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Abstract 

Cancer is one of the leading causes of disease related death worldwide. Since 

the discovery of the genomic origins of cancer, targeted therapy has been 

developed towards specific mutations implicated for oncogenic transformation. 

However, current standard-of-care for mapping cancer patients to efficacious 

drug combination is often inadequate. The pathophysiology of tumor progression 

relies on the dysregulation of biomolecular pathways of which the topology and 

the dynamics challenge prognosis. Moreover, the overall genomic instability 

involved in disease states and the resulting inter-patient as well as intra-tumoral 

heterogeneity challenge rationalization of therapy and clinical decision-making. It 

highlights the need for the use of quantitative methodologies that may forecast 

clinical outcomes considering the complex nature of disease progression.  

In this work, we evaluated the use of single cell mechanistic modeling in 

predicting anticancer drug response. We begin our work with the foundation of 

one of the largest single cell models of stochastic proliferation and death 

signaling. It incorporates several signal transduction pathways which are 

implicated in oncogenic transformation and describes how the coordinated 

dynamics of these pathways drives stochastic outcomes of cellular processes 

such as proliferation or death in response to growth stimulus and drug dose. We 

addressed several aspects which may contribute to its future development 

towards a framework for generating unbiased drug response prediction with a 

more inclusive biological context encompassing multiple tumor types. At first, we 

focus on enhancing the accessibility and computational efficiency of the model by 



III 
 

introducing a scalable and modular format for its construction and potential 

expansion. Then, we developed a mechanistic cell population simulation 

framework based on the single cell simulation functionality of the model. This 

allowed us to generate representations of dynamic cell populations, bridging the 

gap between simulation outputs and experimental datasets, such as dose 

response for various drugs. A direct comparison of simulation outputs with 

experimental datasets enabled validation of the current modeled biology as well 

as identification of crucial knowledge gaps within the ERK signaling and cell 

cycle pathways. Furthermore, we developed a method to perform omics-informed 

context definition taking inputs of genomic, transcriptomic, and proteomic 

datasets for a number of cancer cell lines from one of the largest datasets of 

cancer cell characteristics, the Cancer Cell Line Encyclopedia. This allowed us to 

generate cell-line specific model variants as well as devise a strategy for the 

mechanistic exploration of drug sensitivity datasets generated for these cell lines. 

We believe the methods presented here will help provide guidance in attempting 

to build a deeper quantitative understanding of the dynamic and multivariate 

molecular complexities that currently challenge treatment efficacies in cancer. 
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Chapter 1 

INTRODUCTION 

1.1 Introduction 

Cancer is a disease that continues to challenge human innovation. While 

advancements in modern medicine have helped eliminate the fatalities of numerous 

diseases in the past, expanding longevity and enhancing the quality of human lives, 

cancer persists as a formidable obstacle. Its relentless impact on human health stems 

from its adept manipulation of molecular physiology. By definition, cancer refers to a 

group of diseases characterized by uncontrolled and abnormal cell growth, primarily 

caused by accumulated genetic mutations1,2. Such aberrant cellular proliferation, often 

difficult to treat, may disrupt the organization and function of tissues and organs, 

ultimately leading to the patient’s demise. Despite the recent advancements in modern 

medicine, cancer remains a leading cause of death by disease. According to recent 

statistics, more than 19 million people around the world are diagnosed with cancer 

every year, and about 10 million die of the disease3. 

1.2 Difficulties in Cancer Treatment 

Conventional treatment strategy for cancer included surgical resection, which is 

most effective at an early state of the disease. Following the discovery of x-ray, 

radiotherapy was introduced as an adjuvant. In 20th century, it was discovered that 

nitrogen mustard, a chemical warfare agent used in World War I had therapeutic effects 

on patients with non-Hodgkin’s lymphoma4. This led to the widespread use of DNA 

alkylating agents such as chlorambucil and cyclophosphamide for cancer treatment 
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which became known as chemotherapy.  However, success with conventional cancer 

treatment modalities was far from comprehensive. In many cases, tumor remissions 

were brief and incomplete. Radiation and chemotherapy were also known to damage 

healthy cells, organs and tissues5. Drug resistance in previously suppressed cancer 

cells due to reduced drug uptake and increased drug efflux was also a common 

problem6.  

In later years, discovery of genetic origin of cancer spurred the development of 

targeted therapy, whereby a drug engages with specific subcellular biomolecular 

targets, often originating from driver mutations in cancer cells. A prominent example is 

imatinib7, which inhibits the BCR-ABL fusion protein in patients with chronic 

myelogenous leukemia. Other examples include sunitinib for renal cell carcinoma8 and 

trastuzumab for Her2-positive breast cancer9. Despite the success stories, challenges 

persist even with targeted therapy. In many cases, patients with matching mutations fail 

to respond as anticipated by precision medicine10. Tumor cells are also known to exploit 

biomolecular pathways to develop resistance to targeted therapy11. All these problems 

stem from the complexity of the biomolecular processes underlying the pathophysiology. 

The inception and progression of cancer involves multi-scale and multivariate 

complexities. The cell uses circuits assembled from arrays of intercommunicating 

components, which are predominantly gene products such as proteins and RNAs, and 

metabolites. The interactions that these components engage in can be quite complex 

and their spatiotemporal dynamics are essential in maintaining various phenotypical 

functions.  



3 
 

Growth factor receptors located at cell surface gather a wide variety of signals 

and funnel them into the cytoplasm. Throughout cytoplasm, a complex circuitry of 

signaling proteins interacting with precision and specificity transmit signals from 

upstream components and pass on to their intended downstream components. Outputs 

of these signal processing mechanisms are then transmitted to the nucleus, providing 

critical inputs to the regulatory mechanism governing cell proliferation. All these 

signaling pathways along with their numerous feedback and feed-forward loops and 

crosstalks make up the cellular signal transduction network, examples include the 

MAPK (Mitogen Activated Protein Kinase) pathway and PI3K-AKT-mTOR pathway12 

(Fig. 1.1). As per the molecular origins of tumor formation, dysregulation of signaling 

pathways occurs as a result of genetic mutations, epigenetic alterations, and other 

chromosomal abnormalities. Tumor progression hinges on the hijacking of these 

pathways, granting cancer cells a proliferative advantage over normal cells. The idea of 

molecular targeted therapy is to combat proliferation of tumor cells by intercepting 

aberrant signaling proteins. However, incomplete understanding of how signaling 

proteins are interconnected within the biomolecular network may result in unexpected 

outcomes in therapeutic procedures. For example, mTOR inhibition with rapamycin is 

known to result in increased Akt activity13 indicating negative feedback mechanisms that 

were unaccounted for. 
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Figure 1.1: Schematic of the PI3K/AKT/mTOR and Raf/MEK/ERK (MAP Kinase) 

signaling pathways.  

Adapted from Li et al. (2022). Growth factors, hormones, cytokines, GPCRs, and 

mitogens activate receptor tyrosine kinases (RTKs) recruiting PI3K to attach to the 

plasma membrane. PI3K catalyzes PIP2 to PIP3, which then promotes AKT 

activation via the activity of PDK1 and mTORC2. RTK activation may also accelerate 

guanine exchange factors to load Ras with GTP. Ras-GTP dimers recruit RAFs to 

promote MEP activation. This leads to phosphorylation of ERK. 

Adapted from Li et al. 2022 Molecular Biomedicine 
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Adapted from Sanchez-Vega et al. 2018 Cell 

Figure 1.2: Curated chart of major altered pathways in the Cancer Genome Atlas. 

Adapted from Sanchez-Vega et al. (2018). Pathway members and their 

interactions in ten selected pathways. Average alteration frequency of genes are 

indicated with color intensity of red (oncogenic activations) or blue (tumor 

suppressor inactivations) 
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Beyond intricate dynamics observed within molecular biology, the heterogeneous 

landscape of cancer across patients and tumor types adds another layer of complexity 

to therapeutic decision-making. Extensive genomic and transcriptomic characterization 

of tumor samples across the world has revealed a wide range of driver mutations (Fig. 

1.2), occurring across several major signaling pathways14–16. Driver mutations may also 

vary across patients, affecting their response to treatment17.  

In addition to the tumor heterogeneity observed across patients, patients are also 

known to exhibit intra-tumoral heterogeneity (Fig. 1.3) whereby any tumor may consist 

of a collection of cells with distinct biomolecular signatures with differential response to 

treatment18. Intra-tumoral heterogeneity may occur as spatial heterogeneity, with 

uneven distribution of genetically distinct subpopulations across disease sites. It may 

also occur as temporal heterogeneity, which refers to the dynamic variation of molecular 

signature of tumor cells over time.  

The intricate nature of biomolecular processes and heterogeneous landscape of 

cancer are the main reasons for its poor prognosis in therapeutic procedure. It also 

necessitates the use of combination therapy19 where efficacious treatment regimen is 

challenging to develop due to incomplete understanding of patient response and 

complexities associated with the large number of drug combinations that require 

consideration. There is an inadequate number of cancer patients available for clinical 

trial due to various demographic and socio-economic reasons20. If we consider the 

current number (72) of FDA approved therapeutic kinase inhibitor agents21, more than 

2500 two-way and almost 60,000 three-way combinations could be conceived which 

further limits the scope of discovery that clinical trials may deliver. As a result, it is 
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becoming increasingly difficult to make important decisions in clinical practice with 

regards to the expected outcome of a given drug or drug combination and stratifying 

patient groups based on disease state and prognosis. 

  

Figure 1.3: Conceptual schematic of spatial (A) and temporal heterogeneity (B) in 

a cancer patient. 

Adapted from Dagogo-Jack et al. (2018). (A) Spatial heterogeneity refers uneven 

distribution of cancer subclones with unique genomic characteristics across 

different regions of primary tumor or metastatic sites. (B) Temporal heterogeneity is 

variation of molecular characteristics of a tumor over time, which can be due to 

natural progression of the tumor or a result of selective pressure due to therapy. 

Colors are a symbolic representation of unique molecular characteristics of tumor 

cells.  

Adapted from Dagogo-Jack et al. (2018) Nat. Rev. Clin. Oncol. 

A. Spatial heterogeneity B. Temporal heterogeneity 
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1.3 The Need for Computational Models 

The aforementioned problems underscore the necessity for an innovative 

approach in clinical decision making, one that may lean more heavily on quantitative 

analysis to forecast efficacy. Considering the limits of basic human intuition in 

performing quantitative analysis of complex systems, computational models are an ideal 

candidate for this purpose. Mathematical models may serve as virtual laboratories with 

meticulously controlled conditions, enabling scientists and clinicians to investigate 

emergent clinical behaviors that result from insights into cell signaling biology and 

pharmacodynamics. If such systems can make reliable predictions, they may help 

evaluate new therapeutic strategies. Statistical modeling approaches have been 

demonstrated in classifying genomic signatures that correlate with treatment efficacy22–

25. However, they lack consideration of biophysiological mechanism of tumorigenesis 

and causal mechanisms driving drug response, precluding their application as 

comprehensive support for clinical decision-making. Moreover, statistical models 

predominantly rely on machine learning to generate predictions while avoiding the need 

to understand complex mechanisms. To provide accurate predictions, these models 

require training with large scale datasets. The complex nature of causality involved with 

disease progression and drug response in cancer constitutes a high dimensional 

problem, massively escalating the requirements for training data which can be 

challenging to generate.  

On the other hand, mechanistic models are derived from physical assumptions 

about a system, which can allow extrapolation outside of the context of its 

parameterization and provide insight into observed phenomena. These models may 
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incorporate formalisms from chemical kinetics theory and principles of mass action and 

mass balance to describe biochemical interactions between proteins. They represent 

biochemical mechanisms as rate laws that describe progression of reactions based on 

the concentrations of reactants and products. For any cellular entity, the rate of change 

in its amount is the sum of all rates that generate it, minus all rates that consume it. This 

gives rise to a system of ordinary differential equations (ODEs) describing the temporal 

evolution of the system as a whole. Over the years, mechanistic models based on 

systems of ODEs have been successfully applied to reproduce biologically correct 

behavior and hypothesize on underlying biological mechanism in a wide range of 

cellular systems and signaling pathways for processes such as receptor binding26, cell 

cycle27, DNA damage28 and apoptosis29, all of which are known to be implicated with 

driver mutations in oncogenic transformation. The pathway-centric models that have 

been formulated earlier have laid the foundation for building disease-centric models by 

combining them with pharmacodynamic profiles of relevant drugs with an aim to predict 

drug dosage required to reach certain desired outcomes30,31. 

1.4 Single Cell Mechanistic Pharmacodynamic Modeling 

In a previous work accomplished at our laboratory, one of the largest single cell 

mechanistic models of stochastic proliferation and death signaling was built32. It 

incorporates several signal transduction pathways which are implicated in oncogenic 

transformation, such as receptor tyrosine kinase (RTK), RAF-MEK-ERK signaling, PI3K-

AKT-mTOR signaling, cell cycle, DNA damage and apoptosis. The model describes 

expression of 141 genes that are included in the mentioned pathways and dynamic 

interactions of their resulting products, such as proteins, and protein complexes. 
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Furthermore, the model allows inclusion of the pharmacodynamics of any drug of 

interest as binding reactions with their intended pathway targets. Simulation of the 

model describes temporal evolution of a single cell whereby the coordinated dynamics 

of multiple pathways and possible drug actions may give rise to stochastic cell fate in 

terms of cell division or death. Initial study showcased the model’s predictive capability 

with accurate predictions of synergistic effects of MEK-inhibitor and AKT-inhibitor drugs 

for MCF10A cells as well as differential sensitivity of U87 glioma cells to these inhibitors. 

The mathematical formalism employed in this model allows representation of some 

significant molecular level complexities involved in tumor formation and disease 

progression including dynamics of pathway activity and biomolecular heterogeneity at 

the single cell level in terms of cell-to-cell variability. Moreover, the model structure 

allows delineation of biological context through the integration of genomic, 

transcriptomic and proteomic data sourced from any cell line and may potentially be 

used for patient specificity30. For future work, we intend to evaluate the applicability of 

the model as a framework for predicting anticancer drug responses with a broader and 

potentially more inclusive biological context encompassing multiple tumor types. 

Enhancement of such nature may necessitate the incorporation of a broader array of 

signaling pathways, given that the initially integrated pathways constitute only a subset 

of those relevant to oncogenic transformation. When incorporating additional 

biomolecular processes, it is crucial to ensure that the model accurately represents the 

intended biology. One effective approach could involve validating the model's predicted 

outcomes against numerous experimental perturbation datasets, primarily accessible as 

drug sensitivity profiles across a diverse spectrum of cancer cell lines33–35. 



11 
 

1.5 Thesis Overview 

In this work, we sought to improve several aspects that challenge our goal of 

enhancing the predictive capability of single cell pharmacodynamic modeling for 

anticancer drug response, namely, (1) enhancing its accessibility by creating a scalable 

and modular software pipeline for model construction and potential expansion; (2) 

developing methods for validating its biology and identifying significant knowledge gaps 

by comparison with experimental drug dose response data; and (3) enhancing its 

adaptability with new biological context informed by genomic, transcriptomic, and 

proteomic data. 

Starting with Chapter 2, we introduce SPARCED, a modular and scalable 

implementation of our single cell mechanistic pan-cancer driver pathway model. It 

streamlines the procedure for the modification of model structure, enabling efficient 

expansion of the model with pharmacodynamics for a broader range of drugs and new 

signaling pathways.  

Continuation of our work with the SPARCED model relies on our ability to 

perform more complex and resource intensive computation. Therefore, in Chapter 3, we 

describe extensive performance benchmarking and improvement of our simulation 

algorithm, achieving at least 4-fold increase for stochastic and more than 200-fold 

increase for deterministic computation speed. 

Dose response assays in general measure drug sensitivity or resistance by 

capturing cell population characteristics, such as viable cell counts at specific durations 

of treatment. In order to accomplish expansion and enhancement of single cell models 
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based on experimental dose response data, a linkage needs to be established between 

dynamic interactions at the cellular pathway level and their emergent outcomes at the 

cell population level. In Chapter 4, we describe the development of a mechanistic cell 

population simulation framework which attempts to reconcile results from dose 

response experiments with outcomes from mechanistic single cell models. Furthermore, 

we discuss results from simulations of dose response experiment using our cell 

population simulation framework in the context of MCF10A cells treated with four 

different anti-cancer drugs, namely, alpelisib, neratinib, trametinib and palbociclib. The 

results and subsequent analysis helped us validate effects of drug action on the MAPK 

pathway as well as identify some knowledge gaps in the representation of RTK and cell 

cycle pathways. 

In Chapter 5, we describe the development of a robust pipeline for omics-

informed context definition for our single cell model. For this purpose, we focus on the 

Cancer Cell Line Encyclopedia (CCLE), one of the largest and most comprehensive 

databases where more than 1000 cancer cell lines have been characterized with 

genomic, transcriptomic, and proteomic analyses as well as drug sensitivity profiles for 

24 anticancer drugs. We initialized the single cell model with omics data for several cell 

lines originating from various tissue types, laying the groundwork for constructing virtual 

drug sensitivity profiles. These profiles may serve as a roadmap for expanding the 

biological context of our model. 

In Chapter 6, we highlight certain limitations within our cell cycle submodel, 

notably the absence of proteomics informed cell cycle species levels and their 
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stochastic gene expression. We explore potential remedies, including revisiting and 

updating the cell cycle submodel to incorporate the latest pathway knowledge.  

And finally, in Chapter 7, we draw the conclusions from the current work and 

discuss its broader impact in improving single cell pharmacodynamic for anticancer 

therapy. Additionally, we explore potential future avenues for research in this domain.  
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Chapter 2 

DEVELOPMENT OF A MODULAR AND SCALABLE 

PIPELINE FOR A LARGE-SCALE MECHANISTIC MODEL OF 

SINGE CELL PROLIFERATION AND DEATH SIGNALING 

2.1 Author Contribution 

The work presented in this chapter is adapted from the following publication: 

Erdem, C., Mutsuddy, A., Bensman, E.M., Dodd, W.B., Saint-Antoine, M.M., 

Bouhaddou, M., Blake, R.C., Gross, S.M., Heiser, L.M., Feltus, F.A. and 

Birtwistle, M.R., 2022. A scalable, open-source implementation of a large-

scale mechanistic model for single cell proliferation and death signaling. 

Nature communications, 13(1), p.3555. 

The contribution of the candidate involved curation of data, composition of model 

input files, development of software pipeline for model construction and context 

definition, and validation of model construction and simulation protocols. 
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2.2 Introduction 

The ever-increasing availability and accumulation of FAIR36 (findable, accessible, 

interoperable, and reproducible) and big (omics) datasets requires new computational 

methods and models to integrate, analyze, and interpret the underlying information37–39. 

How can we leverage the totality of available information not only to learn more about 

biology but also to make predictions, especially those that are clinically relevant? 

Advances in statistical and machine learning approaches enable (mostly) data-driven 

exploration and hypothesis generation from big datasets40–43. Trained on features of the 

input dataset(s), such models can be used for, as just a few examples, to predict drug 

responses44–46 or decide tumor type/stage47–50. Although transformative, such machine 

learning and statistical models have shortcomings. Most notably, they often fail to 

explain predicted outcomes with detailed mechanistic reasoning51–55 – a major scientific 

gap and a roadblock to reconciling and integrating such models. 

Besides such “black-box” modeling approaches, an alternative and 

complementary vehicle for data integration are so-called “mechanistic models”55. 

Mechanistic models provide an interpretable integration of different data types, because 

they have explicitly modeled biophysical correlates, while enabling further exploration 

for underlying logic behind heterogeneous, nonlinear, and often unintuitive relationships 

across big datasets56. If mechanistic models are available towards the whole-genome or 

whole-single-cell scale, one can start to predict complex, multi-network, and emergent 

cellular behaviors57,58, elucidate phenotypic responses to multiple perturbations59,60 

tailor and train on patient-specific data for personalized, pharmacologic decision 

making61,62, or use them as “data integrators” for data consistency checking63. However, 
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most published mechanistic models are “small” scale; built for single pathways with a 

handful of genes, meant to interpret a single dataset64–73. Such small-scale mechanistic 

models provided important insights into processes such as yeast response to 

pheromones70, lac operon regulation in E. coli69, or phenotypic responses to different 

ligand stimulations64. However, the limited scope of small-scale models means they 

inherently will struggle to integrate multiple datasets. Large-scale mechanistic 

models32,58,74,75 on the other hand, can provide a more extensive representation of 

cellular interactions and are thus well-poised for data integration that complement 

shortcomings of machine learning approaches. 

One of the many ways of mechanistic model construction is the use and 

modification of existing models by inserting new species or interactions to explain new 

experimental observations73,76,77. Model merging, the act of stitching pre-existing 

models together, is an extension of this method for creating larger models. However, 

such an approach requires extensive detail checking and harmonizing 

species/parameter definitions. Often, unfortunately, sufficient annotation is not provided 

which makes this task harder. Moreover, while most mechanistic models are comprised 

of ordinary differential equations (ODEs), many large-scale models require multiple sub-

modules of different mathematical formalisms. For example, metabolic processes are 

usually described by steady-state flux-balance models 78,79, gene expression events are 

stochastic80–82, and protein signaling events are represented by a system of 

ODEs64,65,73. Thus, sorting out a single platform for different modeling formalisms to 

create a large-scale model is a daunting task. It is so far only achieved by creating 

highly custom-structured and custom-coded model-agglomerates that are not well-
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suited to further alterations or re-use32,58. The latter, Bouhaddou2018 pan-cancer 

model32, is previously published by our group to study single-cell responses to mitogens 

and drugs. 

A second way of constructing models is to build them bottom-up by writing out 

every reaction one by one. In this regard, rule-based modeling (RBM) provides an 

innovative approach83. RBM software, such as BioNetGen84,85, Kappa86, and PySB87, 

enables researchers to write “rules” for repeated reaction events following specific 

patterns. RBM software then creates the reaction network by propagating the rules from 

the initial set of species. Although RBM revolutionized large-scale model construction by 

minimizing manual equation scripting (i.e., writing out every differential equation), some 

limitations exist. First, it can generate a vast (even infinite) number of reactions from a 

small set of rules (usually called the curse of combinatorial complexity). This makes 

interpreting, analyzing, and debugging such models cumbersome, if possible. Tools like 

NFsim88 can overcome such problems by simulating events based on the rules rather 

than a priori generating the entire reaction network. Thus, such software becomes 

advantageous when a small number of rules create a very large number of reactions, 

e.g., polymerization, aggregation, or multi-site phosphorylation89. However, such 

network-free simulators typically require an explicit representation of every molecule in 

the system, which dramatically increases the computational cost and renders such 

methods inefficient for large-scale mechanistic models. Secondly, current RBM 

implementations dictate that reactions taking place via the same rule have the same 

rate constant parameter values. Often, allostery or site cooperativity precludes this 

simplifying assumption, leading to manually writing out every such reaction in the model 
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(or writing one rule for each reaction), which then obviates the advantages of RBM. 

Finally, with its capability of capturing biological complexity via simple rules, the RBM 

concept is quite powerful but additional efforts are needed to enable merging of existing 

non-rule-based models, creating a mixture of different modeling formats (i.e., mixed-

grain modeling), and defining different simulation settings (i.e., hybrid modeling = 

deterministic + stochastic parts). 

Regardless of how a large-scale model is constructed, it should have certain 

properties for FAIRness (findable, accessible, interoperable, and reproducible) and re-

useability90–92. Porubsky et al.91 recently summarized the best modeling practices and 

reinforced: providing metadata/annotations and model creation steps/files (Practices 1-

5), using standard and cross-platform model files (Practice 3), and open-source, 

license-free, version-controlled, and reproducible model dissemination (Practices 8-9). 

As the size of the model increases, conforming to modeling standards (e.g., simulation 

type, simulation speed, software to use, scripting package to use, algorithm to use) gets 

harder. That is why most of the large-scale (many genes or whole-cell) models are 

necessarily custom-structured, are composed of multiple submodules, or are lacking 

sufficient annotations and metadata (e.g., ENSEMBL or HGNC identifiers)32,58,74,75. 

These custom-made models also do not yet follow a single standard format, a key 

property for easy distribution, re-use, and model merging and expansion with other 

models. The SBML (Systems Biology Markup Language) format93,94 offers a long-

established and well-defined way of specifying annotated model structures, with an 

explicit and structured definition of each element of a mechanistic model (species, 

reactions, volumes, initial concentrations, parameters, rules, events, equations). SBML 
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is an extensible, machine-readable markup language and not a simple text file. SBML 

has interfaces and packages in most programming languages (like Python, C++, Perl) 

and can be imported by most software (Python, MATLAB, COPASI95, Virtual Cell96,  and 

another ~300 packages). However, it is non-trivial to write thousands of reactions in 

SBML standards, directly or with available GUI-based software. To circumvent this 

problem, there are efforts to convert other model formats to SBML, like Antimony97. The 

Antimony format is defined in simple text format and is human readable and 

interpretable. Regardless, any constructed mechanistic model, in SBML format or not, 

must be simulated with reasonable CPU time. Although simulating models on local 

machines is often done, High Performance (HPC) or Cloud Computing (CC) platforms 

are suitable for larger tasks such as parameter sensitivity/estimation or multiple single-

cell simulations98–100. Therefore, another milestone for large-scale mechanistic models 

is inherent HPC/CC compatibility, especially for single-cell simulations and 

heterogeneous data integration. 

Here, we provide a framework and model construction recipe for large-scale 

mechanistic modeling that converts our lab’s previous large-scale pan-cancer model 

into a format that conveys several crucial properties noted above. First, we define a 

simple set of structured and annotated input text files that set model specifics: genes, 

species, reactions, reaction stoichiometry, cellular compartments, transcriptional 

regulations, input omics data, and parameter values (Fig. 2.1). These text files enable 

easy creation or alteration of the model network, with minimal coding or software usage 

requirements (but they are easily amenable to such things if desired). We then use 

Jupyter notebooks101 to process the input files and to create a human-interpretable 
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Antimony file, which is then converted into an SBML (community gold-standard) model 

file. We simulate the model using SBML compatible Python packages including AMICI, 

specifically designed for efficient simulation of large-scale models102,103, and our own 

Python submodule for stochastic gene expression that enables single-cell simulations. 

We also developed an HPC/CC (Kubernetes) compatible version of the pipeline that 

enables simulating large number of single cells and/or stimulation conditions. To apply 

our work, we re-create and extend our previous single mammalian cell mechanistic 

model of proliferation and death signaling and regulation32, which we call SPARCED 

(SBML, Proliferation, Apoptosis, Receptor Tyrosine Kinases, Cell cycle, Expression, 

DNA damage). The pipeline and model are available on GitHub 

(github.com/birtwistlelab/SPARCED). 
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Figure 2.1: SPARCED is a structured, human interpretable, and easy to modify big 

mechanistic model. (a) The schematic of the underlying model for SPARCED. 

Image adapted from (30). (b) The pan-cancer mechanistic model Bouhaddou2018 is 

re-written in open-source and structured file format. The steps of model construction 

include input file creation and conversion into an SBML file. The optional 

initialization step calibrates model parameters for new cellular contexts and 

phenotypic behaviors. The annotated SBML model file and stochastic module are 

simulated together at single-cell level locally or by using cloud-computing. The 

benefits of the new SPARCED model include easy alteration and expansion 

capabilities through text file editing, human-readable annotated input files, and use 

of Jupyter notebooks for model creation and simulation. The modeling pipeline 

introduced here are inline with good practices of re-usable big mechanistic models 

(57). (c) The Bouhaddou2018 model file types are simplified and converted into 

open-source platforms. 
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Figure 2.2: SPARCED-jupyter enables single-cell response simulations using 

Jupyter Notebooks.  
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Figure 2.2: SPARCED-jupyter enables single-cell response simulations using 

Jupyter Notebooks. (A) The model creation notebook processes the user defined 

input files and converts them into the model SMBL file. The model (SBML file) is 

compiled for simulations using the AMICI python package. (B) When a model is 

generated for a new cellular context (using new omics input data), the model 

creation step is followed by an initialization step to adjust protein translation rate 

constants and cell death related parameters. (C) The model simulation starts with 

specifying and importing the SPARCED model SBML (see panel A). The user 

defines the model file name and the sets four additional parameters: (i) The flag (1 

or 0) to specify if the model should run in deterministic or in hybrid mode (see D and 

E), respectively. (ii) The time duration in hours for which the model should run. (iii) 

The vector of ligand concentrations (in nM) to stimulate the cells. (iv) The output file 

name. Next, the species initial conditions are, by default, read-in from the “Species” 

input file. Then, the model file is imported, and the model is simulated according to 

the specified input. The model outputs three matrices of species concentrations 

over time at every 30seconds, the activation states of genes over time (every 30 

seconds), and the time points of simulation in seconds. The two former matrices are 

saved using the user define file name (iv). (D) The model is simulated iteratively for 

each 30 seconds, where the current species concentrations are inputs for the gene 

expression module, which then outputs new mRNA levels to update the SBML 

model states. The model is then run for another 30 seconds, until the total 

simulation time reaches the user input (th) or until the cell dies. The cell death is 

decided based on cleaved-PARP levels surpassing the PARP levels. (E) In the gene 

expression module, in hybrid mode, the model randomly decides which genes 

become active or inactive, and which mRNAs are transcribed or degraded. This 

SGEmodule.py script is called every 30 seconds with updated species 

concentrations, simulated using the models SBML with AMICI package. (F) When 

the model is hybrid-simulated three times, the different cell responses are observed. 

Shown are serum-starved average cells stimulated with full growth media for 24 

hours. Plotted are free ppERK and ppAKT species concentrations (nM). 
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Figure 2.3: SPARCED model recapitulates deterministic simulation results of the 

Bouhaddou2018 model. (A) Summary of comparisons of SPARCED model 

deterministic simulations to Bouhaddou2018 model simulations. The area under the 

curve (AUC) values of each simulation (see Fig. 2.14) are calculated and plotted for 

the two model results. (B) Simulation results from Bouhaddou2018 model (line) and 

SPARCED-nf model (square) run on Kubernetes cluster workflow are the same as 

SPARCED model (circle) results. Comparisons of selected panels from (A) are 

shown only. 
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Figure 2.4: SPARCED model recapitulates experimental observations and hybrid 

(stochastic) simulation results of the Bouhaddou2018 model. (A) Experimental and 

stochastic simulation results from Bouhaddou 2018 model are reproduced by 

SPARCED model simulations. Each dot is a different condition, explained in Figure 

2.16A. Error bars show experimental or simulation standard error of the mean. 

Simulations are of at least 100 cells, and three independent experimental 

observations where applicable. (B) Stochastic simulation of 100 cells recapture 

protein level trajectories (active p53, Cyclin A, and cPARP) from older model 

qualitatively. Panels with blue background are SPARCED simulations and white 

background panels are from Bouhaddou2018 model. 100 stochastic cells are 

stimulated with EGF+Insulin for 72 hours before Etoposide treatment for another 72 

hours. Etoposide is stimulated also with EGF+Insulin. Results for Etoposide 

treatment without prior growth factor stimulations are shown in Figure 2.16B. (C) 

Quantification of results in (B) shows that SPARCED model simulations coincide 

with earlier observations in percentage of death induced by etoposide treatment. 

See Figure 2.16C for the effect of no growth factor stimulation before Etoposide 

treatment. Bars represent mean ± s.e.m. 
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2.3 Results: 

2.3.1 SPARCED Model Construction and Unit Testing 

Current large-scale mechanistic models are agglomerates of smaller models and 

tools, used mainly within the same research lab. Most such models also lack clear and 

satisfactory annotation and metadata, making them harder to understand and alter32,58. 

The goals of this work were (i) to build tools that help large-scale mechanistic model 

construction and alteration, that is simple, efficient, open-source, and cloud computing 

compatible; and (ii) to provide a scalable and re-useable big mechanistic model for a 

single mammalian cell. 

We first created a set of simple input files and scalable processing scripts for one 

of the broadest cancer signaling models in the literature32, called the Bouhaddou2018 

model here (Fig. 2.1a). The input files are simple tab-separated text files (Fig. 2.1b-c), 

unlike licensed file formats with a mixture of hard coded information in multiple 

interconnected scripts commonly used in modeling literature. A Jupyter notebook  

processes the input files into an Antimony text file. The model creation code generates 

the SPARCED model file in SBML format using the Antimony text file and annotations 

from the model input files. When the model construction step is complete and the SBML 

file is created, it is imported and simulated using a Python package called AMICI102,103. 

For every new cell line model, a pre-calibration step called “Initialization” is employed to 

tune parameter values. Here, we ensure total protein levels match experimental 

observations and particular phenotypic criteria are met; for example, we specify that 

serum and growth factor starved cells on average do not traverse the cell cycle and do 

not die by apoptosis within 48 hours.  The resulting initialized parameter values and 
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species concentrations are saved in a new SBML file, and the model is compiled for 

model testing and other simulations. 

The result is what should be a replica of the Bouhaddou2018 model, which we 

call SPARCED. Like the Bouhaddou2018 model, the initial SPARCED model is based 

on non-transformed breast epithelial MCF10A cell line data. We annotated all the 

species in the model with HGNC gene identifiers, providing easier programmatic filtering 

and curation of species list, while keeping the user defined simpler names for 

complicated species structures. However, the extent to which the models are congruent 

was not yet clear, and thus we next set out to examine agreement between the two. We 

verified that the previous Bouhaddou2018 model simulations are reproducible and 

match expected experimental observations through the same unit test concept (Table 

2.1) introduced for the original model32 (40). Each unit test has a dedicated Jupyter 

notebook on GitHub repository (github.com/birtwistlelab/SPARCED/SPARCED_Brep). 

We illustrate select unit testing examples below, and all results are presented in Figures 

2.3-2.16). 
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Table 2.1: List of SPARCED model unit testing and comparisons to Bouhaddou2018 

model. The SPARCED model passed each test depicted below and recapitulated 

experimental and simulation observations reported by the Bouhaddou2018 model. 

Descriptions of unit tests 
Simulation 

type 
Figure # 

Original 
paper 
Figure 

# 

Functional test to ensure the deterministic module is updated 
every 30 seconds with mRNA numbers generated by the 
stochastic module. 

Hybrid 2.2 2B 

Simulated ligand-receptor cooperativity coefficients for the 
receptor tyrosine kinases match experimental observations 
(negative cooperativity: EGF, FGF, IGF, INS; no 
cooperativity: HGF, NRG1, and positive cooperativity: 
PDGF). 

Deterministic 2.3a 
3A + 
S3A 

Activated EGF receptors internalize and peak ~30 minutes 
after ligand treatment. 

Deterministic 2.3b S3B 

EGF and insulin stimulation activates both ERK and AKT 
pathways. Dual stimulation with the two ligands induces 
prolonged AKT activation. 

Deterministic 2.4-2.5 
3B,C,D 
+ S3C 

Double and/or single stranded DNA damage activates p53 
and DNA damage repair mechanisms represses its 
response. 

Deterministic 2.6a  3E 

Increasing DNA damage amount in single cells leads to 
higher number of activated p53 peaks. 

Hybrid 2.6b-c 
3F + 
S3E 

Increasing simulated TRAIL dose decreases the time it takes 
to die for an average cell. 

Deterministic 2.7a-b  3G 

The fraction of surviving cells decreases as stimulated 
TRAIL dose increases. 

Hybrid 2.7c 3H 

Increasing ERK and AKT activity levels prolongs TRAIL 
induced time to death, whereas increasing PUMA and NOXA 
expression levels decreases the time it takes for cells to die.  

Deterministic 2.7d 3I 

Increasing Cyclin D mRNA levels induces proper cyclin-CDK 
complex progression and oscillations for cell cycle entry and 
progression. 

Deterministic 2.8a 3J 

Etoposide treatment induces cell cycle arrest and cell death. 
Cycling cells (with prior growth factor stimulation) show 
increased percentage of death to etoposide treatment, 
compared to non-cycling cells. 

Hybrid 
Fig.  
3d-e 

4A,B,C 
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Descriptions of unit tests 
Simulation 

type 
Figure # 

Original 
paper 
Figure 

# 

Inhibition of AKT and ERK pathways together synergistically 
increase cell death, in EGF and insulin stimulated cells. 

Hybrid Supp. Fig. 9 5A 

ERK and AKT inhibition induced cell death mechanisms are 
predominantly BIM dependent, not BAD dependent. 

Hybrid 
Supp. Fig. 

10a 
5C 

EGF and insulin cooperatively induce cell cycle entry, with 
insulin inducing very little cell cycle entry alone. 

Hybrid 
Supp. Fig. 

10b 
6B 

Activation of both ERK and AKT pathways are required for 
robust cell cycle entry. Time averaged ppERK and ppAKT 
levels correlate with Cyclin D levels.  

Deterministic 
Supp. Fig. 

11 
6E 

The number of ribosomes within the cell doubles within 24 
hours. 

Deterministic 
Supp. Fig. 

8b 
S2D 
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2.3.2 SPARCED Model Simulation 

Before presenting particular unit test applications, we wanted to provide an 

overview of model simulation. We built a Jupyter notebook called runModel.ipynb to 

simulate the SPARCED model (Fig. 2.2). This notebook requires the model SBML (from 

createModel.ipynb, Fig. 2.2a), along with the simulation duration (th), the ligand 

concentrations (if desired), the name for the output files, and whether the simulation 

should be deterministic only or hybrid mode (flagD). The “Initialization” calibration step is 

employed only when the model is being trained for a new set of omics data or for 

different phenotypic criteria (Fig. 2.2b). The rest of the runModel.ipynb notebook imports 

necessary packages and model files and runs the simulation (Fig. 2.2c). 

As mentioned, the SPARCED model consists of two modules: deterministic and 

stochastic. The SBML file forms the basis of the deterministic module whereas the 

stochastic module describes gene states (active/inactive) and mRNA birth/death events 

for the genes (Fig. 2.2c). When run in the hybrid simulation mode, the deterministic and 

stochastic modules exchange information every 30 simulated seconds (Fig. 2.22d-e). 

The current levels of select protein states can induce changes in gene 

activation/deactivation or mRNA transcription/decay rates. The newly updated mRNA 

copy numbers change nascent protein translation rates in the deterministic module (Fig. 

2.2d). When run deterministically, the model does not stochastically sample gene 

activation or mRNA transcription events, and such simulations correspond to an 

average cell state. 

Individual cells (in vitro on a dish or in vivo) exhibit mRNA and protein expression 

variability, in part due to stochastic gene expression processes81,82. To capture this 
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phenomenon in silico, we ran simulations in hybrid mode. In this mode, each simulation 

has different initial mRNA and protein levels that are dictated by burst like expression 

processes, and the expression throughout the simulated time course follows suit. This 

leads to a natural and typically observed amount of variation in total protein levels. We 

hereafter refer to such settings and resulting trajectories as single-cell simulations. 

Virtual cell population responses are sets of multiple independent single-cell 

simulations, usually 100 cells. So, when the runModel.ipynb notebook is run multiple 

times in hybrid mode, different single-cell responses are simulated (Fig. 2.2f). For 

instance, the activation and phosphorylation of ERK (Fig. 2.2f left, red lines) and AKT 

(Fig. 2.2f right, blue lines) proteins in response to growth factor treatment will show 

variability across three example cells. Although the amplitude of initial response is 

similar for all three cells, the longer-term responses are quite different. Our previous 

analyses showed that such single-cell heterogeneity in the initial concentrations of these 

proteins could help predict cellular fate, namely cell division32. These jupyter notebooks 

provide a simple interface to interact with the SPARCED model. 

2.3.3 SPARCED Model Unit Testing - Deterministic 

We first tested agreement between deterministic Bouhaddou2018 and SPARCED 

model simulations. The SPARCED model simulations recapitulated the response of an 

average (deterministic) cell under different stimulation conditions, to within simulation 

error (Fig. 2.3a). As an example, we highlight SPARCED model simulations of the cell 

response (MCF10A cells) to treatment with EGF alone or EGF+insulin (Fig. 2.3b and 

Fig. 2.15). Treating growth factor and serum-starved MCF10A cells with EGF and insulin 

induces activation of ERK, AKT, and their downstream signaling partners, which 
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together influence cell proliferation32,104,105. The Bouhaddou2018 model showed that 

compared to single ligand treatments, EGF+insulin stimulation increases and prolongs 

AKT and its downstream EIF4EBP1 phosphorylation (Fig. 2.3b). The simulation results 

from the Bouhaddou2018 model (the solid lines) and SPARCED model (circles) are 

indistinguishable. The SPARCED-nf implementation, which runs on a high-performance 

cloud computing infrastructure, similarly reproduces the original simulation data (Fig. 

2.3b, triangles). These results, together with all other deterministic tests in Table 2.1 

(Figs. 2.5-11 and 14), confirm that the SPARCED model recapitulates the 

Bouhaddou2018 model simulations and unit tests in deterministic settings. Thus, the 

simple input file structure combined with automatic model generation is equivalent to the 

prior MATLAB instantiation in this regard. 

2.3.4 SPARCED Model Unit Testing - Stochastic (Hybrid) 

Next, we evaluated the SPARCED model for stochastic unit tests in single cell 

simulations. Each single simulated cell has different initial protein levels and dynamics 

due to stochastic gene expression, and thus may respond differently to the same 

treatment. A simulated cell population is a collection of multiple single cell simulations, 

usually 100 unless otherwise noted. The SPARCED model stochastic simulations 

closely matched Bouhaddou2018 model results, to within simulation error (Fig. 2.4a and 

Fig. 2.16a). As an example, we highlight here how single cells respond stochastically to 

DNA damage. Etoposide, a chemotherapy drug, induces double- and single-stranded 

DNA damage, causes cell cycle arrest, and leads to cell death (72). Previous 

experimental data32 showed that in the absence of EGF and insulin (to promote cell 

cycle exit), there is minimal etoposide-induced cell death (Fig. 2.16b-c). However, in the 
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presence of EGF and insulin (to drive cell cycle progression), etoposide-induced cell 

death increases over time and reaches around 60% of the cells (Fig. 2.4b-c). Simulating 

etoposide treatment of cycling cells induces robust p53 pulses, disruption of Cyclin A 

dynamics/cell cycle arrest (Fig. 2.4b), and more cell death relative to non-cycling cells 

(Fig. 2.4c). The SPARCED simulation results closely match experimental data and 

Bouhaddau2018 simulations. We conclude that SPARCED model captures DNA 

damage induced single-cell death percentage and cell cycle state-dependent effect of 

etoposide. The SPARCED model also passed all other stochastic/hybrid unit tests 

(Table 2.1, Supplementary Figs. 2.5, 2.9, 2.10, 2.12, and 2.13). 

2.3.5 SPARCED Model Unit Testing - Context Change 

Different cell types have different mRNA and protein expression levels, and many 

mechanistic models assume that it is different expression levels that drive different 

phenotypes, as opposed to changes in biochemical rate constants. These constants are 

based on biophysical events like binding, which are based on molecular structures. 

Here, we tested the ability of the SPARCED model to be re-“initialized” to study different 

cell types by changing initial levels of total proteins and mRNAs without changing the 

model topology. Thus, we introduced a protocol to enable SPARCED model context 

change (Fig. 2.17).  In short, OmicsData, Species, and Ratelaws input files are updated 

with new cell line information, including mRNA levels, protein/species levels, and 

constitutive translation rate constants. Then, the new model is created by running the 

“createModel” Jupyter notebook or by submitting a new SPARCED-nf job. 

The re-calibration step for context change followed in Bouhaddou2018 model 

was called Initialization, where protein-specific translation rates and key parameters 
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important for cell decision making are estimated to ensure agreement with new omics 

datasets and expected phenotypic behavior with respect to proliferation and apoptosis. 

Here we also provide a new, python-based version of the Initialization procedure for 

SPARCED models (see Computational Methods), where the outputs are species 

concentrations and rate parameter values updated in a new SBML file. Here, to test the 

drug combination response differences in different cell lines, we changed SPARCED 

model context (i.e., parameter values and species concentrations) by initializing the 

model to the U87 glioma cell line. Following the protocol outlined in Supplementary Fig. 

2.17, we replaced MCF10A cell line values in the input files with values from U87 cell 

line data. 

U87 cells are PTEN-deficient and more sensitive to AKT inhibition compared to 

MCF10A cells32. Both cell lines show minimal sensitivity to MEK inhibition alone and 

AKT & MEK inhibitors are both needed to kill MCF10A cells. In contrast, AKT inhibition 

alone is sufficient to kill U87 cells. To simulate the U87 cell response to AKT and MEK 

inhibitors, we first updated the OmicsData input file using U87 mRNAseq data from 

Bouhaddou2018 model. Here, we did not use U87 cell line proteomic data and 

estimated the initial total protein levels using the new mRNA levels and gene-level 

mRNA/protein ratios from MCF10A data. We set the PTEN translation rate to zero and 

set values of rate parameters dictated by Initialization in the Ratelaws input file (Fig. 

2.18A). Additionally, we provide an improved Python based initializer 

initializeModel.ipynb notebook, which re-creates the un-stimulated steady-state initial 

conditions for species and adjusts translation rate constants using cell-line specific 

initialization input file. We also updated the species initial conditions in the Species input 
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file using steady-state values for U87 cells from the Bouhaddou2018 model. We created 

a new model SBML file (SPARCED_U87) using the updated input files. SPARCED_U87 

model simulations of response to MEK and AKT inhibitors reproduced the 

Bouhaddou2018 model results and experimental observations (Fig. 2.18B). We 

conclude that changing model context by changing input files is possible and 

contributes towards the goal of easy model alteration to study of different cell types. 

When the cellular context (omics input data) for the SPARCED model is changed, 

all appropriate Unit Tests should be passed. We expect that addition and alteration of 

the list provided (Table 2.1) will accommodate increasingly different prior knowledge 

about the new context. Examples of such information include cell line mutations, growth 

condition differences, or tumor cell behavior. 
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Figure 2.5: SPARCED model includes a stochastic gene expression module. (a) 

Two isoforms of ERK gene (MAPK1 and MAPK3) are activated randomly. (b) It 

leads to two distinct mRNA species. (c) The ERK1 and ERK2 mRNAs are translated 

into a single ERK protein. The trajectories are obtained from a stochastic single cell 

simulation with now growth factor for 24 hours. 
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Figure 2.6: SPARCED model recapitulates ligand-receptor cooperativity 

observations (a) Hill coefficients for each ligand-receptor pair in MCF10A context. 

The simulations capture literature knowledge. (b) The dynamics of activated EGFR 

(membrane-bound and internalized) dimers are recaptured by the SPARCED 

model, compared to Bouhaddou2018 model. 
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Figure 2.7: Model response to EGF and insulin. Signaling dynamics of ppERK, 

ppAKT, and pEIF4EBP1 induced by EGF, Insulin, or EGF+Insulin treatment for 6 

hours. Serum-starved MCF10A cells stimulated with EGF (0.01, 0.1, 1.0 and 10.0 

nM), Insulin (0.17, 1.7, 17.0, and 1721 nM), or EGF+Insulin (0.01+0.17, 10+0.17, 

0.01+1721, and 10+1721 nM) 
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Figure 2.8: Signaling dynamics of ppERK and ppAKT induced by EGF, Heregulin 

(NRG1), HGF, PDGF, FGF, IGF, and Insulin treatment for 2 hours. Serum-starved 

MCF10A cells are stimulated with corresponding ligands at a dose range of 0.001 to 

1000 nM. 
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Figure 2.9: (A) p53 is activated in response to double 

(middle) or/and single (top/bottom) stranded DNA break 

damage. When DNA break repair mechanism is turned 

on (orange curves), p53 activity (or oscillatory behavior) 

dies down. (B) Single cells show different levels of p53 

response to DNA damage. Increasing DNA damage 

amount (top to bottom) leads to higher number of 

activated p53 peaks. (C) the number of p53 pulses 

increases with increasing DNA damage, whereas pulse 

height and width remain relatively constant (results based 

on simulations shown in B). Plots show mean ± s.e.m. 

A B 

C 
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Increasing TRAIL dose 

A B 

C D 

Figure 2.10: (A) Increasing TRAIL dose decreases the time it takes to die (ttd) for the 

average cell. Representative cells trajectories are shown, where the cells are 

simulated deterministically with different doses of TRAIL until they die (or up to 100 

hours). The time of death is defined by the amount of cleaved PARP (cPARP, y-axis) 

surpassing the amount un-cleaved PARP.  (B) Summary of ttd values for different 

TRAIL doses. (C) The fraction of surviving cells decreases as stimulated TRAIL dose 

increases. The red circles represent percentage of living cells when 20 stochastic 

single cells are simulated with specified TRAIL dosage for 5 hours. The black stars 

are experimental data from Bouhaddou 2018 model (D) Increasing ERK and AKT 

activity levels prolongs TRAIL induced time to death (blue curve), whereas increasing 

PUMA and NOXA expression levels decreases the time it takes for cells to die (red 

curve). Cells with specified alterations are compared to the cell stimulated with a low 

dose of TRAIL (black curve). cPARP levels are the proxy for cell death, where the 

cells go apoptosis when [cPARP]>[PARP]. 
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A 

B 

Figure 2.11: (A) Increasing Cyclin D mRNA levels induces proper cyclin-CDK 

complex progression and oscillations for cell cycle entry. Plots show Cyclin D, E, 

A, and B concentrations when basal (blue), 10X basal (dark orange), and 60X 

basal (light orange) levels of Cyclin D mRNA (CYCD) are simulated. (B) The 

number of ribosomes in the cell doubles around 20 hours. The cell is simulated 

with full growth condition (EGF=100 nM, NRG1=100 nM, HGF=100 nM, 

PDGF=100 nM, FGF=100 nM, IGF=100 nM, INS=100 nM). 
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Figure 2.12: Inhibition of AKT and ERK pathways together synergistically increase cell 

death, in EGF and insulin stimulated cells. Serum-starved MCF10A cells are simulated 

with following conditions: (A) No stimulation, (B) EGF=20ng/mL + Insulin=10μg/mL, (C) 

EGF=20ng/mL + Insulin=10μg/mL + MEKi=10μM, (D) EGF=20ng/mL + Insulin=10μg/mL 

+ AKTi=10μM, and (E) EGF=20ng/mL + Insulin=10μg/mL + MEKi=10μM + AKTi=10μM 

for up to 80 hours. The bar plots show mean ± s.e.m. of time to death for 30 cells. The 

ttd are captured by cPARP spikes. 
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Figure 2.13: (A) Simulations where BIM-dependent or BAD-dependent mechanisms are 

switched off and percent death calculated in response to EGF + insulin at 48 hours. The 

results show that ERK and AKT inhibition induced cell death mechanisms are mostly 

BIM dependent, not BAD. Bars represent mean ± s.e.m. of 100 stochastic cell 

simulations. (B) EGF and insulin cooperatively induce cell cycle entry, with insulin 

inducing very little cell cycle entry alone. Cells are simulated with EGF (10nM), Insulin 

(1721nM), or EGF+Insulin (10nM+1721nM) for 30 hours and the percentage of cells 

entering S-phase are calculated. Cells are considered in S-phase when the sum of 

concentrations of Cyclin E, A, and B is greater than 20nM. Bars represent mean ± s.e.m. 

of 100 stochastic cell simulations. 



45 
 

 

 

 

 

 

 

 

 

Figure 2.14: Activation of both ERK and AKT pathways are required for robust cell cycle 

entry. Time averaged ppERK and ppAKT levels correlate with Cyclin D levels. Basal 

levels of ppERK and ppAKT are increased (between 1X-20X) and each condition is 

simulated up to 6 hours. The time-averaged levels of ppERK and ppAKT are plotted 

against the time-averaged Cyclin D levels. Conditions representing EGF (10nM), Insulin 

(1721nM), and EGF+Insulin (10nM+1721nM) are shown with colored circles. 
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Figure 2.15: SPARCED model recapitulates downstream pathway activation by ligands 

and ligand combination treatments. Experimental data and simulation results from 

MATLAB (lines) and SPARCED (circles) models with EGF (top) and EGF+Insulin 

(bottom) stimulation for 6 hours. Plots show double-phosphorylated ERK (ppERK), 

serine-phosphorylated AKT (pAKT), and phospho-EIF4EBP1 (pEIF4EBP1) levels. . The 

numbers in gray shaded boxes represents numbering of conditions in Fig. 2.3A. Exp: 

Experimental data, Sim: Simulation. 
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Figure 2.16: (A) Bar plots corresponding to the conditions shown in Fig. 2.3C. Gray bars 

are experimental or simulation data from Bouhaddou 2018 model and blue bars are 

simulation results of SPARCED model. Bars represent mean ± s.e.m. (B) Etoposide 

treatment alone induces lesser cell death compared to Etoposide + Growth Factor 

stimulation, shown in Fig. 2.3D-E. (C) Percentage of cell death of 100 cells shown in (B). 

Bars represent mean ± s.e.m.    
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Figure 2.17: SPARCED model alteration guidelines - Steps of model expansion and 

context change procedures are listed. Refer to Table 2.2 for more details. Steps can be 

skipped if no changes are necessary. 
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Figure 2.18: SPARCED model alteration for U87 context. (A) The list of parameters and 

species values modified for SPARCED model context change from MCF10A cells to U87 

cells. (B) SPARCED_U87 model simulations reproduce previous observations, where 

U87 cells show increased response and sensitivity to AKT inhibition. MEKi: MEK 

inhibitor, AKTi: AKT inhibitor. Bars represent mean ± s.e.m. of 100 single cell simulations 

for each condition. 

B 

A 
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Table 2.2: SPARCED Model Alteration Steps 

SPARCED model expansion protocol SPARCED model context change protocol 

1 Decide if you need to add a new 
species, and a row to Species.txt for 
each new one. 

10 If no changes in model topology are 
required, and a model context change (i.e. 
cell type)  is desired, no new rows and 
columns are added. 

2 Define if the new species has a new 
gene and add a row to OmicsData.txt 
file. 

If the new species is a product of 
existing gene, no alteration in 
OmicsData.txt required. 

11a Update the OmicsData.txt file with new data 
of mRNA levels, gene copy numbers, and 
protein levels. Also update the constitutive 
mRNA translation rate constants.  

3 Add each new species as a new row to 
StoicMat.txt file. 

11b Update species initial concentrations in 
Species.txt file. The default concentrations 
here are steady-state values. 

3.1 If the new species has a new gene, 
define if it has a transcriptional activator 
and/or repressor. If No, add only row(s) 
in GeneReg.txt, with all zeros as the 
column values.  

If Yes, add row(s) to define the new 
gene(s) and column(s) to define the 
effector species. Define the 
transcriptional regulation parameters by 
entering non-zero values in the new 
row(s)/column(s). 

11c Update rate-law parameter values in 
Ratelaws.txt. This step could include a small 
number of manual alterations, like turning-
off a reaction. 

4 Set the new species’ stoichiometric 
coefficient for each reaction in 
StoicMat.txt file. 

11d Update experimental constraints and cell 
line specifics in Initializer.txt.  

5 Decide if you need to add a new 
reaction to the model (if not, skip to 9). 

12 Create the new SBML file and compile the 
new model using createModel.ipynb 
notebook. 

6 Add a new row for each new reaction to 
the Ratelaws.txt and set the 
corresponding rate parameters. 

13 Use the new cell line constraints 
(Initialization.txt) to calibrate the new model.  

7 Add a new column for each new 
reaction to the StoicMat.txt. 

14 Tune translation and degradation rate 
parameters using the initializeModel.ipynb 
notebook. 

8 Define the reactants & products of each 
new reaction and set their stoichiometric 
coefficients StoicMat.txt file. 

15 Save the new species concentrations and 
parameter values, then re-compile the 
model. The model is ready to run. 

9 Create the SBML file and compile the 
model using createModel.ipynb 
notebook. The model is ready to be 
imported and run. 

16 Do model unit re-testing within the new 
context. 
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2.4 Discussion 

Here, we have re-created one of the largest mechanistic models in the literature, 

using our new python-based creation and simulation pipeline.  Our modeling pipeline 

and model creation recipe are based on structured and easy to modify input text files 

and uses Jupyter notebooks or scripts (for scaled cloud-computing) to create and 

simulate model files. It also enables easier model alteration (species/rate law or 

parameter value changes), omics data integration, and model variant vs. hypotheses 

testing. Our exemplar model, called SPARCED, is available online on GitHub 

(github.com/birtwistlelab/SPARCED). While the pipeline we introduce is a recipe for 

large-scale model construction, the SPARCED model itself can serve as a basis for 

creating context-specific (personalized) model variants, studying virtual cell population 

responses, and as a building block towards whole-cell-scale models. 

We showcased the use of SPARCED model by changing the cellular context of 

the model from MCF10A breast epithelial cells to U87 glioblastoma cells, by only 

replacing parameter values in a few input files. Although we used previously calculated 

values from the Bouhaddou2018 model to show reproducibility of the subsequent 

analyses, it is notable that SPARCED pipeline correctly creates and simulates a large-

scale mechanistic model file only from an altered set of text-based input files. 

Additionally, we created a new version of the Initialization script that utilizes another cell-

line specific input file to calibrate the model initial conditions. The initialization allows 

distribution of total protein and mRNA level omics data across all model species and 

estimates data-driven, cell-line specific translation rate constants. As a customizable set 

of steps, the initialization sustains user defined phenotypic responses, like cells not 
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going into apoptosis or cell cycle without growth factor stimulation. Importantly, the 

procedure accommodates mRNA input alone (without proteomics data) and calculates 

total protein levels using gene-level mRNA-to-protein ratios from the default MCF10A 

values. The outputs of the initialization procedure are species concentrations and 

parameter values deposited into a new SBML file, which is exported with a new name 

and re-compiled using AMICI. 

Many existing big models are constructed in complicated and hard-coded ways 

and are not available in standard modeling formats, like SBML. For instance, the 

Bouhaddou2018 model we used as our starting point was custom coded in MATLAB 

with tens of different script files with thousands of lines. Although the model 

performance was optimized for its topology, alteration and expansion of the model was 

extremely difficult. However, models, especially the large-scale and clinically relevant 

mechanistic models, must become easy to formulate, understand, and disseminate for 

reproducibility, re-useability, and applicability in clinical decision making. Here, the 

model construction pipeline and the SPARCED model contributes to this need by being 

built upon structured and annotated input files, by using open-source packages, and by 

being available publicly on GitHub.  

One key advantage of the SPARCED model format is its potential compatibility 

with RBM. The reactions and species created by RBM software can be incorporated 

(manually or programmatically) into the SPARCED model input files. Although existing 

RBM software can export models in SBML format and enable multiple features, the 

SPARCED models enable single rate parameter changes and inclusion/exclusion of 

individual rate laws at the input file level. Then, the SPARCED-nf pipeline can be used 
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to study large-scale variant analysis or to do parameter scanning. One main goal of the 

AMICI package106 (95) is enabling large-scale parameter estimation, and our choice to 

use this package was to enable such future endeavors when needed. Combining this 

idea to test consistency across multiple datasets, users can search for best-fit models or 

pinpoint discrepant datasets given the model topology63. 

The SPARCED model encodes intrinsic stochasticity of total protein levels and 

mRNA numbers in its hybrid simulation mode, making it unique (together with the 

Bouhaddou2018 model) to offer stochastic as well as deterministic simulation settings 

within a single model of this biological and time scale. There are other tools such as 

COPASI that offer hybrid (deterministic + stochastic) simulation settings95,107. Our hybrid 

simulation approach treats the gene expression module as stochastic (events modelled 

as Poisson processes) and the protein signaling module as deterministic. COPASI uses 

next-reaction-method108 for the part it determines as stochastic based on molecule 

numbers of the interacting species. However, as the developers stated, such 

implementations tend to be inefficient and take prolonged simulation wall-times. Indeed, 

COPASI (v4.25, build 207, on Windows 10 Pro) fails when we try to simulate our model. 

A next step for the SPARCED model is to combine the gene expression (scripted) and 

protein signaling (SBML file) modules into a single SBML model file. Such a change 

would enable broader cross-platform testing and usage of the SPARCED model. As 

stated above, even the current SPARCED model SBML is too big for most tools 

available to accurately simulate for the relevant time scales (24-72 hours). New 

numerical / algorithmic methods are required to simulate large-scale hybrid models109. 

The single-cell capability of SPARCED allows one to capture some important aspects of 
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cell line and tumor heterogeneity compared to an average cell condition (the way many 

mechanistic models are built). Users can leverage this feature to simulate virtual 

populations and study a cell population response to drug treatment, which is often a 

single-cell readout as are most cellular phenotypes. However, such simulation settings 

require larger computational resources and thus model compatibility for high 

performance computing environments. The SPARCED model is built to be compatible 

with cloud computing, where it can be used to simulate thousands of single cells with 

single job execution (see Methods). 

There are, of course, some shortcomings and remaining challenges. Although we 

extensively showed that the SPARCED model creation/alteration is much easier 

compared to previous version, it still is a (careful) stitch-together of other models. There 

are certainly other models that can be substituted and tested. The tab-separated input 

files separate model details from the simulation itself and offers multiple advantages 

mentioned throughout this work. However, it can be seen cumbersome for some 

modelers. These input files include species and compartment annotations, but there are 

other recent efforts to standardize such metadata/annotation sharing, which we would 

conform to when fully developed 110. The hybrid mode of SPARCED includes Python 

scripts for stochastic simulation of gene expression module. By defining this module in 

another SBML file, and using packages like SBML comp111, one can start exploring 

other methods and tools for performance testing. However, a full comparison to other 

hybrid and stochastic methods requires computational tools that are yet to be developed 

that work with models of this size. Additionally, we do not provide scripts to merge new 

models into SPARCED, and the field of model merging is an active research 
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area90,111,112. For instance, researchers can write code to insert new reactions and 

species from other model files into existing input files, which would then also require to 

update OmicsData.txt input file with new gene information. Yet, in our experience, model 

merging often necessitates human interaction to define the mechanisms by which 

species interact with one another and what rate laws should define those interactions. 

Finally, if one desires to alter the model at the Antimony file stage, there are currently no 

automated ways we provide to map the changes onto input files. This would be possible 

if desired but was not studied here. 

SPARCED is a large-scale pan-cancer pathway model that incorporates six 

major sub-modules, making it one of the state-of-the-art computational models for 

mammalian signaling. However, it does not yet include one of the hallmarks of cancer, 

the cellular metabolism mechanisms113. Additionally, the current version of the 

SPARCED simulation code does not explicitly track cell division events, although the 

cell cycle itself is modeled. However, this is ongoing work and will enable us to better 

capture and compare to experimental observations and data, such as traditional drug 

dose viability response experiments that are fundamentally related to tracking single 

cells and their division / death events. 

One of the challenges is to explore simulations of spatially aware single cells. 

Currently, the SPARCED model captures intrinsic heterogeneity of cells (by having 

stochastic gene switching and mRNA birth/death events) but these cells cannot “talk” to 

each other. In the future, by having scenarios where spatial orientation of cells are 

recorded and the secreted or stimulated molecules are shared between them, we can 

better capture tissue microenvironment and heterogenous pharmacokinetics114,115. 
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Related to this first task, the second challenge is to create and simulate scenarios with 

multiple cell types (i.e., models trained on data from different subtypes of cells) or 

defining events to capture differentiation of cells.  For example, one may be able to use 

single cell RNAseq data to train SPARCED-like models to enable tissue-level 

simulations with the critical cell types in the proper geometric locations. This overall 

vision would enable spatially aware, single-cell level, large-scale mechanistic models 

trained on individual patient data for in silico drug screening. The pipeline presented 

here is an important step towards this goal. 

Another challenge to achieve using large-scale models is a whole-cell level 

mechanistic model for mammalian cells90,116. With our approach, the SPARCED model 

can be enlarged using other small-scale models for pathways and mechanisms not 

currently included in the model. By utilizing the unit testing approach, one can then 

verify the model performance and get larger, more comprehensive models. The open-

source framework presented here increasingly facilitates community contribution for 

model context-change and parameter tuning based on new experimental conditions. 

Our introduced method of large-scale mechanistic model construction, and the 

SPARCED model as a basis, will enable researchers to more easily create and 

manipulate new model versions, test different mechanisms of action to interpret 

experimental observations, and change the model’s cellular context. The models 

created by the SPARCED pipeline can incorporate multiple (omics) datasets, providing 

non-“black-box” data integration and modeling; however the extent to which a fixed 

“initialization” pipeline can be successfully applied to a variety of cell lines remains to be 

tested. These SPARCED models additionally provide single-cell level simulations, 
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compatibility with cloud computing, and human-interpretable & annotated model files in 

SBML format (as do other modeling tools, albeit not at this scale). The SPARCED model 

now can more easily be re-used as one of the largest mammalian-cell mechanistic 

model in the literature and serves a primer role in creation of context-specific, 

hypotheses testing, and expandable models. In conclusion, the SPARCED model 

format contributes towards important foundations of reusable big models, paving the 

way towards personalized mechanistic models for data integration. 

2.5 Materials and Methods 

2.5.1 Computational Methods 

The Bouhaddou2018 model 

The Bouhaddou2018 model (Fig. 2.1a) is one of the largest single-cell 

mechanistic models for mammalian cell signaling regulating proliferation and death. The 

first version of the model used as a test case in this work was written in MATLAB (The 

MathWorks, Inc.)32. The model is a hybrid of deterministic and stochastic modules. The 

deterministic module describes the concentration dynamics of 774 proteins, protein 

complexes, and post-translationally modified species through 2449 reactions using the 

Sundials CVODEs package for simulation117. The stochastic module describes gene 

state (active/inactive) and mRNA birth/death dynamics for 141 genes. The deterministic 

and stochastic modules exchange information every 30 simulated seconds. In short, the 

current levels of select protein states can induce changes in gene 

activation/deactivation and/or mRNA transcription/decay rates. The newly updated 

mRNA copy numbers change nascent protein translation rates in the deterministic 

module. 
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The SPARCED Model 

We converted the Bouhaddou2018 model into a Python + SBML93 format (Fig. 

2.1b). The deterministic module is ultimately encoded in an SBML file (.xml) whereas 

the stochastic module is written in Python. A foundational and important feature of this 

recoding effort is that the SBML file is generated from a small set of simple structured 

input text files (Fig. 2.1c) via Python scripts. Introduction of such structured input files 

and associated Jupyter notebooks enables simple alteration of model structure and/or 

parameter values, for example turning on/off certain interactions. The input files also 

enable rigorous annotation of model features using, for example, ENSEMBL118 and 

HGNC119 identifiers, which is seldom done in such mechanistic modeling. 

Input files: 

There are six SPARCED model input text files (tab separated values), each with 

a defined structure as detailed below. The user can change these files to create and 

compile a new model.  

(1) OmicsData: This file includes the gene copy number, mRNA copy number, 

and proteomic data. This input file also contains rate constants for the stochastic 

module and initialization procedure. Each row of the file corresponds to one gene and 

the columns are different data types. The first column is gene name (HGNC identifiers), 

the second column is gene copy number, the third column is mRNA molecule copy 

number per cell (mpc), the fourth and fifth columns are rate constants of gene 

inactivation and activation respectively (s-1), the sixth column is constitutive transcription 

rate constants (molecules per second), the seventh column is maximal transcription rate 

constants (molecules per second), the eighth column is mRNA degradation rate 
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constants (s-1), the ninth column is protein copy number (mpc), the tenth column is 

protein half-life parameters (seconds), and finally the eleventh column is the translation 

rate constants (s-1). These latest set of rate constants are from literature and provided 

for genes for which our omics input lacked protein level data. All the rate constants are 

taken from the Bouhaddou2018 model. Users can add new rows to this file, using 

RNAseq data to estimate mRNA levels for the genes to be added32. When adding genes 

(rows) to the model, a reasonable starting point for rate constants (or other values), in 

the absence of any other data, is to use median values from the genes/parameters 

currently in the model.  

(2) Species: This file contains information about the species in the deterministic 

module. Each row corresponds to one species (protein, protein complex, post-

transcriptionally modified species). Transcripts (in nM) are also included in this file 

because they are regarded as species with updated concentrations in the stochastic 

module every 30 seconds and are used in translation rate laws. The first column is the 

species name. Names can be arbitrary so long as they are unique in the model. 

Importantly, the name list needs to match the first column in the 

StoichiometricMatrix file described below. The second column is the species 

home compartment. The home compartment of a species defines its cellular 

localization. A species can reside in a compartment defined in the Compartments input 

file: currently Cytoplasm, Mitochondria, Nucleus, or Extracellular. The third column is 

initial condition in nM units, with respect to the home compartment volume. These 

values are taken from the Bouhaddou2018 model, post-initialization. The fourth column 
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is a comma separated list of ENSEMBL gene identifiers corresponding to gene products 

present in the species. 

(3) Ratelaws: This file has a row for each reaction in the deterministic module. 

The first column is the unique (arbitrary) name of each reaction. Currently, we named 

each reaction based on the related sub-module (e.g., vA1-87 for Apoptosis and vC1-104 

for Cell Cycle). The number and order of rows in this file should match the columns in 

the StoichiometricMatrix input file defined below. The second column in this file 

contains the home compartments for the reactions. The designated compartments 

should be one defined in the Compartments input file: currently Cytoplasm, 

Mitochondria, Nucleus, or Extracellular. The home reaction compartments define the 

effective search volume for each reaction and are used to rescale concentrations when 

appropriate. Note that both species and reactions have home compartments defined, 

where a species can participate in a reaction defined in a different compartment. For 

instance, the EGF binding to EGFR reaction occurs in extracellular space (volume Ve), 

where EGF’s home compartment is the extracellular space and EGFR’s home 

compartment is cytoplasm (Vc). A volumetric correction for EGFR concentration in this 

rate law is done by multiplying by the ratio of Vc/Ve. The third column can have either a 

number or a reaction formula. If it is a number, it means the corresponding reaction is 

mass-action type, and the number is the rate constant for that reaction in units of nM 

and seconds. Note that the reactants and products are defined in the 

StoichiometricMatrix input file. If the third column is a formula, it means the 

reaction will follow that rate law, and the next set columns in that row are the values of 

each parameter defined in the formula in the third column, again in units of nM and 
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seconds. The rate law can include any species name described in the Species input file. 

The parameter names in the rate law should start with “k” and be unique in that formula. 

We distinguish multiple parameter names with an underscore and ascending list of 

numbers (e.g., kA_1, kA_2). During model generation, all parameter names in this file 

are re-named in an ascending order based on the number of rate laws. The full list of 

parameter name/value pairs are output into a new file (ParamsAll) for user reference.  

(4) StoichiometricMatrix: This file defines the reaction stoichiometry, and 

therefore the reactants and products of model reactions. The rows correspond to the 

Species input file and the columns correspond to the rows in the Ratelaws input file. 

Here, the species and rate law names should match the names defined in Files 

Species, Ratelaws and Observables. Each element (starting at the second row 

and second column index) has a stoichiometric coefficient (typically -2, -1, 0, 1, or 2), 

where negative sign indicates reactants, and positive sign implicates products of a 

reaction. 

We also provide an option to not use the stoichiometric matrix as an input file 

(see github.com/birtwistlelab/SPARCED/tree/noStoicMat). Instead, the reactions are 

defined within a new column in the updated RatelawsNew input file. 

(5) GeneReg: This file describes transcriptional activation and inhibition 

interactions, where rows correspond to genes (the same order as the first column of 

OmicsData) and columns to species that are defined as activators or repressors of 

transcriptional activity. The first column is gene name (HGNC format). There are 

currently seven more columns in this file, each corresponding to one species defined as 
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an activator or a repressor (e.g., p53 induces p21 transcription or AP1 inhibits cFOS 

transcription). A single value of zero indicates no effect. A non-zero entry in row i and 

column j denotes that species j regulates gene i transcription. The non-zero entries 

have the form “A; B”, where “A” is the hill coefficient and “B” is the half-maximal 

concentration of the species “j” effect. To simplify the input file structure, we use positive 

values of “A” to denote activation, and negative “A” values to denote inhibition. This file 

is used by the stochastic module script to update mRNA levels. To add additional 

transcriptional regulators (activators or repressors) into the SPARCED model, users 

should add as many columns as new regulator species and populate the columns with 

corresponding rate constants. 

(6) Compartments: This file contains the names of compartments in the model 

(first column), the volume of the compartment in liters (second column), and the 

corresponding GO-term of the compartment (third column). The compartment names 

should match the compartment names listed in Species and Ratelaws input files. 

(7) Observables: This file contains information about model observables. Each 

observable corresponds to the compartmental-volume-corrected summation of all 

formats of a protein. There are 102 observables defined (columns) for the model 

species (rows) in this file. The entries are either 1 (the species in the row is part of the 

observable in the column) or 0 (otherwise). The “createModel” Jupyter notebook uses 

this file to define an observables variable as an input for the AMICI model compiler. 

(8) Initializer (Optional): This file (Supplementary File 16) contains 

information used for model initialization. Species concentrations (columns 1-2), mRNA 



63 
 

level adjustments (columns 3-4), parameter values (columns 5-7), observables to 

exclude from translation rate adjustments (column 8), and single parameter scan range 

(columns 9-11) are populated for each step of initialization. The steps used here are 

shown to work to get a good starting point for serum starved MCF10A cells, which do 

not undergo apoptosis or enter cell cycle without growth factor stimulation, in 

deterministic simulation mode. 

Dependencies 

(1) Docker: As is the practice with Kubernetes-compatible workflows, all model 

dependencies and runtime environments are Dockerized into a downloadable 

image for self-contained model execution. This means when a job for 

SPARCED-nf is launched on the Kubernetes cluster, it will download the 

Docker image for SPARCED-nf and execute the model within that container. 

The Docker image for SPARCED-nf is built on the Ubuntu-18.04 operating 

system with python3 installed, as well as a few minor system utilities required 

for AMICI. The image can be found at 

https://hub.docker.com/repository/docker/birtwistlelab/sparced. 

(2) Nextflow (nf): In this cloud-scalable version of the model, the Jupyter 

notebooks have been converted into python source code and re-modularized 

for greater parallel-simulation efficiency. The process of creating and 

executing the model is handled entirely by Nextflow, a workflow-

management application and language for building resilient pipelines. When 

SPARCED-nf is launched, Nextflow begins by creating a head pod on the 

cluster to coordinate each of the jobs needed to run the model. The head pod 

https://hub.docker.com/repository/docker/birtwistlelab/sparced
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creates smaller jobs that each download the containerized dependencies 

from Dockerhub, pull the model source files from the SPARCED-nf GitHub 

repository, and run the assigned process. Once the model has completed 

execution, the output files are saved to a section of the Kubernetes cluster 

called the persistent volume claim (PVC), where they remain stored in the 

cloud for user download. 

SPARCED-nf model simulation set-up 

SPARCED-nf uses the same tab-separated-value input files as SPARCED. For 

SPARCED-nf to build and execute, the files are copied into the aforementioned PVC for 

workflow access. This is done with kube-runner 

(https://github.com/SystemsGenetics/kube-runner), a submodule for automating 

common PVC tasks with Kubernetes’ kubectl tool. The kube-load.sh file is used to write 

new input to the PVC, and kube-login.sh is used to access and delete old input files 

from the cluster. 

Along with its scalability, SPARCED-nf is also highly customizable. The 

nextflow.config configuration file is used to define the specifics of simulation scenarios. 

(1) nextflow.config: This configuration file has two main sections. In the first 

section (called K8), users define the Kubernetes namespace specifics and 

folder configurations. In the second section (called params), users customize 

runtime arguments for simulation settings. The available parameters are 

input_dir_name (the directory name of the input files), flag_deterministic 

(flag=1 for deterministic or flag=0 for hybrid simulations), sim_time (simulation 

time in hours), Vol_nuclear (volume of nuclear compartment in liters), 
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Vol_cyto (volume of cytoplasmic compartment in liters), speciesVals (species 

names + initial concentration values to start from), ratelawVals (parameter 

names + values), and numCells (number of single cells if the simulations are 

hybrid). Importantly, the “speciesVals” and “ratelawVals” parameters allow 

users to pass in a formatted string to specify parameter sweeps. Using these 

in conjunction with the “numCells” parameter, the user can simulate 

thousands of cells in hundreds of different microenvironments in a single 

execution. 

(2) SPARCED-nf:model_build: Analogous to “createModel.ipynb” in SPARCED-

jupyter model, this phase of the Nextflow pipeline constructs all necessary 

files for the model simulation. 

(3) SPARCED-nf:split_from_params: This is the major parallelizing step of 

SPARCED-nf. Having received the relevant model files from the last step, the 

workflow ingests the speciesVals, ratelawVals, and numCells arguments set 

by the user in the nextflow.config. Using the input files, it creates new input 

files to satisfy the user-specified parameter sweeps. Each new input file 

permutation is moved into its own new folder, and each such folder is 

duplicated numCells times. 

(4) SPARCED-nf:model_run: This final step of the Nextflow workflow is 

responsible for model execution and output generation. Each folder created in 

the previous step above serves as the unique runtime environment in this 

step. The model pulls assigned simulation input files associated with the 

folder. Each instance of this step is run in parallel across different simulation 
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environments. Functionally, the code executed is very similar to the 

“runModel.ipynb” notebook and the model outputs are saved to the PVC. 

When the models complete execution, each SPARCED-nf:model_run instance 

saves its output to a unique folder on the PVC. To download these folders to the local 

filesystem, users can employ kube-save.sh (from the kube-runner module). 

Code Availability 

The final model scripts, files, and information are available in Birtwistle Lab 

GitHub repository, github.com/birtwistlelab/SPARCED and 

github.com/birtwistlelab/SPARCED/tree/noStoicMat. 

Computational standard-error-of-the-mean 

We report the s.e.m. for simulations (Figs. 3c, 3e, Supplementary Figs. 9a-e, 

10a-b, 13a, 13c, and 14c) using the ratio of binomial proportions. See equation (1) 

below, where the “Percentage of cells” corresponds to the percentage of cells showing 

the phenotypic readout (i.e., percentage of cells in S-phase, percent cell death) and the 

“Number of total cells” is the number of starting single-cell simulations, usually 100. 

𝑠. 𝑒. 𝑚. =  √
𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒_𝑜𝑓_𝑐𝑒𝑙𝑙𝑠 ∙ (100 − 𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒_𝑜𝑓_𝑐𝑒𝑙𝑙𝑠)

𝑁𝑢𝑚𝑏𝑒𝑟_𝑜𝑓_𝑡𝑜𝑡𝑎𝑙_𝑐𝑒𝑙𝑙𝑠
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Chapter 3 

COMPUTATIONAL SPEED-UP OF LARGE-SCALE, 

SINGLE-CELL MODEL SIMULATIONS VIA A FULLY-

INTEGRATED SBML-BASED FORMAT 

3.1 Author Contribution 

The work presented in this chapter has been adapted from the following 

publication: 

Mutsuddy, A., Erdem, C., Huggins, J.R., Salim, M., Cook, D., Hobbs, N., 

Feltus, F.A. and Birtwistle, M.R., 2023. Computational speed-up of large-

scale, single-cell model simulations via a fully integrated SBML-based format. 

Bioinformatics Advances, 3(1), p.vbad039. 

The contribution of the candidate involved curation of data, composition of model 

input files, development of software pipeline for model construction, validation of model 

construction and simulation protocols, software optimization, investigation, performance 

benchmarking, writing and visualizations. 
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3.2 Abstract 

Large-scale and whole-cell modeling has multiple challenges, including scalable 

model building and module communication bottlenecks (e.g. between metabolism, gene 

expression, signaling, etc). We previously developed an open-source, scalable format 

for a large-scale mechanistic model of proliferation and death signaling dynamics, but 

communication bottlenecks between gene expression and protein biochemistry modules 

remained. Here, we developed two solutions to communication bottlenecks that speed 

up simulation by ~4-fold for hybrid stochastic-deterministic simulations and by over 100-

fold for fully deterministic simulations. Fully deterministic speed-up facilitates model 

initialization, parameter estimation and sensitivity analysis tasks. 
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3.3 Introduction 

Recapitulating the behavior of single cells in silico is a grand challenge not only 

for systems biology, but also for biology in general. Such an accomplishment would 

imply that we have a thorough understanding of all the cellular and sub-cellular 

processes that give rise to relevant phenotypes. Such models could enable rational 

engineering for biotechnology applications, or forward predictions in precision 

medicine120–123. Large-scale and whole-cell modeling is a suitable foundation for 

meeting such challenges90,124,125). The first such efforts focused on genome-scale 

metabolic modeling in multiple organisms126,127. Subsequent efforts focused on 

integrating multiple “modules” in addition to metabolism (e.g. gene expression, 

signaling, etc.) in single-celled organisms such as M. genitalium, E. coli, and S. 

cerevisiae56,58,126,127, and a minimal lab-generated cell128, but the lack of dedicated tools 

specifically for large-scale / whole-cell models presented roadblocks for reuse. 

Algorithmic developments included rule-based modeling to specify reactions more 

compactly129, and model composition tools87,95,130,131, but large-scale models often still 

presented challenges. More recent work has provided such tools like AMICI106 that 

enables SBML-specified models to be simulated quickly, PEtab132,133 and Datanator134 

(Roth et al., 2021) that specifies data formats for parameter estimation, formalisms that 

can help with unambiguous species naming135, and composition approaches such as 

SBML merging136 and ours that simplify model aggregation and expansion in ways that 

are compatible with efficient large-scale simulation algorithms and easy to reuse137. Not 

unexpectedly, however, there remains much work to be done to even technically enable 

large-scale and whole-cell modeling. 
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Here, we focused on improving communication between different modules as a 

major impediment for computation speed in large-scale modeling (Fig. 3.1). We used 

our recently published SPARCED model as a test case, a large-scale mechanistic 

model of proliferation and death signaling in single mammalian cells. This model 

consists of 141 genes, and 1196 unique biochemical species. It is built by translating a 

simple set of structured input text files into an SBML-compliant module that captures 

“protein biochemistry” (signaling) and is simulated using AMICI, and a module that 

captures “gene expression” using python. It can be simulated in a hybrid 

stochastic/deterministic mode, where gene expression dynamics follow Poisson-like 

processes, or a fully deterministic mode. Regardless of the mode of operation, 

computation speed was a major concern. Continuation of our work with the SPARCED 

model relies on our ability to perform more complex and resource-intensive 

computation, such as model initialization, parameter estimation and sensitivity analysis. 

Even though many such tasks require only deterministic operation, insufficient 

computation speed with multi-module deterministic formalism precluded further 

analysis, which motivated us to seek further improvement in computation speed for the 

general operation of the SPARCED model. 
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Figure 3.1: Workflow of the SPARCED model. (A) Simulation workflow of the original 

SPARCED model highlighting the bottleneck of communication between the gene 

expression module and the protein biochemistry module. One speedup reported here 

targets that bottleneck for faster stochastic simulations. (B) A new simulation workflow 

reported here that integrates the gene expression module with the protein biochemistry 

module using SBML, enabling large computational speed up for deterministic 

simulations. No solvers yet exist for stochastic simulations at this scale. 

A 

B 
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Figure 3.2: Computational speed-up of the SPARCED model 

A 
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Figure 3.2: Computational speedup of the SPARCED model. (A) Computation speed-up 

enabled by improving communication between modules (denoted by *; Focus 1) and by 

integrated SBML of the gene expression module with the protein biochemistry module 

(Integrated; Focus 2). Improving communication (Focus 1) yields 3-4 fold speed-up, and 

eliminating communication (Focus 2) yields ~100-fold speed-up. A relative speed of 1 

corresponds to 658 seconds. Error bars are from 10 replicate simulations. Simulations 

were performed on Palmetto (Clemson's HPC resource—Intel Xeon CPU 2.5 

GHz). (B) Area-under-curve for the dynamics of all model species in the original modular 

deterministic formulation and the integrated formulation. Simulated serum-starved 

MCF10A cells were treated with 1 nM EGF and 0.005 nM HGF and observed for 72 

hours. (C) An example trajectory for a biochemical correlate of cell division events from 

the simulations in D for both models, showing good agreement.  



74 
 

3.4 Results 

As is typical for large-scale models, communication between modules was done 

at specified simulation time steps, in our case every 30 simulated seconds. Using 

Python’s built-in code profiler tool, “cProfile” on our simulation code, we discovered that 

94.5% of the total execution time was being spent running NumPy processes that store 

information in arrays. This outcome indicated a potential lack of efficiency in simulation 

output handling. We further sought a more detailed profiling with “line profiler”, which 

tracks execution time for every line of code. These results showed 1.4% comprised 

stochastic gene expression, 15.8% comprised solving ODEs (AMICI), and 81.9% 

comprised storing solver results into a NumPy object for inter-module communication 

(with the remaining 0.9% on miscellaneous overhead). We thus focused on inter-

module communication as a rate limiting step for simulation speed (Fig. 3.1A—Focus 

1). 

During each 30 second time step, results from the “protein biochemistry” module 

are saved in a “results” object defined within the AMICI library. However, accessing the 

state matrix via the Python object interface incurred expensive reconstructions of the full 

NumPy array from AMICI-managed memory. These overheads could be largely 

avoided, since only the last column of the state matrix (corresponding to the most recent 

timestep) was needed at each iteration. By using direct access to the SWIG pointer 

referencing these state variables, we were able to avoid re-reading state data, yielding a 

3-4-fold simulation speedup (Fig. 3.2A—Focus 1). 

However, we reasoned that a potentially better solution to improving inter-module 

communication was to eliminate it altogether. This required a structural reformulation of 
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the entire SPARCED model, whereby both modules are contained within a single SBML 

file. The drawback to this so-called integrated SBML model is that no efficient numerical 

solvers yet exist to perform stochastic simulations on such large models. Nevertheless, 

fully deterministic simulations are still of use in certain situations, like model initialization 

by which we convert the cellular context of the model using multi-omics data30,32, 

parameter estimation, and sensitivity analysis. In contrast, a fully deterministic 

simulation with the previous formulation still required communication between the 

“protein biochemistry” ODEs, and the mean approximation of the stochastic “gene 

expression” module, subject to inter-module communication bottlenecks. In compliance 

with the original SPARCED model construction workflow, we re-designed the model 

building pipeline to use the same set of text-based input files to output two executable 

models, one of which is fully SBML-specified and the other retains the native hybrid 

multi-module formalism. (Fig. 3.1B—Focus 2). After implementing this change, an over 

100-fold computational speed-up was observed (Fig. 3.2A—Focus 2). We verified that 

simulation results obtained with this “integrated SBML” model were identical to the 

original model to ensure that the reformulation of the model and its build process had 

not introduced any errors (Fig. 3.2B-C). 
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Table 3.1: Comparison of COPASI and SPARCED. Deterministic and stochastic 

simulations have been run on COPASI using the LSODA method with duration set to 

259200(s), intervals to 8640 and interval size 30(s). The COPASI Time Course 

deterministic simulation was run using the default settings. Integrated Reduced Model 

was left unchecked. Relative Tolerance was set to 1e-6. Absolute Tolerance was set to 

1e-12. Max Internal Steps was set to 100000. The Max Internal Step Size was set to 0. 

The COPASI Time Course hybrid simulation was run using the default settings. Max 

Internal Steps were set to 1000000. The Upper and Lower Limits were set to 1000 and 

800, respectively. The Partitioning Interval was set at 1. Use Random Seed was left 

unchecked and random Seed was set to 1. 

 

  

Computer specifications: 
CPU: AMD Ryzen 5 5600g (6 
core) 
RAM: 64GB 
GPU: Nvidia GTX970 
OS: Ubuntu 22.04 

Execution time 
(COPASI) 
 
(minutes: seconds) 
 

Execution time 
(SPARCED) 
 
(minutes: seconds) 

Deterministic 

Trial 1 06:03.13 00:01.29 

Trial 2 06:03.29 00:01.31 

Trial 3 06:38.61 00:01.31 

Trial 4 06:03.37 00:01.37 

Stochastic 

Trial 1 > 20 minutes 01:45.58 

Trial 2 > 20 minutes 02:01.19 

Trial 3 > 20 minutes 02:04.34 

Trial 4 > 20 minutes 01:57.22 
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We next sought to examine whether this faster simulation framework provides a 

superior alternative to more commonly available general purpose simulation tools, such 

as COPASI95. We imported the integrated-SBML model into the COPASI GUI 

environment. As a test case, we ran the same deterministic or hybrid stochastic 

simulations using both COPASI and SPARCED (serum-starved MCF10A treated with 

growth factors for 72 hours). Both deterministic and hybrid stochastic performance were 

slower in COPASI (Table 3.1). 

3.5 Discussion 

In conclusion, here we provide code that speeds up simulation of a large-scale 

model of cell behavior by ~4-fold for stochastic simulations and ~100-fold for 

deterministic simulations, by focusing on improving or eliminating communication 

between modules. The substantial technical improvement is predominantly impactful 

towards our previous work, since it will facilitate model initialization, parameter 

estimation, and sensitivity analysis. We do not present this work as a general-purpose 

tool for large scale simulation, however, we believe that certain generalities in our 

methods and solutions may provide helpful suggestions for improvement in 

computational models of similar scale and structure. Namely, decreasing inter-module 

communication bottlenecks in stochastic and deterministic operation of large-scale 

models with multi-module formalism via more efficient variable handling and 

acceleration of fully deterministic simulation of such models by amalgamation of multiple 

modules into a single body mathematical description. We expect this to be impactful as 

a general strategy to further enable large-scale and whole-cell modeling, and also spur 
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the development of simulation algorithms that can perform stochastic simulations using 

an integrated formulation. 
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Chapter 4 

LINEAGE-RESOLVED MECHANISTIC MODELING OF 

STOCHASTIC SINGLE-CELL PROLIFERATION AND DEATH 

ENABLES DIRECT COMPARISON OF SIMULATIONS TO ANTI-

CANCER DRUG DOSE RESPONSE DATA TO ILLUMINATE 

GAPS IN DRUG ACTION KNOWLEDGE  

4.1 Abstract 

There is a large publicly-available body of anti-cancer drug dose viability 

response data that could improve data-starved mechanistic computational models of 

how cancer cells respond to drugs. However, simulation algorithms that enable a direct 

comparison of model output to experiment readout, often cell number (or a proxy) after 

several days of drug treatment, through mechanistic description of drug action, have not 

yet been described. We present such a simulation framework that tracks 

mechanistically-detailed single cell lineages to connect simulated drug dose effects on 

stochastic division and death events to cell number assay readouts. As an application, 

we simulated drug dose response experiments for four targeted anti-cancer drugs 

(Alpelisib, neratinib, Trametinib and Palbociclib) and compared them to experimental 

data. Simulations are consistent with data for strong growth inhibition by Trametinib and 

overall lack of efficacy for Alpelisib, but are inconsistent with data for palbociclib and 

neratinib. Discrepancies with data suggest that (i) the importance and/or essentiality of 

CDK4/6 (Palbociclib target) for driving the cell cycle is likely overestimated, and (ii) the 
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cellular balance between basal (tonic) and ligand-induced signaling is a critical 

determinant of response to irreversible EGFR inhibitors (Neratinib). This work lays a 

foundation for application of mechanistic modeling to large-scale drug dose viability 

response data sets.  
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4.2 Introduction 

One of the grand challenges of systems biology is to build a comprehensive and 

quantitative understanding of the structure and functionality of living cells. Towards this 

purpose, whole cell model, that can describe the function of every gene and its products 

in an organism is an attractive manifestation of such a goal. Even though first drafts 

have been described for some micro-organisms58,120 such a feat is yet to be achieved 

for human cells. Nevertheless, a wide range of individual pathway28,29,104,138–150 and 

integrative multiple pathway32,75,151,152 human cell models have been published which 

may be leveraged to build a foundation for the future human whole cell model116,153. 

Such comprehensive models have the potential to contribute to solving biological 

challenges such as predicting multiscale phenotypes regulated by complex signal 

transduction and metabolic networks154–158, diagnosis of disease states and their 

progression159,160, and development of efficacious therapeutic procedures161–163. 

A major challenge in improving these models is the sheer complexity of biology 

and the limitations of our current understanding164,165. Conducting dose-response 

experiments on cell lines provides an effective means to perturb biological systems and 

uncover novel insights into biological pathways166–168. Numerous large-scale 

databases33–35 exploring drug sensitivity of a wide array of cell lines are available in the 

literature, and assessing how well computational models based on current knowledge 

can explain this data can reveal existing knowledge gaps and inform next stages of 

research.  

An obvious pre-requisite to leveraging such data sets for these purposes is the 

existence of robust methods for comparing simulations appropriately to experimental 
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readouts. The overwhelming majority of anti-cancer drug dose response viability assays 

measure cell number, or a proxy for cell number. It is challenging to generate a 

conceptual analogue of such metric using mechanistic models that describe events at a 

lower scale, such as single cell or subcellular processes. In recent years, more accurate 

representations of mechanistically informed dynamic cell populations have been 

simulated using agent based modeling in process control and optimization of production 

of therapeutic proteins using mammalian cell culture169, analyzing the impact of cell 

population heterogeneity in colony and tissue context170 and elucidating the role of 

heterogeneity in IFNβ signaling171. However, the computationally intensive nature of 

these modeling tools172,173 and technical limitations to incorporate sufficient molecular-

level details may challenge their expansion and applicability. Therefore, unlike pathway 

specific or multi-pathway mechanistic models, it is difficult for multi-scale agent-based 

models to capture cellular and subcellular processes at the same level of details. 

Moreover, applying such an approach to reconcile biological pathway models with dose-

response experiment data remains unexplored. 

In this work, we present an algorithm that combines detailed mechanistic 

descriptions of anti-cancer drug action with lineage tracking-based recording of 

individual division and death events to construct simulation outputs that are directly 

comparable to drug dose viability response assays. As a test case we use a previously 

developed large-scale model of single mammalian cell proliferation and death, 

SPARCED174, and add to it mechanistic pharmacodynamic models based on known 

binding interactions between drugs and modeled targets. First, we describe the 

algorithm and the types of novel analytics that can be derived, such as cell population 
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dynamics, cross-generational biomarker tracking for cell lineages and cell population 

dendrograms. Then, we simulate dose responses to multiple drugs, namely, Alpelisib 

(PI-3K inhibitor), Trametinib (MEK inhibitor), Palbociclib (CDK4/6 inhibitor) and Neratinib 

(EGFR inhibitor). The results show agreement with experimental results for strong 

growth inhibition by Trametinib and overall lack of efficacy for Alpelisib, but substantial 

discrepancy for Palbociclib and Neratinib. Deeper analyses investigating the reasons for 

these differences suggests that (i) contemporary belief in the importance of CDK4/6 for 

driving cell cycle completion is likely to be overestimated, and (ii) the cellular balance 

between basal (tonic) and ligand-induced ERK signaling is a critical determinant of 

response to irreversible EGFR inhibitors. This work may serve as a foundation for 

mechanistic analysis of experimental drug dose viability response data sets. 
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Figure 4.1: Computational workflow of the variable cell population simulation. 

Generation-specific multiple-step iterations of the stochastic SPARCED single cell model 

is performed to approximate a dynamic cell population. An asynchronously cycling 

starting cell population is initiated as the first generation. Upon the execution of each 

generation, observed division events or lack thereof determine the fate of next 

generation and variable number of generations are created until no new cell divisions 

are detected within simulation time. 
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4.3 Results   

4.3.1 Lineage-resolved single-cell simulation framework 

We first set out to construct a simulation algorithm that mirrors drug dose 

response viability assays (Fig. 4.1). These assays typically start with a population of 

asynchronously cycling cells that are treated with drug for ~3 days and then assayed for 

final cell number (or a metric proportional to it). The final cell number is related to the 

number of cell division and death events each initial single cell ultimately experienced. 

Thus, the simulation algorithm should start with a population of asynchronously cycling 

cells and be able to count the individual division and death events from each initial cell. 

Throughout this manuscript, we use our previously published mechanistic model of 

single cell proliferation and death signaling174  representing MCF10A breast epithelial 

cells (SPARCED), although any single-cell resolved model with division and death event 

readouts is in principle compatible with the below-described algorithm. 

We create a simulated population of asynchronously cycling, drug treated single 

cells via the following (Fig. 4.2). The initial model state is an average, serum-starved cell 

(non-cycling). The first step is to generate a population of cells with heterogeneous 

gene expression profiles, enabled by descriptions of intrinsic noise in gene expression 

as previously described32. We refer to this process as heterogenization. After 48 

simulated hours (a period of time when the distribution of most protein levels across the 

cell population stabilizes), the addition of full growth media is simulated (in the case of 

MCF10A cells and this model—EGF and Insulin). Subsequently, synchronized cell cycle 

progression is observed in simulations for an additional 48 hours, creating so-called 

“Generation 0”. To convert these Generation 0 synchronized cells into Generation 1 



86 
 

asynchronously cycling cells, we sample random times during the 48 hour full growth 

media treatment window for each single cell. These selections become initial conditions 

for Generation 1, which is then subjected to simulated drug treatment for 72 hours. 

Once these simulations are completed, the outputs are analyzed to determine 

cell division events (based on CyclinB-CDK1 peaks—see Methods) and the time point 

when each event occurred (Fig. 4.2). Based on the cell division time points, the 

remaining simulation time and (difference between division time and 72 hours), initial 

conditions for each daughter cell are determined for the next generation, and lineage 

information is recorded. Subsequently, simulations for the next generation are run and 

this cycle continues until no division events occur in a given generation. Detected cell 

death events (based on cleaved PARP dynamics), halt a lineage.  

These simulations not only enable close replication of typical drug dose response 

experiments but also lineage-resolved analyses. For example, individual division and 

death events from a parental cell can be tracked (Fig. 4.3A). It also allows dynamic 

tracking of observables (such as ERK or AKT activity) across multiple generations of 

any single cell lineage (Fig. 4.3B-C). Such capability may generate hypotheses linking 

drug sensitivity or resistance with cell fates and lineage, or variations in biochemistry 

that predispose cells to response or resistance. 
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Figure 4.2: Initiation of asynchronously cycling variable cell population. Starting cell 

population is initiated using a pool of single cell simulations run with growth factor 

stimulation (generation 0), from which initial conditions are sampled from random 

time points to generate an asynchronously cycling cell population (generation 1). 

Generation 0 cells are initiated from a serum starved condition and can only enter 

cell cycle after a certain period of incubation, which is evident from their active 

CyclinB-CDK1 trajectories. Generation 1 cells may undergo various stages of cell 

cycle at the start of simulation time, which resembles the condition of cells in a dose 

response assay. 
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A 

B C 

Figure 4.3: Visualizations generated from cell population simulations (A) In-silico 

lineage tracing capability demonstrated with a single cell lineage tree. Lines 

representing individual cells are labeled with generation and index. Changes in color 

indicate inception of a new generation at that time point. Here, blue = generation 1, 

yellow = generation 2, green = generation 3, red = generation 4, purple = generation 

5 (B,C) Cross-generational trajectory of observed ERK and AKT activity from a 

generation 1 single-cell lineage, same color code as the cell lineage tree is applied 

to these visualizations as well.  
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4.3.2 Comparing Simulated Drug Dose Responses to Experimental 

Measurements 

Now with an algorithm that enables single-cell mechanistic models to be 

simulated in ways analogous to drug dose viability response experiments, and a model 

(SPARCED) that describes mechanisms of cell proliferation and death signaling in 

MCF10A cells, we could compare model predictions to such experimental data175–178. 

Specifically, we focused on four previously-studied, targeted anti-cancer drugs for which 

our model includes primary and significant off-targets:  Trametinib (MEK inhibitor), 

Alpelisib (PI-3K inhibitor), Neratinib (EGFR inhibitor), and Palbociclib (CDK4/6 

inhibitor)179.  

First, we extended SPARCED by including known drug interactions with protein-

level target species and leveraging previously described capabilities to robustly and 

easily increase model scope174. literature resources180–183 were utilized to retrieve 

information about the binding affinity of the selected drugs for known proteins (which are 

included as model species) representing their on-target and off-target effects. Reactions 

depicting the drugs interacting with these proteins to form complexes were included in 

the model with parameter values calculated from the binding affinity data. These drug-

protein complex formations represent the pharmacodynamics of individual drugs in 

terms of the extent to which they perturb the modeled biological pathways. Specific 

details of individual drugs and their actions as well as validations by simulation tests 

have been included in the methods section. 
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We then performed lineage-resolved simulations for various doses of the 

modeled drugs for which experimental data are available179, with no adjustment to the 

SPARCED model. This framework allows direct simulation of the dynamic cell 

population in response to drug doses (Fig. 4.4A). Also, the effect of drug action over cell 

lineages can be visualized by dendrogram plots, with horizontally connected lines 

corresponding to one of the initial 100 single initial cells (Fig. 4.4B-D). The simulation 

outputs were used to calculate dose response using the growth-rate inhibition184 metrics 

which is the same method applied to the available experimental dataset, allowing direct 

comparison of experimental and simulation results (Fig. 4.5). The simulation results for 

Trametinib (Fig. 4.5) demonstrate surprising agreement with experimental data. The 

simulations also captured the overall lack of efficacy for Alpelisib (Fig. 4.5), although 

there are some slight deviations between experiment and simulations yet to be 

explained. On the other hand, predicted Palbociclib and Neratinib   responses were 

substantially different from experiments, indicating significant knowledge gaps in 

SPARCED and perhaps in the general signaling literature, which we investigate in the 

subsequent sections. 
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Figure 4.4: (A) Median cell population dynamics resulting from dose response 

simulations of an example drug (Trametinib) 

(B,C,D) Cell population dendrogram from varying doses of Trametinib including 

control (B), low (C) and moderate (D) doses. 
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Figure 4.5: Simulated dose response measured in GR-value for four drugs 

compared to their experimental counterparts. 
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4.3.3 Palbociclib Dose Response Discrepancies Suggests CDK4/6 is 

Partially Redundant for Cell Cycle Progression 

What could explain the experiment/simulation discrepancy for Palbociclib, a 

potent inhibitor of CDK4/6, a central mediator of cell cycle progression from G0 and G1 

to S-phase (Fig. 4.5)? 

Simulated palbociclib dose response starts to deviate from the experimental 

results at doses as low as 0.01 μM. Above 0.1 μM, the simulated dose response shows 

complete cytostasis. On the other hand, experimental results show minimal growth 

inhibition at 0.1 μM. Between doses 0.3 μM and 3.3 μM, median GR-scores from the 

experimental results are between 0.6 and 0.2, which indicates only a partial growth 

inhibition even at high doses of Palbociclib. The simulated potency of Palbociclib (Fig 

4.6) suggests that at doses 0.3 μM and above, more than 80% of the target should be 

bound to the drug at any time point after 5 hours. Since the modeled drug-target 

interaction is based on the binding affinity observed in experimental drug-target binding 

assays, we can expect a similar potency in dose response experiments. The expected 

result of such potency as per the modeled function of CDK4/6 in cell cycle progression 

is a population-wide cytostasis at moderate and higher Palbociclib doses whereby only 

a negligible number of cells could be expected to complete cell cycle. The population 

dendrogram visualization for simulations confirms this (Figure 4.7B). This is clearly 

contrary to the experimental observations, which implies that the continuation and 

completion of cell cycle is less reliant on the activity of CDK4/6 than what the model 

estimates. The observation suggests the presence of intrinsic resistance mechanisms, 

bolstering the robustness of cell cycle to CDK4/6 inhibition. Such a mechanism could be 
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an undiscovered negative feedback transcriptional regulation of the drug target, or a 

feedforward regulation of a downstream activator of cell cycle which might explain how 

cell cycle can continue even when one of its key activators is inhibited. 
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Figure 4.6: Investigation into Palbociclib dose response - Observed target 

engagement activity for various doses of Palbociclib  
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Figure 4.7: Cell population dendrograms for low (A) and moderate (A) Palbociclib 

doses 
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4.3.4 The Balance of Tonic Versus Ligand-Induced Growth Factor Signaling 

is Critical for Capturing Drug Effects 

Neratinib is an irreversible inhibitor of the EGFR (with some off-target activity for 

the closely related ErbB2/HER2, Fig. 4.8A), a  receptor tyrosine kinase that, upon ligand 

binding,  activates the pro-proliferative and survival ERK and AKT pathways185–187. 

Hence, the drug action is expected to block ERK and Akt signaling when a ligand, such 

as EGF, binds to EGFR. The experimentally reported Neratinib dose response on 

MCF10A cells (Fig. 3F) show strong growth inhibition at doses above 0.1 μM and 

complete cytostasis at 3.16 μM. However, simulation-predicted growth inhibition within 

this range is significantly weaker, despite complete target engagement (Fig. 4.8B). 

To explain this discrepancy, we considered that the current modeled balance of 

ligand-induced versus basal (also called tonic) signaling ERK signaling could be 

incorrect. Specifically, that basal ERK signaling was too strong and causes non-

negligible proliferation in the absence of EGF. If cell cycling is initiated by basal 

signaling too strongly, coupled with the fact that Neratinib cannot inhibit basal signaling, 

this could explain some of the model-experiment discrepancy. 

MCF10A cells are dependent upon EGF for cell cycle progression188,189. Thus, in 

simulations, cells dividing without EGF would support the above explanation. In lineage-

resolved simulations where the growth media contained only insulin, numerous cell 

division events were observed (Fig. 4.9). Since the proliferative signaling activity that 

caused these divisions did not originate as a result of EGF-EGFR activity, during 

Neratinib dose response simulations these will be unaffected. This is inconsistent with 
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the experimentally observed cell behavior and hence may be a major cause of 

mismatch between simulation and experiment. 

How could the model be changed to account for these mismatches?  First, we 

attempted to ensure that basal ERK signaling in the presence of insulin minimally 

induces cell cycle progression. The basal Ras-GDP to Ras-GTP exchange rate (Fig. 

4.10A) is the main reaction controlling basal ERK activity in the model. We reduced the 

value of the associated rate constant until the probability of cell division in the absence 

of EGF and presence of insulin was near zero (Fig 4.10B), and then simulated neratinib 

dose response again (Fig. 4.11). The new simulated neratinib dose responses show 

closer alignment with experiments. However, for all other drugs, experiment-model 

agreement became significantly worse, most likely now because the absolute levels of 

EGF-induced ERK signaling are altered. This result shows the close interacting nature 

of signaling mechanisms in the model for influencing broad features of drug response 

and cautions against developing models without considering comparison to a 

compendium of data. 
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Figure 4.8: Investigation into Neratinib dose response (A) Neratinib drug action 

(B) Dynamic population median ratio of drug-bound EGFR to total EGFR amount 

showing expected target engagement due to modeled drug action 
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Figure 4.9: Cell population dendrogram from a simulation whereby the population 

was simulated only with INS in absence of EGF. Results indicate that cells are able 

to enter cell cycle without ligand induced ERK proliferative signaling. 



101 
 

 

  

B 

A 

Figure 4.10: (A) Partial kinetic scheme showing the reaction rate parameters that 

can tune basal ERK activity. 

(B) Cell division probability observed in single cell stochastic simulations as a 

function of basal RasGTP transformation rate 
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Figure 4.11: Alteration in the SPARCED model to address discrepancy in Neratinib 

dose response simulation. Resulting dose response in simulation compared to 

experimental results 
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4.4 Methods 

4.4.1 SPARCED Pharmacodynamic Model 

Reactions representing drugs binding to their reported targets with mass action 

rate laws were added to the SPARCED model. The assumptions and included drug 

actions for each individual drug are described below. To validate whether the individual 

drug action models generated the intended effect, we ran deterministic simulations for 

each drug. In these simulations, growth factors were added to a single cell incubated 

with a fixed dose of the drug or control, and observed the simulated trajectory of the 

drug, drug bound protein targets and certain downstream effectors. 

Alpelisib: Alpelisib enters and leaves the cell with first order kinetics and binds 

reversibly to its intracellular targets, free PI3K and catalytic subunit bound PI3K 

dimer180. Furthermore, we assume the binding of Alpelisib to its target prevents its 

dimerization (to the regulatory subunit), but it can also bind a dimerized target. 

Reactions representing Alpelisib drug action are : 

Free PI3K + Alpelisib => Alpelisib bound PI3K 

Alpelisib bound PI3K1 => Free PI3K + Alpelisib 

Alpelisib bound PI3K1 => Ø 

PI3K dimer + Alpelisib => Alpelisib bound PI3K dimer 

Alpelisib bound PI3K dimer => PI3K dimer + Alpelisib 

Alpelisib bound PI3K dimer => Ø 
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Figure 4.12: Validation simulation results for Alpelisib drug action. Results have been 

generated with single cell deterministic simulations in the MCF10A context. Serum-

starved cell has been incubated for 30 minutes with 10 μM Alpelisib dose or control 

condition before addition of 3.3 nM EGF, 0.005 nM HGF and 1721.0 nM insulin. 

Simulation results confirm extracellular (A) and intracellular (B) distribution of 

Alpelisib dose, binding of Alpelisib with modeled targets (C,D) and reduction of free 

target concentrations (E,F), and reduction of downstream AKT activity due to 

Alpelisib drug action (G) 

A B 

C D 

E F 

G 
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Palbociclib: Palbociclib enters and leaves the cell and nucleus with first order 

kinetics. Once inside the nucleus, it reversibly binds to its target, intranuclear 

CDK4/6181. A target bound to Palbociclib loses its phosphorylation activity. Reactions 

representing Palbociclib drug action are: 

Palbociclib + Cd-CDK4/6 => Palbociclib bound Cd-CDK4/6 

Palbociclib bound Cd-CDK4/6 => Palbociclib + Cd-CDK4/6 

Palbociclib bound Cd-CDK4/6 => Ø 
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Figure 4.13: Validation simulation results for Palbociclib drug action. Results have 

been generated with single cell deterministic simulations in the MCF10A context. 

Serum-starved cell has been incubated for 30 minutes with 10 μM Palbociclib dose 

or control condition before addition of 3.3 nM EGF, 0.005 nM HGF and 1721.0 nM 

insulin. Simulation results confirm extracellular (A) and intracellular (B) and nuclear 

(C) distribution of Palbociclib dose, binding of Palbociclib with modeled target active 

cyclin D-CDK4/6 (D) and reduction of free target activity (E), and reduction of 

downstream pRB phosphorylation (F) and eventual halting of cell cycle (lack of active 

cyclin B/CDK1 peak) (G)  

A B 

C D 

E F 

G 
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Trametinib: Trametinib enters and leaves the cell with first order kinetics. Once 

inside cytoplasm, it reversibly binds to its target, unphosphorylated MEK182. 

Furthermore, we assume binding of Trametinib to its target prevents its dimerization and 

phosphorylation and a dimerized or phosphorylated target cannot bind with Trametinib. 

The reactions representing Trametinib drug action are: 

Trametinib + MEK => Trametinib bound MEK 

Trametinib bound MEK => Trametinib + MEK 

Trametinib bound MEK => Ø 
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Figure 4.14: Validation simulation results for Trametinib drug action. Results have 

been generated with single cell deterministic simulations in the MCF10A context. 

Serum-starved cell has been incubated for 30 minutes with 10 μM Trametinib dose or 

control condition before addition of 3.3 nM EGF, 0.005 nM HGF and 1721.0 nM 

insulin. Simulation results confirm extracellular (A) and intracellular (B) distribution of 

Trametinib dose, binding of Trametinib with modeled target MEK (C) and reduction of 

MEK activity (D) and ERK activity (E)  

A B 

C D 

E 
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Neratinib: We assume Neratinib enters and leaves the cell with first order 

kinetics. Neratinib binds to its targets of ErbB family of receptors (EGFR, HER2, HER4) 

on their intracellular domain183. Binding of Neratinib to its target is irreversible. It 

prevents the target receptors from binding EGF and a receptor simultaneously cannot 

bind Neratinib and EGF. The reactions representing Neratinib drug action are: 

Neratinib + EGFR => Neratinib bound EGFR 

Neratinib bound EGFR => Ø 

Neratinib + HER2 => Neratinib bound HER2 

Neratinib bound HER2 => Ø 

Neratinib + HER4 => Neratinib bound HER4 

Neratinib bound HER4 => Ø 
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Figure 4.15: Validation simulation results for Neratinib drug action. Results have 

been generated with single cell deterministic simulations in the MCF10A context. 

Serum-starved cell has been incubated for 30 minutes with 10 μM Neratinib dose or 

control condition before addition of 3.3 nM EGF, 0.005 nM HGF and 1721.0 nM 

insulin. Simulation results confirm extracellular (A) and intracellular (B) distribution of 

Neratinib dose, binding of Neratinib with one of its modeled target EGFR (C) and the 

resulting reduction of EGF-EGFR dimer formation (D), which leads to reduction of 

ERK (E) and AKT (F) activities. 
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4.4.2 Lineage-Resolved Simulations 

Asynchronous population: Cell population simulations are initiated by creating 

a representation of an asynchronously cycling cell population. The starting cell 

population is specified by the user. For each starting cell, initial conditions representing 

an average serum-starved MCF10A cell is used to create a heterogenized cell 

population32. Then, a growth media with doses of EGF (3.3 nM) and insulin (1721 nM) is 

introduced and stochastic simulations are run for each individual cell for 48 hours. From 

the generated state trajectories, a timepoint is randomly selected using the NumPy 

random number generator for each cell to be used as the initial condition of a first 

generation of cell. For the user specified experiment time (typically 72 hours), single cell 

simulations are executed for all first generation cells.  

Identifying cell division events: Once the single cell simulations are 

completed, the generated outputs are analyzed to determine cell division events. The 

cell division events are detected using troughs observed in Cyclin B-CDK1 trajectories. 

For any individual cell, if a division event is detected, timepoints after the occurrence of 

cell division events are discarded and the state vector at the time of cell division is 

selected as the initial condition for two new second generation cells. 

Identifying cell death events: As a readout for cell death, we look at the 

trajectory of DNA repair enzyme PARP, which gets cleaved as a result of apoptotic 

signaling. For any single cell, if more than half of PARP has been cleaved at any time 

point, the cell is proclaimed dead at that time. 
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Subsequent generations: For each generation, we refine the protein level 

outputs with division and death events. For every cell, we scan the output for the 

duration of its lifetime to find division events. The division time point is subtracted from 

the total simulation time to determine required second generation simulation time. The 

single cell outputs at the time point of division of each mother cell is recorded as initial 

conditions for next generation of daughter cells. Thus, we define the required simulation 

time, population, and initial conditions for the next generation of cells. This process is 

repeated for the subsequent generations of cell populations. In a given generation, if 

there is no cell division event observed within the simulation time, the population 

simulation is terminated. 

Software: The computation for this simulation is performed using HPC-

compatible parallel processing in Python whereby single cell simulations are run in 

individual CPU threads. The pipeline for the simulation is available in the latest release 

of the SPARCED git repository (github.com/birtiwistlelab/SPARCED).  To run the cell 

population simulation, a computational environment with an implementation of MPI 

(Message Passing Interface), such as OpenMPI190 on Linux and MSMPI on Windows 

systems needs to be set up in addition to the dependencies of the SPARCED model 

pipeline. Before the simulation can be performed, the SPARCED model is to be built 

using the python script under scripts/createModel.py, which creates an executable 

single cell model based on the specifications in the input files. Once the model build 

process is complete, MPI can be used to run cell population simulation using the 

following command: 

mpirun -np [n_cpu] python cellpop_drs.py --arguments [argument_value] 
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Here, n_cpu  is the number of CPU threads that the user may decide to use for 

parallelization. Also, the following arguments are to be passed to the python script for 

specification of simulation parameters: 

sim_name: An arbitrary string defined by the user to create a directory under 

sparced/output where simulation outputs will be saved. 

cellpop: An integer specifying the number of starting cells for simulation 

exp_time: Duration of experiment in hours 

drug: String specifying species name for the drug of interest 

dose: Applied concentration of the drug in μM 

egf: Serum EGF concentration in nM 

ins: Serum INS concentration in nM 

hgf: Serum HGF concentration in nM 

nrg: Serum Heregulin concentration in nM 

pdgf: Serum PDGF concentration in nM 

igf: Serum IGF concentration in nM 

fgf: Serum FGF concentration in nM 

Upon completion of simulations, the results are saved to disk as Python “pickle” 

objects. 
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4.4.3 Visualization 

GR Score Calculation 

Dose response from cell population simulation has been calculated using the 

Hafner-Niepel growth rate inhibition metric (GR)184.  Dose response simulations were 

run for 10 dose-levels matching experimental data for each drug and 10 replicates of 

each dose. Outputs from the cell population simulations were read and analyzed to 

determine total number of living cells over time for the duration of experiment time. 

Using the number of living cells at 72 hours, the GR scores were computed for each 

replicate was computed with the Python script provided as part of GR-metrics git 

repository. 
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4.5 Discussion 

We developed a cell population simulation framework depicting emergent 

population level outcome as an aggregate of single cell events. In this work, single cell 

events are dictated by a pan-cancer driver pathway model incorporating stochastic cell 

proliferation and death in response to drug actions. This framework enables us to 

establish a crucial link between the collective understanding of cell signaling biology and 

data from dose response experiments.  

We further evaluated the applicability of the cell population simulations by 

virtually replicating dose response experiments. The results showed some significant 

mismatches with experiments for palbociclib and neratinib, which uncovered some 

important findings about the current knowledge of signaling pathways. For palbociclib, 

the simulations overpredicted its efficacy, showing very high growth inhibition at 

moderate doses to complete cytostasis at high doses which underlines the 

indispensability of the drug target, CDK4/6 as per the current knowledge of cell cycle 

pathway. However, in experiments, even the highest doses could result in only partial 

growth inhibition, indicating dependence on CDK4/6 for cell cycle completion is likely to 

be overstated. It suggests undiscovered mechanisms in the cell cycle pathway that may 

dispense the reliance on CDK4/6 when it is inhibited.  

The role of CDK4/6 in cell cycle regulation is associated with facilitation of 

traversing the cell cycle restriction point191. When the cell is in a senescent state, one of 

the regulators of restriction point, Rb is bound to a key transcription factor of the cell 

cycle process, E2F. In presence of a growth stimulus, CDK4/6 is activated when bound 

to cyclin D. This activated cyclin D-CDK4/6 complex can phosphorylate to inactivate Rb, 
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which then releases E2F. Subsequently, there is an upregulation of E2F which then 

mediates S phase entry and progression by activating cyclin E, and cyclin A. Drug 

action mechanism of CDK4/6 inhibitors such as Palbociclib attempt to induce cytostasis 

by preventing the inactivation of Rb by CDK4/6192. As per the experimental results, 

MCF10A cells may possess resistance mechanism that can compensate for this effect. 

One of the known resistance mechanisms of CDK4/6 inhibition is the loss of Rb 

function193,194. However, since MCF10A cells do not harbor such mutations, it is an 

unlikely explanation in this case. Another reported resistance mechanism in cancer cells 

is the overexpression of Cyclin E195,196, which is a regulator of the later stages of cell 

cycle. If a cell cycling cell is past its restriction point at the time of CDK4/6 inhibition, 

overexpression of later stage cell cycle regulators may explain why actions of CDK4/6 

was no longer necessary to complete the cell cycle. Even though this mechanism was 

observed in tumor cells, an intrinsic feed forward control between CDK4/6 and cyclin E 

could potentially explain resistance of CDK4/6 inhibition in a non-tumorigenic context 

such as MCF10A cells. Another possibility is a lack of details in the modeled function of 

CDK4/6. In the SPARCED single cell model, the cell cycle submodel was adopted from 

an earlier work of Gerard and Goldbeter27. Even though this model describes the 

functionality of activated cyclin D-CDK4/6 and its action on Rb, it does not explicitly 

account for the expression of CDK4/6. Therefore, if a possible resistance mechanism 

exists which relies on transcriptional regulation of CDK4/6, it will not be possible to 

capture its effect without a major revision of the cell cycle model. 

For neratinib, the simulations underpredicted its efficacy, showing weak inhibition 

for moderate to high doses whereas the experiments showed significant growth 
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inhibition to complete cytostasis within this range. Deeper analysis of simulation results 

showed cell cycle occurring in absence of ligand induced ERK signaling which 

explained why the modeled drug action based on inhibition of ligand-receptor interaction 

was unable to replicate the growth inhibition observed in experiments. MCF10A cells 

are known to be unable to proliferate without the presence of EGF in growth 

media188,189, hence, ideally, the model should incorporate a more improved balance 

between basal and ligand induced signaling for stratification of cell proliferation events. 

In our previous work, this limitation did not affect the behavior of single cells where 

stochastic single cell simulations initiated from a representation of a serum-starved 

MCF10A cell which did not enter cell cycle without the presence of EGF in growth 

media32. However, for cell population simulations, single cells are subject to randomized 

sampling for induction of an asynchronously cycling population which more closely 

resembles the experimental conditions whereby drug treatment is applied after growth 

media is introduced to the cells. Under such conditions, the effects of the limitation 

become more apparent at the population level.  

A potential solution to be considered for our future work is to implement a more 

robust computational pipeline to determine specific rate constants in the single cell 

model such that observed phenotypical outcomes satisfy biologically justified 

constraints. In our previous work an attempt was made to do this by means of a process 

that we call “initialization”. In initialization, certain model parameters and initial 

conditions are determined for a specific cell-line context using a set of focused 

parameter estimation operations which aim to tune parameters based on constraints 

placed on model observables. It is a computationally intensive process whereby each 
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parameter estimation step performs iterative execution of deterministic model 

simulations. The SPARCED model is composed of a gene expression and a protein 

biochemistry module which are executed simultaneously. However, communication 

bottlenecks between the modules caused the computation time to be impractical for the 

purpose of initialization. Hence, the preliminary initialization protocol was limited to the 

protein biochemistry module, precluding a robust estimation of the basal ERK and AKT 

pathway activities. Recently, we were able to solve the communication bottleneck 

problem which speeded up the deterministic execution by over 200-fold197. This drastic 

increase in computation speed for deterministic simulations will allow a more exhaustive 

exploration of the model parameters essential for defining a more robust initialization 

protocol.  

As a mechanistic single cell model, SPARCED is one of the largest models of 

mammalian cell signaling. Still, it falls short of encapsulating the entirety of intracellular 

biomolecular networks on a genomic scale. Nevertheless, considering the intricate 

nature of cell biology, a more comprehensive approach towards single cell 

pharmacodynamic modeling can be developed by implementing incremental expansion 

with additional cellular pathways. In this regard, the cell population simulation 

framework may help monitor the emergent outcome of those incremental changes at 

the cell population level, ensuring that they align closely with observed biological 

phenomena and prevent substantial deviations. 
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Chapter 5 

A STRETEGY FOR OMICS-INFORMED 

PHARMACODYNAMIC MODELING OF CANCER CELL LINES 

5.1 Introduction 

Innovations in genome technologies such as whole exome sequencing and 

whole genome sequencing, along with comprehensive characteristics of expression 

context with RNAseq, as well as mass-spectrometry based proteomics have provided a 

foundation to develop a more holistic understanding on the pathophysiology and 

heterogeneity of cancer14,33. The advent of large-scale multi-omics datasets has 

unveiled new challenges in effectively integrating these data for quantitative analysis. 

Consequently, there is an emerging effort towards devising data-driven mathematical 

and computational methods to analyze high-dimensional datasets obtained from high 

throughput multi-omics techniques.  

Recent advancements in omics-informed statistical and data-driven approaches 

have enabled identification of clinically relevant disease subtypes, identification of 

putative biomarkers for diagnostics and driver genes for tumor progression198–203. 

However, deriving mechanistic insights about dynamics of disease progression, drug 

response and resistance mechanisms remains a significant challenge. Mechanistic 

models, founded on the principles of biophysical processes that drive phenotypical 

functions and higher-level physiological activities have the potential to generate novel 

insights about tumor progression and possible efficacious therapeutic strategies. 
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Integration of multi-omics datasets into such models may enable deeper understanding 

of the causality and dynamics of disease progression and resistance.  

Depending on the size and complexity of mechanistic models, integrating high 

dimensional muti-omics dataset in a manner that does not destabilize the model 

structure can be a daunting prospect. We recently built one of the largest models of 

single cell proliferation and death signaling capable of dynamically describing stochastic 

cell fate in response to growth stimulus and drug actions32,174. The granularity of the 

model enables inclusion of genomic, transcriptomic and proteomic data to define its 

context. After being built with the MCF10A context, its adaptability to a new cell line, 

U87 was demonstrated by integrating its genomic and transcriptomic data with a 

computational process called “initialization”. In this chapter, we present a revised and 

more robust initialization procedure that can be applied to one of the largest multi-omics 

datasets of cancer cell lines, the Cancer Cell Line Encyclopedia (CCLE)33. We retrieved 

the omics data for 251 cancer cell lines and successfully applied the initialization 

procedure to 59 of those cell lines to create context-specific single cell models of cancer 

cell lines. Furthermore, we applied a mechanistic cell population simulation framework 

on these cell line specific models and created representations of dynamic cell 

populations of 28 cell lines which are consistent with their experimentally observed 

growth rates. We employ these dynamic cell population models to evaluate a strategy 

for the mechanistic exploration of their experimental drug sensitivity profiles. 

 



121 
 

5.2 Initialization Overview 

The goal of the initialization procedure is to create a single cell model 

representing a specific cell line, based on its omics data. The SPARCED model consists 

of several signal transduction pathways, such as, receptor tyrosine kinase (RTK), ERK 

and AKT pathways for cell proliferation, cell cycle, DNA damage and apoptosis. These 

pathways are represented within the model as various species and their interactions, 

primarily, proteins, their modified variants and protein complexes. This network of 

proteins is supported by a central dogma based foundation of genes and mRNAs. Our 

design principles dictate that amounts of these species are defined by taking input of 

genomic, transcriptomic and proteomic data. The first step in defining the context of the 

model involves compiling the omics input and assigning the gene copy numbers and 

calculating the mRNA and protein concentrations. At this stage, the appropriate initial 

conditions for the model species such as nascent proteins, protein variant forms, and 

protein complexes are not known. Do determine those, we take an iterative approach. 

At first, we assign the protein amount to the nascent protein forms. Then we run the 

model to steady state at various stages. During these stages, initial protein levels are 

reassigned to their variant forms, depending on basal interactions. At the same time, we 

also ensure that certain biological functionalities of the model are intact even when 

omics context has been changed. For this purpose, we perform unit tests pertaining to 

specific biological functions and readjust certain model parameters to ensure that the 

model with its new context may pass the unit tests. Such biological features include 

conservation of the overall transcriptomic and proteomic levels, functionality of ERK and 

AKT proliferative signaling, transcription factor activity, cell cycle, survival signaling, 
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DNA damage and apoptosis. The end result of the initialization process is the 

representation of a single cell from a specific cell line, which has been serum starved, 

and is prepared for growth stimulation. 

 

5.3 Previous Initialization Workflow and Limitations 

The initialization procedure was presented along with the original Pan Cancer 

Driver Pathway model developed at our laboratory32. This procedure was used to 

redefine the biological context of the model by taking inputs of omics data from U87 

glioma cells and successfully demonstrated with drug sensitivity prediction for the new 

cell line context. However, there were technical limitations to this procedure due to the 

structural properties of the model. Initialization is a computationally intensive process 

which relies on numerous iterative executions of model simulations to perform certain 

unit tests focusing on specific biological functionalities of the model. Implementation of 

gene expression noise and cell to cell variability was accomplished by means of a 

hybrid structure whereby a stochastic gene expression module and a deterministic 

protein interaction module were executed simultaneously. Within the computational 

workflow of a simulation, inter-module communication is the biggest bottleneck. Even 

though the model is run deterministically during initialization, computation speed of the 

hybrid structure precluded its application for initialization. For this purpose, the 

computations of the initialization were kept limited to the protein interaction module, 

which employs a system of ordinary differential equations (ODE) and could be executed 

rapidly with the use of ODE solvers. This imposed certain limitations to the capabilities 

of the initialization procedure since it could only tune functionalities that do not rely on 



123 
 

inter-module communication. As a result, functionalities such as transcriptional 

regulation, cell cycle initiation, replicative stress and survival signaling could not be 

tuned robustly to accommodate a wider range of cell line contexts. As part of the revised 

edition of this model, the SPARCED model174, we also developed a version of the 

initialization pipeline compatible with the newer format. The computational workflow of 

the initialization procedure itself was left unaltered. Recently we were able to overcome 

this technical limitation by implementing a new ODE based structure which includes all 

deterministic interactions of the model within a single system of ODEs197. This new 

structure can produce the same result as the hybrid model when executed 

deterministically while achieving more than 200-fold increase in computation speed. 

This allowed us to develop a revised pipeline for initialization, which is capable of tuning 

biological functionalities that the original initialization procedure was missing. In this 

work, we retrieved genomic, transcriptomic and proteomic data from 251 cell lines in the 

Cancer Cell Line Encyclopedia (CCLE)33,204 and used those to test our new initialization 

pipeline. Out of those, we successfully completed the initialization for 59 cell lines. The 

computational workflow of the initialization procedure has been described in the 

following section.  
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Table 5.1: Comparison of initialization steps in Bouhaddou 2018 model and new 

initialization pipeline 

Initialization Step Bouhaddoul 2018 

Initialization 

New Initialization 

Pipeline 

Translational rate constant    

Basal ERK pathway activity    

Basal AKT pathway    

Basal cell cycle activity   

Transcriptional activators   

Survival signal   

Basal apoptosis signal   

Basal DNA damage   

Replicative stress   

Apoptosis (time to death)   
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5.4 Initialization Procedure 

Step 1 – Translational Rate Constant Tuning 

This is the first step in the initialization workflow whereby model parameters are 

tuned with rigorous and iterative unit testing. The goal of this step is to ensure that 

steady state levels of proteins and mRNAs in the model outputs match their 

measurements as per the omics data. The model consists of various forms for proteins, 

namely, their nascent form, post-translational modifications, and protein complexes. At 

the start of this step protein levels derived from the proteomics data are assigned to the 

nascent protein species, i.e. the protein forms that have been immediately translated 

and lack any post translational modification. Once the model is run to a steady state, the 

initial protein amounts may accumulate into various other forms due to basal pathway 

activities. Many such protein form variants have different degradation rates than their 

nascent counterparts and as a result, total protein levels at steady state may no longer 

match the proteomics data (Figure 5.1). In this step, gene-specific translation rate 

constants (kTL) are iteratively adjusted while the model is run to steady state in absence 

of any growth stimulation during each iteration. The ratio of simulated and measured 

protein level is calculated and used to optimize the translation rate constant 

corresponding to the source gene. For each gene product, the rate constant is 

readjusted until simulated protein levels are within 1% of experimental data. This step is 

further divided into several sub-step considering the dynamics of modeled interactions. 

There are certain species and reactions in the model, which if left unrestrained, may 

alter translation rate globally and hence cause difficulties in attaining a steady state. 

These include ribosome synthesis, dynamic EIF4E levels and all mRNA transcription 
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rates. Initially all these aspects are turned off such that they may not affect the 

translation rate. In subsequent sub-steps of translation rate constant adjustments, these 

features are enabled gradually to ensure minimal fluctuations in rate constant 

adjustment. A significant majority of CCLE cell lines that we tested were able to pass 

this step, only exceptions are cases where certain mRNA levels are missing from the 

dataset, despite presence of corresponding gene copy number and proteomics data. 

Examples include, SW1990, NCIH1792, SAOS2, OVCAR8, HCC1395, PC14, 

HEL9217, HCC70, HT1376, SNU1, COLO678 and MDAMB157. 
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Figure 5.1: Comparison between simulated and measured protein levels before and 

after the translation rate constant adjustment step for an example cell line (AU565) 
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Figure 5.2: Computational workflow of the translation rate constant adjustment. 
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Step 2 – Basal ERK Pathway Activity Tuning 

In the SPARCED model, basal ERK pathway activity is represented by the basal 

Ras activation and inactivation reactions. Ras is a protein that may exist in a GDP-

bound inactive or GTP-bound active state. An inactive RasGDP may exchange its GDP 

for a GTP to adopt an active state which may happen due to basal or ligand induced 

proliferative signals. In this step, we tune the basal mode of Ras activation. The goal of 

initialization is to alter the biological context of the MCF10A cell represented by the 

original SPARCED model while retaining the biological functionalities of the model. 

Hence, we create a serum-starved cell for the new context of interest for which basal 

pathway ERK pathway activity should not result in cell growth. Here we iteratively adjust 

the basal RasGDP to RasGTP exchange rate in deterministic simulations without 

growth stimulus. We ensure that the overall ERK pathway activity, observed as a ratio of 

phosphorylated ERK to total ERK levels, remains close to its value observed in the 

original (MCF10A) context of the model. Since alteration of this rate parameter may also 

change steady state levels of other proteins within the model, we also readjust the 

translation rate constants as described in the previous step as part of this step. A 

majority of CCLE cell lines that we included in our test passed this step as the desired 

ppERK/ERK ratio was attainable by adjusting the basal RasGDP to RasGTP exchange 

rate (Figure 5.4 A,B). However, for several other cell lines this ratio was not attainable 

and this step failed (Figure 5.4 C,D). This could be attributed to the limitations of 

SPARCED model and biomolecular pathway activities that are currently out of its scope. 

  

  



130 
 

 

 

 

  

Figure 5.3: Computational workflow of the basal ERK pathway activity tuning step. 
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Figure 5.4: Examples of parameter screening performed during the basal ERK 

pathway activity tuning step. (A,B) Example cell lines HT1080 and KURAMOCHI for 

which this step was successful, as evident by the attained ppERK/ERK ratio. (C,D) 

Example cell lines 697 and MIAPACA2 for which this step failed as the ppERK/ERK 

ratio was not attainable by tuning of basal RasGDP to RasGTP exchange rate. 

A B 

C D 
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Step 3 – Basal AKT Pathway Activity Tuning 

This step is conceptually similar to the previous basal ERK pathway tuning step. 

In this case, we focus on the AKT pathway. The basal activities in AKT pathway are 

represented with basal PIP2 phosphorylation and dephosphorylation reactions. In this 

step, we iteratively adjust the basal PIP2 phosphorylation rate such that the ratio of 

phosphorylated AKT to total AKT remains close to the value observed in the original 

MCF10A context. At the same time we readjust any translation rate constant preventing 

deviation of simulated protein levels from their experimentally measured levels. This 

ensures that the basal AKT pathway activities will not result in proliferative outcomes 

when the cell is at a serum starved state. This procedure was adequate in tuning the 

basal AKT pathway activity to desired level for all cell lines and we did not encounter 

any failure at this step.  
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Figure 5.5: Computational workflow of the basal AKT pathway activity tuning step. 
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Step 4 – Basal Cell Cycle Pathway Activity 

This initialization step estimates two rate parameters associated with the cell 

cycle process, namely, the basal cyclin D synthesis rate and basal p21 degradation 

rate. Most of the species in the cell cycle pathway are kept to their initial concentrations 

as per the original model. However, cyclin D and p21 levels are derived from the 

proteomics data which is used to specify their basal levels in the model. The basal 

cyclin D synthesis rate and basal p21 degradation rates need to be tuned accordingly 

such that the model can maintain those levels at steady state. In this step, we tune 

those rates iteratively. This ensures that basal cyclin D and p21 levels are maintained 

and they do not initiate cell cycle in absence of a growth stimulus. Once this tuning is 

complete, we readjust the translation rate constants once again to ensure steady state 

protein levels match proteomics data.  
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Figure 5.6: Computational workflow of the basal cell cycle pathway activity tuning 

step. 
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Step 5 – Transcriptional Activators 

This initialization step ensures the capability of SPARCED model to initiate cell 

cycle in presence of growth stimulus. The cell cycle is initiated by the upregulation of 

cyclin D by the transcription factors AP1 and MYC. Hence AP1 and MYC serve as 

primary proliferative inputs into the cell cycle model. These transcription factors are 

upregulated as a result of elevated ERK and AKT activities respectively. This in turn 

drives the synthesis of cyclin D and production of cyclin D above a certain threshold 

pushes the system beyond the restriction point. This initiates the cell cycle followed by 

oscillations in characteristic cell cycle species, namely, the activate cyclin and cyclin-

dependent protein kinase complexes. Transcription of cyclin D is governed by the 

following rate law: 

𝑣𝑏𝑚 =  𝑘𝑙𝑒𝑎𝑘  ∙ 𝑔∗ +  𝑘𝑚𝑎𝑥  . (
(

[𝑇𝐴𝐴𝑃1]

𝑘𝐴50−𝐴𝑃1
)

𝑛𝑎𝐴𝑃1

1+ (
[𝑇𝐴𝐴𝑃1]

𝑘𝐴50−𝐴𝑃1
)

𝑛𝑎𝐴𝑃1
) . (

(
[𝑇𝐴𝑀𝑌𝐶]

𝑘𝐴50−𝑀𝑌𝐶
)

𝑛𝑎𝑀𝑌𝐶

1+ (
[𝑇𝐴𝑀𝑌𝐶]

𝑘𝐴50−𝑀𝑌𝐶
)

𝑛𝑎𝑀𝑌𝐶
) . 𝑔∗  

Here, the parameters kA50 represent the half maximal effective concentrations for 

the transcriptional activators AP1 and MYC on the upregulation of cyclin D. Since the 

steady state levels of these transcription factors are informed by the omics data, these 

are expected to be different for different cell line contexts. In order for the cell cycle 

submodel to be functional across contexts, these kA50 parameters need to be 

readjusted based on new proteomics input. In this initialization step, we run 

deterministic simulations in presence of growth stimulus and iteratively adjust these 

parameters until cell cycle may be observed. We use oscillations in active cyclin 

B/CDK1 complex levels as confirmation of cell cycle. We select the lowest value for 

each parameter for which at lease 3 peaks of active cyclin B/CDK1 complex may be 
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observed. Successful completion of the basal cell cycle pathway activity and 

transcriptional activator adjustment ensures the functionality of the cell cycle submodel 

such that cell cycle is absent in cells without growth stimulus, but as soon as the growth 

factors are added, cell cycle may be initiated. This is one of the steps that a significant 

number of CCLE cell lines (60) failed to complete. The reason for this failure is likely to 

be elevated levels of p21 (figure 5.9), which is an inhibitor of cell cycle. P21 is one of the 

proteins that were missing from label-free quantification of CCLE proteomics dataset. In 

absence of this data, p21 levels were estimated using the mRNA levels and the protein 

to mRNA ratio observed in MCF10A context. This limitation stems from poor-quality of 

data and could potentially be resolved with the availability of proteomics data with 

higher accuracy. 
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Figure 5.7: Computational workflow of the transcriptional activator tuning step. 
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Figure 5.8: Visual confirmation of the successful completion of basal cell cycle activity 

and transcriptional activator tuning with protein levels from deterministic simulation in 

AU565 cells. In absence of serum, transcriptional activators AP1, MYC and cyclins 

remain at steady state. When serum is fed, the growth factor presence upregulates 

the transcriptional activators and cell cycle can be observed with peaks in active 

cyclin B/CDK1 levels. 
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Figure 5.9: An example cell line (NCHI2122) failing to demonstrate persistent Cyclin 

B/CDK1 peaks during transcriptional activator tuning for a wide range of values of 

half-maximal kA50 rates. Elevated levels of p21 was also observed in this cell line.  
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Step 6 – Survival Signal Tuning 

Survival signaling consists of the activities that negate the effects of pro-apoptotic 

signaling in presence of growth stimulus. In the SPARCED model, one of the primary 

mechanisms of survival signaling is the upregulation of AKT activity. When activated, 

AKT may phosphorylate FOXO, which is a pro-apoptotic transcriptional activator. In 

absence of elevated AKT activity, FOXO may translocate to the nucleus and upregulate 

transcription of the pro-apoptotic protein BIM. Phosphorylation by AKT prevents the 

nuclear localization of FOXO and as a result fails to deliver pro-apoptotic signal to BIM. 

The rate law that governs the transcription of BIM is as follows: 

𝑣𝑏𝑚 =  𝑘𝑙𝑒𝑎𝑘  ∙ 𝑔∗ +  𝑘𝑚𝑎𝑥  . (
(

[𝑇𝐴𝐹𝑂𝑋𝑜]

𝑘𝐴50−𝐹𝑂𝑋𝑂
)

𝑛𝑎𝐹𝑂𝑋𝑂

1+ (
[𝑇𝐴𝐹𝑂𝑋𝑂]

𝑘𝐴50−𝐹𝑂𝑋𝑂
)

𝑛𝑎𝐹𝑂𝑋𝑂)  . 𝑔∗  

This rate law includes a “leak” or constitutively active term, which represents the 

mRNA synthesis mechanism the model does not include explicitly, followed by an 

“induction” term which represents the effects of transcriptional activators. In this 

initialization step we iteratively adjust the kleak and kmax parameter to ensure that 90% of 

BIM mRNA level is maintained by its transcriptional activator. As a result, 

phosphorylation of FOXO leads to decrease in BIM levels, which is the intended survival 

signaling mechanism. 
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Figure 5.10: Computational workflow of the survival signal tuning step. 
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Step 7 – Basal Apoptosis Signal Tuning 

The apoptosis submodel consists of the activities of initiator caspases (caspase 8 

and caspase 10) leading to the activation of executioner caspases (caspase 3 and 

caspase 7). Executioner caspases drive the digestion of many critical cellular 

components, which results in cell death. In the SPARCED model, this mechanism is 

represented by cleavage of PARP, a DNA repair enzyme. A single cell is pronounced 

dead once the majority of PARP has been cleaved. The model also represents internal 

pro-apoptotic stimulus by means of PUMA/NOXA upregulation by p53. This requires a 

negative regulation of anti-apoptotic proteins, as well as a basal flux of death signaling 

through apoptosis pathways. Basal apoptosis signaling is the result of basal levels of 

caspases. The chosen mechanism for basal apoptosis signaling in the model is a first-

order reaction for caspase 8 cleavage. Until this point in initialization, this reaction rate 

parameter is switched off to ensure unintended activation of apoptosis pathway. In this 

initialization step, basal caspases levels are allowed to equilibrate while the basal 

caspase 8 cleavage rate is incrementally increased. As soon as apoptosis occurs within 

a 500-hour simulation period, the rate is set to its previous increment. After this, the 

translation rates are adjusted once again to ensure that simulated protein levels match 

the proteomic data. This is one of the initialization steps which a large number of CCLE 

cell lines (36) failed to complete. A likely explanation is the proteomic levels of one or 

more mediators of apoptosis signaling is incompatible with the stable operation of 

apoptosis submodel, such that inclusion of proteomic data from those cell lines result in 

constitutive activation of apoptosis. It indicates a limitation in the SPARCED model, 
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which lacks the mechanism to prevent excessive pro-apoptotic signaling in certain cell 

line contexts. 
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Figure 5.11: Computational workflow of the basal apoptosis signal tuning step. 
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Step 8 – Basal DNA Damage Tuning 

The DNA damage submodel describes the activation of p53 due to double and 

single stranded breaks. Due to external and well as internal stressors, living cells tend 

to possess a basal amount of DNA damage. However, this basal level of DNA damage 

should not be high enough to induce a p53 response. To represent this effect, we 

included a first order reaction inducing double strand breaks in the model. In this 

initialization step, we estimate this reaction rate. It is accomplished by parameter 

sensitivity analysis considering the effects of this rate on the overall active p53 levels in 

deterministic simulations without any growth stimulation. From this sensitivity analysis, 

the bifurcation point is detected and the basal DNA damage rate is set to a value 10 

times lower than this bifurcation point. 

 

Step 9 – Replicative Stress Tuning 

During cell cycle, the DNA undergoes replication. During S-phase, the DNA is 

uncoiled from histones which makes it vulnerable to insult. Because of the physical 

relocation of DNA, breaks are more likely to occur. This replicative stress is represented 

in the model with a reaction that induces DNA damage based on the levels of Cyclin E 

and Cyclin A which are elevated during cell cycle. Similar to the basal DNA damage, this 

replicative stress should not result in full activity of p53. This initialization step estimates 

the rate parameter governing replicative stress towards this goal. This includes a 

parameter sensitivity analysis similar to the previous step, only in this case the 

deterministic simulations are run in presence of growth stimulation. 
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Figure 5.12: Computational workflow of the basal DNA damage (A) and replicative 

stress tuning (B) steps. 

A B 
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A 

B C 

Figure 5.13: Visual confirmation of successful completion of steps 7 and 8 

demonstrated with deterministic simulations for AU565 cells. Basal DNA damage and 

replicative stress exist with and without serum presence respectively (A). However, 

p53 remains mostly inactive (B,C) 
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Step 10 – Apoptosis Tuning 

Tuning of basal apoptosis signaling was introduced in step 7 of initialization, 

which ensures basal levels of caspases may exist at steady state. However, this tuning 

step alone is insufficient to ensure apoptosis may occur in presence of explicit pro-

apoptotic signals. To accomplish this, we ensure that the cell has equal likelihood of 

living and dying at the end of 72 hours in a serum-starved state. When cells are tuned to 

die at 72 hours in a deterministic simulation, it will have equal changes of survival and 

death in stochastic simulations. In this step, we start with the previously estimated value 

of basal caspase 8 cleavage rate and then iteratively adjust it until apoptosis may occur 

at the end of 72 hours in a serum starved state. For this purpose, we observe the level 

of PARP, at any time point where more than 50% of its initial level is cleaved, we 

consider that cell to be dead. There are certain CCLE cell lines which failed to pass this 

step. For those cell lines, inclusion of their proteomics input results in lack of pro-

apoptotic signals strong enough to finish apoptosis. It indicates a limitations in the 

SPARCED model which may lack underlying mechanisms to compensate for weaker 

apoptotic signaling in those cell line contexts. 
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Figure 5.14: Visual confirmation of successful completion of apoptosis and survival 

signal tuning demonstrated with deterministic simulations for AU565 cells. Here we 

can observe the dynamic ratio of cleaved to intact PARP levels with and without 

serum presence. In absence of serum, the cell dies at the end of 72 hours, as per the 

apoptosis threshold represented with the dashed horizontal line. In presence of 

serum, survival signaling may rescue the cell from apoptosis. 

Apoptosis threshold 
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5.5 Results I – Applying the Initialization Pipeline to Omics 

Datasets in the Cancer Cell Line Encyclopedia 

The revised initialization pipeline described in the previous section allows us to 

redefine the context of SPARCED single cell model and help represent new cell lines by 

taking inputs of genomic, transcriptomic and proteomic datasets for each cell line. To 

evaluate its applicability, we chose the Cancer Cell Line Encyclopedia (CCLE). This is 

one of the largest and most comprehensive datasets of cancer cell lines originating from 

a wide range of cancer types. In addition, it also provides drug sensitivity profiles for a 

large number of cancer cell lines. In our previous work, we have built one of the largest 

single cell models of proliferation and death signaling which describes how the 

coordinated dynamics of multiple biological pathways and drug actions stochastically 

drive phenotypical outcomes and drug dose response. We intend to use this as a 

foundation towards a more comprehensive single cell pharmacodynamic modeling 

encompassing a wider range of biological context. This will likely require expansion of 

the model structure to include biological pathways that were not included in previous 

work as well as effects of various genomic aberrations such as point and indel 

mutations which have implication in tumor pathophysiology. For this purpose, large 

scale pharmacogenomic datasets such as the CCLE may serve as a repository of 

information about perturbations of biological systems and help make decisions for 

further model development. In this work, we have attempted to combine our initialization 

pipeline with the cell population simulation framework to build a system for mechanistic 

exploration of such datasets. At first, we retrieved the genomic, transcriptomic and 

proteomic datasets available in CCLE and used them as a test case for our initialization 
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pipeline. We refined the list of available cells based on their availability in the individual 

datasets. To test the initialization pipeline, we required cell lines which are present in all 

omics datasets as well as the drug sensitivity profiles. After this consideration, we were 

left with a total of 251 cell lines. We applied the initialization pipeline on all these cell 

lines and a significant number of cell lines (59) the initialization process was completed 

successfully, which meant at the end of this process we had a unique version of the 

SPARCED single cell model representing each cell line. A complete list of cell lines that 

were subject to the initialization process is described in Table 5.2, indicating their results 

and details of failure. 
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Table 5.2: Initialization Results for CCLE Cell Lines 

Cell line Result Comments (failure step) 

697 Failed Basal ERK 

22RV1 Failed Transcriptional activators 

769P Failed Transcriptional activators 

786O Passed N/A 

8305C Failed Basal ERK 

8505C Failed Transcriptional activators 

A172 Failed Basal ERK 

A204 Passed N/A 

A2058 Passed N/A 

A2780 Failed basal CC equilibration 

A375 Failed Transcriptional activators 

A549 Failed Basal ERK 

A673 Passed N/A 

ASPC1 Failed Apoptosis 

AU565 Passed N/A 

BT20 Passed N/A 

BT549 Failed Survival signaling 

BXPC3 Failed Transcriptional activators 

C32 Failed Basal ERK 

CAKI2 Failed Transcriptional activators 
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Cell line Result Comments (failure step) 

CAL27 Failed Basal apoptosis 

CAL851 Passed N/A 

CALU1 Failed Transcriptional activators 

CALU6 Passed N/A 

CAMA1 Passed N/A 

CCK81 Failed Apoptosis 

COLO320 Failed Basal ERK 

COLO678 Failed Translational rate 

COLO679 Failed Transcriptional activators 

COLO741 Failed Apoptosis 

CORL105 Failed Basal ERK 

CORL23 Passed N/A 

DAOY Failed Basal apoptosis 

DETROIT562 Failed Basal apoptosis 

DMS114 Passed N/A 

DU145 Failed Apoptosis 

DV90 Failed Transcriptional activators 

EBC1 Failed Transcriptional activators 

EFM19 Failed Apoptosis 

F36P Passed N/A 

FADU Passed N/A 

FUOV1 Failed Basal apoptosis 
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Cell line Result Comments (failure step) 

G401 Failed Transcriptional activators 

G402 Failed Transcriptional activators 

GAMG Failed Transcriptional activators 

GB1 Passed N/A 

HCC1187 Failed Transcriptional activators 

HCC1395 Failed Translational rate 

HCC15 Failed Apoptosis 

HCC1806 Passed N/A 

HCC1954 Failed Basal apoptosis 

HCC44 Failed Basal ERK 

HCC56 Failed Survival signaling 

HCC70 Failed Translational rate 

HCC827 Failed Basal ERK 

HCT116 Failed Transcriptional activators 

HCT15 Failed Basal ERK 

HDMYZ Failed Apoptosis 

HDQP1 Failed Apoptosis 

HEC1A Failed Translational rate 

HEC251 Failed Apoptosis 

HEC265 Failed Transcriptional activators 

HEC59 Failed Basal apoptosis 

HEC6 Failed Transcriptional activators 
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Cell line Result Comments (failure step) 

HEL9217 Failed Translational rate 

HEP3B217 Failed Basal apoptosis 

HEPG2 Failed Basal apoptosis 

HEYA8 Passed N/A 

HGC27 Failed Basal ERK 

HLF Passed N/A 

HS294T Failed Transcriptional activators 

HS695T Failed Transcriptional activators 

HS944T Failed Transcriptional activators 

HT1080 Failed Transcriptional activators 

HT1197 Failed Transcriptional activators 

HT1376 Failed Translational rate 

HT29 Passed N/A 

HUH1 Failed Transcriptional activators 

HUPT3 Failed Basal apoptosis 

HUPT4 Failed Apoptosis 

IALM Failed Basal apoptosis 

IGR37 Passed N/A 

IGR39 Failed Basal ERK 

IGROV1 Failed Basal ERK 

IM95 Failed Transcriptional activators 

IPC298 Passed N/A 
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Cell line Result Comments (failure step) 

ISHIKAWAHERAKLIO02ER Passed N/A 

J82 Failed Basal ERK 

JHH4 Failed Basal apoptosis 

JHH5 Passed N/A 

JHH6 Failed Transcriptional activators 

JHH7 Passed N/A 

JHOS2 Failed Apoptosis 

JHUEM2 Failed Transcriptional activators 

JM1 Failed basal CC equilibration 

JMSU1 Failed Basal apoptosis 

JURKAT Failed Basal ERK 

K029AX Failed Basal ERK 

KARPAS299 Failed Apoptosis 

KARPAS422 Failed Survival signaling 

KASUMI2 Failed Transcriptional activators 

KMRC1 Failed Transcriptional activators 

KMS11 Failed Survival signaling 

KMS12BM Failed Survival signaling 

KNS42 Passed N/A 

KNS81 Failed Transcriptional activators 

KP2 Failed Transcriptional activators 

KP4 Failed Survival signaling 
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Cell line Result Comments (failure step) 

KURAMOCHI Failed Apoptosis 

KYM1 Failed Transcriptional activators 

KYSE150 Failed Transcriptional activators 

KYSE180 Passed N/A 

KYSE30 Failed Transcriptional activators 

KYSE410 Failed Basal apoptosis 

KYSE450 Passed N/A 

KYSE510 Failed Apoptosis 

KYSE70 Failed Transcriptional activators 

L33 Failed Apoptosis 

L428 Failed Apoptosis 

LCLC103H Passed N/A 

LN18 Failed Basal apoptosis 

LN229 Failed Transcriptional activators 

LOXIMVI Failed Basal ERK 

LS411N Failed Basal apoptosis 

LS513 Failed Transcriptional activators 

LUDLU1 Failed Basal apoptosis 

MCF7 Failed Transcriptional activators 

MDAMB157 Failed Translational rate 

MDAMB436 Passed N/A 

MDAMB453 Passed N/A 
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Cell line Result Comments (failure step) 

MDAMB468 Passed N/A 

MEWO Failed Apoptosis 

MFE280 Failed Basal apoptosis 

MFE296 Failed Basal apoptosis 

MFE319 Failed Apoptosis 

MIAPACA2 Failed Basal ERK 

MKN45 Failed Apoptosis 

MKN7 Failed Apoptosis 

MONOMAC1 Passed N/A 

MSTO211H Failed Transcriptional activators 

NCIH1048 Failed Basal apoptosis 

NCIH1155 Passed N/A 

NCIH1299 Passed N/A 

NCIH1355 Passed N/A 

NCIH1568 Failed Apoptosis 

NCIH1573 Failed Basal apoptosis 

NCIH1581 Failed Apoptosis 

NCIH1650 Failed Basal ERK 

NCIH1666 Failed Transcriptional activators 

NCIH1693 Passed N/A 

NCIH1703 Passed N/A 

NCIH1792 Failed Translational rate 
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Cell line Result Comments (failure step) 

NCIH1793 Failed Apoptosis 

NCIH1944 Failed Transcriptional activators 

NCIH1975 Failed Apoptosis 

NCIH2009 Failed Basal apoptosis 

NCIH2030 Passed N/A 

NCIH2052 Failed Transcriptional activators 

NCIH2122 Failed Transcriptional activators 

NCIH2170 Passed N/A 

NCIH2172 Failed Basal apoptosis 

NCIH2228 Failed Apoptosis 

NCIH226 Failed Transcriptional activators 

NCIH2286 Failed Transcriptional activators 

NCIH23 Passed N/A 

NCIH3255 Failed Transcriptional activators 

NCIH358 Failed Apoptosis 

NCIH441 Passed N/A 

NCIH460 Failed Apoptosis 

NCIH520 Failed Basal apoptosis 

NCIH522 Failed Apoptosis 

NCIH647 Failed Apoptosis 

NCIH650 Failed Basal ERK 

NCIH661 Failed Apoptosis 
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Cell line Result Comments (failure step) 

NCIH747 Failed Basal apoptosis 

NCIN87 Passed N/A 

NIHOVCAR3 Passed N/A 

NUGC3 Passed N/A 

OCIAML5 Failed Transcriptional activators 

OCUM1 Failed Transcriptional activators 

OE33 Failed Basal ERK 

OPM2 Failed Basal ERK 

OV90 Passed N/A 

OVCAR4 Failed Apoptosis 

OVCAR8 Failed Translational rate 

OVSAHO Failed Apoptosis 

PANC0203 Passed N/A 

PANC0403 Passed N/A 

PC14 Failed Translational rate 

PC3 Failed Basal ERK 

QGP1 Failed Apoptosis 

RD Failed Basal apoptosis 

REH Failed Basal ERK 

RERFLCMS Passed N/A 

RKO Failed Transcriptional activators 

RPMI7951 Failed Basal ERK 
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Cell line Result Comments (failure step) 

RT112 Failed Basal apoptosis 

RT4 Failed Basal apoptosis 

RVH421 Failed Basal ERK 

SAOS2 Failed Translational rate 

SBC5 Failed Apoptosis 

SCC25 Failed Apoptosis 

SF295 Passed N/A 

SHP77 Failed Basal apoptosis 

SJSA1 Failed Transcriptional activators 

SKCO1 Passed N/A 

SKES1 Failed Apoptosis 

SKHEP1 Failed Transcriptional activators 

SKLU1 Failed Apoptosis 

SKMEL30 Failed Apoptosis 

SKMEL5 Failed Transcriptional activators 

SKNAS Failed Basal apoptosis 

SNGM Failed Transcriptional activators 

SNU1 Failed Translational rate 

SNU423 Passed N/A 

SNU449 Failed Survival signaling 

SNUC2A Failed Apoptosis 

SQ1 Failed Basal apoptosis 
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Cell line Result Comments (failure step) 

SU8686 Failed Transcriptional activators 

SUDHL4 Failed Basal ERK 

SUDHL6 Failed Translational rate 

SUIT2 Failed Basal ERK 

SW1271 Passed N/A 

SW1417 Passed N/A 

SW1573 Failed Apoptosis 

SW1990 Failed Translational rate 

SW403 Passed N/A 

SW48 Failed Transcriptional activators 

SW480 Passed N/A 

SW620 Passed N/A 

T24 Failed Basal apoptosis 

T47D Failed Basal apoptosis 

TC71 Passed N/A 

TCCSUP Failed Transcriptional activators 

TE1 Failed Transcriptional activators 

TE11 Failed Transcriptional activators 

TYKNU Failed Basal apoptosis 

U118MG Failed Transcriptional activators 

U2OS Failed Basal apoptosis 

U87MG Failed Transcriptional activators 
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Cell line Result Comments (failure step) 

U937 Failed Basal apoptosis 

UACC257 Failed Transcriptional activators 

UACC62 Failed Transcriptional activators 

UMUC3 Failed Basal ERK 

VMRCRCW Failed Apoptosis 

WM115 Failed Transcriptional activators 

WM1799 Failed Basal ERK 

WM2664 Failed Transcriptional activators 

WM793 Failed Transcriptional activators 

WM88 Failed Transcriptional activators 

ZR751 Failed Basal apoptosis 
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Genomic datasets: 1043

Genomic and transcriptomic data: 
929

Genomic, transcriptomic and 
proteomic data: 370

Omic data and drug 
sensitivity profile: 251

Initialization: 59

Growth 
media 

estimation: 
28

Figure 5.15: Refinement of the CCLE cell lines through various stages of processing. 

Each level of the inverted pyramid diagram indicates the number of cell lines 

available at that stage. 
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5.6 Results II - Growth Media Estimation for Initialized Cell Lines 

In the previous chapter, we presented the cell population simulation framework 

which allows us to execute in silico replications of dose response experiments. 

Population dynamics retrieved from these virtual dose response experiments allow us to 

measure drug response as a function of its dose in a manner analogous to experimental 

results. A direct comparison between experimental and simulation results helps us 

validate the causality of drug response in terms of the underlying signaling mechanisms 

in cases where the match. In other cases when we see mismatches, it helps us identify 

crucial knowledge gaps as well as help develop hypotheses in addressing those. Since 

initialization procedure allows expansion of the biological context of the model beyond 

its MCF10A foundation, it also enables the usage of drug sensitivity datasets available 

for the new cell line contexts. Before dose response simulations can be conducted on 

the new cell lines, questions may arise whether a dynamic cell population may be 

represented with the use of initialized cell line models. It is important to ensure their 

population growth dynamics are in qualitative agreement with their experimentally 

observed behavior. In our simulation framework, growth stimulus is provided by means 

of various doses for growth factor which serve as an input to the modeled protein 

signaling network. However, there is a lack of clarity between the details with which 

growth conditions are required to be defined for simulations and current methods of cell 

culture in experiments. One of the key components in cell culture media is fetal bovine 

serum (FBS). The components in FBS have not been fully identified, and their effects on 

the composition and cell culture may vary depending on the individual fetus. FBS is 

prepared after removing clotting factors and blood corpuscles from cattle blood and its 
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composition may vary depending on the diet and environment of the cattle, making it 

difficult to accurately state the ingredients and contents205. However, it is known to 

contain growth factors, hormones, proteins, cofactors, and minerals that can affect cell 

culture. The lack of reliable characteristic information and stringent standards for growth 

media imposes certain difficulties when producing simulated growth conditions 

analogous to experiments. To account for this uncertainty, we assume a baseline growth 

media as an array of several growth factors included in the model, namely, EGF, 

heregulin, HGF, PDGF, FGF, IGF, and insulin. In the baseline array, concentration for 

each growth factor was set to its binding affinity for the canonical receptor. We then 

considered a series of seven log-spaced multipliers, ranging from 10-3 to 103 for the 

baseline growth media and ran cell population simulations for each iteration across all 

59 cell lines that passed the initialization process. In these simulations, we observed 

context specific differential growth rates for all cell lines. Hence, definition of cellular 

context by means of genomic, transcriptomic and proteomic data has enabled us to 

include effects of omics context in cell line specific growth and proliferation rates. 

Furthermore, for many of the cell lines, simulated growth rate within the range of growth 

media of varying strength closely was also within the range of their experimentally 

reported doubling time. As per this observation, we classified the cell lines into three 

groups: 

• Group 1 – Cell lines for which experimentally reported doubling time was 

within the range of simulated growth (28 in total), 

• Group 2 – Cell lines for which experimentally reported doubling time was 

outside the range of simulated growth (15 in total), and 
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• Group 3 – Cell lines for which growth was insufficient (16 in total). 

For the group 3 cell lines, an overall decline in population was observed 

regardless of the applied strength of growth media. A likely explanation is that inclusion 

of omics context for these cell lines resulted in aggressive apoptotic signaling, causing 

population wide mass apoptosis. It indicates a knowledge gap in the current SPARCED 

model with regards to possible survival signaling mechanism employed in the group 3 

cell lines. For the group 2 cell lines, even though population growth may be observed, 

the experimental doubling time was outside the range of simulated doubling time. It may 

indicate inadequacies in the underlying cell proliferation mechanism as well as the 

uncertainty surrounding the characteristics of growth media. We chose to exclude 

groups 2 and 3 from further analysis and selected the media strength for the group 1 

cells which brings it closest to its experimental doubling time. These are the growth 

conditions that we selected for conducting virtual drug dose response simulations with 

group 1 cells, of which there were 28. 
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Figure 5.16: Simulated population dynamics of examples of cell lines categorized into 

group 1 as per simulated growth behavior, (A) AU565 and (B) CORL23. The 

multiplier levels indicate the ascending order of log spaced multipliers from 10-3 to 

103 representing growth media of varying strength applied to each cell population 

simulation. Vertical dashed line represents experimentally observed doubling time. 
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Figure 5.17: Simulated population dynamics of examples of cell lines categorized into 

group 2 as per simulated growth behavior, (A) A673 and (B) BT20. The multiplier 

levels indicate the ascending order of log spaced multipliers from 10-3 to 103 

representing growth media of varying strength applied to each cell population 

simulation. Vertical dashed line represents experimentally observed doubling time. 
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Figure 5.18: Simulated population dynamics of examples of cell lines categorized into 

group 3 as per simulated growth behavior, (A) HLF and (B) HT29. The multiplier 

levels indicate the ascending order of log spaced multipliers from 10-3 to 103 

representing growth media of varying strength applied to each cell population 

simulation. Vertical dashed line represents experimentally observed doubling time. 
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5.7 Results III – Dose Response Simulations Across Cell Lines 

Thus far we have created cell line specific variants of the SPARCED model with 

initialization. Furthermore, we have identified 28 cell lines which may be used to create 

representations of dynamic cell populations consistent with experimental observations. 

Drug sensitivity profiles for all these cell lines across 24 anticancer drugs have been 

published in the Cancer Cell Line Encyclopedia33. In this section we explore whether our 

mechanistic cell population simulation framework can explain the drug sensitivity and 

resistance mechanisms across multiple cell line contexts. For this purpose, we selected 

17 of those 24 anticancer drugs which are targeted therapeutic agents and had protein 

targets already included as species within the SPARCED model. We then retrieved the 

KINOMEscan datasets for these drugs from the HMS LINCS database206. These 

datasets contain a summary of binding affinity of each drug to a wide range of 

subcellular target proteins. For each drug, we identified the target proteins which are 

part of our modeled signal transduction network, and included the corresponding drug 

actions based on the reported binding affinity. In this manner, we included drug actions 

of all 17 selected drugs.  

In this section, we focus on Mirdametinib, which is an inhibitor of the MEK kinase. 

As per the drug sensitivity profile reported in CCLE, Mirdametinib possesses a broad 

range of response for our panel of 28 initialized cell lines (Figure 5.19) with at half of 

those resistant to it and at least 11 cell lines strongly sensitive to it. To what extent can 

our mechanistic cell population simulations recapitulate the observed sensitivity and 

resistance across cell lines contexts? To answer this question, we conducted dose 
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response simulations for Mirdametinib doses ranging from 0.008 uM to 8 uM with our 

selected cell lines.  

Interestingly, the dose response simulations also generated a spectrum of 

sensitivity to Mirdametinib dose for the selected cell lines. Here as an example we 

present the cell lines PANC0403 and AU565 (Fig. 5.20), out of which PANC0403 was 

observed to be sensitive to Mirdametinib in both simulations and experiments where 

AU565 was insensitive in both cases. In CCLE, the metric for drug sensitivity profiles is 

percentage of cell viability which is not directly comparable to the GR-score for 

simulations. However, we may estimate the nature of sensitivity based on certain 

characteristic features of the dose response curves. Specifically, slope, and area under 

the curve (AUC). Here, a cell line that is more sensitive will tend to have a more 

negative slope and lower AUC in its dose response curve. 

The dose response simulations for one of the cell lines, MDAMB436 generated 

inconclusive results, presumably due to its low growth rate and high variability. We 

considered the Mirdametinib dose response curves for the remaining 27 cell lines and 

generated the slope vs AUC scatter plot for both simulation results and experimental 

dataset (Fig. 5.21). The spread of datapoints on these plots is representative of the wide 

range of dose responses observed in experiments which to an extent simulations were 

also able to capture. 

If we were to obtain a binary classification of sensitive and insensitive cell lines, 

we may divide the slope vs AUC space with a line with negative slope. Here, ambiguity 

may arise from the uncertainty associated with discretization of a continuum. For this 

purpose, the line was drawn based on the visual observation of the dose response 
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curves of cell lines near the boundary line such that cell lines of the same class may 

occupy the same side of the line. Based on this classification, the experimental drug 

sensitivity profile had 15 sensitive and 12 insensitive cell lines. On the other hand, the 

simulated drug sensitivity profiles had 6 sensitive and 21 insensitive cell lines. 

Interestingly, no false positives were predicted in simulations. Hence, all 6 cell lines 

predicted to be sensitive in simulations were also observed as such in experimental 

data. Consequently, the 12 insensitive cell lines as per experimental data were also 

predicted to be insensitive in simulations. The final results for this classification have 

been summarized in Table 5.3.  

One of the standard methods of evaluating binary classification is the Matthew’s 

Correlation Coefficient (MCC)207. For this, we constructed the confusion matrix by filling 

in the numbers of true positive (TP), true negative (TN), false positive (FP) and false 

negative (FN) as described in Fig. 5.22. Hence, we may calculate the value of MCC 

using the following formula: 

 

 

Here, the resulting value of 0.478 indicates that our method has moderate 

predictive capability and has performed significantly better than any method that might 

generate random classifications, despite the numerous sources of uncertainties in our 

approach. This result instills confidence in our ability to relate drug sensitivity to omics 

informed single cell signal transduction pathway activities. We anticipate that by 

resolving the uncertainties and knowledge gaps we have discussed, the overall 

prediction outcome will improve.  

MCC =
TP × TN − FP × FN

√(TP + FP)(TP + FN)(TN + FP)(TN + FN)
= 0.478 
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Figure 5.19: Sensitivity profile of Mirdametinib across our panel of initialized cell 

lines. 

0 2 4 6 8 10

AU565

CAL-85-1

COR-L23

F-36P

FaDu

IGR-37

IGR-39

JHH-7

KYSE-180

LCLC-103H

MDA-MB-436

MDA-MB-453

NCI-H1155

NCI-H1299

NCI-H1355

NCI-H2030

NCI-H2170

NCI-H23

NCI-H441

NCI-N87

NIH:OVCAR-3

OV-90

Panc 02.03

Panc 04.03

SF-295

SK-CO-1

SNU-423

SW 1271

IC50 Doses of Mirdametinib (μM)



176 
 

 

 

 

 

  

Figure 5.20: (A,B) Mirdametinib dose response simulation results for cell lines (A) 

PANC0403, and (B) AU565 expressed growth rate inhibition scale (GR-score) 

(C,D) Experimentally reported % cell viability as a function of Mirdametinib 

concentration for (C) PANC0403 and (D) AU565  
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Figure 5.21: Comparison of slope vs area under the curve (AUC) for experimental (A) 

and simulated (B) dose response curves of Mirdametinib across various cell lines. A 

decision line with a negative slop has been drawn to classify cell lines into sensitive 

and insensitive categories.  
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Table 5.3: Binary classification of cell lines as sensitive and insensitive to 

Mirdametinib according to experimental data and simulation results. 

Cell line Classification for 

experimental data 

Classification for 

simulation results 

Match/mismatch 

AU565 Insensitive Insensitive Match 

CAL851 Sensitive Insensitive Mismatch 

CORL23 Insensitive Insensitive Match 

F36P Insensitive Insensitive Match 

FADU Sensitive Sensitive Match 

IGR37 Sensitive Insensitive Mismatch 

IGR39 Sensitive Insensitive Mismatch 

JHH7 Sensitive Insensitive Mismatch 

KYSE180 Insensitive Insensitive Match 

LCLC103H Insensitive Insensitive Match 

MDAMB453 Sensitive Sensitive Match 

NCIH1155 Insensitive Insensitive Match 

NCIH1299 Sensitive Insensitive Mismatch 

NCIH1355 Sensitive Sensitive Match 

NCIH2030 Insensitive Insensitive Match 

NCIH2170 Insensitive Insensitive Match 

NCIH23 Sensitive Insensitive Mismatch 

NCIH441 Insensitive Insensitive Match 
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Cell line Classification for 

experimental data 

Classification for 

simulation results 

Match/mismatch 

NCIN87 Sensitive Sensitive Match 

NIHOVCAR3 Insensitive Insensitive Match 

OV90 Sensitive Insensitive Mismatch 

PANC0203 Sensitive Insensitive Mismatch 

PANC0403 Sensitive Sensitive Match 

SF295 Insensitive Insensitive Match 

SKCO1 Sensitive Insensitive Mismatch 

SNU423 Insensitive Insensitive Match 

SW1271 Sensitive Sensitive Match 
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Figure 5.22: Evaluation of binary classification of Mirdametinib sensitivity prediction 

for selected cancer cell line. The confusion matrix is constructed by filling in the 

numbers of true positive (TP), true negative (TN), false positive (FP) and false 

negative (FN). 
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5.8 Methods – Pharmacodynamic Modeling 

We represented the pharmacodynamics of each drug by including its interactions 

with modeled target species according to the binding affinity reported in the LINCS 

KINOMEScan datasets. For all drugs, we assume they are transported through the cell 

by diffusion to bind reversibly with their intracellular targets. We further assume that 

binding of drug with its target prevents further interactions and post translational 

modifications of the target. A summary of included drugs and their targets have been 

provided in Table 5.3. As an example we describe the drug actions of Mirdametinib 

below. Reactions representing Mirdametinib drug actions are: 

Mirdametinib + MEK => Mirdametinib bound MEK 

Mirdametinib bound MEK => Mirdametinib + MEK 

Mirdametinib bound MEK => Ø 

As a validation for the modeled drug action, we performed deterministic 

simulation of the SPARCED model in the MCF10A context. Serum-starved cells 

incubated for 30 minutes were added with 3.3 nM EGF, 0.005 nM HGF, 1721.0 nM 

insulin and 1000 nM Mirdametinib. Simulated trajectory of the drug, drug bound target 

and downstream target activity for drug dose and control conditions (Figure 5.20) 

confirm the intended outcome of drug action at the single cell level as inhibition of MEK 

results in significant reduction of its activity. 
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Figure 5.23: Deterministic simulation results for Mirdametinib drug action validation. 

Simulated trajectory of extracellular (A) and intracellular (B) Mirdametinib, as well as 

drug bound target (MEK) (C) and downstream target activity (ppMEK) (D) for drug 

dose and control conditions confirm the effect of drug at single cell level. 

A B 

C D 
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Table 5.4: Summary of included drug actions 

Drug Alternative name(s) Species name Targets in the model 

Erlotinib  erlot_EC EGFR (E1), ERBB2 (E2), ERBB3 (E3), 

MET (Met) 

Lapatinib  lapat_EC EGFR (E1), ERBB2 (E2), ERBB4 (E4) 

PHA665752  METi_EC MET (Met), INSR(Isr), FGFR2(Fr), 

CDK4/6 (Md), MAP2K1/2 (MEK), 

PDGFRA/B (Pr), S6K1 (S6K) 

Crizotinib PF-2341066 criz_EC IGF1R (Ir), INSR (Isr), MET (Met), 

S6K1 (S6K) 

TAE684  Tae_EC CDK2(Ma, Me), CHEK1 (Chk1), EGFR 

(E1), ERBB2 (E2), ERBB4 (E4), 

FGFR1/2 (Fr), IGF1R (Ir), INSR (Isr), 

MET (Met), PDGFRA/B (Pr), 

RSK1/2/3/4 (RSK), WEE1 (Wee1), 

CDK4/6 (Md), MAP2K1/2 (MEK), S6K1 

(S6K) 

Vandetanib Zactima vandet_EC EGFR (E1), ERBB2 (E2), ERBB3 (E3), 

ERBB4 (E4), MET (Met), 

FGFR1/FGFR2 (Fr) 

Nilotinib Tasigna nilot_EC BRAF (BRaf), PDGFRA/B (Pr), RAF1 

(CRaf) 

Saracatinib AZD0530 sarac_EC EGFR(E1), PDGFRB(Pr) 

Sorafenib BAY-439006, 

Nexavar 

soraf_EC BRAF (BRaf), CDK2 (Ma, Me) , 

FGFR1/FGFR2 (Fr), RAF1 (CRaf) 
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Drug Alternative name(s) Species name Targets in the model 

Dovitinib TKI258 dovit_EC CDK4 (Md), CHEK1 (Chk1), 

FGFR1/FGFR2 (Fr), GSK3B (GSK3b), 

WEE1 (Wee1) 

Palbociclib PD-0332991 palbo_EC CDK4/6 (Md) 

AEW541  aew_EC IGF1R (Ir) 

RAF265 CHIR265 RAFi_EC BRAF (BRaf), RAF1 (CRaf), Fr 

(FGFR1), MET (Met), PDGFRA/B (Pr) 

PLX4720  plx_EC BRAF (BRaf), RAF1 (CRaf), FGFR1/2 

(Fr), MP2K1/2 (MEK) 

Mirdametinib PD0325901 mird_EC MAP2K1/MAP2K2 (MEK) 

Selumetinib AZD6244 selum_EC EGFR (E1), MAP2K1/MAP2K2 (MEK) 

Nutlin3  nutlin_EC TP53 (p53inac), MDM2, MDM4 
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5.9 Discussion 

An overarching goal of our work is to develop predictive understanding of 

anticancer drug response at the single cell level while accounting for the biomolecular 

mechanisms that drive such outcome. To a great extent such capability relies on how 

well our single cell model may describe the biological context of different tumor types. 

Application of high throughput omics techniques is currently one of the most prevalent 

methods for characterizing and understanding the molecular properties of cancer cell 

lines and tumor samples. In this chapter, we present a strategy for the omics informed 

context definition in single cell anti-cancer pharmacodynamic modeling. We start our 

work with the SPARCED model, a single cell model of stochastic cell proliferation and 

death signaling. The initial version of the model introduced the “initialization” procedure, 

which is used to determine certain parameter values and initial conditions required to 

represent a certain cell line based on its genomic, transcriptomic and proteomic data. It 

is a computationally intensive procedure whereby the model is subject to stepwise 

iterative unit testing focused on specific biological functionalities, such as protein and 

level conservation, cell cycle, DNA damage, and apoptosis. Even though the first 

initialization pipeline was successfully applied to the U87 glioma cell line, the multi-

module hybrid nature of the simulation algorithm imposed certain limitations in the 

manner intensive computations could be performed on the model. As a result, certain 

important features of the model excluded from the initialization process, such as basal 

ERK and AKT signaling, transcriptional activation, mRNA level conservation, and 

survival signaling. We later made modifications to the model structure and simulation 
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algorithm because of which we were able to achieve more than 200-fold increase in 

deterministic simulation computation speed.  

This significant modification helped us overcome the previous technical 

limitations which allowed us to revise the initialization procedure and build a more 

robust pipeline. This revised initialization procedure was applied to omics data retrieved 

from 251 cell lines from the Cancer Cell Line Encyclopedia, 59 of which passed the 

initialization procedure successfully. Next we attempted to evaluate the applicability of 

cell-line specific single cell models in dose response prediction. As a first step, we 

created representations of a dynamic cell population using these models. For this, we 

utilized the cell population simulation framework developed in Chapter 3. For each cell 

lines, we defined growth conditions using varying doses of growth factors included in 

the model. In cell population simulations, we observed context specific differential 

growth rates across our panel of 59 cell lines. However, for 28 of these cell lines, the 

experimentally observed growth rates were within the range of simulated growth rates. 

Since these cell line models matched a functional outcome of experimental 

observations, we selected these for context-specific drug dose response simulations. 

The Cancer Cell Line Encyclopedia contains drug sensitivity profiles for the 

selected cell lines across 24 anticancer drugs. For 17 of these drugs, the known drug-

target interactions could be represented in our model by binding of drugs with one or 

more of modeled species. To evaluate the context specific drug response predictions, 

we chose Mirdametinib, which is an inhibitor of the MEK kinase, and demonstrates a 

wide range of sensitivity profiles for our selected cell lines. 
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The initialization procedure that we devised has several notable limitations since 

it fails to function for a majority of our selected cell lines. It highlights the need for 

additional mechanisms in the model and corresponding initialization steps to tune them. 

One of the initialization steps where a large number of cell lines failed is the basal ERK 

signaling tuning step. For these cell lines, it was not possible to maintain even a minimal 

level of ERK activity after integrating their proteomic levels, due to low levels of certain 

upstream signaling proteins. A possible explanation is that many of these cell lines 

might possess genomic aberrations resulting in constitutive ERK activity which does not 

rely on any upstream protein level. Since our model does not account for any such 

mechanism, the initialization procedure falls short. Future iterations of this work may 

need to include mechanisms that can potentially explain this behavior to successfully 

integrate these cell lines. 

Another initialization step where we experienced failures is the tuning of 

transcriptional activators, AP1 and MYC, which regulate cyclin D overexpression for the 

initiation of cell cycle. One of the key factors in this regard is p21, an inhibitor of the cell 

cycle process. For the cell lines that failed this step, p21 was found to be significantly 

high compared to the original MCF10A context. It is also a protein for which we were 

unable to obtain proteomics values due to lack of reliable data. To account for this lapse 

in information, we estimated the protein level based on the protein to mRNA ratio 

observed in the MCF10A context. A possible explanation for failure in this step could be 

an undiscovered transcriptional regulatory mechanism acting on p21 such that cells 

may retain cell cycle functionality. 
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Apoptosis is another functionality of the model which was not compatible with the 

omics context of all cell lines. For these cell lines, integration of omics dataset resulted 

in either too aggressive apoptosis signaling, resulting in immediate cell death, or a 

complete lack of apoptosis. A potential solution could be introduction of more detailed 

apoptosis signaling mechanisms with apoptotic regulators that are not currently included 

in the model. 

A significant aspect about the molecular characteristics of cancer cells is the 

effect of gain of function or loss of function mutations which are yet to be integrated into 

the model. In many cases we observed mismatches between experimental observations 

and simulation results which highlights the need for further investigation into the extent 

to which such mutations may affect the biomolecular network. A possible strategy to 

include effects of these mechanism may include modification of the model structure to 

add mutant variant of species and their resulting interactions. Consequently, 

initialization procedure will require modifications to accommodate these mechanisms. 
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Chapter 6 

A PRELIMINARY REVISION OF THE CELL CYCLE 

SUBMODEL 

6.1 Introduction 

The cell cycle pathway is a series of events that occur in a eukaryotic cell leading 

to its division and duplication. It is one of the most essential cellular functions that 

ensures growth and maintenance of living tissues. In normal cells, it is a manifestation 

of proliferative stimulation in a cell. It is also one of the pathways which may be subject 

to dysregulation due to genomic aberration in cancer cells leading to uncontrolled cell 

growth. Hence, it is also an ideal candidate for targeted cancer therapy whereby drugs 

are designed to inhibit specific components of the pathway208. Currently, inclusion of the 

cell cycle submodel in the SPARCED models allows us to observe the stochastic fate of 

cells undergoing division. Current cell cycle submodel in the SPARCED single cell 

model have been adopted from an earlier work of Gérard and Goldbeter27. However, 

there are certain technical limitations within this submodel precluding its integration with 

the gene expression module. Previously, inclusion of gene expression noise within the 

cell cycle submodel resulted in instability and irregular behavior32. The genome is the 

prime foundation of biological systems. Gene expression is an inherently stochastic 

process82 which gives rise to cell-to-cell variability in the mRNA and protein levels and 

their dynamics. The highly conserved nature of biological pathway implies the existence 

of noise dampening mechanism in the network modalities. The behavior of the cell cycle 

submodel in presence of gene expression noise implies the presence of undiscovered 
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mechanism that provides the cell cycle with natural robustness against gene expression 

noise. Hence, even though the cell cycle submodel describes a manifestation of 

proliferative signaling in cells, it is partially inconsistent with their molecular biology. The 

results of Palbociclib dose response simulations from Chapter 4 also implies that the 

cell cycle submodel is missing key regulatory mechanisms which may help explain drug 

response under certain conditions. To cope with the instability observed in cell cycle 

submodel, mRNA levels of most species associated with cell cycle were kept at a 

constant. This caused a disconnect between the integration of omics data and gene 

expression noise and the current cell cycle submodel. This arrangement is inconsistent 

with the design principles that were followed in other parts of the model. As a result, we 

are unable to account for the effects of omics context on matters concerning the cell 

cycle. In this chapter, we discuss development of a revised cell cycle submodel as a 

potential solution. We built a preliminary version of this submodel capable of 

representing the biomolecular interactions for initiation of cell cycle in response to 

growth stimulation. In this submodel, the involved species are informed by their omics 

levels in the MCF10A context. Application of growth stimulus in deterministic simulation 

captures the characteristic molecular signatures of cell cycle initiation and S-phase 

entry. Further work is needed such that this submodel may capture progression of cell 

cycle, G2/M phase transition and cell cycle completion. 

6.2 Current Cell Cycle Submodel and Limitations 

Current cell cycle submodel has been derived from an earlier work of Gérard 

Goldbeter27. It describes the initiation of cell cycle by the transcriptional upregulation of 

cyclin D by the transcription factors AP1 and cMyc in G0 phase of cell cycle. Active 
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cyclin D then phosphorylates Rb to de-repress E2F transcription. Furthermore, E2F 

upregulates cyclin E and cyclin A, representing the beginning and progression of S-

phase and transition into G2 phase. It is followed by the activation of cyclin B/CDK1, 

marking the beginning of mitosis, which completes the cell cycle and returns the cell to 

G1 phase. The submodel correctly maintains the order and timing of cyclin expressions 

corresponding to distinct phases. However, a major portion of the submodel is not 

consistent with the design principles of the rest of the SPARCED model as it is not 

connected to the gene expression module. It was discovered that inclusion of gene 

expression noise resulted in irregular and uncontrollable behavior of the cell cycle, such 

as spontaneous cycling in absence of cyclin D induction, disorderly expression and 

upregulation of various cyclins, and a lack of regular frequency, amplitude and duration 

of cyclin peaks. It implies the existence of undiscovered cellular mechanisms that 

provide robustness of cell cycle to gene expression noise. Since such a mechanism 

was not included at the time of publication, the cell cycle submodel was restricted from 

the gene expression module. To maintain stability of the cell cycle functionality, the 

mRNA levels of most of the species involved in the process were kept to a constant 

level. As a result, the omics input corresponding to individual cell lines do not inform the 

cell cycle specific mechanism. This is a significant limitation of the SPARCED single cell 

model, as it precludes derivation of cell line context specific insights related to cell cycle 

functionality, anti-cancer drug actions that target proteins in this pathway and resistance 

mechanisms that may help explain drug response. Further work is needed to ensure 

that the SPARCED single cell model can describe the activity of cell cycle without 

compromising the integrity of gene expression functions. We believe a revision of the 
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cell cycle submodel by inclusion of species and interactions that could potentially 

explain the natural robustness of cell cycle from gene expression noise may help 

complete this work. Possible mechanisms could include more recently discovered 

inhibitory regulators of the cyclin dependent kinases (CDKs) such as the Ink4 and the 

Cip/Kip family of regulators and transcriptional repressors191. Furthermore, several 

regulatory mechanisms currently included in the cell cycle submodel are not consistent 

with the contemporary knowledge of the cell cycle pathway. For example, Rb has been 

included as a direct negative regulator of cyclin D, cyclin E and cyclin A, even though its 

regulatory function is known to rely on sequestering of the transcriptional activator 

E2F191. Currently, E2F is only included as a transcriptional activator and a positive 

regulator of cell cycle. But more recently, the extended family of E2F regulators have 

been discovered with functionalities in both positive and negative regulation of the cell 

cycle209. We believe a revised cell cycle submodel with inclusion of these updated 

mechanisms could describe activation and completion of cell cycle in presence of 

growth stimulus while maintaining consistency with the gene expression module. 
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Figure 6.1: Kinetic scheme of the preliminary revision of cell cycle submodel. The 

included mechanism represents initiation of cell cycle, restriction point crossing and 

progression through S phase. 
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6.3 A Preliminary Revision of the Cell Cycle Submodel 

We started with a modified version of the SPARCED model, from which the 

current cell cycle submodel had been removed. We reviewed current literature sources 

on the regulation of cell cycle pathway and its components and decided to include a set 

of species and interactions which are consistent with more recent knowledge of the 

pathway. Each new species is represented at the level of genes, mRNAs and proteins. 

We included the amount of each species based on their gene copy number, mRNA 

levels and protein concentrations as derived from the omics data of the MCF10A cell 

line. The reactions have been modeled according to the law of mass action. The series 

of included interactions and involvement of the species have been described below. 

6.3.1 Initiation of Cell Cycle 

Cell cycle is the result of proliferative signals being propagated throughout 

various signaling mechanisms, starting from the interaction between RTK family of 

receptors and their cognate ligands. This leads to phosphorylation of the tyrosine kinase 

residues of the receptor and subsequent binding of adaptor proteins. Consequently, this 

results in activation of the Ras/ERK and PI3K/AKT signaling pathways. Further 

downstream, the transcription factors AP1 and cMyc are upregulated. The signaling 

mechanisms in the SPARCED model until this point were left unchanged. The next step 

is upregulation of Cyclin D by AP1 and cMyc, which is one of the first characteristic 

molecular signatures of the cell cycle. 
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Cell cycle is characterized by oscillatory upregulation and downregulation of the 

cyclin family of proteins. In mammalian cells, according to their order of activation, these 

proteins include cyclin D, cyclin E, cyclin A and cyclin B. The cell cycle progression is 

positively regulated by a family of protein kinases, called the cyclin-dependent kinases 

(CDKs). CDKs are specific to the type of cyclin they bind with. Cyclins binding to the 

CDKs leads to their activation. The order in which each CDK is activated is associated 

with the progression of cell cycle. The cell cycle is conceptually divided into four distinct 

phases. The main phases include the S phase, or synthesis phase and M phase, or 

mitosis phase. S and M phases are separated by two ‘gap’ phases. The gap phase 

between M and S phases is called G1, while the gap between S and M phases is called 

G2. When the cell exits the cell cycle due to absence of growth stimulus, it is known to 

be in G0 or quiescent state. In presence of growth factor, cyclin D is upregulated and 

binds to CDK4/6. During further progression of the cell cycle, cyclin E binds to CDK2 at 

the transition between G1 and S phase. During the S phase, cyclin A binds to CDK2. 

cyclin A also binds to CDK1 during the G2 phase, with cyclin B binding to CDK1 marking 

the M phase and completion of cell cycle. In the preliminary cell cycle submodel, we 

have included these cyclins and their corresponding CDKs. The binding and activation 

of cyclins and CDKs in the G1 phase, transition between G1 and S phases and 

progression of S phase has been included. 

6.3.2 Transcriptional Regulation by E2F Transcription Factors 

Another important group of regulators of the cell cycle process is the E2F family 

of transcriptional factors. Eight different types of E2F proteins (E2F1-8) have been 

known to be encoded by mammalian cells, with varying roles and actions209,210. Among 
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these, E2F1-3 are known to be activators of S phase cyclins, E and A. Hence, E2F1-3 

play critical roles in progression of S phase. In contrast, E2F4-8 are known to be 

repressors of transcription. Their actions are known to regulate the activators E2F1-3. 

Among these, E2F4-6 are known as “canonical repressors” which are constitutively 

expressed, but rely on activation mechanisms by other proteins. E2F7-8 are known as 

“atypical repressors”, of which the levels are known to peak during the late S phase. In 

the preliminary cell cycle submodel, we included all these E2F gene products as E2F 

activator, E2F repressor and E2F atypical repressor proteins. Transcriptional regulation 

mechanisms of these regulators, both activation and repression have been included in 

the gene regulation module of the SPARCED model. Here, we have a self-regulatory 

activation mechanism of E2F activator on itself which serves as a positive feedback 

loop to initiate cell cycle. E2F activator also has transcriptional activation mechanism on 

cyclin E and cyclin A. Meanwhile, E2F repressor, along with their activators p107 and 

p130 serve as transcriptional repressor of E2F activator, cyclin E and cyclin A. 

6.3.3 Regulation of CDKs by Inhibitors 

There are small inhibitory proteins expressed in mammalian cells which can bind 

directly onto CDKs and prevent activation of Cyclin-CDK complexes211. There are two 

major groups of these inhibitors. The first group is the Ink4 family, which consists of p16, 

p15, p18 and p19. These are specific to CDK4 and CDK6. The other group is the 

Cip/Kip family which consists of p21, p27 and p57. These proteins follow a more 

generalized mode of action and can bind to a wide range of CDKs. The key function of 

these inhibitors is the maintenance of quiescent state in absence of growth stimulus. 

Out of these, p21 has a specific role of halting cell cycle progression in the event of 
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excessive DNA damage. These inhibitors have and their actions on CDKs have been 

included in the preliminary cell cycle submodel. 

6.3.4 Regulation by Pocket Proteins 

Another important group of proteins is the Rb family, also known as “pocket 

proteins”. It includes the proteins, Rb, p107 and p130212. Out of these, p107 and p130 

are known activators of repressor E2F, with a role to suppress activation of activator 

E2F-dependent transcriptions. Rb is a protein that maintains quiescent status by binding 

on to activator E2F. At the start of cell cycle, when cyclin D is upregulated, cyclin D-

CDK4/6 complex enters an active state. This complex is known to phosphorylate E2F-

bound Rb. Phosphorylation of Rb leads to its inactivation, ultimately freeing activator 

E2F. Once freed, the activator E2F may initiate its role in S-phase progression. This is a 

mechanism that acts as restriction point control for cell cycle. The Rb group of proteins, 

along with their role in repression has been included in the preliminary cell cycle 

submodel. 

6.4 Submodel Validation 

To evaluate the validity of included species and reactions in the preliminary cell 

cycle submodel, we ran deterministic simulations with and without growth stimulus in 

the MCF10A context. The simulation results (Figure 6.2) confirm a maintenance of 

quiescent status in absence of growth stimulus. With the addition of 100 nM of EGF, 

hergulin, HGF, PDGF, FGF, and IGF each and 1721.0 nM insulin, we can observe and 

upregulation of ERK and ATK activity. This in turn leads to the initiation of cell cycle as 

we can observe the point where Rb is hyperphosphorylated and E2F is upregulated, 

indicating that the cell has gone past the cell cycle restriction point. Finally, periodic 
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upregulation and downregulation of cyclin E and cyclin A, indicating progression into S 

phase can also be observed. 
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Figure 6.2: Results from deterministic simulation in MCF10A context showing ERK 

(A) and AKT (B) pathway activation in presence of growth factor stimulation. Pathway 

activity results in initiation of cell cycle whereby restriction point is traversed, as 

evident by the hyperphosphorylation of pRB (C) and upregulation of activator E2F 

(D). Furthermore, periodic upregulation and downregulation of cyclin E (E) and cyclin 

A (F), indicating S phase entry and progression can be observed. 

A B 

C D 

E F 
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Table 6.1: Included species in the revised cell cycle submodel 

Species ID Description HGNC Gene Symbol 

pRB Rb (free) RB1 

pRBp Rb (hypophosphorylated) RB1 

pRBpp Rb (hyperphosphorylated) RB1 

E2F Activator E2F E2F1, E2F2, E2F3 

Cd Cyclin D CCND1, CCND2, CCND3 

Cd_Cdk46 Cyclin D/Cdk4-6 complex CCND1, CCND2, CCND3, 

CDK4, CDK6 

Cd_Cdk46_p27 Cyclin D/Cdk4-6 complex 

bound to p27 

CCND1, CCND2, CCND3, 

CDK4, CDK6, CDKN1B 

Ce Cyclin E CCNE1, CCNE2 

Ce_Cdk2 Cyclin E/Cdk2 complex CCNE1, CCNE2, CDK2 

Skp2 Skp2 SKP2ï¿½ 

Ce_Cdk2_p27 Cyclin E/Cdk2 complex 

bound to p27 

CCNE1, CCNE2, CDK2, 

CDKN1B 

Pe CDC25A Phosphatase CDC25A 

Pai CDC25B Phosphatase CDC25B 

Pei CDC25A Phosphatase 

(inactivated) 

CDC25A 
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Species ID Description HGNC Gene Symbol 

Pbi CDC25C Phosphatase 

(inactivated) 

CDC25C 

Ca Cyclin A CCNA2 

Ca_Cdk2 Cyclin A/Cdk2 complex  CCNA2, CDK2 

Ca_Cdk2_p27 Cyclin A/Cdk2 complex 

bound to p27 

CCNA2, CDK2, CDKN1B 

p27 p27 inhibitor CDKN1B 

Cdh1i Ubiquitin ligase Cdh1 

(inactivated) 

CDH1 

Cdh1a Ubiquitin ligase Cdh1 

(activated) 

CDH1 

E2Fp Phosphorylated activator 

E2F 

E2F1, E2F2, E2F3 

p27p Phosphorylated p27 inhibitor CDKN1B 

Pa CDC25B phosphatase CDC25B 

Cb Cyclin B CCNB1 

Cb_Cdk1 Cyclin B/Cdk1 complex CCNB1, CDK1 

Cdc20i Ubiquitin ligase Cdc20 

(inactivated) 

CDC20 

Cdc20a Ubiquitin ligase Cdc20 

(activated) 

CDC20 

Pb CDC25C Phosphatase CDC25C 
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Species ID Description HGNC Gene Symbol 

Wee1 Cell cycle checkpoint protein 

Wee1 

WEE1 

Wee1p Cell cycle checkpoint protein 

Wee1 (phosphorylated) 

WEE1 

Cb_Cdk1_p27 Cyclin B/Cdk1 complex 

bound to p27 

CCNB1, CDK1, CDKN1B 

Chk1 Cell cycle checkpoint protein 

Chk1 

CHEK1 

pRB_E2F Non phosphorylated Rb 

bound to E2F 

RB1, E2F1, E2F2, E2F3 

pRBp_E2F Hypophosphorylated Rb 

bound to E2F 

RB1, E2F1, E2F2, E2F3 

p21 p21 inhibitor CDKN1A  

Cd_Cdk46_p21 Cyclin D/Cdk4-6 complex 

bound to p21 

CCND1, CCND2, CCND3, 

CDK4, CDK6, CDKN1A 

Ce_Cdk2_p21 Cyclin E/Cdk2 complex 

bound to p21 

CCNE1, CCNE2, CDK2, 

CDKN1A 

Ca_Cdk2_p21 Cyclin A/Cdk2 complex 

bound to p21 

CCNA2, CDK2, CDKN1A 

Cb_Cdk1_p21 Cyclin B/Cdk1 complex 

bound to p21 

CCNB1, CDK1, CDKN1A 

Cdk1 Cyclin dependent kinase 1 CDK1 
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Species ID Description HGNC Gene Symbol 

Cdk2 Cyclin dependent kinase 2 CDK2 

Cdk46 Cyclin dependent kinase 4/6 CDK4, CDK6 

pRBpp_E2F Hyperphosphorylated Rb 

bound to E2F 

RB1, E2F1, E2F2, E2F3 

Cd_Cdk46_pRB Cyclin D/Cdk4-6 complex 

bound to Rb 

CCND1, CCND2, CCND3, 

CDK4, CDK6, RB1 

Cd_Cdk46_pRB_E2F Cyclin D/Cdk4-6 complex 

bound to Rb/E2F complex 

CCND1, CCND2, CCND3, 

CDK4, CDK6, RB1, E2F1, 

E2F2, E2F3 

Ce_Cdk2_pRBp Cyclin D/Cdk4-6 complex 

bound to 

hypophosphorylated Rb 

CCND1, CCND2, CCND3, 

CDK4, CDK6, RB1 

Ce_Cdk2_pRBp_E2F Cyclin D/Cdk4-6 complex 

bound to 

hyperphosphorylated 

Rb/E2F complex 

CCND1, CCND2, CCND3, 

CDK4, CDK6, RB1, E2F1, 

E2F2, E2F3 

p18 p18 inhibitor CDKN2C 

p19 p19 inhibitor CDKN2D 

p57 p57 inhibitor CDKN1C 

Cd_Cdk46_p18 Cyclin D/Cdk4-6 complex 

bound to p18 

CCND1, CCND2, CCND3, 

CDK4, CDK6, CDKN2C 
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Species ID Description HGNC Gene Symbol 

Cd_Cdk46_p19 Cyclin D/Cdk4-6 complex 

bound to p19 

CCND1, CCND2, CCND3, 

CDK4, CDK6, CDKN2D 

Cd_Cdk46_p57 Cyclin D/Cdk4-6 complex 

bound to p57 

CCND1, CCND2, CCND3, 

CDK4, CDK6, CDKN1C 

Ce_Cdk2_p57 Cyclin E/Cdk2 complex 

bound to p57 

CCNE1, CCNE2, CDK2, 

CDKN1C 

Ca_Cdk2_p57 Cyclin A/Cdk2 complex 

bound to p57 

CCNA2, CDK2, CDKN1C 

Cb_Cdk1_p57 Cyclin B/Cdk1 complex 

bound to p57 

CCNB1, CDK1, CDKN1C 

E2Frep Repressor E2F E2F4, E2F5, E2F6 

E2Fatrep Atypical repressor E2F E2F7, E2F8 

p107 Rb family protein p107 RBL1 

p130 Rb family protein p130 RBL2 

p107_E2Frep Repressor E2F/p107 

complex 

RBL1, E2F4, E2F5, E2F6 

p130_E2Frep Repressor E2F/p130 

complex 

RBL2, E2F4, E2F5, E2F6 
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Table 6.2: Included reactions in the revised cell cycle submodel 

Reaction ID Reaction equation Rate law 

vC1 pRB + E2F => pRB_E2F k337 * pRB * E2F 

vC2 pRB_E2F => pRB + E2F k338 * pRB_E2F 

vC3 Cd + Cdk46 => Cd_Cdk46 k339 * Cd * Cdk46 

vC4 Cd_Cdk46 => Cd + Cdk46 k340 * Cd_Cdk46 

vC5 pRB + Cd_Cdk46 => 

Cd_Cdk46_pRB 

k341 * pRB * Cd_Cdk46 

vC6 Cd_Cdk46_pRB => pRB + 

Cd_Cdk46 

k342 * Cd_Cdk46_pRB 

vC7 Cd_Cdk46 + pRB_E2F => 

Cd_Cdk46_pRB_E2F 

k343 * Cd_Cdk46 * pRB_E2F 

vC8 Cd_Cdk46_pRB_E2F => 

Cd_Cdk46 + pRB_E2F 

k344 * Cd_Cdk46_pRB_E2F 

vC9 Cd_Cdk46_pRB => pRBp + 

Cd_Cdk46 

k345 * Cd_Cdk46_pRB 

vC10 pRBp + E2F => pRBp_E2F k346 * pRBp * E2F 

vC11 pRBp_E2F => pRBp + E2F k347 * pRBp_E2F 

vC12 Cd_Cdk46_pRB_E2F => 

Cd_Cdk46 + pRBp_E2F 

k348 * Cd_Cdk46_pRB_E2F 

vC13 Ce + Cdk2 => Ce_Cdk2 k349 * Ce * Cdk2 

vC14 Ce_Cdk2 => Ce + Cdk2 k350 * Ce_Cdk2 
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Reaction ID Reaction equation Rate law 

vC15 pRBp + Ce_Cdk2 => 

Ce_Cdk2_pRBp 

k351 * pRBp * Ce_Cdk2 

vC16 Ce_Cdk2_pRBp => pRBp + 

Ce_Cdk2 

k352 * Ce_Cdk2_pRBp 

vC17 Ce_Cdk2_pRBp => pRBpp + 

Ce_Cdk2 

k353 * Ce_Cdk2_pRBp 

vC18 Ce_Cdk2 + pRBp_E2F => 

Ce_Cdk2_pRBp_E2F 

k354 * Ce_Cdk2 * pRBp_E2F 

vC19 Ce_Cdk2_pRBp_E2F => 

Ce_Cdk2 + pRBp_E2F 

k355 * Ce_Cdk2_pRBp_E2F 

vC20 Ce_Cdk2_pRBp_E2F => 

Ce_Cdk2 + pRBpp_E2F 

k356 * Ce_Cdk2_pRBp_E2F 

vC21 pRBpp_E2F => pRBpp + E2F k357 * pRBpp_E2F 

vC22 Cd_Cdk46 + p18 => 

Cd_Cdk46_p18 

k358 * Cd_Cdk46 * p18 

vC23 Cd_Cdk46_p18 => Cd_Cdk46 + 

p18 

k359 * Cd_Cdk46_p18 

vC24 Cd_Cdk46 + p19 => 

Cd_Cdk46_p19 

k360 * Cd_Cdk46 * p19 

vC25 Cd_Cdk46_p19 => Cd_Cdk46 + 

p19 

k361 * Cd_Cdk46_p19 
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Reaction ID Reaction equation Rate law 

vC26 Cd_Cdk46 + p21 => 

Cd_Cdk46_p21 

k362 * Cd_Cdk46 * p21 

vC27 Cd_Cdk46_p21 => Cd_Cdk46 + 

p21 

k363 * Cd_Cdk46_p21 

vC28 Ce_Cdk2 + p21 => 

Ce_Cdk2_p21 

k364 * Ce_Cdk2 * p21 

vC29 Ce_Cdk2_p21 => Ce_Cdk2 + 

p21 

k365 * Ce_Cdk2_p21 

vC30 Ca_Cdk2 + p21 => 

Ca_Cdk2_p21 

k366 * Ca_Cdk2 * p21 

vC31 Ca_Cdk2_p21 => Ca_Cdk2 + 

p21 

k367 * Ca_Cdk2_p21 

vC32 Cd_Cdk46 + p27 => 

Cd_Cdk46_p27 

k368 * Cd_Cdk46 * p27 

vC33 Cd_Cdk46_p27 => Cd_Cdk46 + 

p27 

k369 * Cd_Cdk46_p27 

vC34 Ce_Cdk2 + p27 => 

Ce_Cdk2_p27 

k370 * Ce_Cdk2 * p27 

vC35 Ce_Cdk2_p27 => Ce_Cdk2 + 

p27 

k371 * Ce_Cdk2_p27 

vC36 Ca_Cdk2 + p27 => 

Ca_Cdk2_p27 

k372 * Ca_Cdk2 * p27 
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Reaction ID Reaction equation Rate law 

vC37 Ca_Cdk2_p27 => Ca_Cdk2 + 

p27 

k373 * Ca_Cdk2_p27 

vC38 p27 + Cb_Cdk1 => 

Cb_Cdk1_p27 

k374 * p27 * Cb_Cdk1 

vC39 Cb_Cdk1_p27 => p27 + 

Cb_Cdk1 

k375 * Cb_Cdk1_p27 

vC40 Cd_Cdk46 + p57 => 

Cd_Cdk46_p57 

k376 * Cd_Cdk46 * p57 

vC41 Cd_Cdk46_p57 => Cd_Cdk46 + 

p57 

k377 * Cd_Cdk46_p57 

vC42 Ce_Cdk2 + p57 => 

Ce_Cdk2_p57 

k378 * Ce_Cdk2 * p57 

vC43 Ce_Cdk2_p57 => Ce_Cdk2 + 

p57 

k379 * Ce_Cdk2_p57 

vC44 Ca_Cdk2 + p57 => 

Ca_Cdk2_p57 

k380 * Ca_Cdk2 * p57 

vC45 Ca_Cdk2_p57 => Ca_Cdk2 + 

p57 

k381 * Ca_Cdk2_p57 

vC46 Cb_Cdk1 + p57 => 

Cb_Cdk1_p57 

k382 * Cb_Cdk1 * p57 

vC47 Cb_Cdk1_p57 => Cb_Cdk1 + 

p57 

k383 * Cb_Cdk1_p57 
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Reaction ID Reaction equation Rate law 

vC48 E2Frep + p107 => p107_E2Frep k384 * E2Frep * p107 

vC49 p107_E2Frep => E2Frep + p107 k385 * p107_E2Frep 

vC50 E2Frep + p130 => p130_E2Frep k386 * E2Frep * p130 

vC51 p130_E2Frep => E2Frep + p130 k387 * p130_E2Frep 

vC52 Ca + Cdk2 => Ca_Cdk2 k388 * Ca * Cdk2 

vC53 Ca_Cdk2 => Ca + Cdk2 k389 * Ca_Cdk2 

vC54 Cb + Cdk1 => Cb_Cdk1 k390 * Cb * Cdk1 

vC55 Cb_Cdk1 => Cb + Cdk1 k391 * Cb_Cdk1 

vCd1 Cd_Cdk46 =>  ∅ k392 * Cd_Cdk46 

vCd3 Cd_Cdk46_p27 =>  ∅ k393 * Cd_Cdk46_p27 

vCd4 Ce_Cdk2 =>  ∅ k394 * Ce_Cdk2 

vCd6 Ce_Cdk2_p27 =>  ∅ k395 * Ce_Cdk2_p27 

vCd7 Pe =>  ∅ k396 * Pe 

vCd8 Ca_Cdk2 =>  ∅ k397 * Ca_Cdk2 

vCd10 Ca_Cdk2_p27 =>  ∅ k398 * Ca_Cdk2_p27 

vCd11 Cdh1i =>  ∅ k399 * Cdh1i 

vCd12 E2Fp =>  ∅ k400 * E2Fp 

vCd13 p27p =>  ∅ k401 * p27p 

vCd14 Pa =>  ∅ k402 * Pa 

vCd15 Cb_Cdk1 =>  ∅ k403 * Cb_Cdk1 

vCd17 Cdc20a =>  ∅ k404 * Cdc20a 
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Reaction ID Reaction equation Rate law 

vCd18 Pb =>  ∅ k405 * Pb 

vCd19 Wee1p =>  ∅ k406 * Wee1p 

vCd20 Cb_Cdk1_p27 =>  ∅ k407 * Cb_Cdk1_p27 

vCd21 pRB_E2F =>  ∅ k408 * pRB_E2F 

vCd22 pRBp_E2F =>  ∅ k409 * pRBp_E2F 

vCd23 Cd_Cdk46_p21 =>  ∅ k410 * Cd_Cdk46_p21 

vCd24 Ce_Cdk2_p21 =>  ∅ k411 * Ce_Cdk2_p21 

vCd25 Ca_Cdk2_p21 =>  ∅ k412 * Ca_Cdk2_p21 

vCd26 Cb_Cdk1_p21 =>  ∅ k413 * Cb_Cdk1_p21 

vCd27 pRBpp_E2F =>  ∅ k414 * pRBpp_E2F 

vCd28 Cd_Cdk46_pRB =>  ∅ k415 * Cd_Cdk46_pRB 

vCd29 Cd_Cdk46_pRB_E2F =>  ∅ k416 * Cd_Cdk46_pRB_E2F 

vCd30 Ce_Cdk2_pRBp =>  ∅ k417 * Ce_Cdk2_pRBp 

vCd31 Ce_Cdk2_pRBp_E2F =>  ∅ k418 * Ce_Cdk2_pRBp_E2F 

vCd36 pRBp =>  ∅ k419 * pRBp 

vCd37 pRBpp =>  ∅ k420 * pRBpp 

vCd38 Cd_Cdk46_p18 =>  ∅ k421 * Cd_Cdk46_p18 

vCd39 Cd_Cdk46_p19 =>  ∅ k422 * Cd_Cdk46_p19 

vCd40 Cd_Cdk46_p57 =>  ∅ k423 * Cd_Cdk46_p57 

vCd41 Ce_Cdk2_p57 =>  ∅ k424 * Ce_Cdk2_p57 

vCd42 Ca_Cdk2_p57 =>  ∅ k425 * Ca_Cdk2_p57 
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Reaction ID Reaction equation Rate law 

vCd43 Cb_Cdk1_p57 =>  ∅ k426 * Cb_Cdk1_p57 

vCd44 p107_E2Frep =>  ∅ k427 * p107_E2Frep 

vCd45 p130_E2Frep =>  ∅ k428 * p130_E2Frep 
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6.5 Discussion 

We envision the future application of the SPARCED model as a predictive tool for 

cancer therapy which may be generalizable across multiple tumor types originating from 

different tissues. Our current strategy towards this development includes testing the 

applicability of this model in various biological cell line contexts. For this purpose, we 

attempt to tailor the context of the model with omics input from different cell lines. Hence 

it is important to be able to take the effects of omics context into account for all aspects 

of the model. However, the status of the current cell cycle submodel presents a 

significant challenge to this approach. The gene expression module of the SPARCED 

submodel describes the activation and inactivation of model genes, and resulting 

transcription events leading to the synthesis of mRNAs. These events are simulated 

stochastically, giving rise to gene expression noise, which propagates into the protein 

interaction module creating cell to cell variability. Limitations of the cell cycle submodel 

prevent it from withstanding gene expression noise. To retain the cell cycle functionality 

of the SPARCED model, the cell cycle submodel was kept isolated from the processes 

that describe activation of genes and transcription. This is contrary to the biological 

function of cells and a significant knowledge gap our single cell model. 

Developing a completely new cell cycle submodel, constructed from the ground 

up and aligned with contemporary knowledge from the literature on the cell cycle 

pathway, could potentially address this issue. In this chapter we discuss a potential 

solution for the revision of the cell cycle submodel. In a preliminary version of the 

revised cell cycle submodel, we included activities of cyclins and cyclin dependent 

kinases, regulatory activities of the E2F and Rb family of proteins and inhibitory 
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activities of some known Ink4 and Cip/Kip group of CDK inhibitors. This preliminary cell 

cycle submodel can currently represent initiation of cell cycle by upregulation of cyclin 

D, restriction point crossing by inactivating phosphorylation of Rb, subsequent release 

and upregulation of E2F, and entry and progression into S phase by upregulation of 

cyclin E and cyclin A. This is only a partial description of the possible solution. Further 

work is needed to describe upregulation of cyclin B and completion of cell cycle. We 

believe optimization of the activity of included inhibitors could potentially explain the 

robustness of cell cycle components from gene expression noise. A successful 

completion of this submodel will enable a more accurate representation of omics 

context in the cell cycle functionality. It has the potential to enhance the compatibility of 

the SPARCED model for cell line contexts in which our previously described initialization 

procedure. 
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Chapter 7 

CONCLUSION 

7.1 Conclusion 

This dissertation was motivated by difficulties in cancer treatment and 

surrounding complexities that challenge innovations in enhancing treatment efficacy. 

The foundation for this work is a previously developed single cell mechanistic model32 of 

stochastic proliferation and death signaling predictive cell fate outcomes which attempts 

to formalize the complex molecular physiology of human cells. In this dissertation, we 

evaluated the application of single cell pharmacodynamic modeling as a means to 

develop a bottom-up understanding of anticancer drug response. We focused on 

several aspects that challenge its enhancement of drug response prediction accuracy 

across biological context of different tumor types, namely, (1) enhancement of its 

accessibility, modularity and computational efficiency; (2) introducing methods for 

validation of modeled biomolecular processes and identification of associated 

knowledge gaps by comparison with experimental dose response data; and (3) 

enhancement of its adaptability to represent new biological context by integration of 

genomic, transcriptomic and proteomic data. 

In Chapter 2, we introduced a revised version of our single cell model, 

SPARCED, featuring a modular and scalable pipeline for model construction and 

simulation. The Bouhaddou2018 model consists of 1197 species in total, which includes 

genes, mRNAs, lipids, proteins, post translationally modified proteins and protein 

complexes. Furthermore, there are more than 2400 reactions detailing their dynamic 
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interactions. The software pipeline for the construction and simulation of this model had 

a complex structure of dependencies and hardcoded scripts. The sheer magnitude of 

the model and lack of organization in its software pipeline introduced increasing levels 

of difficulties associated with modification of the model structure for future studies. In 

this chapter, the revised model construction and simulation pipeline streamlines the 

procedure for the modification of model structure. This enabled efficient expansion of 

the model with pharmacodynamics for a broader range of drugs which we discuss in the 

subsequent chapters. 

In Chapter 3, we focus on improving the computational efficiency of the 

SPARCED model. The structure of the SPARCED model consists of two modules, one 

that captures gene expression and another that captures protein level interactions. It 

can be simulated in a hybrid stochastic/deterministic mode, where gene expression 

dynamics follow Poisson-like process, giving rise to gene expression noise and the 

resulting cell to cell variability in mRNAs and protein levels. It can also be simulated in a 

fully deterministic mode to demonstrate average cell behavior. Regardless of the mode 

of operation, computation speed was a major concern. Continuation of our work with the 

SPARCED model greatly relies on our ability to perform increasingly complex and 

resource-intensive computation, such as model initialization, parameter estimation and 

sensitivity analysis. Insufficient computation speed poses a challenge in this regard. In 

this chapter, we performed extensive performance benchmarking of our simulation 

algorithm which enabled us to improve inter-module communication for hybrid 

simulations, achieving at least a 4-fold increase in computation speed. Furthermore, we 

sought to eliminate the need for inter-module communication by integrating both 
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modules into a single system of differential equations which helped us achieve more 

than 200-fold increase in computation speed for deterministic simulations. 

In Chapter 4, we describe the development of a mechanistic cell population 

simulation framework, and demonstrate its application in reconciliation of experimental 

and simulation dose response results. Dose response assays in general measure drug 

sensitivity or resistance by capturing cell population characteristics, such as viable cell 

counts at specific durations of treatment. In order to accomplish expansion and 

enhancement of single cell models based on experimental dose response data, a 

linkage needs to be established between dynamic interactions at the cellular pathway 

level and their emergent outcomes at the cell population level. Utilizing the functionality 

of the SPARCED model in describing biomolecular events at the single cell level, we 

developed a mechanistically informed cell population simulation framework. This 

framework combines detailed mechanistic descriptions of anti-cancer drug action with 

lineage-tracking based recording of individual division and death events to construct 

simulation outputs that are directly comparable to drug dose viability response assay. 

We simulated dose responses to multiple drugs, namely, Alpelisib (PI-3K inhibitor), 

Trametinib (MEK inhibitor), Palbociclib (CDK4/6 inhibitor) and Neratinib (EGFR 

inhibitor). The results show agreement with experimental results for strong growth 

inhibition by Trametinib and overall lack of efficacy for Alpelisib, but substantial 

discrepancy for Palbociclib and Neratinib. Deeper analyses investigating the reasons for 

these differences suggests that (i) contemporary belief in the importance of CDK4/6 for 

driving cell cycle completion is likely to be overestimated, and (ii) the cellular balance 

between basal (tonic) and ligand-induced ERK signaling is a critical determinant of 
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response to irreversible EGFR inhibitors. This work lays a foundation for mechanistic 

analysis of experimental drug dose viability response data sets. 

In Chapter 5, we explore a strategy to implement omics-informed context 

definition in the SPARCED model. Cancer cell lines originating from a wide range of 

tumor types have been extensively characterized by high throughput omics 

technologies, such as genomics, transcriptomics and proteomics. The granularity of the 

SPARCED model enables integration of these omics datasets to define cell line specific 

contexts. However, inclusion of a new set of omics data requires that we adjust certain 

model parameters to ensure the integrity of the biological functionalities featured in the 

model. Previously, the initialization procedure was introduced for this purpose, with 

which the context of the original model was redefined to represent U87 cell lines. 

Initialization is a computationally intensive procedure whereby the model is subject to 

multi-step iterative unit testing with each step focused towards specific biological 

functionality, such as conservation of protein levels, basal cell cycle signaling, basal 

apoptosis signaling and basal DNA damage. The structural properties of the SPARCED 

model and its simulation algorithm imposed certain technical restrictions in this regard. 

For this reason, the previous initialization procedure was unable to tune parameters 

related to basal ERK and AKT pathways, transcriptional activation, survival signaling 

and replicative stress. This limitation challenged the adaptability of the SPARCED model 

across a wider range of cell line context available in large scale pharmacogenomic 

datasets, such as the Cancer Cell Line Encyclopedia (CCLE). However, this limitation 

was overcome after the improvement of computational efficiency as described in 

Chapter 3. This enabled us to revise the initialization procedure to develop a more 
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robust pipeline for initialization which can tune the previously excluded functionalities 

and was successfully applied to 59 cell lines from CCLE. Using the cell line specific 

variants of the SPARCED model and the cell population simulation framework 

developed in Chapter 4, we generated representations of dynamic cell populations of 28 

of these cell lines which are consistent with their experimentally observed growth rates. 

We employed these dynamic cell population models to evaluate a strategy for the 

mechanistic exploration of their experimental drug sensitivity profiles. 

In Chapter 6, we discuss the current state of the cell cycle submodel and its 

limitations. The cell cycle submodel describes the initiation of cell cycle due to growth 

stimulus by cyclin D upregulation, and subsequent oscillatory activation and inactivation 

of regulatory cell cycle proteins such as cyclins and cyclin dependent kinases which is 

the characteristic molecular signature of cell cycle. However, inclusion of gene 

expression noise within the species that regulate cell cycle resulted in unexpected and 

irregular behavior. It implies the existence of key regulatory mechanisms in the cell 

cycle pathway which provides natural robustness to the cell cycle process against gene 

expression noise. We discuss possible a solution by means of a revision of the cell 

cycle submodel consistent with more recently discovered regulatory mechanisms such 

as, E2F family of regulators, Rb protein group and Cip/Kip group of inhibitors. We 

developed a preliminary version of this revision which can describe cell cycle initiation, 

S phase entry and progression in presence of growth stimulus. Further work is needed 

to optimize the interaction between these species to ensure the description of cell cycle 

completion and natural gene expression noise suppression. 
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7.2 Future Directions 

We envision single cell pharmacodynamic modeling as a promising approach 

towards developing predictive capabilities in cancer treatment efficacy. It may help us 

formalize the complexities observed in molecular pathophysiology with a view to 

understanding and predicting the extent to which these processes may affect treatment 

outcomes. The single-cell mechanistic model presented in this work aims to predict 

dynamic outcomes of signal transduction processes modulating essential cellular 

processes such as proliferation and apoptosis and the manner in which drug actions 

may perturb these phenomena. The results presented in this work show several 

promising avenues for future work. 

1. Composition of a cell cycle pathway model capable of withstanding natural 

gene expression noise: The genome makes up the fundamental foundation of 

biological systems. Gene expression is an inherently stochastic process 

giving rise to cell-to-cell variability in mRNA and protein levels. Despite the 

noisy nature of gene expression, the highly conserved nature of biological 

pathways implies built-in regulatory mechanisms in their network modalities 

that can provide robustness. Our current model possess certain limitations in 

this regard, since inclusion of gene expression noise within the cell cycle 

submodel results in unpredictable, and irregular behavior. It implies that 

presence of key regulatory mechanisms in the cell cycle process yet to be 

included in the model. It is a significant challenge to the predictive capability 

of the model for drug actions targeting the cell cycle pathway and a challenge 

to the adaptive capability of the model to new cell line contexts. An important 
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future direction in this regard could be a revision of the cell cycle pathway 

submodel. To aid this, several essential regulatory mechanisms that have 

been discovered more recently and not included in the original model could 

be included. Such as a more detailed mechanism of transcriptional regulation 

by the E2F family of cell cycle regulators, Cip/kip group of inhibitors, pocket 

protein regulators. This revision should aim at being able to describe the 

characteristic functionalities of the cell cycle process without compromising 

the integrity of the gene expression processes. 

2. Expansion of biological signaling pathways: The SPARCED single cell model 

currently encompasses several biological signaling pathways known to be 

implicated in oncogenic transformation. An overarching goal of our approach 

is to have predictive capability which is generalizable across tumor types. 

However, certain pathways with known alterations in various tumor types, not 

currently included in our model, may still impact treatment outcomes. Hence, 

enhancement of predictive capability and adaptability across tumor types is 

likely to require inclusion of additional pathways. In a recent study of tumor 

samples across 33 cancer types characterized by the Cancer Genome 

Atlas15, somatic driver mutations were identified in ten canonical pathways, 

namely, cell cycle, Hippo, Myc, Notch, Nrf2, PI3-Kinase/AKT, RTK-RAS, 

TGFβ, p53 and β-catenin/wnt, five of which are currently not included in the 

SPARCED model. Furthermore, 89% of tumors had at least one driver 

alteration in these pathways with 57% of tumors having at lease one 

alteration potentially targetable by currently available drugs. Novel therapeutic 
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drugs targeting alterations in these pathways are also under investigation213–

219. A viable strategy in this regard may be prioritizing the currently excluded 

pathway based on the occurrence of their alterations in cell lines in the 

Cancer Cell Line Encyclopedia. Published models of these individual 

pathways may be investigated for inclusion into the SPARCED model220–223. 

3. Integrating effects of mutations: A key concern about oncogenic 

transformation and disease progression is the dysregulation of biological 

pathway activities. Many such aberrations occur as a result of copy number 

variations, such as overexpression or copy number loss. Another important 

group of genomic aberrations is gain of function or loss of function mutations 

which are not directly captured by the expression data. Nevertheless, they 

may have functional impacts within the biomolecular networks, such as the 

KRAS, BRAF or EGFR mutations. A feasible approach for selecting mutations 

to include in the SPARCED model could include a deeper investigation of the 

cell line specific dose response results from Chapter 5 and prioritizing the 

mutation based on the frequency with which they occur in the cell lines with 

mismatched results. To formalize the effects of each mutation, species with 

representing mutated gene products could be included whose interaction 

rates are different from those of wild-type variants, depending on the nature of 

mutations. For example, if a mutation causes constitutive activation of a 

protein, the corresponding interactions could be changed such that the 

mutant variant does not rely on upstream signal.  
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4. Predicting the effects of drug combinations: The multivariate complexity of 

tumor progression often necessitates the use of drug combinations for 

effective treatment. However, rationalizing the choice of combinations for 

specific tumor types can be challenging since their synergy and antagonism 

cannot be easily predicted. Moreover, experimental screening of such 

combinations can be daunting because of the intractable number of 

combinations that may require consideration. However, reliably modeling 

effects of individual drug perturbation in biological networks could potentially 

explain the resulting synergy or antagonism when multiple drugs are 

combined. For this purpose, one could shortlist cell lines and drugs where our 

simulations can accurately capture sensitivity. Within individual context, 

deterministic simulations with combinations of varying doses of drug pairs can 

be generated and their effects on certain pathway level biomarkers such as 

ERK and AKT activities may be quantified. Thus, the resulting synergy and 

antagonism can be quantified and prioritized for combination dose response 

simulations as well as experimental validations. 

 

In conclusion, this dissertation lays the groundwork for the use of computational 

models in building a bottom up understanding of the pathophysiology of cancer. 

Beginning with a single-cell model of signal transduction mechanisms driving 

phenotypic outcomes, we illustrate the potential for creating a predictive tool for 

anticancer drug response at the cellular level that may be generalized across tumor 

types. I believe endeavors such as this will help us build a deeper quantitative 
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understanding of the molecular intricacies of cancer which may one day help optimize 

treatment outcome in a patient specific manner. 
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