
Clemson University Clemson University

TigerPrints TigerPrints

All Dissertations Dissertations

5-2024

Applications of Conic Programming Reformulations Applications of Conic Programming Reformulations

Sarah Kelly
skelly5@clemson.edu

Follow this and additional works at: https://tigerprints.clemson.edu/all_dissertations

 Part of the Mathematics Commons

Recommended Citation Recommended Citation
Kelly, Sarah, "Applications of Conic Programming Reformulations" (2024). All Dissertations. 3586.
https://tigerprints.clemson.edu/all_dissertations/3586

This Dissertation is brought to you for free and open access by the Dissertations at TigerPrints. It has been
accepted for inclusion in All Dissertations by an authorized administrator of TigerPrints. For more information,
please contact kokeefe@clemson.edu.

https://tigerprints.clemson.edu/
https://tigerprints.clemson.edu/all_dissertations
https://tigerprints.clemson.edu/dissertations
https://tigerprints.clemson.edu/all_dissertations?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F3586&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/174?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F3586&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_dissertations/3586?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F3586&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:kokeefe@clemson.edu

Applications of Conic Programming Reformulations

A Dissertation

Presented to

the Graduate School of

Clemson University

In Partial Fulfillment

of the Requirements for the Degree

Doctor of Philosophy

Mathematical Sciences

by

Sarah M. Kelly

May 2024

Accepted by:

Dr. Boshi Yang, Committee Chair

Dr. Hao Hu, Committee Co-Chair

Dr. Yuyuan Ouyang

Dr. Cheng Guo

Abstract

In general, convex programs have nicer properties than nonconvex programs. No-

tably, in a convex program, every locally optimal solution is also globally optimal. For

this reason, there is interest in finding convex reformulations of nonconvex programs.

These reformulation often come in the form of a conic program. For example, nonconvex

quadratically-constrained quadratic programs (QCQPs) are often relaxed to semidefinite

programs (SDPs) and then tightened with valid inequalities. This dissertation gives a few

different problems of interest and shows how conic reformulations can be usefully applied.

In one chapter, we consider two variants of the trust-region subproblem. Both

variants minimize a quadratic objective, and one variant has a feasible region defined by

the intersection of two balls while the other variant has a feasible region defined by the

intersection of a ball and a special second-order conic representable set. For each of these

variants, we show that their feasible regions can be written as the union of two sub-regions

with known lifted convex hulls. We are then able to use this fact to reformulate each variant

into a semidefinite program.

In the next chapter, we consider the unit commitment problem as there is much

interest in pricing schemes for energy markets with non-convexities. While the mixed-

binary programming formulation of the unit commitment problem is not difficult to solve, a

convex reformulation is still desired as its shadow prices may be used to formulate a better

pricing scheme. From former works, we know that the unit commitment problem can be

reformulated as a completely positive program. While this is useful theoretically, solving

CPPs is currently still quite challenging. For this reason, we seek to relax the CPP to an

ii

SDP and use its shadow prices in a pricing scheme.

The last application that we look at focuses on identifying implicit inequalities in

a linear system of inequalities. While there are several methods that we examine, one of

the most efficient methods works by solving a linear program that has been constructed

to have a conic feasible region. Such methods may be useful in the preprocessing step of

solvers as implicit equalities relate to facial reduction, which helps guarantee a constraint

qualification holds.

iii

Table of Contents

Title Page . i

Abstract . ii

List of Tables . vi

List of Figures . vii

1 Introduction . 1
1.1 Background on conic programming . 2
1.2 Duality . 3
1.3 Outline . 4

2 Semidefinite Representable Reformulations for Two Variants of the
Trust-Region Subproblem . 5
2.1 Introduction . 5
2.2 The lifted convex hull . 9
2.3 Semidefinite reformulations . 11
2.4 Separation and computational results . 17

3 Semidefinite Programming Relaxation for Copositive Dual Pricing . . . 23
3.1 Introduction . 23
3.2 CPP and SDP Reformulations of UC . 25
3.3 Pricing with SDP Relaxations . 29
3.4 Numerical Experiments . 35
3.5 Conclusion . 38

4 Affine Hull Algorithms . 39
4.1 Introduction . 39
4.2 Revisit of the existing methods . 41
4.3 Modifications to existing methods . 53
4.4 Numerical experiments . 59
4.5 Conclusion . 67

5 Conclusions and Discussion . 69

Appendices . 71

iv

A Simple examples pertaining to SDP reformulations 72

Bibliography . 74

v

List of Tables

2.1 Cut effectiveness for the Rshor relaxation of (2.3). 21
2.2 Cut effectiveness for the Rshor ∩Rksoc relaxation of (2.3). 21
2.3 Cut effectiveness for the Rshor relaxation of (2.2). 22
2.4 Cut effectiveness for the Rshor ∩Rksoc relaxation of (2.2). 22

3.1 UC Method Comparison . 36

4.1 Implicit Equalities - Benchmark Results . 61
4.2 Implicit Equalities - Random Results . 61

vi

List of Figures

1.1 Conic Programming Relations . 1

3.1 Load scenarios for IEEE 14-bus system . 37
3.2 Line rating scenarios for IEEE 14-bus system 37

vii

Chapter 1

Introduction

This dissertation focuses on conic programming reformulations and their applica-

tions. The hierarchy of different types of conic programs is illustrated in Figure 1.1. While

linear programs (LPs), second-order cone programs (SOCPs), and semidefinite programs

(SDPs) can be solved by interior point methods, not all conic programs can be solved

efficiently. Copositive programs are generally NP-hard, and even large-scale SDPs are chal-

lenging.

Figure 1.1: Conic Programming Relations

1

1.1 Background on conic programming

Before giving the general form of a conic program, we first give some relevant defi-

nitions:

• A set K is a cone if for any nonnegative scalar α and any x ∈ K, αx ∈ K.

• A cone K is convex if x,y ∈ K and λ ∈ [0, 1] implies λx+ (1− λ)y ∈ K.

• A cone K is pointed if −x,x ∈ K implies x = 0.

• A regular cone is a cone that is closed, pointed, and convex with a nonempty interior.

• The dual cone of a convex cone K is given by K∗ := {y | ⟨x,y⟩ ≥ 0 for all x ∈ K}.

• A cone K is a self-dual if K∗ = K.

We now give a general form that a conic program takes:

p∗ = min ⟨c,x⟩

s.t. ⟨ai,x⟩ = bi, i = 1, . . . ,m (P)

x ⪰K 0

where ⟨·, ·⟩ denotes an inner product, x ⪰K y if and only if x − y ∈ K, and K is a regular

cone. Some examples of regular cones include:

• Nonnegative orthant: Rn
+ = {x ∈ Rn | x ≥ 0}

• Second-order cone: Ln = {x ∈ Rn | xn ≥
√
x21 + · · ·+ x2n−1}

• Positive semidefinite cone: Sn
+ = {X ∈ Sn | vTXv ≥ 0 for all v ∈ Rn}

• Copositive cone: COPn = {X ∈ Sn | vTXv ≥ 0 for all v ∈ Rn
+}

• Completely positive cone: CPn = {X ∈ Sn | X = BBT where B ≥ 0}

Rn
+,Ln, and Sn

+ are self-duals. COPn and CPn are duals of each other; i.e., (COPn)∗ = CPn

and (CPn)∗ = COPn.

2

1.2 Duality

In conic programming, just as in linear programming, there is the concept of duality.

The dual problem of (P) can be derived from the viewpoint of Lagrangian duality. For

the constraint bi − ⟨ai,x⟩ = 0, we associate it with the Lagrangian multiplier yi. For

the constraint −x ⪯K 0, we associate it with the Lagrangian multiplier z ⪰K∗ 0. The

Lagrangian function is

L(x;y,x) : = ⟨c,x⟩+
m∑
i=1

yi(bi − ⟨ai,x⟩) + ⟨z,−x⟩

=

m∑
i=1

yibi + ⟨c−
m∑
i=1

yiai − z,x⟩

The Lagrangian dual function is

g(y, z) := min
x

L(x;y,x) =


⟨b,y⟩, if c−

∑m
i=1 yiai − z = 0

−∞, otherwise.

Thus, the dual problem is given by:

max{g(y, z) | z ⪰K∗ 0},

which simplifies to:

d∗ = max ⟨b,y⟩

s.t. c−
m∑
i=1

yiai ⪰K∗ 0, (D)

Also as in linear programming, the Weak Duality Theorem and Strong Duality The-

orem help us to understand the relationship between a pair of primal-dual conic programs.

Theorem 1 (Weak Duality). For any x feasible to (P) and any y feasible to (D), ⟨c,x⟩ ≥

⟨b,y⟩.

3

Theorem 2 (Strong Duality). If (P) is bounded below and strictly feasible, then (D) is

solvable and the optimal values in the problems are equal; i.e., p∗ = d∗. If (D) is bounded

above and strictly feasible, then (P) is solvable and p∗ = d∗.

Moreover, from the perspective of sensitivity analysis, we know that the optimal dual solu-

tion y∗ can be useful in pricing schemes as y∗i can be interpreted as the marginal cost (or

shadow price) per one unit increase in bi.

1.3 Outline

In Chapter 2, we focus on two variants of the trust-region subproblem. These

problems that we consider have a convex feasible region, but a quadratic objective function

that may be nonconvex. By rewriting each feasible region as a union of two sub-regions

with known lifted convex hulls, we are able to obtain exact semidefinite reformulations of

these problems.

In Chapter 3, we consider the unit commitment (UC) problem, a nonconvex problem

that is used in electricity markets. Utilizing the fact that the UC problem can be reformu-

lated as a completely positive program, we seek to relax the UC problem to a semidefinite

program. We do this with the goal of using its shadow prices in a pricing scheme.

In Chapter 4, we look at several different methods for finding implicit equalities in

the linear system defining a polyhedron. The ability to efficiently identify implicit equalities

is of interest since such methods can be used in facial reduction algorithms, and facial

reduction is often a preproceesing step of solvers. As we will see, the methods that perform

the best among those discussed in Chapter 4 are the ones based on a linear program with

a conic feasible region.

4

Chapter 2

Semidefinite Representable

Reformulations for Two Variants of

the Trust-Region Subproblem

Motivated by encouraging numerical results in [21], in this chapter we consider two

specific variants of the trust-region subproblem and provide exact semidefinite representable

reformulations. The first is over the intersection of two balls; the second is over the inter-

section of a ball and a special second-order conic representable set. Different from the

technique developed in [21], the reformulations in this chapter are based on partitions of

the feasible regions into sub-regions with known lifted convex hulls. (This chapter has been

published in OR Letters [39].)

2.1 Introduction

The trust-region subproblem (TRS) is a classic nonconvex quadratically constrained

quadratic program (QCQP) with tractable convex reformulations. The vanilla TRS min-

imizes a quadratic function over the unit ball and has been well-studied in the litera-

ture [26,47,51]; for example, it is well known that the TRS has a second-order conic reformu-

5

lation and can be solved efficiently [31]. Variants of the TRS have also been widely studied

in the literature; see, e.g., the studies in [3,4,11,12,15–17,31,35,36,46,54,57,59,60,62–65].

Many of the aforementioned variants have been proven to be polynomial-time solvable to

ϵ-optimality [11], but explicit semidefinite representable convex reformulations are known

only for a few special cases such as the two-sided generalized TRS [49] and the TRS with

non-intersecting linear constraints [17].

Recently, Eltved and Burer [21] consider the following variant, where a lower bound

and an additional second-order cone constraint is added to the TRS:

min xTHx+ 2gTx

s.t. r ≤ ∥x∥ ≤ R

∥x− c∥ ≤ bTx− a

(2.1)

Here, H ∈ Sn is a real symmetric matrix, x,g, c,b ∈ Rn, a ∈ R, and r,R ∈ R+. The

major novelty in [21] is that the authors construct nonnegative quartic expressions over the

feasible region, which lead to a class of polynomial-time separable valid inequalities in the

lifted space. Numerical results show that the valid inequalities are effective in reducing the

gap of the strongest semidefinite programming (SDP) relaxations in the literature, especially

in low dimensions. The authors also pay particular attention to two special cases of the

problem. One case is when r = 0 and b = 0, and the other is when r = a = 0 and c = 0.

The first case is a special case of the widely studied two-trust-region subproblem (TTRS).

The second case is worth studying because that when b = e (namely, b is the vector of all

ones) and R = 1, its feasible region is a superset of the intersection of the unit ball and

the nonnegative orthant, i.e., {x ∈ Rn | ∥x∥ ≤ 1, x ≥ 0 }. Valid inequalities of the set can

lead to cuts for the completely positive cone. Based on great numerical results, the authors

conjecture that their valid inequalities will help to build an exact SDP reformulation of the

second case when n = 2.

Motivated by the aforementioned encouraging numerical results and the conjecture

made in [21], in this paper we focus on the two special cases mentioned above with the goal

6

of developing their exact SDP reformulations. To our knowledge, no exact SDP reformu-

lations for these two cases have been discovered in the literature; the nonnegative quartic

expression technique and the associated polynomial-time separable valid inequalities in [21]

are currently the strongest relaxation approach for solving both problems. Note that al-

though the feasible regions in both cases are convex, the problems are still challenging due

to the nonconvexity of the quadratic objective functions. However, with the great numerical

results in [21], we are encouraged to think that certain exact SDP reformulation might be

formed for these special cases.

Our research goal is achieved through a different (but possibly simpler) path from

the nonnegative quartic expression approach in [21]. Specifically, the main ingredient of

our study in this note is the partitions of the feasible regions and a convex hull result

of disjunctions. Note that the idea of partitioning the feasible region of TRS variants has

appeared previously in the literature. As far as we are aware of, the idea was first mentioned

in [57] for feasible regions defined by two quadratic inequalities with the same Hessian.

In [2], the authors solved quadratic programs with two ball constraints by partitioning the

problem into two extended TRS. The idea was also used to develop a branch-and-bound

algorithm for quadratic programs with ball and linear constraints in [1]. Most recently,

Anstreicher proposed to solve the TTRS by branching the feasible region with eigenvector-

based linear constraints [5]. However, all the above results focus solely from the perspective

of developing polynomial-time solvable algorithms. The main difference between our paper

and all the above results is that we focus not only on globally solving the problems but also

on convexification of the problems. In particular, we provide a semidefinite representation

of the lifted convex hull of the feasible region. The ability to solve the problems is an

immediate consequence of the convexification.

Our contribution in this note is described in detail below. For future reference

purposes, we restate the two special cases of (2.1) that we study in this paper (Without

7

loss of generality, we assume that R = 1 in (2.1)):

min xTHx+ 2gTx

s.t. ∥x∥ ≤ 1 (2.2)

∥x− c∥ ≤ a

and

min xTHx+ 2gTx

s.t. ∥x∥ ≤ 1 (2.3)

∥x∥ ≤ bTx− a.

In the sequel, the former problem (2.2) will be referred to as the one with two ball con-

straints; the latter (2.3) will be referred to as the one with a ball and a second-order

cone representable constraint. For each problem, we provide an exact convex reformulation

through a semidefinite representation of the lifted convex hull of the feasible region. The

representations are based on partitions of the feasible regions and a convex hull result of

disjunctions.

The paper is organized as follows. In Section 2.2, we introduce the lifted convex hull

and related properties. In Section 2.3, we derive the semidefinite representable reformula-

tions of the two problems. A separation algorithm and computational results are presented

in Section 2.4.

Notation. We use Sn and Sn+ to represent the sets of n× n real symmetric matrices and

real symmetric positive semidefinite matrices, respectively. For A,B ∈ Sn, the relation

A ⪰ B holds if and only if A−B ∈ Sn+, and the Frobenious product of A and B is defined

as A • B = tr(AB), where tr(·) is the trace of a matrix. The Kronecker product of A and

B is denoted by A ⊗ B. For a nonempty set S ⊆ Rn, the convex hull of S is denoted by

8

conv(S).

2.2 The lifted convex hull

To begin, consider a general QCQP:

inf xTHx+ 2gTx (2.4)

s.t. x ∈ F ,

where H ∈ Sn and F ⊆ Rn is a nonempty closed set. The problem can be equivalently

lifted to

inf H •X + 2gTx

s.t. X = xxT (2.5)

x ∈ F

with variables (x, X) in the space of Rn × Sn. Moreover, it is shown (e.g. in [20, 43]) that

(1) is equivalent to

inf H •X + 2gTx (2.6)

s.t. (x,X) ∈ C(F),

where

C(F) := conv { (x,xxT) | x ∈ F } . (2.7)

We refer to C(F) as the lifted convex hull in this paper. The analysis on C(F) has been

critical in several previous QCQP studies in the literature; see, e.g., [15, 38, 63] and the

references within. The derivation throughout our paper also relies heavily on the charac-

9

terization of C(F). Note that when F is compact, so is the lifted convex hull C(F), and

optimal solutions of (2.4)-(2.6) can be attained.

The main results of this paper are explicit semidefinite representations of C(F) for

(2.2) and (2.3). In this section, we introduce preliminary results related to C(F). The

following lemma characterizes the lifted convex hull of the union of two sets.

Lemma 3. Let F1 and F2 be two nonempty closed sets in Rn. We have

C(F1 ∪ F2) = conv(C(F1) ∪ C(F2))

=

 (x, X)

∣∣∣∣∣∣∣
∃ λ ∈ [0, 1], (x1, X1) ∈ C(F1), (x2, X2) ∈ C(F2)

such that (x, X) = λ(x1, X1) + (1− λ)(x2, X2)

 .

Proof. For any nonempty sets A and B in Rn, it is clear that conv(A∪B) = conv(conv(A)∪

conv(B)). Let A = { (x,xxT) | x ∈ F1 } and B = { (x,xxT) | x ∈ F2 }. Then,

C(F1 ∪ F2) = conv { (x,xxT) | x ∈ F1 ∪ F2 } = conv(A ∪B)

= conv(conv(A) ∪ conv(B)) = conv(C(F1) ∪ C(F2)).

The second equation in the statement follows directly from the definition of the convex

hull.

Remark. Lemma 3 can also be derived from the perspective of the cone of nonnegative

quadratic functions. See [37]. The above proof takes a basic approach without considering

propositions of the dual cones.

The structure of C(F) has been studied in the literature for specially structured F

(citations). In the following, we list two results related to our derivation in Section 2.3. The

first proposition is related to the intersection of a halfspace and a ball.

10

Proposition 4 ([57], Theorem 3). For F = {x ∈ Rn | ∥x− c∥ ≤ a,pTx+ q ≥ 0 }, where

p ∈ Rn and q ∈ R,

C(F) =

 (x, X)

∣∣∣∣∣∣∣
tr(X)− 2cTx+ cT c− a2 ≤ 0,

∥Xp+ qx− cpTx− qc∥ ≤ a(pTx+ q), X ⪰ xxT

 .

We briefly explain the construction of the constraints in C(F). The first constraint

is built by squaring both sides of ∥x− c∥ ≤ a and lifting xxT to X. The second constraint

is obtained by multiplying both sides of ∥x− c∥ ≤ a by the nonnegative quantity (pTx+ q)

and lifting xxT to X. The last constraint is a semidefinite relaxation of the nonconvex

constraint X = xxT .

The next proposition considers the intersection of a halfspace and a second-order

cone representable set that share certain special structure (in terms of the linear term in

their descriptions).

Proposition 5 ([37], Corollary 2). For F = {x ∈ Rn | ∥x∥ ≤ pTx+ q ≤ s }, where p ∈ Rn

and q, s ∈ R,

C(F) =

 (x, X)

∣∣∣∣∣∣∣
(I − ppT) •X − 2qpTx− q2 ≤ 0, pTx+ q − s ≤ 0,

∥Xp+ (q − s)x∥ ≤ −ppT •X + (s− 2q)pTx− q(q − s), X ⪰ xxT

 .

The construction of the constraints in C(F) in Proposition 5 is similar to that in

Proposition 4. The first constraint is built by squaring both sides of ∥x∥ ≤ pTx + q

and lifting xxT to X. The second constraint is directly inherited from F . The third

constraint is obtained by multiplying both sides of ∥x∥ ≤ pTx + q by the nonnegative

quantity (s− q − pTx) and lifting xxT to X.

2.3 Semidefinite reformulations

In this section, we derive semidefinite reformulations of (2.2) and (2.3). The key

idea is to partition the feasible region F of each problem as F = F1 ∪F2, where C(F1) and

11

C(F2) are known.

2.3.1 Two ball constraints

Let FTB = {x ∈ Rn | ∥x∥ ≤ 1, ∥x− c∥ ≤ a } be the feasible region of (2.2). We

ignore the trivial cases when FTB is empty, or not full-dimensional (when FTB is a single-

ton), or one ball is contained in the other (when FTB is a ball and problem (2.2) reduces to

the TRS). In the nontrivial cases, observe that the intersection of {x ∈ Rn | ∥x∥ ≤ 1 } and

{x ∈ Rn | ∥x− c∥ ≤ a } is an (n−1)-dimensional sphere. Therefore, the following partition

is possible for FTB.

Lemma 6 ([2], Theorem 2.3). For the nontrivial cases of problem (2.2) with two ball

constraints, FTB = F1 ∪ F2, where

F1 = {x ∈ Rn | ∥x∥ ≤ 1, −2cTx+ (1 + cT c− a2) ≤ 0 } ,

F2 = {x ∈ Rn | ∥x− c∥ ≤ a, −2cTx+ (1 + cT c− a2) ≥ 0 } .

With Lemma 3 and Proposition 4, C(FTB) has the following semidefinite represen-

tation.

Proposition 7. For the nontrivial cases of problem (2.2) with two ball constraints, we have

C(FTB) =



(x, X)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∃ λ ∈ [0, 1], (y1, Y1), (y2, Y2) ∈ Rn × Sn such that

(x, X) = (y1, Y1) + (y2, Y2),

tr(Y1) ≤ λ, ∥2Y1c− qy1∥ ≤ 2cTy1 − qλ,

tr(Y2)− 2cTy2 + (cT c− a2)(1− λ) ≤ 0,

∥2Y2c− qy2 − 2ccTy2 + qc(1− λ)∥ ≤ a(−2cTy2 + q(1− λ)), λ yT
1

y1 Y1

 ⪰ 0,

1− λ yT
2

y2 Y2

 ⪰ 0



,

where q = 1 + cT c− a2.

12

Proof. Denote the set on the right side of the equation by S. Recalling the sets F1 and F2

defined in Lemma 6 applying Proposition 4 we have

C(F1) = { (x1, X1) | tr(X1) ≤ 1, ∥2X1c− qx1∥ ≤ 2cTx1 − q, X1 ⪰ x1x
T
1 } ,

C(F2) =

 (x2, X2)

∣∣∣∣∣∣∣
∥2X2c− qx2 − 2ccTx2 − qc∥ ≤ a(−2cTx2 + q),

tr(X2)− 2cTx2 + cT c− a2 ≤ 0, X2 ⪰ x2x
T
2

 .

Note that for any λ ∈ (0, 1], (x1, X1) ∈ C(F1) if and only if (y1, Y1) = λ(x1, X1) satisfies

tr(Y1) ≤ λ, ∥2Y1c− qy1∥ ≤ 2cTy1 − qλ, and λY1 ⪰ y1y
T
1 .

Similarly, for any λ ∈ [0, 1), (x2, X2) ∈ C(F2) if and only if (y2, Y2) = (1 − λ)(x2, X2)

satisfies

∥2Y2c− qy2 − 2ccTy2 − (1− λ)qc∥ ≤ a(−2cTy2 + q(1− λ)),

tr(Y2)− 2cTy2 + (1− λ)(cT c− a2) ≤ 0, and (1− λ)Y2 ⪰ y2y
T
2 .

For any (x, X) ∈ C(FTB), by Lemma 3, there exist λ ∈ [0, 1], (x1, X1) ∈ C(F1) and

(x2, X2) ∈ C(F2) such that (x, X) = λ(x1, X1) + (1− λ)(x2, X2). Let

(y1, Y1) =


λ(x1, X1) if λ > 0

(0, 0) if λ = 0

and (y2, Y2) =


(1− λ)(x2, X2) if λ < 1

(0, 0) if λ = 1.

Then (x, X) ∈ S as (x, X, λ,y1, Y1,y2, Y2) satisfies the constraints in S due to the above

derivation. On the other hand, for any (x, X) ∈ S, there exists (λ,y1, Y1,y2, Y2) satisfying

the constraints in S. Let

(x1, X1) =


1
λ (y1, Y1) if λ > 0

any point in C(F1) if λ = 0

and (x2, X2) =


1

1−λ (y2, Y2) if λ < 1

any point in C(F2) if λ = 1.

13

Then it is clear that (x, X) ∈ C(FTB).

2.3.2 A ball and a second-order cone representable constraint

Let FSOC = {x ∈ Rn | ∥x∥ ≤ 1, ∥x∥ ≤ bTx− a } be the feasible region of (2.3).

We make the following assumptions to avoid trivial cases.

Assumption 1. There exist x̃, x̂, x̄ ∈ Rn such that

∥x̃∥ ≤ 1, ∥x̃∥ ≤ bT x̃− a, (2.8)

∥x̄∥ ≤ 1, ∥x̄∥ > bT x̄− a, (2.9)

∥x̂∥ > 1, ∥x̂∥ ≤ bT x̂− a. (2.10)

Assumption 1 guarantees that {x ∈ Rn | ∥x∥ ≤ 1 } and {x ∈ Rn | ∥x∥ ≤ bTx− a }

intersect and neither of the sets contains the other. When Assumption 1 is violated, FSOC

is either empty, a ball (when problem (2.3) reduces to the TRS), or a set defined by a

second-order cone constraint (when problem (2.3) can be handled by Corollary 1 in [37]).

It is clear that FSOC = F1 ∪ F2, where

F1 = {x ∈ Rn | ∥x∥ ≤ 1 ≤ bTx− a } ,

F2 = {x ∈ Rn | ∥x∥ ≤ bTx− a ≤ 1 } .
(2.11)

Under Assumption 1, we can show that both F1 and F2 are nonempty.

Lemma 8. Under Assumption 1, there exists x0 ∈ Rn such that ∥x0∥ ≤ 1 = bTx0 − a.

Proof. If bT x̃ − a = 1, then x0 = x̃ is such a point. If bT x̃ − a > 1, since ∥x̄∥ ≤ 1 and

bT x̄−a < 1, we can choose x0 as the convex combination of x̃ and x̄ such that bTx0−a = 1.

If bT x̃ − a < 1, since ∥x̂∥ ≤ bT x̂ − a and bT x̂ − a > 1, we can choose x0 as the convex

combination of x̃ and x̂ such that bTx0 − a = 1.

With Lemma 3 and Propositions 4 and 5, C(FSOC) has the following semidefinite

representation.

14

Proposition 9. Under Assumption 1,

C(FSOC) =



(x, X)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∃ λ ∈ [0, 1], (y1, Y1), (y2, Y2) ∈ Rn × Sn such that

(x, X) = (y1, Y1) + (y2, Y2),

tr(Y1) ≤ λ, ∥Y1b− (a+ 1)y1∥ ≤ bTy1 − (a+ 1)λ,

(I − bbT) • Y2 + 2abTy2 − a2(1− λ) ≤ 0,

bTy2 − (a+ 1)(1− λ) ≤ 0,

∥Y2b− (a+ 1)y2∥ ≤ −bbT • Y2 + (1 + 2a)bTy2 − a(1 + a)(1− λ), λ yT
1

y1 Y1

 ⪰ 0,

1− λ yT
2

y2 Y2

 ⪰ 0



.

Proof. The proof is similar to that of Proposition 7. Denote the set on the right side of the

equation by S. Also, let F1 and F2 be the sets defined in (2.11). By Propositions 4 and 5,

C(F1) = { (x1, X1) | tr(X1) ≤ 1, ∥X1b− (a+ 1)x1∥ ≤ bTx1 − a− 1, X1 ⪰ x1x
T
1 } ,

C(F2) =

 (x2, X2)

∣∣∣∣∣∣∣
∥X2b− (a+ 1)x2∥ ≤ −bbT •X2 + (2a+ 1)bTx2 − a(a+ 1),

(I − bbT) •X2 + 2abTx2 − a2 ≤ 0, bTx2 − a− 1 ≤ 0, X2 ⪰ x2x
T
2

 .

For any λ ∈ (0, 1), (x1, X1) ∈ C(F1) if and only if (y1, Y1) = λ(x1, X1) satisfies

tr(Y1) ≤ λ, ∥Y1b− (a+ 1)y1∥ ≤ bTy1 − (a+ 1)λ, and λY1 ⪰ y1y
T
1 .

Similarly, (x2, X2) ∈ C(F2) if and only if (y2, Y2) = (1− λ)(x2, X2) satisfies

(I − bbT) • Y2 + 2abTy2 − a2(1− λ) ≤ 0, bTy2 − (a+ 1)(1− λ) ≤ 0,

∥Y2b− (a+ 1)y2∥ ≤ −bbT • Y2 + (2a+ 1)bTy2 − a(a+ 1)(1− λ)), and (1− λ)Y2 ⪰ y2y
T
2 .

The rest of the proof is the same as the proof of Proposition 7 with FTB replaced by

FSOC .

15

2.3.3 Discussion on the trivial cases

Although Propositions 7 and 9 are derived for the nontrivial cases, they hold in the

trivial cases as well. In this section, we explain how the set on the right side of the equation

in Proposition 9, denoted by S, is equal to C(FSOC) when Assumption 1 fails. The trivial

cases for the two-ball problem can be analyzed in the same manner.

First, if there is no x̃ ∈ Rn satisfying (2.8), then F = F1 = F2 = ∅, where F1 and

F2 are defined in (2.11). We show that S = ∅ = C(FSOC) by contradiction. If S ̸= ∅, there

exist λ ∈ [0, 1], (y1, Y1), (y2, Y2) and (x, X) such that the constraints in S are satisfied. If

λ > 0, it is easy to check that (y1, Y1)/λ ∈ C(F1), which contradicts to F1 = ∅. If λ = 0,

then (y2, Y2) ∈ C(F2), which contradicts to F2 = ∅.

Next, we consider the case when (2.8) is satisfied, but (2.9) or (2.10) is not. We

start from the following lemma.

Lemma 10. Suppose that (2.8) is satisfied. If there is no x̄ ∈ Rn satisfying (2.9), then

F2 ⊆ F1. If there is no x̂ ∈ Rn satisfying (2.10), then F1 ⊆ F2.

Proof. To prove the first statement, it suffices to show that bTx− a ≥ 1 for all x ∈ F2. In

fact, since (2.9) is violated, ∥x∥ ≤ bTx− a for all x such that ∥x∥ ≤ 1. Substituting x for

−b/∥b∥, it is clear that 1 ≤ −∥b∥ − a. Therefore, for any x ∈ F2, since ∥x∥ ≤ 1, we have

bTx− a ≥ −∥b∥ − a ≥ 1.

For the second statement, we first note that if (2.8) is satisfied and (2.10) is violated,

one must have ∥b∥ < 1 and a ≤ 0. In fact, if ∥b∥ > 1 or a < 0 and ∥b∥ = 1, one can

find an eigenvector of I−bbT such that {x ∈ Rn | ∥x∥ ≤ bTx− a } is unbounded along the

direction of the eigenvector. In that case, {x ∈ Rn | ∥x∥ ≤ bTx− a } cannot be contained

in the unit ball, and therefore, (2.10) is not violated. If a > 0 and ∥b∥ ≤ 1, it is easy to

check that bTx− a < bTx ≤ ∥x∥. That is, {x ∈ Rn | ∥x∥ ≤ bTx− a } = ∅ and (2.8) is not

satisfied. Therefore, we only need to consider the case when ∥b∥ < 1 and a ≤ 0.

To prove the second statement, it suffices to show that bTx− a ≤ 1 for all x ∈ F1.

Since (2.10) is violated, ∥x∥ ≤ 1 for all x such that ∥x∥ ≤ bTx − a. Substituting x

16

for (a/(∥b∥2 − ∥b∥))b, we see that bT (a/(∥b∥2 − ∥b∥))b − a = a∥b∥/(∥b∥ − 1) − a =

a/(∥b∥ − 1) = ∥(a/(∥b∥2 − ∥b∥))b∥. Therefore, a/(∥b∥ − 1) ≤ 1. That is, ∥b∥ − 1 ≤ a.

Consequently, for any x ∈ F1, ∥x∥ ≤ 1 and bTx− a ≤ ∥b∥ − a ≤ 1.

In the case when (2.8) is satisfied but (2.9) is not, Lemma 10 indicates that C(F2) ⊆

C(F1). Therefore, C(FSOC) = C(F1) by Lemma 3. We prove S = C(FSOC) by showing

S = C(F1). For any (x, X) ∈ S, there exist λ ∈ [0, 1], (y1, Y1) and (y2, Y2) such that

the constraints in S are satisfied. If λ = 1, the constraints imply (y2, Y2) = (0, 0), which

indicates (x, X) = (y1, Y1) ∈ C(F1). If λ < 1, then (y2, Y2)/(1 − λ) ∈ C(F2) ⊆ C(F1).

Since (y1, Y1)/λ ∈ C(F1), as a convex combination of (y1, Y1)/λ and (y2, Y2)/(1−λ), (x, X)

is also in C(F1). Therefore, S ⊆ C(F1). On the other hand, for any (x, X) ∈ C(F1),

let (y1, Y1) = (x, X), λ = 1, and (y2, Y2) = (0, 0). The constraints in S are satisfied by

(x, X), λ, (y1, Y1) and (y2, Y2). Therefore, C(F1) ⊆ S, and thus S = C(F1).

With a similar argument, one can show that when (2.8) is satisfied but (2.10) is not,

S = C(F2) = C(FSOC). To conclude, the semidefinite representation in Proposition 9 is still

valid when Assumption 1 fails.

2.4 Separation and computational results

The convex hull results we derive in Section 2.3 are presented as projections of

convex sets in a higher-dimensional space. Due to the nonlinear feature of the sets, it

is challenging to find explicit expressions of the projections in the space of (x, X). As

mentioned in the introduction, valid inequalities of C(F) in the (x, X)-space are of interest

in certain applications such as finding valid inequalities for the completely positive cone.

In this section, we show how to generate valid inequalities for the lifted convex hull in the

(x, X)-space as needed. In particular, for any given (x̂, X̂) not in the lifted convex hull, a

separating hyperplane can be found by solving an SDP. We use problem (2.3) as an example

to explain the idea, and the separation problem for (2.2) can be built in the same manner.

17

For a given (x̂, X̂), we consider the following separation problem for C(FSOC).

v∗(x̂, X̂) := inf u1 + u2 + u3 + u4 + u5 + w1 + w2

s.t.

 λ yT
1

y1 Y1

+

 µ yT
2

y2 Y2

 =

1 x̂T

x̂ X̂


tr(Y1) ≤ λ+ u1

∥Y1b− (a+ 1)y1∥ ≤ bTy1 − (a+ 1)λ+ u2 (2.12)

(I − bbT) • Y2 + 2abTy2 − a2µ ≤ u3

∥Y2b− (a+ 1)y2∥ ≤ −bbT • Y2 + (1 + 2a)bTy2 − a(1 + a)µ+ u4

bTy2 − (a+ 1)µ ≤ u5 λ yT
1

y1 Y1

+ w1In+1 ⪰ 0

 µ yT
2

y2 Y2

+ w2In+1 ⪰ 0

λ, µ, u1, u2, u3, u4, u5, w1, w2 ≥ 0

Here, u ∈ R5 and w ∈ R2 are nonnegative artificial variables. The constraints in (2.12)

are basically the constraints in Proposition 9 with artificial variables u and w. (A new

variable µ = 1− λ is introduced for the ease of derivation of the dual problem.) Obviously,

if v∗(x̂, X̂) = 0 and (λ, µ,y1, Y1,y2, Y2,u,w) is an optimal solution, then u = 0, w = 0,

and (λ,y1, Y1,y2, Y2) satisfies the constraints in C(FSOC) together with (x̂, X̂). Therefore,

(x̂, X̂) ∈ C(FSOC). If v∗(x̂, X̂) > 0, then such a (λ,y1, Y1,y2, Y2) does not exist and

(x̂, X̂) /∈ C(FSOC).

Consider the dual problem of (2.12). Let Z ∈ Sn+1 be the dual variable associated

18

with the equality constraint. The dual problem of (2.12) can be represented as

d∗(x̂, X̂) := sup

1 x̂T

x̂ X̂

 • Z (2.13)

s.t. Z ∈ D,

where D is a semidefinite representable set independent of the choice of (x̂, X̂). (We omit

the specific expression of D here as it is easy but tedious to show.) Since (2.12) clearly

satisfies the Slater’s condition, strong duality holds and v∗(x̂, X̂) = d∗(x̂, X̂). For any dual

feasible solution Z ∈ D,

Z •

1 xT

x X

 ≤ d∗(x, X) = v∗(x, X) = 0 ∀ (x, X) ∈ C(FSOC).

That is, any dual solution Z ∈ D can be used to generate a valid inequality for C(FSOC).

Moreover, for any (x̂, X̂) /∈ C(FSOC), let Ẑ be an optimal solution to (2.13), then

Ẑ •

1 x̂T

x̂ X̂

 = d∗(x̂, X̂) = v∗(x̂, X̂) > 0.

That is,

 (x, X)

∣∣∣∣∣∣∣ Ẑ •
1 xT

x X

 = 0

 is a hyperplane strictly separating (x̂, X̂) and

C(FSOC).

The last observation can be used to generate valid inequalities to tighten existing

SDP relaxations of (2.3) in the (x, X)-space. To show its effectiveness, we test the idea on

the instances used in Sections 5.2 and 5.3 of [21]. Same as in [21], we consider two SDP

relaxations with feasible regions Rshor and Rshor ∩Rksoc, respectively, where

Rshor := { (x, X) | tr(X) ≤ 1, tr(X) ≤ bbT •X − 2abTx+ a2, bTx− a ≥ 0, X ⪰ xxT }

19

is the feasible region of the standard SDP (Shor) relaxation of (2.3), and Rksoc is the set of

(x, X) satisfying the linearized version of the Kronecker product constraint

1 xT

x In

⊗
bTx− a xT

x (bTx− a)In

 ⪰ 0.

For more details about the Kronecker product constraints, we refer the readers to [4].

Let (x̂, X̂) be an optimal solution to an SDP relaxation of (2.3), and let λ1 ≥ . . . ≥

λn+1 denote the eigenvalues of

1 x̂T

x̂ X̂

. Following [21], we say that the SDP relaxation

is exact if λ1
λ2

> 104, i.e., the matrix

1 x̂T

x̂ X̂

 is numerically rank-1. For each tested

instance, we solve problem (2.6) with C(F) replaced with Rshor/Rshor ∩Rksoc to get an

initial optimal solution (x̂, X̂). If the relaxation is inexact, we solve the separation problem

(2.12) and generate a valid inequlity Ẑ •

1 xT

x X

 ≤ 0. We add the valid inequality to the

relaxation and resolve. We repeat the process until the relaxation is exact.

We implement our experiments in Matlab 9.5 (R2018b) using CVX [27] to model

the relaxations and MOSEK 9.1 [6] to solve them. We run the instances on an Intel(R)

Core(TM) i7-8550U CPU @ 1.80GHz with four cores and 16GB of memory. For each

dimension n, we test the 15,000 instances generated in [21], which can be found at https:

//github.com/A-Eltved/strengthened_sdr. We report the number of instances with an

inexact initial (Rshor/Rshor ∩Rksoc) relaxation, the maximum and average number of cuts

needed to close the gaps, and the percentage of instances whose gaps are closed with a

single cut. The results are reported in Tables 2.1 and 2.2. (The numbers of instances with

inexact initial relaxations are slightly different from [21], possibly due to different versions

of platforms.)

For the Shor relaxation, we observe that the gaps of all instances are closed within

36 cuts. For the tighter relaxation with Rshor ∩Rksoc, the gaps of all instances are closed

20

https://github.com/A-Eltved/strengthened_sdr
https://github.com/A-Eltved/strengthened_sdr

n Inexact initial Max cuts Avg cuts Closed with one cut (%)

2 7744 21 2.42 27.83
3 7634 36 1.99 50.21
4 7733 19 1.59 66.48
5 7704 16 1.40 76.43
6 7584 21 1.29 82.45
7 7648 10 1.22 86.36
8 7614 12 1.18 88.80
9 7566 7 1.13 91.05
10 7552 10 1.11 92.74

Table 2.1: Cut effectiveness for the Rshor relaxation of (2.3).

n Inexact initial Max cuts Avg cuts Closed with one cut (%)

2 15 3 1.40 73.33
3 50 4 1.64 54.00
4 36 4 1.69 52.78
5 27 6 1.52 62.96
6 15 3 1.40 66.67
7 13 3 1.31 76.92
8 12 2 1.08 91.67
9 5 1 1.00 100
10 5 2 1.20 80

Table 2.2: Cut effectiveness for the Rshor ∩Rksoc relaxation of (2.3).

within six cuts. On average, less than two cuts are needed for n ≥ 3. A majority of the

instances require only one cut to close the gaps. We remark here that with respect to time,

each separation problem takes about 0.3 seconds to solve.

We conduct similar tests on the two-ball problem (2.2) and observe similar perfor-

mance. Compared with (2.3), more cuts are needed to close the gaps on average, but most

instances need no more than two cuts. The results are presented in Tables 2.3 and 2.4.

Acknowledgements This material is based upon Yang and Kelly’s research supported

by the Office of Naval Research under Award Number (N00014-20-1-2154) and Ouyang’s

research supported by the Office of Naval Research under Award Number (N00014-20-1-

2089). We would like to thank the anonymous reviewers, whose suggestions help improve

the completeness and readability of the paper. In particular, the proof of Lemma 1 is

21

n Inexact initial Max cuts Avg cuts Closed with one cut (%)

2 1403 19 2.45 7.98
3 1285 22 2.48 12.68
4 983 15 2.28 20.04
5 739 11 2.18 22.60
6 508 6 2.11 21.46
7 453 14 2.11 26.93
8 346 9 2.08 27.75
9 292 6 1.96 31.85
10 251 7 2.01 29.08

Table 2.3: Cut effectiveness for the Rshor relaxation of (2.2).

n Inexact initial Max cut Avg cuts Closed with one cut (%)

2 31 10 2.32 41.94
3 78 9 2.18 41.03
4 62 7 1.89 46.77
5 34 8 2.03 35.29
6 21 4 1.67 47.62
7 16 4 1.81 50.00
8 14 4 1.50 64.29
9 6 2 1.17 83.33
10 4 3 2.00 25.00

Table 2.4: Cut effectiveness for the Rshor ∩Rksoc relaxation of (2.2).

simplified based on a reviewer’s suggestion.

22

Chapter 3

Semidefinite Programming

Relaxation for Copositive Dual

Pricing

In this article, we consider the unit commitment (UC) problem and the challenge

its nonconvexity presents when it comes to pricing for the day-ahead electricity market.

Currently, there is no consensus on which of the existing pricing mechanisms is best; how-

ever, there is a common desire for an improved pricing mechanism [34]. In practice, pricing

mechanisms are based on shadow prices of a convex relaxation of the UC problem. Thus,

motivated by works such as [29] and [22], we develop a semidefinite programming relaxation

of the UC problem and examine its associated decomposition of the locational marginal

price.

3.1 Introduction

In electricity markets, suppliers submit information about their generating capabil-

ities and costs to an independent system operator (ISO). The ISO then needs to determine

an optimal allocation based on predicted demand and set electricity prices [42]. To deter-

23

mine an optimal allocation, the ISO solves a unit commitment (UC) problem. Due to the

nonconvexity of UC problems, it is often difficult to determine prices that not only cover the

fuel costs of each generator, but also their fixed costs. This can lead to a “missing money”

problem if chosen prices result in the revenue being less than the cost [56].

UC problems are often formulated as mixed-integer programs (MIPs) containing

both continuous and binary variables [18]. While the MIP formulation is solvable even

for very large-scale problems in a practically tractable amount of time, it is difficult to

construct a “good” pricing mechanism without shadow prices. For this reason, Guo et

al. [29] reformulated the MIP as a completely positive program (CPP) and then designed a

pricing mechanism using the dual copositive program (COP). While Guo et al. show that

their copositive duality pricing (CDP) has certain desirable properties, the CPP formulation

may not be immediately implementable in practice due to the limitation of solvers. For

this reason, we seek to relax the CPP formulation to a semidefinite programming (SDP)

formulation and use its shadow prices to design a new pricing mechanism.

3.1.1 Literature Review

In this section, we review literature on pricing schemes for nonconvex energy market

and convex relaxations of MIPs, including specifically UC problems.

Liberopoulos and Andrianesis [42] provides a review of several pricing schemes pro-

posed for markets with nonconvexities. When evaluating a pricing mechanism, we recall

that according to the Federal Energy Regulatory Commission (FERC) [34], pricing mech-

anisms should ideally be social welfare maximizing, transparent, incentive compatible, and

ensure revenue adequacy.

Instead of solving the MIP formulation directly, a convex relaxation of the UC

problem is often desired so that shadow prices may be obtained. Dropping the integrality

constraints from UC yields a linear programming (LP) relaxation, but this LP relaxation

tends to be weak. A better approach is the restricted pricing (RP) method formulated by

O’Neill et al. [48]. Pricing in this method is based upon the linear program that results

24

from fixing the integer variables at their optimal values, guaranteeing an optimal solution to

the UC. While restricted pricing is commonly used in practice, it has some drawbacks such

as large uplift payments (also known as make-whole payments). Another method known

as convex hull pricing (CHP) [28, 32] has been shown to minimize uplift. Ruiz et al. [53]

take a primal-dual approach that eliminates uplift through revenue adequacy constraints.

Unfortunately, there is a tradeoff as their primal-dual approach does not necessarily support

optimal UC decisions.

In search of a better pricing scheme, some works have begun exploring conic relax-

ations of the UC problem. Guo et al. [29] show that the UC problem can be reformulated

as a completely-positive program. Others, such as Fattahi et al. [22] and Quarm and

Madani [50], propose tight SDP relaxations for the UC problem. In the case of Quarm and

Madani [50], the SDP relaxation contains smaller PSD conic constraint, which they show

are decomposable by generator and time.

More generally, Bao et al. [9] show that the doubly nonnegative relaxation of QC-

QPs is equivalent to the SDP relaxation with first-level RLT constraints. Wang and Kılınc-

Karzan [61] provide sufficient conditions for SDP relaxations of QCQPs to be tight, which

could be used to provide sufficient conditions for tightness of SDP relaxations for UC prob-

lems. Kim and Kojima [40] and Bertsimas and Cory-Wright [10] propose obtaining tractable

convex relaxations of non-convex problems by taking second-order cone (SOC) relaxations

of their SDP relaxations.

In this work, we aim to develop a computationally tractable SDP relaxation of UC

and construct an associated pricing scheme with desirable properties, such as low optimality

gaps and low uplift costs.

3.2 CPP and SDP Reformulations of UC

Let G be a set of generators, T be a set of time slots, N be a set of nodes, and L

be a set of lines. Energy prices are based on the following UC problem. Similar to the UC

25

formulation in [22], we use a shift factor formulation for transmission constraints.

min
∑
g∈G

∑
t∈T

(
fg(pgt) + cugugt + czgzgt

)
(3.1a)

s.t.
∑
g∈G

pgt =
∑
k∈N

dkt ∀t ∈ T (λt) (3.1b)

Bij

|N |∑
k=1

(sik − sjk) (
∑
g∈Gk

pgt − dkt)

 ≥ pTrans,min
ij ∀(i, j) ∈ L, t ∈ T (ξmin

ijt)

(3.1c)

Bij

|N |∑
k=1

(sik − sjk) (
∑
g∈Gk

pgt − dkt)

 ≤ pTrans,max
ij ∀(i, j) ∈ L, t ∈ T (ξmax

ijt)

(3.1d)

pgt ≥ pmin
g zgt ∀g ∈ G, t ∈ T (σmin

gt)

(3.1e)

pgt ≤ pmax
g zgt ∀g ∈ G, t ∈ T (σmax

gt)

(3.1f)

ugt − vgt = zgt − zg,t−1 ∀g ∈ G, t ∈ T \ {1} (µgt) (3.1g)

pgt − pg,t−1 ≤ rUg zg,t−1 + pmin
g ugt ∀g ∈ G, t ∈ T \ {1} (βU

gt) (3.1h)

pg,t−1 − pgt ≤ rDg zgt + pmin
g vgt ∀g ∈ G, t ∈ T \ {1} (βD

gt) (3.1i)

t∑
τ=max(1,t−∆Up

g)

ugτ ≤ zgt ∀g ∈ G, t ∈ T \ {1} (γUgt) (3.1j)

t∑
τ=max(1,t−∆Down

g)

vgτ ≤ 1− zgt ∀g ∈ G, t ∈ T \ {1} (γDgt) (3.1k)

ugt, vgt ≤ 1 ∀g ∈ G, t ∈ T (ϕu
gt, ϕ

v
gt)

(3.1l)

zgt ∈ {0, 1} ∀g ∈ G, t ∈ T (ϕz
gt)

(3.1m)

pgt, ugt, vgt, zgt ≥ 0 ∀g ∈ G, t ∈ T (3.1n)

26

where B is the susceptance matrix and sij is the (i, j)th entry of the shift factor matrix.

When computing the shift factor matrix, we set the bus i = 1 as the reference bus. As for

the variables, pgt denotes the units of electricity produced by generator g during time slot

t, ugt = 1 if and only if generator g is started up during time slot t, vgt = 1 if and only if

generator g is shutdown during time slot t, and zgt = 1 if and only if generator g is on during

time slot t. Note that zgt, ugt, and vgt are all binary variables, but we do not explicitly

impose binary constraints on ugt and vgt because these binary constraints are implied by

constraints (3.1g), (3.1l), (3.1m), and (3.1n). The Greek letters in the rightmost column

denote the corresponding dual variables for the linear programming relaxation of (3.1).

The objective (3.1a) is the total cost, which includes production cost, fixed startup

cost, and fixed cost of having a generator on. Constraints (3.1b) ensure that the total

demand is satisfied at each hour. In constraints (3.1c) and (3.1d), the left-hand side rep-

resents the flow of the network using a shift factor formulation, and the right-hand side

imposes bounds based on line limitations. Constraints (3.1e) and (3.1f) bound production

levels. Constraints (3.1g) ensure ugt = 1 only when a generator gets turned on and vgt = 1

only when a generator gets turned off. Constraints (3.1h) and (3.1i) are ramping up and

ramping down constraints, respectively. Constraints (3.1j) and (3.1k) are minimum up time

and minimum down time constraints, respectively.

We transform the MIP to a CPP. To simplify the transformation, the MIP above

can be rewritten to the following problem UC:

UC : min f(x) (3.2a)

s.t. a⊤j x = bj ∀j = 1, ...,m (3.2b)

x ∈ Rn
+ (3.2c)

xi ∈ {0, 1} ∀i ∈ B. (3.2d)

where x contains the original variables, as well as slack variables. f(x) denotes the objective

function (3.1a), and B denotes the set of indices corresponding to the binary variables zgt.

27

Constraints (3.2b) include constraints (3.1b) - (3.1l), as well as the upper bound for the

binary variable zgt, after adding slack variables.

As shown by [29], we can use the fact that mixed-binary quadratic programs can be

reformulated as completely positive programs [13] to reformulate UC to the following CPP:

UCCPP : min f(x) (3.3a)

s.t. a⊤j x = bj ∀j = 1, ...,m (3.3b)

Tr(aja
⊤
j X) = b2j ∀j = 1, ...,m (3.3c)

xi = Xii ∀i ∈ B (3.3d)

Y ∈ C∗n+1. (3.3e)

where Y =

1 x⊤

x X

. Constraints (3.3b) are the same as (3.2b). Constraints (3.3c) are first-

level RLT constraints, and constraints (3.3d) are RLT constraints for each binary variable

zgt. In constraint (3.3d), C∗n+1 denotes the (n+ 1)-dimensional completely positive cone.

It was shown in [29] that shadow prices of UCCPP can be used to define electricity

prices that make the system operator and generators budget-balanced, support optimal unit

commitment decisions, and under certain conditions, are individually rational.

However, to the best of our knowledge, no practical solvers are capable of solving

CPPs exactly. Indeed, to our knowledge, the most scalable exact method for CPPs is Cylin-

drical Algebraic Decomposition [8,52], which is a universal quantifier elimination technique

that solves CPPs in doubly exponential time, and cannot scale to successfully solve real

problem instances. Accordingly, in the literature, CPPs are usually solved approximately

via SDP relaxations, which require that Y is doubly nonnegative (DNN), by replacing the

28

completely positive conic constraint (3.3e) with constraints (3.4) below.

Y ∈ S+n+1 (3.4a)

Y ≥ 0. (3.4b)

We denote the DNN relaxation of UCCPP as UCSDP := min{f(x)|(3.3b)− (3.3d), (3.4)}.

3.3 Pricing with SDP Relaxations

The price at node i equals the marginal total cost increase when demand at node

i increases. Consider the value function v(d) of UCSDP. If there is a unique subgradient

at dit, then the subgradient provides the marginal increase in total cost. The subgradient

equals the partial derivative of v(d) at dkt:

λt+2λ̂t

∑
k′∈N

dk′t +
∑

(i,j)∈L

Bij(sik − sjk)(ξ
min
ijt + ξmax

ijt)

+ 2
∑

(i,j)∈L

B2
ij(sik − sjk)

(∑
k′∈N

(sik′ − sjk′)dk′t

)
(ξ̂min

ijt + ξ̂max
ijt)

+ 2
∑

(i,j)∈L

Bij(sik − sjk)(p
Trans,min
ij ξ̂min

ijt + pTrans,max
ij ξ̂max

ijt)

(3.5)

where λ̂t is the dual variable associated with the RLT constraint that is obtained by squaring

constraint (3.1b). Similarly, ξ̂min
i′j′t and ξ̂max

i′j′t are the dual variables associated with the RLT

constraints that are obtained by squaring constraints (3.1c) and (3.1d), respectively.

Expression (3.5) is a linear function of d. In what follows, we focus on the decom-

position and interpretation of λt, which is commonly used as the locational marginal prices

(LMPs) at the reference bus.

29

3.3.1 SDP Relaxation with X ∈ S+
n and LMP Decomposition

To obtain a decomposition of the LMP at the reference bus (i.e., λt), we consider

the dual constraint for pgt with g locating at the reference bus:

λt = f ′(pgt)−
∑

(i,j)∈L

Bij(sik − sjk)(ξ
min
ijt + ξmax

ijt)− σmin
gt − σmax

gt

− βU
gt1t̸=1 + βU

g,t+11t̸=|T | − βD
g,t+11t̸=|T | + βD

gt1t̸=1 − ηpgt − Ωp
gt

(3.6)

where 1 denotes the indicator function, k is the node in which generator g locates, ηpgt is

the dual variable associated with the nonnegativity constraint of pgt. The notation Ω is the

dual variable associated with the PSD constraint (3.4a), and we use Ωp
gt to denote the entry

of Ω that corresponds to variable pgt.

All variables except Ωp
gt in this constraint have physical meanings. For this reason,

the LMP decomposition would be more interpretable if it did not contain Ωp
gt. Thus, to

obtain a more interpretable LMP decomposition, we can replace Y ∈ S+n+1 with a lower

dimensional positive semidefinite (PSD) constraint and a set of RLT constraints. In the

following theorem, we show that this can be done without compromising the tightness of

the formulation. Note that constraint (3.7a) can be obtained by multiplying the constraint

a⊤k x = bk with all variables in x.

Theorem 11. Let a⊤k x = bk be a constraint in (3.3b) with bk ̸= 0, then for UCSDP, the

PSD conic constraint (3.4a) can be equivalently replaced by the following RLT and conic

constraints:

Xak = bkx (3.7a)

X ∈ S+n (3.7b)

Proof. Let aTk x = bk be a constraint in (3.3b) with bk ̸= 0. Also, let y := 1
bk
ek and

ααα := ATy. Then,

αααTx = yTAx = yTb =
1

bk
bk = 1

30

for all x feasible to (3.2). Therefore, Xααα = x is a valid inequality for the SDP relaxation of

(3.2). Thus, with the addition of the constraint Xααα = x, the original PSD constraint can

be simplified from  1 αααTX

Xααα X

 ⪰ 0

to X ⪰ 0 because  1 αααTX

Xααα X

 =

(
ααα I

)T

X

(
ααα I

)
.

Now, note that since that ααα = ATy = 1
bk
ak, Xααα = x is equivalent to Xak = bkx. Hence,

the PSD conic constraint (3.4a) can be replaced by constraints (3.7a) and (3.7b).

For the other direction, it is clear that Y ⪰ 0 implies X ⪰ 0. Furthermore, in

Proposition 8.3 of [14], it is shown that if Y ⪰ 0, then constraints (3.3b) and (3.3c) are

equivalent to constraints (3.3b) and AX = bxT .

To make the LMP decomposition interpretable, we drop the constraints in (3.7a)

that correspond to pgt’s, so the LMP decomposition does not contain dual variables of

(3.7a). As shown in the numerical experiments of Section 3.4.2, dropping those constraints

do not impact the tightness too much.

Due to the potential complications introduced by an asymmetric coefficient matrix

in conic program, which can lead to the dual problem including asymmetric feasible matrices

[29], we rewrite (3.7a) (without constraints containing p) to ensure its coefficient matrix is

symmetric:

bkxl = Tr

(
ake

⊤
l + ela

⊤
k

2
X

)
, ∀l ∈ Î (3.8)

where Î is a subset of variable indices without indices for p.

In sum, we obtain LMP from the SDP relaxation UCSDP′
:= min{f(x)|(3.3b) −

(3.3d), (3.4b), (3.7b), (3.8)}, with the following LMP decomposition for the price at the

31

reference bus (∀t ∈ T):

λt = f ′(pgt)−
∑

(i,j)∈L

Bij(sik − sjk)(ξ
min
ijt + ξmax

ijt)− σmin
gt − σmax

gt

− βU
gt1t̸=1 + βU

g,t+11t̸=|T | − βD
g,t+11t̸=|T | + βD

gt1t̸=1 − ηpgt

(3.9)

For a particular node k ∈ N at time t ∈ T , the LMP can be obtained using the

following formulation, which is the constant part of (3.5) without the terms containing ξ̂min
ijt

and ξ̂max
ijt :

λkt = λt +
∑

(i,j)∈L

Bij(sik − sjk)(ξ
min
ijt + ξmax

ijt).

3.3.2 An Alternative SDP Relaxation and Pricing

In this section, we consider the SDP reformulation for UC problem proposed in [22].

We prove that their formulation, which we denote as UCSDP
2 , is equivalent to UCSDP in

terms of tightness. However, UCSDP
2 could lead to less interpretable prices.

The SDP reformulation from [22] can be written as follows:

UCSDP
2 : min f(x̃) (3.10a)

s.t. ã⊤j x̃ ≥ b̃j ∀j = 1, ..., m̃ (3.10b)

ã⊤j X̃ ≥ b̃jx̃
⊤ ∀j = 1, ..., m̃ (3.10c)

ãTi X̃ãj − b̃ix̃
T ãj − ãTi x̃b̃

⊤
j + b̃ib̃j ≥ 0 ∀i, j = 1, ..., m̃ (3.10d)

x̃i = X̃ii ∀i ∈ B (3.10e)

Ỹ ∈ S+ñ+1 (3.10f)

Ỹ ≥ 0, (3.10g)

where x̃ ∈ Rñ is a vector of all variables in UC. Constraints (3.10b) include constraints

(3.1b) - (3.1l) and upper bounds for binary variables, with equality constraints equivalently

converted to two inequality constraints.

32

In Theorem 12, we show that SDP relaxations UCSDP and UCSDP
2 have the same

strength:

Theorem 12. opt(UCSDP) = opt(UCSDP
2)

Proof. To begin, consider two linear systems of inequalities:

Ax = b, x ≥ 0, (3.11)

Ãx̃ ≥ b̃, x̃ ≥ 0, (3.12)

where Ã is m×n, A = [Ã − Im] and b = b̃. The standard PSD+RLT relaxation of (3.11)

is as follows:

Ax = b (3.13a)

AX = bxT (3.13b)

x ≥ 0 (3.13c)

X ≥ 0 (3.13d)1 xT

x X

 ⪰ 0. (3.13e)

Similarly, the standard PSD+RLT relaxation of (3.12) is given by:

Ãx̃ ≥ b̃ (3.14a)

ÃX̃ ≥ b̃x̃T (3.14b)

ÃX̃ÃT − b̃x̃T ÃT − Ãx̃bT + b̃b̃
T ≥ 0 (3.14c)

x̃ ≥ 0 (3.14d)

X̃ ≥ 0 (3.14e)1 x̃T

x̃ X̃

 ⪰ 0. (3.14f)

33

We will now show that a point (x̃, X̃) satisfies (3.14) if and only if there exist s, Y,

and Z such that x = (x̃, s) and X =

X̃ Y T

Y Z

 satisfies (3.13). Define

s = Ãx̃− b̃ (3.15a)

Y = ÃX̃ − b̃x̃T (3.15b)

Z = ÃY T − b̃sT = ÃX̃ÃT − Ãx̃b̃
T − b̃x̃T ÃT + b̃b̃

T
(3.15c)

Then, for x = (x̃, s) and X =

X̃ Y T

Y Z

, constraints (3.13a) – (3.13d) are satisfied.

For (3.13e), note that

1 xT

x X

 =


1 x̃T sT

x̃ X̃ Y T

s Y Z

 =


1 0T

0 In

−b̃ Ã


1 x̃T

x̃ X̃




1 0T

0 In

−b̃ Ã


T

⪰ 0.

(“⇐”) Suppose that x = (x̃, s) and X =

X̃ Y T

Y Z

 is a solution to (3.13). The

proof is straightforward noting that (3.13a) and (3.13b) imply (3.15).

Finally, note that with the presence of (3.13a) and (3.13e), (3.13b) is equivalent to

AXAT = bbT which is further equivalent to diag
(
AXAT

)
= b ◦ b, where ◦ represents

the Hadamard product. Hence, if we ignore the constraint xii = Xii (x̃ii = X̃ii) for all

i ∈ B that is in both UCSDP and UCSDP
2 , then the form of UCSDP is equivalent to (3.13)

and UCSDP
2 has the same form as (3.14). Thus, without the aforementioned constraint, they

are equivalent. This equivalency remains when we add back in the constraints xii = Xii

(x̃ii = X̃ii) for all i ∈ B corresponding to the original binary variables zgt.

Compared with UCSDP, the conic constraint of UCSDP
2 has lower dimension, as x̃

does not contain slack variables. Therefore,UCSDP
2 could be more tractable. On the other

34

hand, because the RLT constraints (3.10d) include variables x̃, this adds additional terms

to the constant components of v(d), leading to a less interpretable LMP decomposition.

3.4 Numerical Experiments

In our numerical experiments, the programming language we use is Julia 1.6.7. The

optimization problems are modeled in JuMP 1.13 [41] and solved with Mosek 10.1.3 [7].

When the size of a matrix is large, it can take a long time to build the optimization

models in Julia via matrix multiplication. To reduce the building time when constructing the

expression of the objective or the left-hand side of a constraint, we first ensure the coefficient

of each variable is nonzero before multiplying it with the variable, since comparison takes

less CPU time than multiplication [30]. This saves much time as the A matrix is relatively

sparse.

3.4.1 A Simple UC Problem

Consider the following UC problem which has a loose LP relaxation. In this sim-

ple example, there are two generators, and we are solving over one time period without

considering startup costs.

min p1 + 2p2 + 3z1 + z2 (3.16a)

s.t. p1 + p2 = 0.65 (3.16b)

p1 ≤ 0.45z1 (3.16c)

p2 ≤ 0.4z2 (3.16d)

p1 ≥ 0.4z1 (3.16e)

p2 ≥ 0.15z2 (3.16f)

z1, z2 ∈ {0, 1} (3.16g)

The optimal solution is z1 = z2 = 1 with an optimal objective value of 4.85. For

35

the LP relaxation, z1 = 0.56, z2 = 1, with an optimal objective value of 3.72. In Table

3.1, we compare the LMP at the reference bus from the RP relaxation and from various

SDP relaxations discussed in previous sections. All of the formulations in Table 3.1 have

an optimality gap of less than 0.01%.

Method λt Uplift

RP 2 Y

UCSDP 214.44 N

UCSDP
2 67.26 N

UCSDP′
57.88 N

Table 3.1: Comparison of the LMP at the reference bus

In the optimal solution of (3.16), p1 is at its upper bound of 0.45, while p2 = 0.2.

Since neither of the bounds on p2 are active at the optimal solution, λt is equal to the

marginal cost of generator 2 as expected for the RP method. Because this does not account

for the fixed cost of having the generators on, it does not generate enough revenue to cover

the total costs, and an uplift payment is required to cover the difference. Looking at the

remaining three methods, we see that λt is considerably larger for the SDP methods, leading

to 0 uplift payment.

3.4.2 Tightness of SDP for IEEE 14-Bus System

In this section, we compare the optimality gap of UCSDP, UCSDP′
, and that of the

standard LP relaxation on IEEE 14-bus instance. Figure 3.1 shows the optimality gap for

18 load scenarios for the IEEE 14-bus system with 5 generators over one hour. The load

factors used are 0.1i for i = 1, . . . , 18. Similarly, Figure 3.2 shows the optimality gap for 17

line rating scenarios for the IEEE 14-bus system with 5 generators over one time hour. The

line ratings used are 15 + 5i for i = 1, . . . , 17.

36

Figure 3.1: 18 load scenarios for the IEEE 14-bus system with 5 generators over one time

slot with a line rating of 50.

Figure 3.2: 17 line rating scenarios for the IEEE 14-bus system with 5 generators over one

time slot with a load factor of 0.8.

In Figures 3.1 and 3.2, we observe that both UCSDP and UCSDP′
are tighter than

the standard LP relaxation. As the LP relaxations is already quite tight for some of these

scenarios, there is not always a large difference between the three optimality gaps; however,

the SDP relaxations are much tighter when the load or line rating is low. We also observe

that even though we remove the constraints of (3.7a) corresponding to pgt, UCSDP′
is often

still as tight as UCSDP.

37

3.5 Conclusion

We obtain an SDP relaxation of the UC problem from its exact CPP reformulation.

We use this relaxation to obtain the LMPs, and show that those prices are more inter-

pretable compared with LMPs from an alternative SDP relaxation in the literature. Our

numerical experiments show that our SDP relaxation is tight. While there is still room for

improvement, it also shows promise in producing LMPs that reduce uplift costs.

38

Chapter 4

Affine Hull Algorithms

While algorithms for computing the affine hull of a polyhedron exist, these algo-

rithms can be inefficient when the polyhedron has a large number of implicit equalities.

Using strong duality and an LP method for finding a maximal element of a non-negative

convex set, we derive a new algorithm which computes the affine hull of a polyhedron in a

single iteration. We include computational tests which show that our algorithm performs

well on benchmark instances and is quicker than Fukuda’s algorithm.

4.1 Introduction

Efficient algorithms for finding the implicit equalities of a polyhedron are of interest

due to the relationship between a polyhedron’s implicit equalities and its affine hull and

the relationship between the affine hull of a feasible region and corresponding SDP relax-

ations. In [58], Tunçel notes that SDP relaxations are popular for a variety of nonconvex

optimization problems (e.g., combinatorial optimization problems). Tunçel also points out

that SDPs are typically solved via an interior-point method, and he observes that many of

these interior-point algorithms are more stable when Slater’s condition holds. Tunçel proves

that by determining the affine hull of a feasible set, we can detemine an affine space in the

lifted space such that Slater’s condition is guaranteed [58].

39

The practical implementation of finding an affine set containing a mixed-binary

feasible region for facial reduction (FR) is proposed in [33]. The authors note that if a

feasible region is defined by a polyhedron and binary constraints, then the affine hull of

the feasible region is a subset of the affine hull of the polyhedron. Thus, the first step of

their affine FR algorithm is to determine the affine hull of the polyhdron. Because facial

reduction is a preprocessing step, this step and the facial reduction algorithm as a whole

should be quick and effective [33].

In this paper, we examine, compare, and seek to improve algorithms for finding

implicit equalities among the inequalities defining a polyhedron. The algorithms that we

look at are based on one of two ideas. One idea is to add slack variables to the inequality

constraints, and then search for a solution that maximizes the number of nonzero slack

variables. The other idea is grounded in strict complimentary slackness.

4.1.1 Literature Review

While there are already algorithms for computing the affine hull of a polyhedron, the

performance of these algorithms is to be improved. For example, the algorithm described

in [24], which we will refer to as Fukuda’s algorithm, is an iterative method, and in worst

case, it finds only one implicit equality per iteration. The same holds for the algorithm

in Corollary 14.lf. of [55]. In [23], the authors give a few LPs that may be used to find

implicit inequalities; however, we note that there may be numerical difficulties when a

method depends on whether or not a number is strictly positive. In [45], Mehdiloo explains

how the characteristic cone of a polyhedron can be used to construct an LP that will find

a relative interior point.

4.1.2 Preliminaries

Let P = {x ∈ Rn | Ax ≤ b} be a polyhedron, where A ∈ Rm×n and b ∈ Rm.

For any I ⊆ {1, . . . ,m}, we let AIx ≤ bI denote the set of linear inequalities in Ax ≤ b

associated with I. Similarly, aTi x ≤ bi denotes the ith inequality in the linear system

40

Ax ≤ b. We call an inequality aTi x ≤ bi an implicit equality if aTi x = bi for every x in the

polyhedron. Denote by A=x ≤ b= the system comprising all implicit equalities in Ax ≤ b.

While the affine hull of P is defined by

aff(P) :=

{
k∑

i=1

λixi

∣∣∣∣∣ xi ∈ P for all i and
k∑

i=1

λi = 1 for some k

}
,

it is well-known that the affine hull of a polyhedron satisfies aff(P) = {x ∈ Rn | A=x = b=}.

(Note that if P is empty, then it is vacuously true that all inequalities are implicit equalities

and thus aff(P) = {x ∈ Rn | Ax = b} = ∅.) We now give a simple example of a polyhedron

that contains an implicit equality.

Example 1. Let

P = {x ∈ R3 | 4x1 − x3 ≤ 0, −3x2 − 2x3 ≤ −6, x2 ≤ 2, 2x3 ≤ 0}.

It can be shown that for all x ∈ P , x2 = 2 and x3 = 0. Thus, the second, third, and fourth

constraints defining P are implicit equalities as they are always active. This means that P

can equivalently be written as {x ∈ R3 | 4x1−x3 ≤ 0, −3x2− 2x3 = −6, x2 = 2, 2x3 = 0}.

4.2 Revisit of the existing methods

4.2.1 Fukuda’s algorithm

In [24], Fukuda introduces an algorithm to compute the dimension of a polyhedron.

The algorithm solves a linear program in each iteration, and it essentially finds the affine

hull of the polyhedron. In this section, we revisit the algorithm and later in Section 4.3.1,

we show its connection to facial reduction (FR) through a simplification of the algorithm.

Let P = {x ∈ Rn | Ax ≤ b} be a nonempty polyhedron. Fukuda’s algorithm begins

41

by solving the following linear program. In the initial iteration, I = ∅ and J = {1, . . . ,m}.

p∗1 := max s

s.t. AI x = bI

AJ x+ 1 s ≤ bJ

s ≤ 1,

(4.1)

If P is an empty set, then p∗1 < 0 and the algorithm terminates. Since P is nonempty, it is

clear that p∗1 ≥ 0. If p∗1 > 0, then there exists a point x̂ ∈ P such that AJ x̂ < bJ , which

indicates that P is full-dimensional, and the algorithm terminates. If p∗1 = 0, then there is

at least one implicit equality in AJx ≤ bJ .

To find the implicit equality when p∗1 = 0, the algorithm considers the dual problem

d∗1 := min bT
I yI + bT

JyJ + t

s.t. AT
I yI +AT

JyJ = 0

1TyJ + t = 1

yJ ≥ 0, t ≥ 0.

(4.2)

Let (y∗, t∗) be an optimal solution of (4.2) and K1 := {j ∈ J | y∗j > 0}. It can be shown

that K1 ̸= ∅. (Indeed, if y∗
J = 0, then the constraints in (4.2) indicate t∗ = 1 and AT

I y
∗
I = 0.

Furthermore, if y∗
J = 0, then strong duality implies bT

I y
∗
I+t∗ = d∗1 = p∗1 = 0. Consequently,

the assumption P ̸= ∅ is violated since 0 = xTAT
I y

∗
I = bT

I y
∗
I = −1 for any x ∈ P .) Now,

note that when p∗1 = 0, (x, 0) is optimal to (4.1) for any x ∈ P . Hence, for any j ∈ K1 and

x ∈ P , complementary slackness (bj − aTj x)y
∗
j = 0 implies that bj − aTj x = 0. Therefore,

aTj x ≤ bj is an implicit equality for all j ∈ K1. The algorithm then sets I ← I ∪K1 and

J ← J \K1. Next, note that for any j ∈ J , if

[
aTj bj

]
is in the row space of

[
AI bI

]
,

then it is clear that aTj x ≤ bj is an implicit equality implied by AIx = bI . Now, let

K2 :=

{
j ∈ J

∣∣∣∣ [aTj bj

]
is in the row space of

[
AI bI

]}
.

42

Fukuda’s algorithm identifies K2 using Gaussian elimination and updates I ← I ∪K2 and

J ← J \ K2. Fukuda’s algorithm repeats the above processes until all implicit equalities

are identified. Upon termination, I contains the indices of all of the implicit equalities, so

aff(P) = {x ∈ Rn | AIx = bI}.

For convenience, we also provide Fukuda’s algorithm in Algorithm 1. Due to numer-

ical issues, we note that it can be difficult to determine whether or not a small value is zero.

For this reason, instead of checking whether p∗ or y∗j is strictly positive in Algorithm 1,

we use a small positive tolerance ϵ. Unfortunately, this is not guaranteed to resolve all

numerical issues as it is also hard to determine a suitable tolerance.

Algorithm 1 Fukuda’s Algorithm

Require: P = {x ∈ Rn | Ax ≤ b}
1: Initialize I = ∅ and J = {1, . . . ,m}
2: Solve (4.1)
3: while |p∗| < ϵs do
4: Retrieve the optimal dual solution y∗ = (y∗

I ,y
∗
J) to (4.2).

5: Set K1 = {j ∈ J | y∗j > ϵ}
6: I ← I ∪K1

7: J ← J \K1

8: Set K2 =
{
j ∈ J |

[
aTj bj

]
is in the row space of

[
AI bI

]}
9: I ← I ∪K2

10: J ← J \K2

11: Solve (4.1)
12: end while

4.2.2 Splitting method

Let ∥·∥ denote the zero norm. We now review a method for finding an element in a

polyhedron with the maximum number of non-zeros from [45]. To lay the groundwork, we

first consider

max ∥x∥

s.t. x ∈ C
(4.3)

where C is a convex cone. We say C is nonnegative iff x ≥ 0 for all x ∈ C.

The splitting method in [44] is founded on the optimization problem given in

Lemma 2 that obtains a maximal element of a nonnegative convex cone. To simplify the

43

explanation for how problem (4.5) in Lemma 2 can be used to get an optimal solution to

problem (4.3), we will use the following lemma.

Lemma 1. Consider the problem (4.3). Assume C is non-negative. Then an optimal

solution for (4.3) can be obtained by solving

max 1T min{x,1}

s.t. x ∈ C
(4.4)

Proof. Let x∗ ≥ 0 be optimal for (4.4). As λx∗ is optimal for any λ ≥ 1, we have x∗i > 0

implies that x∗i ≥ 1. This yields ∥x∗∥ = 1T min{x∗,1}. We claim that x∗ is optimal for

(4.3). If not, there exists a feasible x for (4.3) such that ∥x∥ > ∥x∗∥. Then, E := {i | xi >

0, x∗i = 0} is not empty. As C is a convex cone, x∗+x is also feasible for (4.4). Moreover, we

have 1T min{x∗+x,1} > 1T min{x∗,1} as E ̸= ∅, which is a contradiction to the optimality

of x∗.

Now that we have shown that problem (4.4) yields a maximal element to the non-

negative convex cone C, we provide the following lemma which is the basis for the splitting

method.

Lemma 2. The problem (4.4) is equivalent to following problem

max 1Tu

s.t. u+ v ∈ C

u ≤ 1

u,v ≥ 0

(4.5)

Proof. For any feasible x in (4.4), we define u and v as follows. Let u = min{x,1} and

v = max{x,1} − 1. Then, u + v = x ∈ C, 0 ≤ u ≤ 1 and v ≥ 0. This shows (u,v) is a

feasible solution for (4.5) with the same objective value as (4.4).

For any optimal (u,v) for (4.5), we have x = u+ v is feasible for (4.4). Moreover,

one can easily verify that u = min{x,1} and thus they have the same objective values.

44

Let (u∗i , v
∗
i) be an optimal solution to (4.5), and let I∗ := {i | u∗i +v∗i > 0}. Note that

if i ∈ I∗, then u∗i = 1. Otherwise, we could scale (u∗,v∗) by λ > 0 such that λ(u∗i + v∗i) ≥ 1

for all i ∈ I∗. Then, we could define a feasible solution (û, v̂) such that

ûi =


1, if i ∈ I∗

0, otherwise

and v̂i =


λ(u∗i + v∗i)− 1, if i ∈ I∗

0, otherwise.

(4.6)

Thus, if there exists i ∈ I∗ such that u∗i < 1, then 1T û > 1Tu∗, which would contradict the

optimality of (u∗,v∗).

Note that C can also be given as the projection of a higher dimension set. For

example, C = {x ∈ Rn | Ax + By ≤ 0 for some y}. This includes a special case when

we are interested in maximizing the non-zeros in a subset of entries. Using this idea and

homogenization, Mehdiloozad et al. developed a method for finding the relative interior of

a polyhedron by maximizing the non-zeros in the slack variables.

Let P = {x | Ax ≤ b} be a polyhedron. By introducing a non-negative auxil-

iary variable associated with the constant terms, P can be converted to a cone in a one

dimensional higher space. Thus, the characteristic cone of P is defined as

P+ := {(x0,x) ∈ R× Rn | bx0 −Ax ≥ 0, x0 > 0}. (4.7)

Thus, x ∈ P if and only if (1,x) ∈ P+. Similarly, (x0,x) ∈ P+ if and only if 1
x0
x ∈ P . After

adding in slack variables, we have

P̂+ := {(x0,x, s) ∈ R× Rn × Rm | bx0 −Ax− s = 0, x0 > 0, s ≥ 0}. (4.8)

Consequently, x ∈ P if and only if (1,x,b − Ax) ∈ P̂+. The projection of the polyhedral

cone P̂+ to the s-space is

CP̂+
:= {s ∈ Rn | (x0,x, s) ∈ P̂+}. (4.9)

45

Therefore, applying Lemma 2 to the cone CP̂+
splits s and yields:

max 1Tu

s.t. bx0 −Ax− u− v = 0

u ≤ 1

u,v ≥ 0

x0 > 0

(4.10)

However, since strict inequalities are not preferred, the splitting method instead uses the

LP in the following lemma.

Lemma 3. Maximization problem (4.10) can equivalently be formulated as

max 1Tu

s.t. bx0 −Ax− u− v = 0

u ≤ 1

u,v ≥ 0

x0 ≥ 1

(4.11)

Proof. Note that the feasible region of (4.11) is a subset of the feasible region of (4.10).

Thus, the optimal value of (4.11) is less than or equal to the optimal value of (4.10). Now, let

(x∗0,x
∗,u∗,v∗) be an optimal solution to (4.10), and suppose x∗0 ∈ (0, 1). Define x̂ = 1

x∗
0
x∗,

û = u∗, and v̂∗ = 1
x∗
0
v∗+

(
1
x∗
0
− 1

)
u∗. Then, (1, x̂, û, v̂) is a feasible solution to (4.11) with

an objective value of 1T û = 1Tu∗. Therefore, (1, x̂, û, v̂) is optimal to (4.11).

Finally, we will show that aTi x ≤ bi is an implicit equality iff u∗i = 0. Suppose

aTi x ≤ bi is an implicit equality. Then, for all x ∈ P , aTi x = bi. Similarly, for all (x0,x) ∈

P+, bix0 − aTi x = 0. Thus, for all (x0,x, s) ∈ P̂+, si = 0. Since si = ui + vi, this implies

that ui = vi = 0 for all feasible (x0,x,u,v). Therefore, u∗i = 0. Now, let (x∗0,x
∗,u∗,v∗)

be an optimal solution to (4.11), and suppose that u∗i = 0. Then, v∗i = 0. (Otherwise,

(x∗0,x
∗,u∗ +min{v∗i , 1}ei,v∗ −min{v∗i , 1}ei) is a feasible solution to (4.11) with a greater

46

objective value.) Thus, bix
∗
0 − aTi x

∗ = 0. Suppose by contradiction that there exists

x ∈ P s.t. aTi x < bi. Then, there exists a feasible (x0,x, αei,v) s.t. α > 0. Hence,

(x∗0,x
∗,u∗,v∗)+(x0,x, αei,v) is also feasible to (4.11) and 1T (u∗+αei) = 1Tu∗+α, which

contradicts the optimality of (x∗0,x
∗,u∗,v∗). Therefore, aTi x ≤ bi is an implicit equality.

4.2.3 Freund’s LPs

In [23], Freund et al. give a few LPs that can be used to determine the implicit

inequalities in a linear system Ax ≤ b. Freund et al. note that the first two methods,

denoted by (P1) and (P2), are very closely related; however, (P1) necessitates a sufficiently

small parameter ε whose value can be difficult to determine. For this reason, we will not

focus on (P1), but we will look at at the other two methods.

4.2.3.1 P2 method

Thus, the first of Freund et al.’s methods that we look at is (P2):

max 1T s

s.t. Ax+ s− bα ≤ 0 (P2)

0 ≤ s ≤ 1

α ≥ 1

To determine which of the inequalities are implicit equalities using the optimal solution of

(P2), Freund et al. give the following proposition without proof; for the sake of complete-

ness, we include a proof.

Proposition 1. [23] If the system Ax ≤ b is feasible, then (P2) is feasible and finite, and

for any optimal solution (x∗, s∗, α∗) to (P2), the set of indices of implicit equalities is given

by {i | s∗i = 0}. Furthermore, 1
α∗x∗ is an element of the relative interior of {x | Ax ≤ b}.

If the system Ax ≤ b is infeasible, then (P2) is infeasible.

Proof.

47

• Let A be an m×n matrix. Suppose Ax ≤ b is feasible, and let x̂ be a solution. Then,

(x, s, α) = (x̂,0, 1) is a solution to (P2). Moreover, since 0 ≤ s ≤ 1 for any feasible

solution to (P2), the optimal value of (P2) lies in [0,m]. Thus, if the system Ax ≤ b

is feasible, then (P2) is feasible and finite.

• Let S denote the set of indices of implicit equalities in Ax ≤ b. Then, for any

feasible solution (x, s, α) to (P2), si = 0 for all i ∈ S. If not, then (1αx,
1
αs, 1) is

a feasible solution to (P2) such that aTi (
1
αx) < bi, which contradicts i ∈ S. Thus,

S ⊆ {i | s∗i = 0}.

Now, let (x∗, s∗, α∗) be an optimal solution of (P2), and suppose there exists i ∈

{i | s∗i = 0} \ S. Then, there exists x̂ such that Ax̂ ≤ b and aTi x̂ < bi. Consequently,

(x̂, βei, 1) is a feasible solution to (P2), where 0 < β ≤ min{bi − aTi x̂, 1}. Then,

it can be seen that (x∗ + x̂, s∗ + βei, 1 + α∗) is a feasible solution to (P2) with an

objective value of 1T s∗ + β, which contradicts the optimality of (x∗, s∗, α∗). Thus,

{i | s∗i = 0} ⊆ S. Therefore, S = {i | s∗i = 0}; i.e., the set of indices of implicit

equalities is given by {i | s∗i = 0}.

• Let (x∗, s∗, α∗) be an optimal solution to (P2). We will show that 1
α∗x∗ is an element

of the relative interior of {x | Ax ≤ b}. To begin, note that for all i ∈ {i | s∗i = 0},

aTi (
1
α∗x∗) = bi. (Otherwise, there exists β > 0 such that (x∗, s∗+βei, α

∗) is a feasible

solution to (P2) whose objective value is 1T s∗ + β > 1T s∗.) In contrast, for all

i ̸∈ {i | s∗i = 0}, aTi x∗ < α∗bi, so aTi (
1
α∗x∗) < bi. Therefore, since we have already

shown that s∗i = 0 iff aTi x ≤ bi is an implicit equality, this guarantees 1
α∗x∗ is an

element of the relative interior of {x | Ax ≤ b}.

• Suppose Ax ≤ b is infeasible. Let (x, s, α) be a solution to (P2). Then, Ax+s−bα ≤

0. Since s ≥ 0, this implies Ax−bα ≤ 0. Furthermore, since α ≥ 1, this implies that

A(1αx) − b ≤ 0. Hence, x̂ = 1
αx is a solution to Ax ≤ b, which is a contradiction.

Therefore, if the system Ax ≤ b is infeasible, then (P2) is infeasible.

48

Note that in the more general case where the system is given by AIx = bI , AJx ≤

bJ , (P2) is then given by:

max 1T s

s.t. AIx − bIα = 0

AJx+ s− bJα ≤ 0

0 ≤ s ≤ 1

α ≥ 1

and Proposition 1 still holds.

4.2.3.2 P4 method

The final method given in [23] is based on finding a strictly complemntary pair of

optimal solutions to the following primal and dual LPs:

max s

s.t. Ax+ 1s ≤ b (P3)

min bTy

s.t. ATy = 0 (D3)

1Ty = 1

y ≥ 0

49

Thus, the final LP in [23] is given by:

max θ

s.t. Ax+ 1s ≤ b

ATy = 0

1Ty = 1 (P4)

−bTy + s = 0

y −Ax− 1s− 1θ ≥ −b

y ≥ 0

where the first constraint ensures primal feasibility, the second, third, and sixth constraint

ensure dual feasibility, the fourth constraint ensures strong duality, and the fifth constraint

ensures strict complementarity of y and (b−Ax− 1s).

Proposition 2. [23] If (P4) is infeasible, then Ax ≤ b has no implicit equalities. If (P4)

is feasible, then it is finite, and for any optimal solution (x∗,y∗, s∗, θ∗), we have:

(i) If s∗ = 0, the set of indices of implicit equalities is given by {i | y∗i > 0}, and x∗ lies

in the relative interior of {x | Ax ≤ b}.

(ii) If s∗ > 0, there are no implicit equalities.

(iii) If s∗ < 0, the system Ax ≤ b has no solutions.

Proof. Note that (P3) is always feasible as x = 0 and s = mini bi is a feasible solution. Also

note that that if (P3) has a finite optimal value, then (P4) is feasible by strong duality. On

the other hand, if the optimal value of (P3) is unbounded, then (D3) and consequently (P4)

will be in infeasible. Thus, (P4) is infeasible if and only if (P3) is unbounded. Furthermore,

if the optimal value of (P3) is unbounded, then b−Ax > 0 for some x. Therefore, if (P4)

is infeasible, then Ax ≤ b has no implicit equalities.

50

We will now show that if (P4) is feasible, then (P4) has a finite optimal value. Let

(x,y, s, θ) be a feasible solution to (P4). Since 1Ty = 1, there exists i ∈ {1, . . . ,m} such

that 0 < yi ≤ 1. Hence, by the complementary slackness, we have bi − aTi x− s = 0. Thus,

by the complementarity slackness constraint, we have

θ ≤ (bi − aTi x− s) + yi = yi ≤ 1.

Therefore, if (P4) is feasible, then (P4) has a finite optimal value.

Finally, let (x∗,y∗, s∗, θ∗) be an optimal solution to (P4), and consider the following

cases:

(i) Suppose s∗ = 0. Since (x∗, s∗) is an optimal solution to (P3), this implies that

Ax ≤ b has at least one implicit inequality. (Otherwise, there exists feasible solutions

x1, . . . ,xk to Ax ≤ b such that for all i ∈ {1, . . . ,m}, there exists j ∈ {1, . . . , k} such

that aTi xj < bi. Hence, by taking a convex combination of these solutions, we obtain a

feasible solution x̂ = 1
k

∑k
j=1 xj such that Ax̂ < b, which contradicts s∗ = 0.) It now

remains to show that the set of indices of implicit equalities is given by {i | y∗i > 0},

and x∗ lies in the relative interior of {x | Ax ≤ b}.

Note that y∗ is an optimal solution to (D3). Also, note that since s∗ = 0, (x, s∗) is

an optimal solution to (P3) for any x such that Ax ≤ b. Thus, by complementary

slackness, (bi − aTi x)y
∗
i = 0 for all i = 1, . . . ,m and all x such that Ax ≤ b. Thus, if

y∗i > 0, then bi − aTi x = 0 for all x such that Ax ≤ b. Hence, aTi x ≤ bi is an implicit

equality. Similarly, by strict complementary slackness, if y∗i = 0, then bi − aTi x
∗ > 0.

Therefore, the set of indices of implicit equalities is given by {i | y∗i > 0}, and x∗ lies

in the relative interior of {x | Ax ≤ b}.

(ii) Suppose s∗ > 0. Then, Ax∗ < Ax∗ + 1s∗ ≤ b, so Ax∗ < b. Thus, Ax ≤ b has no

implicit equalities.

(iii) Suppose s∗ < 0. Also, suppose that x̂ is a solution to Ax ≤ b. Then, (x̂, 0) is a

51

solution (P3), which contradicts the fact that s∗ < 0 is the optimal value of (P3).

Therefore, if s∗ < 0, then Ax ≤ b has no solutions.

Note that since s is free, (P3) is always feasible. Thus, (P4) is only infeasible if

(P3) is unbounded and (D3) is infeasible. Hence, if (P4) is infeasible, then Ax ≤ b has

no implicit equalities. Now, note that in the more general case where the system is given

by AIx = bI , AJx ≤ bJ , then AIx = bI is added as a primal feasibility constraint to

(P3) and (P4). Similarly, the dual feasibility constraint ATy in (D3) and (P4) is updated

to AT
JyJ + AT

I yI = 0. Moreover, the strong duality constraint in (P4) is updated to

−bT
JyJ − bT

I yI + s = 0. Thus, for a system given by AIx = bI , AJx ≤ bJ , we would solve

the following LP:

max θ

s.t. AJx+ 1s ≤ bJ

AIx = bI

AT
JyJ +AT

I yI = 0

1TyJ = 1 (P4)

−bT
JyJ − bT

I yI + s = 0

yJ −AJx− 1s− 1θ ≥ −bJ

yJ ≥ 0

Now, note that with the addition of AIx = bI , (P3) is no longer guaranteed to be

feasible, so if (P4) is infeasible, it could mean that AJx ≤ bJ , AIx = bI has no implicit

equalities or it could mean that the system is infeasible. Thus, we give the following

proposition for the case where the system is given by AIx = bI , AJx ≤ bJ .

Proposition 3. If (P4) is infeasible, then either the system AJx ≤ bJ , AIx = bI is

infeasible or the system is feasible but has no implicit equalities. If (P4) is feasible, then it

52

is finite, and for any optimal solution (x∗,y∗, s∗, θ∗), we have:

(i) If s∗ = 0, the set of indices of implicit equalities is given by {i | y∗i > 0}, and x∗ lies

in the relative interior of {x | AJx ≤ bJ , AIx = bI}.

(ii) If s∗ > 0, there are no implicit equalities.

(iii) If s∗ < 0, the system AJx ≤ bJ , AIx = bI has no solutions.

4.3 Modifications to existing methods

4.3.1 Fukuda’s method simiplification and relation to facial reduction

Fukuda’s algorithm can be simplified by observing that the constraint s ≤ 1 is

unessential in (4.1). Consider

p∗2 := max s

s.t. AI x = bI

AJ x+ 1 s ≤ bJ .

(4.12)

It is clear that p∗2 = 0 if and only if p∗1 = 0. If p∗1 > 0, then aff(P) = {x ∈ Rn | AIx = bI}.

If p∗2 = 0, we consider the dual problem of (4.12)

d∗2 := min bT
I yI + bT

J yJ

s.t. AT
I yI +AT

JyJ = 0

1TyJ = 1

yJ ≥ 0.

(4.13)

In general, we look at the dual variable yj to determine if the jth primal constraint

aTj x ≤ bj is an implicit equality. Let (x∗, s∗) be an optimal solution to (4.12) and y∗ be an

optimal solution to (4.13). If s∗ = 0, then y∗j > 0 implies bj − aTj x
∗ = 0 by complimentary

slackness. Since every feasible x is optimal when s∗ = 0, this implies that aTj x ≤ bj is an

53

implicit equality. (When s > 0, AJx < bJ , so there are no implicit equalities. Consequently,

if s∗ > 0, y∗j > 0 does not indicate an implicit equality; it just means that aTj x
∗ + s∗ = bj .)

4.3.1.1 Relation to facial reduction

Finding an optimal solution y∗ is indeed related to facial reduction (FR) of the

nonnegative orthant. The FR procedure is a conceptual method that discovers the minimal

face of a convex cone containing a feasible region [19]. (Recall that a set F is a face of

the non-negative orthant Rn
+ if there exists J ⊆ {1, . . . , n} such that F = {x ∈ Rn

+ | xi =

0 for all i ∈ J}.) In [19], it is shown that a feasible set {x ∈ Rn | Ax ≤ b} is strictly feasible

if and only if the auxiliary system

0 ̸= y ≥ 0, ATy = 0, bTy = 0 (4.14)

is inconsistent. In fact, for I = ∅, ȳ is a solution to (4.14) if and only if p∗2 = 0 and ȳ/(1T ȳ)

is an optimal solution of (4.13). (We ignore terms related to yI and replace yJ with y.) In

general, we have the following equivalence.

Lemma 4. Suppose that P = {x ∈ Rn | AIx = bI , AJx ≤ bJ} is nonempty. Then,

ȳ = (ȳI , ȳJ) is a solution to

0 ̸= yJ ≥ 0, AT
I yI +AT

JyJ = 0, bT
I yI + bT

JyJ = 0 (4.15)

if and only if p∗2 = 0 and ȳ/(1T ȳJ) is an optimal solution of (4.13).

Proof. The “if” direction is straightforward to check. For the “only if” direction, note that

p∗2 ≥ 0 due to P ̸= ∅, and ȳ/(1T ȳJ) is feasible to (4.13) with objective value 0 when ȳ is

feasible to (4.15).

According to Lemma 4, instead of solving (4.1) and (4.2), one can solve the feasi-

bility problem (4.15) in Fukuda’s algorithm. If (4.15) is inconsistent, then aff(P) = {x ∈

54

Rn | AIx = bI}. Otherwise, implicit equalities can be identified based on the positivity of

the components of a solution to (4.15) in the same way as in the original Fukuda’s algorithm.

4.3.1.2 Fukuda’s method simplification utilizing the dual

Due to numerical issues, one of the challenges of using Fukuda’s algorithm in practice

is determining whether or not s is positive. To avoid having to make that call ourselves, we

can instead utilize Fukuda’s dual, and let the solver decide whether or not the problem is

feasible. (When solving the dual (4.13), we take the objective and add it to the constraints

by requiring bT
I yI +bT

JyJ = 0.) If this new problem is infeasible, then s > 0 in the primal,

and there are no implicit equalities. If it is feasible, then 1Ty = 1 yields positive entries in

y, which are hopefully not too small. If every yi is still small, we can conclude at the very

least that the largest yi must be positive because if it is considered as zero in whichever

criteria, then all the other entries must be zero, which would contradict the fact that they

sum to 1.

Therefore, using this method, we set K := J and solve:

d∗2 := min 0

s.t. AT
I yI +AT

JyJ = 0

bT
I yI + bT

JyJ = 0

1TyK = 1

yK ≥ 0.

(4.16)

Then, we iteratively update K = K \{k ∈ K | y∗k > 0} ⊆ J and resolve (4.16). We continue

to update K and to resolve until (4.16) becomes infeasible, indicating there are no implicit

equalities left to find.

4.3.1.3 What does putting objective as constraint mean?

Once again, consider the simplified LP that Fukuda’s algorithm iteratively solves:

55

p∗2 := max s

s.t. AI x = bI

AJ x+ 1 s ≤ bJ .

(4.17)

and its dual:

d∗2 := min bTy

s.t. −ATy = 0

1TyJ = 1

yJ ≥ 0.

(4.18)

where AT = [AT
I AT

J], b = (bI ,bJ), and y = (yI ,yJ).

When solving the dual, we solve the following problem to avoid the discussion of

whether or not the objective is zero.

min 0

s.t. −ATy = 0

bTy = 0

1TyJ = 1

yJ ≥ 0.

(4.19)

Looking at its dual, we see that this corresponds to the homogenization of the primal

problem:

max s

s.t. AI x = tbI

AJ x+ 1 s ≤ tbJ .

(4.20)

Therefore, putting the objective as a constraint in the dual problem is the same as homog-

enizing the primal problem.

56

4.3.2 The splitting method applied to the dual approach

Consider the following primal-dual LPs:

max 0

s.t. Ax ≤ b

min bTy

s.t. ATy = 0

y ≥ 0

Note that if Ax ≤ b is consistent, then any dual optimal solution y satisfies bTy = 0 by

strong duality. Thus, the dual problem can equivalently be written as a feasibility problem

by adding bTy = 0 as a constraint. Thus, we can convert the problem of finding aff(P)

to an equivalent problem of finding an optimal dual solution y∗ whose support is maximal.

The latter problem is an l0-norm maximization problem over a non-negative polyhedral set,

max ∥y∥0

s.t.

AT

bT

y = 0

y ≥ 0

Note that unlike the feasible region defined by Ax ≤ b, the feasible region of the above

problem is a nonnegative convex cone. Thus, it is very easy to directly apply Lemma 2

from Section 4.2.2 in order to get the following LP:

max 1Tu

s.t.

AT AT

bT bT


u
v

 = 0

u ≤ 1

u,v ≥ 0

where aTi x ≤ bi is an implicit eqaulity of P iff u∗i = 1.

Now, recall that the values of the dual variables u and v are only meaningful if

57

Ax ≤ b is consistent. The above maximization problem is always feasible as (u,v) = (0,0)

is a feasible solution, and it always has a finite optimal value. Therefore, if one is unable to

assume optimality, the feasibility problem min{0 | Ax ≤ b} should be solved before using

the above maximization problem to check for implicit equalities.

4.3.3 Simplied P4 theory

In Section 4.2.3, we looked at two methods: (P2) and (P4); however, we observe

that (P2) is equivalent to the primal splitting method (4.11) as the only difference is (4.11)

includes slack variables. For this reason, we now focus on improving (P4).

Note that if we drop t from (P3), then we are able to get a simplified formulation

for (P4). Thus, consider

max 0

s.t. Ax ≤ b (P3’)

min bTy

s.t. ATy = 0 (D3’)

y ≥ 0

Then, the simplified formulation is given by

max θ

s.t. Ax ≤ b

ATy = 0 (P4’)

bTy = 0

y −Ax− θ1 ≥ −b

y ≥ 0

Proposition 4. If (P4’) is infeasible, then Ax ≤ b has no solution. If (P4’) has a finite

optimal value, then the set of indices of implicit equalities is given by {i | y∗i > 0}. If

(P4’) is unbounded, then the set of indices of implicit equalities is given by {i | ỹi > 0},

58

where (x,y, θ) is a feasible point and r̃ = (x̃, ỹ, θ̃) is an extreme ray such that such that

(x,y, θ) + αr̃ is feasible for all α ≥ 0 and θ + αθ̃ →∞ as α→∞.

While this simplified formulation is not significantly smaller than the original (P4)

formulation, it has the advantage of not requiring us to judge whether or not a small s∗

is zero. Also, note that in the more general case where the system is given by AIx =

bI , AJx ≤ bJ , Proposition 4 still holds.

4.4 Numerical experiments

We implement each of the algorithms in Matlab 9.5 (R2018b) using Gurobi 9.0 to

model and solve the corresponding LPs using Gurobi’s concurrent method. We set a time

limit of 15 minutes. Since this only limits Gurobi’s runtime and the two Fukuda’s algorithms

are the only iterative methods, we also impose a time limit of one hour for the each of their

functions. We run the instances on an Intel(R) Core(TM) i7-8550U CPU @ 1.80GHz with

four cores and 16GB of memory.

For our numerical experiments, we use a set of benchmark MIP instances that

we relax by removing the integrality constraints, and we also use some randomly gener-

ated instances. For the MIP instance, we use version 2 of the benchmark set from the

Mixed-Integer Programming Library (MIPLIB) [25]. To generate instances, we use Al-

gorithm 2 to generate polyhedrons. We run the algorithm with input combinations from

n ∈ {100, 500, 1000}, m ∈ {100, 500, 1000, 5000}, r ∈ {0, 5, 25, 50, 250}, p ∈ {0.25, 0.5, 0.75},

and mq ∈ {min{qm, qn} | q = 0, 0.25, or 0.5}. Thus, we generates nearly 400 feasible

instances.

59

Algorithm 2 Generate random polyhedron

Require: n,m,mq, p, r
1: Initialize k = 0
2: repeat
3: k ← k + 1
4: Generate an (m − r) × n matrix A with density p of uniformly distributed random

numbers in the interval (0, 1).
5: Generate a vector b of length (m − r) of uniformly distributed random numbers in

the interval (0, n).
6: AI ← A(1 : mq, :)
7: bI ← b(1 : m)
8: AJ ← A(mq + 1 : end, :)
9: bJ ← b(mq + 1 : end)

10: Solve min 0 s.t. AJx ≤ bJ , AIx = bI ,x ≥ −n.
11: until the above problem is feasible or k ≥ 15
12: k ← 0
13: if mq = 0 then
14: repeat
15: k ← k + 1
16: Randomly generate a vector idx of length r of random integers in {1, . . . ,m− r}.
17: Randomly generate an r × r matrix B with density 0.5 of uniformly distributed

random numbers in the interval (−10, 0).
18: B ← floor(B)
19: ÃJ ← [AJ ;BAJ(idx, :)] and b̃J ← [bJ ;BbJ(idx)]
20: Solve min 0 s.t. ÃJx ≤ b̃J , AIx = bI ,x ≥ −n.
21: until the above problem is feasible or k ≥ 15.
22: else
23: Randomly generate a vector idx of length r of random integers in {1, . . . ,mq}.
24: Randomly generate an r × r matrix B with density 0.5 of uniformly distributed

random numbers in the interval (−10, 0).
25: B ← floor(B)
26: ÃJ ← [AJ ;BAI(idx, :)] and b̃J ← [bJ ;BbI(idx)]
27: end if
28: AJ ← ÃJ

29: bJ ← b̃J

30: if {x | AJx ≤ bJ , AIx = bI ,x ≥ −n} ≠ ∅ then
31: Save AJ , AI ,bJ ,bI

32: end if

The two tables below summarize the performance of each algorithm on the bench-

mark MIP instances (with integrality constraints removed) and on the randomly generated

instances. Each table gives the number of instances for which the algorithm correctly

60

counted the number of implicit equalities, the number of instances where an incorrect count

was returned for the number of implicit equalities, the number of instances where a numeri-

cal issue prevented a count from being returned, and the number of instances that were not

solved within the 15 minute time limit. We consider an instance to have numerical issues if

Gurobi returned a “numeric” status due to unrecoverable numerical difficulties or if Gurobi

returned an “unbounded” status when we know theoretically that the problem is bounded

or if Gurobi returned an “infeasible” status when we have already determined the problem

to be feasible or if Gurobi did not return a status (i.e., status was empty).

method correct counts incorrect counts numerical issues time limit

Fukuda original 197 0 0 43
Fukuda dual 191 0 0 49
Split primal 233 0 0 7
Split dual 227 0 0 13
P4 original 165 3 3 69
P4 simplified 180 3 1 56

Table 4.1: Benchmark Results. Summarizes the performance of each algorithm for the 240
benchmark instances. Of the 240 instances, there are five that were not solved by any of
the algorithms within the 15 minute time limit.

method correct counts incorrect counts numerical issues time limit

Fukuda original 353 8 16 12
Fukuda dual 348 36 0 5
Split primal 389 0 0 0
Split dual 382 0 7 0
P4 original 355 11 4 19
P4 simplified 364 7 0 18

Table 4.2: Random Results. Summarizes the performance of each algorithm for the 389
randomly generated instances.

In the next few sections, we will compare each original method with the modified

version that we propose. For the instances where both versions return the correct number

of implicit inequalities, we give a graph comparing their gurobi runtimes.

61

4.4.1 Fukuda

In our code for the original Fukuda’s alogorithm, we used a tolerance of 10−6 to

determine whether s is positive, negative, or zero. In both the original Fukuda alogirithm

and our modified Fukuda’s algorithm, we use a tolerance of 10−8 to determine whether or

not a dual variable is positive.

Referring back to Table 4.1, we see that both versions reached the time limit for

roughly 20% of the benchmark instances; however, our modified Fukuda’s algorithm reached

the time limit slightly more often than the original algorithm. There were 38 instances that

neither version could solve within the time limit. Additionally, there were 11 instances that

original Fukuda’s algorithm solved within the time limit that modified Fukuda’s algorithm

did not, and there were five instances that modified Fukuda’s algorithm solved within

the time limit that original Fukuda’s did not. For the remaining 186 instances that each

algorithm was able to solve within the time limit, we give the following graph:

Referring back to Table 4.2, we see that original Fukuda’s algorithm hit the time

limit for about twice as many instances as our modified Fukuda’s algorithm; however,

62

our modified Fukuda is less reliable as it had more than four times as many instances

where it returned an incorrect number of implicit inequalities. Other than incorrect counts,

our modified Fukuda’s algorithm did not suffer from any numerical issues whereas the

original Fukuda’s algorithm sometime ran into an issue where the initial iteration indicated

the presence of implicit inequalities but the algorithm terminated when a later iteration

indicated an infeasible status instead of a positive s as expected. Given these issues, there

were 334 instances that were solved correctly within the time limit by both versions of

Fukuda’s algorithm.

Based on these two graphs, it appears that modified Fukuda’s tends to be faster on

the harder instances; however, original Fukuda’s may still be preferred as it is more reliable.

4.4.2 Splitting

Of the 240 benchmark instances, there are five that were not solved by any of the

methods within the 15 minute time limit. Referring back to Table 4.1, we see that in

addition to these five unsolved instances, the primal splitting method reached the time

limit for two other instances and the dual splitting method reached the time limit for 6

63

other instances. The two that were not solved within the time limit by the primal splitting

method were solved by the dual splitting method, and the six that were not solved within

the time limit by the dual splitting method were solved by the primal splitting method.

In total, 225 of the 240 benchmark instances were solved within the time limit by both

splitting methods:

Referring back to Table 4.2, we see that neither splitting method ever reached the

time limit on the randomly generated instances; however, the dual splitting method did have

some numerical issues. These issues came after the feasibility check confirmed a nonempty

feasible region in the form of an infeasibility status. We know the dual splitting LP is not

infeasible as 0 is a feasible solution.

While the two splitting methods seem fairly comparable, the primal splitting meth-

ods appears to be slightly more stable based on our numerical experiments. Also, if one

is unable to assume feasibility, then the dual splitting method will likely be slower as it

necessitates a feasibility check before solving for implicit equalities.

64

4.4.3 P4

In our code for P4, we use a tolerance of 10−5 to determine whether s is positive,

negative, or zero. To determine whether or not a dual variable is positive, we use a tolerance

of 10−8 for P4 and a tolerance of 10−6 for our simplified P4.

Referring back to Table 4.1, we see that P4 reached the time limit for just over

25% of the benchmark instances and our simplified P4 reached the time limit for just under

25% of the benchmark instances. Both versions returned an incorrect count for three of the

instances. Original P4 had a couple more numerical issues as both versions of P4 had an

instance where Gurobi failed to return a termination status, but original P4 also had two

instances where Gurobi returned an unbounded status when we know theoretically that P4

is bounded (see Proposition 2). For the remaining 160 instances that each algorithm was

able to solve within the time limit, we give the following graph:

65

Referring back to Table 4.2, we see that both the original P4 and our simplified

P4 reached the time limit on about 20 of the randomly generated instances. Original P4

had a more incorrect counts and more numerical issues than our simplified P4. For the

numerical issues, original P4 had four instances where gurobi returned a numeric status.

Of the incorrect counts, there were two instances that were incorrectly determined to be

infeasible by the original P4 method. Similarly, there was one instance that was incorrectly

determined to be infeasible by the simplified P4 method. The remainder of the incorrect

counts were instances where a nonnegative number was returned, but it was did not match

the number of implicit equalities present in the polyhedron. For the 345 instances that each

algorithm was able to solve within the time limit, we give the following graph:

66

4.5 Conclusion

Overall, it seems that the P4 methods are the slowest and that the splitting methods

are the fastest and most reliable. We remark that for both Fukuda’s methods and P4

methods, tolerance choice is very important. You may note that the tolerances used in

our numerical experiments vary depending on the method. For instance, when determining

whether or not a dual variable was positive, a tolerance or 10−8 was used for the original

P4 and a tolerance of 10−6 was used for simplified P4. Initially, a tolerance of 10−8 was

used for both methods, but with this tolerance, simplified P4 returned an incorrect count

for more than 100 of the nearly 389 randomly generated instances. Based on preliminary

computational results such as these, we adjusted the tolerances until the results were more

promising. Since it can be difficult to determine a good tolerance and what is a good

tolerance may vary from problem to problem, this is a drawback of Fukuda’s methods and

the P4 methods. A major reason why the splitting methods are more reliable than the other

methods is because they do not rely on tolerances when counting the number of implicit

equalities. The variables that the splitting method counts are binary, so it is much easier

67

to determine whether a given variable is positive.

68

Chapter 5

Conclusions and Discussion

In Chapter 2, we show that the lifted convex hull of the union of two nonempty

closed sets is equal to the convex hull of the union of the individual lifted convex hulls.

Encouraged by this result, we examine the feasible regions of two variants of the trust-

region subproblem. We are able to determine a hyperplane that partitions the feasible

region into two nonempty closed subset so that we can write the feasible region as the

union of these two sets with known lifted convex hulls. This allows us to obtain an exact

semidefinite representable reformulation for each of the two problems of interest, and our

computational results show that these reformulations perform well.

In Chapter 3, we consider the unit commitment problem. Using a completely posi-

tive reformulation of the original mixed-binary formulation, we are able to achieve a semidef-

inite programming relaxation of the unit commitment problem. While preliminary compu-

tational results support the idea that shadow prices of our SDP may be useful in a pricing

mechanism, there is still a need for further tests and fine-tuning. There is also concern that

given the large-scale of electricity markets, the SDP formulation may still be challenging to

solve efficiently.

In Chapter 4, we review four algorithms for finding implicit equalities, two of which

we concluded were equivalent. We provide a modification for each algorithm seeking to

improve their performances. After comparing their numerical performance, we conclude

69

that the splitting methods are superior. Going forward, we seek to understand for which

problem structures the dual splitting method would perform better than the primal splitting

method.

70

Appendices

71

Appendix A Simple examples pertaining to SDP reformula-

tions

Consider a general quadratically-constrained quadratic program (QCQP):

inf xTHx+ 2gTx

s.t. x ∈ F ,

where H ∈ Sn and F ⊆ Rn is a nonempty closed set. This problem can be equivalently

lifted to

inf H •X + 2gTx

s.t. X = xxT (1)

x ∈ F

where (x, X) ∈ Rn × Sn and H •X = Tr(HTX).

Example 2. Consider the following example. On the left-hand side, we give a QCQP in

R, and on the right-hand side, we give its lifted reformulation.

min q(x) := x2 − x

s.t. x ∈ F := {x|x2 ≤ 1}

min X − x

s.t. X = x2

X ≤ 1

x

q(x)

x

X

72

Moreover, it can be shown (e.g. in [43] and [20]) that (1) is equivalent to

inf H ·X + 2gTx

s.t. (x,X) ∈ C(F),

where C(F) := conv{(x,xxT) | x ∈ F} is the lifted convex hull.

Example 3. Continuing with the QCQP in Example 1, we have an equivalence between

min q(x) := x2 − x

s.t. x ∈ F := {x|x2 ≤ 1}
and

min X − x

s.t. (x,X) ∈ C(F)

where C(F) = conv{(x, x2) | x ∈ F} = {(x,X) | X ≥ x2, X ≤ 1}.

x

q(x)

x

X

73

Bibliography

[1] Temadher A Almaadeed, Saeid Ansary Karbasy, Maziar Salahi, and Abdelouahed
Hamdi. On indefinite quadratic optimization over the intersection of balls and lin-
ear constraints. Journal of Optimization Theory and Applications, 194(1):246–264,
2022.

[2] Saeid Ansary Karbasy and Maziar Salahi. Quadratic optimization with two ball con-
straints. Numerical Algebra, Control & Optimization, 10(2):165, 2020.

[3] Saeid Ansary Karbasy and Maziar Salahi. On the branch and bound algorithm for the
extended trust-region subproblem. Journal of Global Optimization, 83:221–233, 2022.

[4] Kurt M Anstreicher. Kronecker product constraints with an application to the two-
trust-region subproblem. SIAM Journal on Optimization, 27(1):368–378, 2017.

[5] Kurt M Anstreicher. Solving two-trust-region subproblems using semidefinite optimiza-
tion with eigenvector branching. Journal of Optimization Theory and Applications,
pages 1–17, 2022.

[6] Mosek ApS. Mosek optimization toolbox for matlab. User’s Guide and Reference
Manual, Version, 4, 2019.

[7] Mosek ApS. Mosek modeling cookbook, 2020.

[8] Dennis S Arnon, George E Collins, and Scott McCallum. Cylindrical algebraic decom-
position i: The basic algorithm. SIAM Journal on Computing, 13(4):865–877, 1984.

[9] Xiaowei Bao, Nikolaos V Sahinidis, and Mohit Tawarmalani. Semidefinite relaxations
for quadratically constrained quadratic programming: A review and comparisons.
Mathematical Programming, 129:129–157, 2011.

[10] Dimitris Bertsimas and Ryan Cory-Wright. On polyhedral and second-order cone
decompositions of semidefinite optimization problems. Operations Research Letters,
48(1):78–85, 2020.

[11] Daniel Bienstock and Alexander Michalka. Polynomial solvability of variants of the
trust-region subproblem. In Proceedings of the Twenty-Fifth Annual ACM-SIAM Sym-
posium on Discrete Algorithms, pages 380–390. 2014.

74

[12] Immanuel M Bomze, Vaithilingam Jeyakumar, and Guoyin Li. Extended trust-region
problems with one or two balls: exact copositive and lagrangian relaxations. Journal
of Global Optimization, 71(3):551–569, 2018.

[13] Samuel Burer. On the copositive representation of binary and continuous nonconvex
quadratic programs. Mathematical Programming, 120(2):479–495, 2009.

[14] Samuel Burer. Copositive programming. Handbook on semidefinite, conic and polyno-
mial optimization, pages 201–218, 2012.

[15] Samuel Burer. A gentle, geometric introduction to copositive optimization. Mathemat-
ical Programming, 151(1):89–116, 2015.

[16] Samuel Burer and Kurt M. Anstreicher. Second-order-cone constraints for extended
trust-region subproblems. SIAM Journal on Optimization, 23(1):432–451, 2013.

[17] Samuel Burer and Boshi Yang. The trust region subproblem with non-intersecting
linear constraints. Mathematical Programming, 149(1-2):253–264, 2015.

[18] Miguel Carrión and José M Arroyo. A computationally efficient mixed-integer linear
formulation for the thermal unit commitment problem. IEEE Transactions on Power
Systems, 21(3):1371–1378, 2006.

[19] Dmitriy Drusvyatskiy, Henry Wolkowicz, et al. The many faces of degeneracy in conic
optimization. Foundations and Trends® in Optimization, 3(2):77–170, 2017.

[20] Gabriele Eichfelder and Janez Povh. On the set-semidefinite representation of noncon-
vex quadratic programs over arbitrary feasible sets. Optimization Letters, 7(6):1373–
1386, 2013.

[21] Anders Eltved and Samuel Burer. Strengthened SDP relaxation for an extended trust
region subproblem with an application to optimal power flow. Mathematical Program-
ming, 197:281–306, 2023.

[22] Salar Fattahi, Morteza Ashraphijuo, Javad Lavaei, and Alper Atamtürk. Conic relax-
ations of the unit commitment problem. Energy, 134:1079–1095, 2017.

[23] Robert Michael Freund, Robin Roundy, and Michael J Todd. Identifying the set of
always-active constraints in a system of linear inequalities by a single linear program.
1985.

[24] Komei Fukuda. Lecture: Polyhedral computation, spring 2016. Institute for Operations
Research and Institute of Theoretical Computer Science, ETH Zurich. https://inf. ethz.
ch/personal/fukudak/lect/pclect/notes2015/PolyComp2015. pdf, 2016.

[25] Ambros Gleixner, Gregor Hendel, Gerald Gamrath, Tobias Achterberg, Michael Bas-
tubbe, Timo Berthold, Philipp M. Christophel, Kati Jarck, Thorsten Koch, Jeff
Linderoth, Marco Lübbecke, Hans D. Mittelmann, Derya Ozyurt, Ted K. Ralphs,
Domenico Salvagnin, and Yuji Shinano. MIPLIB 2017: Data-Driven Compilation of
the 6th Mixed-Integer Programming Library. Mathematical Programming Computa-
tion, 2021.

75

[26] Nicholas I. M. Gould, Stefano Lucidi, Massimo Roma, and Philippe L. Toint. Solving
the trust-region subproblem using the lanczos method. SIAM Journal on Optimization,
9(2):504–525, 1999.

[27] Michael Grant and Stephen Boyd. CVX: Matlab software for disciplined convex pro-
gramming, version 2.2. http://cvxr.com/cvx, January 2020.

[28] Paul R Gribik, William W Hogan, Susan L Pope, et al. Market-clearing electricity
prices and energy uplift. Cambridge, MA, pages 1–46, 2007.

[29] Cheng Guo, Merve Bodur, and Joshua A Taylor. Copositive duality for discrete markets
and games. arXiv preprint arXiv:2101.05379, 2021.

[30] Vincent Hindriksen. How expensive is an operation on a cpu? https://streamhpc.

com/blog/2012-07-16/how-expensive-is-an-operation-on-a-cpu/, 2012.

[31] Nam Ho-Nguyen and Fatma Kılınç-Karzan. A second-order cone based approach for
solving the trust-region subproblem and its variants. SIAM Journal on Optimization,
27(3):1485–1512, 2017.

[32] William W Hogan and Brendan J Ring. On minimum-uplift pricing for electricity
markets. Electricity Policy Group, pages 1–30, 2003.

[33] Hao Hu and Boshi Yang. Affine fr: an effective facial reduction algorithm for semidef-
inite.

[34] Robin Broder Hytowitz, Bethany Frew, Gordon Stephen, Erik Ela, Nikita Singhal,
Aaron Bloom, and Jessica Lau. Impacts of price formation efforts considering high
renewable penetration levels and system resource adequacy targets. Technical report,
National Renewable Energy Lab.(NREL), Golden, CO (United States), 2020.

[35] V. Jeyakumar and G.Y. Li. Trust-region problems with linear inequality constraints:
exact SDP relaxation, global optimality and robust optimization. Mathematical Pro-
gramming, 147(1-2):171–206, 2014.

[36] Rujun Jiang and Duan Li. Novel reformulations and efficient algorithms for the gen-
eralized trust region subproblem. SIAM Journal on Optimization, 29(2):1603–1633,
2019.

[37] Qingwei Jin, Ye Tian, Zhibin Deng, Shu-Cherng Fang, and Wenxun Xing. Exact com-
putable representation of some second-order cone constrained quadratic programming
problems. Journal of the Operations Research Society of China, 1(1):107–134, 2013.

[38] Alexander Joyce and Boshi Yang. Convex hull results on quadratic programs with
non-intersecting constraints. Mathematical Programming, pages 1–20, 2023.

[39] Sarah Kelly, Yuyuan Ouyang, and Boshi Yang. Semidefinite representable reformu-
lations for two variants of the trust-region subproblem. Operations Research Letters,
51(6):695–701, 2023.

76

http://cvxr.com/cvx
https://streamhpc.com/blog/2012-07-16/how-expensive-is-an-operation-on-a-cpu/
https://streamhpc.com/blog/2012-07-16/how-expensive-is-an-operation-on-a-cpu/

[40] Sunyoung Kim and Masakazu Kojima. Exact solutions of some nonconvex quadratic
optimization problems via SDP and SOCP relaxations. Computational Optimization
and Applications, 26:143–154, 2003.

[41] Benôıt Legat, Oscar Dowson, Joaquim Dias Garcia, and Miles Lubin. Mathoptinter-
face: a data structure for mathematical optimization problems. INFORMS Journal on
Computing, 34(2):672–689, 2022.

[42] George Liberopoulos and Panagiotis Andrianesis. Critical review of pricing schemes in
markets with non-convex costs. Operations Research, 64(1):17–31, 2016.

[43] Cheng Lu, Shu-Cherng Fang, Qingwei Jin, Zhenbo Wang, and Wenxun Xing. KKT
solution and conic relaxation for solving quadratically constrained quadratic program-
ming problems. SIAM Journal on Optimization, 21(4):1475–1490, 2011.

[44] Mahmood Mehdiloo. On finding a relative interior point of a polyhedral set. Mathe-
matics Interdisciplinary Research, 6(2):121–138, 2021.

[45] Mahmood Mehdiloozad, Kaoru Tone, Rahim Askarpour, and Mohammad Bagher Ah-
madi. Finding a maximal element of a non-negative convex set through its characteristic
cone: An application to finding a strictly complementary solution. Computational and
Applied Mathematics, 37(1):53–80, 2018.

[46] Tiago Montanher, Arnold Neumaier, and Ferenc Domes. A computational study of
global optimization solvers on two trust region subproblems. Journal of Global Opti-
mization, 71(4):915–934, 2018.

[47] Jorge J. Moré and D. C. Sorensen. Computing a trust region step. SIAM Journal on
Scientific and Statistical Computing, 4(3):553–572, 1983.

[48] Richard P O’Neill, Paul M Sotkiewicz, Benjamin F Hobbs, Michael H Rothkopf, and
William R Stewart Jr. Efficient market-clearing prices in markets with nonconvexities.
European Journal of Operational Research, 164(1):269–285, 2005.

[49] Ting Kei Pong and Henry Wolkowicz. The generalized trust region subproblem. Com-
putational Optimization and Applications, 58(2):273–322, 2014.

[50] Edward Quarm and Ramtin Madani. Scalable security-constrained unit commitment
under uncertainty via cone programming relaxation. IEEE Transactions on Power
Systems, 36(5):4733–4744, 2021.

[51] Franz Rendl and Henry Wolkowicz. A semidefinite framework for trust region sub-
problems with applications to large scale minimization. Mathematical Programming,
77(1):273–299, 1997.

[52] James Renegar. On the computational complexity and geometry of the first-order
theory of the reals. part i: Introduction. preliminaries. the geometry of semi-algebraic
sets. the decision problem for the existential theory of the reals. Journal of Symbolic
Computation, 13(3):255–299, 1992.

77

[53] Carlos Ruiz, Antonio J Conejo, and Steven A Gabriel. Pricing non-convexities in an
electricity pool. IEEE Transactions on Power Systems, 27(3):1334–1342, 2012.

[54] Shinsaku Sakaue, Yuji Nakatsukasa, Akiko Takeda, and Satoru Iwata. Solving gener-
alized cdt problems via two-parameter eigenvalues. SIAM Journal on Optimization,
26(3):1669–1694, 2016.

[55] Alexander Schrijver. Theory of linear and integer programming. John Wiley & Sons,
1998.

[56] RJ Shanker. Comments on standard market design: Resource adequacy requirement.
federal energy regulatory commission. Technical report, Docket RM01-12-000, January
10, 2003.

[57] Jos F. Sturm and Shuzhong Zhang. On cones of nonnegative quadratic functions.
Mathematics of Operations Research, 28(2):246–267, 2003.

[58] Levent Tunçel. On the slater condition for the sdp relaxations of nonconvex sets.
Operations Research Letters, 29(4):181–186, 2001.

[59] Alex Wang. On Quadratically Constrained Quadratic Programs and their Semidefinite
Program Relaxations. PhD thesis, Carnegie Mellon University.

[60] Alex L Wang and Fatma Kılınç-Karzan. The generalized trust region subproblem:
solution complexity and convex hull results. Mathematical Programming, 191(2):445–
486, 2022.

[61] Alex LWang and Fatma Kılınc-Karzan. On the tightness of SDP relaxations of QCQPs.
Mathematical Programming, 193(1):33–73, 2022.

[62] Shu Wang and Yong Xia. Strong duality for generalized trust region subproblems:
S-lemma with interval bounds. Optimization Letters, 9(6):1063–1073, 2015.

[63] Boshi Yang, Kurt Anstreicher, and Samuel Burer. Quadratic programs with hollows.
Mathematical Programming, 170(2):541–553, 2018.

[64] Boshi Yang and Samuel Burer. A two-variable approach to the two-trust-region sub-
problem. SIAM Journal on Optimization, 26(1):661–680, 2016.

[65] Yinyu Ye and Shuzhong Zhang. New results on quadratic minimization. SIAM Journal
on Optimization, 14(1):245–267, 2003.

78

	Applications of Conic Programming Reformulations
	Recommended Citation

	Title Page
	Abstract
	List of Tables
	List of Figures
	Introduction
	Background on conic programming
	Duality
	Outline

	Semidefinite Representable Reformulations for Two Variants of the Trust-Region Subproblem
	Introduction
	The lifted convex hull
	Semidefinite reformulations
	Separation and computational results

	Semidefinite Programming Relaxation for Copositive Dual Pricing
	Introduction
	CPP and SDP Reformulations of UC
	Pricing with SDP Relaxations
	Numerical Experiments
	Conclusion

	Affine Hull Algorithms
	Introduction
	Revisit of the existing methods
	Modifications to existing methods
	Numerical experiments
	Conclusion

	Conclusions and Discussion
	Appendices
	Simple examples pertaining to SDP reformulations

	Bibliography

