fp in Ωp × (0, T ) , (5.0.6)

up · np = 0 on Γp
N × (0, T ), (5.0.7)

pp(·, 0) = pp0 in Ωp, (5.0.8)

where pp is the pore pressure, up the Darcy velocity and fp the source/sink term. The constrained

specific storage coefficient is denoted by s0, µeff represents the effective fluid viscosity, and K the

permeability tensor of the porous medium. In general, K is a symmetric positive definite tensor.

For simplicity, we assume that µeffK
−1 is represented by νpI, i.e., µeffK

−1 := νpI for some scalar

function νp.

In order to complete the Stokes-Darcy model, we impose the following interface conditions:

uf · nf + up · np = 0 on Γ× (0, T ) , (5.0.9)

nf · (pfI− 2νfD(uf )) · nf = pp on Γ× (0, T ) , (5.0.10)

nf · (pfI− 2νfD(uf )) · tj = cBJSuf · tj , j = 1, ...., d− 1 on Γ× (0, T ), (5.0.11)

where nf and np denote outward unit normal vectors to Ωf and Ωp, respectively, tj , j = 1, ...., d− 1

denote the orthogonal set of unit tangent vectors on Γ, and cBJS denotes the resistance parameter

in the tangential direction. The interface condition (5.0.9) enforces the continuity of the normal

velocities, (5.0.10) enforces the continuity of the normal component of normal stress tensor and

(5.0.11) is the Beavers-Joseph-Saffman condition [69]. These interface conditions suffice to precisely

couple the Stokes system (5.0.1)-(5.0.4) to the Darcy system (5.0.5)-(5.0.8).

5.1 Function spaces and weak formulation

We use standard notation for Sobolev spaces, their associated norms and seminorms to

define a weak formulation of the problem. For example, for an open domain Θ ⊂ RI d, Wm,p(Θ) is
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the usual Sobolev space with the norm ∥ · ∥m,p,Θ. In case of p = 2, the Sobolev space Wm,2(Θ) is

denoted by Hm(Θ) with the norm ∥ · ∥m,Θ. When m = 0, Hm(Θ) coincides with L2(Θ). In this

case, the inner product and the norm will be denoted by (·, ·)Θ and ∥ · ∥Θ, respectively. Moreover, if

Θ = Ωf or Ωp, and the context is clear, Θ will be omitted, i.e., (·, ·) = (·, ·)Ωf
or (·, ·)Ωp for functions

defined in Ωf and Ωp. Finally, the associated space of vector valued functions will be denoted by a

boldface font. Define the following function spaces for (uf , pf ) and (up, pp):

Xf := {v ∈ H1(Ωf ) : v = 0 on Γf
D},

Qf := L2(Ωf ),

Vf := {vf ∈ Xf : (qf ,∇ · vf ) = 0,∀qf ∈ Qf} ,

X̂p := {v ∈ Hdiv(Ωp) : v · np = 0 on Γp
N},

Xp := {v ∈ X̂p : v · n |∂Ωp
∈ L2(∂Ωp)},

Qp := L2(Ωp) ,

where Xp is equipped with the norm

∥v∥2Xp
:= ∥v∥2Hdiv(Ωp)

+ ∥v · n∥2∂Ωp
.

Note that Xp is a subspace of X̂p with the additional regularity condition. The L2-regularity of

the normal trace of v ∈ Xp is needed for the convergence proof presented in the next section. The

spaces Xf and Qf satisfy the inf-sup condition,

inf
qf∈Qf

sup
vf∈Xf

(qf ,∇ · vf )

∥qf∥∥∇vf∥
≥ β > 0. (5.1.1)

The dual spaces X∗
f and V∗

f are endowed with the following dual norms

∥w∥X∗
f
:= sup

vf∈Xf

(w,vf )

∥∇vf∥
, ∥w∥V∗

f
:= sup

vf∈Vf

(w,vf )

∥∇vf∥
.

These norms are equivalent for functions in Vf as stated in the following lemma.
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Lemma 5.1.1. Let w ∈ Vf . Then, there exists C∗ > 0, such that

C∗∥w∥X∗
f
≤ ∥w∥V∗

f
≤ ∥w∥X∗

f
.

Proof. See Lemma 1 in [53].

For the variational formulation of the coupled Stokes-Darcy system, we introduce the La-

grange multiplier λ ∈ Λ := H
1/2
00 (Γ) [75] on the interface representing:

λ := nf · (pfI− 2νfD(uf )) · nf = pp on Γ× (0, T ) . (5.1.2)

Let Λ∗ be the dual space of Λ. For γ ⊂ Γ, we use ⟨·, ·⟩Γ to denote the duality pairing between

Λ and Λ∗. The variational formulation for the Stokes-Darcy system (5.0.1)-(5.0.8) satisfying the

interface conditions (5.0.9)-(5.0.11) reads as: given the initial conditions, find (uf , pf ,up, pp, λ) ∈

(Xf , Qf , X̂p, Qp,Λ), for a.e. t ∈ (0, T ), such that

(∂tuf ,vf ) + 2νf (D(uf ), D(vf )) − (pf ,∇ · vf ) +

d−1∑
j=1

cBJS(uf · tj ,vf · tj)Γ

= (ff ,vf ) + ⟨λ,vf · nf ⟩Γ ∀vf ∈ Xf , (5.1.3)

(qf ,∇ · uf ) = 0 ∀qf ∈ Qf , (5.1.4)

νp(up,vp)− (pp,∇ · vp) = ⟨λ,vp · np⟩Γ ∀vp ∈ X̂p , (5.1.5)

(qp, s0 ∂tpp) + (qp,∇ · up) = (fp, qp) ∀qp ∈ Qp , (5.1.6)

⟨uf · nf + up · np, µ⟩Γ = 0 ∀µ ∈ Λ . (5.1.7)

The well-posedness of the mixed Stokes-Darcy model (5.1.3)-(5.1.7) can be found in [75] for the sta-

tionary case and is assumed to hold similarly for the non-stationary case. For the smooth solutions,

the equivalence of the stationary Stokes-Darcy system and the variational formulation is discussed

in [42].
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Chapter 6

Global-in-time decoupling scheme

In this chapter we present a decoupling scheme for the Stokes-Darcy system based on global-

in-time domain decomposition. We first rewrite the physical transmission conditions as equivalent

Robin conditions and derive the associated space-time interface problem with two interface variables

in Subsection 6.1. Such an interface problem is solved iteratively, using Jacobi iterations or GM-

RES. The former choice is equivalent to the SWR algorithm, which is presented and analyzed in

Subsection 6.2.

6.1 Robin transmission conditions and the space-time inter-

face problem

For the Robin transmission conditions on Γ, let αf and αp be positive parameters. Com-

bining (5.0.9) and (5.0.10) linearly with coefficients (−αf , 1) and (αp, 1), we obtain the following

two-sided Robin interface conditions on Γ [38]:

nf · (pfI− 2νfD(uf )) · nf − αfuf · nf = pp + αfup · np on Γ× (0, T ) , (6.1.1)

pp − αpup · np = nf · (pfI− 2νfD(uf )) · nf + αpuf · nf on Γ× (0, T ). (6.1.2)

If we let gf ∈ L2(Γ) be a Robin condition for the Stokes equations with the parameter αf > 0

as in the left hand side of (6.1.1), the corresponding weak formulation is given as follows: find
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(uf , pf ) ∈ (Xf , Qf ), for a.e. t ∈ (0, T ), such that

(∂tuf ,vf ) + 2νf (D(uf ), D(vf ))− (pf ,∇ · vf ) +

d−1∑
j=1

cBJS(uf · tj ,vf · tj)Γ

+αf (uf · nf ,vf · nf )Γ = (ff ,vf )− (gf ,vf · nf )Γ ∀vf ∈ Xf , (6.1.3)

(qf , (∇ · uf ) = 0 ∀qf ∈ Qf , (6.1.4)

(uf (·, 0),vf ) = (uf0,vf ) ∀vf ∈ Xf . (6.1.5)

Similarly, considering gp ∈ L2(Γ) as a Robin condition for the Darcy system with the parameter

αp > 0 as in (6.1.2), we have the weak formulation given by: find (up, pp) ∈ (Xp, Qp), for a.e.

t ∈ (0, T ) satisfying

νp(up,vp)− (pp,∇ · vp) + αp(up · np,vp · np)Γ = −(gp,vp · np)Γ ∀vp ∈ Xp , (6.1.6)

(qp, s0 ∂tpp) + (qp,∇ · up) = (fp, qp) ∀qp ∈ Qp , (6.1.7)

(pp(·, 0), qp) = (pp0, qp) ∀qp ∈ Qp . (6.1.8)

Remark 6.1.1. From the Robin condition (6.1.2) with gp ∈ L2(Γ) and by the definition of Xp, the

trace pp is in L2(Γ). In fact if the test functions vp in (6.1.6) are chosen to have compact support,

then pp is H1(Ωp) as shown in [64].

Denote by (uf , pf ) =
(
uf (gf , ff ,uf0), pf (gf , ff ,uf0)

)
the solution to the Stokes prob-

lem (6.1.3)-(6.1.5), and (up, pp) =
(
up(gp, fp, pp0), pp(gp, fp, pp0)

)
the solution to the Darcy prob-

lem (6.1.6)-(6.1.8). To derive the interface problem associated with the Robin conditions (6.1.1)-

(6.1.2), we first define the interface operator:

R :
(
L2(0, T ; L2(Γ))

)2
→
(
L2(0, T ; L2(Γ))

)2
,

such that

R

 gf

gp

 =

 gp + (αp + αf )
(
up(gp, fp, pp0) · np

)
|Γ

gf + (αf + αp)
(
uf (gf , ff ,uf0) · nf

)
|Γ

 . (6.1.9)

Then the Robin transmission conditions (6.1.1)-(6.1.2) are equivalent to the following space-time
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interface problem for two interface variables:

SR

 gf

gp

 = χR on Γ× (0, T ), (6.1.10)

where

SR

 gf

gp

 =

 gf

gp

−

 gp + (αp + αf )
(
up(gp, 0, 0) · np

)
|Γ

gf + (αf + αp)
(
uf (gf ,000,000) · nf

)
|Γ

 ,

and

χR =

 (αp + αf )
(
up(0, fp, pp0) · np

)
|Γ

(αf + αp)
(
uf (0, ff ,uf0) · nf

)
|Γ

 .

The weak form of (6.1.10) is given by: find (gf , gp) ∈
(
L2(Γ)

)2
, for a.e. t ∈ (0, T ), such that

∫ T

0

∫
Γ

SR

 gf

gp

 ·

 ξf

ξp


 dγ dt =

∫ T

0

∫
Γ

χR ·

 ξf

ξp


 dγ dt, ∀

(
ξf , ξp

)
∈
(
L2(Γ)

)2
.

(6.1.11)

To carry out the convergence analysis of the proposed decoupling scheme, we solve the space-time

interface problem (6.1.10) by Jacobi iterations, which is equivalent to the SWR algorithm and will

be presented next. However, for the numerical experiments (cf. Section 7.3), we will use GMRES

to solve the interface problem iteratively for faster convergence.

6.2 Schwarz waveform relaxation (SWR) algorithm and con-

vergence analysis

Consider the following SWR algorithm based on Robin transmission conditions: at the kth

iteration step we solve

∂tu
k
f −∇ · (2µfD(uk

f )− pkfI) = ff in Ωf × (0, T ) , (6.2.1)

∇ · uk
f = 0 in Ωf × (0, T ) , (6.2.2)

nk
f · (pkfI− 2νfD(uk

f )) · nf − αfu
k
f · nf = pk−1

p + αfu
k−1
p · np on Γ× (0, T ) , (6.2.3)
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for (uk
f , p

k
f ) satisfying the initial and boundary conditions (5.0.3), (5.0.4) and the Beavers-Joseph-

Saffman condition (5.0.11), and

νpu
k
p +∇pkp = 0 in Ωp × (0, T ) , (6.2.4)

s0∂tp
k
p +∇ · uk

p = fp in Ωp × (0, T ) , (6.2.5)

pkp − αpu
k
p.np = nf · (pk−1

f I− 2νfD(uk−1
f ))nf + αpu

k−1
f .nf on Γ× (0, T ) , (6.2.6)

for (uk
p, p

k
p) satisfying (5.0.7) and (5.0.8). The weak formulation of this decoupled system is written

as follows: at the kth iteration, find (uk
f , p

k
f ) ∈ (Xf , Qf ) and (uk

p, p
k
p) ∈ (Xp, Qp), for a.e. t ∈ (0, T ),

such that

(∂tu
k
f ,vf ) + 2νf (D(uk

f ), D(vf ))− (pkf ,∇ · vf ) +

d−1∑
j=1

cBJS(u
k
f · tj ,vf · tj)Γ

+αf (u
k
f · nf ,vf · nf )Γ = (ff ,vf )− (pk−1

p + αfu
k−1
p · np,vf · nf )Γ ∀vf ∈ Xf ,(6.2.7)

(qf ,∇ · uk
f ) = 0 ∀qf ∈ Qf , (6.2.8)

and

νp(u
k
p,vp)− (pkp,∇ · vk

p) + αp(u
k
p · np,vp · np)Γ

= −(nf · (pk−1
f I− 2νfD(uk−1

f ))nf + αpu
k−1
f · nf ,vp · np)Γ ∀vp ∈ Xp , (6.2.9)

(qp, s0 ∂tp
k
p) + (qp,∇ · uk

p) = (fp, qp) ∀qp ∈ Qp . (6.2.10)

In the next theorem we prove the convergence of the proposed algorithm. The following

identities will be used in the proof:

(nk
f · (pkfI − 2νfD(uk

f )) · nf − αfu
k
f · nf )

2 − (nk
f · (pkfI− 2νfD(uk

f )) · nf + αpu
k
f · nf )

2

= −2(αf + αp)(u
k
f · nf )(n

k
f · (pkfI − 2νfD(uk

f )) · nf )

+ (α2
f − α2

p)(u
k
f · nf )

2 ,

(6.2.11)

(pkp − αpu
k
p · np)

2 − (pkp + αfu
k
p · np)

2 = −2(αf + αp)p
k
p(u

k
p · np) + (α2

p − α2
f )(u

k
p · np)

2 . (6.2.12)

Theorem 6.2.1. Let ff ∈ X−1
f , fp ∈ Qp and let αf , αp ∈ IR be such that αp ≥ αf > 0. If initial
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values (u0
f , p

0
f ,u

0
p, p

0
p) are chosen such that the Robin-Robin conditions (6.2.3), (6.2.6) are well-

defined in L2(Γ) then the weak formulation (6.2.7)-(6.2.10) defines a unique sequence of iterates

(uk
f , p

k
f ,u

k
p, p

k
p) ∈ L∞(0, T ;Xf )× L2(0, T ;Qf )× L2(0, T ;Xp)× L∞(0, T ;Qp)

that converges to the weak solution (uf , pf ,up, pp) of problem (5.1.3)-(5.1.7).

Proof. As the equations are linear, for the proof of convergence we can take ff = uf0 = 0 and

fp = pp0 = 0, and show that the sequence (uk
f , p

k
f ,u

k
p, p

k
p) of iterates converges to zero in suitable

norms. The uniqueness of the sequence of iterates follows from the well-posedness of non-stationary

Stokes-Darcy system.

Choosing vf = uk
f and qf = pkf in (6.2.7)-(6.2.8) and adding two resulting equations yield

(∂tu
k
f ,u

k
f ) + 2νf∥D(uk

f )∥2Ωf
+

d−1∑
j=1

cBJS∥uk
f · tj∥2Γ + αf∥uk

f · nf∥2Γ

= −(pk−1
p + αfu

k−1
p · np,u

k
f · nf )Γ.

By using the Robin condition (6.2.3) and (6.2.11), we obtain

(∂tu
k
f ,u

k
f ) + 2νf∥D(uk

f )∥2Ωf
+

d−1∑
j=1

cBJS∥uk
f · tj∥2Γ

+
1

2(αf + αp)
∥nf · (pkfI− 2νfD(uk

f )) · nf + αpu
k
f · nf∥2Γ

=
1

2(αf + αp)
∥pk−1

p + αfu
k−1
p · np∥2Γ +

αp − αf

2
∥uk

f · nf∥2Γ.

We integrate the above equation over (0, t) for a.e. t ∈ (0, T ], and use the trace theorem, Korn’s

inequality and Young’s inequality to obtain

1

2
∥uk

f (t)∥2Ωf
+ 2νf

∫ t

0

∥D(uk
f )∥2Ωf

ds+

d−1∑
j=1

cBJS

∫ t

0

∥uk
f · tj∥2Γ ds

+
1

2(αf + αp)

∫ t

0

∥nf · (pkfI− 2νfD(uk
f )) · nf + αpu

k
f · nf∥2Γ ds

≤ 1

2(αf + αp)

∫ t

0

∥pk−1
p + αfu

k−1
p · np∥2Γ ds+ C

∫ t

0

∥uk
f (s)∥Ωf

∥D(uk
f (s))∥Ωf

ds

≤ 1

2(αf + αp)

∫ t

0

∥pk−1
p + αfu

k−1
p · np∥2Γ ds+ C

∫ t

0

(
1

4ϵ
∥uk

f (s)∥2Ωf
+ ϵ∥D(uk

f (s))∥2Ωf

)
ds,
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for some constant C > 0 and ϵ > 0. Setting ϵ = νf/C, we have

1

2
∥uk

f (t)∥2Ωf
+ νf

∫ t

0

∥D(uk
f )∥2Ωf

ds+

d−1∑
j=1

cBJS

∫ t

0

∥uk
f · tj∥2Γ ds

+
1

2(αf + αp)

∫ t

0

∥nf · (pkfI− 2νfD(uk
f )) · nf + αpu

k
f · nf∥2Γ ds

≤ 1

2(αf + αp)

∫ t

0

∥pk−1
p + αfu

k−1
p · np∥2Γ ds+ C

∫ t

0

∥uk
f (s)∥2Ωf

ds , (6.2.13)

where C = C
2

4νf
. Similarly, setting vp = uk

p, qp = pkp in (6.2.9)-(6.2.10), adding the resulting equations

and using (6.2.12), we get

νp∥uk
p∥2Ωp

+ (s0 ∂tp
k
p, p

k
p) +

1

2(αf + αp)
∥pkp + αfu

k
p · np∥2Γ

≤ 1

2(αf + αp)
∥pkp − αpu

k
p · np∥2Γ − 1

2
(αp − αf )∥uk

p · np∥2Γ .

Suppose αp ≥ αf and let γ := 1
2(αp−αf )

≥ 0. Integrating over (0, t) for a.e. t ∈ (0, T ] and applying

the Robin boundary condition (6.2.6) imply

νp

∫ t

0

∥uk
p(t)∥2Ωp

ds+
s0
2
∥pkp(t)∥2Ωp

+
1

2(αf + αp)

∫ t

0

∥pkp + αfu
k
p · np∥2Γ ds+ γ

∫ t

0

∥uk
p · np∥2Γ ds

≤ 1

2(αf + αp)

∫ t

0

∥nf · (pk−1
f I− 2νfD(uk−1

f ))nf + αpu
k−1
f .nf∥2Γ ds . (6.2.14)

We add (6.2.13) and (6.2.14), and define

Ek(t) :=
1

2
∥uk

f (t)∥2Ωf
+ νf

∫ t

0

∥D(uk
f )∥2Ωf

ds+

d−1∑
j=1

cBJS

∫ t

0

∥uk
f · tj∥2Γ ds

+νp

∫ t

0

∥uk
p(t)∥2Ωp

ds+
s0
2
∥pkp(t)∥2Ωp

+ γ

∫ t

0

∥uk
p · np∥2Γ ds ,

Bk(t) :=
1

2(αf + αp)

∫ t

0

∥nf · (pkfI− 2νfD(uk
f ))nf + αpu

k
f .nf∥2Γ ds

+
1

2(αf + αp)

∫ t

0

∥pkp + αfu
k
p · np∥2Γ ds .

Then, for all k > 0

Ek(t) +Bk(t) ≤ Bk−1(t) + C

∫ t

0

∥uk
f (s)∥2Ωf

ds ,
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and summing over the iterates for any given K > 0 yields,

K∑
k=1

Ek(t) ≤ B0(t) + C

K∑
k=1

∫ t

0

∥uk
f (s)∥2Ωf

ds, (6.2.15)

where

B0(t) =
1

2(αf + αp)

∫ t

0

∫
Γ

g0 ds,

for g0 = (nf · (p0fI − 2νfD(u0
f ))nf + αpu

0
f .nf )

2 + (p0p + αfu
0
p · np)

2 obtained by the initial guess.

Now, from the definition of Ek(t) and (6.2.15),

1

2

K∑
k=1

∥uk
f (t)∥2Ωf

≤ B0(t) + C

K∑
k=1

∫ t

0

∥uk
f (s)∥2Ωf

ds.

Applying Gronwall’s lemma, we obtain

K∑
k=1

∥uk
f (t)∥2Ωf

≤ 2e2CTB0(T ), (6.2.16)

for any K > 0 and a.e. t ∈ (0, T ). The inequality (6.2.16) implies that uk
f tends to 0 in

L∞(0, T ;L2(Ωf )) as k → ∞, and the inequalities (6.2.15) and (6.2.16) yield

K∑
k=1

νf

∫ t

0

∥D(uk
f )∥2Ωf

ds+

d−1∑
j=1

cBJS

∫ t

0

∥uk
f · tj∥2Γ ds+ νp

∫ t

0

∥uk
p(t)∥2Ωp

ds+
s0
2
∥pkp(t)∥2Ωp

+γ

∫ t

0

∥uk
p · np∥2Γ ds

)
≤ (1 + 2CTe2CT )B0(T ) ∀K > 0 . (6.2.17)

The inequality (6.2.17) implies that D(uk
f ), u

k
f · tj , uk

p, p
k
p and uk

p ·np tend to 0 in L2(0, T ;L2(Ωf )),

L2(0, T ;L2(Γ)), L2(0, T ;L2(Ωp)), L
∞(0, T ;L2(Ωp)) and L2(0, T ;L2(Γ)), respectively, as k → ∞.

For the convergence of pkf , we follow the technique used in [45]. We isolate the time derivative

term in (6.2.7). Then for all vf ∈ Vf :

(∂tu
k
f ,vf ) = −2νf (D(uk

f ), D(vf ))−
d−1∑
j=1

cBJS(u
k
f · tj ,vf · tj)Γ

−αf (u
k
f · nf ,vf · nf )Γ − (pk−1

p + αfu
k−1
p · np,vf · nf )Γ . (6.2.18)

For the bounds of right-hand side terms in (6.2.18) we use Cauchy-Schwarz inequality, the trace
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theorem, Korn’s inequality and Poincaré-Friedrichs inequality, divide both sides by
∥∥∇vf

∥∥
Ωf

and

take supremum over vf ∈ Vf . Then, for some constants C1, C2, C3, C4 > 0,

∥∂tuk
f∥V∗

f
≤ 2νfC1∥D(uk

f )∥Ωf
+ C2∥D(uk

f )∥
1/2
Ωf

∥uk
f∥

1/2
Ωf

+

d−1∑
j=1

cBJSC3∥uk
f · tj∥Γ + C4∥pk−1

p + αfu
k−1
p · np∥Γ

≤ C2

2
∥uk

f∥Ωf
+

(
2νfC1 +

C2

2

)
∥D(uk

f )∥Ωf
+

d−1∑
j=1

cBJSC3∥uk
f · tj∥Γ

+C4∥pk−1
p ∥Γ + αfC4∥uk−1

p · np∥Γ .

Setting Ĉ = max{C2

2 , (2νfC1 +
C2

2 ), cBJSC3, C4, αfC4}, we have

∥∂tuk
f∥V∗

f
≤ Ĉ( ∥uk

f∥Ωf
+ ∥D(uk

f )∥Ωf
+

d−1∑
j=1

∥uk
f · tj∥Γ + ∥pk−1

p ∥Γ + ∥uk−1
p · np∥Γ ) .

Lemma 5.1.1 then implies

∥∂tuk
f∥X∗

f
≤ C−1

∗ Ĉ(∥uk
f∥Ωf

+ ∥D(uk
f )∥Ωf

+

d−1∑
j=1

∥uk
f · tj∥Γ + ∥pk−1

p ∥Γ + ∥uk−1
p · np∥Γ) . (6.2.19)

Now consider (6.2.7) with vf ∈ Xf . We isolate pressure term, divide by ∥∇vf∥, take supremum

over vf ∈ Xf and use the inf-sup condition (5.1.1) and the estimate (6.2.19). Then, for some β > 0,

β∥pkf∥Ωf
≤ (1 + C−1

∗ Ĉ)( ∥uk
f∥Ωf

+ ∥D(uk
f )∥Ωf

+

d−1∑
j=1

∥uk
f · tj∥Γ + ∥pk−1

p ∥Γ + ∥uk−1
p · np∥Γ ) .

Square both sides and integrate over the interval (0, t) for a.e. t ∈ (0, T ] to obtain

β2

Cd

∫ t

0

∥pkf∥2Ωf
ds ≤

∫ t

0

( ∥uk
f∥2Ωf

+∥D(uk
f )∥2Ωf

+

d−1∑
j=1

∥uk
f ·tj∥2Γ+∥pk−1

p ∥2Γ+∥uk−1
p ·np∥2Γ ) ds . (6.2.20)

where Cd = (d+3)(1+C−1
∗ Ĉ)2 > 0. As pk−1

p ∈ H1(Ωp) (see Remark 6.1.1), using the trace theorem
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we have ∥pk−1
p ∥Γ ≤ ∥pk−1

p ∥1/2
H1(Ωp)

∥pk−1
p ∥1/2Ωp

. Thus (6.2.20) becomes

β2

Cd

∫ t

0

∥pkf∥2Ωf
ds ≤

∫ t

0

( ∥uk
f∥2Ωf

+ ∥D(uk
f )∥2Ωf

+

d−1∑
j=1

∥uk
f · tj∥2Γ

+∥pk−1
p ∥H1(Ωp)∥p

k−1
p ∥Ωp + ∥uk−1

p · np∥2Γ ) ds , (6.2.21)

where ∥pk−1
p ∥H1(Ωp) < ∞, since pk−1

p ∈ H1(Ωp). Because uk
f , D(uk

f ), u
k
f · tj , pkp and uk

p · np tend

to 0 in L∞(0, T ;L2(Ωf )), L
2(0, T ;L2(Ωf )), L

2(0, T ;L2(Γ)), L∞(0, T ;L2(Ωp)) and L2(0, T ;L2(Γ)),

respectively, as k → ∞, (6.2.21) implies
∫ t

0
∥pkf∥2ds converges to 0 as k → ∞. Hence pkf tends to 0

in L2(0, T ;L2(Ωf )) as k → ∞.

Remark 6.2.2. The choice of the Robin parameters, αf and αp, depends on the physical parameters

of the problem and its discretization (i.e., the mesh size and time step size). For the case where a

unique physics is considered on the whole domain, Robin parameters can be optimized by minimizing

the convergence factor of the SWR algorithm in the Fourier transformed domain as proposed in [48].

Such an approach is called optimized Schwarz waveform relaxation (OSWR). For the stationary

Stokes-Darcy system, optimization of the Robin parameters was studied in the framework of optimized

Schwarz methods in [38, 49], again by means of Fourier analysis. However, for the time-dependent

Stokes-Darcy coupling, it is not clear how to choose the Robin parameters in an optimal way; direct

application of OSWR to the multiphysics system may not give desired numerical results in terms of

accuracy of numerical solutions. We shall discuss various choices of the Robin parameters and their

numerical performance in Section 7.3.
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Chapter 7

The semi-discrete, nonconforming

in time, SWR algorithm

As the interface problem (6.1.11) is global-in-time, we can use different time step sizes

in the Stokes and Darcy regions. The advantage of using nonconforming time grids is that time

discretization can be selectively refined for a subproblem where the error in the solution is likely

to be larger. In the following, we use L2 projection functions to exchange data on the space-

time interface between different time grids and prove the convergence of the time discretized SWR

algorithm with nonconforming time grids.

7.1 Notation

Let τf be a partition of time interval (0, T ) into subintervals for the Stokes domain. We

denote the time interval (tm−1
f , tmf ] by Jm

f and the step size by ∆tmf := tmf −tm−1
f for m = 1, .....,Mf .

Denote the space of piecewise constant functions in time on grid τf with values in W by P0(τf ,W ),

where W = L2(Γ):

P0(τf ,W ) = {ϕ : (0, T ) → W,ϕ is constant on Jm
f ∀m = 1, ....,Mf}.

We define τp,Mp, J
n
p and ∆tnp similarly for the Darcy domain. In order to exchange data on the

space-time interface between different time grids, we define the L2 projection Πp,f from P0(τf ,W )
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Figure 7.1: Nonconforming time grids.

onto P0(τp,W ) [64]:

Πp,f (ϕ)|Jn
p
=

1

|Jn
p |

Mf∑
l=1

∫
Jn
p ∩Jf

l

ϕ.

The projection Πf,p from P0(τp,W ) onto P0(τf ,W ) is also defined similarly.

7.2 The semi-discrete Stokes-Darcy system and convergence

analysis of SWR algorithm

Using the backward Euler method, the semi-discrete Stokes-Darcy system with Robin trans-

mission conditions on Γ is given by: for m = 1, .....,Mf

um
f − um−1

f +∆tmf (−2µf∇ ·D(um
f ) +∇pmf I) =

∫
Jm
f

ff dt in Ωf , (7.2.1)

∇ · um
f = 0 in Ωf , (7.2.2)

∆tmf

(
nf · (pmf I− 2νfD(um

f )) · nf − αfu
m
f · nf

)
=

∫
Jm
f

Πf,p

(
pp + αfup · np

)
dt on Γ,(7.2.3)

and for n = 1, .....,Mp

νpu
n
p +∇pnp = 0 in Ωp , (7.2.4)

s0(p
n
p − pn−1

p ) + ∆tnp∇ · un
p =

∫
Jn
p

fpdt in Ωp , (7.2.5)

∆tnp

(
pnp − αpu

n
p .np

)
=

∫
Jn
p

Πp,f

(
nf · (pfI− 2νfD(uf ))nf + αpuf · nf

)
dt on Γ ,(7.2.6)
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where (uk
f , p

k
f ), satisfies (5.0.3), (5.0.11), u0

f = uf0, p
0
p = pp0 and uk

p satisfies (5.0.7). The semi-

discrete SWR algorithm is then written as follows: in the kth iteration step, we solve

uk,m
f − uk,m−1

f −∆tmf ∇ · (2µfD(uk.m
f )− pk,mf I) =

∫
Jm
f

ff dt in Ωf , (7.2.7)

∇ · uk,m
f = 0 in Ωf , (7.2.8)

∆tmf

(
nk
f · (pk,mf I− 2νfD(uk,m

f )) · nf − αfu
k,m
f · nf

)
=

∫
Jm
f

Πf,p

(
pk−1
p + αfu

k−1
p · np

)
dt on Γ (7.2.9)

for (uk,m
f , pk,mf ) satisfying (5.0.3), (5.0.11), where uk,0

f = uf0, u
k,m
f := uk

f |Jm
f
, pk,mf := pkf |Jm

f
for

m = 1, .....,Mf , and

νpu
k,n
p +∇pk,np = 0 in Ωp , (7.2.10)

s0(p
k,n
p − pk,n−1

p ) + ∆tnp∇ · uk,n
p =

∫
Jn
p

fpdt in Ωp , (7.2.11)

∆tnp

(
pk,np − αpu

k,n
p .np

)
=

∫
Jn
p

Πp,f

(
nf · (pk−1

f I− 2νfD(uk−1
f ))nf + αpu

k−1
f · nf

)
dt on Γ (7.2.12)

for (uk,m
p , pk,mp ) satisfying (5.0.7), where pk,0p = pp0, u

k,n
p := uk

p|Jn
p
, pk,np := pkp|Jn

p
for n = 1, .....,Mp.

We show in the following theorem that as k → ∞, the weak solution to (7.2.1)-(7.2.6) converges to

the weak solution of (7.2.7)-(7.2.12).

Theorem 7.2.1. Assume that αf = αp > 0. If initial guess values (u0
f , p

0
f ,u

0
p, p

0
p) are chosen

such that the Robin-Robin conditions (7.2.9), (7.2.12) are well-defined in L2(Γ), the weak formula-

tion (7.2.7)-(7.2.12) defines a unique sequence of iterates

(uk
f , p

k
f ,u

k
p, p

k
p) ∈ P0(τf ;Xf )× P0(τf ;Qf )× P0(τp;Xp)× P0(τp;Qp)

that converges to the weak solution of (7.2.1)-(7.2.6).

Proof. As the equations are linear, we let ff = uf0 = 0, fp = pp0 = 0 and derive the energy

estimates as in the proof of Theorem 6.2.1. First, we multiply (7.2.7), (7.2.8) by uk,m
f and pk,mf ,

respectively, integrate them over Ωf and use (5.0.11). Then add two resulting equations and use
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(6.2.11) to obtain

(uk,m
f ,uk,m

f )Ωf
− (uk,m−1

f ,uk,m
f )Ωf

+ 2∆tmf νf∥D(uk,m
f )∥2Ωf

+

d−1∑
j=1

cBJS∆tmf ∥uk,m
f · tj∥2Ωf

+
∆tmf

2(αf + αp)
∥nf · (pk,mf I− 2νfD(uk,m

f )) · nf + αpu
k,m
f · nf∥2Γ

≤
∆tmf

2(αf + αp)
∥nf · (pk,mf I− 2νfD(uk,m

f )) · nf − αfu
k,m
f · nf∥2Γ +

∆tmf (αp − αf )

2
∥uk,m

f · nf∥2Γ.

Using Cauchy-Schwarz inequality and 1
2 (a

2 − b2) ≤ a2 − ab, we obtain

1

2

(
∥uk,m

f ∥2Ωf
− ∥uk,m−1

f ∥2Ωf

)
+

∫
Jm
f

2νf∥D(uk
f )∥2Ωf

dt+

d−1∑
j=1

cBJS

∫
Jm
f

∥uk
f · tj∥2Ωf

dt

+
1

2(αf + αp)

∫
Jm
f

∥nf · (pkfI− 2νfD(uk
f )) · nf + αpu

k
f · nf∥2Γ dt

≤ 1

2(αf + αp)

∫
Jm
f

∥nf · (pkfI− 2νfD(uk
f )) · nf − αfu

k
f · nf∥2Γ dt

+
αp − αf

2

∫
Jm
f

∥uk
f · nf∥2Γ dt. (7.2.13)

Similarly, multiply (7.2.10), (7.2.11) by uk,n
p and pk,np , respectively, integrate over Ωp, add the two

results and use (6.2.12) to have

νp

∫
Jn
p

∥uk
p∥2Ωp

dt+
s0
2

(
∥pk,np ∥2Ωp

− ∥pk,n−1
p ∥2Ωp

)
+

1

2(αf + αp)

∫
Jn
p

∥pkp + αfu
k
p · np∥2Γ dt

≤ 1

2(αf + αp)

∫
Jn
p

∥pkp − αpu
k
p · np∥2Γ dt− αp − αf

2

∫
Jn
p

∥uk
p · np∥2Γ dt . (7.2.14)

We cannot use Gronwall’s lemma as in the continuous case because of the global-in-time projections

Πf,p and Πp,f . Hence, we make the assumption that αf = αp to cancel the last terms of (7.2.13)

and (7.2.14). Summing (7.2.13) and (7.2.14) over the subintervals in (0, tmf ] and (0, tnp ], respectively,

yields

1

2
∥uk,m

f ∥2Ωf
+

∫ tmf

0

2νf∥D(uk
f )∥2Ωf

dt+

d−1∑
j=1

cBJS

∫ tmf

0

∥uk
f · tj∥2Ωf

dt

+
1

2(αf + αp)

∫ tmf

0

∥nf · (pkfI− 2νfD(uk
f )) · nf + αpu

k
f · nf∥2Γ dt

≤ 1

2(αf + αp)

∫ tmf

0

∥nf · (pkfI− 2νfD(uk
f )) · nf − αfu

k
f · nf∥2Γ dt, (7.2.15)
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and

νp

∫ tnp

0

∥uk
p∥2Ωp

dt+
s0
2
∥pk,np ∥2Ωp

+
1

2(αf + αp)

∫ tnp

0

∥pkp + αfu
k
p · np∥2Γ dt

≤ 1

2(αf + αp)

∫ tnp

0

∥pkp − αpu
k
p · np∥2Γ dt. (7.2.16)

Adding (7.2.15) and (7.2.16), and using the Robin conditions (7.2.9) and (7.2.12), we obtain

1

2
∥uk,m

f ∥2Ωf
+

∫ tmf

0

2νf∥D(uk
f )∥2Ωf

dt+

d−1∑
j=1

cBJS

∫ tmf

0

∥uk
f · tj∥2Ωf

dt+ νp

∫ tnp

0

∥uk
p∥2Ωp

dt

+
s0
2
∥pk,np ∥2Ωp

+
1

2(αf + αp)

∫ tnp

0

∥pkp + αfu
k
p · np∥2Γ dt

+
1

2(αf + αp)

∫ tmf

0

∥nf · (pkfI− 2νfD(uk
f )) · nf + αpu

k
f · nf∥2Γ dt

≤ 1

2(αf + αp)

∫ tmf

0

∥Πf,p(p
k−1
p + αfu

k−1
p · np)∥2Γ dt

+
1

2(αf + αp)

∫ tnp

0

∥Πp,f (nf · (pk−1
f I− 2νfD(uk−1

f )) · nf + αpu
k−1
f · nf )∥2Γ dt

≤ 1

2(αf + αp)

∫ tmf

0

∥pk−1
p + αfu

k−1
p · np∥2Γ dt

+
1

2(αf + αp)

∫ tnp

0

∥nf · (pk−1
f I− 2νfD(uk−1

f )) · nf + αpu
k−1
f · nf∥2Γ dt . (7.2.17)

We set m = Mf and n = Mp then t
Mf

f = t
Mp
p = T. Now (7.2.17) becomes

1

2
∥uk,Mf

f ∥2Ωf
+

∫ T

0

2νf∥D(uk
f )∥2Ωf

dt+

d−1∑
j=1

cBJS

∫ T

0

∥uk
f · tj∥2Ωf

dt+ νp

∫ T

0

∥uk
p∥2Ωp

dtb

+
s0
2
∥pk,Mp

p ∥2Ωp
+

1

2(αf + αp)

∫ T

0

∥pkp + αfu
k
p · np∥2Γ dt

+
1

2(αf + αp)

∫ T

0

∥nf · (pkfI− 2νfD(uk
f )) · nf + αpu

k
f · nf∥2Γ dt

≤ 1

2(αf + αp)

∫ T

0

∥pk−1
p + αfu

k−1
p · np∥2Γ dt

+
1

2(αf + αp)

∫ T

0

∥nf · (pk−1
f I− 2νfD(uk−1

f )) · nf + αpu
k−1
f · nf∥2Γ dt .
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Then, for all k > 0

1

2
∥uk,Mf

f ∥2Ωf
+

∫ T

0

2νf∥D(uk
f )∥2Ωf

dt+

d−1∑
j=1

cBJS

∫ T

0

∥uk
f · tj∥2Ωf

dt

+νp

∫ T

0

∥uk
p∥2Ωp

dt+
s0
2
∥pk,Mp

p ∥2Ωp
+Bk ≤ Bk−1,

where

Bk =
1

2(αf + αp)

∫ T

0

∥nf · (pkfI− 2νfD(uk
f )) · nf + αpu

k
f · nf∥2Γ + ∥pkp + αfu

k
p · np∥2Γ dt .

We sum over the iterates k to obtain that ∥uk,Mf

f ∥2Ωf
,
∫ T

0
∥D(uk

f )∥2Ωf
dt,

∑d−1
j=1

∫ T

0
∥uk

f · tj∥2Ωf
dt,∫ T

0
∥uk

p∥2Ωp
dt and ∥pk,Mp

p ∥2Ωp
converge to 0 as k → ∞. This implies

∫ tmf
0

∥D(uk
f )∥2Ωf

dt,
∑d−1

j=1

∫ tmf
0

∥uk
f ·

tj∥2Ωf
dt converge to 0 as k → ∞ for m = 1, ....,Mf and

∫ tnp
0

∥uk
p∥2Ωp

dt converges to 0 as k → ∞

for n = 1, ....,Mp. From Poincaré-Friedrichs inequality and Korn’s inequality, we have ∥uk,m
f ∥2Ωf

≤

CPF ∥D(uk,m
f )∥2Ωf

for some constant CPF > 0. This implies
∫ tmf
0

∥uk
f∥2Ωf

dt converges to 0 as k → ∞

for m = 1, ....,Mf .

To show the convergence of pk,np , we multiply (7.2.10) by ∇pk,mp , integrate over Ωp and use

Cauchy-Schwarz inequality to obtain

∥∇pk,np ∥2Ωp
= −νp(u

k,n
p ,∇pk,np ) ≤ νp∥uk,n

p ∥Ωp
∥∇pk,np ∥Ωp

.

Since pk,np ∈ H1(Ωp) (see remark 6.1.1), using Poincaré-Friedrichs inequality,

C−1
PF ∥p

k,n
p ∥Ωp ≤ ∥∇pk,np ∥Ωp ≤ νp∥uk,n

p ∥Ωp , (7.2.18)

for some constant CPF > 0. Squaring all sides and integrating them over (0, tnp ], we have that∫ tnp
0

∥pkp∥2Ωp
converges to 0 as k → ∞ for n = 1, ....,Mp. Similarly, we multiply (7.2.11) by ∇ · uk,n

p

and integrate over Ωp to obtain

∆tnp∥∇ · uk,n
p ∥2Ωp

= −(s0(p
k,n
p − pk,n−1

p ),∇ · uk,n
p )Ωp

≤ s0∥pk,np − pk,n−1
p ∥Ωp

∥∇ · uk,n
p ∥Ωp

,
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which yields

∆tnp∥∇ · uk,n
p ∥Ωp ≤ s0∥pk,np − pk,n−1

p ∥Ωp
≤ s0

(
∥pk,np ∥Ωp

+ ∥pk,n−1
p ∥Ωp

)
.

Now, squaring all sides, integrating them over (0, tnp ] and the convergence of
∫ tnp
0

∥pkp∥2Ωp
yield that∫ tnp

0
∥∇ · uk

p∥2Ωp
dt converges to 0 as k → ∞ for n = 1, ....,Mp. Also, this result together with the

convergence of
∫ tnp
0

∥uk
p∥2Ωp

dt implies that
∫ tnp
0

∥uk
p∥2Hdiv(Ωp)

dt converges to 0 as k → ∞ for n =

1, .....,Mp.

For the convergence of pk,mf we multiply (7.2.7) by vf ∈ Vf , integrate over Ωf and proceed

similarly to the continuous case to have

1

∆tmf
∥uk,m

f − uk,m−1
f ∥Xh∗

f
≤ C−1

∗ C( ∥uk,m
f ∥Ωf

+ ∥D(uk,m
f )∥Ωf

+

d−1∑
j=1

∥uk,m
f · tj∥Γ

+∥Πf,p(p
k−1,m
p + αpu

k−1,m
p · np)∥Γ ) . (7.2.19)

Next, we multiply (7.2.7) by vf ∈ Xf and integrate over Ωf . And then isolate the pressure term,

divide by ∥∇vf∥, take supremum over vf ∈ Xf . Then, using the inf-sup condition (5.1.1) and

estimate (7.2.19),

β∥pk,mf ∥Ωf
≤ (1 + C−1

∗ C)( ∥uk,m
f ∥Ωf

+ ∥D(uk,m
f )∥Ωf

+

d−1∑
j=1

∥uk,m
f · tj∥Γ + ∥pk−1,m

p ∥Γ + αp∥uk−1,m
p · np∥Γ ) ,

for some β > 0. Square both sides and integrate over (0, tmf ]. Then, for some tnp ≥ tmf , we have

β2

∫ tmf

0

∥pkf∥2Ωf
dt ≤ (d+ 3)(1 + C−1

∗ C)2

∫ tmf

0

∥uk
f∥2Ωf

+ ∥D(uk
f )∥2Ωf

+

d−1∑
j=1

∥uk
f · tj∥2Γ dt

+

∫ tnp

0

∥pk−1
p ∥2Γ + αp∥uk−1

p · np∥2Γ dt

)
. (7.2.20)

As pk−1
p ∈ H1(Ωp), using the trace theorem, we have ∥pk−1

p ∥Γ ≤ ∥pk−1
p ∥1/2

H1(Ωp)
∥pk−1

p ∥1/2Ωp
. Also, using
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∥uk−1
p · np∥Γ ≤ C∥uk−1

p ∥Hdiv(Ωp), (7.2.20) becomes

β2

∫ tmf

0

∥pkf∥2 dt ≤ C

∫ tmf

0

∥uk
f∥2Ωf

+ ∥D(uk
f )∥2Ωf

+

d−1∑
j=1

∥uk
f · tj∥2Γ dt

+

∫ tnp

0

∥pk−1
p ∥H1(Ωp)∥p

k−1
p ∥Ωp + ∥uk−1

p ∥2Hdiv(Ωp)
dt

)
. (7.2.21)

As pk−1
p ∈ H1(Ωp), ∥pk−1

p ∥H1(Ωp) < ∞. Therefore, the convergence of
∫ tmf
0

∥pkf∥2dt to 0 is obtained,

since each term in the right hand side of (7.2.21) converges to 0 as k → ∞ for m = 1, ....,Mf .

7.3 Numerical results

In this section, we consider two numerical tests to investigate the convergence and efficiency

of the proposed global-in-time DD algorithm. The first numerical example is a manufactured problem

where the exact solution is known. The second is a physical example where a flow is driven by a

pressure drop. As mentioned in Subsection 6.1, GMRES is used in the numerical experiments to solve

the space-time interface problem (6.1.11) iteratively. We shall verify the accuracy and convergence

of the numerical solutions with decreasing grid sizes and time step sizes.

7.3.1 Test 1

We consider a test case with a known exact solution. The subdomains chosen are Ωp =

(0, 1)× (0, 1) for the porous medium and Ωf = (0, 1)× (1, 2) for the fluid domain, with the interface

Γ = {(x, y) : 0 < x < 1, y = 1}. The exact solution is given by

uf = [(y − 1)2x3(1 + t2) , − cos(y)e(1 + t2)],

pf = (cos (x)ey + y2 − 2y + 1)(1 + t2),

up = [−x(sin(y)e+ 2(y − 1))(1 + t2) , (− cos(y)e+ (y − 1)2)(1 + t2)],

pp = (− sin(y)e+ cos(x)ey + y2 − 2y + 1)(1 + t2),

for which the Beavers-Joseph-Saffman condition is satisfied with α = 1. The model parameters are

chosen as νf = 1, νp = 1, s0 = 1. The initial and boundary conditions are imposed using the exact
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solution. Two different finite element spaces were used for numerical simulations. First, we used

Taylor-Hood elements for both (uf , pf ) and (up, pp. As up ∈ Hdiv(Ωp), Taylor-Hood elements are

not conforming for (up, pp). Hence, the stabilization term γ(∇ · up,∇ · vp) was added to the Darcy

equation (6.2.9) with γ = 10. Secondly, we used MINI elements for the Stokes and Raviart-Thomas

of order one and P1 elements (RT1-P1) for the Darcy problem. The Robin parameters are chosen

as αf = 0.1 and αp = 50. Test results using different values of Robin parameters will be discussed

later. The tolerance for GMRES is set to be ϵ = 10−6.

First, we investigate the convergence of numerical solutions through spatial mesh refinement

with nonconforming time grids. Table 7.1 and Table 7.2 show errors at T = 0.01 with ∆tf = 0.002

and ∆tp = 0.001 by Taylor-Hood elements for both the Stokes and Darcy problems and by MINI

elements for the Stokes and RT1-P1 elements for Darcy problem, respectively. Note that for this

non-physical example, the errors in the porous medium are larger, so we have chosen a small time

step there while using a larger time step in the fluid domain. We observe from Tables 7.1 and 7.2

that the orders of accuracy in space are preserved with nonconforming time grids.

h 1/4 1/8 1/16 1/32

L2 error 8.34e-04 9.39e-05 [3.15] 1.15e-05 [3.03] 1.62e-06 [2.83]uf H1 error 2.68e-02 5.81e-03 [2.21] 1.32e-03 [2.13] 3.38e-04 [1.97]

pf L2 error 2.80e-02 5.53e-03 [2.34] 1.29e-03 [2.09] 3.91e-04 [1.73]

L2 error 1.11e-03 2.53e-04 [2.14] 3.84e-05 [2.72] 4.19e-06 [3.20]up Hdiv error 2.11e-03 4.43e-04 [2.25] 9.55e-05 [2.21] 1.91e-05 [2.32]

pp L2 error 2.31e-02 5.03e-03 [2.20] 1.26e-03 [1.99] 3.13e-04 [2.01]

Table 7.1: Errors at T = 0.01 by Taylor-Hood elements for the Stokes and Darcy problems using
(∆tf ,∆tp) = (0.002, 0.001) and (αf , αp) = (0.1, 50).

h 1/4 1/8 1/16 1/32

L2 error 9.60e-03 2.43e-03 [1.98] 5.49e-04 [2.15] 1.44e-04 [1.93]uf H1 error 2.71e-01 1.29e-01 [1.07] 6.10e-02 [1.08] 3.15e-02 [0.95]

pf L2 error 4.54e-01 1.06e-01 [2.10] 2.22e-02 [2.26] 5.63e-03 [1.98]

L2 error 1.99e-02 4.16e-03 [2.26] 1.01e-03 [2.04] 2.47e-04 [2.03]up Hdiv error 2.26e-02 4.37e-03 [2.37] 1.06e-03 [2.03] 2.56e-04 [2.05]

pp L2 error 2.26e-02 4.91e-03 [2.20] 1.23e-03 [1.99] 3.06e-04 [2.01]

Table 7.2: Errors at T = 0.01 by MINI elements for the Stokes and RT1-P1 elements for Darcy
problem using (∆tf ,∆tp) = (0.002, 0.001) and (αf , αp) = (0.1, 50).

We also performed convergence tests with respect to different time steps while keeping the
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mesh size fixed, h = 1/32. We denote the coarse time step size by ∆tcoarse. For Taylor-Hood

elements, we use ∆tcoarse ∈ {0.2, 0.1, 0.05, 0.0025}. In the case of MINI elements for the Stokes and

RT1-P1 elements for the Darcy, we use ∆tcoarse ∈ {0.8, 0.4, 0.2, 0.1}. The fine time step size is given

by ∆tfine = ∆tcoarse/2. Consider three types of time grids as follows:

1. Coarse conforming time grids: ∆tf = ∆tp = ∆tcoarse,

2. Fine conforming time grids: ∆tf = ∆tp = ∆tfine,

3. Nonconforming time grids: ∆tf = ∆tcoarse and ∆tp = ∆tfine.

In Figure 7.2 we show the errors at T = 0.2 by Taylor-Hood elements using αf = 0.1 and αp = 50.

Similarly Figure 7.3 presents errors by MINI elements and RT1-P1 elements at T = 0.8 using

αf = 0.1 and αp = 50 on the fixed mesh h = 1/64. We observe that the first order convergence is

preserved with the conforming and nonconforming time grids. The errors with nonconforming time

grids in the porous medium are close to those with fine conforming time grids, which is expected, as a

smaller time step is used in the porous medium. We also note that the Hdiv errors of Darcy velocity

are very sensitive to the Robin parameters. In Figure 7.4 we compare Hdiv errors of Darcy velocity

at T = 0.2 by Taylor-Hood elements using αp = 50 for different values of αf . Similarly, in Figure 7.5,

we compare Hdiv errors of Darcy velocity at T = 0.2 by Taylor-Hood elements using αf = 0.1 for

different values of αp. After performing experiments using various pairs of (αf , αp), we noticed that

the first order convergence with respect to time is achieved if αp ≈ 500αf and αf ≤ 1, which is

the motivation for the choice of parameters (αf , αp) = (0.1, 50) in most of our numerical tests. For

very smaller values of αf , we notice that the Hdiv errors of Darcy velocity for nonconforming case

shift from conforming coarse to conforming fine on increasing αp (see Figure 7.6). In Table 7.3 we

compare the computer running time (in seconds) of conforming and nonconforming time grids for

Taylor-Hood elements on the fixed mesh h = 1/32. Similarly, in Table 7.4, we compare the computer

running time (in seconds) for MINI elements and RT1-P1 elements on the fixed mesh h = 1/64.

We observe that using nonconforming time grids could significantly reduce the computational time

while still maintaining the desired accuracy.

7.3.2 Test 2

In this example, we consider a flow driven by a pressure drop in the same domain as in Test1.

Let pin = 1 on the top boundary of Ωf and pout = 0 on the bottom boundary of Ωp. We impose the
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Figure 7.2: Errors for the Stokes and Darcy problems at T = 0.2 by Taylor-Hood elements using
(αf , αp) = (0.1, 50).

∆t Conforming Nonconforming
0.2 72

77

0.1 144

153

0.05 285

314

0.025 576

622

0.0125 1114

Table 7.3: Comparison of the computer running times (in seconds) of conforming and nonconforming
time grids with Taylor-Hood elements on fixed mesh h = 1/32 using (αf , αp) = (0.1, 50).
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Figure 7.3: Errors by MINI elements for the Stokes and RT1-P1 elements for the Darcy problems
at T = 0.8 using (αf , αp) = (0.1, 50).

(a) αf = 0.001 (b) αf = 0.1 (c) αf = 1

Figure 7.4: Hdiv errors of Darcy velocity at T = 0.2 by Taylor-Hood elements using αp = 50 for
different values of αf .

no-slip boundary condition on the left and right boundaries of the Stokes’s domain, and the initial

Stokes velocity and the initial Darcy pressure are set to zero. The model parameters are selected

as: νf = 1, νp = 50, s0 = 1, α = 1. The Robin parameters are chosen as αf = 0.1 and αp = 50, and

the final time is set as T = 1. For this test, the Stokes and Darcy equations are approximated using

MINI elements and RT1-P1 elements, respectively. To verify the convergence with respect to time

with nonconforming time grids, we first compute the reference solution on the mesh size h = 1/64
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(a) αp = 10 (b) αp = 50 (c) αp = 100

Figure 7.5: Hdiv errors of Darcy velocity at T = 0.2 by Taylor-Hood elements using αf = 0.1 for
different values of αp.

(a) αp = 10 (b) αp = 25 (c) αp = 50

Figure 7.6: Hdiv errors of Darcy velocity at T = 0.2 by Taylor-Hood elements using αf = 0.001 for
different values of αp.

and ∆tref = 0.01 and calculate errors using the reference solution. The nonconforming time grids are

chosen as ∆tf = ∆tp/2. Table 7.5 shows errors and convergence rates at T = 1 with the fixed mesh

size h = 1/64, where first order convergence by nonconforming time grids is observed. In Table 7.6

and Table 7.7, we compare the accuracy in time of the conforming and nonconforming time grids.

In particular, the errors (by nonconforming time grids) in the fluid domain are close to those by fine

conforming time grids, while errors in the porous medium are close to those by coarse conforming

time grids.

The velocity magnitude at T = 1 using ∆tf = 1/16 and ∆tp = 1/8 is shown in Figure 7.7.

As defined in Section 5, νpI = νeffK
−1, where K is the permeability tensor of the porous medium.

For some porous medium like clayey soil or clay the value of coefficients of permeability is around

10−5 − 10−4 meter per day; and about 10−8 − 10−2 meter per day for different kinds of sands

[12, 72]. In Figure 7.8, we show the velocity magnitude at the final time for the porous medium

with coefficients of permeability 10−5 assuming νeff to be unity.
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∆t Conforming Nonconforming
0.8 1445

1446

0.4 2833

2871

0.2 5939

6457

0.1 10923

11244

0.05 22198

Table 7.4: Comparison of the computer running times (in seconds) of conforming and nonconforming
time grids with MINI elements for the Stokes and RT1-P1 element for the Darcy problems on fixed
mesh h = 1/64 using (αf , αp) = (0.1, 50).

Time steps uf pf up pp

∆tf ∆tp H1 error L2 error Hdiv error L2 error

1/4 1/2 2.61e-02 3.58e-02 6.31e-02 2.36e-02

1/8 1/4 1.49e-02 [0.81] 1.52e-02 [1.23] 3.42e-02 [0.88] 1.22e-02 [0.95]

1/16 1/8 7.59e-03 [0.97] 6.48e-03 [1.24] 1.66e-02 [1.04] 6.00e-03 [1.03]

1/32 1/16 3.38e-03 [1.16] 2.67e-03 [1.27] 7.46e-03 [1.15] 2.71e-03 [1.14]

Table 7.5: : Errors at T = 1 using h = 1/64 and (αf , αp) = (0.1, 0.5).

uf pf
Time grids ∆tf ∆tp L2 error H1 error L2 error

Conforming coarse 1/8 1/8 3.63e-03 1.23e-02 7.98e-03

Nonconforming 1/16 1/8 2.23e-03 7.59e-03 6.48e-03

Conforming fine 1/16 1/16 1.89e-03 6.45e-03 3.18e-03

Table 7.6: : Errors for the Stokes problem at T = 1 using h = 1/64 and (αf , αp) = (0.1, 0.5).

up pp
Time grids ∆tf ∆tp L2 error Hdiv error L2 error

Conforming coarse 1/8 1/8 1.07e-03 1.84e-02 6.73e-03

Nonconforming 1/16 1/8 9.87e-04 1.66e-02 6.00e-03

Conforming fine 1/16 1/16 5.24e-04 8.82e-03 3.09e-03

Table 7.7: : Errors for the Darcy problem at T = 1 using h = 1/64 and (αf , αp) = (0.1, 0.5).
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Figure 7.7: [Test case 2] Velocity magnitude and velocity vector at T = 1 for νp = 50.

Figure 7.8: [Test case 2] Velocity magnitude and velocity vector near interface at T = 1 for νp = 105.
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Part III

Fluid/Poroelastic Structure
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Chapter 8

Model equations

We consider a Lipschitz domain, Ω ∈ RI d, d = 2, 3, subdivided into two regions Ωf and

Ωp, separated by a common moving interface Γ (See Figure 8.1). For Let n⋆ denote outward unit

normal vectors and Γ⋆
N and Γ⋆

D represent to the Neumann and Dirichelet boundaries, respectively

to Ω⋆, ⋆ ∈ {f, p}. Note that in the interface, nf = −np. The first region Ωf is occupied by the free

fluid and has boundary ∂Γf such that ∂Γf := Γf
N ∪Γf

D ∪Γ and the second region Ωp is occupied by

saturated poroelastic structure with the boundary ∂Γp such that ∂Γp := Γp
N ∪ Γp

D ∪ Γ.

x

y

nf

np

Γp
D

Γf
N

Γp
D

Γf
N

Γp
N

Γf
D

Fluid subdomain, Ωf

Poroelastic structure subdomain, Ωp
Γ

Figure 8.1: Fluid-poroelastic domain in RI 2

We assume that the flow in Ωf is governed by the time-dependent non-linear Stokes equa-

tions. On defining (uf , pf ) as a velocity-pressure pair in Ωf , the fluid system is written as, for final
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time T > 0 :

ρf
∂uf

∂t
−∇ · νf (|D(uf )|)D(uf ) +∇pf = ff in Ωf × (0, T ) , (8.0.1)

∇ · uf = 0 in Ωf × (0, T ) , (8.0.2)

uf (x, 0) = uf0(x) in Ωf (8.0.3)

where ρf is the density of the fluid, νf (|D(uf )|) is the fluid viscosity function, ff represents the

body force acting on the fluid, and D(uf ) :=
1
2

(
∇uf + (∇uf )

T
)
is the strain rate tensor. For the

viscosity function, we consider Cross model given by:

νf (|D(uf )|) = νf∞ +
νf0 − νf∞

1 +Kf |D(uf )|2−rf
, (8.0.4)

where rf > 1 and Kf > 0 are constants. The constants νf∞ and νf0 are limiting viscosity values

at an infinite shear rate and at zero shear rate, respectively, such that 0 < νf∞ ≤ νf0. Further,

we assume viscosity function νf (·) to be monotonic and bounded and a nonlinear function G(x) :=

νf (|x|)x to be uniformly continuous in RI d. This assumption is used to show the well-posedness of

the fluid-poroelastic system in [2].

Defining (up, pp,η) as a velocity-pressure-displacement triplet in Ωp, the poroelastic system

is represented by the Biot model as:

ρs
∂2η

∂t2
− 2νs ∇ ·D(η)− λ∇(∇ · η) + α∇pp = fs in Ωp × (0, T ) , (8.0.5)

κ−1up +∇pp = 0 in Ωp × (0, T ) , (8.0.6)

∂

∂t
(s0pp + α∇ · η) +∇ · up = fp in Ωp × (0, T ) , (8.0.7)

up(x, 0) = up0(x) in Ωp, (8.0.8)

η(x, 0) = η0(x) in Ωp, (8.0.9)

where fp is the source/sink term, fs is the body force, νs and λ denote the Lame parameters satisfying

0 < λmin < λ(x) < λmax and 0 < νmin < νs(x) < νmax. The density of saturated medium is denoted

by ρs, and the hydraulic conductivity is denoted by κ. In general, κ is a symmetric positive definite
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permeability tensor, satisfying, for some constants, 0 < κmin < κmax,

∀ζ ∈ RI d, κminζ
T ζ ≤ ζTκ(x)ζ ≤ κmaxζ

T ζ, ∀x ∈ Ωp.

However in this work we assume an isotropic porous material so that κ is a scalar quantity. The

constrained specific storage coefficient is denoted by s0 and the Biot-Willis constant by α, which is

usually close to unity. In the subsequent discussion, all the physical parameters are assumed to be

constant in space and time. Note that the Biot system consists of the momentum equation for the

balance of total forces (8.0.5) and the mass conservation equation (8.0.7), along with the standard

assumption of Darcy’s law (8.0.6) for the flux.

For the interface condition on the fluid-poroelastic interface, let σf (uf , pf ) denote the

Cauchy stress tensor given by

σf (uf , pf ) := νf (|D(uf )|)D(uf )− pfI,

and σp(η, pp) be the total stress tensor for the poroelastic structure given by

σp(η, pp) := 2νsD(η) + λ(∇ · η)I− αppI.

Then the fluid-poroelastic structure interaction system (8.0.1)-(8.0.9) is imposed with the

following interface conditions:

uf · nf = −
(
∂η

∂t
+ up

)
· np on Γ× (0, T ) , (8.0.10)

σfnf = −σpnp on Γ× (0, T ) , (8.0.11)

σfnf · nf = −pp on Γ× (0, T ) , (8.0.12)

σfnf · tj = −cBJS

(
uf − ∂η

∂t

)
· tj , j = 1, ..., d− 1 on Γ× (0, T ) , (8.0.13)

where tj , j = 1, ..., d − 1 denote the orthogonal set of unit vectors on Γ, and cBJS denotes the

resistance parameter in the tangential direction. Here, (8.0.10) describes the continuity of the

normal velocities. The conservation of momentum, expressed by (8.0.11), requires balance in the

total stress of the fluid and porous medium. For the balance of normal stress across the interface,
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we have (8.0.12). Finally, the tangential stress of the fluid is assumed to be proportional to the slip

rate according to the Beavers-Joseph-Saffman condition (8.0.13). These interface conditions suffice

to precisely couple the Stokes system (8.0.1)-(8.0.2) to the Biot system (8.0.5)-(8.0.7). The above

system of equations needs to be complemented by a set of boundary conditions. We consider the

following boundary conditions:

σfnf = τN on Γf
N × (0, T ) , uf = 0 on Γf

D × (0, T ) ,

up · np = 0, η = 0 on Γp
D × (0, T ) , pp = 0, σpnp = 0 on Γp

N × (0, T ) .

8.1 Function spaces and weak formulation

Now, we derive a weak formulation of the problem using a Lagrange multiplier. We use

the standard notation for Sobolev spaces and their associated norms and seminorms. For m a non-

negative integer and Θ ∈ RI d, Sobolev space, denoted by Hm(Θ), are Hilbert spaces with the norm

∥ · ∥m,Θ. We denote L2 inner product and norm over Θ by (·, ·)Θ and ∥ · ∥Θ, respectively. Moreover,

for functions defined in Ωf and Ωp, we simply use (·, ·) = (·, ·)Ωf or (·, ·)Ωp . For γ ⊂ RI d−1, we use

⟨·, ·⟩γ to denote the duality pairing between H−1/2(γ) and H1/2(γ). Finally, the associated space

of vector-valued functions will be denoted by a boldface font. We now define the following function

spaces:

Uf := {v ∈ H1(Ωf ) : v = 0 on Γf
D}, Qf := L2(Ωf ),

Up := {v ∈ L2(Ωp) : ∇ · v ∈ L2(Ωp), v · np = 0 on Γp
D}, Qp := L2(Ωp),

Σp := {ξ ∈ H1(Ωp) : ξ = 0 on Γp
D}.

For the variational formulation, we introduce a Lagrange multiplier denoted by

g := σfnf = −σpnp on Γ× (0, T ),

such that g ∈ G := H1/2(Γ). Further, we can rewrite it as

g = (nf · (σfnf )|Γ)nf +

d−1∑
j=1

(tj · (σfnf )|Γ)tj ,
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which, together with (8.0.12), implies that

−pp = nf · σfnf = g · nf = −g · np on Γ× (0, T ). (8.1.1)

We now multiply the governing equations (8.0.1)-(8.0.2) and (8.0.5)-(8.0.7) by appropriate test

functions, use integration by parts and (8.1.1) to obtain following continuous variational formulation:

given initial conditions, find (uf , pf ,up, pp,η,g) ∈ (Uf , Qf ,Up, Qp,Σ,G), for a.e. t ∈ (0, T ), such

that

ρf

(
∂uf

∂t
, vf

)
+ (νf (|D(uf )|)D(uf ), D(vf ))− (pf ,∇ · vf )

= (ff ,vf ) +
〈
τN ,vf

〉
Γf
N

+
〈
g,vf

〉
Γ

∀vf ∈ Uf , (8.1.2)

(qf ,∇ · uf ) = 0, ∀qf ∈ Qf . (8.1.3)

and

ρs

(
∂2η

∂t2
, ξ

)
+ 2νs(D(η), D(ξ)) + λ(∇ · η,∇ · ξ)− α(pp,∇ · ξ)

= (fs, ξ)− ⟨g, ξ⟩Γ, ∀ξ ∈ Σp , (8.1.4)

κ−1(up,vp)− (pp,∇ · vp) = −⟨g · np,vp · np⟩Γ, ∀vp ∈ Up , (8.1.5)(
qp,

∂

∂t
(s0pp + α∇ · η) +∇ · up

)
= (qp, fp), ∀qp ∈ Qp . (8.1.6)
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Chapter 9

Space-time interface problem and

nested iteration algorithm

In this section, we use the physical transmission conditions to derive the associated space-

time interface problem. First we introduce the interface operators If1, If2, Ip1 and Ip2 defined from

L2(0, T ;G) to L2(0, T ;G∗) as follows:

If1(g) = g · t+ cBJSuf (g) · t|Γ, Ip1(g) = −cBJS
∂η(g)

∂t
· t|Γ

If2(g) = uf (g) · nf |Γ, Ip2(g) =

(
∂η(g)

∂t
+ up(g)

)
· np|Γ

where (uf (g), pf (g)) and (up(g), pp(g),η(g)) are the solutions to the Stokes problem (8.1.2)-(8.1.3)

and the Biot problem (8.1.4)-(8.1.6) respectively. The interface conditions (8.0.11) and (8.0.12)

are imposed through g. However interface conditions (8.0.10) and (8.0.13) are not enforced in the

formulation (8.1.2)-(8.1.6). This leads to the interface problem:

For a.e t ∈ (0, T ), find g(t) ∈ L2(0, T,G) such that:

∫ T

0

(
⟨If1(g),v · t⟩+ ⟨Ip1(g),v · t⟩

)
ds = 0,∀v ∈ L2(0, T,G). (9.0.1)

and ∫ T

0

(
⟨If2(g),v · n⟩+ ⟨Ip2(g),v · n⟩

)
ds = 0,∀v ∈ L2(0, T,G). (9.0.2)
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For the nested iteration algorithm that can be used to solve this non-linear time-dependent interface

problem, we use the solutions of the linearized Stokes-Biot system, which reads as follows: given

initial g, find (wf , ϕf ,wp, ϕp,φ,h) ∈ (Uf , Qf ,Up, Qp,Σp,G), for a.e. t ∈ (0, T ), such that

ρf

(
∂wf

∂t
, vf

)
+ (νf (|D(uf )|)D(wf ), D(vf ))

+

(
(rf − 2)(νf0 − νf∞)Kf

(1 +Kf |D(uf )|2−rf )2|D(uf )|rf
D(uf )(D(uf ) : D(wf )), D(vf )

)
−(ϕf ,∇ · vf )

= −
〈
h,vf

〉
Γ

∀vf ∈ Uf , (9.0.3)

(qf ,∇ ·wf ) = 0, ∀qf ∈ Qf . (9.0.4)

and

ρs

(
∂2φ

∂t2
, ξ

)
+ 2νs(D(φ), D(ξ)) + λ(∇ ·φ,∇ · ξ)− α(ϕp,∇ · ξ)

= ⟨h, ξ⟩Γ, ∀ξ ∈ Σp , (9.0.5)

κ−1(wp,vp)− (ϕp,∇ · vp) = −⟨h · np,vp · np⟩Γ, ∀vp ∈ Up , (9.0.6)(
qp,

∂

∂t
(s0ϕp + α∇ ·φ) +∇ ·wp

)
= 0, ∀qp ∈ Qp . (9.0.7)

Finally, for the nested iteration algorithm, we define the following linear operators from L2(0, T ;G)

to L2(0, T ;G∗):

Lf1,g(h) = h · t+ cBJSwf (h) · t|Γ , Lp1,g(h) = −cBJS
∂φ(h)

∂t
· t|Γ

Lf2,g(h) = wf (h) · nf |Γ , Lp2,g(h) =

(
∂φ(h)

∂t
+wp(h)

)
· np|Γ.

And operators Φ and Φ′(g) are defined as follows:

Φ (g) :=

If1(g) + Ip1(g)

If2(g) + Ip2(g)

 , Φ′ (g) (h) =

Lf1,g(h) + Lp1,g(h)

Lf2,g(h) + Lp2,g(h)

 (9.0.8)
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and solve: ∫ T

0

⟨Φ′(g)(h),v⟩Γ ds =
∫ T

0

⟨−Φ(g),v⟩Γ ds, ∀v ∈ L2(0, T ; Λ). (9.0.9)

Algorithm 1: Working algorithm

Input: g0 initial guess, ϵ tolerance and Niter maximum number of iteration.

Output: gk

k = 0, error = 0

while k < Niter and error > ϵ, do

1. Compute RHS of (9.0.9) by solving Stokes and Biot problem with g = gk:

Φ (gk) :=

If1(gk) + Ip1(gk)

If2(gk) + Ip2(gk)

 .

2. Solve the following interface problem with a Krylov-type method:

∫ T

0

⟨Φ′(gk)(h),v⟩Γ ds =
∫ T

0

⟨−Φ(gk),v⟩Γ ds, ∀v ∈ L2(0, T ; Λ),

where

Φ′ (gk) (hk) =

Lf1,gk
(hk) + Lp1,gk

(h)

Lf2,gk
(hk) + Lp2,gk

(h)

 ,

3. Update gk+1 = gk + hk, k = k + 1, error = ∥hk∥
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Chapter 10

Nonconforming discretization in

time

As the interface problem (9.0.1)-(9.0.2) is global-in-time, we can use different time step

sizes in the Stokes and Biot regions. The advantage of using nonconforming time grids is that time

discretization can be selectively refined for a subproblem where the error in the solution is likely to

be larger.

10.1 Notation

Let Pf be a partition of time interval (0, T ) into subintervals Tm
f := (tm−1

f , tmf ] with step size

∆tmf := tmf − tm−1
f for the Stokes domain where m = 1, .....,Mf . We denote the space of piecewise

constant functions in time on grid Pf with values in K by P0(Pf ,K):

P0(Pf ,K) = {ϕ : (0, T ) → K,ϕ is constant onTm
f ∀m = 1, ....,Mf}.

We define Pp,Mp, T
n
p and ∆tnp similarly for the Biot domain. The interface problem (9.0.1)-(9.0.2)

can be solved using various time discretization. The time-step in the interface does not need to

match the time-steps used in fluid or the structure subdomain. Hence we define PΓ,MΓ, T
k
Γ and ∆tkΓ

for the interface similarly. In order to exchange data on the space-time interface between different

time grids, we define, for ⋆ ∈ {f, p}, the following L2 projection Π⋆,Γ from P0(PΓ,W ) onto P0(P⋆,W )
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to :

Π⋆,Γ(ϕ)|Is
⋆
=

1

|Is⋆ |

MΓ∑
l=1

∫
In
⋆ ∩Il

Γ

ϕ, where s = {1, 2, · · ·,M⋆}.

The projection ΠΓ,⋆ from P0(P⋆,W ) onto P0(PΓ,W ) is also defined similarly.

10.2 The semi-discrete Stokes-Biot system

Using the backward Euler method, the semi-discrete Stokes-Biot system on Γ is given by:

for m = 1, .....,Mf

ρf

(
um
f − um−1

f

∆tmf
, vf

)
+ (νf (|D(um

f )|)D(um
f ), D(vf ))− (pmf ,∇ · vf )

= (fmf ,vf ) +
〈
τmN ,vf

〉
Γf
N

+
〈
gm,vf

〉
Γ

∀vf ∈ Uf , (10.2.1)

(qf ,∇ · um
f ) = 0, ∀qf ∈ Qf . (10.2.2)

and for n = 1, .....,Mp

ρs

(
ηn − 2ηn−1 + ηn−2

(∆tnp )
2

, ξ

)
+ 2νs(D(ηn), D(ξ)) + λ(∇ · ηn,∇ · ξ)− α(pnp ,∇ · ξ)

= (fns , ξ)− ⟨gn, ξ⟩Γ, ∀ξ ∈ Σp , (10.2.3)

κ−1(un
p ,vp)− (pnp ,∇ · vp) = −⟨gn · np,vp · np⟩Γ, ∀vp ∈ Up , (10.2.4)(

qp, s0
pnp − pn−1

p

∆tnp
+ α

∇ · ηn −∇ · ηn−1

∆tnp
+∇ · un

p

)
= (qp, f

n
p ), ∀qp ∈ Qp . (10.2.5)

We now weakly enforce the transmission conditions over the time intervals with nonconforming time

grids. We choose g ∈ P0(PΓ,G) and impose

(σfnf )|Γ = Πf,Γ(g).

The weak conservation of momentum across the interface is fulfilled by setting,

(−σpnp)|Γ = Πp,Γ(g) ∈ P0(Pp,G),
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and weakly the balance of normal components of the stress in the fluid phase across the interface is

fulfilled by setting,

pp|Γ = Πp,Γ(g · np) ∈ P0(Pp,G).

The semi-discrete (non-conforming in time) counterpart of interface conditions (8.0.10) and (8.0.13)

is weakly enforced by integrating it over each time interval T i
Γ of grid PΓ:

∀i = 1, .....,MΓ,

∫
T i
Γ

(
⟨ΠΓ,f (If1(Πf,Γ(g))),v · t⟩Γ + ⟨ΠΓ,p(Ip1(Πp,Γ(g))),v · t⟩Γ

)
ds = 0,∀v ∈ G. (10.2.6)

and

∫
T i
Γ

(
⟨ΠΓ,f (If2(Πf,Γ(g))),v · n⟩Γ + ⟨ΠΓ,p(Ip2(Πp,Γ(g))),v · n⟩Γ

)
ds = 0,∀v ∈ G. (10.2.7)

Similarly, for the linearized interface problem, at kth iteration, we have:

∫
Ji
Γ

⟨Ψ ′
NC(g

k)(hk),v⟩Γ ds =
∫
Ji
Γ

⟨−ΨNC(g
k),v⟩Γ ds, ∀v ∈ G. (10.2.8)

where

ΨNC

(
gk
)
=

ΠΓ,f (If1(Πf,Γ(g
k))) + ΠΓ,p(Ip1(Πp,Γ(g

k)))

ΠΓ,f (If2(Πf,Γ(g
k))) + ΠΓ,p(Ip2(Πp,Γ(g

k)))

 ,

and

Ψ ′
NC

(
gk
)(

hk
)
=

ΠΓ,f (Lf1,gk(Πf,Γ(h
k))) + ΠΓ,p(Lp1,gk(Πp,Γ(h

k)))

ΠΓ,f (Lf2,gk(Πf,Γ(h
k))) + ΠΓ,p(Lp2,gk(Πp,Γ(h

k)))

 .

In the next section, we investigate the numerical performance of the non-conforming time grids in

terms of accuracy and efficiency.

10.3 Numerical results

In this section, we present numerical results that illustrate the behavior of the method. We

perform numerical tests for three kinds of problems. First, we use a manufactured solution and

observe the convergence with respect to space and time. Secondly, we study a hemodynamic appli-
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cation. And at last, we implement our method to a geoscience application and perform sensitivity

analysis. The computations are performed on FreeFem++ [59].

10.3.1 Test 1 : Convergence tests against manufactured solutions

We consider a test case with a known exact solution. The computational domain are chosen

as Ωp = (0, 1)× (0, 1) for the poroelastic medium and Ωf = (0, 1)× (1, 2) for the fluid medium, with

the interface Γ = {(x, y) : 0 < x < 1, y = 1}. We use the following manufactured solutions [74, 31]:

uex
f =

(y − 1)2x3e−t

− cos(y)e1−t

 ,

pexf = (cos (x)ey + y2 − 2y + 1)e−t,

uex
p =

−x(sin(y)e+ 2(y − 1))e−t

(− cos(y)e+ (y − 1)2)e−t

 ,

ηex =

(
√
2 cos (

√
2x) cos (y)e−t

sin (
√
2x) sin (y)e−t

 ,

pexp = (− sin(y)e+ cos(x)ey + y2 − 2y + 1)e−t.

Note that the above-mentioned manufactured solutions satisfy the interface conditions

(8.0.11), (8.0.12), and the following modified versions of (8.0.10) and (8.0.13):

uf · nf = −up · np , (10.3.1a)

nf · σft = −cBJS(uf · t) , (10.3.1b)

with cBJS = 1. These conditions (10.3.1a) and (10.3.1b) are obtained from (8.0.10) and (8.0.13)

under the assumption that
∂η
∂t is negligible. Since the manufactured solutions satisfy (10.3.1a) and

(10.3.1b), instead of (8.0.10) and (8.0.13), the interface operators need to be modified as follows:

Ip1(g) = −cBJS

(
∂η(g)

∂t
− ∂ηex

∂t

)
· t|Γ

Ip2(g) =

(
∂η(g)

∂t
+ up(g)−

∂ηex

∂t

)
· np|Γ
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The model parameters are chosen as follows: νs = 0.5, ρf = ρs = 1, α = β = λ = s0 = κ =

1,Kf = 1, νf∞ = 0.5, νf0 = 1.5, δ = 0. For the finite element approximations, we use Taylor-Hood

elements P2 - P1 on structured meshes for both (uf , pf ) and (up, pp), and P2 elements for η. These

elements are not stable for the Biot model as up ∈ Hdiv(Ωp), hence we add a stabilization term

γ(∇·up,∇·vp) to the Darcy equation (8.1.5) with γ = 10. The initial and boundary conditions are

imposed using the manufactured solution. To investigate the convergence of the numerical solution

with respect to space, we set final computation time T = 0.0002 and (∆tf ,∆tp) = (0.00002, 0.00001),

and use h ∈ {1/4, 1/8, 1/16, 1/32}. We set the tolerance for GMRES at 10−6. At the interface, we

chose ∆tΓ = ∆tp. The errors and the convergence rates for both linear, rf = 2, and non-linear,

rf = 1.5, problems are recorded in table 10.1. The convergence rates of all the functions are close to

the theoretical rates of convergence. We also performed convergence tests with respect to different

time steps while keeping the mesh size fixed, h = 1/32. Let ∆tcoarse and ∆tfine represent the coarse

and the fine time step size such that ∆tfine = ∆tcoarse/2. Then, we consider the following three

cases for the convergence test with respect to time: We use ∆tcoarse ∈ {0.2, 0.1, 0.05, 0.0025}. The

Case ∆tf ∆tp

Conforming coarse time grids ∆tcoarse ∆tcoarse

Nonconforming time grids ∆tcoarse ∆tfine

Conforming fine time grids ∆tfine ∆tfine

errors plotted in fig. 10.1 show that the first-order convergence in time is preserved for all three

cases. The diagrams are similar to the linear Stokes-Biot problem. Further, the computer running

time (in seconds) as plotted in fig. 10.2 shows the computational efficiency of using nonconforming

time grids.
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h 1/4 1/8 1/16 1/32

Linear Viscosity

uf L2 error 6.00e-04 7.77e-05[2.95] 9.53e-06[3.02] 1.44e-06[2.73]

H1 error 2.20e-02 5.18e-03[2.09] 1.24e-03[2.06] 3.36e-04[1.88]

pf L2 error 3.09e-02 5.54e-03[2.48] 1.28e-03[2.12] 3.17e-04[2.01]

up L2 error 1.00e-03 2.20e-04[2.19] 3.00e-05[2.87] 5.49e-06[2.45]

Hdiv error 1.87e-03 3.81e-04[2.30] 8.01e-05[2.25] 1.96e-05[2.03]

pp L2 error 2.31e-02 5.03e-03[2.20] 1.26e-03[2.00] 3.11e-04[2.02]

η L2 error 4.17e-04 4.13e-05[3.34] 4.52e-06[3.19] 6.02e-07[2.91]

H1 error 1.22e-02 2.44e-03[2.32] 5.69e-04[2.10] 1.45e-04[1.97]

Nonlinear Viscosity

uf L2 error 6.01e-04 7.77e-05[2.95] 9.75e-06[3.00] 1.59e-06[2.62]

H1 error 2.21e-02 5.19e-03[2.09] 1.26e-03[2.04] 3.51e-04[1.85]

pf L2 error 2.98e-02 5.50e-03[2.44] 1.48e-03[1.89] 8.13e-04[0.86]

up L2 error 1.00e-03 2.18e-04[2.20] 2.97e-05[2.88] 6.41e-06[2.21]

Hdiv error 1.84e-03 3.74e-04[2.29] 7.86e-05[2.25] 1.93e-05[2.02]

pp L2 error 2.23e-02 4.87e-03[2.20] 1.22e-03[2.00] 3.00e-04[2.02]

η L2 error 4.17e-04 4.13e-05[3.34] 4.52e-06[3.19] 6.02e-07[2.91]

H1 error 1.22e-02 2.44e-03[2.32] 5.69e-04[2.10] 1.45e-04[1.97]

Table 10.1: Errors at T = 0.0002 by Taylorhood elements for the Stokes and (P2, P1,P2) for Biot
problems using (∆tf ,∆tp) = (0.00002, 0.00001).
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Figure 10.1: Errors at T = 0.2 with Taylor-Hood elements for the Stokes and (P2, P1,P2) for the
nonlinear Biot problem (rf = 1.5).
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Figure 10.2: Comparison of the computer running times (in seconds) of conforming and noncon-
forming time grids with Taylorhood elements for the Stokes and (P2, P1,P2) for linear (left) and
nonlinear (right) Biot problems on fixed mesh h = 1/32.

10.3.2 Test 2 : Application in Haemodynamic experiment

The example focuses on a well-established benchmark problem in FSI, as cited in [19, 9] and

related literature. In this example, we examine the propagation of a pressure wave whose magnitude

is similar to the pressure difference between the systolic and diastolic phases of a heartbeat. Figure

10.3 depicts the domain and boundary conditions used for the computation. The force b(t) applied

to the left fluid boundary in Figure 10.3 denotes the stress at the inlet at t seconds and is defined

as:

b(t) =


(

Pmax

2

(
1− cos 2πt

Tmax

)
, 0

)
t ≤ Tmax

(0, 0) Tmax < t < Tfinal,

where Pmax = 2 × 103dyne/cm
2
and Tmax = 0.003 seconds. In order to better emulate an artery’s

behavior, the governing equation (8.0.5) for the elastic skeleton is adjusted slightly as follows for

this test case:

ρs
∂2η

∂t2
− 2νs ∇ ·D(η)− λ∇(∇ · η) + ξη + α∇pp = fs in Ωp × (0, T ) , (10.3.2)

As per the axially symmetric formulation, the term ξη is necessary to compensate for the recoil

induced by the circumferential strain [18]. The parameters used in this example are in accordance
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with the characteristics of blood flow in the human body. The density of the fluid, ρf , is 1 g/cm3

and the viscosity of the fluid, νf , is 0.035 g/cm·s. The density of the structure, ρs, is 1.1 g/cm3.

The Young’s Modulus of the structure, E, is 3× 106 dyne/cm2 and the Poisson ratio, ν, is 0.4. The

Lame parameters λ and νs are defined as follows:

λ =
νE

(1− 2ν)(1 + ν)
dyne/cm

2
, νs =

E

2(1 + ν)
dyne/cm

2
.

The hydraulic conductivity, κ, is 5×10−9 cm3s/g and the mass storage coefficient, s0, is 0 cm2/dyne.

The Biot-Willis constant, α, is set to unity, and the spring constant, ξ, is 5× 107dyne/cm
4
. Please

take note that though α = 1 and s0 = 0 signify that both the fluid and solid components are

incompressible, a Poisson ratio that is less than 0.5 suggests that the poroelastic medium is still

compressible [96]. Both the fluid and structure have volume forces of fs = ff = 0 dyne/cm2. We

simulate this example for the final time Tfinal = 6 ms and h = 0.05 cm using a time step of

∆tf = 5 × 10−4 seconds for the fluid subdomain and ∆ts = 2.5 × 10−4 seconds for the structure

subdomain. At the interface, we set ∆tΓ = ∆tf . For this test, we use MINI elements for the Stokes

and (RT1, P1,Pb) for the Biot subproblem. In figure 10.4, we record the fluid pressure, pf , and

the pressure of the poroelastic structure, pp, at every 2 ms. The simulation illustrated in the figure

depicts the visual representation of the initial pressure pulse propagation from left to right in a fluid

and the poroelastic domain. Further figure 10.5 shows the vertical displacement of the interface as

the pressure pulse propagates. This is crucial for understanding how the pressure pulse affects the

physical structure of the system under investigation. The results obtained from this simulation are

qualitatively similar to those obtained in a prior study [19] using conforming time-step ∆t = 10−6

seconds.

uN = b(t)

ηD = 0

uN = 0

ηD = 0

pp = 0

uD = 0

Ωs = [0, 6]× [0, 0.1]

Ωf = [0, 6]× [0.1, 1.1]

Γ

Figure 10.3: Domain and boundary conditions for Test2
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Figure 10.4: Pressure profiles at every 2 ms to visualize the propagation of an initial pressure pulse
in a fluid (left) and poroelastic structure (right).

Figure 10.5: Vertical displacement of the fluid-structure interface at times 1.5 ms, 3.5 ms, and 4.5
ms from left to right.

10.3.3 Test 3 : Geoscience application

In this particular case, we conduct a simulation that involves the coupling of surface and

subsurface flows [28]. This modeling type finds valuable geoscience applications, as it allows us to
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describe important interactions, like those occurring between a river and an aquifer. We consider

the fluid domain Ωf = (0, 2)× (0, 1) and poroelastic domain Ωf = (0, 2)× (−1, 0), with the interface

Γ = {(x, y) : 0 < x < 2, y = 0}. For geoscience application, the governing equation (8.0.5) for the

poroelastic structure is adjusted as follows for this test case:

−2νs ∇ ·D(η)− λ∇(∇ · η) + α∇pp = fs in Ωp × (0, T ) , (10.3.3)

The following physical parameters are set to unity: ρf = νf = α = 1. Both the fluid and structure

have volume forces of fs = ff = 0. The flow is driven through a parabolic fluid velocity on the left

boundary of the fluid region with boundary conditions as specified in figure 10.6.

uf =

(
−40y(y − 1)

0

)

up · np = 0,η = 0

uf = 0

up · np = 0,η = 0

pp = 0, σpnp = 0

uf = 0

Ωs = [0, 2]× [−1, 0]

Ωf = [0, 2]× [0, 1]

Figure 10.6: Domain and boundary conditions for Test3

We simulate this example for the final time Tfinal = 3 s using a time step of ∆tf = 1.5×10−1

seconds for the fluid subdomain and ∆ts = 3.0× 10−1 seconds for the structure subdomain. At the

interface, we set ∆tΓ = ∆ts. For the mesh discretization we set h = 0.05. For this test, the fluid

and structure are approximated using MINI elements and (RT1, P1,Pb) elements, respectively. We

consider three cases with different values of κ, s0, λ and νs, as described in table 10.2. We plot the

velocities uf and up+∂tη (arrows) and their normal components (color) in their respective domains

on the left and displacement profile in poroelastic structure on the right for each case in fig. 10.7.

In case I, We note that the absence of pressure at the bottom induces the flow of fluid into the

poroelastic medium, effectively emulating the influence of gravity. Further, the color plot shows the

continuity of the second components of velocities at the interface. In case II, we test the model

for a problem where poroelastic material has small permeability and storativity. We notice that

the behavior is qualitatively similar to Case I, except the fluid flows in the poroelastic structure in
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smaller amount. In case III, we increase the lame constant νs from unity to 106, representing a stiff

poroelastic structure and notice that almost no fluid flows in the structure and the displacement is

also very small. Furthermore, we report the interface velocity errors, ∥uf · nf +
(

∂η
∂t + up

)
· np∥2Γ

(Error 1) and ∥
∑d−1

j=1 σfnf · tj + cBJS

(
uf − ∂η

∂t

)
· tj∥2Γ (Error 2) for different time sizes in Table

4.7 at the final time T = 3 seconds. Since we set ∆tΓ = ∆tp, selecting larger time intervals for

the poroelastic structure reduces the dimension of the interface problem. This offers the benefit

of needing fewer GMRES iterations, thus reducing computational time, all the while preserving

accuracy. We also considered a case with nonlinear fluid viscosity, (rf = 1.5), and observed similar

plots at final time Tfinal = 3 seconds using larger time steps (see Figure 10.8). The interface velocity

errors are reported in Table 10.3.

Case κ s0 λ νs

I 1 1 1 1

II 10−4 10−4 106 1

III 10−4 10−4 106 106

Table 10.2: Physical parameters for the sensitivity analysis.

Accumulated Interface velocity errors

(∆tf ,∆tp)

Case I Case II Case III

Error 1 Error 2 Error 1 Error 2 Error 1 Error 2

(0.075, 0.075) 1.49e-05 1.90e-06 9.00e-04 2.00e-03 3.89e-05 1.08e-00

(0.075, 0.15) 4.08e-11 9.28e-12 1.88e-07 3.57e-06 9.84e-19 4.12e-13

(0.075, 0.30) 3.85e-11 8.92e-12 2.86e-11 2.33e-10 5.10e-20 3.28e-15

Table 10.3: Comparison of the accumulated interface velocity errors in case I, II and III for rf = 1.5.
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Figure 10.7: Velocities uf and up + ∂tη (arrows) and their normal components (color) in their
respective domains (left) and displacement profile in poroelastic structure (right) in case I, II and
III respectively for rf = 2.
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Figure 10.8: Velocities uf and up + ∂tη (arrows) and their normal components (color) in their
respective domains (left) and displacement profile in poroelastic structure (right) in case I, II and
III respectively for rf = 1.5.
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Part IV

3D Fluid/2D Plate interaction

system
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Chapter 11

Model equations

We consider a domain Ωp = {x = (x1, x2, 0)}, and surface S = {x = (x1, x2, x3) : x3 ≤ 0}

and Ωf ∈ RI 3 such that the boundary of Ωf is ∂Ωf := Ωp ∪ S. We consider the flow in Ωf to be

governed by the time-dependent Stokes equation and the plate structure is modeled by the “Euler-

Bernoulli” or “Kirchhoff” equation. The fluid-plate system [5] is then written as, for T > 0:

ut − νf∆u+∇p = ff in Ωf × (0, T ) ,

∇ · u = 0 in Ωf × (0, T ) ,

u = 0 on S

wtt − ρ∆wtt +∆2w = p|Ωp
in Ωp × (0, T ) ,

w =
∂w

∂ν
= 0 on ∂Ωp ,

u = [u1, u2, u3] = [0, 0, wt] on Ωp × (0, T ).

(11.0.1)

where u(x, t) and p(x, t) denote the fluid velocity and the fluid pressure respectively in Ωf . And

νf , ff (x, t) denote the constant fluid viscosity, and the body force, respectively. Furthermore, w(x, t)

is the displacement of the plate structure. The constant ρ ≥ 0 indicates the rotational inertia

parameter. Whenever ρ = 0, the dynamics of the plate is considered “Euler-Bernoulli” type, while for

ρ > 0 the dynamics is considered ”Kirchhoff” type. The model equations (11.0.1) are accompanied

by the initial conditions w = w0, wt = wt0, u = u0 at t = 0.
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Chapter 12

Weak formulation and stability

analysis

Now, we derive a weak formulation of the problem using a Lagrange multiplier. We use

the standard notation for Sobolev spaces and their associated norms and seminorms. We denote L2

inner product and norm over Θ by (·, ·)Θ and ∥ · ∥Θ, respectively. For functions defined in Ωf and

Ωp, we simply use (·, ·) = (·, ·)Ωf or (·, ·)Ωp
. Define

U := {v = (v1, v2, v3) ∈ H1(Ωf ) : v1 = v2 = 0 on Ωp,v = 0 on S}, Q := L2(Ωf ),

W := {z ∈ H2(Ωp) : z =
∂z

∂ν
= 0 on ∂Ωp}.

We also define the div-free space for the fluid velocity,

V := {v ∈ U : (q,∇ · v) = 0,∀q ∈ Q} .

The spaces V and Q satisfy the inf-sup condition,

inf
q∈Q

sup
v∈V

(q,∇ · v)
∥q∥∥∇v∥

≥ β > 0. (12.0.1)
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The dual spaces U∗ and V∗ are endowed with the following dual norms

∥w∥U∗ := sup
v∈U

(w,v)

∥∇v∥
, ∥w∥V∗ := sup

v∈V

(w,v)

∥∇v∥
.

These norms are equivalent for functions in V as stated in the following lemma.

Lemma 12.0.1. Let w ∈ V. Then, there exists C∗ > 0, such that

C∗∥w∥U∗ ≤ ∥w∥V∗ ≤ ∥w∥U∗ .

Proof. See Lemma 1 in [53].

For the variational formulation, we introduce a Lagrange multiplier g ∈ G := H−1/2(Ωp),

representing

g := (σfnf )3 on Ωp × (0, T ), (12.0.2)

where σf = νf∇u− pI and nf = [0 0 1]T . We now multiply the governing equations by appropriate

test functions and use integration by parts to obtain the following continuous variational formulation:

given initial conditions, find (u, p, w, g) ∈ (U, Q,W,G), for a.e. t ∈ (0, T ), such that

(ut, v) + (νf∇u,∇v)− (p,∇ · v) = (ff ,v) + ⟨g, v3⟩Ωp
∀v ∈ U , (12.0.3)

(q,∇ · u) = 0, ∀q ∈ Q . (12.0.4)

and

(wtt, z) + ρ(∇wtt,∇z) + (∆w,∆z) = (p|Ωp
, z) ∀z ∈ W , (12.0.5)

(u3 − wt, λ) = 0, ∀λ ∈ G . (12.0.6)

Note that (12.0.6) weakly enforces continuity of velocity at the plate structure. The existence of

a solution to (11.0.1) with additional damping term ∆wt in the plate equation is established in

[29] under a small data condition. The wellposedness of the 3D fluid-plate model used in [35] is

established by the means of constructing for it a nonstandard semigroup generator representation

in [5]. Here, we assume the well-posed nature of the variational formulation (12.0.3)-(12.0.6), and

concentrate on the decoupled methodology and the numerical algorithm. In the following theorem,
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we show the stability of the solution of (12.0.3)-(12.0.6).

Theorem 12.0.2. For any ff ∈ L2(0, T,L2(Ωf )) the solution to (12.0.3)-(12.0.6), (u, w), is stable.

For any t > 0 and CPF > 0,

∥u∥2Ωf
+ νf

∫ t

0

∥∇u∥2Ωf
dt+ ∥wt∥2Ωs

+ ρ∥∇wt∥2Ωs
+ ∥∆w∥2Ωs

≤ CPF

νf

∫ t

0

∥ff∥2Ωf
dt+ C0, (12.0.7)

where C0 = ∥u0∥2Ωf
+ ∥wt0∥2Ωs

+ ρ∥∇wt0∥2Ωs
+ ∥∆w0∥2Ωs

. Further, we have, for some Cβ > 0,

∫ t

0

∥p∥2Ωf
dt ≤ Cβ

(∫ t

0

∥ff∥2Ωf
dt+

∫ t

0

∥g∥2Ωp
dt+ C0

)
.

Proof. Note that in Ωp, g = νf∂zu3 − p. So using, ∇u = 0 on Ωf and u = [u1, u2, u3] =

[0, 0, wt] on Ωp, we have ∂zu3 = 0, hence g = −p [35]. Now choosing v = u in (12.0.3), q = p

in (12.0.4), z = wt in (12.0.5) and λ = g in (12.0.6), and adding together we get:

(ut, u) + νf∥∇u∥Ωf
+ (wtt, wt) + ρ(∇wtt,∇wt) + (∆w,∆wt) = (ff ,u)

Now using Cauchy-Schwarz inequality and multiplying both sides by 2, we get,

d

dt
∥u∥2Ωf

+ 2νf∥∇u∥2Ωf
+

d

dt
∥wt∥2Ωs

+ ρ
d

dt
∥∇wt∥2Ωs

+
d

dt
∥∆w∥2Ωs

≤ 2∥ff∥Ωf
∥u∥Ωf

On integrating over (0,t) for a.e. t ∈ (0, T ), we get,

∥u∥2Ωf
+ 2νf

∫ t

0

∥∇u∥2Ωf
dt+ ∥wt∥2Ωs

+ ρ∥∇wt∥2Ωs
+ ∥∆w∥2Ωs

≤ 2

∫ t

0

∥ff∥Ωf
∥u∥Ωf

dt+ ∥u0∥2Ωf
+ ∥wt0∥2Ωs

+ ρ∥∇wt0∥2Ωs
+ ∥∆w0∥2Ωs

Now, using Young’s inequality and Poincare-Friedrich’s inequality, we get, for some ϵ > 0 and

CPF > 0,

∥u∥2Ωf
+ 2νf

∫ t

0

∥∇u∥2Ωf
dt+ ∥wt∥2Ωs

+ ρ∥∇wt∥2Ωs
+ ∥∆w∥2Ωs

≤ 1

ϵ

∫ t

0

∥ff∥2Ωf
dt+ ϵCPF

∫ t

0

∥∇u∥Ωf
dt+ ∥u0∥2Ωf

+ ∥wt0∥2Ωs
+ ρ∥∇wt0∥2Ωs

+ ∥∆w0∥2Ωs
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Now setting ϵ = (νf/CPF ), we get (12.0.7). To estimate the bound of p, first, we estimate a bound

for the time derivative term in (12.0.3). For v ∈ V the equation (12.0.3) is written as

(ut,v) = −νf (∇u,∇v) + (ff ,v) + (g, v3)Ωp
. (12.0.8)

The last term on the right-hand side of (12.0.8) is bounded as

(g, v3)Ωp
≤ ∥g∥H−1/2(Ωp)∥v∥H1/2(Ωp) ≤ C∥g∥H−1/2(Ωp)∥v∥H1(Ωf ),

using the trace theorem. Now, using Cauchy-Schwarz inequality and Poincaré-Friedrichs inequality

in (3.3.21), we have, for some constant Ĉ > 0,

∥ut∥V∗ ≤ Ĉ( ∥∇u∥Ωf
+ ∥ff∥Ωf

+ ∥g∥H−1/2(Ωp) ).

The norm equivalence of ∥ · ∥U∗ and ∥ · ∥V∗ (see Lemma 1 in [53]) then implies, for some constant

C∗ > 0,

∥ut∥U∗ ≤ C∗( ∥∇u∥Ωf
+ ∥ff∥Ωf

+ ∥g∥H−1/2(Ωp) ) . (12.0.9)

To estimate a bound for the pressure term p, consider (3.3.8) with v ∈ U. We isolate the pressure

term, divide by ∥∇v∥Ωf
, take supremum over v ∈ U. Then the inf-sup condition (2.1.1) and the

estimate (12.0.9) yield

β∥p∥Ωf
≤ (1 + C∗)( ∥∇u∥Ωf

+ ∥ff∥Ωf
+ ∥g∥H−1/2(Ωp) ) .

for some β > 0. Finally, we square both sides, integrate over (0, t), use (12.0.7), to obtain

∫ t

0

∥p∥2Ωf
ds ≤ Cβ

(∫ t

0

∥ff∥2Ωf
ds+

∫ t

0

∥g∥2H−1/2(Ωp)
ds+ C0

)

or some constant Cβ > 0.

93



Chapter 13

Second-order temporal

discretization scheme

In this section, we discuss the second-order temporal discretization scheme for the fluid-

plate system and study its stability. To discretize the above equations in time, we set for T > 0,

let ∆t = T/M , where M is a positive integer and for n = 0, 1, 2, · · ·,M , let tn = n∆t. For any

sufficiently smooth function v(x, t), both constant and vector-valued, we define vn(x) ∼ v(x, tn).

The fluid equations are discretized in time using a second-order Crank-Nicolson scheme while the

plate equations are discretized using a second-order Newmark scheme [74]. Further, we introduce

an additional variable ẇ ∈ W, representing wt in the plate subsystem. As a notation, we define for

any function ϕ, ϕn =
ϕn + ϕn−1

2
. The fluid-plate system [5] is then written as, for final time T > 0:

ρf (u
n − un−1)− νf∆t∆un +∆t∇pn = ∆tfnf in Ωf , (13.0.1)

∇ · un = 0 in Ωf , (13.0.2)

(ẇn − ẇn−1)− ρ∆(ẇn − ẇn−1) + ∆t∆2wn = ∆tpn|Ωp in Ωp , (13.0.3)

wn − wn−1 = ∆tẇn in Ωp , (13.0.4)

un
3 = ẇn in Ωp. (13.0.5)

In the next theorem, we show the stability of the numerical scheme.
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Theorem 13.0.1. The method (13.0.1)-(13.0.5) is unconditionally stable. Moreover, for some con-

stants CM , CT > 0, and for any tn, the following relations hold:

ρf∥uM∥2Ωf
+ 2νfτ

M∑
n=0

∥∇un∥2Ωf
+ ∥ẇM∥2Ωp

+ ∥∆wM∥2Ωp
+ ρ∥∇ẇM∥2Ωp

≤ τCM

νf

M∑
n=0

∥ff
n∥2Ωf

,(13.0.6)

∥wn∥2Ωp
≤ (CT τ)

2CM

4νf

M∑
n=0

∥ff
n∥2Ωf

.(13.0.7)

Additionally, we have

∥pn∥2Ωf
≤ Cβ( ∥ff

n∥2Ωf
+ ∥gn∥2H−1/2(Ωp)

) (13.0.8)

for some Cβ > 0.

Proof. For simplicity, let u0 = 0 and w0 = wt0 = 0. Multiplying (13.0.1) and (13.0.2) by un and pn

respectively, integrating over Ωp, and adding the results yield

ρf
2

(
∥un∥2Ωf

− ∥un−1∥2Ωf

)
+ νfτ∥∇un∥2Ωf

≤ τ(f
n

f ,u
n)Ωf

+ τ(gn, un
3 )Ωp

. (13.0.9)

Similarly, we multiply (13.0.3) by ẇ
n
, integrate over Ωp, and use Green’s theorem and (13.0.4) to

get,

1

2

(
∥ẇn∥2Ωp

− ∥ẇn−1∥2Ωp

)
+

ρ

2

(
∥∇ẇn∥2Ωp

− ∥∇ẇn−1∥2Ωp

)
+
1

2

(
∥∆wn∥2Ωp

− ∥∆wn−1∥2Ωp

)
= τ(pn, ẇ

n
) (13.0.10)

Also, multiplying (13.0.5) by gn and integrating over Ωp, we have

(un
3 , g

n)Ωp
= (ẇ

n
, gn)Ωp

. (13.0.11)

Now, use pn = −gn in (13.0.10), add (13.0.9) to (13.0.10), and use (13.0.11) and Cauchy-Schwarz

inequality. Then, for any ϵ > 0 and for some CPF > 0,

ρf
2

(
∥un∥2Ωf

− ∥un−1∥2Ωf

)
+ νfτ∥∇un∥2Ωf

+
1

2

(
∥ẇn∥2Ωp

− ∥ẇn−1∥2Ωp

)
+
1

2

(
∥∆wn∥2Ωp

− ∥∆wn−1∥2Ωp

)
+

ρ

2

(
∥∇ẇn∥2Ωp

− ∥∇ẇn−1∥2Ωp

)
≤ τ∥fnf ∥Ωf

∥un∥Ωf
≤ τ

2ϵ
∥fnf ∥2Ωf

+
ϵCPF τ

2
∥∇un∥2Ωf
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using Young’s inequality and Poincare-Friedrich’s inequality. Setting ϵ = νf/(CPF ) and summing

from n = 0 to M , we get, for some constant CM > 0

ρf∥uM∥2Ωf
+ νfτ

M∑
n=0

∥∇un∥2Ωf
+ ∥ẇM∥2Ωp

+ ∥∆wM∥2Ωp
+ ρ∥∇ẇM∥2Ωp

≤ τCM

2νf

M∑
n=0

∥fnf ∥
2
Ωf

.(13.0.12)

We multiply (13.0.5) by ẇ
n
, integrate over Ωp, and use Cauchy-Schwarz inequality to obtain,

∥ẇn∥2Ωp
≤ ∥un

3∥Ωp∥ẇ
n∥Ωp .

Applying the trace theorem and Young’s inequality, for some CT > 0,

∥ẇn∥2Ωp
≤ CT ∥∇un∥Ωf

∥ẇn∥Ωp
≤ C2

T

2
∥∇un∥2Ωf

+
1

2
∥ẇn∥2Ωp

,

which implies

∥ẇn∥2Ωp
≤ C2

T ∥∇un∥2Ωf
. (13.0.13)

Next, multiply (13.0.4) with wn − wn−1, integrate over Ωp and use Cauchy-Schwarz inequality.

∥wn − wn−1∥2Ωp
≤ τ∥ẇn∥Ωp∥wn − wn−1∥Ωp ,

=⇒ 1

2
∥wn − wn−1∥2Ωp

≤ τ2

2
∥ẇn∥2Ωp

,

=⇒ 1

2
∥wn∥2Ωp

− 1

2
∥wn−1∥2Ωp

≤ τ2

2
∥ẇn∥2Ωp

. (13.0.14)

Finally using (13.0.13) in (13.0.14), summing from n = 0 to n = m, where m ∈ {1, 2, · · ·,M}, we get

∥wn∥2Ωp
≤ (CT τ)

2
m∑

n=0

∥∇un∥2Ωf
≤ (CT τ)

2
M∑
n=0

∥∇un∥2Ωf
. (13.0.15)

For the stability of pn, we mimic the proof of the continuous case. We isolate the pressure term in

(13.0.1), multiply with un, integrate over Ωf and divide by ∥∇v∥Ωf
and take supremum over v ∈ U.

Then, the inf-sup condition (2.1.1) yields that

β∥pn∥Ωf
≤ (1 + C∗)( ∥∇un∥Ωf

+ ∥ff
n∥Ωf

+ ∥gn∥H−1/2(Ωp)) (13.0.16)
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for some β,C∗ > 0. Squaring on both sides of (13.0.16), using (a+ b+ c)2 ≤ 3(a2 + b2 + c2) on the

right side and finally using (13.0.12), we get, for some Cβ > 0,

∥pn∥2Ωf
≤ Cβ( ∥ff

n∥2Ωf
+ ∥gn∥2H−1/2(Ωp)

) . (13.0.17)

(13.0.17) now implies the stability of pn.
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Chapter 14

Working algorithm and Numerical

results

For the numerical simulation of the coupled fluid-plate system, we employ a partitioning

method using fixed-point iteration. In this approach, we impose the condition u3 = wt strongly

as the Dirichlet condition for the fluid problem. Each time step begins with solving the fluid

subproblem, where an initial guess for ẇ is used, followed by solving the plate equation using

the pressure. The fluid and the plate subsystem are solved serially and implicitly in time using

iterations that terminate when the relative residual is smaller than a chosen tolerance. However,

an issue arises when solving the subsystems separately using Dirichlet conditions. Because the

pressure is not uniquely determined, an appropriate shifting method needs to be developed. Note

that
∫
Ωp

wt dΩp =
∫
Ωp

u3 dΩp =
∫
∂Ωf

u · nf d(∂Ωf ) = 0 due to the incompressibility condition

∇·u = 0 [11]. This additional constraint can be incorporated into the plate system to determine the

correct pressure. At the k-th fixed point iteration, the pressure, p̂ is computed with the mean zero

condition. Subsequently, the plate problem is solved for the additional unknown scalar value s with

the pressure p replaced by p̂ − s in (13.0.3) and the additional constraint equation
∫
Ωp

ẇ dΩp = 0.

Then p̂−s is expected to be the pressure satisfying (13.0.1)-(13.0.5) [90]. We summarize the complete

numerical algorithm in Algorithm 2.
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Algorithm 2: Working algorithm

Input: ẇ initial guess, ϵ tolerance and Niter maximum number of iteration.

Output: ẇn,k

k = 0, error > ϵ, ẇ0,0 = 0,u0,0 = 0

for n = 1, 2, 3, · · ·, N

while k < Niter and error > ϵ, do

1. Solve for (un,k, p̂n,k) ∈ U×Q0 with un,k
3 = ẇn,k−1:

un,k − νfτ∆un,k + τ∇p̂
n,k

= τ f
n,k

f − un−1,k in Ωf ,

∇ · un,k = 0 in Ωf ,

un,k = 0 on S,

un,k = [un,k
1 , un,k

2 , un,k
3 ] = [0, 0, ẇn,k−1] on Ωp,∫

Ωf

p̂n,k dΩf = 0.

(14.0.1)

2. Solve for (wn,k, ẇn,k, sn,k) in W ×W ×R:

ẇn,k − ρ∆ẇn,k + τ∆2wn,k = τ
(
p̂
n,k|Ωp − sn,k

)
+ ẇn−1,k − ρ∆ẇn−1,k in Ωp ,

wn,k − wn−1,k = τẇ
n,k

in Ωp ,∫
Ωp

ẇn,k dΩf = 0,

wn,k =
∂wn,k

∂ν
= 0 on ∂Ωp .

(14.0.2)

3. Update ẇn,k−1 = ẇn,k.

end while

Set pn = p̂n,k − sn,k

Reset k = 0.

end for
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Fluid domain (Ωf )

Plate domain (Ωp)

Figure 14.1: 3D Fluid and 2D plate system domain in RI 3

14.1 Numerical results

14.1.1 Test 1: Manufactured solutions

In this section, we introduce manufactured solutions for the fluid-plate system and illustrate

the behavior of the method by performing the convergence with respect to space and comparing plots

of finite element solution with the exact manufactured solution. All computations are performed

using FreeFem++ [59]. We consider the domains Ωf = [0, 1]× [0, 1]× [−1, 0] and Ωp = [0, 1]× [0, 1]×

{0}.

Further, the manufactured fluid velocity, pressure and displacement of the plate are consid-

ered as follows:

u1 = (2x3(x− 1)3(9x2 − 9x+ 2)y4(y − 1)4 ,

+(4/5)x5(x− 1)5y2(y − 1)2(14y2 − 14y + 3))(−30z4 − 60z3 − 30z2)e−t ,

u2 = 0 ,

u3 = x4(x− 1)4(2x− 1)y4(y − 1)4(−6z5 − 15z4 − 10z3 − 1)e−t ,

p = 0 ,

w = x4(x− 1)4(2x− 1)y4(y − 1)4e−t.

Note that at z = 0, u3 = wt. The right-hand side function ff is evaluated using (11.0.1). For the

finite elements simulation, we used (P2, P1, P2Morley, P2) elements for (u, p, w, ẇ). We set final

time Tfinal = 0.01 and ∆t = 0.001 and evaluated errors and convergence rates for different values of

N (see table 14.1). We observed that the convergence rates are close to the theoretical convergence
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rates [80]. Further, we plot and compare the finite element solution, wt-FEM and u3−FEM, with

exact solutions, wt−Exact and u3−Exact in fig. 14.2 and fig. 14.3. The observation that both wt

and u3 functions exhibit identical behavior in the plotted solutions indicates a strong agreement

between the numerical model and the theoretical expectations.

h L2(Velocity) H1(Velocity) L2(pressure)

1/4 1.77e− 06 4.70e− 05 6.58e− 06

1/6 4.78e− 04[3.23] 2.19e− 05[1.88] 2.82e− 06[2.09]

1/8 2.02e− 07[2.99] 1.30e− 05[1.81] 1.12e− 06[3.20]

1/10 1.09e− 07[2.75] 8.78e− 06[1.76] 5.05e− 07[3.59]

1/12 6.68e− 08[2.73] 6.34e− 06[1.79] 2.72e− 07[3.39]

Table 14.1: Errors and convergence rates for u and p functions at final time Tfinal = 0.01 using
time-step size ∆t = 0.001 for different values of h.

h L2(w-function) H1(w-function) H2(w-function)

1/4 2.22e− 07 3.13e− 06 5.83e− 05

1/6 8.49e− 08[2.37] 1.40e− 06[1.99] 4.25e− 05[0.78]

1/8 3.28e− 08[3.31] 7.33e− 07[2.24] 3.15e− 05[1.04]

1/10 2.06e− 08[2.09] 4.87e− 07[1.83] 2.59e− 05[0.88]

1/12 1.48e− 08[1.80] 3.17e− 07[2.36] 2.10e− 05[1.16]]

Table 14.2: Errors and convergence rates for w function at final time Tfinal = 0.01 using time-step
size ∆t = 0.001 for different values of h.

While performing convergence tests in time, freefem++ did not allow us to set spatial mesh

size smaller than 1
13 as the problem becomes very large due to the involvement of 3D fluid equations.

On using spatial mesh size 1
12 , we obtained that the errors evaluated for different time steps are

very small; however, they are flat (see Table 14.3). We then solve only the 2D plate equation in the

domain [0, 1]× [0, 1] using the exact solution and first-order time discretization and observed similar

flat errors. This issue was addressed, and we could achieve linear convergence in time using a very

large weight (105) in the wtt term of the structure equation for spatial mesh size 1
50 (see Table 14.4).

With the weight the structure problem is defined as follows:

(weight)wtt − ρ∆wtt +∆2w = fp,

where fp is the function evaluated using manufactured w function. Another interesting point we
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noticed was the need for an even larger weight to achieve linear convergence in time with a smaller

mesh size. This numerical finding suggests that errors are strongly dependent on a spatial mesh.

However, the restriction of not being able to use a mesh finer than 1
13 throughout the entire three-

dimensional domain limited us from observing convergence in time.

Type Error

L2(w-function) 1.90e− 07

H2(w-function) 1.65e− 06

H2(w-function) 2.45e− 05

Table 14.3: Flat errors for w function at final time Tfinal = 0.2 using mesh size 1
12 using ∆t =

{0.2, 0.1, 0.05, 0.025}.

∆t L2(w-function)

0.5 1.43e− 06

0.25 6.97e− 07[1.04]

0.125 3.45e− 07[1.01]

0.0625 1.73e− 07[1.00]

0.03125 8.75e− 08[0.99]

Table 14.4: L2 errors and convergence rates for w function at final time Tfinal = 4 using mesh size
1
50 for different values of ∆t while solving only 2D structure problem with weight 105.

Figure 14.2: wt-FEM (left) and wt-Exact (right) for h = 1/12, Tfinal = 0.01,∆t = 0.001.
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Figure 14.3: u3-FEM (left) and u3-Exact (right) for h = 1/12, Tfinal = 0.01,∆t = 0.001.

14.1.2 Test 2: Free vibration of a plate

In this test, we examine a physical scenario involving the free vibration of a plate [34].

Consider the domains Ωf = [0, 1] × [0, 1] × [−1, 0] and Ωp = [0, 1] × [0, 1] × {0}, set ff = 0 and

impose u = 0 on all boundary faces of Ωf , except at z = 0, where we have the condition u3 = wt.

Additionally, at the boundary of the plate we set w = ∂w
∂n = ∂w

∂t = 0. We use additional parameters

and rewrite the plate structure as follows:

ρpwtt − ρ∆wtt +D∆2w = fp in Ωp × (0, T ),

where ρp is the density, D := Y h3/(12(1−ν)) is the flexural rigidity with ν and Y being the Poisson’s

ratio and Young’s modulus, respectively. In this experiment we consider ρp = 2.7, D = 6.4527 and

ρ = 0. By setting D ̸= 0 and fp = ρ = 0, the model reduces to the classical Kirchhoff-Love

model with only the bending dynamics accounted. For the numerical experiment, we set mesh size

h = 1/12, Tfinal = 0.01 seconds and τ = 0.001 seconds. Initially, we set u(x, 0) = 0, p(x, 0) = 0 and

set the plate in the free vibration by introducing, for some integers m and n,

wt(x, 0) = sin (mπx) sin (nπy).
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We plot u3 in the fluid domain and wt in the plate domain for different values of m and n. The plots

show that the vibration in the plate gets transmitted to the fluid dynamics, affecting the vertical

velocity component of the fluid (u3). Furthermore, we observed that the plot of wt is the same as

the standing wave solution mentioned in [34]. We also present the plot of u3 for the (m,n) = (1, 2)

case on the x = 0.5 plane (see Figure 14.4), which provides a clearer representation of u3 in the fluid

domain.

Figure 14.4: u3 for h = 1/12, Tfinal = 0.01, τ = 0.001 in x = 0.5 plane.
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Figure 14.5: wt(left) and u3(right) for h = 1/12, Tfinal = 0.01, τ = 0.001, (m,n) = (1, 2) (top) and
(m,n) = (2, 2) (bottom).
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Chapter 15

Conclusions

We introduced global-in-time domain decomposition methods for fluid-structure interaction

problems involving elastic, porous, or poroelastic structure by formulating two interface problems,

based on the Steklov-Poincaré operator and Robin transmission conditions, respectively. In these

methods, the fluid and the structure subproblems are time-dependent and solved independently

using local solvers. This allows for the use of nonconforming time grids and different time-stepping

algorithms for local problems.

For the case where the elastic structure is involved, we implemented both methods. The

SWR algorithm was introduced and analyzed in continuous and semi-discrete settings. We performed

numerical tests on two examples. First including a non-physical problem where we tested with

various mesh sizes and time steps to verify convergence rates. The use of non-conforming time

grids resulted in better accuracy within similar computational times compared to results obtained

using conforming coarse grids. Secondly, for the physical benchmark problem from a hemodynamic

application, we implemented the Steklov-Poincaré method and observed similar results reported in

the literature.

In the problem involving porous structure, we investigated the Robin method. This ap-

proach can easily handle problems with discontinuous media represented by model equations with

discontinuous coefficients. Also, problems with a large difference in local time scales, e.g., low per-

meability in the porous region, can be efficiently solved by the method. In our numerical tests, we

observed that using nonconforming time grids significantly improves the efficiency, still yielding the

desired accuracy. The robustness of this global-in-time DD approach was also partially verified while

106



being tested on the test case of low permeability porous medium. However, it was noticed that the

Darcy velocity among all variables is most sensitive to a choice of Robin parameters for its accuracy.

A theoretical framework for the optimal choice of Robin parameters in the SWR method has not

been established for time-dependent multiphysics problems; therefore, the parameters used for the

presented numerical results were chosen completely based on numerical experiments. For the method

to be practical and more robust, further studies are needed for Robin transmission conditions about

the convergence of iterative schemes and the accuracy of numerical solutions.

Finally, we implemented Steklov-Poincare to the nonlinear fluid-poroelastic interaction sys-

tem. The scheme is an implicit type that requires iterations between fluid and poroelastic subsys-

tems. We performed numerical tests on three kinds of problems. First, we used a manufactured

solution and tested the convergence behavior of the algorithm with respect to space and time. Sec-

ondly, we chose a problem from hemodynamic application and observed the propagation of pressure

in the artery. Finally, we considered a problem from a geoscience application and performed sensi-

tivity analysis by varying physical parameters of Biot equations. Numerical results show that the

algorithm efficiently simulates the model problem, preserving accuracy.

Using local time stepping makes our research approach efficiently applicable to multiphysics

problems, where local problems are in different time scales. As a future work, this method can

be extended to other multiphysics problems that include cases where more than two subdomains

need to be considered, fractured models. Further, the theoretical framework that explains topics

such as the relation between Robin parameters and convergence of SWR algorithm, and the choice

of optimal Robin parameters can be studied. The work can also be extended to the multiphysics

problems that involve moving domain settings where time-dependent domains are considered and

time-dependent bijective mapping, known as arbitrary Lagrangian–Eulerian (ALE) mapping is used

to exchange information between fixed reference domain and physical domain.

Additionally, we presented a temporal numerical discretization scheme for the 3D fluid -

2D plate structure interaction system and showed the stability of this scheme. We proposed a

numerical algorithm that sequentially solves the fluid and plate subsystems through an effective

decoupling approach. The numerical complexity due to the presence of the biharmonic operator in

plate structure is handled using P2Morley elements in the structure subproblem. The numerical

results presented for the test that uses time-dependent manufactured solutions and the test that

considers the free vibration of the plate showed the performance of the algorithm.
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