
Clemson University Clemson University 

TigerPrints TigerPrints 

All Dissertations Dissertations 

5-2024 

Selected Topics on Sequential Designs for Decision Making Selected Topics on Sequential Designs for Decision Making 

Caroline Kerfonta 
ckerfon@clemson.edu 

Follow this and additional works at: https://tigerprints.clemson.edu/all_dissertations 

 Part of the Other Statistics and Probability Commons, and the Statistical Methodology Commons 

Recommended Citation Recommended Citation 
Kerfonta, Caroline, "Selected Topics on Sequential Designs for Decision Making" (2024). All Dissertations. 
3616. 
https://tigerprints.clemson.edu/all_dissertations/3616 

This Dissertation is brought to you for free and open access by the Dissertations at TigerPrints. It has been 
accepted for inclusion in All Dissertations by an authorized administrator of TigerPrints. For more information, 
please contact kokeefe@clemson.edu. 

https://tigerprints.clemson.edu/
https://tigerprints.clemson.edu/all_dissertations
https://tigerprints.clemson.edu/dissertations
https://tigerprints.clemson.edu/all_dissertations?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F3616&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/215?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F3616&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/213?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F3616&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_dissertations/3616?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F3616&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:kokeefe@clemson.edu


Selected Topics on Sequential Designs for Decision
Making

A Dissertation

Presented to

the Graduate School of

Clemson University

In Partial Fulfillment

of the Requirements for the Degree

Doctor of Philosophy

Mathematical Sciences

by

Caroline M. Kerfonta

May 2024

Accepted by:

Dr. Qiong Zhang, Committee Chair

Dr. Christopher McMahan

Dr. Patrick Gerard

Dr. Deborah Kunkel

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. OPSEC

# 8425



Abstract

This dissertation is comprised of three parts. The first proposes a sequential approach

to determine the experimental setting with the minimum variance (Kerfonta et al., 2024). Two

acquisition functions are developed to assist developing the approach. Theoretical results along

with a case study using data from crystallization experiments is conducted to show the ability of the

proposed method to correctly select the experiment with the minimum variance. The second and

third parts propose adaptations to the Bayesian optimization algorithm using transformed additive

Gaussian processes (TAG) as the surrogate model. The goal of using the TAG framework is to

decompose the optimization problem into multiple one-dimensional optimization problems. The

second part of this dissertation proposes a Bayesian optimization algorithm for single objective

optimization using TAG as the surrogate model and a modified expected improvement acquisition

function. To demonstrate the advantages of the proposed method, it will be compared to Bayesian

optimization with a Gaussian process surrogate model using the expected improvement acquisition

function. The final part of this dissertation proposes a bi-objective Bayesian optimization algorithm

that uses TAG as the surrogate model and a modified expected hypervolume improvement acquisition

function. This approach is compared to classical bi-objective Bayesian optimization using a Gaussian

process surrogate model. Functions from existing bi-objective optimization literature are used to

demonstrate the advantages of the proposed method.
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Chapter 1

Introduction

This dissertation proposes several adaptations to the Bayesian optimization algorithm.

Chapter 2 proposes a proposes a Bayesian optimization algorithm to find the experimental set-

ting with the smallest variance. This chapter has been published as Kerfonta et al. (2024). Chapter

3 proposes a Bayesian optimization algorithm for single objective optimization problems using trans-

formed additive Gaussian processes as the surrogate model and a modified expected improvement

acquisition function. Chapter 4 also uses transformed additive Gaussian processes as the surrogate

model in the Bayesian optimization algorithm, but for the bi-objective case, and a modified expected

hypervolume improvement acquisition function. This chapter has been submitted for publication to

the proceedings of Winter Simulation Conference 2024.

There are many different techniques for sequential designs for decision making. Sequential

problems can have a discrete or continuous decision space. When the decision space is discrete

decision making is often called ranking and selection. A commonly used technique when the decision

space is continuous decision making is Bayesian optimization (Powell and Ryzhov, 2012). There are

also frequentist approaches to sequential decision making (Xu and Zeevi, 2023).

A review of ranking and selection problems, applications, and advances is given by Hong

et al. (2021). Ranking and selection methods are are classified as either fixed budget procedures

or fixed precision procedures (Hunter and Nelson, 2017). For fixed budget procedures, there is a

set number of experiments to be conducted and a design is created to sample alternatives so that

the design is optimized (Frazier et al., 2008). When using a fixed precision procedure, designs

are sampled until a certain probability of correct selection is reached (Paulson, 1964). Ranking
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and selection methods can be computationally expensive. In order to handle problems with large

numbers of alternative designs, parallel ranking and selection procedures have been developed in

the literature (Hong et al., 2022; Zhong and Hong, 2022). There are many problems that may have

multiple attributes that measure performance; Butler et al. (2001) develops a ranking and selection

procedure to handle this type of problem. Many ranking and selection problems evaluate a single

problem, rather than performing a pairwise comparison. Xiao et al. (2023) develops a technique to

perform pairwise comparisons.

A survey on recent developments to Bayesian optimization techniques is provided in Wang

et al. (2023). One weakness of Bayesian optimization is that the technique does not perform well

when the dimension of the decision space is large (Kandasamy et al., 2015). Chapter 3 and Chapter

4 will propose methods for Bayesian optimization with a high dimensional decision space. Spagnol

et al. (2019) proposed a method to reduce the decision space through variable selection with sen-

sitivity analysis. Bayesian optimization has also been used to solve combinatorial problems (Wang

et al., 2023). This is done by handling a problem with a discrete decision space as having a con-

tinuous decision space (Garrido-Merchán and Hernández-Lobato, 2020). Another area of interest in

Bayesian optimization is developing robust techniques for data with outliers, Martinez-Cantin et al.

(2018) develops an algorithm using Student’s T distribution to classify outliers.

We summarize the generic Bayesian optimization algorithm in a flowchart and an algorithm.

Figure 1.1 shows the optimization process that is continued until a budget or a maximum number of

steps is exhausted. The generic Bayesian optimization algorithm is shown in Algorithm 1 (Frazier,

2018). The surrogate model is developed in step 3 and the acquisition function is optimized in step

4. Step 5 updates the dataset and step updates the prior and posterior distributions. Chapter 4

proposes a bi-objective Bayesian optimization algorithm. In bi-objective Bayesian optimization, a

surrogate model is fit to each of the objective functions and then an acquisition function that is able

to handle a higher dimension is optimized (Loka et al., 2022).

2
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Figure 1.1: Flowchart depicting the Bayesian optimization algorithm for blackbox functions.

Algorithm 1 Generic Bayesian optimization Algorithm (Frazier, 2018)

1: Place a prior distribution on f(x)

2: for n = 0, 1, . . . , N − 1 do

3: Compute acquisition function based on the prior distribution of y(x)

4: Find xn+1 that maximizes the acquisition over x ∈ X

5: Collect a new data point by evaluating y(x) at xn+1,

6: Update the prior distribution of y(x) as the posterior distribution of y(x) given all existing

data.

7: end for

Return the point with the largest posterior mean.

Chapter 2 focuses on developing a sequential selection procedure to select the experiment

with the smallest variance. That is to say it focuses on the problem

x∗ ∈ argminx∈Xσ2
x,

where σ2
x’s are unknown variance parameters for each of the experimental settings and there is

a finite candidate set X = {1, . . . ,K}. The size uniformity of crystals used in manufacturing

processes can be critical quality attributes, and influential factors for quality attributes (Mascia
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et al., 2013; Abolhasani and Jensen, 2016; Hadiwinoto et al., 2019; McDonald et al., 2021; Mou et al.,

2022). The reliable quantification of actual crystal size often still have to rely on time-consuming

manual counting, for samples with overlapping crystals and shape/size difference. Therefore, it

is desired to evaluate and optimize experimental conditions with a small number of experiments

(and measurements). Using these crystals as motivation, the sequential selection procedure will

be developed. To develop the approach, first a Bayesian adaptive method to incorporate new

uniformity measurements in each step based on the conjugacy property of chi-squared and inverse

gamma distributions is derived. Second, acquisition functions based on knowledge gradient as well

as expected improvement are designed. A case study utilizing data from crystallization experiments

will be used to show the advantages of the proposed procedure. Through numerical simulations

and the case study, it is shown that the knowledge gradient and expected improvement acquisition

functions for the inverse gamma prior that are proposed in this chapter are the most robust amongst

the existing methods to which they are compared.

Chapters 3 and 4 introduce Bayesian optimization algorithms using transformed additive

Gaussian processes as the surrogate model. Bayesian optimization is a commonly used technique

to optimize complex equations (Frazier, 2018). This technique is comprised of two important parts:

the surrogate model to fit the data, and the acquisition function which is optimized to determine the

next location to sample. These chapters will use the Transformed Additive Gaussian Process (TAG)

framework as described in Lin and Joseph (2020) to model the data and decompose the objective

function(s) into one-dimensional additive pieces. They will also modify commonly used acquisition

functions to accommodate the TAG framework as the surrogate model.

Chapter 3 will use the TAG framework as a surrogate model for single objective optimization

problems. The problem that this chapter seeks to solve, through Bayesian optimization is, the

minimization problem, which is defined as:

min y(x)

s.t. x ∈ X

where X ⊂ Rn is the feasible set. Although the Bayesian optimization is derivative free, as the

dimension of the problem increases, so does the computational expense and time needed to run the

algorithm (Malu et al., 2021). To simplify the problem, and decrease the computational complexity,

4



we propose fitting a TAG model to the data as the surrogate model. This framework will decompose

the objective function into one-dimensional pieces that can be optimized separately. Expected

Improvement is a commonly used acquisition function in Bayesian optimization (Jones et al., 1998)

and we will modify it to be able to optimize the decomposed objective functions. A numerical

study is conducted to show the advantages of the proposed method over Bayesian optimization

with a traditional Gaussian process surrogate model and expected improvement as the acquisition

function. It is shown that as the dimension of the objective function increases as does the advantage

of the proposed method. The method also performs well when the objective function is transformed

to be additive. If there is an interaction or the method cannot be transformed to be additive the

method does not out perform traditional methods.

To further the work done in Chapter 3, Chapter 4 will use the TAG framework as a surrogate

model in bi-objective Bayesian optimization. In this chapter, the problem that we seek to solve is:

min y(x) = [y1(x), y2(x)]

s.t. x ∈ X

where X ⊂ Rd is a feasible set. Just as in the single objective case, as the dimension of the

objective functions increases, as does the difficulty to optimize them. A TAG model will be fit to

each objective function as the surrogate model. The problem will then be decomposed into one-

dimensional bi-objective problems that can be optimized separately. A commonly used acquisition

function in bi-objective Bayesian optimization is expected hypervolume improvement (Emmerich

et al., 2011). The proposed method will modify the expected hypervolume improvement calculation

to be able to optimize the many one-dimensional bi-objective optimization problems. A numerical

study using simple objective functions as well as an example from existing bi-objective optimization

literature are used to demonstrate the advantages of the proposed method. As the dimension of the

decision space increases, so does the advantage of the proposed method over classical bi-objective

Bayesian optimization. The proposed method performs well when the objective function can be

transformed to be additive, rather than having interactions or have an additive structure without

being transformed.

5



Chapter 2

Sequential Selection for

Minimizing the Variance

2.1 Introduction

Many important products, such as pharmaceuticals and batteries, contain crystals in the

final products or involve crystals as manufacturing intermediates (Jiang et al., 2014; Jiang and

Braatz, 2016; McDonald et al., 2021; Zambrano and Jiang, 2023). Besides the chemical composition,

physical aspects of crystals are also important for product quality and consistency, such as the crystal

size and the size variance (Variankaval et al., 2008; Adamo et al., 2016; Mou et al., 2022; McDonald

et al., 2021). Starting from solution, crystals form from phase transition, which involves multiple

possible physical and chemical phenomena (e.g., nucleation, growth, attrition, aggregation). Often,

the size distribution of outcome crystals are sensitive to experimental conditions such as temperature

and concentration. It is of great interest to identify the experimental conditions that consistently

lead to the smallest variance of the crystal sizes, which indicates the best uniformity of crystals.

Microscope images (e.g., Figure 2.1) have a fast and convenient data format to determine

crystal size quality using microscopes. However, reliably measurements of crystal sizes from micro-

scope images often rely on time-consuming manual counting of all crystals, especially when images

contain overlapping crystals and/or too many crystals. Therefore, it is still desired to optimize the

experimental condition using as few trials (and microscope measurements) as possible. Additionally,

6



reducing the number of experiments reduces materials, reliance on advanced equipment, and human

operation errors under tight schedules. Thus, it is preferable to conduct the experiments in a sequen-

tial manner such that the resources can be strategically allocated to more promising experimental

settings based on the information collected along the process.

Figure 2.1: A microscope image of manganese oxalate hydrate crystals synthesized from the reaction
crystallization.

Motivated by the application of crystallization experiments, our aim is to develop a sequen-

tial selection approach to find the optimal experimental condition that minimizes the variation of

crystal sizes. The proposed sequential selection approach contains (1) a Bayesian adaptive method

to incorporate new uniformity measurements in each step based on the conjugacy property of chi-

squared and inverse gamma distributions, and (2) design acquisition functions based on knowledge

gradient as well as expected improvement to improve the selection of the most promising experimen-

tal setting for minimizing the variance of crystal size. The proposed selection approach is considered

a ranking and selection (R&S) problem, which is a classic mathematical framework for identifying

the optimal alternative from multiple alternatives. We review the R&S literature and point out the

distinction of our method.

The R&S problem can date back as early as Bechhofer (1954). There have been various

schools of thought on designing budget allocation strategies in the literature of R&S. One particular

school of thought is to use sequential allocation strategies under Bayesian models, for which the

7



experimenter first spends part of the budget, collects information to update the prior belief, then

decides how to allocate the remaining budget such that the expected one-step-ahead (or multiple-

step-ahead) gain under certain criteria can be maximized based on the latest belief. Some examples

of sequential allocation strategies following this school of thought include but not limited to expected

improvement (EI; Jones et al. 1998) and knowledge gradient (KG; Gupta and Miescke 1996). The EI-

type methods are broadly applied due to their computational efficiency and practical performance;

for example, see Tesch et al. (2011), Wang et al. (2021) and Chen et al. (2022) for some applications

of EI-type methods. Generally speaking, the EI-type methods evaluate the expected improvement

over the current best estimate that would have been obtained if an alternative were selected to

sample, and select the one that possesses the largest expected improvement to sample. There are

plenty of developments of EI-type methods in recent years, such as knowledge gradient (Frazier et al.,

2008), the expected value of information (Chick et al., 2010), and complete expected improvement

(Salemi et al., 2019). The performance of the EI-type methods has also been thoroughly studied

recently; for example, Ryzhov (2016) analyzes the convergence rate of classic EI and other related

methods, and Chen and Ryzhov (2019) gives the first tuning-free sequential approach that is able

to achieve the optimal allocation asymptotically under normal sampling distributions.

The computational tractability and efficiency of the above EI-type methods are usually

achieved by assuming a certain sampling distribution (mostly, normal). Then, with normal prior

(conjugate prior), the posterior distribution of the unknown parameter is also in the normal distri-

bution family, which allows for closed-form expressions for selection criteria and sequential updates

for estimators. Therefore, to efficiently identify the optimal experimental setting that produces crys-

tals of the best uniformity, we propose an R&S framework by constructing a new EI-type method,

which is a computationally-tractable sequential selection procedure with a closed-form knowledge-

gradient-based criterion or an expected-improvement-based criterion to sample the alternatives. Our

approach significantly distinguishes from the existing literature of R&S. First, the performance of

the alternatives in our problem is the uniformity of the crystals produced and is estimated by the

sample variances of the collected observations. By contrast, most existing works on R&S take the

population means of the sampling distribution as the optimization objective, while only a few focus

on optimizing the variance of the alternatives, such as Trailovic and Pao (2004) and Hunter and

McClosky (2016). Second, we model the sample variances of the alternatives by chi-squared distri-

butions and derive closed-form sequential updates for the estimators by assuming conjugate inverse-
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Gamma prior. In fact, R&S under sampling distributions other than normal is gaining momentum

recently; for example, Zhang et al. (2020) consider R&S under exponential sampling distributions,

and Chen and Ryzhov (2022) propose a tuning-free sequential budget allocation strategy that can

achieve the large-deviation-based optimal allocation with regard to maximizing the probability of

correct selection (PCS) under general sampling distributions (Glynn and Juneja, 2004). Hence, our

methodology also enriches the literature of R&S under non-normal sampling distributions.

This chapter is organized as follows. Section 2.2 will describe the problem and detail the

framework of the proposed sequential selection method. Section 2.3 will describe a Bayesian adap-

tive method to incorporate the collected uniformity measurements in a sequential manner. Section

2.4 will provide design acquisition functions based on knowledge gradient as well as expected im-

provement for minimizing the variance. Section 2.5 will provide a numerical study comparing the

proposed method to existing methods, and Section 2.6 will provide a case study using data from

crystallization experiments. A conclusion will be given in Section 2.7.

2.2 Problem Description

Consider the problem of minimizing the variance of experimental settings within a finite

candidate set X = {1, . . . ,K}, i.e.,

x∗ ∈ argminx∈Xσ2
x, (2.1)

where σ2
x’s are unknown variance parameters. By conducting an experiment under a setting x, we

collect a sample variance S2
x with a fixed sample size m to estimate the variance σ2

x. Denote by m the

number of crystals obtained in each crystallization experiment. Note that K is finite and S2
x’s are

i.i.d. noisy observations of σ2
x for each x. Given a fixed budget, the total number of experiments that

may be conducted under all settings is also fixed, thus sampling one alternative not only collects

information about this alternative but also reduces the opportunity to learn other alternatives.

Consequently, not every alternative can be sampled sufficiently to obtain an accurate estimator of

σ2
x. Moreover, some alternatives may not be even worth sampling many times if their performances

are too poor. Taking the Bayesian perspective, we view the unknown variance parameters σ2
x’s

as random variables. Our initial belief about the variances of different experimental settings is

specified by their prior distributions. In particular, we assume that σ2
1 , . . . , σ

2
K are independent

9



random variables following the inverse gamma (denoted by IG) distribution, i.e.,

σ2
x ∼ IG

(
a(0)x , b(0)x

)
, for all x ∈ X , (2.2)

where a
(0)
x > 1 and b

(0)
x > 0 are the initial prior parameters before data collection. Assume that

the sample variances S2
x’s from different experimental settings are independent. Given the variance

parameter σ2
x, we model the sample variance S2

x by

(m− 1)S2
x | σ2

x ∼ σ2
xχ

2
m−1, (2.3)

where χ2
m−1 represents a chi-squared random variable with m− 1 degrees of freedom. Furthermore,

suppose that the prior distributions and the sample variances from different experimental settings

are independent. Note that the model assumption for S2
x holds approximately if the sample variance

S2
x is computed based on a random sample of a fixed size m.

Let N be the total number of experiments. Denote by x(t+1) and S2
x(t+1) the experimental

setting selected and the sample variance collected at time t, respectively. Based on the prior distri-

bution in (2.2) and data model in (2.3), we develop a fully sequential selection procedure to solve the

target problem (2.1). In each step of the sequential procedure, we choose an experimental setting

x from {1, . . . ,K}, collect the sample variance S2
x through experiments, and update the posterior

distribution. Then, a data-driven solution to (2.1) at time t can be recursively given by

x∗(t) ∈ argminx∈XE
[
σ2
x|S2

x(j+1) , j ∈ Ax(t)
]
, (2.4)

where Ax(t) = {j ≤ t : x(j+1) = x} is an index set indicating the stages at which x is sampled

up to time t. We say “correct selection” occurs at time t if x∗(t) correctly finds x∗. We show that

(2.4) can be efficiently solved by a sequential selection procedure, which consists of (1) a Bayesian

update scheme for the posterior distribution based on sequential data acquisition (Section 2.3); (2) an

acquisition function based on the collected information for measuring the potential improvement to

the decision-making by sampling a new experimental setting (Section 2.4). To give a clear overview,

we summarize the whole procedure of sequential selection in Algorithm 2, in which the proposed

Bayesian update and acquisition function are applied at Step 3 and Step 5, respectively.
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Algorithm 2 An Algorithm on Sequential Selection for Minimizing the Variance

1: Specify the initial prior parameters, a
(0)
x and b

(0)
x for all x ∈ X .

2: for 0 ≤ t ≤ N − 1 do

3: Evaluate the acquisition function for each x ∈ X given the prior parameters a
(t)
x and b

(t)
x , and

choose the experimental setting x(t+1) that maximizes the acquisition function over x ∈ X ;

4: Conduct an experiment under x(t+1) to obtain an observation S2
x(t+1) ;

5: Update the prior parameters to a
(t+1)
x and b

(t+1)
x for all x ∈ X using S2

x(t+1) .

6: end for

7: Return the experimental setting that minimizes the expected variance at t = N according to

(2.4).

2.3 Bayesian Sequential Update for the Variance

This section constructs a Bayesian update to the posterior distribution in each step of

the proposed sequential procedure. Typically, a Bayesian update is based on the conjugacy (or

approximate conjugacy) of the prior and the posterior distribution, i.e., the posterior distribution

belongs to the same distribution family as the prior. Lemma 1 proves the conjugacy of the inverse

gamma prior for the χ2 data model.

Lemma 1 Assume that

(m− 1)S2 | σ2 ∼ σ2χ2
m−1 and σ2 ∼ IG(a, b).

Then, the posterior distribution of σ2 given S2 is

σ2 | S2 ∼ IG

(
a+

m− 1

2
, b+

(m− 1)S2

2

)
. (2.5)

Lemma 1 implies that, for all x ∈ X , the posterior distribution of σ2
x at time t can be

denoted by IG(a
(t+1)
x , b

(t+1)
x ), where

a(t+1)
x = a(t)x +

m− 1

2
, b(t+1)

x = b(t)x +
(m− 1)S2

x(t+1)

2
if x = x(t+1) (2.6a)

a(t+1)
x = a(t)x , b(t+1)

x = b(t)x if x ̸= x(t+1). (2.6b)
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Note that σ2
x ∼ IG

(
a
(t+1)
x , b

(t+1)
x

)
is also the prior distribution at time t + 1. In summary, the

posterior distributions of σ2
x can be efficiently updated through only updating two parameters a

(t)
x

and b
(t)
x whenever a new observation S2

x(t+1) is available. Consequently, (2.4) becomes

x∗(t) ∈ argminx∈X

{
b
(t+1)
x

a
(t+1)
x − 1

}
, (2.7)

where
b(t+1)
x

a
(t+1)
x −1

is simply the expected value of the posterior distribution of σ2
x at time t. Based on

this efficient Bayesian learning model, Section 2.4 will develop acquisition functions for selecting the

most promising experimental setting to sample at each step.

Remark 1 In this framework, each sample S2 is a noisy observation of the unknown population

variance σ2, and is computed using the length measurements of the crystals in Figure 2.1. Denote

by Y1, . . . , Ym the lengths of m crystals and assume that they are i.i.d. samples under a normal-

inverse-gamma prior model (e.g., Koch 2007):

Yi|µ, σ2 i.i.d.∼ N (µ, σ2) for i = 1, . . . ,m,

µ|σ2 ∼ N (θ, σ2/τ) and σ2 ∼ IG(a, b).

Then, the posterior marginal distribution of σ2 will also be an inverse gamma distribution with

parameters updated by

a← a+
m− 1

2
and b← b+

∑m
i=1(Yi − Ȳ )2

2
with Ȳ =

1

m

m∑
i=1

Yi.

Therefore, the above Bayesian model is equivalent to our model in (2.5)-(2.6) if the variance measure-

ment S2 is computed as the sample variance of Y1, . . . , Ym. Also, under the normality assumption

of Yi’s, the χ2 distribution assumption in Lemma 1 holds automatically.

2.4 Acquisition Functions for Minimizing the Variance

In this section, we propose two acquisition functions for sequentially choosing an experi-

mental setting to sample at each step based on the Bayesian update scheme in Section 2.3.
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2.4.1 Knowledge Gradient

We first develop a knowledge-gradient-based (Frazier et al., 2008) acquisition function based

on our Bayesian model. Recall that our aim is to solve problem (2.1). In each step, we obtain a data-

driven solution from (2.7) by minimizing the posterior expectation of σ2
x. Therefore, the improvement

we achieve from step t to step t+ 1 by solving the target problem is

minx∈X

{
b
(t)
x

a
(t)
x − 1

}
−minx∈X

{
b
(t+1)
x

a
(t+1)
x − 1

}
. (2.8)

According to the Bayesian updating equations in (2.6), at the (t + 1)-st step, b
(t+1)
x is a random

variable depending on the incoming data S2
x(t+1) . Thus, this improvement can be assessed by taking

expectations with respect to the marginal distribution of S2
x(t+1) , i.e., the distribution of S2

x(t+1)

without conditioning on σ2
x, i.e.,

KG(t+1)(x) = minx′∈X

{
b
(t)
x′

a
(t)
x′ − 1

}
− E(t+1)

{
minx′∈X

{
b
(t+1)
x′

a
(t+1)
x′ − 1

}∣∣∣∣∣x(t+1) = x

}
, (2.9)

where E(t+1) denotes the expectation taken with respect to the marginal distribution of S2
x(t+1) at

step t+1. Then, we will sample the experimental setting that maximizes the expected improvement,

i.e.,

x(t+1) ∈ argmaxx∈XKG(t+1)(x).

Therefore, a closed-form expression of KG(t+1)(x) is necessary for determining x(t+1) conveniently.

Now we show how to derive a closed-form expression for the selection criterion in (2.9)

following the idea in Frazier et al. (2008). According to the updating equations in (2.6), given that

x(t+1) = x, we have

minx′∈X

{
b
(t+1)
x′

a
(t+1)
x′ − 1

}
=


b(t+1)
x

a
(t+1)
x −1

if
b(t+1)
x

a
(t+1)
x −1

< minx′ ̸=x

{
b
(t)

x′

a
(t)

x′ −1

}
minx′ ̸=x

{
b
(t)

x′

a
(t)

x′ −1

}
o.w.

. (2.10)

Then, we compute the expectation in (2.9) based on the truncated expectation of the marginal

distribution of S2
x(t+1) . First, we prove the following results regarding the marginal distribution of

S2
x(t+1) and its truncated expectation.
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Lemma 2 Suppose the assumptions in Lemma 1 hold. Then, the marginal distribution of S2 follows

a modified Beta Prime distribution, i.e.,

m− 1

2b
S2 ∼ BetaPrime

(
m− 1

2
, a

)
.

The probability density function (PDF) of BetaPrime(α, β) is

f(z) =
zα−1(1 + z)−α−β

B(α, β)
for z > 0, α > 0 and β > 0,

where B(α, β) is the beta function.

Proposition 1 Assume that

Z ∼ BetaPrime(α, β),

and denote its cumulative distribution function (CDF) by Fα,β(z). Then, for any fixed constant c,

we have that

E[Z | Z ≤ c] =
α+ 1

β
· Fα+1,β−1(c)

Fα,β(c)
. (2.11)

Based on the updating equations and the truncated expectation in Proposition 1, we can

derive a closed-form expression for (2.9) in Proposition 2, which allows us to efficiently compute KG

for each experimental setting and choose the experimental setting that maximizes KG in each step.

Proposition 2 Suppose the model assumptions in (2.2) and (2.3) hold. Then, the knowledge gra-

dient defined in (2.9) can be expressed as

KG(t+1)(x) = minx′∈X

{
b
(t)
x′

a
(t)
x′ − 1

}
− C(t)

x

[
1− Fm−1

2 ,a
(t)
x

(
C̃(t)

x

)]
− b

(t)
x

a
(t)
x + m−1

2 − 1

{
m+ 1

2a
(t)
x

· Fm+1
2 ,a

(t)
x −1

(
C̃(t)

x

)
+ Fm−1

2 ,a
(t)
x

(
C̃(t)

x

)}
,

(2.12)

where

C(t)
x = minx′ ̸=x

{
b
(t)
x′

a
(t)
x′ − 1

}
and C̃(t)

x =

(
a
(t)
x + m−1

2 − 1
)
C

(t)
x

b
(t)
x

− 1.

Remark 2 In our problem, the value of KG can actually be non-positive. For example, if C̃
(t)
x ≤ 0,
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then both Fm−1
2 ,a

(t)
x

and Fm+1
2 ,a

(t)
x −1

will be zero, which leads to

KG(t+1)(x) = minx′∈X

{
b
(t)
x′

a
(t)
x′ − 1

}
−minx′ ̸=x

{
b
(t)
x′

a
(t)
x′ − 1

}
≤ 0.

Essentially, the occurrence of a non-positive KG is due to the non-negative support of the chi-

squared distribution, because the probability that a single new sample can further improve (decrease)

the current best (smallest) posterior mean can get close to 0 if the current best posterior mean itself

is close to 0. For example, suppose the current best alternative x∗(t) is unique. From the definition

of KG in (2.9), whether there will be a negative KG for x∗(t) depends on how likely a new sample

of x∗(t) will exceed its current posterior mean, i.e.,
b
(t)

x∗(t)

a
(t)

x∗(t)
−1

. Due to the non-negative support of the

chi-squared distribution, if
b
(t)

x∗(t)

a
(t)

x∗(t)
−1

is small and close to 0, then the probability for a new sample

of x∗(t) to exceed
b
(t)

x∗(t)

a
(t)

x∗(t)
−1

will be quite large and get close to 1. In this case, from (2.10), the

probability that minx′∈X

{
b
(t+1)

x′

a
(t+1)

x′ −1

}
is larger than

b
(t)

x∗(t)

a
(t)

x∗(t)
−1

will also be close to 1. Consequently,

this will make the second term on the RHS of (2.9) larger than
b
(t)

x∗(t)

a
(t)

x∗(t)
−1

, which is exactly the first

term on the RHS of (2.9). Then, the KG value of x∗(t) will be negative. A negative KG in this

situation means that no positive improvement may be expected by sampling x, then simply taking

x(t+1) ∈ argmaxx∈XKG(t+1)(x) may potentially make the sequential selection procedure fail to sample

all alternatives infinitely often as t→∞ (equivalent to N →∞), which is necessary for guaranteeing

PCS → 1. Therefore, we make a modification to KG(t+1)(x) in (2.12) to solve this issue: (1) if

C̃
(t)
x ≤ 0 for some but not all x, then such x will not be selected as x(t+1); and (2) if C̃

(t)
x ≤ 0 for all

x ∈ X , we will randomly select one alternative from X as x(t+1).

2.4.2 Weighted Expected Improvement

The drawback of the knowledge gradient criterion is that its value is not guaranteed to be

non-negative. Thus, we provide an alternative acquisition function that is always non-negative and

guarantees to sample all alternatives infinitely often. We design this acquisition function based on the

Expected Improvement (EI) criterion from Jones et al. (1998). First, the non-negative improvement
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that can be obtained by sampling x at time t is given by

max

{
min
x∈X

(
b
(t)
x

a
(t)
x − 1

)
− S2

x, 0

}
.

In other words, we will only factor in the improvement from a new sample when it is positive;

otherwise, we will just consider it zero. Taking expectations with respect to the marginal distribution

of S2
x, the EI criterion is given by

EI(t+1)(x) = E

[
max

{
min
x∈X

(
b
(t)
x

a
(t)
x − 1

)
− S2

x, 0

}]
. (2.13)

Based on Lemma 2 and Proposition 1, we can also obtain a closed-form expression of EI(t+1)(x).

Proposition 3 Suppose the model assumptions in (2.2) and (2.3) hold. Then, the expected im-

provement defined in (2.13) can be expressed as

EI(t+1)(x) = min
x∈X

{
b
(t)
x

a
(t)
x − 1

}
Fm−1

2 ,a
(t)
x

(
m− 1

2b
(t)
x

min
x∈X

{
b
(t)
x

a
(t)
x − 1

})

− (m+ 1)b
(t)
x

(m− 1)a
(t)
x

Fm+1
2 ,a

(t)
x −1

(
m− 1

2b
(t)
x

min
x∈X

{
b
(t)
x

a
(t)
x − 1

})
,

where Fm−1
2 ,a is the CDF of the Beta Prime distribution with parameters m−1

2 and a.

Although the above EI criterion can properly measure the non-negative improvement from

a sample, it does not account for the variance of the collected samples. Therefore, following the

framework in Gramacy (2020), we scale (2.13) by the posterior variance of σ2
x at time t and call the

resulting criterion weighted Expected Improvement (wEI):

wEI(t+1)(x) = Var
[
σ2
x|S2

x(j+1) , j ∈ Ax(t)
]
· EI(t+1)(x), (2.14)

where Var
[
σ2
x|S2

x(j+1) , j ∈ Ax(t)
]

=
(
b
(t)
x

)2 (
a
(t)
x − 1

)−2 (
a
(t)
x − 2

)−1

due to the inverse gamma

posterior. Then, we will sample the experimental setting that maximizes (2.14), i.e.,x(t+1) ∈

argmaxx∈XwEI(t+1)(x).
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2.5 Numerical Study

We conduct several numerical experiments to compare the empirical performance of our

approach with three other sequential selection approaches from the existing literature for minimizing

the variance:

1. Knowledge Gradient with Inverse Gamma Prior (KG-IG): The proposed method in this chap-

ter. The priors are updated using (2.5), and the acquisition function for sequential selection

is given by Proposition 2 in Section 2.4.1.

2. Weighted Expected Improvement with Inverse Gamma Prior (wEI-IG): The proposed method

in this chapter. The acquisition function for sequential selection is given by (2.14) in Section

2.4.2.

3. Knowledge Gradient with Normal Prior (KG-Normal): This method is conducted using the

knowledge gradient for the normal distribution. As described in Frazier et al. (2008), the prior

distribution is assumed to be normal:

log(σ2
x) ∼ N

(
θ(0)x , δ2,(0)x

)
,

and the distribution of new measurements is assumed to be

log
(
(m− 1)S2

x

)
|σ2

x ∼ N
(
log(σ2

x), λ
2
x

)
.

Note that the first order Taylor’s expansion of log(σ2
x) at the mean of σ2

x gives

log(σ2
x) ≈ log

(
b
(0)
x

a
(0)
x − 1

)
+

a
(0)
x − 1

b
(0)
x

(
σ2
x −

b
(0)
x

a
(0)
x − 1

)
.

Thus, the prior parameters are set below as the mean and variance of the first-order Taylor’s

expansion of log(σ2
x):

θ(0)x = log

(
b
(0)
x

a
(0)
x − 1

)
and δ2,(0)x =

1

a
(0)
x − 2

.

Also, λ2
x is set as the variance of the log-transformed random samples from the χ2

m−1 distri-

bution.
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4. Random selection with Inverse Gamma prior (Rand-IG): We use the proposed Bayesian update

under the inverse gamma prior described in (2.6). The selection of experimental settings in

each step is random. To ensure a balanced design, we replicate each experimental setting N/K

times and randomize the order of the N experiments.

5. Thompson Sampling (Russo et al., 2018) with Inverse Gamma prior (TS-IG): We use the

proposed Bayesian update under the inverse gamma prior as described in (2.6). In each step,

we generate one random sample from each inverse gamma prior in (2.2), i.e.,

σ2,(t)
x ∼ IG(a(t)x , b(t)x ), for all x ∈ X ,

and choose the experimental setting that minimizes these random samples to sample next, i.e.,

x(t+1) ∈ argminx∈Xσ
2,(t)
x .

The true variances σ2
x’s are generated as independent uniform variables from (0, 2). We

run the sequential selection procedure for N = 60 steps and compare the performances of these

approaches for different values of m and K. For each sequential selection method, we repeatedly use

its acquisition approach to determine x(t+1), generate a new sample from the distribution σ2
xχ

2
m−1

and update the posterior distribution, until the budget of N experiments is exhausted. We run R

macro-replications with true variances regenerated in every replication. For clarity, let x∗
i (t) denote

the estimate x∗(t) at time t in the i-th replication, and define Ii(t) as a binary indicator that is equal

to 1 if x∗
i (t) = x∗ and 0 otherwise. The performances of different approaches are evaluated in terms

of the average opportunity cost Ĉ(t) and the estimated probability of correct selection P̂ (t) over R

macro-replications, where

P̂ (t) =
1

R

R∑
i=1

Ii(t) and Ĉ(t) =
1

R

R∑
i=1

(
σ2
x∗
i (t)
− σ2

x∗

)
. (2.15)

Note that Ĉ(t) is always non-negative. Intuitively, P̂ (t) measures how likely x∗
i (t) successfully

identifies x∗ and Ĉ(t) measures how close the variance of x∗
i (t) is to that of x∗.

We compare four prior settings: (1) a
(0)
x = 2.1 and b

(0)
x ’s are i.i.d. random variables generated

from U(0.5, 1); (2) a
(0)
x = 2.1 and b

(0)
x ’s are i.i.d. random variables generated uniformly from (2.5, 5);

(3) a
(0)
x = 2.1 and b

(0)
x ’s are i.i.d. random variables generated uniformly from (0.25, 0.5); (4) a

(0)
x = m

and b
(0)
x = σ2

xGx, where Gx’s are i.i.d. random variables generated from the distribution χ2
m−1.

18



Priors (1)-(3) are non-informative prior, whereas prior (4) carries the information from a single

sample for each alternative.

In Figures 2.2-2.5, we show P̂ (t) (left) and Ĉ(t) (right) for t = 1, . . . , 60 over R macro-

replications for the four prior settings. We use R = 100 for prior settings (1)-(3) and R = 1000 for

prior setting (4), since prior setting (4) has higher noise level and thus more replications are needed

to make the estimates P̂ (t) and Ĉ(t) converge. Also, to exhibit Ĉ(t) clearly, we depict its 4th root

(Ĉ(t))1/4 instead of its original value. Several immediate observations follow. First, the proposed

methods, KG-IG and wEI-IG, have the best overall performance. Specifically, both methods have

the most robust performance across different prior settings. Second, KG-Normal performs slightly

better than TS-IG, and both of them have inferior performance in contrast to Rand-IG under prior

settings (1) and (2). Third, cases with K = 30 are more challenging, and the performance of different

approaches can be better distinguished. Lastly, among the three non-informative priors, the best

overall performance for all methods is observed in prior setting (3), while KG-IG, TS-IG, KG-normal

and wEI-IG perform similarly well under the informative prior setting (4).
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Figure 2.2: Prior Setting (1): P̂ (t) and Ĉ(t) of the five methods with different m and K.
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Figure 2.3: Prior Setting (2): P̂ (t) and Ĉ(t) of the five methods with different m and K.

20



m = 30 m = 50 m = 100

K
 =

 6
K

 =
 12

K
 =

 30

0 20 40 60 0 20 40 60 0 20 40 60

0.25

0.50

0.75

1.00

0.25

0.50

0.75

1.00

0.25

0.50

0.75

1.00

step

P
ro

ba
bi

lit
y 

of
 C

or
re

ct
 S

el
ec

tio
n

m = 30 m = 50 m = 100
K

 =
 6

K
 =

 12
K

 =
 30

0 20 40 60 0 20 40 60 0 20 40 60

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

step
4t

h 
ro

ot
 o

f A
ve

ra
ge

 O
pp

or
tu

ni
ty

 C
os

t
Method KG−IG Rand−IG TS−IG KG−Normal wEI−IG

Figure 2.4: Prior Setting (3): P̂ (t) and Ĉ(t) of the five methods with different m and K.
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Figure 2.5: Prior Setting (4): P̂ (t) and Ĉ(t) of the five methods with different m and K.

2.6 Case Study

We consider a case study about the crystallization experiment described in Section 2.1. The

experimental settings are given in Table 2.1. The total number of unique experimental settings is

21, and each time one trial under a selected experimental setting is conducted. The total number of

level combinations of the two discrete factors Temp and Conc is six due to experimental constraints

and limitations. In each trial, we obtain an image of needle-like crystals (usually 30-100 crystals

in each image, as shown in Figure 2.1), measure the sizes of the crystals and compute the sample

variance as the uniformity score.
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Table 2.1: Experimental Settings of Crystallization

Experimental Setting Explanation Levels or Ranges

Temp. (C) Temperature 20, 30, 40, 50

Conc. (M) Concentration in molarity 0.025, 0.03, 0.035

R.T. (min) Resident time for crystallization 8-40

G.F. (ml/min) Gas Flow Rate 1.5-15

As shown in Section 2.5, a large number of macro-replications, i.e., R in (2.15), is typically

required to make valid assessments across different methods. However, it is infeasible to replicate

the whole experiment under different settings sufficiently in real-world experiments. Therefore,

we build two different types of pseudo-simulators based on a real dataset to mimic the real-world

experiments. The simulators are used to sequentially generate new measurements of uniformity or

variance based on a selected experimental setting. For both simulators, we assume m is a constant

in all experiments. In practice, a fixed value of m such as in (2.9) can be approximated beforehand

using the average number of crystals when computing the acquisition function and deciding the new

experimental setting, and once the observations are collected, the actual value of m can be used in

parameter update (2.6). We develop two simulators in this chapter. Simulator I is based on the

predictions from the fitted Gaussian process of the real data. This simulator can simulate pseudo

experiments for settings that are not available in real data. The use of Gaussian process may smooth

the original distribution of real data. Simulator II is based on resampling of real observations. Then

this simulator can only generate pseudo experiments for the alternatives that are available in the

real data. More details about the two simulators are given as follows.

Simulator I: This simulator is developed by fitting a Gaussian process (Roustant et al., 2015) to

the real dataset. First, we scale the range of experimental conditions (Temperature, Concentration,

R.T., and G.F.) to be between 0 and 1. Second, we fit a Gaussian process (GP) model with the

scaled experimental conditions as the input and the logarithm of the uniformity measure (sample

variance divided by the square of sample mean) of the experiments as the output. We specify

the experimental settings of the K (taking value from {6, 12, 30} for three cases) candidates as

follows: we first generate a K× 2 Latin Hypercube design as the values for R.T. and G.F., and then

replicate the six-level combinations of temperature and concentration for K/6 times. The resulting
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K experimental settings are given by a K × 4 matrix. We use the fitted GP simulator to predict

the output σ2
x of the candidate settings and generate a new sample by σ2

xχ
2
m−1 in each step as a

simulated random uniformity measure.

Simulator II: This simulator is developed by resampling the crystals obtained from each experi-

ment. We fix K = 21 or 10 (a subset of the 21 original experimental settings) as the experimental

alternatives. If one experimental setting is selected, we will randomly sample m crystals with re-

placement (e.g., sample m = 30 crystals from Figure 2.1), and use the sample variance of the lengths

of these m crystals as the uniformity measure of this experiment.

We run R = 100 macro-replications as in Section 2.5 to obtain Ĉ(t) and P̂ (t) according to

(2.15). We set non-informative initial priors with a
(0)
x = 2.1 and b

(0)
x generated independently from

Q × U(0.5, 1), where Q = 0.2 and 20 for simulators I and II respectively and U(0.5, 1) represents

the uniform distribution on (0.5, 1). The value of Q is specified based on the scale of the uniformity

measures from the two simulators. Using different m and K as in Section 2.5, Figure 2.6 and 2.7

exhibit P̂ (t) and Ĉ(t) for all five methods with simulators I and II, respectively. We give an example

of the resulting design given by the proposed method in Appendix A.6. The results show that KG-IG

and wEI-IG are the most robust among the five methods in both situations.
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Figure 2.6: Case Study with Simulator I: P̂ (t) and Ĉ(t) of the five methods with different m and K.

m = 30 m = 50 m = 100

K
 =

 10
K

 =
 21

0 10 20 30 40 0 10 20 30 40 0 10 20 30 40

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

step

P
ro

ba
bi

lit
y 

of
 C

or
re

ct
 S

el
ec

tio
n m = 30 m = 50 m = 100

K
 =

 10
K

 =
 21

0 10 20 30 40 0 10 20 30 40 0 10 20 30 40

0

2

4

6

0

2

4

6

step4t
h 

ro
ot

 o
f A

ve
ra

ge
 O

pp
or

tu
ni

ty
 C

os
t

Method KG−IG Rand−IG TS−IG KG−Normal wEI−IG

Figure 2.7: Case Study with Simulator II: P̂ (t) and Ĉ(t) of the five methods with different K.
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2.7 Conclusion

This chapter has developed a new methodology for selecting experimental settings to mini-

mize the variance. Though improving the uniformity (minimizing the variability) is of great interest

in many situations such as crystallization experiments, it has been relatively overlooked in the

existing R&S literature. Our approach has constructed an efficient Bayesian sequential updating

framework for learning the variances under the conjugate inverse gamma prior. Furthermore, we

have proposed two sequential selection procedures based on knowledge gradient as well as expected

improvement for selecting the experimental settings, and have derived closed-form expressions for

both proposed selection criteria. Through numerical experiments and case studies, we demonstrate

that the proposed approach is able to identify the experimental setting with the minimum variance

and exhibits competitive empirical performance compared with other approaches.

There are several promising future directions. First, our framework may be extended to

solve multiobjective optimization, especially under nonnormal sampling distributions that may arise

in applications such as crystallization, reaction engineering and materials engineering. Further-

more, R&S under nonnormal sampling distributions is a positive research area, and our approach

specifically provides a new idea for designing efficient budget allocation strategies under chi-squared

sampling distributions, which we believe can inspire many future works in this area.
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Chapter 3

Bayesian Optimization with

Transformed Additive Gaussian

Processes

3.1 Introduction

Tradespace decomposition can introduce many complex and interesting optimization prob-

lems. The objective functions of these optimization problems are often blackbox functions. A black

box function is a function without a known closed form expression; where the relationship between

the response and the decision space is unknown Jones et al. (1998). Black box functions can be

complex and difficult to solve (Alarie et al., 2021). Some black-box functions may not have a closed

form solution and approximation techniques may be required in order to approximate a solution (Vu

et al., 2017). One way that these problems are simplified is through the use of Bayesian optimization

(Wang et al., 2023). Bayesian optimization has two main components: the surrogate model and the

acquisition function. The surrogate model is used to model the data. Gaussian processes (GP) are

commonly used as surrogate models. The acquisition function is optimized to determine the next

location to sample a point from. A commonly used acquisition function is expected improvement.

One important and useful property of Bayesian optimization is that it is derivative free. This means

that in order to optimize the acquisition function (optimizing function), we do not need to use a
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higher order approximation method (Frazier, 2018; Shahriari et al., 2016). This decreases the time

and computational complexity of the optimization problem. Another useful property of this method

of optimization is that it can handle noisy data (Brochu et al., 2010). Bayesian optimization works

quite well for these functions, however it begins to struggle when the dimensionality is increased.

Although the method is derivative free, the complexity and computation expense and time is greatly

increased in higher dimensional problems (Malu et al., 2021). Methods to lower the dimensionality of

an objective function to simplify Bayesian optimization have been proposed. These methods include

using non-linear feature mapping and reconstruction mapping to lower the dimensionality (Moriconi

et al., 2020), using variable dropout methods (Li et al., 2018), and ensemble Bayesian optimization

(Wang et al., 2018).

A Gaussian process is a distribution of collection of random variables such that any finite

subset of the collection follow a multivariate normal distribution (Schulz et al., 2018). Gaussian

Processes are often used because they include noise and randomness in the model. They utilize a

correlation function to determine the strength of the correlation between two points (Jäkel et al.,

2007). A commonly used correlation function, called the Gaussian correlation function produces

smooth local trends (MacKay et al., 1998). The process of Bayesian optimization can be used

to optimize objective functions that are modeled by Gaussian Processes. Using this method, the

prior distribution that is placed on the function y, will be a Gaussian Process. Gaussian Processes

are very useful models in optimization because they can account for noise and randomness (Zhang

and Notz, 2015). Using Gaussian processes for optimization can be very useful because they allow

for uncertainty quantification (McLeod et al., 2018). When working with Gaussian processes, we

are able to write the conditional distributions to be written in a closed form (Snoek et al., 2012).

This property is particularly useful because the joint distributions are multivariate normal an the

conditional distributions are also Gaussian processes.

Acquisition functions can be complex or computationally inexpensive. When using Bayesian

optimization, there are many different acquisition functions that can be used in order to decrease

complexity and minimize computation (Wilson et al., 2018a). A commonly used acquisition func-

tion in Bayesian optimization is expected improvement. We define expected improvement as in

Jones et al. (1998). This acquisition function measures the expected improvement over the current

minimum when a new point is added.

In this chapter, we propose an approach to optimizing complex black-box functions with
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an additive structure. This is done by using the Transformed Additive Gaussian process (TAG)

framework proposed in (Lin and Joseph, 2020) as the surrogate model. We will then propose a

modification to the expected improvement acquisition function to be able to accomodate the TAG

framework as the surrogate model.

This chapter will be organized as follows. Section 3.2 will describe the Bayesian optimiza-

tion framework that will be used and adapted. Section 3.3 will describe the proposed framework

using transformed additive Gaussian processes with the expected improvement acquisition function.

Section 3.4 will use a numerical study to compare the proposed method to the classical Bayesian

optimization framework. A conclusion and statement of future work will be given in Section 3.5.

3.2 Bayesian Optimization

Bayesian optimization is comprised of two components, the surrogate model to represent

the data and the acquisition function which is optimized to determine where to sample next. In

this section, we will discuss the components of traditional Bayesian optimization with a Gaussian

process surrogate model and Expected Improvement acquisition function. The minimization problem

is defined as:

min y(x) (3.1)

s.t. x ∈ X

where X ⊂ Rd is the feasible set. The image of the feasible set, Y := {y(x) ∈ R : x ∈ X}, is referred

to as the outcome set (Boyd and Vandenberghe, 2004). The generic Bayesian algorithm is shown in

Algorithm 3. A prior distribution for the data is given in step 1. Then, the acquisition function is

used in step 2 to find the location to sample next. In step 3, the point is collected and the surrogate

model is updated.

3.2.1 Gaussian Process

When implementing Bayesian optimization, the surrogate model is used to represent the

data, which could be obtained from a blackbox function. Gaussian processes are one of the most
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Algorithm 3 Generic Bayesian Optimization Algorithm

1: Provide a prior distribution of y(x)
2: for n = 0, 1, . . . , N − 1 do
3: Compute acquisition function based on the distribution of y(x) and find xn+1 that maximizes

the acquisition over x ∈ X
4: Collect a new data point by evaluating y(x) at xn+1 and update the distribution of y(x) as

the posterior distribution of y(x) given all existing data.
5: end for

Return the input point with the smallest posterior mean as the optimal decision.

used surrogate models Sacks et al. (1989). Let

Z(x) ∼ GP(0, σ2R(·)),

be a mean zero Gaussian process with variance σ2 and correlation function R(·). Next, let Y (x) be

a stochastic process and y(x), be a realization of that stochastic process, then:

Y (x) = µ+ Z(x), (3.2)

where µ is the unknown deterministic mean value. The Gaussian correlation function (Sacks et al.,

1989) is a very popular choice when working with Gaussian processes. The correlation between two

inputs points x and x′ is given by

R (x− x′) = exp

(
−

d∑
i=1

θi(xi − x′
i)

2

)
, (3.3)

where θi’s are the unknown correlation parameters. The unknown correlation parameter represents

the correlation between each dimension of x. When a Gaussian process is fit to data, these param-

eters need to be estimated. Under Gaussian processes assumptions with the Gaussian correlation

function, given two input points x,x′ ∈ X , the model can be represented as

Y (x) ∼ N(µ, σ2) and Cov(Y (x), Y (x′)) = σ2R(x− x′).

Following these functions, if they are evaluated at n input points x1, . . . ,xn, the outputs y =

(y(x1) . . . , y(xn))
⊤ are produced. Another useful aspect of Gaussian processes, is that at a new

input point x, the conditional distribution of Y (x) given yn follows the normal distribution (Jones
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et al., 1998). This distribution is given by:

Y (x) |y ∼ N(ŷ(x), s2(x)), (3.4)

with mean:

ŷ(x) = µ̂− rn(x)R
−1
n (yn − 1µ̂) (3.5)

and variance:

s2(x) = σ2
(
1− rn(x)

TR−1
n rn(x)

)
− (1− 1⊤R−1

n rn(x))
2

1⊤Rn1
, (3.6)

where 1 is a vector of ones of size n, the mean is estimated by the unbiased estimator

µ̂ = 1⊤Rnyn

1⊤Rn1
, r(x) = (R(x−x1), . . . , R(x−xn))

⊤, and R be the n× n correlation matrix with the

(i, j)-th element R(xi − xj).

3.2.2 Expected Improvement

Acquisition functions can be complex or computationally inexpensive (Wilson et al., 2018b).

When using Bayesian optimization, there are many different acquisition functions that can be used

in order to decrease complexity and minimize computation (Wilson et al., 2018a). One of the

most commonly used acquisition functions that can be used in Bayesian optimization, is expected

improvement. We define expected improvement as in (Jones et al., 1998)

EI (x) = E
[
max

(
ymin − ŷ(x), 0

)]
, (3.7)

where ymin is the current minimum and ŷ(x) and ŝ(x) are the values generated at the current

iteration. Then when using Gaussian processes, and taking the expectation with respect to the

conditional distribution in (3.4), expected improvement can be rewritten in the closed form as

EI (x) =
(
ymin − ŷ(x)

)
Φ

(
ymin − ŷ(x)

ŝ(x)

)
+ ŝ(x)ϕ

(
ymin − ŷ(x)

ŝ(x)

)
, (3.8)

where Φ(·) is the cumulative probability distribution of the normal distribution and ϕ(·) is the

probability density function of the normal distribution.
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3.3 Proposed Method

In this section, we propose an adaptation to the Bayesian Optimization algorithm using

Transformed Additive Gaussian Processes as the surrogate model and a modified expected improve-

ment acquisition function. The data will be modeled using the transformed additive Gaussian process

framework, it will be broken down into one-dimensional pieces. These pieces will then be optimized

using a modification of the expected improvement acquisition function given in 3.7.

3.3.1 Surrogate Modeling with Transformed Additive Gaussian Processes

The goal of Transformed Additive Gaussian processes (TAG) is to take a high dimensional

response and use a transformation function to make the response the addition of lower or single

dimensional functions Lin and Joseph (2020). Assume that y(x) is a realization of a transformed

additive Gaussian process that is used as a surrogate model to the optimization problem in 3.2.

Then the optimization problem can be written as

y = g−1
λ (µ+ z1(x1) + . . .+ zd(xd)) ,

where λ is the transformation parameter of the Box-Cox transformation Box and Cox (1964), which

is given by :

gλ(y) =


yλ−1

λ λ ̸= 0

log y λ = 0

(3.9)

Then, the TAG model can be written as:

gλ(y) = µ+ z (x) + ϵ (x) , (3.10)

where z(x) follows a GP with a mean of 0 and covariance τ2R(·), that is to say: z (x) ∼ GP
(
0, τ2R(·)

)
.

Then, zk (xk) ∼ GP
(
0, τ2kRk(·)

)
is the prior distribution placed on all zk(·). Let the correlation be-

tween gλ(y(x)) and gλ(y(x
′)) be

R(x− x′) =

p∑
k=1

ωkRk (xk − x′
k) ,
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where τ2 =
∑d

k=1 τ
2
k and ωk = τ2k τ

2. The Gaussian correlation function in 3.3, could be used as the

correlation function in this model. Assume that the additive noise ϵ(x) ∼ N(0, σ2) for this model

is independent from the distributions of the zk(xk)
′s. The unknown parameters, λ, τ , ω, and σ

are estimated through empirical Bayes estimation and non-linear optimization as noted in Lin and

Joseph (2020).

3.3.2 Conditional Distribution of Transformed Additive Gaussian Pro-

cesses

In order to optimize each objective function, the conditional distribution of each dimension

given the data, zk(xk)|y, can be optimized individually and then combined together to generate a

new point. The conditional distribution of each zk(xk) given the data is needed to calculate the

expected improvement for each of the p one-dimensional additive pieces.

Proposition 4 Assume that data has been collected from the evaluated objective functions, which

can be written as (x1, y1), . . . , (xn, yn). Let rk(xk) be the vector of correlations: (R(xk−x1k), . . . R(xk−

xnk)) and R be the correlation matrix with the ijth element being Rk(xi−xj). Then under the TAG

framework (Lin and Joseph, 2020),

gλ (y(x)− µ1)

zk(xk)

 ∼ Nn+1


0

0

,
τ2R+ σ2I τ2krk(xk)

τ2krk(xk)
T τ2k


 (3.11)

for k = 1, . . . , p, where 1 is the vector containing all 1’s. Then, the conditional distribution of zk(xk)

given y can be obtained through the conditional distribution for the normal distribution from Eaton

(2007). The conditional distribution is given by

zk(xk)|y ∼ N
(
ẑk(xk), s

2
k(xk)

)
(3.12)

with

ẑk(xk) = ωkrk(xk)
⊤ (R+ δI)

−1
(gλ(y)− µ)

and

s2k(xk) = τ2ωk

(
1− rk(xk)

⊤ (R+ δI)
−1

ωkrk(xk)
)
,

where δ = σ2/τ2.
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3.3.3 Additive Expected Improvement

Now that we have the conditional distributions of each dimension of the surrogate model,

we need an acquisition function with which we can optimize the objective function and generate

new points. Our proposed method uses transformed additive Gaussian processes to decompose

the objective function into one-dimensional pieces and then use a modified expected improvement

acquisition function to optimize each dimension separately. The expected improvement acquisition

function as described in 3.2.2 will be utilized in each dimension. Now, using the TAG model, the

objective function can be rewritten as

gλ (y(x)) ≈ µ+

d∑
k=1

zk (xk) . (3.13)

The optimization problem in (3.1) can be simplified to

min
xk∈Xk

zk(xk) for k = 1, . . . , d, (3.14)

where X = X1 × . . . × Xd. Then, the modified expected improvement acquisition function for the

optimization problem in (3.14) can be defined as

EIk (xk) = E
[
max

(
ymin
k − ŷ(xk), 0

)]
(3.15)

=
(
ymin
k − ŷ(xk)

)
Φ

(
ymin
k − ŷ(xk)

sk(xk)

)
+ sk(xk)ϕ

(
ymin
k − ŷ(xk)

sk(xk)

)
. (3.16)

To generate a new point, EIk (xk) is optimized for each dimension the objective function. A new

design point xnew = (x∗
1, . . . , x

∗
d) is selected by optimizing

x∗
k = maxx∈Xk

EIk (xk) for i = 1, . . . , d.

In the next section of this chapter, we propose an algorithm to implement the TAG surrogate model

and the proposed additive EI acquisition function.
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3.3.4 The Proposed Algorithm

For the proposed method, the surrogate model is a TAG model from (3.13) evaluated using

the TAG R package (Lin and Joseph, 2021). For each iteration of the algorithm, a new set of

candidate points will be generated using a Latin Hypercube design in the lhs R package (Carnell,

2022) and a TAG model will be fit to the data, Xm. The mean and variance for each zk(xk) will be

calculated using the conditional distribution of each zk. These values will then be used to calculate

the expected improvement for each dimension of the input space for each candidate point. The value

that maximizes expected improvement for each dimension of the input space x∗
k will be combined

to generate the new data point: x(m+1) = (x∗
1, . . . , x

∗
d). The new data point will be added to the

existing dataset and the process will continue until the budget is exhausted.

This process is summarized in Algorithm 3.3.4. The surrogate model is fit in step 3 and the

acquisition function is optimized in step 6. The data is updates in step 10. When implementing the

algorithm, it was seen that it is not necessary to regenerate the TAG models in every iteration of

the algorithm. This can be computationally expensive. In our numerical study, we will regenerate

the TAG models after every 10 iterations of the algorithm. This will be done to save computational

cost and time.

Algorithm 4 Additive Bayesian Optimization with TAG

1: Given the data Xn, we:

2: for m = n, n+ 1, . . . , N do

3: Fit the TAG model based on X and find zk(xk) for k = 1, . . . , d

4: Generate a q × d matrix X as a random Latin Hypercube design with ij-th entries Xij .

5: for k = 1, . . . , d do

6: Evaluate EI for x̂

7: Select point X∗
k that maximizes EI for x̂

8: end for

9: Set new input point x(m+1) = (X∗
1 , . . . , X

∗
d ) and obtain y(x(m+1))

10: Update Xm → Xm+1

11: end for
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3.4 Numerical Results

In this section, we will compare the proposed method with the classical Bayesian opti-

mization methods described in (Roustant et al., 2012). This method uses Gaussian process based

optimization using the approach described in (Jones et al., 1998) and (Mockus, 2005), we will call

this the “EGO” approach. In each step of this classical Gaussian process approach a Gaussian

process model is fit to the data using all of the design points generated until that iteration. The

models will be fit using GP kriging models as the surrogate models, evaluated using the DiceKrig-

ing R package (Roustant et al., 2012). Next, a new point is chosen by maximizing the expected

improvement acquisition function. The process will be run using the functions in the DiceOptim R

package (Picheny et al., 2021).

In our simulation, the candidate points in each iteration, for both methods will be generated

using a random Latin hypercube design as described in the lhs R package (Stein, 1987). We run the

procedure for N = 20 steps, varying the number of initial data points in order to compare different

aspects of the method’s performance. For each step, we use expected improvement to select x(t+1).

For each setting we run R = 30 macro replications using the same initial dataset for both methods

in each replication. We update the distributions until our budget N steps is reached.

Let y
(
x
(t)
i

)
be the estimate of y at step t, for replication i and let x∗, be the value that

produces the true minimum value of the objective function. The metric that will be used for

comparison is cost and is defined as

Ĉ(t) =
1

R

R∑
i=1

(y (x∗
i (t))− y (x∗)) . (3.17)

This value will always be non-negative and measures how close to the true minimum the method’s

approach is as the algorithm runs. The confidence intervals will be constructed using the 10th and

90th quantiles of the cost for each iteration. The default range of λ in (3.9) in the TAG package is

−2 to 2, we use this default range. To analyze the performance of the proposed method, we will

vary the number of points in the initial dataset, the dimension of the objective functions, and the

degree to which the objective functions are additive. The objective function that we will use for our

numerical study is
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y(x) = exp
(
Σd

k=1 (xk − a)
2
+ cx1x2

)
. (3.18)

This objective function is easily transformed to be additive using the Box-Cox transformation (3.9),

when c = 0 and λ = 0.

First, we compare the performance of the proposed method when the amount of data points

in the initial dataset varies. The setting of the objective function for this comparison is found in

Table 3.1 and the results are shown in Figure 3.1. It can be seen that our method has an advantage

for the EGO approach for each number of initial points. However, the proposed method has a greater

advantage when there is a smaller number of initial points.
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Figure 3.1: The mean, 10-th, and 90-th quantiles of cost over 30 replications and 20 steps for

optimizing the objective functions in (3.18) with the parameter settings in Table 3.1.

Table 3.1: Table of parameter settings of (3.18) for the three cases in Figure 3.1

(1) (2) (3)

d a c m d a c m d a c m
4 0.3 0 15 4 0.3 0 25 4 0.3 0 40

.

Second, we compare the performance of the proposed method over different dimensions of

the objective function. The setting of the objective function for this comparison is found in Table

3.2 and the results are shown in Figure 3.2. It can be seen that as the dimension of the objective

increases, as does the advantage of the proposed method over the EGO approach.
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Figure 3.2: The mean, 10-th and 90-th quantiles of cost over 30 replications and 20 steps for

optimizing the objective functions in (3.18) with the parameter settings in Table 3.2.

Table 3.2: Table of parameter settings of (3.18) for the three cases in Figure 3.2

(1) (2) (3)

d a c m d a c m d a c m
4 0.3 0 40 8 0.3 0 40 12 0.3 0 40

.

Finally, we compare the performance of the proposed method when the objective function

can not exactly be transformed to be additive, this is done by adding an interaction term to the

objective function. The setting of the objective function for this comparison is found in Table 3.3

and the results are shown in Figure 3.3. It can be seen that as the contribution of the interaction

term increases, the proposed TAG method does not have an advantage over the EGO approach.
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Figure 3.3: The mean, 10-th and 90-th quantiles of cost over 30 replications and 20 steps for

optimizing the objective functions in (3.18) with the parameter settings in Table 3.3.

Table 3.3: Table of parameter settings of (3.18) for the three cases in Figure 3.3

(1) (2) (3)

d a c m d a c m d a c m
4 0.3 0 15 4 0.3 0.5 15 4 0.3 1 15

.

3.5 Conclusion

This chapter has proposed a new adaptation to the Bayesian optimization algorithm. It

utilizes the TAG framework to decompose the objective function into smaller pieces. It also proposes

a modification to the expected improvement acquisition function to optimize these additive pieces.

We have conducted a numerical study to demonstrate the advantages of the proposed method as

compared to the EGO approach. The method has a greater advantage when the amount of initial

data is lower. As the dimension of the decision space increases, so does the advantage of the proposed

method. When there is an interaction in the objective function, that is to say when the objective

function is not transformed to be additive, the proposed method does not have an advantage over the

EGO approach. Future and parallel work include expanding to the bi-objective and multi-objective

cases.
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Chapter 4

Bi-Objective Bayesian

Optimization with Transformed

Additive Gaussian Processes

4.1 Introduction

Simulation is a popular approach used to optimize engineering and scientific design (Lee

et al., 2007; Zhang, 2008; Fliege and Xu, 2011; Hunter and McClosky, 2016; Hunter et al., 2019;

de Castro et al., 2022). For complex engineering design problems, running the corresponding simula-

tion codes is often time-consuming. Also, the input and output relationship of the simulation model

may not be expressed in a closed form to enable gradient-based optimization approaches. Thus,

Bayesian optimization is often used to solve these problems by efficiently guiding new experiments

through running the simulation models (Frazier, 2018). Bayesian optimization approaches contain

two key components: a computationally inexpensive surrogate model of the simulation and an ac-

quisition function to select input points for the follow-up experiments. In terms of surrogate models,

Gaussian process is a common choice (e.g., Jones et al. (1998)). A popular choice of the acquisition

function is the expected improvement (EI, e.g, Qin et al. (2017)), which is the expected absolute dif-

ference between the current optimal objective value and the optimal objective value computed after

adding a new simulation evaluation (i.e., the improvement with respect to the target optimization

41



problem). Then the input point for the new evaluation is given as a maximizer of EI over the input

space.

Some engineering design problems involve two or more objectives. For multi-objective prob-

lems, the solution improvement can not be simply defined as for the single objective problems. In

the literature of multi-objective optimization, the quality of the solution given by an optimization

approach can be quantified by a variety of performance indicators, see various concepts given by

(Audet et al., 2021). Among them, the hypervolume indicator is a popular performance indicator

to measure the quality of the solutions to multi-objective optimization problems (Knowles et al.,

2003). Hence, in the literature on multi-objective Bayesian optimization (Hunter et al., 2019), a

popular choice for the acquisition function is the expected hypervolume improvement (EHI), which

is the expected difference between the hypervolume indicators computed after and before adding

a new simulation evaluation (Emmerich et al., 2011). Even though EHI is widely used, there are

some computational challenges to maximizing this acquisition function. When the dimension of

the decision space increases, the optimization of EHI becomes much more complex, requires longer

computing time, and takes more memory space to complete (Hupkens et al., 2015). There are a

number of existing approaches proposed to reduce the complexities of maximizing EHI. Yang et al.

(2019) consider bi-objective Bayesian optimization and provide an algorithm to evaluate the gradient

function of EHI to enhance the optimization of EHI for searching new input points. A truncated

form of the EHI calculation to optimize computing time is also proposed by Yang et al. (2016).

This approach uses prior knowledge about the objective function values to more efficiently compute

EHI. Since the gradient of EHI can be extremely complex and difficult to compute, Daulton et al.

(2020) provide a method for computing EHI by using the gradients of the Monte Carlo estima-

tor via auto-differentiation. This method simplifies the calculation of EHI by using first-order and

quasi-second-order methods.

In this chapter, we provide an algorithm for bi-objective Bayesian optimization to solve the

computational challenges of maximizing EHI. In contrast to perspectives in current literature, we

approximate the objective functions to additive functions for each dimension of the decision space

using the transformed additive Gaussian processes (Lin and Joseph, 2020). Then the maximization

of EHI over the entire decision space becomes the maximization of multiple one-variable EHI func-

tions, i.e., the number of EHI functions is equal to the number of dimensions of the input space.

Maximizing EHI with a single input can be efficiently done by enumerating on a set of discrete
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points. We compare the numerical performance of the proposed approach with the bi-objective

Bayesian optimization under the classical Gaussian process model.

This chapter is organized as follows. Section 4.2 gives a review of related background,

including single-objective Bayesian optimization with Gaussian processes and EI, bi-objective op-

timization and the hypervolume indicator, and bi-objective Bayesian optimization with Gaussian

processes and EHI. Section 4.3 proposes our method, which uses transformed additive Gaussian

process (TAG) models as the surrogate models and derives the EHI expression under this model as-

sumption. Section 4.4 provides a numerical study that demonstrates the advantages of the proposed

method. Section 4.5 concludes the chapter and points out directions for future improvement of the

proposed method.

4.2 Background

In this section, we review related background approaches including bi-objective optimization,

the hypervolume indicator, and bi-objective Bayesian optimization with classical Gaussian processes

and EHI.

4.2.1 Bi-objective Optimization

Let y1(x) and y2(x) be two scalar-valued deterministic black-box functions with input x ∈

Rd. The bi-objective optimization problem is defined by

min y(x) = [y1(x), y2(x)] (4.1)

s.t. x ∈ X

where X ⊂ Rd is a feasible set. Euclidean spaces Rd and R2 are respectively referred to as the

decision space and the objective (outcome) space. Given two input points x,x′ ∈ X , the outcome

y(x) is said to dominate the outcome y(x′), denoted as y(x) ≺ y(x′), if and only if yl(x) ≤ yl(x
′)

for l = 1, 2 and yl(x) < yl(x
′) for l = 1 or l = 2. If yl(x) ≤ yl(x

′) for l = 1, 2, the outcome y(x)

is said to weakly dominate the outcome y(x′), denoted as y(x) ⪯ y(x′). An outcome point is said

to be nondominated if there does not exist another outcome point dominating it. To solve problem

(4.1), we apply the classical concept of Pareto-optimality, that is to identify the set of all input
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points whose images are nondominated outcomes Ehrgott (2005). The Pareto set is defined by

P = {y(x) ∈ R2 : x ∈ X | ∄ x′ ∈ X s.t. y(x′) ≺ y(x)}. (4.2)

Since the Pareto set is typically not available in a closed form even if the objective and

constraint functions are available, various computational approaches and algorithms have been de-

veloped to provide approximation of different types (Ruzika and Wiecek, 2005; Herzel et al., 2021).

Due to the diversity of these methods and the resulting sets being exactly or only approximating

the Pareto set, many ways to measure their quality have been proposed (Faulkenberg and Wiecek,

2010; Audet et al., 2021). One way to measure the quality of the computed Pareto set is the hy-

pervolume indicator (e.g., Knowles et al. (2003); Guerreiro et al. (2021)). Given a reference point

t = (t1, t2) ∈ R2, the hypervolume indicator H(P, t) is the two-dimensional Lebesgue measure Λ of

the region weakly dominated by P and bounded above by the reference point t, i.e.,

H(P, t) = Λ
(
{v ∈ R2 | ∄ p ∈ P : p ⪯ v and v ⪯ r}

)
. (4.3)

The hypervolume improvement (HVI) Hupkens et al. (2015) can be used to assess the effect of

evaluating the vector-valued objective function y(x) at a new input point x ∈ X :

HVI (y(x),P, t) = H (P ∪ {y(x)}, t)−H(P, t) . (4.4)

4.2.2 Bi-objective Bayesian Optimization with EHI

In bi-objective Bayesian optimization, the expected value of the hypervolume improvement

(EHI) in (4.4) is a commonly used acquisition function Emmerich et al. (2011). Given that the two

objectives y1(x) and y2(x) are modeled by two independent Gaussian processes Y1(x) and Y2(x) as

in (3.2), we provide the expression of EHI.

Assume that we evaluated the two objectives at n input points x1, . . . ,xn, and collected

the outputs yn,1 = (y1(x1) . . . , y1(xn))
⊤ and yn,2 = (y2(x1) . . . , y2(xn))

⊤. Following (3.4), we have

Y1(x)|yn,1 ∼ N(ŷ1(x), ŝ
2
1(x)) and Y2(x)|yn,2 ∼ N(ŷ2(x), ŝ

2
2(x)), (4.5)

where ŷl(x) and ŝ2l (x) for l = 1, 2 are the conditional means and variances, which can be calculated

44



using (3.5) and (3.6). Under the assumption that Y1(x) and Y2(x) are independent, Y1(x)|yn,1 and

Y2(x)|yn,2 are also independent. Note that the two Gaussian processes Y1(x) and Y2(x) can have

different parameters and correlation functions. Given a reference point t, EHI is defined by

EHIn (x;P, t) = E {HVI ((Y1(x), Y2(x)),P, t)} , (4.6)

where HVI is given by (4.4) with the new point (Y1(x), Y2(x)) and the expectation is taken with

respect to the conditional distributions in (4.5). By maximizing EHIn (x;P, t) over x ∈ X , we find an

input point for the new function evaluation. Given an approximation of the Pareto set P by a set of

nondominated points, EHI can be calculated empirically with a closed-form expression Hupkens et al.

(2015). We denote the nondominated points by yj = (yj1, y
j
2) = (y1(xij ), y2(xij )) for j = 1, . . . , p

with {i1, . . . , ip} ⊂ {1, . . . , n}. Without loss of generality, we assume that those nondominated

points are ordered based on the values of the first objective, i.e., y1(xi1) < y1(xi2) < . . . < y1(xip).

Then the approximation of the Pareto set P is denoted by

P(n) =
{
y0,y1, . . . ,yp,yp+1

}
, (4.7)

where y0 = (−∞, t2) and yp+1 = (t1,−∞) with t1 and t2 being the two coordinates of the reference

point t = (t1, t2). Following Emmerich et al. (2011), EHI in (4.6) can be calculated empirically

based on the conditional distributions in (4.5) as

EHIn

(
x;P(n), t

)
= E

{
HVI

(
(Y1(x), Y2(x)),P(n), t

)}
=

p+1∑
j=1

(
yj−1
1 − yj1

)
· Φ

(
yj1 − ŷ1(x)

ŝ1(x)

)
·Ψ
(
yj2, y

j
2, ŷ2(x), ŝ2(x)

)

+

p+1∑
j=1

(
Ψ
(
yj−1
1 , yj−1

1 , ŷ1(x), ŝ1(x)
)
−Ψ

(
yj−1
1 , yj1, ŷ1(x), ŝ1(x)

))
·Ψ
(
yj2, y

j
2, ŷ2(x), ŝ2(x)

)
, (4.8)

where Ψ (a, b, µ, σ) = σϕ
(

b−µ
σ

)
+ (a− µ) Φ

(
b−µ
σ

)
.
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4.3 Proposed Method

We propose a bi-objective Bayesian optimization algorithm using transformed additive

Gaussian processes (TAG) (Lin and Joseph, 2020) as the surrogate model. TAG approximates

each of the two objective functions by additive functions, each additive term associated with one-

dimensional decision variable. Under this model assumption, maximizing the acquisition function

EHI given by (4.6) can be simplified to maximize the EHI’s for each decision variable. In this section,

we introduce using TAG as a surrogate model for bi-objective problems, develop the EHI functions

under the TAG model assumption, and summarize our algorithm implementation.

4.3.1 Bi-objective Surrogate with Transformed Additive Gaussian Pro-

cesses

Transformed additive Gaussian processes aim to simplify a complex response to additive

functions. Consider the bi-objective problem in (4.1). As noted in Section 4.2.2, we assume that

y1(x) and y2(x) are the realizations of two independent transformed additive Gaussian processes

Y1(x) and Y2(x) with x ∈ X ⊂ Rd. Equivalently, following Lin and Joseph (2020), we have

gλl
(Yl(x)) = µl +

d∑
k=1

Zlk (xk) + ϵl, for l = 1, 2. (4.9)

We explain the notation in turn as follows. The function gλl
(·) is the Box-Cox transformation (Box

and Cox, 1964),

gλl
(y) =


yλl−1

λl
λl ̸= 0

log y λl = 0,

, for l = 1, 2, (4.10)

where λl is the parameter of the transformation. The deterministic means of TAG are denoted

by µl’s. For k = 1, . . . , d and l = 1, 2, Zlk(xk)’s are mutually independent mean-zero Gaussian

processes with variances τ2lk’s, and correlation functions Rlk(·)’s. The additive noise ϵl ∼ N(0, σ2
l )

is independent of Zlk(xk)’s.

Under this model assumption, the correlation of gλl
(Yl(x)) and gλl

(Yl(x
′)) for x,x′ ∈ X is

Rl(x− x′) =

d∑
k=1

ωlkRlk (xk − x′
k) , (4.11)
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where τ2l =
∑d

k=1 τ
2
lk and ωlk = τ2lk/τ

2
l . An example of the correlation function is given by (3.3),

which is associated with some unknown correlation parameters. In Lin and Joseph (2020), empirical

Bayes estimation and non-linear optimization toolboxes are used to estimate those unknown param-

eters, including τl, ωlk, λl and correlation parameters, which are referred to as hyperparameters of

TAG.

Assume that we collected outputs yn,1 = (y1(x1) . . . , y1(xn))
⊤ and yn,2 = (y2(x1) . . . , y2(xn))

⊤.

For l = 1, 2 and k = 1, . . . , d, we have

gλl
(yn,l)− µl1

Zlk(xk)

 ∼ Nn+1


0n

0

,
τ2l Rl + σ2

l I τ2lkrlk(xk)

τ2lkrlk(xk)
⊤ τ2lk,


 , (4.12)

where 0n is the n × 1 vector of zeros, I is the n × n identify matrix, rlk(xk) = (Rlk(xk −

x1k), . . . , Rlk(xk−xnk))
⊤ and Rl is the n×n correlation matrix with the (i, j)-th element Rl(xi−xj)

given by (4.11). Using the conditional distribution for the normal distribution (e.g., (Eaton, 2007)),

we can derive the conditional distribution of Zlk(xk) given yn,l as

Zlk(xk)|yn,l ∼ N
(
ẑlk(xk), s

2
lk(xk)

)
for l = 1, 2 (4.13)

with

ẑlk(xk) = ωlkrlk(xlk)
⊤ (Rl + δlI)

−1
(gλl

(yn,l)− µl)

and

s2lk(xk) = τ2l ωlk

(
1− rlk(xlk)

⊤ (Rl + δlI)
−1

ωlkrlk(xlk)
)
,

where δl = σ2
l /τ

2
l and µl can be replaced by µ̂l = 1⊤ (Rl + δlI)

−1
gλl

(yn,l)/1
⊤ (Rl + δlI)

−1
1 as

a plug-in estimator. The conditional distribution of Zlk(xk) will then be used to develop EHIs for

each dimension of the decision variable.

4.3.2 Expected Hypervolume Improvement with Transformed Additive

Gaussian Processes

Based on the conditional distributions in (4.13), we simplify the EHI in (4.6) to the expected

hypervolume improvements for the bi-objective problems for each dimension of the decision variable.
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Provided by the approximation of TAG, we have

gλl
(yl(x)) ≈ µl +

d∑
k=1

zlk (xk) for l = 1, 2, (4.14)

where zlk(xk) is a realization of Zlk(xk). Assume that the decision space X = X1×. . .×Xd. Then the

original bi-objective optimization problem in (4.1) is simplified into d one-dimensional bi-objective

problems

min
xk∈Xk

zk(xk) = [z1,k (xk) , z2,k (xk)] for k = 1, . . . , d (4.15)

Let Pk be the Pareto set of (4.15), i.e.,

Pk = {zk(xk) ∈ R2 | ∄ zk(x
′
k) ∈ R2 : zk(x

′
k) ≺ zk(xk)} (4.16)

for k = 1, . . . , d. Under TAG, we can define the EHI for the problem in (4.15) as

EHIn,k (xk;Pk, tk) = E {HVI ((Z1,k(xk), Z2,k(xk)),Pk, t)} , (4.17)

where the expectation is taken with respect to the conditional distribution of Zlk(xk) in (4.13). As

a result, instead of maximizing EHIn (x;P, t) over x ∈ X , a new input point is given by maximizing

EHIn,k (xk;Pk, t) with one dimensional decision variable xk ∈ Xk for k = 1, . . . , d. To be specific,

the new design point is generated by selecting xnew = (x∗
1, . . . , x

∗
d) with

x∗
k ∈ maxx∈Xk

EHIn,k (xk;Pk, t) for k = 1, . . . , d.

Given an approximation of the Pareto set Pk, EHI can attain a close form expression as in (4.8)

using the conditional distribution in (4.13). In the next subsection, we describe our detailed imple-

mentation of the proposed algorithm.

4.3.3 The Proposed Algorithm

We detail our implementation of the proposed bi-objective Bayesian optimization algorithm

in this subsection. The surrogate model is a TAG model in (4.9) implemented by the R package

TAG Lin and Joseph (2021). The calculation of EHI depends on the approximation of the Pareto
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set in (4.7). We use the R package ecr Bossek (2017) to approximate Pareto set. Given responses

ym,1 and ym,2 of size m, the approximations of the Pareto sets of P in (4.2) and Pk in (4.16) are

denoted by P(m) and P(m)
k , respectively. We summarize our implementation in Algorithm 5. We

first generate an initial dataset of size n (line 1 in Algorithm 5), and then add one more data point

at each step until we exhaust the budget of function evaluation N (line 2-10 in Algorithm 5). In

each step, we fit a TAG model for each objective function. For simplicity, the maximization of

EHIn,k (xk;Pk, t) is done by evaluating q random candidate points in Xk (line 4-9 in Algorithm 5).

In our implementation, we set q = 10 and generate a q×d random Latin hypercube design using the

R package lhs Carnell (2022) with k-th column being the candidate points in Xk (line 4 in Algorithm

5). At each step, we compute the hypervolume indicator in (4.3) based on the approximated Pareto

set P(m) (line 10 in Algorithm 5).

Algorithm 5 Bi-objective Bayesian Optimization with TAG

1: Given an initial dataset with inputs x1, . . . ,xn and the outputs yn,1 and yn,2, compute an initial

Pareto set approximation P(n) and compute H(P(n), t)

2: for m = n, n+ 1, . . . , N do

3: Fit the TAG models based on ym,1 and ym,2 and x, find P(m)
k for k = 1, . . . , d.

4: Generate a q × d matrix D as a random Latin Hypercube design with ij-th entries Dij .

5: for k = 1, . . . , d do

6: Evaluate EHIn,k

(
Dik;P(m)

k , t
)

7: Select point D∗
k that maximizes EHIn,k

(
Dik;P(m)

k , t
)
over i = 1, . . . , q

8: end for

9: Set new input point x(m+1) = (D∗
1 , . . . , D

∗
d) and obtain y(x(m+1))

10: By including the new response, update ym,1 → ym+1,1, ym,2 → ym+1,2, and P(m) → P(m+1).

Compute H(P(m+1), t)

11: end for

Return H(P(m), t) for m = n, n+ 1, . . . , N .

It is worth noting that the hyperparameters (such as λl’s and τl’s etc) in TAG are not

updated in every step in our implementation. To save computation time and resources, we will refit

those hyperparameters in every ten steps.
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4.4 Numerical Results

In this section, we compare the proposed algorithm as described in Section 4.3.3 with the

bi-objective Bayesian optimization procedure implemented with the function GParetoptim in the R

package GPareto Binois and Picheny (2019). This algorithm uses independent Gaussian processes

as a surrogate model for the two objectives, and uses EHI in (4.8) as the acquisition function. To

distinguish between the two approaches, our method is denoted by “Transformed Additive GP”,

and the method in GPareto is referred to as “Classical GP”.

First, we generate initial data using the R package lhs Carnell (2022). Next, we fit an initial

surrogate model to the data. For our method, the surrogate model is a TAG model as in (4.9). The

classical GP approach will use the Gaussian processes as the surrogate models using the R package

Roustant et al. (2012) DiceKriging. The reference point t is chosen as a point that bounds the

outcome space of the bi-objective problem when 0 ≤ xk ≤ 1 for k = 1, . . . , d. We sequentially add

new points one by one using EHI for 20 steps. In each step, we compute H(P, t) in (4.3) based on

approximations of P following Fonseca et al. (2006).

We replicate the whole procedure 30 times (with 30 different random initial datasets) for

both methods. For the returned hypervolume values of each method in each step, we compute their

average and use 10th and 90th quantiles to construct a confidence band. For our method, in the R

package TAG, the default range of λl in (4.10) is −2 to 2, we use this default range for the examples

unless otherwise noted.

Example 1

We construct bi-objective functions as follows:

yl(x) = exp
(
Σd

k=1 (xk − al)
2
+ clx1x2

)
for l = 1, 2, (4.18)

which can be transformed to additive functions using the Box-Cox transformation (4.10) for λl = 0

and cl = 0.

We first study the impact of the dimension of the decision space on the proposed method

as compared to the classical GP approach. We consider the performance of the proposed algorithm

under different sizes of d. We specify three cases with parameters of (4.18) in Table 4.1, where the
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dimension of input spaces changes from 4 to 8. To ensure there are a sufficient number of initial

points for d = 8, we use 25 initial data points in this study. The results are depicted in Figure 4.1.

As the dimension of the decision space increases, the advantage of the proposed method is greater.

Table 4.1: Table of parameter settings of (4.18) for the three cases in Figure 4.1.

Cases (1) (2) (3)

l d al cl d al cl d al cl
1 4 0.3 0 6 0.3 0 8 0.3 0
2 4 0.4 0 6 0.4 0 8 0.4 0

d = 4 d = 6 d = 8

0 5 10 15 20 0 5 10 15 20 0 5 10 15 20

114

116

118

120

Step

H
yp

er
vo

lu
m

e

method Classical GP Transformed Additive GP

(1) (2) (3)

Figure 4.1: The mean, 10-th and 90-th quantiles of approximated hypervolume over 30 replications
and 20 steps for optimizing the objective functions in (4.18) with the parameter settings in Table
4.1.

Next, we study the performance of the proposed method when the objective functions have

an interaction term and are not strictly transformed to additive functions with one-dimensional

input. We consider the performance of the proposed algorithm under different values of cl. We

specify three cases with parameters of (4.18) in Table 4.2, where the value of c2 changes from 0 to

0.5. For this example, 15 initial data points are used. The results are depicted in Figure 4.2. The

results show that when the interaction term is negligible as c2 = 0 or 0.01, our method is more

robust than Classical GP in early stages. However, when the interaction term increases to c2 = 0.5,

the performances of the two approaches are comparable.
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Table 4.2: Table of parameter settings of (4.18) for the three cases in Figure 4.2

Cases (1) (2) (3)

l d al c1 d al c1 d al c1
1 4 0.3 0 4 0.3 0 4 0.3 0
2 4 0.4 0 4 0.4 0.01 4 0.4 0.5

.

c2 = 0 c2 = 0.01 c2 = 0.5

0 5 10 15 20 0 5 10 15 20 0 5 10 15 20

116

117

118

119

120

121

Step

H
yp

er
vo

lu
m

e

method Classical GP Transformed Additive GP

(1) (2) (3)

Figure 4.2: The mean, 10-th and 90-th quantiles of approximated hypervolume over 30 replications
and 20 steps for optimizing the objective functions in (4.18) with the parameter settings in Table
4.2.

Example 2

We use the example FES1 from the literature of bi-objective optimization Fieldsend et al.

(2003) to demonstrate the performance of the proposed method. The original problem of FES1 is

given by in (4.19). For a comparison purpose, we construct a modified version of FES1 in (4.20) by

taking the exponential values of the original objectives. FES1 is an additive function, whereas FES1-

modified can be transformed into an additive function. For FES1, we restrict λl for l = 1, 2 in TAG to

be between 0.5 and 1.5 since the existing procedure does not estimate it properly. For this example,

20 initial data points are used. The results are depicted in Figure 4.3. Our method is comparable to

the classical GP method when the function is originally additive without transformation. However,

when the additive objective functions are not originally additive (for FES1-modified), our method

outperforms the classical GP method in the early stages.
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FES1 =


y1(x) =

∑4
i=1 |xi −

exp{( i
4 )

2}
3 |0.5

y2(x) =
∑4

i=1

(
xi − 0.5 cos

(
10πi
4

)
− 0.5

)2 (4.19)

FES1-modified =


y1(x) = exp{

∑4
i=1 |xi −

exp{( i
4 )

2}
3 |0.5}

y2(x) = exp{
∑4

i=1

(
xi − 0.5 cos

(
10πi
4

)
− 0.5

)2} (4.20)

FES1 FES1 modified
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Figure 4.3: The mean, 10-th and 90-th quantiles of approximated hypervolume over 30 replications
and 20 steps for the two problems in (4.19) and (4.20).

4.5 Conclusion

We have proposed a method for bi-objective Bayesian optimization using TAG as the sur-

rogate model to simplify the optimization of EHI by decomposing the decision space into one-

dimensional additive subspaces. Through a numerical study, we have demonstrated the advantage

of the proposed method over classical bi-objective Bayesian optimization. Future directions of this

work include improving the parameter tuning in the TAG framework, extending the method to

the multi-objective case, and integrating other existing approaches into the proposed algorithm to

optimize EHI.

53



Acknowledgements

This work was supported by Clemson University’s Virtual Prototyping of Autonomy Enabled

Ground Systems (VIPR-GS), under Cooperative Agreement W56HZV-21-2-0001 with the US Army

DEVCOM Ground Vehicle Systems Center (GVSC).

Disclaimers

All opinions, conclusions and findings wherein are those of the authors and may not be

those of the affiliated institutions DISTRIBUTION STATEMENT A. Approved for public release;

distribution is unlimited. OPSEC # 8425.

54



Appendices

55



Appendix A Proof of Results in Chapter 2

A.1 Proof of Lemma 1

Note that the posterior density function of σ2 given S2 satisfies

p(σ2|S2) ∝ p
(
(m− 1)S2|σ2

)
π(σ2),

where π(σ2) is the PDF of IG(a, b), and p
(
(m− 1)S2|σ2

)
is the PDF of σ2χ2

m−1. Thus, we have

p(σ2|S2) ∝ 1

2
m−1

2 Γ(m−1
2 )

(
(m− 1)

σ2
S2

)m−1
2 −1

exp

(
−m− 1

σ2

S2

2

)
m− 1

σ2

ba

σ2(a+1)Γ(a)
exp

(
− b

σ2

)
∝
(
σ2
)−(a+m−1

2 )−1
exp

(
− 1

σ2

[
(m− 1)S2

2
+ b

])
,

which implies that the posterior distribution of σ2 given S2 is an inverse gamma distribution with

parameters a+ m−1
2 and b+ S2(m−1)

2 .

A.2 Proof of Lemma 2

The marginal density function of S2 based on the Bayesian model in Lemma 1 is given by

p(S2) =

∫
p(S2|σ2)π(σ2)dσ2.

Following the proof of Lemma 1, we have that

p(S2|σ2)π(σ2) =
ba
(
S2
)m−1

2 −1
(m− 1)

m−1
2

2
m−1

2 Γ(m−1
2 )Γ(a)

·
Γ(a+ m+1

2 )(
b+ m−1

2 S2
)m+1

2 +a
· g(σ2, S2),

where

g(σ2, S2) =

(
b+ m−1

2 S2
)m+1

2 +a

Γ
(
m+1
2 + a

) (σ2)−(a+m−1
2 )−1 exp

(
− 1

σ2

[
b+

(m− 1)S2

2

])
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Noting that g(σ2, S2) is exactly the PDF of an inverse gamma distribution for σ2, we have

p(S2) =
ba
(
S2
)m−1

2 −1
(m− 1)

m−1
2

2
m−1

2 Γ(m−1
2 )Γ(a)

·
Γ(a+ m+1

2 )(
b+ m−1

2 S2
)m+1

2 +a
·
∫

g(σ2, S2)dσ2

=
ba
(
S2
)m−1

2 −1
(m− 1)

m−1
2

2
m−1

2 Γ(m−1
2 )Γ(a)

·
Γ(a+ m+1

2 )(
b+ m−1

2 S2
)m+1

2 +a

=
1

B(m−1
2 , a)

·
(
m−1
2b S2

)m−1
2 −1 m−1

2b(
m−1
2b S2 + 1

)m−1
2 +a

,

which is proportional to the PDF of the beta prime distribution (Johnson et al., 1995). Therefore,

we have

m− 1

2b
S2 ∼ BetaPrime

(
m− 1

2
, a

)
.

A.3 Proof of Proposition 1

Letting B(α, β) denote the beta function, the truncated expectation of the beta prime

distribution is given by

E[Z|Z ≤ c] =

∫ c

−∞ zfα,β(z)dz

Fα,β(c)− Fα,β(−∞)
,

where fα,β(z) = zα(1+z)−α−β

B(α,β) and Fα,β are the PDF and CDF of a beta prime distribution with

parameters α and β, respectively. Then, we have

E[Z|Z ≤ c] =
1

Fα,β(c)

∫ c

−∞

z
(
zα (1 + z)

−α−β
)

B(α, β)
dz

=
1

Fα,β(c)

∫ c

−∞

zα+1 (1 + z)
−(α+1)−(β−1)

Γ((α+ 1) + (β − 1))

Γ(α)Γ(β)
dz

=
α+ 1

β

1

Fα,β(c)

∫ c

−∞

zα+1 (1 + z)
−(α+1)−(β−1)

Γ((α+ 1) + (β − 1))

Γ(α+ 1)Γ(β − 1)
dz

=
α+ 1

β
· Fα+1,β−1(c)

Fα,β(c)
.

A.4 Proof of Proposition 2

Denoting C
(t)
x = minx′ ̸=x

{
b
(t)

x′

a
(t)

x′ −1

}
, (2.10) becomes:
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minx′∈X

{
b
(t+1)
x′

a
(t+1)
x′ − 1

}
=


b(t+1)
x

a
(t+1)
x −1

if
b(t+1)
x

a
(t+1)
x −1

≤ C
(t)
x

C
(t)
x o.w.

. (21)

Then, we have

E

[
min
x′∈X

b
(t+1)
x′

a
(t+1)
x′ − 1

]
= E

[
b
(t+1)
x

a
(t+1)
x − 1

∣∣∣∣∣ b
(t+1)
x

a
(t+1)
x − 1

≤ C(t)
x

]
P

(
b
(t+1)
x

a
(t+1)
x − 1

≤ C(t)
x

)

+ C(t)
x P

(
b
(t+1)
x

a
(t+1)
x − 1

> C(t)
x

)
(22)

From (2.6), we can see that

b
(t+1)
x

a
(t+1)
x − 1

=
b
(t)
x

a
(t)
x + m−1

2 − 1

(
1 +

(m− 1)S
2,(t+1)
x

2b
(t)
x

)
≤ C(t)

x (23)

is equivalent to

m− 1

2b
(t)
x

S2,(t+1)
x ≤ C̃(t)

x ,

where C̃
(t)
x =

(a(t)
x +m−1

2 −1)C(t)
x

b
(t)
x

− 1. Consequently, we have

P

(
b
(t+1)
x

a
(t+1)
x − 1

≤ C(t)
x

)
= P

(
m− 1

2b
(t)
x

S2,(t+1)
x ≤ C̃(t)

x

)
= Fm−1

2 ,a
(t)
x

(
C̃(t)

x

)
, (24)

E

[
b
(t+1)
x

a
(t+1)
x − 1

∣∣∣∣∣ b
(t+1)
x

a
(t+1)
x − 1

≤ C(t)
x

]
= E

[
b
(t+1)
x

a
(t+1)
x − 1

∣∣∣∣∣m− 1

2b
(t)
x

S2,(t+1)
x ≤ C̃(t)

x

]

=
b
(t)
x

a
(t)
x + m−1

2 − 1
E

[
m− 1

2b
(t)
x

S2,(t+1)
x + 1

∣∣∣∣∣m− 1

2b
(t)
x

S2,(t+1)
x ≤ C̃(t)

x

]
(25)

=
b
(t)
x

a
(t)
x + m−1

2 − 1

m+ 1

2a
(t)
x

·
Fm+1

2 ,a
(t)
x −1

(C̃
(t)
x )

Fm−1
2 ,a

(t)
x
(C̃

(t)
x )

+ 1

 , (26)
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where (24) holds since m−1

2b
(t)
x

S
2,(t+1)
x ∼ BetaPrime

(
m−1
2 , a

(t)
x

)
by Lemma 2, (25) holds due to (23),

and (26) holds by Proposition 1. Finally, applying (24)-(26) to (2.9) and (22), we have

E

[
min
x′∈X

b
(t+1)
x′

a
(t+1)
x′ − 1

]
=

b
(t)
x

a
(t)
x + m−1

2 − 1

m+ 1

2a
(t)
x

·
Fm+1

2 ,a
(t)
x −1

(C̃
(t)
x )

Fm−1
2 ,a

(t)
x
(C̃

(t)
x )

+ 1

Fm−1
2 ,a

(t)
x
(C̃(t)

x )

+C(t)
x

[
1− Fm−1

2 ,a
(t)
x
(C̃(t)

x )
]
,

KG(t+1)(x) = minx′∈X

{
b
(t)
x′

a
(t)
x′ − 1

}
− C(t)

x

[
1− Fm−1

2 ,a
(t)
x
(C̃(t)

x )
]

− b
(t)
x

a
(t)
x + m−1

2 − 1

m+ 1

2a
(t)
x

·
Fm+1

2 ,a
(t)
x −1

(C̃
(t)
x )

Fm−1
2 ,a

(t)
x
(C̃

(t)
x )

+ 1

Fm−1
2 ,a

(t)
x
(C̃(t)

x ).

A.5 Proof of Proposition 3

First, we have that

EI(t+1)(x) = E

[
max

{
min
x∈X

(
b
(t)
x

a
(t)
x − 1

)
− S2

x, 0

}]

=
2b

(t)
x

m− 1
E

[
max

{
m− 1

2b
(t)
x

min
x∈X

(
b
(t)
x

a
(t)
x − 1

)
− m− 1

2b
(t)
x

S2
x, 0

}]
,

thus the expectation can be taken with respect to the BetaPrime distribution of m−1

2b
(t)
x

S2
x.

Suppose that Z follows the Beta Prime distribution with parameters α and β, Lemma 2

gives

E [max (u− Z, 0)] = P (Z ≤ u)E [u− Z|Z ≤ u]

= uFα,β(u)− Fα,β(u)E [Z|Z ≤ u]

= uFα,β(u)−
α+ 1

β
Fα+1,β−1(u),

which directly leads to the result in Proposition 3 by letting u = m−1

2b
(t)
x

minx∈X

{
b(t)x

a
(t)
x −1

}
, α =

(m− 1)/2 and β = a
(t)
x .

A.6 Examples of Resulting Designs

Figure 4 visualizes the resulting designs of the proposed KG-IG method based on simulator

I in Section 2.6. We show the designs for K = 6, 12 and 30; for example, the left figure (K = 6)
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Figure 4: The resulting designs of KG-IG based on simulator I in Section 2.6 for K = 6 (left),
K = 12 (middle), and K = 30 (right) over 60 experiments. The red dot represents the true optimal.
The size of the dots is relative to the number of replications on each design point.

contains exactly six dots that correspond to the six experimental settings.
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Appendix B Proofs of Results in Chapter 3

B.1 Proof of Proposition 4

First, we have the TAG framework Lin and Joseph (2020):

g(y) = µ+ z(x) + ϵ(x),

where z(x) ∼ GP (0, τ2R(·)) and ϵ(x) ∼ N
(
0, σ2

)
. Then,

zk(xk) ∼ GP (0, τ2kRk(·)),

for k = 1, . . . , d. Let the correlation function for the Gaussian process be written as:

R(x− x′) =

d∑
k=1

ωlkRk (xk − x′
k) , (27)

.

In order to find the marginal distribution, first the join distribution of zk(xk) and y is

needed. The new data can be written as (x1, y1), . . . , (xn, yn)

 y

zk(xk)

 ∼ Nn+1


0

0

,
τ2R+ σ2I τ2krk(xk)

τ2krk(xk)
T τ2k


 (28)

Where rk(xk) is the vector of correlations: (R(xk−x1k), . . . R(xk−xnk)), R is the correlation

matrix with the ijth element being Rk(xi − xj). R and Rk are defined above.

Now let  A b

bT c

 =

τ2R+ σ2I τ2krk(xk)

τ2krk(xk)
T τ2k


−1

(29)
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Then,

zk(xk) ∝ exp

−1

2

 y

zk(xk)


T  A b

bT c


 y

zk(xk)

+
1

2
zk(xk)

T
(
τ2R+ σ2I

)−1
zk(xk)


= exp

(
−1

2
y2 + 2

(
bT zk(xk)y + zk(xk)

TAzk(xk)
)
+

1

2
zk(xk)

T
(
τ2R+ σ2I

)−1
zk(xk)

)
∝ exp

(
−1

2

(
y +

bT zk(xk)

c

)2
)

From 29 we can see that:
(
τ2R+ σ2I

)
b+ cτ2krk(xk) = 0 and τ2krk(xk)

Tb+ cτ2k = 1

Then, we can also see that:

b =

(
τ2R+ σ2I

)−1
τ2krk(xk)

τ2k + σ2
k − (τ2krk(xk))

T
(τ2R+ σ2I)

−1
τ2krk(xk)

c =
1

τ2k − (τ2krk(xk))
T
(τ2R+ σ2I)

−1
τ2krk(xk)

Now combining the above, we get:

zk(xk) ∝ exp

−
(
y −

(
τ2krk(xk)

)T (
τ2R+ σ2I

)−1
zk(xk)

)2
2
(
τ2k − (τ2krk(xk))

T
(τ2R+ σ2I)

−1
τ2krk(xk)

)


Therefore:

zk(xk) ∼ N
(
τ2krk(xk)

T
(
τ2R+ σ2I

)−1
(gλ(y)− µ), τ2k −

(
τ2krk(xk)

)T (
τ2R+ σ2I

)−1
τ2krk(xk)

)
.

(30)

Which can be rewritten as:

zk(xk)|y ∼ N
(
ẑk(xk), s

2
k(xk)

)
(31)

with

ẑk(xk) = ωkrk(xk)
⊤ (R+ δI)

−1
(gλ(y)− µ)

and

s2k(xk) = τ2ωk

(
1− rk(xk)

⊤ (R+ δI)
−1

ωkrk(xk)
)
,

where δ = σ2/τ2.
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Appendix C Proofs of results in Chapter 4

C.1 Proof of Closed Form Expression of Expected Hypervolume Im-

provement

Given the equations for the hypervolume indicator and hypervolume improvement in (4.3)

and (4.4), we can derive the closed for expression of expected hypervolume improvement found in

(4.6). For this proof, let πŷ,ŝ (y), be the bi-variate normal distribution that is th joint distribution

of the conditional distributions of the objective functions and let ϕŷ1,ŝ1 (y1) and ϕŷ2,ŝ2 (y2) be the

independent normal distributions that are the conditional distributions or each of the objective

functions.
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EHIn (x;P, t) = E {HVI ((Y1(x), Y2(x)),P, t)}

=

∫
R

HVI ((Y1(x), Y2(x)),P, t)πŷ,ŝ (y) dy

=

∫ ∞

y1=−∞

∫ ∞

y2=−∞

n+1∑
i=1

Λ2 [Si ∩∆(y1, y2)] · πŷ,ŝ (y1, y2) dy1dy2

=

p+1∑
i=1

∫ yi−1
1

y1=−∞

∫ yi
2

y2=−∞
Λ2 [Si ∩∆(y1, y2)] · πŷ,ŝ (y1, y2) dy1dy2

=

p+1∑
i=1

∫ yi−1
1

y1=−∞

∫ yi
2

y2=−∞
Λ2 [Si ∩∆(y1, y2)] · ϕŷ1,ŝ1 (y1) · ϕŷ2,ŝ2 (y2) dy1dy2

=

p+1∑
i=1

∫ yi
1

y1−∞

(
yi−1
1 − yi1

)
ϕŷ1,ŝ1 (y1) dy1 ·

∫ yi
2

y2=−∞

(
yi2 − y2

)
· ϕŷ2,ŝ2(y2)dy2

+

p+1∑
i=1

∫ yi−1
1

yi
1

(
yi−1
1 − y1

)
ϕŷ1,ŝ1 (y1) dy1 ·

∫ yi
2

y2=−∞

(
yi2 − y2

)
· ϕŷ2,ŝ2(y2)dy2

=

p+1∑
i=1

∫ yi
1

y1=−∞

(
yi−1
1 − yi1

)
ϕŷ1,ŝ1 (y1) dy1

∫ yi
2

y2=−∞

(
yi2 − y2

) 1

ŝ2(x)
ϕ

(
y2 − ŷ2(x)

ŝ2(x)

)
dy2

+

p∑
i=1

∫ y
(i−1)
1

yi
1

(
yi−1
1 − y1

) 1

ŝ1
ϕ

(
y1 − ŷ1(x)

ŝ1

)∫ yi
2

y2=−∞

(
yi2 − y2

) 1

ŝ2(x)
ϕ

(
y2 − ŷ2(x)

ŝ2(x)

)
dy2

=

p+1∑
i=1

(
yi−1
1 − yi1

)
· Φ
(
yi1 − ŷ1(x)

ŝ1(x)

)
·Ψ
(
yi2, y

i
2, ŷ2(x), ŝ2(x)

)
+

p+1∑
i=1

(
Ψ
(
yi−1
1 , yi−1

1 , ŷ1(x), ŝ1(x)
)
−Ψ

(
yi−1
1 , yi1, ŷ1(x), ŝ1(x)

))
·Ψ
(
yi2, y

i
2, ŷ2(x), ŝ2(x)

)
where Λ2 [Si ∩∆(y1, y2)] is the Lebesgue measure on R2, Si are the sections of the dominated area

bounded by Si =
((

yi1,−∞
)⊤

,
(
yi−1
1 , yi2

)⊤)
, and ∆ (y1, y2) is the dominated area represented by

the new point.

C.2 Example of Expected Hypervolume Improvement Calculation

This example will be a two-dimension numerical calculation of the equation derived above.

It will show the calculation of the EHI for a set of three two-dimensional points. The goal of the

EHI calculations in this example will be to maximize the the objective functions and find the Pareto

set.
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For this example, let the Pareto set be:

P =


3 1

2 1.5

1 2.5


Let the data follow the form yi ∼ N(ŷi, ŝi). Then, the values for this example are given by:

y1 ∼ N(2, 0.7) and y2 ∼ N(1.5, 0.6). Let the reference point be t = (4, 4)
⊤
. Lastly, let the point

from which the EHi will be calculate be new point ynew = (1.50, 0.50) which is a rounded value

selected randomly from the independent normal distribution based on the values of µ and σ above.

This point is draw in the figure to illustrate the area of improvement and the original Pareto set.

The EHI calculation finds the average improvement over all possible nondominated points in the

area bounded by the reference point.

C.2.1 Calculations

Table of values:

y1 y2

y0 4 −∞

y1 3 1

y2 2 1.5

y3 1 2.5

y4 −∞ 4

Table of Calculations:

i Calculation Value

1 (4− 3)Φ
(
3−2
0.7

)
Ψ(1, 1, 1.5, 0.6) + (Ψ(4, 4, 2, 0.7)−Ψ(4, 3, 2, 0.7))Ψ(1, 1, 1.5, 0.6) 0.0663

2 (3− 2)Φ
(
2−2
0.7

)
Ψ(1.5, 1.5, 1.5, 0.6) + (Ψ(3, 3, 2, 0.7)−Ψ(3, 2, 2, 0.7))Ψ(1.5, 1.5, 1.5, 0.6) 0.1783

3 (2− 1)Φ
(
1−2
0.7

)
Ψ(2.5, 2.5, 1.5, 0.6) + (Ψ(2, 2, 2, 0.7)−Ψ(2, 1, 2, 0.7))Ψ(2.5, 2.5, 1.5, 0.6) 0.2582

4 (1−−∞)Φ
(−∞−2

0.7

)
Ψ(4, 4, 1.5, 0.6) + (Ψ(1, 1, 2, 0.7)−Ψ(1,−∞, 2, 0.7))Ψ(4, 4, 1.5, 0.6) 0.0602
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EHIn (x;P, t) =
p+1∑
i=1

(
yi−1
1 − yi1

)
· Φ
(
yi1 − ŷ1(x)

ŝ1(x)

)
·Ψ
(
yi2, y

i
2, ŷ2(x), ŝ2(x)

)
+

p+1∑
i=1

(
Ψ
(
yi−1
1 , yi−1

1 , ŷ1(x), ŝ1(x)
)
−Ψ

(
yi−1
1 , yi1, ŷ1(x), ŝ1(x)

))
·Ψ
(
yi2, y

i
2, ŷ2(x), ŝ2(x)

)
= 0.563

The expected hypervolume improvement for the Pareto set described above is 0.563. This

value was equal to that found used the Matlab code given by Michael Emmerich and Andre Deutz,

LIACS, Leiden University, 2010. Hupkens et al. (2015). This is shown in Figure 5, where the red

area in the plot is the improvement if the point ynew is added andthe blue area is the hypervolume

dominated by the current Pareto set.

t

y1

y2

y3

ynew

0

1

2

3

4

0 1 2 3 4
y2

y 1

Figure 5: Illustration of dominated area for a sample EHI calculation.
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K. Kandasamy, J. Schneider, and B. Póczos. High dimensional bayesian optimisation and bandits
via additive models. In International conference on machine learning, pages 295–304. PMLR,
2015.

C. M. Kerfonta, S. Kim, Y. Chen, Q. Zhang, and M. Jiang. Sequential selection for minimizing
the variance with application to crystallization experiments. The American Statistician, (just-
accepted):1–16, 2024.

J. D. Knowles, D. W. Corne, and M. Fleischer. Bounded archiving using the lebesgue measure. In
The 2003 Congress on Evolutionary Computation, 2003. CEC’03., volume 4, pages 2490–2497.
IEEE, 2003.

69



K.-R. Koch. Introduction to Bayesian statistics. Springer Science & Business Media, 2007.

L. H. Lee, C. U. Lee, and Y. P. Tan. A multi-objective genetic algorithm for robust flight scheduling
using simulation. European Journal of Operational Research, 177(3):1948–1968, 2007.

C. Li, S. Gupta, S. Rana, V. Nguyen, S. Venkatesh, and A. Shilton. High dimensional bayesian
optimization using dropout. arXiv preprint arXiv:1802.05400, 2018.

L.-H. Lin and V. R. Joseph. Transformation and additivity in gaussian processes. Technometrics,
62(4):525–535, 2020.

L.-H. Lin and V. R. Joseph. TAG: Transformed Additive Gaussian Processes, 2021. URL https:

//CRAN.R-project.org/package=TAG. R package version 0.5.1.

N. Loka, I. Couckuyt, F. Garbuglia, D. Spina, I. Van Nieuwenhuyse, and T. Dhaene. Bi-objective
bayesian optimization of engineering problems with cheap and expensive cost functions. Engi-
neering with Computers, pages 1–11, 2022.

D. J. MacKay et al. Introduction to gaussian processes. NATO ASI series F computer and systems
sciences, 168:133–166, 1998.

M. Malu, G. Dasarathy, and A. Spanias. Bayesian optimization in high-dimensional spaces: A
brief survey. In 2021 12th International Conference on Information, Intelligence, Systems &
Applications (IISA), pages 1–8. IEEE, 2021.

R. Martinez-Cantin, K. Tee, and M. McCourt. Practical bayesian optimization in the presence
of outliers. In International conference on artificial intelligence and statistics, pages 1722–1731.
PMLR, 2018.

S. Mascia, P. L. Heider, H. Zhang, R. Lakerveld, B. Benyahia, P. I. Barton, R. D. Braatz, C. L.
Cooney, J. M. Evans, T. F. Jamison, et al. End-to-end continuous manufacturing of pharmaceuti-
cals: integrated synthesis, purification, and final dosage formation. Angewandte Chemie, 125(47):
12585–12589, 2013.

M. A. McDonald, H. Salami, P. R. Harris, C. E. Lagerman, X. Yang, A. S. Bommarius, M. A. Grover,
and R. W. Rousseau. Reactive crystallization: a review. Reaction Chemistry & Engineering, 6
(3):364–400, 2021.

M. McLeod, S. Roberts, and M. A. Osborne. Optimization, fast and slow: optimally switching
between local and bayesian optimization. In International Conference on Machine Learning,
pages 3443–3452. PMLR, 2018.

J. Mockus. The bayesian approach to global optimization. In System Modeling and Optimization:
Proceedings of the 10th IFIP Conference New York City, USA, August 31–September 4, 1981,
pages 473–481. Springer, 2005.

R. Moriconi, M. P. Deisenroth, and K. Sesh Kumar. High-dimensional bayesian optimization using
low-dimensional feature spaces. Machine Learning, 109:1925–1943, 2020.

M. Mou, A. Patel, S. Mallick, B. P. Thapaliya, M. P. Paranthaman, J. H. Mugumya, M. L. Rasche,
R. B. Gupta, S. Saleh, S. Kothe, et al. Scalable advanced li (ni0. 8co0. 1mn0. 1) o2 cathode
materials from a slug flow continuous process. ACS omega, 7(46):42408–42417, 2022.

E. Paulson. A sequential procedure for selecting the population with the largest mean from k normal
populations. The Annals of Mathematical Statistics, pages 174–180, 1964.

70

https://CRAN.R-project.org/package=TAG
https://CRAN.R-project.org/package=TAG


V. Picheny, D. G. Green, and O. Roustant. DiceOptim: Kriging-Based Optimization for Computer
Experiments, 2021. URL https://CRAN.R-project.org/package=DiceOptim. R package version
2.1.1.

W. Powell and I. Ryzhov. Optimal Learning. Wiley Series in Probability and Statistics. Wiley, 2012.
ISBN 9780470596692. URL https://books.google.com/books?id=hnsVMbx5HOAC.

C. Qin, D. Klabjan, and D. Russo. Improving the expected improvement algorithm. Advances in
Neural Information Processing Systems, 30, 2017.

O. Roustant, D. Ginsbourger, and Y. Deville. Dicekriging, diceoptim: Two r packages for the
analysis of computer experiments by kriging-based metamodeling and optimization. Journal of
Statistical Software, 51:1–55, 2012.

O. Roustant, D. Ginsbourger, Y. D. Contributors, and M. O. Roustant. Package ‘dicekriging’, 2015.

D. J. Russo, B. Van Roy, A. Kazerouni, I. Osband, Z. Wen, et al. A tutorial on thompson sampling.
Foundations and Trends® in Machine Learning, 11(1):1–96, 2018.

S. Ruzika and M. M. Wiecek. Approximation methods in multiobjective programming. Journal of
optimization theory and applications, 126(3):473–501, 2005.

I. O. Ryzhov. On the convergence rates of expected improvement methods. Operations Research,
64(6):1515–1528, 2016.

J. Sacks, W. J. Welch, T. J. Mitchell, and H. P. Wynn. Design and Analysis of Computer
Experiments. Statistical Science, 4(4):409 – 423, 1989. doi: 10.1214/ss/1177012413. URL
https://doi.org/10.1214/ss/1177012413.

P. L. Salemi, E. Song, B. L. Nelson, and J. Staum. Gaussian markov random fields for discrete
optimization via simulation: Framework and algorithms. Operations Research, 67(1):250–266,
2019. doi: 10.1287/opre.2018.1778.

E. Schulz, M. Speekenbrink, and A. Krause. A tutorial on gaussian process regression: Modelling,
exploring, and exploiting functions. Journal of Mathematical Psychology, 85:1–16, 2018.

B. Shahriari, K. Swersky, Z. Wang, R. P. Adams, and N. de Freitas. Taking the human out of the
loop: A review of bayesian optimization. Proceedings of the IEEE, 104(1):148–175, 2016. doi:
10.1109/JPROC.2015.2494218.

J. Snoek, H. Larochelle, and R. P. Adams. Practical bayesian optimization of machine learning
algorithms. Advances in neural information processing systems, 25, 2012.

A. Spagnol, R. L. Riche, and S. D. Veiga. Global sensitivity analysis for optimization with variable
selection. SIAM/ASA Journal on uncertainty quantification, 7(2):417–443, 2019.

M. Stein. Large sample properties of simulations using latin hypercube sampling. Technometrics,
29(2):143–151, 1987.

M. Tesch, J. Schneider, and H. Choset. Using response surfaces and expected improvement to
optimize snake robot gait parameters. In 2011 IEEE/RSJ International Conference on Intelligent
Robots and Systems, pages 1069–1074, 2011.

L. Trailovic and L. Y. Pao. Computing budget allocation for efficient ranking and selection of vari-
ances with application to target tracking algorithms. IEEE Transactions on Automatic Control,
49(1):58–67, 2004.

71

https://CRAN.R-project.org/package=DiceOptim
https://books.google.com/books?id=hnsVMbx5HOAC
https://doi.org/10.1214/ss/1177012413


N. Variankaval, A. S. Cote, and M. F. Doherty. From form to function: Crystallization of active
pharmaceutical ingredients. AIChE journal, 54(7):1682–1688, 2008.

K. K. Vu, C. d’Ambrosio, Y. Hamadi, and L. Liberti. Surrogate-based methods for black-box
optimization. International Transactions in Operational Research, 24(3):393–424, 2017.

T. Wang, J. Xu, J.-Q. Hu, and C.-H. Chen. Optimal computing budget allocation for regression
with gradient information. Automatica, 134:109927, 2021.

X. Wang, Y. Jin, S. Schmitt, and M. Olhofer. Recent advances in bayesian optimization. ACM
Computing Surveys, 55(13s):1–36, 2023.

Z. Wang, C. Gehring, P. Kohli, and S. Jegelka. Batched large-scale bayesian optimization in high-
dimensional spaces. In International Conference on Artificial Intelligence and Statistics, pages
745–754. PMLR, 2018.

J. Wilson, F. Hutter, and M. Deisenroth. Maximizing acquisition functions for bayesian optimiza-
tion. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Gar-
nett, editors, Advances in Neural Information Processing Systems, volume 31. Curran Asso-
ciates, Inc., 2018a. URL https://proceedings.neurips.cc/paper_files/paper/2018/file/

498f2c21688f6451d9f5fd09d53edda7-Paper.pdf.

J. Wilson, F. Hutter, and M. Deisenroth. Maximizing acquisition functions for bayesian optimization.
Advances in neural information processing systems, 31, 2018b.

H. Xiao, Y. Zhang, G. Kou, S. Zhang, and J. Branke. Ranking and selection for pairwise comparison.
Naval Research Logistics (NRL), 70(3):284–302, 2023.

Y. Xu and A. Zeevi. Bayesian design principles for frequentist sequential learning. In International
Conference on Machine Learning, pages 38768–38800. PMLR, 2023.

K. Yang, A. Deutz, Z. Yang, T. Back, and M. Emmerich. Truncated expected hypervolume improve-
ment: Exact computation and application. In 2016 IEEE Congress on Evolutionary Computation
(CEC), pages 4350–4357. IEEE, 2016.
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