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Abstract

Fault diagnosis is required to ensure the safe operation of various equipment

and enables real-time monitoring of associated components. As a result, the demand

for new cognitive fault diagnosis algorithms is the need of the hour. Existing deep

learning algorithms can detect, classify, and isolate faults. Still, most depend solely

on data availability and do not incorporate the system’s underlying physics into their

prediction. Therefore, the results generated by these fault-detecting algorithms some-

times need to make more sense and deliver when tested in actual operating conditions.

Similar to diagnosis, the fault prognosis of diesel engines is paramount in

numerous industries. Unexpected diesel engine failures can lead to significant oper-

ational disruptions and maintenance costs. Accurate Remaining Useful Life (RUL)

estimation is crucial for proactive maintenance. Fault prognosis methods are essen-

tial for accurately estimating RUL. While current deep learning algorithms excel at

identifying patterns in data, they often rely solely on data availability, neglecting to

integrate the fundamental physics of the system into their predictions. Consequently,

these algorithms fall short when subjected to real-world operational challenges.

The presented dissertation addresses the aforementioned issues. The specific

contributions of this dissertation are: (1) Deploying a novel physics-infused one-

dimensional Convolutional Neural Network (1D-CNN) based deep learning framework

for diesel engine fault detection. (2) A hybrid ensemble learning framework that
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integrates physics principles into a 1D-CNN-based ensemble learning model to detect

faults in diesel engines. (3) A physics-informed 1D CNN-based prognostics framework

underpinned by a 1D CNN to estimate the RUL of the fuel injector.
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Chapter 1

Introduction

1.1 Motivation for Fault Diagnosis

Diesel engines are ubiquitous as mobile drives, power generators, and auto-

mobile engines. The vast canvas of their application extends across industries and

happens to be the driving force behind a myriad of things we come by daily. Due

to the high thermal efficiency, low operating cost, and high reliability, diesel engines

find various applications in automobiles, locomotives, construction, mining, and ma-

rine vessels. In summary, diesel engines are still prevalent and form the backbone

of different industrial sectors, especially the automotive ones. Extreme environments

and harsh working conditions render these complex machines prone to various faults.

Among various faults, the fuel injector system’s faults are more prominent. Clog-

ging, coil winding, electro-mechanical defects are a few of the leading causes of the

anomalous behavior of an injector system. These abnormalities in injectors may lead

to severe consequences. For instance, clogging in an injector nozzle may cause ir-

regular fuel supply, leading to an engine misfire. Misfiring can cause pre-ignition,

overheating, and reduced fuel efficiency. Wear and tear of injector coil windings, and
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other electro-mechanical problems result in overheating, leakage, and malfunctioning

injectors. An aberration in injector behavior can inflict serious damage to the entire

engine system thus eventually degrading the vehicle performance.

At present, the automotive industry is undergoing a paradigm shift. A sig-

nificant amount of effort is being focussed on developing more complex systems to

suffice the need for more fuel and emission-efficient vehicles without compromising on

drivability and performance. With modern-day chip technology and robust comput-

ing power, more mechanical systems are being replaced by sophisticated electronic

versions. The technical advances in the automobile sector put a significant responsi-

bility on the after-market services for the efficient continual operation of modern-day

vehicles. The after-market services also determine the Original Equipment Manufac-

turers’ (OEMs) profit margin. Consequently, detection, classification, and localization

of faults are critical for smooth running, optimized performance, and safe operations

of complex machines, culminating in higher productivity and improved process effi-

ciency. Timely fault detection has its share of benefits, including longer operating

life, lower maintenance cost, and reduced downtime. The automotive industry, in

particular, relies heavily on robust fault detection and isolation techniques. One of

the critical components of any automotive is its engine. Accurate diagnostics for

engine fault is mandatory to maintain reasonable high up-time and reduce servicing

costs. Besides, environment considerate regulations such as On-Board Diagnostic-II

(OBD-II), as adopted by the United States Environmental Protection Agency (US

EPA), specifies some stringent conditions for performance assessment of engine di-

agnostics tools. Legislations render the domain of engine-fault diagnosis one of the

most complicated and sought after. Also, an efficient engine diagnosis method en-

sures easy repairability and better protection. Existing, On-Board Diagnostic (OBD)

tools are doing their job just fine when it comes to aiding the technical team with

2



troubleshooting the faulty components of an automotive diesel engine. However, the

rapidly evolving technical complexities of the new-age automobile bring several chal-

lenges to the extant diagnostic methods. The increased complexity of the system

renders the fault diagnostics quite time-consuming, resulting in increased servicing

and after-sales costs, which ultimately transpires into immense customer dissatisfac-

tion. In light of the aforementioned arguments, it becomes essential to promptly

conduct a proper diagnosis and health check of the diesel engine. Besides, there is a

need for these diagnostic methods to be intelligent and easy-to-use so that to enable

autonomous troubleshooting of automotive systems.

1.2 Motivation for Fault Prognosis

Prognostics, a branch of predictive maintenance, has garnered significant at-

tention in recent years due to its potential to revolutionize how industries manage

their assets. Traditional maintenance practices often rely on predetermined schedules

or reactive approaches, leading to unnecessary maintenance costs or unplanned down-

time. Prognostics, in contrast, seek to predict when a component or system will fail

and how much useful life remains. This predictive capability allows for more efficient

and cost-effective maintenance strategies, such as condition-based maintenance, where

maintenance actions are performed only when needed, based on real-time health as-

sessments. The idea of remaining useful life (RUL) is central to prognostics. RUL

represents the time remaining until a system or component is expected to fail or reach

a predefined degradation threshold. Accurate RUL estimation can enable proactive

decision-making, optimizing maintenance schedules and reducing operational risks.

In essence, it shifts maintenance from a reactive mode to a proactive and data-driven

approach.
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Diesel engines, renowned for their robustness and efficiency, are the workhorses

of numerous industries, including transportation, power generation, and heavy ma-

chinery. Ensuring the reliable operation of these engines is of utmost importance, as

downtime or unexpected failures can result in substantial financial losses and safety

risks. Prognostics for diesel engines, therefore, present a compelling challenge and an

area ripe for innovation. They are known for their durability and efficiency, making

them indispensable in many industrial settings. However, their complex and nonlinear

behavior and diverse operating conditions and environments make RUL estimation a

formidable task. The challenges of prognostics in diesel engines can be summarized

as follows: Firstly, diesel engines exhibit nonlinear behavior, which can change signifi-

cantly based on load, speed, and operating conditions. Capturing these nonlinearities

is essential for accurate RUL estimation. Second, data collected from diesel engines

are often heterogeneous, originating from various sensors and sources. Combining and

preprocessing these data sources effectively is crucial. Third, obtaining failure data

for diesel engines is challenging due to their long lifetimes. Consequently, building

prognostic models with limited failure cases is a common problem. Considering the

factors above, it becomes imperative to undertake a comprehensive fault prognosis for

diesel engines and ascertain the remaining useful life. Given the considerations dis-

cussed earlier, it is imperative to swiftly engage in a comprehensive diesel engine fault

prognosis and estimate the remaining useful life. Additionally, there is also a need

for these prognostic approaches to possess intelligence and user-friendliness, facilitat-

ing autonomous problem-solving within automotive systems. Over recent decades,

extensive endeavors have explored and refined efficient tools and methodologies for

fault prognosis. This area of research is garnering significant attention in academic

and industrial circles.

This dissertation addresses these challenges by (1) Proposing a physics-infused

4



1D-CNN-based deep learning framework for diesel engine fault detection. (2) De-

veloping an innovative hybrid ensemble learning framework that integrates physics

principles into a 1D-CNN-based ensemble deep learning model to detect faults in

diesel engines. (3) Developing an end-to-end hybrid physics-informed 1D CNN-based

prognostics framework to estimate the remaining useful life of the fuel injector in the

context of the increase in the amount of fuel it injects.
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1.3 Research Challenges

To build computationally efficient frameworks for fault diagnosis and prognosis

of cyber-physical systems, specifically diesel engines, the following research challenges

need to be addressed:

Research Challenge 1: How to address issues related to the extant diagnostic meth-

ods that are inefficient when dealing with the rapidly evolving technical complexities

of the new-age automobiles?

Research Challenge 2: The increased complexity of the automotive system renders

conventional fault diagnostics quite time-consuming, resulting in increased servicing

and after-sales costs, which ultimately transpires into immense customer dissatisfac-

tion. Can methods be developed to address this prevalent issue?

Research Challenge 3: How to develop computationally efficient diagnostic meth-

ods that are intelligent and easy to use to enable autonomous troubleshooting of

automotive systems?

Research Challenge 4: Can we develop methods that can address the challenges

faced by the data-driven diagnostics and prognostics models when it comes to being

domain agnostic and not considering the underlying governing physics of the system?

Research Challenge 5: Diesel engines exhibit nonlinear behavior, which can change

significantly based on load, speed, and operating conditions. Can we develop prog-

nostic methods to capture the nonlinearities essential for accurate RUL estimation?

6



1.4 Research Contributions

Despite significant advancements in diesel engine fault diagnostics and prog-

nostics. Existing diagnostics and prognostics tools are prone to certain limitations

that reduce their practical utility. Additional challenges arise due to the increasing

complexities of the new-age automotive systems. The major contributions of this

dissertation are as follows:

1. A novel state-of-the-art end-to-end physics-infused 1D-CNN-based deep learn-

ing framework for diesel engine fault detection is conceptualized. The outlined

hybrid architecture is completely autonomous in processing the raw test bed

data and diagnosing the corresponding fault scenarios.

2. An innovative hybrid ensemble learning framework that integrates physics prin-

ciples into a 1D-CNN-based ensemble deep learning model to detect faults in

diesel engines. Our approach combines domain knowledge with end-to-end 1D-

CNN-based methods. The ensemble model follows a stacked generalization

approach, featuring two learning levels: level-0 and level-1 (meta-level). At

level-0, multiple physics-infused 1D-CNN-based submodels operate in tandem.

At level-1, a deep neural network (DNN) aggregates the predictions of the level-

0 submodels through an automatic weighted average mechanism, thereby en-

hancing the predictive accuracy of the final outcome. This hybrid architecture is

capable of processing raw data from the test bed and autonomously diagnosing

fault scenarios without external intervention.

3. To train and test the feasibility of the proposed hybrid diagnostics architectures,

we curated a rare-of-its-kind large-scale diesel engine fault database, termed

NavicEngine [1], under different operating conditions. The database is located
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at (NavicEngine).

4. Validation tests of the proposed hybrid diagnostics architecture under differ-

ent possible running scenarios have been conducted. The models showcased

acceptable levels of accuracy on various evaluation metrics. Besides, the model

demonstrated stability and robustness to noisy data samples.

5. An end-to-end hybrid physics-informed 1D CNN-based prognostics framework

underpinned by physics principles and leveraging a one-dimensional Convolu-

tional Neural Network (1D CNN) to estimate the remaining useful life of the

fuel injector in the context of the increase in the amount of fuel injected by

it. The delineated hybrid physics-informed 1D CNN-based model operates au-

tonomously, is computationally efficient, and can preprocess unprocessed test

bed data and accurately perform fuel injector fault prognostics.

6. To assess and validate the practicality of the proposed hybrid prognosis model,

we curated an extensive dataset [2] focusing on the pattern of fault increase

over time, defined as the increase in the quantity of fuel injected in diesel en-

gines over time, denominated as the ”ProgEngine” repository, and is located at

(ProgEngine). Fellow researchers working in fault prognosis can benefit from

the curated data repository.
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1.5 Outline of the dissertation

The dissertation comprises five chapters. The present chapter, labeled as chap-

ter 1, introduces the dissertation, outlining its motivation and the primary research

gaps it seeks to address. Additionally, this chapter emphasizes notable research con-

tributions. Subsequent sections of the dissertation are structured as follows:

Chapter 2 provides a comprehensive review of the literature concerning fault

diagnosis, model-based fault diagnosis, knowledge-based fault diagnosis and data-

driven diagnostics. It also examines research conducted on hybrid physics-informed

machine learning models. Additionally, this chapter delves into the challenges present

in the current research literature regarding the conventional model-based diagnostics

methods and the data-driven fault diagnostics frameworks. Besides, the chapter pro-

vides a detailed literature review related to fault prognostics. The chapter also reviews

extant literature pertaining to model-based and data-driven fault prognostics. To-

wards the end, the chapter highlights the challenges the existing conventional and

data-driven prognostics approaches face.

In Chapter 3, a physics-infused 1D-CNN-based deep learning framework for

diesel engine fault detection is introduced. In particular, we propose a physics-infused

diagnostics model in a holistic framework, comprising a physics-based engine model

and the deep learning modules, 1 Dimensional-Convolutional Neural Network (1D-

CNN), in our case, that can detect and classify different fuel injector faults associated

with an automobile diesel engine.

In Chapter 4, We propose an innovative hybrid ensemble learning framework

that integrates physics principles into a 1D-CNN-based ensemble deep learning model

to detect faults in diesel engines.

Chapter 5 describes a hybrid physics-informed 1D CNN-based prognostics
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framework underpinned by physics principles and leveraging a one-dimensional Con-

volutional Neural Network (1D CNN) to estimate the remaining useful life of the fuel

injector of the diesel engine.

Chapter 6 ponders over the conclusions derived from the study’s outcomes and

offers suggestions for future directions of this research.
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Chapter 2

Literature Review

2.1 Fault Diagnostics

In light of the arguments presented in the previous chapters, it becomes es-

sential to promptly conduct a proper diagnosis and health check of the diesel engine.

Besides, there is a need for these diagnostic methods to be intelligent and easy-to-

use so that to enable autonomous troubleshooting of automotive systems. Over the

past few decades, significant effort has been made to research and develop effective

diagnostics tools and techniques. Such research is gaining a lot of traction in both

academia and industry. Over the years, the typical fault diagnosis has progressed

into three major paradigms: model-based, knowledge-based, and data-driven.

2.2 Model-based diagnostics

he model-based approach builds on the data generated from simulated models

under nominal and faulty operating conditions. These models require the knowl-

edge of the underlying dynamics of the system in the form of either parameters or
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mathematical equations [46, 47]. For instance, Wang et al. [119] used sliding mode

deviation to estimate deviations in engine torque, which leads to the detection of

engine misfires. Jung et al. [54] used a model-based misfire detection algorithm. A

method using training data is used to auto-tune the model. Constantinescu et al.

[19] deployed a model to represent the dynamics of an N-cylinder diesel engine. The

model, along with cylinder pressure waveforms, aids in detecting the misfire in engine

cylinders through efficient torque estimation. In [94], the author proposed process

model-based and signal model methods for fuel system diagnosis in a heavy-duty

diesel engine. Chen et al. [16] used a 0-D Selective Catalytic Reduction (SCR) non-

linear dynamic model for detecting and isolating NOx sensor and dosing faults. Nohra

et al. [83] proposed a nonlinear model with four state variables for detecting and iso-

lating six different engine system faults. The devised strategy is built on top of the

theory of Gain Schedule Control as applied to the well-known Takagi-Sugeno diesel

model. The method demonstrated satisfactory levels of efficiency in the presence

of noisy data, taking the described model-based approach quite close to the actual

working conditions of the physical system. Kiencke et al. [55] used a model-based

approach, using Kalman filters, to estimate engine torque from the angular velocity,

which ultimately helps detect engine misfires. The discrete state-space model works

with angular steps instead of equidistant time-based sampling. Nohra et al. [84] de-

veloped an innovative model-based approach in combination with variable geometry

turbocharger control for fault diagnosis in diesel engines. The overall diagnosis algo-

rithm uses a mu analysis control over an LTI diesel engine model. The simulation

results establish the efficacy of the proposed algorithm in the presence of uncertainties

and noisy data. Ludwig et al. [68] used a model-based approach for fault detection

in diesel engine turbochargers. The proposed parametric model encapsulates the un-

derlying nonlinear dynamics of the diesel engine. The proposed Hammerstein model
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was compared with a neural network. Then, the model-based approach proved to

be faster than the neural network. Still, it relied heavily on the available static and

dynamic data, thus rendering the fault identification process not so easy. Frisk et al.

[29] used a model-based approach for the residual generation to diagnose faults. The

proposed method addresses the issue of analyzing robust residual generation under

the influence of deterministic disturbances and parametric uncertainties. However,

owing to the complex dynamics of the involved system, developing accurate models

that can enable robust failure diagnostics in diesel engines is challenging.

2.3 Knowledge-based Diagnostics

Knowledge-based models combine domain expertise and logical reasoning to

diagnose system faults. In addition, relevant equipment and systematic fault diag-

nosing theory are put to work while performing complex system fault detection and

isolation. Xiaojun et al. [123] devised a knowledge-based model for fault diagnosis in

an automobile engine. The proposed model is based on Hierarchy Diagnostic Prin-

ciple (HDP) and encompasses signal processing knowledge, domain expertise, and

functional information related to the engine system to be checked for fault presence.

Bonissone et al. [11] from General Electric have implemented an expert system based

on prior knowledge of the system for fault detection. The proposed method caters to

the issues of knowledge representation, knowledge acquisition, knowledge inference,

control mechanisms, and uncertainties of the system. The devised technology was

tested to demonstrate its feasibility of troubleshooting diesel locomotives. Xu et al.

[124] proposed a belief rule-based (BRB) model for diagnosing abnormal wear in ma-

rine diesel engines. The initial BRB model was built using the knowledge of domain

experts. The model is further optimized using the data samples gathered during the
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actual operation of the diesel engine. A series of BRB models are combined to obtain

the desired diagnostic results. The research results demonstrated the possibility of

using the proposed model for engine fault diagnostics in a probabilistic manner and

can identify concurrent faults in the system. Twiddle et al. [114] proposed a fuzzy-

rule-based model for condition monitoring and diagnosing faults in the cooling system

of diesel engines. The model outputs are compared with the measured data to gen-

erate residuals. The generated residuals are then analyzed to conclude the specific

fuzzy class indicative of the potential anomaly in the engine system. Campoverde

et al. [13] developed an expert system-based model deriving its strength from the

knowledge base of the domain experts, thus taking into account the cause behind a

specific condition and ultimately determining the appropriate mitigating action to be

taken. The expert system can identify and isolate faults by incorporating data from

Condition-Based Maintenance techniques. The Condition-Based Maintenance data

includes information pertinent to engine specification, operating conditions related

to faults, and the corresponding procedures for fault mitigation. Nabende et al. [79]

used an expert system based on Bayesian networks for diagnosing faults in Heavy-

Duty Diesel Engines (HDDEs). However, the reliance on domain expertise renders the

knowledge-based models not so practically feasible in many real-world applications

where the prior knowledge of the system might not be available beforehand.

2.4 Data-driven Diagnostics

Unlike their knowledge-based counterparts, data-driven models’ [6, 18, 30,

32, 38, 45, 49, 58, 60, 61, 64, 67, 71, 87, 96, 99, 110, 113, 115, 117, 129, 133, 136]

effectiveness depends on the quality of the available data and the characterization of

the variations in the process data. With the advent of new computational hardware
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tools and supporting software frameworks, data-driven methods are gaining ground

in fault detection [3, 5, 12, 17, 41, 50, 59, 60, 81, 117, 128, 136] and isolation domains.

Data-driven methodologies such as Machine Learning and Deep Learning are being

seen as an alternative to the conventional fault diagnostics approaches owing to their

cheaper deployment cost, sensitivity to faults, and high efficiency when fed with large

datasets. Data-driven models process a large amount of observational data from

the actual operations of the engine system while imbibing the process knowledge

to establish a relationship between the fault conditions and their causes. Besides,

the data-driven models can use the relationship between the fault modes and their

respective causes to estimate the fault severity. The data-driven models also assist

in deciding the appropriate course of action to follow once an abnormal condition is

reported. For example, Liu et al. [63] devised an Artificial Neural Network (ANN)

based model for detecting misfires in the diesel engine. The proposed model was

trained and validated on the data coming out of a V6 turbocharged engine. Chen

et al.[14] used ANNs, which input the torsional vibration signals from the crankshaft

along with the acceleration signals from the engine block, to detect engine misfires in

Internal Combustion Engine (ICE). Singh et al. [103] used a Support Vector Machine

(SVM) classifier, fed with the radiated sound from the engine cylinder block and the

exhaust tailpipe, to detect engine faults. Moshou et al. [76] developed a One-Class

Support Vector Machine (OCSVM) and One-Class Self Organizing Map (OC-SOM)

for detecting fuel injector faults. The proposed models, i.e., the one-class classifiers,

used the acoustic signals from the fuel injectors under different operating conditions.

Kowalski et al. [57] used an ensemble machine learning model to detect 14 fault

classes in a 4-stroke marine diesel engine. For fault pattern classification, the ensemble

model relies on various signals omitted by the engine specimen. Rogov et al. [93] used

Deep Neural Network (DNN) in combination with the Quantitative Associated Rule
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Mining Algorithm (QARMA) to diagnose four different fault conditions in a diesel

engine. The author [85] used fully connected and convolutional network-based models

to analyze the engine angular velocity pulse pattern to decipher fuel injector faults

in a diesel engine. Tao et al. [111] proposed an extreme gradient-boosted algorithm

to diagnose misfiring faults in diesel engines. The model used the engine’s time-

frequency vibration signals via triaxial accelerometers to diagnose misfire faults. Yan

et al. [126] used a combination of an artificial neural network and an evolutionary

algorithm to diagnose combustion faults in a diesel engine. The model used the

maximum eruption pressure and exhaust temperature as inputs and differentiated the

fault conditions into six categories. Jiang et al. [52] developed a novel adaptive sparse

attention network (ASAN) to detect valve failure in a direct injection diesel engine

using vibration angle data of the cylinder valves and envelope spectrum as model

inputs. Zhan et al. [132] used a combination of Variational Mode Decomposition

(VMD) and Convolutional Neural Network (CNN) to perform fault diagnosis in a

six-cylinder diesel engine. The model could classify six fault classes: cylinder misfire,

insufficient oil supply to the high-pressure pump, cylinder misfire, air filter clogging,

and damage in the oil supply pipe. Shao et al. [97] used an ensemble learning

approach for fault detection in a diesel engine. The proposed model was exposed

to five different working conditions, used fifteen input features, and classified three

abnormal behavioral patterns: compressor fault, air cooler fault, and defects related

to delay in the injection valve timing. Wang et al. [118] used Auto Encoder (AE)

and CNN models to diagnose air system faults. Specifically, the model uses twelve

input features to detect three air systems faults: EGR closed-loop monitoring fault,

low boost pressure fault, and the defect due to EGR valve communication timeout.

Zhao et al. [134] proposed multi-branch convolutional neural networks (MBCNNs)

to pinpoint six faulty scenarios related to valve clearance. The model was trained
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using twelve different diesel engine valve clearance operating conditions. Zhong et

al. [137] came up with an intelligent fault diagnostics method, comprising correlation

analysis and Deep Belief Network (DBN), to diagnose faults in the marine diesel

engine. The correlation analysis comes in handy in the dimensionality reduction of

the input feature vector and filters out any unwanted and not-so-important feature.

The DBN then takes the reduced feature vectors as input and segregates six fault

conditions pertinent to the engine. Sharma et al. [98] used different combinations

of a number of decision trees, processing vibration signals from engine block, to

distinguish between faulty and non-faulty conditions. Szabo et al. [108] used a fuzzy

deep learning algorithm, to process vibration signals, to detect misfire faults in eight

cylinder large gas engine.

2.5 Drawbacks of model-based and data-driven di-

agnostics approaches

Despite all the aforementioned advantages, data-driven models come with their

own set of shortcomings [130]. The data-driven models, such as machine learning and

deep learning, have recently gained much traction in diesel engine fault diagnostics.

However, we hardly see any effort in incorporating the systems’ physics in the data-

driven diagnostic algorithms. Typically, the data-driven methods rely on training

black-box models, which are susceptible to a few restrictions. Firstly, the perfor-

mance of these models is a direct function of the dataset size. On small and scanty

data, the performance of the data-driven models, especially the deep learning ones,

degrades considerably, and the models fail to generalize well beyond their seen en-

vironment. The machine/deep learning models show absolute disregard towards the

17



system’s underlying physical laws and governing principles under consideration, in

our case, a diesel engine. Even though the performance of the data-driven models

improves with the increasing data size, the results fall short of physical interpretabil-

ity and scientific consistency. As a result of their agnosticism towards the physics

of the system, the data-driven models become victims of skeptical criticism at the

hands of researchers across the domains, which limits the scope of using these models

for subsequent scientific advancements. On the other hand, the knowledge-based and

the physics-based models have their respective limitations. The physics-based models

are grounded in core physics doctrines and imbibe knowledge from subject matter ex-

perts. In most cases, the foundational base of physics-based models pivots around the

mathematical equations derived from understanding the complex dynamical system.

However, the physics-based models’ dependency on expert knowledge makes them dif-

ficult to build. Moreover, at times the physics-based knowledge models fail to imitate

the exact system behavior they aim to represent, and this occurs due to the result of

oversimplifying approximations or lumped parameter analysis performed during the

development of these models. The modeling abstractions lead to low-fidelity models

that are not apt for use in a highly dynamic system such as a diesel engine, where

the computations are time-sensitive and iterative in nature, for example, diagnosing

a fault in an engine and then performing suitable control maneuvers to mitigate the

aftereffects.

2.6 Physics-Informed Machine Learning (PIML)

An upcoming concept to overcome the modeling limitations as mentioned

above is the Hybrid or Physics-Infused Machine Learning (PIML) models. The PIML

model combines physics-based and data-driven machine learning/deep learning mod-
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els [10, 15, 23, 24, 33, 35, 37, 39, 48, 65, 66, 77, 80, 86, 90, 91, 109, 125, 135, 138, 139].

For instance, Cubillos et al. [21] used a Grey-box Neural Model (GNM), a combi-

nation of phenomenological models and feed-forward neural networks, to model the

fish-meal rotary drying process. Due to the better representative capabilities of the

GNM, an enhanced control performance was observed when the process variables

were exposed to disturbances. Singh et al. [102] used a combination of physics-based

models and Long Short-Term Memory (LSTM) networks, termed as Physics-Infused

Long Short-Term Memory (PI-LSTM), to model highly dynamical systems of the can-

cer cell growth and inverted pendulum. The results show that the PI-LSTM model

outperformed the pure data-driven LSTM networks. As evident from the recent work

in the field of hybrid or physics-infused machine learning models, the PIML models

showcased some promising results while replicating the dynamic behavior of a complex

physical system. In recent years, the discipline of hybrid or physics-infused machine

learning has primarily branched into three major categories: Combination Approach,

Constraint Approach, and Embedding Approach. The combination approach employs

the physics of the system either as an extra input to the machine learning block

(parallel hybrid model) or as a single direct input to the machine learning model

(sequential hybrid model) [4, 7, 51, 82, 89, 101]. In the constraint approach, people

tend to include physics information as an extra constraint to the objective function

by augmenting the loss term [22, 25, 44, 78, 100, 105]. Adding the physical knowledge

as an added term to the loss function ensures that the physically constrained model

achieves better generalization when the training data is small and not fully repre-

sentational of the system dynamics. In the embedding approach, the methodology is

to substitute the high-cost computational portion of the physics model with machine

learning block [56, 62, 69, 92]. The approach intends to speed up the physics solver

and enhance accuracy. The arguments as mentioned above emphasize the importance
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of using the governing physics of the system along with the data-driven model as a

new modeling paradigm for imitating the behavior of a complex dynamic system.

Similarly, in the sphere of fault diagnostics, contrary to the pure data-driven

models, the PIML model can accentuate the features that contain the most vital

information pertinent to the diesel engine fault. Especially when it comes down to

fault classification, the PIML model, leveraging the underlying physical laws of the

system, can help improve the accuracy compared to a pure data-driven or physics-

derived fault detection model.
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Chapter 3

Hybrid Physics-Infused 1D-CNN

based Deep Learning Framework

for Diesel Engine Fault Diagnostics

In this chapter, we try to address the limitations faced by conventional model-

based approaches and their data-driven counterparts when applied to fault diagnostics

by resorting to a hybrid physics-infused deep learning framework. In particular, we

propose a physics-infused diagnostics model in a holistic framework, and the deep

learning modules, 1 Dimensional-Convolutional Neural Network (1D-CNN) in our

case, can detect and classify different fuel injector faults associated with an automo-

bile diesel engine. Specifically, we use an Auto Encoder (AE) model to reduce the

dimensionality of the data from the test bed (diesel engine). After that, the 1D-CNN

module of the framework processes the combined feature vector, the output of the AE,

and the data coming out of the physics-based engine model, to diagnose and classify

three different fault categories along with the nominal working condition. The input

of the hybrid diagnostics framework is the sensor data coming out of the engine test
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bed, and the outputs are the four different categories: Nominal or no-fault case, fault

due to injection pressure, fault due to a delay in injection duration, fault due to the

change in the start of injection (SOI). The main contributions of this chapter are as

follows:

1. A novel end-to-end physics-infused 1D-CNN-based deep learning framework for

diesel engine fault detection is conceptualized. The outlined hybrid architecture

is completely autonomous in processing the raw test bed data and diagnosing

the corresponding fault scenarios.

2. To train and test the feasibility of the proposed hybrid architecture, we curated a

rare-of-its-kind large-scale diesel engine fault database, termed NavicEngine [1],

under different operating conditions. The database is located at (NavicEngine).

3. Validation tests, of the proposed hybrid architecture, under different possible

running scenarios, have been conducted. The model showcased acceptable levels

of accuracy on various evaluation metrics. Besides, the model demonstrated

stability and robustness to noisy data samples.

In essence, the use of physics along with the 1D-CNN module ensured better

exploitation of the underlying patterns in the data and resulted in a satisfactory

performance level for a highly dynamic diesel engine system. We demonstrated that

by using the direct raw data from the engine; we could diagnose faulty diesel engine

conditions in a completely autonomous manner.

Chapter Outline: We begin with the diagnostics-dataset collection setup de-

tails, followed by the strides made toward collecting nominal and faulty data samples.

After that, we continue with a detailed description of the proposed hybrid fault di-

agnosis architecture. Subsequently, we present an analysis of the performance of the
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Table 3.1: Engine geometry and specifications

Displacement [L] 7.6
Bore [mm] 116.6
Stroke [mm] 118.9
Compression Ratio [-] 16.9

physics-infused 1D-CNN model across various evaluation metrics. In conclusion, we

provide a comprehensive discussion of the empirical results obtained and explore the

potential future avenues for this research.

3.1 Experimental Setup and Data Collection

3.1.1 Experimental Setup

Experiments were conducted on an inline 6-cylinder Navistar production DT

diesel engine (Figure 3.1) donated by Pure Power Technologies, Inc. The engine

is a production engine with overhead valves, electro-hydraulic fuel injectors, and a

dual-staged turbocharger. Table 3.1 describes the engine geometry. The engine was

instrumented with sensors to measure airflow rate, fuel flow rate, fuel rail pressure,

intake and exhaust pressure, and various temperatures along the intake and exhaust

flow paths. The air flow-rate was measured using a laminar flow element and the fuel

flow-rate was measured using an AVL fuel balance. Individual exhaust temperature

measurements in each port serve as an indicator of the combustion process in each in-

dividual cylinder. The temperature is critical in sensing potential faults on individual

cylinders in conjunction with other sensor signals.

The engine speed was controlled using an active Dynamometer via a test bed

automation system, AVL PUMA. A CCP (Can Calibration Protocol)was established
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Figure 3.1: Navistar Engine Test Bed

using INCA to connect the ECU to the data acquisition and controls systems in the

test cell. The injection parameters were controlled using an open engine control unit

(ECU) interface through INCA software (Figure 3.2).

3.1.2 Data collection

The scope of data collection was base-lining the engine first by operating on the

pre-calibrated ECU maps. Then faults were simulated by controlling the actuators

demand values individually and recording the response. The data set consists of two

different files for each operating conditions: an ECU save-file, and a PUMA test cell

automation save-file. The ECU file contains data from approximately 100 real and
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Figure 3.2: INCA, PUMA and Indicom setup for data acquisition
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Table 3.2: Baseline Parameters

Baseline
Engine Speed (RPM) 1000 1200 1400 1600
Injection Duration (ms) 1.2 1.2 1.2 1.2
Start of Injection (deg aTDC) 0.64 1.95 2.84 2.60
Fuel Injection Pressure (MPa) 6.0 8.0 8.0 15.0

Injection Faults (Unit change from baseline)
Injection Duration (ms) -0.4,+0.4,+0.8
Start of Injection (deg aTDC) -5,+5,+8 -7,-12,+9 -7,-11,+5 -5,+5,+8
Fuel Injection Pressure (MPa) -2,+2,+4

virtual sensors monitored by the ECU. This data was collected at a rate of once per

engine cycle. The PUMA file has the test cell conditioning information, including

temperatures, pressures, and flow rates, at a sample rate of 10 Hz. Beyond the base-

lining data for model validation and calibration, several sample fault data sets were

collected.

3.1.3 Design of Experiments

At different engine speeds (1000,1200,1400, and 1600), three different types of

potential faults associated with the fuel injector or injection system were introduced.

First, the injection duration on one cylinder individually was increased, or decreased,

from the nominal ECU value. As evident from table-2 the injection duration for

base calibration is 1.2 ms at all speeds but for the fault cases the duration was first

decreased by 0.4 ms and then for the next two faults increased by 0.4 and 0.8 ms

respectively in the 1st cylinder. This was to simulate a failure with the injector

including injector deposits that reduce the fuel flow or eroded injector nozzle holes

that increase the amount of fuel flow. This failure could also be associated with a

particular injector’s solenoid coil or command signal which may cause the injector to

open for more or less time than commanded by the ECU.
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A second injector fault simulated was achieved by altering the injection timing

of one of the cylinders slightly compared to the ECU-commanded signal. The base

map has different start of injection timing event based on the different speed. Thus

the baseline timings are different for all speeds. For example, at 1000 RPM the start

of injection was retarded by 5 crank angle degrees for the first fault then advanced

by 5 and 8 crank angle degree for the next set of faults. However, the magnitude of

this advanced and retarded timing event varied as the baseline value varied across the

speed range. Finally, the fuel pressure set-point was also perturbed from the ECU

command and the induced fault trend followed the same trend as the aforementioned

parameters. Both the nominal and the simulated faults data-sets were recorded with

a time-based recorder to equalize the sample size across different data sets and have

been briefly summed up in the Table 3.2. The faults were introduced in either one or

all cylinders depending upon the response in the exhaust temperatures and the brake

torque. Only the injection duration fault was simulated for one injector (1st cylinder),

the remaining faults were induced case-wise in all 6 cylinders simultaneously.

3.2 Data Preprocessing

Experimental data collected from real-world setups come with different data

modeling challenges. Often there are issues of arbitrary missing data, erroneous sen-

sor readings, and/or mismatched sampling frequency rates for other data streams.

Preparing well-trained machine-learning models to address such irregularities asso-

ciated with experimental datasets is crucial. We undertook the following key data

preprocessing steps to prepare our engine data for the subsequent modeling phases:

• Variable Selection: We investigated all the variables from the INCA and

PUMA data acquisition setups and discarded several irrelevant sensor readings.
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Figure 3.3: Data imputation example. Filling in the missing fuel flow rate values (in
red) for rpm 1600 with MLP model.

We selected 30 out of the total 40 PUMA variables and 59 out of 628 INCA

variables. The variable selection is driven by the relative relevance of the sensors

pertinent to the injector faults. The channels chosen for PUMA logged infor-

mation related to the pressure, temperature, and volume flow rates of coolant,

engine oil, fuel, intake, and exhaust air. Controlling oil and coolant tempera-

tures are vital to maintaining a controlled ambient condition for baselining the

engine across different engine speeds. While baselining the engine, the intake

and exhaust air measurements were used to validate how an engine would op-

erate in normal conditions and react to controlled inputs simulated as faults.

INCA channels comprise the override values given as a command to the actu-

ators, the feedback signal received from the actuators, and the measurement

value read after the changes have been made. These channels also capture the

magnitude of the faults introduced based on their physical unit of measurement.

• Data Imputation: A few sensor readings (variables) had missing data en-

tries in the initial raw engine data files. As a preprocessing step, we replaced

the missing values using neural network-based regression models. For instance,
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when the engine data was collected at different speeds, the variable fuel flow rate

for the PUMA setup had several inconsistent and missing values. We trained

separate multilayer perceptron (MLP) models for each speed level by training

them on the data points where a sensor reading was available. These models

were then used to fill the data points where sensor readings were corrupted or

missing. The input to the model was 29 different variables out of the 30 total

INCA variables, and the output was the variable with the missing values. The

MLP models had two hidden layers with 48 and 16 neurons, respectively. Recti-

fied Linear Unit (ReLU) was used as the activation function in both these layers

to help model the non-linear dynamics in the variable relationship. Table 3.3

summarizes the performance of the MLP models used to fill the missing values

of fuel flow rate variable for the different speed levels. Figure 3.3 visualizes the

result of data imputation for an instance of rpm 1600, where the red points are

the missing values as substituted in by the corresponding MLP model for that

speed.

• Data Resampling: Another challenge while processing the experimental en-

gine data was that different subsets of variables were measured at different

frequencies and for different time duration. To have a consistent data represen-

tation, we resampled the variables to match the same frequencies such that the

subsequent hybrid machine learning models can conveniently ingest the engine

data at a constant rate. We employed a simple bilinear interpolation scheme to

resample subsets of sensor readings to match the data collection timestamp of

all the data points.
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Table 3.3: Data imputation performance of the MLP models at different speed levels

Speed (rpm) fraction of missing data MLP model RMSE
1000 789/9591 0.007
1200 820/7065 0.008
1400 1220/7534 0.011
1600 1100/5019 0.019

Figure 3.4: Hybrid Physics-Infused 1D CNN-based Fault Detection and Isolation
Pipeline

3.3 Hybrid Fault Diagnostics Architecture

The proposed architecture is a concoction of the autoencoder (AE), the physics

(Simulink-based) model of the engine, and the 1D-CNN module. The AE network

processes the signals from the engine test-bed sensors, creating a latent vector rep-

resentation of the entire feature space. The Simulink-based engine model takes in

the input control parameter and generates specific outputs. The combined feature

vector, outcomes of the AE and physics-based engine models, is fed to a series of con-

volutional blocks, where each block, in turn, is a combination of convolutional and

max pooling layers. Figure 5.3 depicts the overall fault diagnostics computational

pipeline.
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3.3.1 Autoencoder model

As the first component of our hybrid model architecture, we developed autoen-

coder models to represent the high-dimensional space of sensor readings for different

experimental scenarios. An autoencoder is a neural network used to learn a represen-

tation (encoding) of a high-dimensional dataset, usually for dimensionality reduction

or data compression. An autoencoder consists of two parts: an encoder network and

a decoder network. The encoder maps the input data to a lower-dimensional rep-

resentation, and the decoder maps the encoded representation to the original input

data. The goal of an autoencoder is to minimize the difference between the original

input and the reconstructed output so that the encoded representation can capture

the essential features of the input data. Compared to popular dimensionality reduc-

tion methods like principal component analysis, an autoencoder is much more flexible

in its modeling capabilities and can model non-linear variable relationships in data.

3.3.1.1 Model Architecture and Training

For our preprocessed engine data, we trained autoencoders to take the com-

bined PUMA and INCA variables and reduce them to a low-dimensional latent space,

capturing the essential sensor data properties. Figure 4.2 gives a high-level overview

of the autoencoder architecture used in our work. It reduces N (in our case 89) sen-

sor reading to a low dimension of n. The network configuration of the encoder and

the decoder are identically opposite, with two hidden layers of 64 and 32 neurons

each. To model the non-linear relationships, we used the ReLU activation function.

The overall model was trained using a combined dataset from all speed levels under

a nominal engine run scenario. During the training phase, the model was tuned to

accurately reconstruct the original high-dimensional sensor data. Table 4.1 shows the
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Figure 3.5: Overview of the autoencoder architecture.

reconstruction performance of the trained autoencoder for different latent dimensions

(i.e., n) in terms of root mean squared error (RMSE). We tested with different la-

tent dimensions by training three different autoencoders with latent-dimensions 16,

8, and 4, respectively. As seen in the table, the reconstruction performance of the

autoencoder decreases with a decrease in the latent-dimension, which is expected

as any dimension reduction technique will suffer from information loss with lesser

dimensions.
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Table 3.4: Autoencoder reconstruction results for different latent dimensions

latent dimension reconstruction RMSE
16 0.005
8 0.006
4 0.011

3.3.1.2 Latent Dimensions

Once the autoencoder is trained, we pass on the latent dimensional represen-

tation of the sensor readings to the next stage of the hybrid diagnosis model. The

autoencoder learns to capture the critical data properties in the low-dimensional la-

tent space, a rich data source for subsequent modeling. For visualizing the features

captured in the latent space, a common approach is to use another standard di-

mensionality reduction method on top of the latent dimensions to visualize the data

properties. For this, we used t-SNE (t-distributed stochastic neighbor embedding),

which helps visualize high-dimensional spaces by projecting them to lower dimensions

that retain the high-dimensional properties and relationships among the data points.

Figure 4.3 shows the t-SNE projection results of 16-dimensional latent variables for

an rpm 1600 data. The continuous color scale maps to the duration of the engine

run. We explored three distinct clusters shown in the projection (highlighted in the

figure with orange, green, and blue circles) and found them to correspond to different

operating states of the engine.

3.3.2 Physics-based model

3.3.2.1 Model Introduction

The performance of a pure data-driven model for engine fault diagnostics pri-

marily depends on the data size. Particularly the data collected on several different
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Figure 3.6: Visualization of the latent dimensional representation of the high-
dimensional sensor readings for rpm 1600 instance.

operating conditions and the severity of the faults. Collecting experimental data for

the faulty behavior is challenging, as it can permanently damage the engines’ com-

ponents if we induce faults for all possible scenarios and run the engine. The data

collected for this paper was in a controlled environment; it monitored every engine

output and ensured that the induced faults should not damage any engine compo-

nent. Safely inducing faults restricted us with lower fault severity levels in generating

the data. However, in a real-life scenario, if any fault occurs in the system, it doesn’t

necessarily happen in a limited manner. Most of the time, faults significantly impact

the system, which is impossible to incorporate in the test cell for data collection.

Thus, in such cases, the role of a physics-based model is crucial, as it can operate on

the desired condition, unlike the test cell engine. Therefore, infusing a well-studied

physics-based model, incorporating domain expertise, combine with a data-driven

model can overcome the issues of generalizability and sparse datasets.

Various physics-based diesel engine models are available in the literature, for

example, 0D, 1D, 2D, and 3D Computational Fluid Dynamics (CFD), to name a

few [20, 43, 70, 88]. 0D models don’t have a spatial dependency; those models are

34



only time-dependent. The 0D model comprises algebraic and ordinary differential

equations, as it’s a function of only one variable, time. On the other hand, 1D,

2D, or 3D models include one, two, or three spatial dimensions within the chosen

coordinate system. Such models are tough to build and rely heavily on domain

expertise. Generally, computational time and accuracy are directly proportional for

such models and are considered a primary deciding factor in choosing which model

to use. We need a model that can simulate faster than a wall-clock time on a regular

windows machine for engine fault diagnosis and can still give an intuition of the

actual system behavior (diesel engine in this case). To strike a balance between

computational efficiency and the level of accuracy, we decided to use the 0D model

and develop a few of the subsystems of interest with high fidelity.

The physics-based engine model’s structural diagram that shows the flow di-

rection and connection between the inputs and outputs of all subsystems. The control

inputs and final outputs of the engine model are represented in red dashed rectangular

box and ellipse, respectively.

3.3.2.2 Model Details

This paper proposes a 0D high-fidelity physics-based engine model developed

for a 7.6-liter Navistar engine. This Navistar engine is established at Clemson Uni-

versity’s Powertrain Laboratory. To develop the 0D model, we used a Mean Value

Engine Model (MVEM) technique, which neglects the discrete cycle of the engine and

uses an effective value from the combustion cycle [40]. Several mean value models on

diesel engines are available in the literature [42, 73, 104, 120]. Specifically, we con-

sidered the model developed by Wahlstrom and Eriksson [116] as a baseline model

and further improvised the fidelity of a few of the subsystems. We develop this model

in the MATLAB and Simulink environments. The overview of the engine model is
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Figure 3.7: The physics-based engine model’s structural diagram which shows the
connection and flow direction between inputs and outputs of all subsystems. The
control input parameters and output measurements of the engine model is represented
in red dashed line rectangular box and ellipse, respectively.

depicted in Figure 5.4. The model captures mass flow, temperature, pressure, and

total torque from multiple engine subsystems using fourteen state variables (shown

in Figure 5.4).

The input/control parameters of physics-based diesel engine model are men-

tioned below:

1. Engine speed (rpm) - n e

2. Start of injection (Crank angle degree - CAD) - SOI

3. Injection duration (ms) - inj dur

4. Injection pressure (MPa) - P ic

The modeling details are elaborated in the following two sub headings.
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Cylinder and fuel injector subsystems

The process of combustion is the essential process of engine operation, and the overall

engine model’s accuracy is highly dependent on the fidelity of the combustion model.

Here, we use a high-fidelity cylinder model, which is primarily based on thermody-

namic principles. This cylinder model simulates inside cylinder processes for all CAD.

This model gives several outputs for an entire cycle, such as torque, temperature of

the cylinder exhaust, mass flows of intake and exhaust manifolds, and in-cylinder

pressure. We extend the thermodynamic cylinder model with a multi-cylinder con-

cept to simulate the effect of a single faulty injector/cylinder behavior on the entire

system. The multi-cylinder model has six separate cylinders and fuel injectors. The

fuel injection model mimics the behavior of a high-pressure common rail fuel injection

system from the experimental setup. This injection model outputs the injector fuel

flow rate using the concept of conservation of mass.

Turbocharger and manifolds subsystems

The intake and exhaust manifolds are modeled with two states: intake and exhaust

manifold pressure. Fundamentally the principle of mass conservation and the ideal-gas

law are used for modeling manifolds pressure. The differential equation for calculating

the manifolds pressure is described below,

d

dt
pim =

RaTim

Vim

(Wc −Wei), (3.1)

d

dt
pem =

ReTem

Vem

(Weo −Wt) (3.2)

All the parameters are mentioned in the appendix from Equation 5.5, Equation

5.6, and Figure 5.4. The subsystems of the turbocharger comprise of compressor,
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Figure 3.8: Physics-based model validation plots for the engine speed of 1600 rpm with
different operating points. Blue and orange lines denote experimental and simulation
readings, respectively. The Mean Percent Error (MPE) of each model’s output is
mentioned in their title.

turbine, and turbo inertial model. We extract the model of a turbocharger from

Wahlstrom and Eriksson’s model [116].

The physics-based model has been calibrated for the range of 1000-1800 RPM

of engine speed and 100-600 Nm of torque. The experimental data is used for the

model calibration. The error between experimental and modeled values is minimized

for model calibration using a well-known approach, the least square optimization

method [75]. This model is validated over experimental data and shows a maximum

error of 5-6 %. The validation plots for some of the outputs of the physics-based

model are demonstrated in Figure 5.5. We choose the outputs from the physics-based

model that overlap with the experimental data. Thus, six outputs from the physics-

based model and sixteen from the autoencoder model are sent to one dimensional-

convolutional neural network.
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3.3.3 1 Dimensional-Convolutional Neural Network (1D-CNN)

Recently, Convolutional Neural Networks (CNNs) have established themselves

as the go-to solution for various computer vision tasks, including object detection, face

recognition, and numerous other machine learning applications [127]. The widespread

adoption of CNNs has made them the default choice in the field, serving as the de

facto tool for these tasks. CNNs are a type of deep learning network that serves as

a go-to choice for analyzing image or spatial data. The CNNs may seem feasible for

various applications like 2D or 3D image processing. Yet, they may need to be more

handy when dealing with signals or time-variant data samples in 1D. The 1D-CNNs

came as a powerful solution to address the abovementioned issue. They immediately

garnered significant support from researchers across the domains such as early health

condition diagnosis, structural health monitoring, and anomaly detection owing to

their state-of-the-art performance credentials. Besides, the 1D-CNN has the upper

hand as low-cost hardware implementation and fast real-time onboard execution are

possible. The combined feature vector of size twenty-two, comprising the outputs

of the auto-encoder model (sixteen outputs) and the outputs from the physics-based

engine model (six outputs), is traversed through the 1D-CNN network for the purpose

of fault detection and isolation. Our proposed 1D-CNN module consists of several

convolutional blocks, each composed of combinations of 1D-convolutional and 1D

max-pooling layers. The attributes influencing the efficiency of the 1D-CNN layer are

as follows: feature map, the number of filters, kernel size, and strides. The output of

the convolutional layer is processed through a Rectified Linear Unit (ReLU) activation

function to decipher the curvilinear correlation between the inputs and the respective

outcomes. The mathematical formulation for ReLU activation is described as follows:
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ReLU(x) = max(x, 0) (3.3)

After the convolutional layer, the max-pooling (or the down-sampling layer)

aids in the fast convergence of the overall 1D-CNN model and enhances its gener-

alizability. The max-pooling layer helps discover the most prominent feature from

the vector output of the 1D convolutional layer. The attributes affecting the efficacy

of the pooling layers are the filter size and the strides. In the proposed 1D-CNN

model, some convolutional block consists of convolutional and 1D max-pooling lay-

ers, while others contain just the convolutional layer per the demand of the data,

which the hyperparameter tuning process determines. After the convolutional blocks

come the flatten layer which helps to reshape the tensor into a vector that matches

the number of elements in the output tensor generated by the convolutional block.

Subsequently, the flatten layer’s output is then passed through a sequence of dense

layers. These dense layers play a crucial role in diagnosing the fault and identify-

ing the corresponding fault class. The dense layers contribute to the final detection

and classification of faults through a series of computations and learned patterns.

In essence, the 1D-CNN model frames the fault diagnostics problem as a four-class

classification problem, where the respective classes are namely: Nominal (no fault)

condition, fault due to injection pressure (Inj Prs), fault due to a delay in injection

duration (Inj Dur), and the fault due to the change in the start of injection (SOI).

Figure 5.6 portrays the architecture of the 1D-CNN model for fault diagnostics.

3.3.4 Computational Resources

The fault diagnostics model is trained using Tensorflow-Keras (Tensorflow

GPU 2.9.1) in a machine of Lenovo ThinkPad X1 with Intel(R) Core(TM) i7-10750H

CPU @ 2.60GHz, six cores with 12 logical processors, 16 GB RAM, and NVIDIA
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Figure 3.9: Hybrid 1D CNN-based Fault Diagnosis Model

GeForce GTX 1650Ti with Max-Q Design GPU.

3.4 Hybrid Model Evaluation

3.4.1 Evaluation Metrics

The fault detection and isolation problem can be framed as a multi-class clas-

sification problem. For this research work, we posed the problem statement as a

four-class (or working conditions) classification problem, where the respective cate-

gories are as follows: Nominal (no fault) condition, fault due to injection pressure,

fault due to a delay in injection duration, fault due to the change in the start of

injection (SOI). In this paper, we used categorical cross-entropy as the loss function

for classifying the four working conditions as discussed above. Equation 4.5 expresses

the loss function for categorical cross-entropy:

−
C∑
i=1

yo,i log(po,i) (3.4)
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Where ’C’ is the number of classes, ’log’ is the natural logarithm, ’y’ is the

ground truth label (0 or 1) if the class label ’i’ is the true prediction for the observation

’o’, and ’p’ is the prediction made by the model pertinent to class ’i’. To evaluate the

performance of the proposed hybrid diagnostics model, we choose several evaluation

metrics, which are enumerated as follows:

3.4.1.1 Confusion Matrix

The confusion matrix is a way of visualizing the classification performance of a

model in a tabular format. It’s a straightforward yet one of the most efficient tools to

measure the performance of a classification model. The values in the matrix denote

the number of accurate predictions made by the model when correctly or incorrectly

classifying the respective classes. Figure 3.10 showcases the confusion matrix for a

binary classification problem. Each column represents an instance in the actual class,

while the entries in the rows depict the predictions made for the corresponding classes.

Next, we list some of the crucial metrics as derived from the confusion matrix:

True Positive (TP): True positive refers to the number of correct predic-

tions made by the model when the expected label was positive.

True Negative (TN): True negative refers to the number of correct predic-

tions made by the model when the expected label was negative.

False Positive (FP): False positive refers to the number of instances where

the model predicts the negative class as positive.

False Negative (FN): False negative refers to the number of instances where

the model predicts the positive class as negative.

42



Figure 3.10: Confusion Matrix for Binary Classification.

3.4.1.2 Accuracy

Accuracy is one of the most widely accepted metrics for the performance quan-

tification of a classification model. It measures the number of correct predictions made

by the model out of the total available samples. Equation 3.5 expresses the accuracy

in terms of entries of the confusion matrix. However, accuracy works best when the

data has a uniform sample size for each class. In most practical scenarios, the data

size distribution won’t be uniform; that was the case with the diagnostics experiment

data we collected. To address the issues mentioned above, we resort to other perfor-

mance evaluation criteria, such as precision and recall, which are less affected by the

imbalance in the training data samples.

Accuracy =
TP + TN

TP + TN + FP + FN
(3.5)
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3.4.1.3 Precision

Precision is the ratio of True Positive (TP) to the sum of True Positive (TP)

and False Positive (FP). It alludes to the notion that the fraction of labels predicted

as positive by the model is actually positive. Equation 3.6 expresses the precision as

follows:

Precision =
TP

TP + FP
(3.6)

3.4.1.4 Recall

Recall refers to the fraction of total actual positives which were predicted

as positives by the model. Equation 3.7 expresses the mathematical formulation of

recall. The recall is also known as the Probability of classification, True Positive Rate

(TPR), or Sensitivity.

Recall =
TP

TP + FN
(3.7)

3.4.1.5 Specificity

Specificity refers to the fraction of total actual negatives which were predicted

as negatives by the model. Equation 3.8 expresses the mathematical formulation of

specificity. The specificity is also referred to as the True Negative Rate (TNR).

Specificity =
TN

TN + FP
(3.8)
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3.4.1.6 F-1 Score

It gets tricky to correctly analyze a model’s performance based on high recall

and low precision or vice-versa. The key conceptual idea behind the conceptualization

of the F-1 score is to define a proper quantification measure that can strike a balance

between the two metrics, i.e., precision and recall, while bringing the best of both.

The high value of the F-1 score not only elucidates the high classification capabilities

of a model but also expounds the models’ ability to give unbiased equal importance

to different class labels under consideration. The F-1 score combines both precision

and recall by calculating their harmonic mean and can be expressed via Equation 3.9

as follows:

F1 score = 2 ∗ Precision ∗Recall

Precision + Recall
(3.9)

3.4.1.7 Micro F-1 Score

For our multi-class classification problem of identifying different faults, we

used the micro F-1 score and calculated the total TP, FP, and FN using the various

classes available. This metric does not consider individual classes. It estimates the

values globally. After calculating the cumulative TP, FP, and FN, global precision

and recall values are calculated, which ultimately leads to the micro F-1 Score. Since

we calculate the values globally, we observe that all the metrics become equal, which

implies that:

Recall = Precision = MicroF1 = Accuracy (3.10)
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3.4.1.8 Macro F-1 Score

For this metric, we calculated the values of TP, FP, and FN individually

for each of the four conditions (1 nominal and three fault types). After that, we

estimate the precision, recall, and F-1 metrics for the individual classes and then

use an unweighted mean of the F-1 metric for the four classification labels to yield a

macro F-1 score. Equation 3.11 represents the macro F-1 score in it’s mathematical

form:

∑C
i=1 F1i∑C

i=1

(3.11)

In Equation 3.11, the numerator represents the summation of F-1 scores over

the total number of classes ’C’, and the denominator is the sum of the number of

various classes present in the problem, which in our case was four.

3.4.1.9 Weighted F-1 Score

Unlike the macro F-1 score, the weighted one is calculated using weighted

mean of the individual F-1 scores of the respective classification labels and can be

expressed as follows:

∑C
i=1 F1i ∗ (DataSamples)i∑C

i=1(DataSamples)i
(3.12)

For Equation 3.12, the numerator is a summation of the multiplication between

the F-1 scores of the respective classes and the corresponding number of samples for

each class. The denominator is the sum of the number of data samples in each

category.
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3.4.2 Robustness to Noisy Data

During the actual operations of an automobile, the onboard engine sensors

might get exposed to different types and levels of noise. The noise creeps into

the sensor measurements from the electronics or the data-acquisition systems and

is the leading cause of measurement errors. To simulate the working conditions of

a production-class diesel engine, we added different noise levels to the data from

the various test-bed (engine) sensors. Specifically, we added multiple levels of Addi-

tive White Gaussian Noise (AWGN) to the data samples. The noisy synthetic data

samples are then passed through the pre-trained 1D-CNN diagnostics module. We

added noise samples ranging from a five-percent standard deviation, of the respec-

tive signal, to three times the standard deviation. Specifically, we used five different

noise levels: five percent of the standard deviation of the signal, fifty percent of the

standard deviation, standard deviation, two times the deviation, and three times the

standard deviation, respectively. The exercise helps appraise the model’s robustness

when subjected to noisy data, which is the norm in actual working conditions.

3.4.3 Hyperparameter Tuning

The process of hyperparameter tuning [26, 131] involves finding the optimal

combination of hyperparameters for a learning algorithm. This quest aims to dis-

cover the best-performing model, which minimizes the predefined cost function on a

training dataset. By systematically exploring different hyperparameter settings, hy-

perparameter tuning enables the identification of the most effective configuration that

yields superior results. The number of layers, number of neurons in a specific layer,

filter size, batch size, and learning rate are a few of the prominent hyperparameters

to be considered when striving for the top-notch version of the model for a given
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dataset. We used different hyperparameter combinations for the pure data-driven

and hybrid fault diagnostics models. Besides, while training the model, we used reg-

ularization techniques, such as L1 and L2, to account for any overfitting. The details

are elaborated on in the following subsections:

3.4.3.1 Tuning for Fault detection and isolation

We used the grid-search hyperparameter optimization technique for the hybrid

physics-infused 1D-CNN-based fault diagnostics model. We have explored 216 differ-

ent hyperparameter combinations employing a five-fold cross-validation, resulting in

1080 fits of the overall training dataset. The accuracy values, over the validation set,

for a few of the sample hyperparameter configurations, are displayed in Figure 5.7.

The model corresponding to the best hyperparameter combination is saved, and the

same was later used to analyze the performance on noisy datasets. We used the Adam

optimizer to train the model, with a learning rate of 0.01. For the 1D-convolutional

and dense layers, we have used ReLU as the activation function, while Softmax has

been used as the activation for the outermost dense layer. Table 3.6 showcases the

network topology of the best hybrid fault diagnostics model.

Similar hyperparameter optimization was performed for the pure data-driven

1D-CNN-based diagnostics model (without the physics-based engine model input),

used to benchmark the hybrid model’s performance. The hyperparameters considered

are the batch size, epochs, learning rate, number of convolutional filters, kernel size,

and the pool size for the max pooling layer. Out of the 216 combinations, box plots

for a small sample set’s accuracies are displayed in Figure 3.12. Here also, a five-

fold cross-validation strategy was put to execution, which culminated in 1080 fits

over the training dataset. We have used ReLU as an activation function for the 1D-

convolutional and dense layers. The outermost dense layer uses Softmax activation
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Table 3.5: Network details of the 1D CNN module of the pure data-driven diagnostics
framework

Layer Type Output Shape #Parameters
Conv1D (None,13,16) 80

MaxPooling1D (None,3,16) 0
Flatten (None,48) 0
Dense (None,4) 196
Dense (None,4) 20

Total Parameters: 296
Trainable Parameters: 296
Non-Trainable Parameters: 0

Table 3.6: Network details of the 1D CNN module of the hybrid diagnostics framework

Layer Type Output Shape #Parameters
Conv1D (None,19,8) 80

MaxPooling1D (None,4,8) 0
Flatten (None,32) 0
Dense (None,4) 132
Dense (None,4) 20

Total Parameters: 192
Trainable Parameters: 192
Non-Trainable Parameters: 0

function for the multiclass classification. The model used an Adam optimizer with a

learning rate of 0.01. The network details of the best data-driven model are displayed

in Table 5.1.

Table 3.7: Evaluation Metrics: Data-driven model

Micro Metrics Macro Metrics Weighted Metrics
Metrics Values Metrics Values Metrics Values

Micro Precision 0.93 Macro Precision 0.92 Weighted Precision 0.93
Micro Recall 0.93 Macro Recall 0.92 Weighted Recall 0.93

Micro F1-Score 0.93 Macro F1-Score 0.92 Weighted F1-Score 0.93
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Figure 3.11: Hyperparameter tuning results for the hybrid model

Figure 3.12: Hyperparameter tuning results for the pure data-driven
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Table 3.8: Evaluation Metrics: Hybrid model

Micro Metrics Macro Metrics Weighted Metrics
Metrics Values Metrics Values Metrics Values

Micro Precision 0.98 Macro Precision 0.98 Weighted Precision 0.98
Micro Recall 0.98 Macro Recall 0.98 Weighted Recall 0.98

Micro F1-Score 0.98 Macro F1-Score 0.98 Weighted F1-Score 0.98

Figure 3.13: Confusion Matrix: Pure data-driven diagnostics model
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Figure 3.14: Confusion Matrix: Hybrid diagnostics model

Table 3.9: Comprehensive Diagnosis Report: Data-driven model

Precision Recall F1-Score Number of Samples
Nominal 0.85 0.80 0.82 5262

Injection Pressure 1.00 1.00 1.00 6399
Injection Duration 0.84 0.89 0.86 6300

SOI 1.00 1.00 1.00 6318

Accuracy 0.93 24279
Macro Average 0.92 0.92 0.92 24279

Weighted Average 0.93 0.93 0.93 24279
Accuracy: 0.93
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Table 3.10: Comprehensive Diagnosis Report: Hybrid model

Precision Recall F1-Score Number of Samples
Nominal 0.95 0.97 0.96 5262

Injection Pressure 1.00 1.00 1.00 6399
Injection Duration 0.98 0.96 0.97 6300

SOI 1.00 1.00 1.00 6318

Accuracy 0.98 24279
Macro Average 0.98 0.98 0.98 24279

Weighted Average 0.98 0.98 0.98 24279
Accuracy: 0.98

3.5 Results and Discussions

3.5.1 Fault Detection and Isolation

When comparing Table 3.9 and Table 3.10, it is pretty evident that the physics-

infused hybrid diagnostics model outperforms the pure data-driven diagnostics model

on the accuracy front. Compared to the 93 percent accuracy of the data-driven model,

the hybrid model achieves an overall accuracy of 98 percent on fault detection and

isolation tasks. Not only accuracy, from the readings of Table 3.7 and Table 3.8, we

can observe that on the various other metrics such as precision, recall, and F1-Score,

and their respective variations such as micro, macro, and weighted, the hybrid model

supersedes the data-driven one.

Besides, Figures 3.13 and 4.9 offer a more in-depth insight into the fault de-

tection and isolation capabilities of the data-driven, and hybrid models, respectively.

From the two confusion plots as mentioned above, we can discern that the hybrid

model has a clear edge over the data-driven model while accurately classifying the

four classes: nominal (no fault) condition, fault due to injection pressure (Inj Prs),

fault due to a delay in injection duration (Inj Dur), and the fault due to the change
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in the start of injection (SOI). More diagonal elements in the confusion matrix for the

hybrid model stand witness to the superior diagnosis ability of the hybrid model com-

pared to its data-driven counterpart. Also, Tables 3.9, 3.10 showcase that even for the

individual fault classes, namely the nominal, fault due to injection pressure(Inj Prs),

fault due to injection duration (Inj Dur), and the fault due to start of injection (SOI),

the recall, precision, and F1-Scores are much better for the hybrid model as compared

to the pure data-driven model. The better fault segregation capability of the hybrid

model can be attributed to the physics model, which guides the parameter construc-

tion and tuning of the overall hybrid framework.

3.5.2 Robustness to noisy data

Figures 3.15, 3.16, 4.11, and 4.12 showcase the confusion matrices for the per-

formance of the physics-infused model, as compared to the pure data-driven model,

over datasets consisting of various noise levels ranging from five percent of standard

deviation to two times the standard deviation of the original signal. It is patent from

the confusion matrices that the proposed physics-infused hybrid diagnostics frame-

work remains relatively stable even in noisy unprecedented input signals compared to

the pure data-driven diagnostics model. The high robustness of the model connotes

the ability to perform even when it’s tough to get precise measurements from the

onboard sensors, which deviates the readings from the expected values.

Figure 3.15 represents the confusion plot for the best performance of our pre-

trained hybrid model for the noise level of five percent of the standard deviation of

the original signal. From the plot, we can observe that the number of misclassifica-

tions is still relatively low compared to the pure data-driven model, and the hybrid

model registers an accuracy of 98 percent. Also, the model performed reasonably
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well on the precision, recall, and F1-scores, as shown in Table 3.11, which presents a

comparison between the comprehensive diagnosis reports of both the data-driven and

the hybrid models for a noise level of five percent of the standard deviation. Both the

data-driven and hybrid models show a decline in accuracy with the increasing noise

levels, and models have the worst accuracy for the case where the noise level was

equal to three times the standard deviation, as quite evident from the Figures 3.19,

4.14. However, the hybrid model demonstrates better fault detection and isolation

capability for the same noise level compared to the pure data-driven model. From

the Tables 3.11, 4.3, 4.4, 4.5, we can observe that even on the other metrics such as

precision, recall, and F1-score, the hybrid model outperforms its data-driven coun-

terpart, when subjected to varying noise levels. The improved ability of the hybrid

model to handle noise can be attributed to its greater robustness, which stems from

the incorporation of physics-based information that enhances its feature-capturing

capabilities. Physics-based engine model aids the overall hybrid diagnostics frame-

work to become sentient. Moreover, domain knowledge improves the generalizability

of the hybrid fault diagnostics model. The enhanced generalizability comes to the

rescue of the hybrid model when tested against out-of-distribution noisy data sam-

ples. Besides, the involvement of physics helps decipher underlying dependencies in

the data, and it gives the hybrid physics-infused model an edge over the data-driven

model when classifying the appropriate fault classes, even in the presence of noise.
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Figure 3.15: Comparative confusion matrix: Noise level 5 percent of standard devia-
tion

Figure 3.16: Comparative confusion matrix: Noise level 50 percent of standard devi-
ation
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Figure 3.17: Comparative confusion matrix: Noise level equal to standard deviation

Figure 3.18: Comparative confusion matrix: Noise level-2 times of standard deviation
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Figure 3.19: Comparative performance over different noise levels: Data-driven model

Figure 3.20: Comparative performance over different noise levels: Hybrid model
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Table 3.11: Comparative comprehensive diagnosis report: Noise level 5 percent of
standard deviation

Data-driven Model Hybrid Model
Precision Recall F1 Precision Recall F1

Nominal 0.86 0.76 0.80 0.94 0.98 0.96
Injection Pressure 1.00 1.00 1.00 1.00 1.00 1.00
Injection Duration 0.81 0.89 0.85 0.99 0.94 0.96

SOI 1.00 1.00 1.00 1.00 1.00 1.00
Accuracy 0.92 0.98

Macro Average 0.92 0.91 0.91 0.98 0.98 0.98
Weighted Average 0.92 0.92 0.92 0.98 0.98 0.98

Accuracy: 0.92 Accuracy: 0.98

Table 3.12: Comparative comprehensive diagnosis report: Noise level 50 percent of
standard deviation

Data-driven Model Hybrid Model
Precision Recall F1 Precision Recall F1

Nominal 0.91 0.43 0.60 0.92 0.69 0.79
Injection Pressure 0.94 1.00 0.97 1.00 1.00 1.00
Injection Duration 0.66 0.93 0.77 0.79 0.95 0.86

SOI 1.00 1.00 1.00 1.00 1.00 1.00
Accuracy 0.86 0.92

Macro Average 0.89 0.84 0.83 0.93 0.91 0.91
Weighted Average 0.89 0.86 0.84 0.93 0.92 0.92

Accuracy: 0.86 Accuracy: 0.92

Table 3.13: Comparative comprehensive diagnosis report: Noise level equal to stan-
dard deviation

Data-driven Model Hybrid Model
Precision Recall F1 Precision Recall F1

Nominal 0.82 0.43 0.57 0.91 0.41 0.56
Injection Pressure 0.58 1.00 0.73 1.00 0.99 0.99
Injection Duration 0.82 0.62 0.70 0.67 0.99 0.80

SOI 1.00 0.92 0.96 1.00 0.97 0.99
Accuracy 0.75 0.86

Macro Average 0.80 0.74 0.74 0.90 0.84 0.84
Weighted Average 0.80 0.75 0.74 0.89 0.86 0.85

Accuracy: 0.75 Accuracy: 0.86
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Table 3.14: Comparative comprehensive diagnosis report: Noise level equal to two
times of standard deviation

Data-driven Model Hybrid Model
Precision Recall F1 Precision Recall F1

Nominal 0.61 0.41 0.49 0.62 0.41 0.50
Injection Pressure 0.65 1.00 0.79 0.89 0.93 0.91
Injection Duration 0.74 0.70 0.72 0.64 1.00 0.78

SOI 1.00 0.78 0.87 1.00 0.69 0.81
Accuracy 0.74 0.77

Macro Average 0.75 0.72 0.72 0.79 0.76 0.75
Weighted Average 0.76 0.74 0.73 0.80 0.77 0.76

Accuracy: 0.74 Accuracy: 0.77
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Chapter 4

Hybrid Physics-Infused 1

Dimensional-Convolutional Neural

Network (1D-CNN) based

Ensemble Learning Framework for

Diesel Engine Fault Diagnostics

This chapter presents a novel diesel engine fault diagnostics approach uti-

lizing a physics-infused hybrid stacked generalization ensemble model. The model

consists of various hybrid physics-infused submodels, each using an amalgamation

of 1 Dimensional-Convolutional Neural Networks(1D-CNN) and a physics-based low-

fidelity engine model. Each of the physics-infused 1D-CNN-based hybrid sub-models

is fed with a combination of data from the engine test bed and the output from the

physics-based engine model. The model adopts a weighted model averaging tech-

nique using a deep neural network (DNN) that assigns appropriate weights to each
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hybrid physics-infused sub-model contribution to enhance the final outcome. The

hybrid model can achieve better generalizability and performance on extrapolated

datasets by integrating physics while efficiently handling non-linearity. Moreover, the

proposed model can identify the optimal bias-variance trade-off, avoiding overfitting

or underfitting scenarios. Empirical results demonstrate that our model is highly

robust in the presence of noisy data, which is commonly encountered in the dynamic

operations of a diesel engine system. The hybrid ensemble model combines data from

diverse sensors and the corresponding outputs of the physics model in various ways

to detect the presence of a fault. Additionally, it can isolate (localize) three distinct

fault categories: ’Inj prs ’ fault resulting from changes in injection pressure, ’SOI ’

fault caused by alterations in the start of injection, and ’Inj dur ’ fault caused by

shifts in injection duration. The main contributions of this chapter are enumerated

as follows:

1. We propose an innovative hybrid framework that integrates physics principles

into a 1D-CNN-based ensemble deep learning model to detect faults in diesel

engines. Our approach combines domain knowledge with end-to-end 1D-CNN-

based methods. The ensemble model follows a stacked generalization approach,

featuring two learning levels: level-0 and level-1 (meta-level). At level-0, multi-

ple physics-infused 1D-CNN-based submodels operate in tandem. At level-1, a

deep neural network (DNN) aggregates the predictions of the level-0 submod-

els through an automatic weighted average mechanism, thereby enhancing the

predictive accuracy of the final outcome. This hybrid architecture is capable

of processing raw data from the test bed and autonomously diagnosing fault

scenarios without external intervention.

2. In order to assess the viability of the proposed hybrid ensemble model, an
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extensive database [1] of diesel engine faults, named ”NavicEngine,” was metic-

ulously constructed. Notably, this database encompasses a diverse spectrum

of operational conditions. The NavicEngine database was employed for both

the training and testing phases of the hybrid architecture, thereby facilitating

a comprehensive evaluation of its performance.

3. The validity of the proposed hybrid architecture was established through a series

of tests conducted across diverse operational scenarios. Notably, the model

demonstrated commendable levels of accuracy as measured by a spectrum of

evaluation metrics. Furthermore, the architecture exhibited robust stability

and resilience, effectively mitigating the influence of noisy data samples on its

performance.

4.1 Hybrid Ensemble Learning Fault Diagnostics

Architecture

The proposed hybrid physics-infused 1D-CNN-based ensemble deep learning

fault diagnostics framework, consisting of dual learning levels (level-0 and level-1 or

Meta level), imbibes several components, including an autoencoder (AE), a physics

model of the engine based on Simulink, a stack of few different variations of the

1D-CNN module constituting the level-0 learning, and a deep neural network (DNN)

which forms the level-1 learning (Meta Level). The Auto Encoder network ana-

lyzes the signals gathered from the engine test-bed sensors and produces a con-

densed representation of the entire feature space known as a latent vector. The

Simulink/MATLAB-based physics model processes the engine control parameters and

produces relevant outputs. The resulting combined feature vector from the physics
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Figure 4.1: Hybrid Physics-Infused 1D-CNN-based Ensemble Learning Pipeline Fault
Detection and Isolation

models and Auto Encoder is then passed through a sequence of 1D-convolutional

blocks, each comprised of 1D-convolutional and 1D-max pooling layers as a part

of level-0 of learning. The level-0 outputs are then combined as a vector and pro-

cessed through the level-1 or Meta learner, the deep neural network (DNN), which

ultimately results in the detection and isolation (classification of the fault type) of

the fault. Figure 5.3 illustrates the comprehensive computational pipeline for fault

diagnosis.

4.1.1 Autoencoder model

The autoencoder module of our hybrid architecture helps encode the high-

dimensional space of sensor outputs from the experimental test bed to low-dimensional

vectors apt for the following stacked 1D-CNN-based ensemble deep learning model

to process information efficiently. Essentially, autoencoders are neural networks that
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can learn the representation of high-dimensional data for the purpose of dimension-

ality reduction. An autoencoder comprises two components: an encoder module and

a decoder module. The encoder module maps high-dimensional data to a lower-

dimensional latent space while the decoder reconstructs the original input from the

latent representation. An autoencoder aims to minimize the reconstruction loss be-

tween the initial intake data and the recreated output, enabling the latent repre-

sentation to capture the crucial characteristics of the input data without significant

information loss. Compared to conventional dimensionality reduction methods such

as principal component analysis, autoencoders are more adaptable in their modeling

capabilities and can model non-linear relationships among variables in data. One

of the main advantages of using autoencoders is that unlike their conventional di-

mensionality reduction counterparts, such as Principal Component Analysis (PCA),

autoencoders are more efficient in modeling the non-linear relationships in the data.

4.1.1.1 Model Architecture and Training

Autoencoders were trained on the preprocessed sensor data from the engine

test bed to compress the combined INCA and PUMA variables into a low-dimensional

vector space called the latent space, capturing the sensor data’s essential properties.

Figure 4.2 presents the architecture of the autoencoder network used in this research.

This architecture maps 89 sensor readings (N) to a latent dimension space n. The

encoder and decoder network configurations are mirror images of each other. The

encoder is a neural network with the first hidden layer of 64 neurons and the second

hidden layer consisting of 32 neurons. On the other hand, the decoder attempts

to reconstruct the original input from the latent representation using a sequential

network of two hidden layers with 32 and 64 neurons each. The autoencoder deploys

the ReLU activation function to capture the underlying non-linear dynamics of the
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Figure 4.2: Overview of the autoencoder architecture.

data. We trained the model using a dataset comprising outputs corresponding to

various speed levels under a nominal operational run of the engine to reconstruct

the original input data accurately. Table 4.1 displays the performance of the trained

autoencoder when reconstructing the original input data for various latent dimensions,

where three versions, consisting of different sizes of the latent dimensions such as

16, 8, and 4, of the autoencoders were explored. As expected, the reconstruction

performance of the autoencoder decreased with a decrease in the latent dimension, as

information loss is an inherent issue in any dimensionality reduction technique. We

used the root mean square error (RMSE) to measure the reconstruction performance.
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latent dimension reconstruction RMSE
16 0.005
8 0.006
4 0.011

Table 4.1: Autoencoder reconstruction results for different latent dimensions

4.1.1.2 Latent Dimensions

After training the autoencoder, we utilize the low-dimensional latent repre-

sentation of the sensor readings in the subsequent stages of our hybrid diagnosis

architecture to train the following 1D-CNN-based ensemble model. The autoencoder

can capture the essential data characteristics in the latent space, a valuable data

source for subsequent data-driven models. To visualize the properties of the latent

space, we utilized t-distributed stochastic neighbor embedding (t-SNE), which allows

us to visualize the high-dimensional input space by projecting it into lower dimensions

while maintaining the inherent dataset properties and the interrelationship among the

individual data samples. Figure 4.3 presents the visualization patterns corresponding

to 1600 rpm, obtained using t-SNE, for the 16-dimensional latent space. The color bar

on the side depicts the time duration for which the engine operates. In Figure 4.3, the

green, orange, and blue clusters correspond to three distinct diesel engine operating

conditions.

4.1.2 Physics-based model

4.1.2.1 Model Introduction

The wide range of a dataset plays a crucial role in the performance of the

data-driven model for engine fault diagnostics, specifically in the dataset collected on

various severity levels of the faults and operating conditions. Things get challenging
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Figure 4.3: Visualization of the latent dimensional representation of the
high-dimensional sensor readings for rpm 1600 instance.

while collecting the experimental data for faulty behavior. This is mainly due to run-

ning the engine in faulty conditions for all possible scenarios can cause serious harm

to the engine’s components. We collected the data for this paper in a very controlled

manner and carefully observed every engine output to ensure all the components of

the engine were in a healthy condition. However, this limited us to lower fault severity

levels when collecting data. In practical situations, faults can occur without such re-

strictions, often significantly impacting the system, making it impossible to replicate

in a test cell for data generation.

Due to this limitation, the inclusion of a physics-based model in a fault diag-

nosis system becomes important. Unlike the test bed engine, a physics-based model

can function under critical and desired conditions. Combining a thoroughly analyzed

physics-based model with a data-driven model makes it possible to resolve issues of

sparse datasets and generalizability. This hybrid approach offers a more comprehen-

sive and effective solution to engine fault diagnostics.

There are several physics-based models for the diesel engine that can be found

in the literature, including Computational Fluid Dynamics (CFD), zero, one, and
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two-dimensional models, to mention a few [8, 9, 74, 88, 107]. 0D models just have

a time dependence, and do not take into account special dependencies. These mod-

els consist of ordinary differential and algebraic equations, and those equations are

the function of only one variable, time. In contrast, models with one, two, or three

spatial dimensions within the chosen coordinate system, referred to as 1D, 2D, or 3D

models, are challenging to construct and require extensive domain expertise. These

models typically exhibit a direct relationship between computational time and ac-

curacy, making them a crucial factor in model selection. Ideally, for engine fault

diagnosis, a model that can simulate faster than real-time on a regular Windows

machine while providing insights into the behavior of the actual system (such as a

diesel engine, in this scenario) would be desirable. This would require a balance be-

tween simulation speed and accuracy. To achieve a trade-off between accuracy and

computational efficiency, our approach involves utilizing a 0D model while selectively

developing high-fidelity subsystems of interest.

4.1.2.2 Model Details

In this paper, a 0D physics-based diesel engine model is proposed, which is

developed for a 7.6-liter Navistar engine placed at Powertrain Laboratory, Clemson

University. We develop this model for the engine specification mentioned in Table 3.1.

The proposed model is developed using the Mean Value Engine Model (MVEM) tech-

nique, which involves using an effective value from the combustion cycle of the engine

and neglecting its crank angle basis information [106]. There are numerous diesel en-

gine models published in the literature for various applications [27, 28]. Particularly

the model established by Wahlstrom and Eriksson [116] is considered a baseline model

for our work and further improves the fidelity of certain subsystems. Wahlstrom con-

structed the mean value model that primarily describes the gas flow dynamics in a
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Figure 4.4: Structural diagram for the physics-based engine model. The green solid
and red dashed rectangular box denotes output measurements and control input pa-
rameters, respectively.

computationally efficient manner. Figure 5.4 depicts an overview of the model, which

captures temperature, pressure, and mass flow from several subsystems, as well as

the total torque from the cylinder subsystem with fourteen parameters.

The inputs for the physics-based diesel engine model are mentioned below:

1. Injection pressure (MPa) - Pinj

2. Injection duration (ms) - Dinj

3. Start of injection (Crank angle degree - CAD) - SOI

4. Engine speed (rpm) - Ne

The details for individual subsystems are described in the following subheadings.

Fuel injection subsystem

The test cell engine has a high-pressure common-rail fuel injection system, and we
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model this fuel injection system using the principle of conservation of mass. The

equation for calculating the injection flow rate is mentioned below,

Minj = α.sign(Pinj − Pcyl).cd.Aflow

√
2

ρ
|Pinj − Pcyl| (4.1)

We add α in the above equation to take care of the injection duration. Here,

α is a binary value, and it is effectively activating the equation whenever we want

to inject fuel into the cylinder. All the remaining parameters from Equation 4.1 are

mentioned in the appendix.

Cylinder subsystem

The accuracy of the engine model greatly depends on the fidelity of the combustion

model, which is a crucial aspect of any engine. To achieve high fidelity, we employ

a thermodynamic cylinder model that simulates the in-cylinder processes for crank

angle degrees over an entire engine cycle. This thermodynamic model captures various

parameters, including exhaust temperature, in-cylinder pressure, intake and exhaust

mass flows, and torque for a complete cycle. As it is a mean value model, we are

taking the averages for all the parameters in each cycle. The test cell has a six-

cylinder engine, and to mimic the same setup in the model, we use the multi-cylinder

concept. This multi-cylinder model features six distinct cylinders and fuel injectors.

This allows us to incorporate and control the faults in individual cylinders.

Compressor, turbine, and manifolds subsystems

The modeling of the intake and exhaust manifolds involves the intake manifold

pressure and exhaust manifold pressure states. The modeling of manifold pressure

relies on the core concepts of mass conservation and the ideal-gas law. The following

differential equations are employed to compute the pressure within the manifolds.
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d

dt
Pim =

RaTim

Vim

(Mc −Mei), (4.2)

d

dt
Pem =

ReTem

Vem

(Meo −Mt) (4.3)

All the parameters from Equation 5.5, Equation 5.6, and Figure 5.4 are men-

tioned in the appendix. The turbocharger comprises of compressor, turbine, and

turbo inertial model. This turbocharger model is extracted from Wahlstrom and

Eriksson model [116].

We calibrated the physics-based model on the experimental data as described

in Table 3.2. The range that the model is calibrated is between the load and engine

speed of 100-550 Nm and 1000-1800 RPM, respectively. The model is calibrated by

minimizing the error between the experimental data and the physics-based model data

using the least-square optimization method [72]. The validation results are mentioned

in Figure 5.5. These validation plots show the comparison between physics-based

model data and experimental data for the engine speed of 1600 RPM. The physics-

based data is represented by the blue line, while the experimental data is represented

by the red line. The Mean Percent Error (MPE) for each plot is stated in their

title. The physics-based model shows an error of less than 7% with the experimental

data. We use six outputs from the physics-based model for the 1D-CNN, as these six

outputs overlap with the experimental data. Thus, a total of twenty-two outputs are

fed to the 1D-CNN, where sixteen outputs are from the autoencoder model, and six

are from the physics-based model.
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Figure 4.5: Physics-based model validation plots

4.1.3 1D-CNN-based Ensemble Deep Learning Model

The proposed method is a hybrid 1D-CNN-based ensemble deep learning

model incorporating physics and following a stacked generalization technique. The

model employs a weighted model averaging strategy, assigning suitable weights to the

contribution of each sub-model, thereby enhancing the outcome. The proposed hybrid

ensemble model, showcased in Figure 5.6, follows a stacked generalization approach

and consists of the following levels of learning: Level-0 and Level-1 (Meta Level).

The concept of stacked generalization [122] involves identifying and correcting the

biases of generalizers based on a given set of data. This process involves creating a

secondary space (meta level of learning) in which the generalizers’ (level-0 learners)

guesses are fed as inputs based on their training with a portion of the learning set,

and their output is evaluated against the correct answer. By analyzing the discrepan-
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Figure 4.6: One of the Hybrid 1D CNN-based Fault Diagnosis Sub Model in Level-0
of Learning

cies between the two data sets, the original generalizers’ biases (level-0 learners) can

be identified and corrected. Each level of learning consists of neural network-based

submodels, and the details of each level of learners are described as follows:

4.1.3.1 Level-0 Learners:

The various submodels at this level deal directly with the input data and make

predictions. Level 0 of the ensemble architecture consists of five hybrid physics-infused

1D-CNN models. Each of the five models receives the sensor data from the engine

test bed and the corresponding outputs from the multiphysics-engine model. To im-

prove the processing capabilities of the level-0 1D-CNN network models, we utilized

an autoencoder (AE) block as a preprocessing step to decrease the dimensionality of

the test bed data, owing to its high dimensionality and numerous sensor outputs. The

AE model’s latent space outputs and the physics model outputs are used to create a

combined feature vector traversed through the layers of the 1D-CNN-based submodels

of level-0 of the ensemble learning model to generate the desired outcome. By guid-
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ing the construction and parameter tuning of the neural network, the physics-based

model enhances its ability to handle out-of-distribution data samples and makes it

more robust and adaptable. Conversely, the submodel’s data component aims to com-

pensate for any approximations or lumped parameter assumptions made during the

development of the partial physics-based engine model. The interdependent nature

of the physics and data-driven components leads to the best of both worlds and can

outperform conventional data-driven and model-based techniques when diagnosing

diesel engine faults.

The individual hybrid physics-infused sub-models consist of 1D-CNNs, and

the reason behind choosing 1D-CNNs as the data-driven component is as follows.

1D-CNNs have gained enormous popularity recently due to their ability to process

sequential data effectively. This includes time-series data, natural language process-

ing (NLP), and DNA sequences. Besides, the 1D CNNs have several advantages over

other types of neural networks. They are particularly good at capturing local depen-

dencies within the input data. Additionally, they require fewer parameters than other

types of neural networks, which can make them more computationally efficient. As

a component of the hybrid model, it helps extract essential features from the data,

such as peaks, oscillations, or other patterns that may indicate physical phenomena.

These features of the 1D-CNNs make it possible to create more accurate and physi-

cally meaningful hybrid physics-infused machine learning models, even with limited

data. We utilize a consolidated feature vector of size twenty-two to detect and iso-

late faults, including sixteen outputs from the auto-encoder model and six from the

physics-based engine model. This feature vector is fed into our proposed 1D-CNN

module, which is comprised of multiple convolutional blocks. Each block is made up

of 1D-convolutional and 1D max-pooling layers in various combinations. To optimize

the performance of the 1D-CNN layer, numerous attributes are taken into account,
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such as the number of filters, feature map, length of strides, and kernel size. These

attributes have a significant impact on the efficiency of the layer. After the convolu-

tional layer generates an output, it undergoes further processing through a Rectified

Linear Unit (ReLU) activation function. This function is utilized to construe the

non-linear relationship that exists between the input values and their corresponding

outputs. The ReLU activation function can be expressed as follows:

ReLU(x) = max(x, 0) (4.4)

Following the convolutional layer, the down-sampling layer, also known as the

max-pooling layer, plays a crucial role in the rapid convergence of the entire 1D-CNN

model while improving its generalization capability. By processing the vector output

of the convolutional layer, the 1D max-pooling layer helps identify the most significant

feature. The filter size and strides influence the effectiveness of the pooling layers. In

the proposed 1D-CNN model, some convolutional blocks comprise both convolutional

and max-pooling layers, whereas others contain only the convolutional layer as per

the data requirements, which are determined by the hyperparameter tuning process.

Once the convolutional blocks have been processed, the flatten layer converts the

tensor into a vector containing the same number of elements as the output tensor

obtained from the convolutional block. The output of the flatten layer is then fed

through a sequence of dense layers that ultimately help diagnose the fault and identify

the appropriate fault category. The 1D-CNN sub-models are designed to address the

fault diagnostics problem by framing it as a four-class classification task. The four

classes are as follows: Nominal (which represents the absence of any fault), Inj Prs

(which indicates a fault caused by injection pressure), Inj Dur (which represents a

fault resulting from a delay in injection duration), and SOI (which denotes a fault
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caused by a change in the start of injection). To aid in understanding the architecture

of the 1D-CNN model for fault diagnostics, Figure 5.6 is presented below, which

shows the architecture of one of the five submodels at level-0 of learning. The figure

illustrates the various components of the model and their interconnections. The

network details of the five different physics-infused 1D-CNN models, in the level-0

of learning, are enumerated in Figure 4.7. The entire dataset is divided into three

parts: part A, which is used to train the five different physics-infused 1D-CNN-based

models, part B, which is used to train the meta or level-1 learner; and part C, which

also serves as the test set to evaluate the performance of the hybrid physics-infused

1D-CNN-based ensemble learning model. The various physics-infused sub models in

level-0 are trained using the part A data via a five-fold cross validation strategy.

4.1.3.2 Level-1 (Meta) Learner:

In our proposed ensemble architecture, the meta learner is a deep neural net-

work (DNN), which is trained on the predictions made by the submodels (five differ-

ent variations of the physics-infused 1D-CNN-based model). The trained submodels

from level-0 of the ensemble architecture are used to make predictions on the part

B dataset, which is separate from the ones these models were trained on. These

predictions are stacked as a vector fed to the DNN model (meta learner). The meta

learner is trained on this data against the corresponding labels. The trained ensemble

model (level-0 and level-1 learners combined) is then used to make predictions on the

test set (part C data). The output of the ensemble model is the four fault classes,

including the Nominal (no-fault), Inj Prs (fault associated with injection pressure),

Inj Dur (fault associated with injection duration), and SOI (fault associated with the

start-of-injection). The unique training process of the meta learner helps prevent

overfitting issues in the overall ensemble architecture. As a result, the proposed hy-
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Figure 4.7: Network Structure of the Ensemble Model (including the level-0 submod-
els and the level-1 meta learner)

brid ensemble model can achieve better performance efficiency than the conventional

data-driven and model-based approaches, especially when handling noisy sensor data

and large unstructured state space. The dual level of feature learning and error miti-

gation aids the hybrid physics-infused 1D-CNN-based ensemble model helps to detect

(the presence of fault) and isolate (classify the type of fault) the engine faults in an

efficient manner. The network details of the meta learner are also outlined in Figure

4.7.

4.1.4 Computational Resources

The model for fault diagnostics has been trained on a Lenovo ThinkPad X1

with an Intel(R) Core(TM) i7-10750H CPU @ 2.60GHz, equipped with six cores and

12 logical processors, coupled with 16 GB of RAM and a NVIDIA GeForce GTX

1650Ti GPU featuring Max-Q Design, utilizing Tensorflow-Keras (Tensorflow GPU
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2.9.1).

4.2 Evaluation Metrics

This research tackled the fault diagnosis issue by dividing it into four distinct

working conditions. These conditions are Nominal (no-fault), Injection Pressure fault

(Inj Prs), Injection Duration fault (Inj Dur), and the fault resulting from a modifica-

tion in the initiation of injection (SOI). In multiclass classification problems, the goal

is to predict the class of a given input from a set of multiple possible classes. The

evaluation metrics for multiclass classification problems are used to assess the accu-

racy and performance of the classification model. To classify the four fault conditions

mentioned above, we utilized categorical cross-entropy as our loss function. Equation

4.5 depicts the expression for this loss function. By using this method, we were able

to effectively categorize the different working conditions and identify any faults that

may be present.

−
C∑
i=1

yo,i log(po,i) (4.5)

Where ’C’ is our classification model’s total number of classes. To calculate

the loss function, we use the natural logarithm (log) function in conjunction with

the ground truth label ’y’ and the predicted label ’p’ for a particular observation ’o’.

Specifically, ’y’ will be either 0 or 1 depending on whether the predicted class ’i’ is

correct for the observation ’o’. There are several evaluation metrics that can be used

for multiclass classification problems, including confusion matrix, accuracy, precision,

recall, and F1 score.
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4.2.1 Noisy Data Generation

The onboard engine sensors can be exposed to varying forms and noise lev-

els during diesel engine operations. This noise infiltrates the sensor measurements

through electronic components or data acquisition systems, emerging as the pri-

mary source of inaccuracies. To replicate the operational environment of a typi-

cal production-grade diesel engine, diverse noise levels were introduced to the data

obtained from different test-bed engine sensors. Specifically, the data samples were in-

fused with varying degrees of Additive White Gaussian Noise (AWGN). Subsequently,

the resultant noisy synthetic data samples were channeled through a pre-trained hy-

brid physics-infused 1D-CNN-based ensemble learning model. The injected noise

samples ranged from five percent of the corresponding signal’s standard deviation to

three times that standard deviation. Five distinct noise levels were employed: five

percent of the signal’s standard deviation, fifty percent of the standard deviation, the

standard deviation itself, twice the standard deviation, and thrice the standard devi-

ation. This endeavor evaluated the model’s resilience when exposed to noisy data, a

common scenario in actual operational conditions.

4.3 Hyperparameter Tuning

Hyperparameter tuning [53, 112, 121] is handpicking the optimal hyperpa-

rameters of a machine learning model to achieve the best performance on a given

task. Hyperparameters are parameters set before the model training and influence

the model’s behavior, such as learning rate, regularization strength, number of layers,

and number of hidden units. Hyperparameter tuning is vital in developing vigor-

ous and precise machine learning models. The process typically involves selecting a

range of values for each hyperparameter and then testing the model with different
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combinations of hyperparameters.

In our study, we employed the grid-search hyperparameter optimization method

to enhance the performance of the fault diagnostics model. The model under con-

sideration is a hybrid physics-infused 1D-CNN-based stacked generalization ensemble

learning framework. The ensemble model comprises two levels of learners: level-0 and

level-1 or meta learner. Level-0 learner consists of different variations of the physics-

infused 1D-CNN model. Level-1, or the meta learner, is a dense neural network model

which learns to combine the predictions of the level-0 learners in the best possible

manner. As there is no set rule for deciding the number and variations of submodels

in the level-0 of the ensemble model, we tried four configurations for the level-0 learner

with different numbers, ranging from three to six, of hybrid physics-infused 1D-CNN

submodels. For each of the level-0 configurations, we explored different variations of

the dense neural networks (DNNs) as the level-1 learners using hyperparameter tun-

ing and a five-fold cross-validation technique. The optimal ensemble model came out

to be the one with five different variations of the physics-infused 1D-CNN model in

the level-0 and a dual-layer DNN in the level-1 or meta learner. The optimal hybrid

physics-infused 1D-CNN-based ensemble model registered an accuracy of 99 percent

on the test set when detecting and isolating the faults.

We thoroughly investigated 216 distinct hyperparameter combinations, for

each of the four variations of the level-0 learner (with different numbers of 1D-CNN

submodels), during our experimentation by employing a five-fold cross-validation

method, resulting in 1080 fits on the training dataset. The hyperparameters con-

sidered are the number of epochs, batch size, learning rate, number of dense layers in

the level-1 learner, and the type of optimizer. Figure 5.7 presents the accuracy values

for various sample hyperparameter configurations from the tuning process of the op-

timal ensemble model with five 1D-CNN models in level-0 and a dual-layer DNN in
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level-1 over the validation set. We saved the hybrid physics-infused 1D-CNN-based

ensemble model corresponding to the optimal hyperparameter combination for further

analysis. We then evaluated its performance on noisy datasets to gauge its robustness.

The DNN model of the meta-learner was trained using the Adam optimizer, utilizing

a learning rate of 0.001. For the 1D-convolutional and dense layers, we opted for

the ReLU activation function, while the outermost dense layers of the level-0 and the

level-1 (meta-learners) employed the Softmax activation. The detailed network topol-

ogy, along with the activations of each layer, of the optimal configuration ensemble

model, including the level-0 and level-1 learners, is illustrated in Figure 4.7.

Figure 4.8: Hyperparameter tuning results for the hybrid ensemble model
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Figure 4.9: Confusion Matrix: Hybrid ensemble diagnostics model

Table 4.2: Comprehensive Diagnosis Report: Hybrid Ensemble model

Precision Recall F1-Score Number of Samples
Nominal 0.98 0.99 0.98 5193

Injection Pressure 1.00 1.00 1.00 6312
Injection Duration 0.98 0.99 0.98 6192

SOI 1.00 1.00 1.00 6303

Accuracy 0.99 24000
Macro Average 0.99 0.99 0.99 24000

Weighted Average 0.99 0.99 0.99 24000
Accuracy: 0.99
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Figure 4.10: Confusion Matrix: Noise level equal to 50 percent of standard deviation

Table 4.3: Comprehensive Diagnosis Report for hybrid ensemble model: Noise level
equal to 50 percent of standard deviation

Precision Recall F1-Score Number of Samples
Nominal 0.91 0.80 0.85 5279

Injection Pressure 1.00 1.00 1.00 6361
Injection Duration 0.85 0.94 0.89 6290

SOI 1.00 1.00 1.00 6349

Accuracy 0.94 24279
Macro Average 0.94 0.93 0.93 24279

Weighted Average 0.94 0.94 0.94 24279
Accuracy: 0.94
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Figure 4.11: Confusion Matrix: Noise level equal to 100 percent of standard deviation

Table 4.4: Comprehensive Diagnosis Report for hybrid ensemble model: Noise level
equal to 100 percent of standard deviation

Precision Recall F1-Score Number of Samples
Nominal 0.77 0.99 0.87 5279

Injection Pressure 1.00 0.98 0.99 6361
Injection Duration 0.97 0.76 0.85 6290

SOI 1.00 1.00 1.00 6349

Accuracy 0.93 24279
Macro Average 0.94 0.93 0.93 24279

Weighted Average 0.94 0.93 0.93 24279
Accuracy: 0.93
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Figure 4.12: Confusion Matrix: Noise level equal to 200 percent of standard deviation

Table 4.5: Comprehensive Diagnosis Report for hybrid ensemble model: Noise level
equal to 200 percent of standard deviation

Precision Recall F1-Score Number of Samples
Nominal 0.98 0.41 0.58 5250

Injection Pressure 1.00 1.00 1.00 6361
Injection Duration 0.67 1.0 0.80 6297

SOI 1.00 1.00 1.00 6416

Accuracy 0.87 24279
Macro Average 0.91 0.85 0.85 24279

Weighted Average 0.91 0.87 0.86 24279
Accuracy: 0.87
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Figure 4.13: Confusion Matrix: Noise level equal to 300 percent of standard deviation

Table 4.6: Comprehensive Diagnosis Report for hybrid ensemble model: Noise level
equal to 300 percent of standard deviation

Precision Recall F1-Score Number of Samples
Nominal 0.90 0.41 0.56 5319

Injection Pressure 1.00 0.99 0.99 6281
Injection Duration 0.66 0.98 0.79 6350

SOI 1.00 0.99 1.00 6329

Accuracy 0.86 24279
Macro Average 0.89 0.84 0.84 24279

Weighted Average 0.89 0.86 0.85 24279
Accuracy: 0.86
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Figure 4.14: Comparative performance over different noise levels: Hybrid ensemble
model
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4.4 Results and Discussions

4.4.1 Fault Detection and Isolation

The physics-infused 1D-CNN-based ensemble learning model registers an ac-

curacy of 99 percent on fault detection and isolation tasks. Table 4.2 provides a

comprehensive diagnosis report of the hybrid ensemble model’s performance for the

engine data. From the table, it’s pretty apparent that not just the accuracy but

for the other metrics, such as precision, recall, and F1-Score, and their corresponding

variations, namely micro, macro, and weighted, the hybrid ensemble model showcases

promising performance.

In addition, the confusion plot, as described in Figure 4.9, provides a detailed

understanding of the fault detection and isolation capabilities of the hybrid physics-

infused 1D-CNN-based ensemble learning model. Analyzing the confusion plot as

mentioned above, it becomes evident that the hybrid ensemble model can accurately

classify the four fault classes, namely nominal (no fault) condition, fault due to change

in injection pressure (Inj Prs), fault due to shift in injection duration (Inj Dur), and

the fault due to the delay in the start of injection (SOI). Compared to the off-diagonal

elements in the confusion matrix, the larger number of diagonal elements bear witness

to efficient fault detection (distinguishing faulty samples from non-faulty ones) and

isolation (determining the fault’s location or cause). Besides, as visible from Figure

4.9, the number of false positives, i.e., predicting either of the three fault classes

(fault due to Inj Dur, fault due to Inj Prs, fault due to SOI shift) when the actual

sample is non-faulty (nominal), is significantly lower as compared to the number of

accurately classified correct fault classes. The ability of the physics-infused 1D-CNN-

based ensemble model to achieve significant levels of accuracy without compromising

on the false positive rates can be credited to the physics-based engine model, which
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makes the overall hybrid diagnostic ensemble framework more sentient by getting

involved in the process of parameter construction and tuning of the level-0 and level-

1 learners of the ensemble model.

4.4.2 Robustness to noisy data

Figures 4.10, 4.11, 4.12, and 4.13 present the confusion matrices demonstrating

the performance of the physics-infused 1D-CNN-based ensemble model over noisy

datasets. These evaluations were conducted over datasets comprising varying noise

levels, ranging from point five times the standard deviation (or fifty percent of the

standard deviation) to three times the original signal’s standard deviation (or three

hundred percent of the standard deviation). The above-mentioned confusion matrices

clearly articulate the high robustness of the hybrid ensemble model when prone to

noisy signals. The model’s high robustness implies its capacity to perform effectively,

even under challenging conditions with imprecise measurements from the onboard

vehicle sensors, resulting in deviations from the expected values.

In Figure 4.10, we present the confusion plot depicting the performance of

our pre-trained hybrid model under a noise level equivalent to fifty percent of the

standard deviation of the original signal. The confusion plot reveals a relatively low

number of misclassifications, with the hybrid ensemble model achieving an accuracy

of 94 percent. In addition, the hybrid ensemble model demonstrated acceptable per-

formance levels regarding recall, precision, and F1-scores, as evident from Table 4.3

showcasing the comprehensive diagnosis report for the performance of the hybrid en-

semble model over a dataset with noise levels equal to fifty percent of the standard

deviation of the original signals. The accuracy of the hybrid ensemble model degrades

with the increase in the noise levels. The worst accuracy equal to 86 percent was ob-
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served for the scenario where the noise level was equal to three hundred percent of the

standard deviation of the original signal. However, the decline in accuracy levels was

still within acceptable limits. Besides, from the Tables 4.3, 4.4, 4.5, and 4.6, we can

discern that the hybrid model, even under the influence of noisy signals, demonstrates

decent performance across various metrics such as recall, precision, and F1-scores and

their variations such as the micro, macro, and the weighted scores.

The heightened robustness of the hybrid ensemble model can be credited to

its superior feature-capturing capabilities facilitated by the incorporation of physics-

based information. The inclusion of a physics-based engine model endows the hybrid

ensemble learning diagnostics framework with a level of understanding, enabling it to

handle noisy data effectively. Moreover, integrating domain knowledge enhances the

model’s generalizability, allowing it to perform well even on out-of-distribution noisy

data samples. Furthermore, the utilization of physics aids in uncovering underlying

dependencies within the data, granting the hybrid physics-infused ensemble model

an advantage in accurately classifying fault classes, even in the presence of noise.

This insightful combination of data-driven and physics-based approaches elevates the

hybrid ensemble model’s performance and adaptability to diverse practical scenarios.
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Chapter 5

Hybrid Physics-Informed 1D

CNN-based Prognostics

Framework for Remaining Useful

Life (RUL) Estimation in Diesel

Engines

In this chapter, we aim to address the limitations of existing approaches. Our

approach leverages a hybrid deep learning framework infused with physics principles.

More specifically, we introduce a comprehensive prognostics model incorporating a

physics-based engine model and deep learning components, notably a 1-dimensional

Convolutional Neural Network (1D-CNN). This integrated system is designed to iden-

tify the pattern of increase in the injection duration (Inj dur) of an automotive diesel

engine. A faulty rise in the duration a fuel injector injects fuel in a diesel engine can

lead to various performance issues and potentially damage the engine. This abnor-
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mal behavior can be because of several factors, such as the wear-tear of the injectors,

faulty or malfunctioning solenoid controlling the injector’s opening and closing, and

faulty injection timing. Increasing the time the fuel is injected into the combustion

cylinder can increase the torque. If this rising fuel injection duration is unchecked

and allowed to grow beyond a specific limit, it can lead to engine knocking or deto-

nation, damaging internal engine components and reducing overall engine longevity.

Besides, over time, prolonged fuel injection can lead to increased wear and tear of

components like pistons, cylinder walls, and fuel injectors, resulting in higher repair

and maintenance costs. Also, diesel engines rely on precise fuel injection timing to

ensure that the fuel-air mixture is atomized correctly and ignited. If the injection

duration is too long, enough air may not be available for complete combustion, lead-

ing to partially burned fuel, increased emissions, and reduced engine efficiency. Our

physics-informed 1D CNN prognosis model tries to estimate the time remaining to

reach the predetermined threshold limit of the injection duration. The time to get the

threshold limit is termed the Remaining Useful Life (RUL) of the injection system in

the context of this dissertation research work. The devised hybrid prognosis model’s

input is the combined feature vector, the sensor data coming out of the engine test

bed, and the corresponding output of the physics-based engine model. The output

of the physics-informed 1D CNN model, at any point in time, is the remaining useful

life of the fuel injector from that point in time. The key contributions of the outlined

chapter are as follows:

1. We propose an end-to-end hybrid physics-informed 1D CNN-based prognostics

framework underpinned by physics principles and leveraging a one-dimensional

Convolutional Neural Network (1D CNN) to estimate the remaining useful life

of the fuel injector in the context of the increase in the amount of fuel injected
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by it. The delineated hybrid physics-informed 1D CNN-based model operates

autonomously, is computationally efficient, and can preprocess unprocessed test

bed data and accurately perform fuel injector fault prognostics.

2. To assess and validate the practicality of the proposed hybrid prognosis model,

we curated an extensive dataset [2] focusing on the pattern of fault increase

over time, defined as the increase in the quantity of fuel injected in diesel en-

gines over time, denominated as the ”ProgEngine” repository, and is located at

(ProgEngine). Fellow researchers working in fault prognosis can benefit from

the curated data repository.

3. We undertook various tests to assess the hybrid prognostics model’s efficacy

across different operational scenarios. Furthermore, model showcased resilience

and stability when subjected to noisy data samples.

In summary, the merger of physics-based models with the 1D CNN module

for diesel engine prognostics helps ensure that predictions are not solely based on

historical data, making the model robust to extrapolated and limited data and sensor-

induced noises.

Chapter Organization: We start with a background overview of the damage

propagation equation, followed by details of the prognostics dataset collection frame-

work, encompassing the setup particulars. An account of the physics-based engine

model follows this. Next, we delve into the details of the hybrid fault prognosis

architecture proposed in this study. We then assess the effectiveness of the physics-

informed 1D CNN model across various evaluation metrics, including the robustness

against noisy data. In conclusion, we discuss the acquired empirical findings and

explore prospective research directions.
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5.1 Experimental Data Collection

5.1.1 Background Overview

One of the significant challenges ahead of us was to settle on the equation for

damage propagation (increase in the injection duration) over time. Typical models

employed in various application domains to model damage propagation encompass

the Eyring model, the Coffin-Manson mechanical crack propagation model, and the

Arrhenius model. The following lines of text will elaborate on a few.

Eyring Model:

The foundation of the Eyring Model lies within the realm of chemical reac-

tion rate theory and is firmly grounded in the principles of chemistry and quantum

mechanics [95]. It elucidates the relationship between the time to failure and the

applied stress. Initially, the core model considers temperature, but its scope can be

broadened to encompass other pertinent stress factors. The generalized equation of

the Eyring model for stress and temperature can be expressed as follows:

tf = ATαe(
∆H
kT

+(B+C
T
)S1+(D+E

T
)S2) (5.1)

where,

tf , refers to the time taken to reach the failure limit

α, A, B, C, D, E, and ∆H are the constants

T, refers to the temperature in Kelvin

S1 and S2 are the relevant stress values (e.g., some function of voltage

k, refers to Boltzmann’s constant

Arrhenius Model:
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The Arrhenius model finds extensive utility across diverse failure mechanisms.

Historically, its application has been predominantly directed towards phenomena con-

tingent upon diffusion mechanisms, chemical reactions, or migration processes [95].

This ambit effectively addresses a substantial portion of non-mechanical (or non-

material fatigue) failure modes accountable for electronic equipment malfunctions.

However, modified iterations of the Arrhenius equation have recently been increas-

ingly harnessed for unconventional applications, including mechanical contexts and

other atypical scenarios. The governing equation stands as follows:

tf = Ae
∆H
kT (5.2)

where,

tf , refers to the time taken to reach the failure limit

T, refers to the temperature at the

∆H, denotes the activation energy

A, refers to the scaling factor

k, refers to Boltzmann’s constant

Proposed Fuel Injector Fault Propagation Model:

From the abovementioned text, we can observe that most fault propagation

models have one thing in common, i.e., some exponential behavior in their growth

trajectory. Apart from the above-described models, in-depth observation of similar

models [34] laid the foundation on which we start by assuming a generalized degra-

dation model for our fuel injector. The degradation model can be characterized by

Equation 5.3.

d = aebt (5.3)
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Where, ’d’, refers to the degradation as a function of time. ’a’ and ’b’ are

the constants of the wear propagation model and can be determined by using the

boundary conditions and are listed in Figure 5.2. We denote the initial injection

duration value as Inj duro. Therefore, the injection duration (Inj dur) as a function

of time ’t’ can be expressed by Equation 5.4. The injection duration with time follows

an exponential trend.

Inj dur(t) = aebt + Inj duro (5.4)

5.1.2 Experimental Setup

A comprehensive series of experiments was conducted on a Navistar produc-

tion DT diesel engine (Figure 5.1(a)), distinguished by its 4-stroke 7.6 L inline 6-

cylinder configuration. This engine was provided to Clemson University for testing

by Pure Power Technologies, Inc. This standard production design engine incorpo-

rates electro-hydraulic fuel injectors and a dual-staged turbocharger, with exhaustive

specifications outlined in Table 5.1. Multiple sensors were integrated into the engine

setup to acquire data measurements such as air flow rate, fuel flow rate, fuel injection

pressure, intake and exhaust pressure, and diverse temperature readings. Individual

exhaust temperature measurements were diligently recorded at discrete exhaust ports.

These temperature measurements are pivotal in identifying latent faults or irregulari-

ties in cylinder performance, especially when harmoniously integrated with data from

other sensors. The overarching objective of these experiments encompassed a dual

mission: first, to scrutinize and evaluate the overall engine performance, and second,

to meticulously prognose potential issues, with a particular emphasis on injection

duration monitoring as a precise means to pinpoint cylinder-specific problems.

The engine’s speed was dynamically regulated via a dynamometer using the
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Table 5.1: Engine geometry and specifications

Displacement [L] 7.6
Bore [mm] 116.6
Stroke [mm] 118.9
Compression Ratio [-] 16.9

Figure 5.1: (a) Experimental Setup: Navistar engine (b) INCA-PUMA Indicom setup

test bed automation system by AVL called PUMA. To facilitate seamless communi-

cation between the Engine Control Unit (ECU) and the data acquisition and control

systems within the test facility, the CAN Calibration Protocol (CCP) was deployed

with the aid of ETAS INCA (Figure 5.1(b)). The parameters governing the injec-

tion process were meticulously managed by establishing an interface with an open

ECU facilitated by the INCA software and CCP. This experimental setup provided

an exceptionally granular command level and scrutiny of the engine’s operational

characteristics throughout the testing procedures.

The prognosis of any failure primarily involves the gradual degradation of

components. Because of the gradual degradation, manually simulating the faults

in the real test setup becomes difficult. Therefore, to collect data on the subtle

deterioration of a fuel injector nozzle, we developed an automated framework based on

the Python programming environment. The automated framework mainly consists of
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Figure 5.2: Data collection framework

taking the data from both of the data acquisition systems, that is, INCA and PUMA,

generating appropriate inputs and fault severity, and finally sending the control inputs

to the INCA. The schematic of the data collection framework is shown in Figure 5.2.

To establish the communication from the Python environment to both the

data acquisition systems, appropriate Python libraries, drivers, and hardware were

installed. We used the INCA-Python Application Programming Interface (API) and

ES581.3 INCA adapter to interact with INCA. The INCA-Python API includes

embedded Python dynamic libraries with the capability to load and display the

workspace environment from the INCA GUI, modify boolean settings for control

inputs, and update calibration values for actuators in real-time. On the other hand,

CANlib and cantools API, and Kvaser leaf light V2 adapter were utilized to connect

with PUMA. CAN frames from PUMA are periodically sent to the Python environ-

ment, with the timing of data transmission determined by the bus’s transmission rate.

To prevent data loss or congestion within the CAN bus, the run-time of the Python

loop, which includes read/write commands, was adjusted and synchronized with the

CAN bus transmission rate.
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The Python-based data collection Application Programming Interface (API)

primarily consists of four different components. First, the faulty injection duration

input is calculated using the fuel injector fault propagation model as described in

Equation 5.4. Second, the input parameters, such as start of injection (SOI) timing,

injection pressure, and modified injection duration values, are added to the ECU.

The booleans for those values are turned on to activate it. We utilize INCA-python

API to deal with input parameters. The third component involves data recording and

preprocessing. Here, the data for each time sample/instance is imported from INCA

and PUMA. There is no need for data resampling because of importing data at the

same time instance from two different data acquisition systems. The preprocessing

of data majorly involves the selection of required variables and data verification.

• Variable selection: We thoroughly examined variables derived from the data

acquisition setups of INCA and PUMA, systematically eliminating extraneous

sensor data. Through a meticulous process involving the application of domain

expertise and correlation analysis of features, we judiciously selected nine vari-

ables from a pool of twenty encompassed by INCA and PUMA. These chosen

PUMA variables encapsulate critical information about the pressure, tempera-

ture, and volume flow rates of coolant, engine oil, fuel, intake air, and exhaust

gases. Conversely, the INCA variables incorporate override values transmitted

as directives to actuators, feedback signals received from actuators, and mea-

surement values obtained post-adjustments. These variables directly quantify

the intensity of the fault that is introduced, considering its respective physical

measurement units.

• Data verification: Any missing or erroneous values from the readings are cor-

rected using a neural network-based interpolation scheme that utilizes previous
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time data to compute the current incorrect values.

The last portion of data collection API involves sending the combined INCA

PUMA data to a hybrid 1D CNN-based prognosis model.

5.1.3 Design of Experiment

After establishing a secured data collection framework and a fuel injector fault

propagation model, the next steps involved determining the specific speed and load

points on an engine map that corresponded to real-world driving scenarios. The

objective was to encompass the engine’s A and B speeds (1400 rpm and 1600 rpm)

while targeting up to 50% of the maximum brake torque the engine could generate

at these speeds. This approach aimed to ensure a significant overlap of the engine

operating points with the heavy-duty Supplemental Emission Test cycle (SET) and

the heavy-duty FTP transient cycle, making the results more applicable to real-world

driving conditions. These test cycles are part of the 1998 consent decrees between the

United States Environmental Protection Agency (US EPA) and the US heavy-duty

engine manufacturers and included as emission standards for heavy-duty engines.

To ensure the reliability of the test runs, certain boundaries were set for in-

jection parameters, such as injection duration and the start of injection, in order to

prevent potential misfires or damage to the engine or dynamometer. Additionally,

as the fuel injection system utilized an electro-hydraulic unit injector (HEUI) rather

than a high-pressure common rail system, injection pressure was constrained by the

engine’s speed. To prevent the commanded injection pressure from exceeding the

capacity of the unit injectors the fault was introduced at a controlled rate at different

engine speeds (1000, 1200, 1400, and 1600 rpm). At every engine speed two cases

were recorded with different values for the a and b coefficients used in the degradation
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Table 5.2: Design of experiment

model. The injection duration in every case was incremented exponentially, starting

from the values mentioned under the ′Inj dur start′ column in Table 2. These values

were relative to the base calibration in ms. The SOI timing and the injection pres-

sures were maintained at their nominal values and held constant during the entire

run for every case. This approach was intended to simulate a failure with the injector

including injector deposits that reduce the fuel flow or erosion of the injector nozzle

holes that increase the amount of fuel flow. This failure could also be associated with

a particular injector’s solenoid coil or command signal which may cause the injector

to open for more or less time than commanded by the ECU.

5.2 Hybrid Fault Prognostics Framework

The devised fault prognostics framework integrates a comprehensive Simulink/MATLAB-

based zero-dimensional multi-physics model of the engine with a fault prognosis

module that combines 1D-convolutional, max-pooling, and dense layer architectures.

Datasets from onboard sensors are collected from the engine testbed. Subsequently,
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Figure 5.3: Hybrid Physics-Informed 1D CNN-based Fault Prognosis Pipeline

sensor data and the physics-based engine models’ outputs are synthesized into a com-

bined feature vector. This vector is processed through a sequence of 1D-Convolutional,

max-pooling, and flattening layers within the fault prognosis framework. Figure 5.3

depicts the overall hybrid physics-informed fault prognostics computational pipeline.

The various sub-components of the hybrid physics-informed computational prognos-

tics framework are described in the subsequent subsections.

5.2.1 Multi-physics Model

The efficacy of an entirely data-driven model for engine fault prognosis relies

predominantly on the dataset’s size, specifically the data gathered under various oper-

ating conditions and fault severities. The acquisition of experimental data illustrating

faulty behavior poses challenges due to potential permanent damage to engine com-

ponents if faults are induced across all conceivable scenarios during engine operation.

The data collected for this study was conducted in a controlled environment, metic-
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ulously monitoring every engine output to ensure induced faults did not harm any

engine component. This cautious approach, while safeguarding against damage, lim-

ited the dataset to lower fault severity levels. In real-life scenarios, faults rarely occur

in a confined manner; they often exert significant impacts on the system, making it

impractical to simulate in a controlled environment for data collection. Consequently,

the role of a physics-based model becomes crucial, as it can function under desired

conditions, unlike a test cell engine.

To address the challenges of generalizability and sparse datasets, the integra-

tion of a well-established physics-based model, bolstered by domain expertise, with

a data-driven model is proposed. This combination can provide a comprehensive so-

lution, overcoming limitations posed by the controlled environment and ensuring a

more realistic representation of engine fault scenarios.

Numerous physics-based models for diesel engines exist in the literature, en-

compassing 0D, 1D, 2D, and 3D Computational Fluid Dynamics (CFD), among others

[8, 74, 116]. 0D models, devoid of spatial dependency, solely rely on time. Compris-

ing algebraic and ordinary differential equations, these models are exclusively time-

dependent, revolving around a singular variable. In contrast, models with 1D, 2D,

or 3D configurations introduce either one, two, or three spatial dimensions into the

selected coordinate system. Constructing and fine-tuning such models demands con-

siderable domain expertise. The computational time and accuracy of these models

are typically directly proportional, presenting a pivotal factor in model selection. For

the engine fault prognosis, we require a model that simulates faster on a standard

Windows machine while providing an intuitive understanding of the diesel engine’s

actual behavior. Striking a balance between computational efficiency and accuracy

led us to opt for the 0D model.

This paper introduces a high-fidelity, 0D physics-based engine model designed
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Figure 5.4: Overview of physics-based engine model. The connection and flow di-
rection between inputs and outputs of all subsystems are mentioned. The output
measurements and input parameters of the engine model are represented in blue line
and red dashed line rectangular box, respectively.

for a 7.6-liter Navistar engine located at Clemson University’s Advanced Combustion

and Renewable Fuels Lab. The model is created using the Mean Value Engine Model

(MVEM) technique, which simplifies the engine cycle by utilizing an effective value

from the combustion cycle [106]. Implementation of this model takes place in the

MATLAB and Simulink environments. Figure 5.4 presents the outline of the engine

model, encompassing pressure, mass flow, temperature, and total torque across vari-

ous engine subsystems. Fourteen state variables (illustrated in Figure 5.4) are utilized

to capture these parameters.

The input/control parameters of the physics-based diesel engine model are

mentioned below:

1. Engine speed (rpm) - Ne

2. Start of injection (Crank angle degree - CAD) - SOI
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3. Injection duration (ms) - Injd

4. Injection pressure (MPa) - Injp

The modeling details are elaborated in the following subsections.

5.2.1.1 Injection duration fault propagation modeling

The injection duration fault propagation model is constructed based on Equa-

tion 5.4. This model utilizes the nominal input/control parameter injection duration

(Inj duro) and a degradation function to calculate faulty injection duration values.

In the Simulink, we modeled the degradation function using the clock block to pro-

vide the current time value, along with the ’a’ and ’b’ constants from Table 5.2. The

injection duration plot in Figure 5.4 illustrates sample fault propagation values. This

plot is generated over a period of nearly 600 minutes at an engine speed of 1400 RPM,

providing better clarity regarding the functionality of the fault propagation model.

The computed faulty Injd is then inputted into the fuel injector model along with

nominal Injp, SOI, and Ne.

5.2.1.2 Cylinder and fuel injector subsystems

The cylinder subsystem consists of the multi-cylinder model. The multi-

cylinder model involves six separate cylinders and fuel injectors. This allows us to

simulate and study the effect of a single faulty injector/cylinder behavior on the entire

system. As the combustion process is an essential characteristic of engine operation,

the correctness of the physics-based engine model strongly depends on the combus-

tion model. In our multi-cylinder model, each cylinder model is a high-fidelity 0D

thermodynamic model, described in [31]. This thermodynamic cylinder model was

used to determine the mass flow rate, exhaust pressure, exhaust temperature, and
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composition based on intake and fueling conditions. The fuel injector model emulates

the behavior of a high pressure common rail fuel injector system from the experimen-

tal setup. We primarily utilize a principle of conservation of mass for the modeling

of fuel injectors. This injector model outputs the injector fuel flow rate and needs

inputs of Injd, Injp, SOI, and Ne.

5.2.1.3 Turbocharger and manifolds subsystems

The turbocharger consists of subsystems, including a turbine, compressor, and

turbo inertial model. We derive the turbocharger model from the work of Wahlstrom

and Eriksson [116]. Two states, namely intake and exhaust manifold pressure, are

employed in modeling the intake and exhaust manifolds. The modeling of the pressure

of manifolds relies on the fundamental principles of mass conservation and the ideal

gas law. The differential equation for calculating manifold pressure is detailed below,

d

dt
IMp =

RaIMt

IMv

(Cm − CIm), (5.5)

d

dt
EMp =

ReEMt

EMv

(COm − Tm) (5.6)

We mention all the parameters from Equation 5.5 and Equation 5.6 in the

appendix.

5.2.1.4 Model tuning and validation

We collected a separate dataset for tuning and validation of the model. This

dataset comprises steady-state data covering various operating conditions, ranging

from an engine speed of 1000 to 1800 RPM and a torque of 100 to 600 Nm. The

steady-state data were generated by varying inputs/control parameters for five dif-
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ferent engine speeds. The physics-based model was tuned using data from engine

speeds of 1000, 1200, 1600, and 1800 RPM and validated using data from 1400 RPM.

We employed the least square optimization technique for model tuning [36]. This

technique minimizes the error between modeled and experimental values, identifying

the optimum value for the tuning parameters.

As a validation result, the model exhibited a Mean Percent Error (MPE)

ranging from 4-7% over the 1400 RPM data, which is the unseen dataset for the model.

We selected the output variables from the physics-based model for the fault prognosis

module based on two factors. First, the chosen outputs should be correlated with the

induced faults, and second, they should align with the outputs from the experimental

data. The selected output variables are highlighted with a blue rectangular box in

Figure 5.5. In total, five outputs from the physics-based model and nine from the

engine testbed are sent to the fault prognosis module.

5.2.2 1 Dimensional Convolutional Neural Network (1D CNN)

Convolutional Neural Networks (CNNs) are a class of deep neural networks

(DNNs) primarily designed for tasks involving images, leveraging their ability to learn

and extract features automatically from spatial data. Convolutional Neural Networks

are efficient in identifying the underlying patterns in the data owing to their stratified

architectural design, comprising convolutional, pooling, and fully connected layers.

1D CNNs are a variant of the broader Convolutional Neural Networks (CNNs) class

designed to process one-dimensional sequential data. They have found immense use

in time-series analysis, signal processing, fault detection, and identifying patterns

in sequences such as DNA and RNA. Besides, 1D CNN architecture has a faster

real-time execution and lower computational hardware requirement when compared
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Figure 5.5: Physics-based model validation plots for the engine speed of 1400 rpm
with different operating points. Dashed purple and red lines denote experimental and
simulation readings, respectively. The Mean Percent Error (MPE) of each model’s
output is mentioned in their title.
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to regular CNN. Our devised prognostics module consists of convolutional, pooling,

and fully connected layers. In the proposed fault prognosis model, 1D convolutional

layers consist of filters or kernels that slide across the input feature vector, that is,

a combination of the output signals coming out of the engine test bed (9-element

feature vector) and the output of the physics-based engine model (5-element feature

vector), to perform element-wise multiplication and aggregation operations, enabling

the network to decipher the underlying spatiotemporal patterns within the data. The

outputs of the 1D convolutional layers are then transformed by a Rectified Linear Unit

(ReLU) activation function, shown in Equations 5.7, to unveil the nonlinear latent

relationship between the inputs and outputs. After the 1D convolutional layers, the

model employs 1D-max pooling layers that downsample the feature maps produced

by the preceding 1D convolutional layers.

ReLU(x) = max(x, 0) (5.7)

The purpose of 1D-max pooling layers is to figure out the most significant fea-

ture from the input vector, filter out unnecessary information and ultimately enable

a more concise feature vector representation for subsequent processing. Following the

max pooling layer, we have the fully connected layers responsible for learning higher-

level representations and transforming them into the final output that indicates the

remaining useful life (RUL) from that specific instant in time. We trained the fault

prognosis model using the Adam optimization technique, which involved adjusting

the weights and biases to minimize a Mean Squared Error (MSE) loss function. Fig-

ure 5.6 showcases the optimal physics-informed 1D-CNN model for fault prognostics.

In essence, using the 1D CNN module in the overall physics-informed fault progno-

sis framework helps extract critical information from input sensor data and make
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Figure 5.6: Hybrid 1D CNN-based Fault Prognosis Model

Remaining Useful Life (RUL) predictions based on inherent patterns within the data.

5.2.3 Computational Resources

The fault prognosis model is trained on Lenovo ThinkPad X1, using Tensorflow-

Keras (Tensorflow GPU 2.9.1), with an Intel(R) Core(TM) i7-10750H CPU clocked

at 2.60GHz. This device has six cores, 12 logical processors, 16 GB of RAM, and an

NVIDIA GeForce GTX 1650Ti with Max-Q Design GPU.

5.3 Hybrid Model Evaluation

5.3.1 Evaluation Metrics

In our research, the fault prognosis model assessment revolves around the Mean

Absolute Error (MSE) and Mean Squared Error (MSE), which serve as the evaluation

metric and the primary loss function. The MAE quantifies the disparity between pre-

dicted and actual values. It measures the average of the absolute differences between
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the predicted and actual values. The formula for MAE is given by Equation 5.8. The

assessment of the model’s performance involves utilizing MAE values to compare the

predicted Remaining Useful Life (RUL) against the actual RUL values.

MAE =

∑n
i=1 |ŷi − yi|

n
(5.8)

The training process of the physics-informed 1D CNN model involves calcu-

lating the gradient of the loss function (in this case, MSE) concerning the model’s

parameters and using optimization algorithms (Adam algorithm in our case) to up-

date these parameters to minimize the MSE. Equation 5.9 showcases the expression

for MSE.

MSE =

∑n
i=1 |ŷi − yi|2

n
(5.9)

5.3.2 Robustness to Noisy Data

To replicate real-world conditions for a diesel engine in production, we delib-

erately introduced diverse noise levels to the data collected from test-bed sensors.

Specifically, we incorporated multiple Additive White Gaussian Noise (AWGN) lev-

els into the data samples. These noisy datasets were then run through a pre-trained

physics-informed 1D CNN prognostics model. We introduced three distinct noise lev-

els equal to the standard deviation (100 percent of the standard deviation), twice the

standard deviation (200 percent of the standard deviation), and thrice the standard

deviation (300 percent of the standard deviation) of the original signal. This exer-

cise evaluated the model’s resilience when confronted with noisy data, imitating the

typical conditions experienced during practical operations.
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5.3.3 Hyperparameter Tuning

Hyperparameter optimization (or tuning) involves meticulously searching for

an ideal set of hyperparameters tailored to a specific learning algorithm. The primary

objective is to figure out the configuration that results in the most efficient model,

minimizing a predefined cost function for a given dataset. We experimented with

diverse hyperparameters, such as the number of layers, number of neurons per layer,

batch size, number of epochs, learning rate, number of convolutional filters, kernel

size for convolutional layers, and batch size for purely data-driven and hybrid fault

prognostic models. Furthermore, we implemented regularization techniques such as

L1 regularization during the model training to address potential overfitting concerns.

The hybrid fault prognostics model underwent hyperparameter optimization using

a five-fold cross-validation approach through the grid-search technique. Figure 5.7

presents box plots illustrating MAE values over the validation set for a subset (six)

of the total hyperparameter combinations explored, and the corresponding network

configurations are demonstrated in Table 5.3. The model with the optimal hyperpa-

rameter combination (configuration shown in the second column of Table 5.3) was

preserved and subsequently evaluated on noisy datasets. The training utilized the

Adam optimizer with a learning rate set at 0.001. The 1D-convolutional and dense

layers employed the ReLU and Tanh activation functions, respectively, while the

outermost dense layer utilized linear activation. The network topology of the best

hybrid fault prognostics model is detailed in Figure 5.6. A parallel hyperparameter

optimization process was conducted for the pure data-driven 1D-CNN-based prognos-

tics model, excluding the physics-based engine model input, serving as a benchmark

for the hybrid model.
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Table 5.3: Hyperparameter combinations of hybrid physics-informed 1D CNN model
(f:filter number,k:kernel size,n:number of nodes)

Configuration 1 2 3 4 5 6
1D Convolutional Layer f(16)/k(1*2) f(8)/k(1*4) f(8)/k(1*2) f(16)/k(1*2) f(4)/k(1*4) f(4)/k(1*2)
1D Max pooling layer k(1*2) k(1*2) k(1*2) k(1*2) k(1*2) k(1*2)
1D Convolutional layer f(4)/k(1*2) f(4)/k(1*2)
Flatten layer
Dense layer n(12) n(16) n(8)
Dense layer n(4) n(4) n(4) n(4) n(4) n(4)
Dense layer n(2) n(2) n(2) n(2) n(2) n(2)
Dense layer n(1) n(1) n(1) n(1) n(1) n(1)
Learning Rate 0.01 0.001 0.01 0.01 0.001 0.001
Batch Size 100 100 50 50 100 200
Epochs 1000 1000 500 2000 1000 1000

Figure 5.7: Hybrid prognosis model performance corresponding to various hyperpa-
rameter combinations
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Table 5.4: Computational performance comparison: Data-driven and Hybrid models

Data-driven model Hybrid model
Criteria Values Criteria Values

# Model Parameters 351 # Model Parameters 461
Computational Complexity 2011 Computational Complexity 2076

FLOPS 59482.7 (0.000594G) FLOPS 870137.5 (0.000870G)
Mean Absolute Error (MAE) 0.1019 Mean Absolute Error (MAE) 0.022

5.4 Computational Efficiency

This evaluation criteria offers insights into the computational intricacies of a

given model. The computation time is determined for a specific machine on which the

model is run by assessing the necessary number of FLOPS (Floating Point Operations

Per Second), as shown by Equation 5.10, to produce the model’s output. Complexity

is calculated in terms of ’Big O’ notations and helps determine the number of oper-

ations the model performs independently of the platform it runs. The comparison of

both Computational complexity and FLOPS with the Mean Absolute Error (MAE)

aids in striking a trade-off between the computational cost and performance associ-

ated with the trained model. Table 5.4 compares the computational performance of

the pure data-driven and the hybrid physics-informed prognostics model. The table

shows that with a minor increase in FLOPS and computational complexity, the hybrid

model registers less MAE, almost one-fifth, compared to the data-driven counterpart.

Hence, the performance-to-cost ratio is higher for the hybrid model when compared

to the data-driven model.

FLOPS = cores ∗ cycles

second
∗ FLOPs

cycle
(5.10)
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Figure 5.8: RUL Prediction:(a)Pure Data-driven model (b) Hybrid physics-informed
1D CNN-based Prognosis Model

Figure 5.9: Regression plot:(a) Pure Data-driven model (b) Hybrid physics-informed
1D CNN-based Prognosis Model
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Figure 5.10: Robustness to noise level equal to standard deviation: (a) Pure data-
driven model (b) Hybrid 1D CNN model

Figure 5.11: Robustness to noise level twice the standard deviation: (a) Pure data-
driven model (b) Hybrid 1D CNN model
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Figure 5.12: Performance with increasing noise levels: (a) Pure data-driven model
(b) Hybrid 1D CNN model

5.5 Results and Discussions

5.5.1 Fault prognosis for extrapolated data

Extrapolation estimates the model’s predictive capabilities on completely un-

seen data. It is a crucial metric for evaluating the performance of any model when

it comes to determining its utility in practical applications where real-time data are

scarce, and it is tough to collect data related to all scenarios. Thus, the chosen model

must be able to imitate the system’s behavior in the presence of an insufficient or out-

of-domain dataset. The models were trained on datasets pertaining to three engine

speeds, namely, 1000 rpm, 1200 rpm, and 1400 rpm. The trained models were tested

on a completely unseen dataset corresponding to an engine speed of 1600 rpm. On

comparing the prediction plots in Figure 5.8, we can observe that the hybrid physics-

informed 1D CNN-based prognostics model outperforms the pure data-driven. The

hybrid model can better trace the ground truth values more efficiently when compared

to the pure data-driven model on a wholly extrapolated test set.
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On the test set, the trained hybrid physics-informed prognostics model regis-

tered an MAE of 0.022, compared to 0.1019 recorded by the pure data-driven model.

Besides from the regression plots, as shown in Figure 5.9, it’s evident that the hybrid

prognostics model outperforms the data-driven one. The superior performance and

efficient computational performance of the trained hybrid model on an extrapolated

unseen dataset, when compared to the pure data-driven model, can be attributed

to the physics information going into the hybrid model, which guides the parameter

tuning of the model, making the model more generalizable and enhancing the model’s

predicting capabilities for an unseen out of domain dataset.

5.5.2 Robustness to noisy data

During engine operations, measurements may be noisy or incomplete, and

this is where the physics-informed 1D CNN model can be helpful when obtaining a

clean and comprehensive data sample is challenging. Figure 5.12 showcases box plots

demonstrating the performance of the pure data-driven and the physics-informed 1D

CNN prognostics models over noisy datasets. The box plots effectively communicate

the robust stability of the hybrid model in the presence of noisy signals. The hy-

brid model’s high robustness to noisy data indicates its ability to operate efficiently,

even when imprecise measurements from the vehicle’s onboard sensors may lead to

deviations from the actual values. Figure 5.10 compares the RUL predictions made

by the data-driven and the hybrid model when exposed to noise levels equal to 100

percent of the standard deviation of the original signals. When subjected to similar

noise levels, the hybrid model records an average MAE of 0.09 compared to 0.27 of

the data-driven model. From the plot, it is pretty evident that the hybrid model can

more precisely trace down the ground truth values. Besides, Figure 5.11 compares the
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performance of both the models when subjected to noise levels equal to 200 percent

of the standard deviation of the original signal. In this case, too, we can observe

that the hybrid model, with an average MAE of 0.12, is much more resilient to noises

in the data when compared to a data-driven model with an average MAE of 0.34.

Another key observation from the box plots in Figure 5.12 is that the hybrid model

is much more stable to increment in the noise levels from 100 percent of the standard

deviation to 300 percent of the standard deviation of the signal. The increment in

the error levels, with increasing noise, for the hybrid model is much lower than for

the data-driven model.

The hybrid framework’s enhanced robustness can be attributed to integrat-

ing the physics model’s output, which improved its feature-capturing abilities. The

merger of the physics-based engine model renders the hybrid framework much more

cognizant and makes it robust to noisy data samples. Including the physics-based

model helped the hybrid model gain insights into the underlying principles of the

engine system, and this enhanced interpretability of the hybrid model makes it less

noise-prone and improves its generalizability.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

The dissertation outlines two hybrid frameworks for fault diagnosis in an au-

tomotive diesel engine. We used the dataset from an actual inline 6-cylinder 4-stroke

7.6 L Navistar production DT diesel engine. Besides, a low-fidelity Simulink-based

engine simulation model was used as the physics component of the hybrid fault di-

agnosis framework. The Auto Encoder model forms the data-driven module of the

comprehensive hybrid fault detection and isolation architectures and serves as the

dimensionality reduction mechanism for the data coming from the test bed (experi-

mental engine setup).

We used a pure data-driven 1D-CNN model, without the physics component,

to benchmark the performance of the Hybrid Physics-Infused 1D-CNN based Deep

Learning Framework. For fault detection and isolation, the hybrid model, with an

accuracy of 98 percent, outperforms the data-driven model, which has an accuracy

of 92 percent. When generating fewer false signals or false positives, i.e., predicting

either of the three faults even when the actual sample is nominal (no-fault), the
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hybrid model outshines the data-driven model. As evident from Figures 3.13, 4.9,

the hybrid registers a lower false positive ratio of 0.029 (150/5100) compared to 0.262

(1100/4200) of the data-driven model. The capability of the hybrid model to achieve

higher overall accuracy without compromising much on the false positive detections

makes it compatible with the actual practical applications, where we do not intend

to limit the vehicle performance and day-to-day operations without a valid reason

just because of false warnings. Also, from the Tables 3.9, 3.10, it is observable that

individual class-wise, macro, and weighted precision, recall, and F1-scores are better

for the hybrid model as compared to the data-driven model. Besides, while evaluating

the robustness to noise, it is quite clear that the hybrid model is a cut above the pure

data-driven model. From the Figures, 3.15, 3.16, 4.11, 4.12, the false signals, i.e.,

detecting one of the three fault cases even when the actual sample is nominal (no-

fault), are pretty low for the hybrid physics-infused 1D-CNN model when set side by

side with the pure data-driven model for the same level of noise. The ability of the

hybrid model to have better accuracy, in contrast to the data-driven model, while

maintaining a lower number of the generated false signals can be quite pivotal in

practical applications where noisy data is a norm.

Besides, the second fault diagnostics approach involves the integration of

physics-based models with 1D-CNN blocks within an ensemble learning framework,

thereby enhancing the system’s diagnostic capabilities. The proposed methodology

leverages a real-world dataset from an inline 6-cylinder 4-stroke 7.6 L Navistar pro-

duction DT diesel engine. Moreover, a low-fidelity Simulink-based engine simulation

model is incorporated as the physics component within the hybrid fault diagnosis

framework. An Auto Encoder model is another crucial component of the comprehen-

sive hybrid fault detection and isolation architecture. This powerful model reduces

the dimensionality of the data acquired from the test bed, which is set up with an ex-
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perimental engine configuration. By combining advanced computational techniques

with real-world engine data, the proposed method demonstrates high accuracy and

effectiveness in identifying and localizing faults in the diesel engine. The hybrid en-

semble model, which combines physics and data-driven 1D-CNN components for fault

detection and isolation in automotive diesel engines, exhibited a remarkable accuracy

of 99 percent on the test bed data. Of particular significance is the hybrid ensem-

ble model’s ability to generate fewer false signals or false positives, i.e., incorrectly

predicting faults in nominal (no-fault) samples. Figure 4.9 demonstrates that the

hybrid model achieved a significantly lower false positive ratio of 0.032 (98+73 = 171

samples out of 5193 total nominal samples).

The hybrid ensemble model’s capacity to achieve heightened overall accuracy

while concurrently mitigating the occurrence of false positives is important in the

context of practical applications. This attribute holds particular relevance in contexts

where unwarranted false warnings could significantly hamper vehicular performance

and disrupt routine operations. Furthermore, detailed examination, as presented in

Table 4.2, indicates that the hybrid ensemble model also exhibits high individual

class-wise, macro, micro, and weighted precision, recall, and F1-scores. Additionally,

we evaluated the robustness of the hybrid ensemble model to noise, and As evident

from Figures 4.10, 4.11, 4.12, and 4.13, the hybrid physics-infused 1D-CNN model

exhibited considerably fewer false signals even under the presence of noisy conditions.

This characteristic is especially valuable in real-world applications where noisy data

is expected.

Also, this dissertation outlines a hybrid physics-informed 1D CNN-based ap-

proach for fault prognostics in automotive diesel engines. The method integrates

sensor data, physics-based models, and 1D-CNN models within a comprehensive

framework, significantly enhancing the framework’s prognostic capabilities. The hy-
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brid model uses onboard sensor data from a 7.6L, 6-cylinder, 4-stroke diesel engine.

Besides, the hybrid framework uses the outputs of a 0D low-fidelity physics-based

engine model. By combining the real-time data and the physics-based information,

the model achieved significant accuracy when predicting the fuel injection system’s

remaining useful life (RUL). The results show that the hybrid model outperforms the

pure data-driven model. On predicting the RUL on an extrapolated out-of-domain

dataset, the hybrid model registered a mean accuracy of 97.8 percent compared to

89.81 percent of the pure data-driven model. Besides, the hybrid model showcases a

better performance-to-cost ratio than the data-driven model. For the criterion of ro-

bustness to noisy data, the hybrid model features a mean accuracy of 96 percent, 91.5

percent, and 89.4 percent when compared to 84.5 percent, 76 percent, and 67 percent

as exhibited by the pure data-driven model when estimating the RUL for noise levels

equal to 100 percent of standard deviation, 200 percent of standard deviation, and

300 percent of standard deviation of the original signals, respectively. The superior

functionality of the hybrid model, when compared to its pure data-driven counterpart

across both the extrapolated and noisy datasets, confirms its practical applicability.

In conclusion, the amalgamation of physics-based knowledge with a data-driven 1D

CNN model amplifies the efficacy and dependability of the overall hybrid prognostics

framework, rendering it a valuable instrument for real-world engine applications.

6.2 Summary of Contributions

The dissertation makes an attempt to address the research challenges as out-

lined in Chapter 1 (Section 1.3). The specific contributions of this dissertation are

enumerated as follows:
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1. Hybrid Physics-Infused 1D-CNN based Deep Learning Framework

for Diesel Engine Fault Diagnostics (Chapter 3)

(a) A novel end-to-end physics-infused 1D-CNN-based deep learning frame-

work for diesel engine fault detection is conceptualized. The outlined hy-

brid architecture is completely autonomous in processing the raw test bed

data and diagnosing the corresponding fault scenarios.

(b) The Hybrid fault diagnostics model can accentuate the features that con-

tain the most vital information pertinent to the diesel engine fault. Espe-

cially when it comes down to fault classification, the hybrid model, lever-

aging the underlying physical laws of the system, can help improve the

accuracy compared to a pure data-driven or physics-derived fault detec-

tion model.

(c) To train and test the feasibility of the proposed hybrid architecture, we

curated a rare-of-its-kind large-scale diesel engine fault database, termed

NavicEngine [1], under different operating conditions. The database is

located at (NavicEngine).

(d) When exposed to noisy sensor data, the hybrid model outperforms the

pure data-driven model. This superior performance of the hybrid model

can be attributed to the hybrid model’s enhanced generalizability owing

to the inclusion of physics-based information.

2. Hybrid Physics-Infused 1 Dimensional-Convolutional Neural Network

(1D-CNN) based Ensemble Learning Framework for Diesel Engine

Fault Diagnostics (Chapter 4)

(a) An innovative hybrid framework that integrates physics principles into a
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1D-CNN-based ensemble deep learning model to detect faults in diesel

engines. This hybrid architecture can process raw data from the test bed

and autonomously diagnose fault scenarios without external intervention.

(b) Utilizing ensemble learning, which amalgamates the strength of several

1D-CNN sub-models, offers a strategy to alleviate the shortcomings of

individual models, thus enhancing both accuracy and robustness against

noisy data. Furthermore, by integrating the principles of physics with the

1D-CNN framework, we strengthen our ability to discern underlying data

patterns, culminating in a performance level that adequately addresses the

intricate dynamics of a diesel engine system.

(c) We tested the robustness of the hybrid ensemble model against a dataset

with varying noise levels. Notably, the model demonstrated remarkable

levels of accuracy as measured by a spectrum of evaluation metrics, ren-

dering it suitable for practical diesel engine applications where noisy data

is a norm.

3. Hybrid Physics-Informed 1D CNN-based Prognostics Framework for

Remaining Useful Life (RUL) Estimation in Diesel Engines (Chapter

5)

(a) State-of-the-art hybrid physics-informed 1D CNN-based prognostics frame-

work underpinned by physics principles and leveraging a one-dimensional

Convolutional Neural Network (1D CNN) to estimate the remaining use-

ful life of the fuel injector in the context of the increase in the amount

of fuel injected by it. The delineated hybrid physics-informed 1D CNN-

based model operates autonomously, is computationally efficient, and can

preprocess unprocessed test bed data and accurately perform fuel injector
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fault prognostics.

(b) Empirical results witness the hybrid prognostics model’s capability to cap-

ture the diesel engine’s nonlinear behavior, which helps in accurate RUL

estimation even in the presence of noisy sensor data.

(c) To assess and validate the practicality of the proposed hybrid prognosis

model, we curated an extensive dataset [2] focusing on the pattern of fault

increase over time, defined as the increase in the quantity of fuel injected in

diesel engines over time, denominated as the ”ProgEngine” repository, and

is located at (ProgEngine). Fellow researchers working in fault prognosis

can benefit from the curated data repository.

6.3 Future Work

Despite the advantages of hybrid models for fault diagnostics over conventional

physics-based or data-driven models, there is much room for future explorations in this

domain. Currently, both the outlined diagnostics frameworks focus on determining

the presence of a fault and its cause. For the experimental data, the proposed model

showcased promising results. One avenue for future research is to perform severity

quantification, i.e., to find the numerical strength of the fault along with detection and

isolation. Another avenue for future work is to record the acoustic signals generated

during the experiment using microphones. Audio signals, encapsulating the fault

information, can be used as an additional modality with the hybrid model to improve

the generalizability and enhance model robustness to noisy and out-of-distribution

data.

Similarly, there are numerous avenues for further exploration of hybrid prog-

nostics. One of the domains to explore would be employing better and more ad-
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vanced data-driven models, such as Generative Adversarial Networks (GANs) and

Transformer networks, to complement the physics-based module of the hybrid frame-

work. Such state-of-the-art data-driven models are better at capturing the nonlinear

behavior of diesel engines, thus resulting in better RUL estimations. Besides, we can

use multi-modal data comprising time-varying vibration signals, infrared camera im-

ages, and the traditional onboard sensor. Multiple data modalities may further hone

the predictive capabilities of the hybrid prognostics framework, which is crucial for

predictive maintenance and safe operations of a diesel engine.
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Appendix A Nomenclature for Physics-based En-

gine Model for Fault Diagnostics

Notation

Pim Intake manifold pressure (Pa)

Pem Exhaust manifold pressure (Pa)

Wc Compressor mass flow (Kg/sec)

Wt Turbine mass flow from (Kg/sec)

Wei Cylinder in mass flow (Kg/sec)

Weo Cylinder out mass flow (Kg/sec)

Tim Intake manifold temperature (K)

Tem Cylinder exhaust temperature (K)

Me Torque (Nm)

Ra Intake ideal-gas constant (J/KgK)

Re Exhaust ideal-gas constant (J/KgK)

Vim Intake manifold volume (m3)

Vem Exhaust manifold volume (m3)

Udelta Fuel mass flow (Kg/cycle)

ωt Rotational turbine speed (r/min)
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Appendix B Nomenclature for Physics-based En-

gine Model for Fault Prognostics

Notation

Cm Compressor mass flow (Kg/sec)

EMt Cylinder exhaust temperature (K)

CIm Cylinder in mass flow (Kg/sec)

COm Cylinder out mass flow (Kg/sec)

Re Exhaust ideal-gas constant (J/KgK)

EMp Exhaust manifold pressure (Pa)

EMv Exhaust manifold volume (m3)

Injm Fuel mass flow (Kg/cycle)

Ra Intake ideal-gas constant (J/KgK)

IMp Intake manifold pressure (Pa)

IMt Intake manifold temperature (K)

IMv Intake manifold volume (m3)

Tω Rotational turbine speed (r/min)

Tm Turbine mass flow from (Kg/sec)
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[96] Basheer Shaheen, Ádám Kocsis, and István Németh. Data-driven failure predic-
tion and rul estimation of mechanical components using accumulative artificial
neural networks. Engineering Applications of Artificial Intelligence, 119:105749,
2023.

[97] Mingqi Shao, Jin Wang, and Sibo Wang. The intelligent fault diagnosis of
diesel engine based on the ensemble learning. In Journal of Physics: Conference
Series, volume 1549, page 042106. IOP Publishing, 2020.

[98] Abhishek Sharma, V Sugumaran, and S Babu Devasenapati. Misfire detection
in an ic engine using vibration signal and decision tree algorithms. Measurement,
50:370–380, 2014.

140



[99] Smriti Sharma and Subhamoy Sen. Real-time structural damage assessment us-
ing lstm networks: regression and classification approaches. Neural Computing
and Applications, 35(1):557–572, 2023.

[100] Sheng Shen, Hao Lu, Mohammadkazem Sadoughi, Chao Hu, Venkat Nemani,
Adam Thelen, Keith Webster, Matthew Darr, Jeff Sidon, and Shawn Kenny. A
physics-informed deep learning approach for bearing fault detection. Engineer-
ing Applications of Artificial Intelligence, 103:104295, 2021.

[101] Shubhendu Kumar Singh. Hybrid Machine Learning Approach for Predictive
Modeling of Complex Systems. PhD thesis, State University of New York at
Buffalo, 2019.

[102] Shubhendu Kumar Singh, Ruoyu Yang, Amir Behjat, Rahul Rai, Souma
Chowdhury, and Ion Matei. Pi-lstm: Physics-infused long short-term memory
network. In 2019 18th IEEE International Conference On Machine Learning
And Applications (ICMLA), pages 34–41. IEEE, 2019.

[103] Sneha Singh, Sagar Potala, and Amiya R Mohanty. An improved method of
detecting engine misfire by sound quality metrics of radiated sound. Proceed-
ings of the Institution of Mechanical Engineers, Part D: Journal of Automobile
Engineering, 233(12):3112–3124, 2019.

[104] Anna G Stefanopoulou, Ilya Kolmanovsky, and James S Freudenberg. Control
of variable geometry turbocharged diesel engines for reduced emissions. IEEE
transactions on control systems technology, 8(4):733–745, 2000.

[105] Russell Stewart and Stefano Ermon. Label-free supervision of neural networks
with physics and domain knowledge. In Thirty-First AAAI Conference on Ar-
tificial Intelligence, 2017.

[106] Congbiao Sui, Enzhe Song, Douwe Stapersma, and Yu Ding. Mean value mod-
elling of diesel engine combustion based on parameterized finite stage cylinder
process. Ocean Engineering, 136:218–232, 2017.

[107] G Sujesh and S Ramesh. Modeling and control of diesel engines: A systematic
review. Alexandria engineering journal, 57(4):4033–4048, 2018.
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