
Clemson University Clemson University

TigerPrints TigerPrints

All Dissertations Dissertations

8-2024

Efficient First-Order Methods for Some Smooth Nonlinear Efficient First-Order Methods for Some Smooth Nonlinear

Optimization Problems Optimization Problems

Yunheng Jiang
yunhenj@g.clemson.edu

Follow this and additional works at: https://open.clemson.edu/all_dissertations

 Part of the Other Applied Mathematics Commons

Recommended Citation Recommended Citation
Jiang, Yunheng, "Efficient First-Order Methods for Some Smooth Nonlinear Optimization Problems"
(2024). All Dissertations. 3765.
https://open.clemson.edu/all_dissertations/3765

This Dissertation is brought to you for free and open access by the Dissertations at TigerPrints. It has been
accepted for inclusion in All Dissertations by an authorized administrator of TigerPrints. For more information,
please contact kokeefe@clemson.edu.

https://open.clemson.edu/
https://open.clemson.edu/all_dissertations
https://open.clemson.edu/dissertations
https://open.clemson.edu/all_dissertations?utm_source=open.clemson.edu%2Fall_dissertations%2F3765&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/122?utm_source=open.clemson.edu%2Fall_dissertations%2F3765&utm_medium=PDF&utm_campaign=PDFCoverPages
https://open.clemson.edu/all_dissertations/3765?utm_source=open.clemson.edu%2Fall_dissertations%2F3765&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:kokeefe@clemson.edu

Efficient first-order methods for some smooth nonlinear
optimization problems

A Dissertation

Presented to

the Graduate School of

Clemson University

In Partial Fulfillment

of the Requirements for the Degree

Doctor of Philosophy

Mathematical Sciences

by

Yunheng Jiang

August 2024

Accepted by:

Dr. Yuyuan Ouyang, Committee Chair

Dr. Yibo Xu, Committee Co-Chair

Dr. Xinyi Li

Dr. Boshi Yang

Dr. Zhe Zhang

Abstract

The goal of this dissertation is to study algorithm design and complexity analysis of first-

order methods for solving some smooth nonlinear optimization problems. It consists of three research

projects. The first project is concerning the matrix-vector multiplication complexity for solving

kernel projection problems and its application on decentralized consensus optimization. The second

project focuses on optimal first-order algorithm design for gradient norm minimization. The third

project is the study of conditional gradient type algorithms for functional constrained nonlinear

optimization problems.

The first project is elaborated in Chapter 2. Specifically, we study the problem of projecting

a vector to the kernel of a specified matrix. The complexity of algorithms for solving approximate

solutions of such problem is evaluated by the number of matrix-vector multiplications needed for

computing an approximate solution. We first study this problem from three perspectives: the control

perspective, the optimization perspective, and the linear algebra perspective. From the control

perspective, a first-order method has already been proposed in previous control literature. However,

we find that such method converges slower than it is claimed, as its best linear convergence rate

has an additional logarithmic term in the worst case. From the optimization perspective, motivated

by the accelerated gradient method, we design a first-order method whose complexity is optimal in

order. From the linear algebra perspective, there has been known study of exact oracle complexity

for solving a linear equation provided with the same matrix-vector oracle. Here we use the term

“exact complexity” to emphasize that not only the complexity is optimal in order, but also the

constant appearing in the complexity bound is unimprovable. However, such exact complexity

result in solving linear equation systems is not readily applicable to our problem of interest. Based

on our observations from the three perspectives, under a linear-span assumption, we propose a novel

iterative method which attains the exact oracle complexity for our problem of interest. In the realm

ii

of general methods, we provide an exact lower complexity bound with the assumption that the

dimension of our problem is sufficiently large.

In the second project, our focus is to design optimal gradient method for solving uncon-

strained optimization problems with convex and smooth objective function. This project is de-

scribed in Chapter 3. Specifically, our goal is to compute an ϵ-approximate solution x ∈ Rn such

that ∥∇f(x)∥2 ≤ ϵ by one uniform algorithm. The algorithm we study is gradient extrapolation

method (GEM), which was previously developed for function value difference minimization: the

number of iterations required to obtain an approximate solution xN such that f(xN) − f(x∗) ≤ ε

is bounded by O
(√

Lf∥x0 − x∗∥2/ε
)
, where Lf is the smoothness constant of function f , x0 is

the initial iterate, and x∗ is an optimal solution. In this dissertation, we show that with appro-

priately chosen parameters, GEM can compute an ϵ-solution x ∈ Rn satisfying ∥∇f(x)∥2 ≤ ϵ with

at most O(
√

Lf (f(x0)− f(x∗))/ϵ) gradient evaluations. Consequently, if we first apply GEM with

the parameters for minimizing function value difference, then apply GEM with the parameters

for gradient norm minimization, we are able to compute an ε-approximate solution with optimal

O(
√

Lf∥x0 − x∗∥/ε1/4) complexity.

In the third project, we focus on designing projection-free algorithms for solving functional

constrained optimization problems. This project is described in Chapter 4. We first provide two

projection-free methods for solving convex functional constrained optimization problems. The con-

strained conditional gradient (CCG) method is proposed such that the gradient evaluation complex-

ity and the linear objective optimization complexity are both of order O(1/ε). Then we incorporate

a sliding procedure in CCG so that it could obtain a better O(1/
√
ε) gradient evaluation complexity

while maintaining the O(1/ε) linear objective optimization complexity. Moreover, we show that

CCG with a linesearch strategy can also be adapted for solving nonconvex functional constrained

optimization problems. If the objective function is nonconvex but the constraints are convex, our

proposed method has an O(1/ε2) complexity to compute an approximate stationary point. If both

the objective and constraint functions are nonconvex, our proposed method has an O(1/ε2) com-

plexity to compute an approximate Fritz-John point.

iii

Contents

Title Page . i

Abstract . ii

1 Preliminaries . 1
1.1 Properties of smooth functions . 2
1.2 Acceleration of the gradient descent method . 4

2 Exact matrix-vector multiplication complexity for kernel projection and its
application on distributed consensus optimization 13
2.1 Introduction . 14
2.2 Three perspectives associated with the problem . 15
2.3 Exact complexity under a linear span assumption . 28
2.4 Lower complexity bound analysis for general deterministic methods 34
2.5 Conclusion . 41

3 Gradient norm minimization through a gradient extrapolation method 43
3.1 Introduction . 43
3.2 The gradient extrapolation method . 46
3.3 GEM as linear span of gradients . 51
3.4 GEM for gradient norm minimization . 55
3.5 Conclusion . 57

4 Conditional gradient methods for smooth functional constrained optimization . 58
4.1 Introduction . 58
4.2 Convex smooth functional constrained optimization 62
4.3 Nonconvex smooth functional constrained optimization 74
4.4 Conclusion . 80

Bibliography . 81

iv

Chapter 1

Preliminaries

In this dissertation, we focus on first-order methods for solving constrained and uncon-

strained smooth nonlinear optimization problems. In the most general form, all our problems of

interest can be represented as follows:

min
x∈X

f(x),

s.t. gi(x) ≤ 0, i = 1, . . . ,mg,

hi(x) = 0, i = 1, . . . ,mh,

where X ⊆ Rn is a closed convex set and f , g and h are continuously differentiable functions. In

Chapter 2, we study a special case of the above problem in which the objective function f(x) :=

(1/2)∥x − u∥22 for some u, gi ≡ 0 for all i, and hi’s are affine constraint functions. In Chapter 3,

the objective function f is convex, the set X = Rn and gi, hi ≡ 0 for all i. In Chapter 4, we only

study functional inequality constraints, i.e., hi ≡ 0 for all i. For all problems in this dissertation, we

assume that the problem dimension n is high and first-order algorithms are preferred. Second and

higher order algorithms (e.g., Newton methods) are out of the scope of this dissertation.

In this chapter, we describe some preliminary knowledge for first-order methods and nonlin-

ear optimization. Such knowledge will be frequently used in the research projects described in the

following chapters. Specifically, in Section 1.1 we describe some properties of smooth functions and

convex smooth functions. In Section 1.2 we describe two fundamental methods commonly studied

in first-order algorithm literature: the gradient descent and accelerated gradient descent methods.

1

1.1 Properties of smooth functions

In this section, we describe several commonly known properties of smooth functions and

convex smooth functions. Some properties are utilized in many convergence analysis performed

throughout this dissertation. The proofs of all the results below are commonly known in convex and

nonlinear optimization textbooks (see, e.g., [24, 11]) and are skipped.

We say that a function f : Rn → R is Lf -smooth with respect to norm ∥·∥ if it is continuously

differentiable and its gradient ∇f is Lipschitz continuous with constant Lf , namely,

∥∇f(x)−∇f(y)∥∗ ≤ Lf∥x− y∥, ∀x, y ∈ Rn.

Here ∥ · ∥∗ is the dual norm of ∥ · ∥. When the context is clear, we may omit the description of the

associated norm and simply state that f is Lf -smooth. For smooth functions, we have the following

commonly used property:

Lemma 1.1.1. Let f : Rn → R be an arbitrary Lf -smooth function with respect to norm ∥ · ∥. For

all x, y ∈ Rn, we have

f(x)− f(y)− ⟨∇f(y), x− y⟩ ≤ Lf

2
∥x− y∥2.

The above lemma shows that f(x) is upper bounded by the sum of a linear approximation

at y and the squared distance ∥x− y∥2. Note that a stronger result |f(x)− f(y)−⟨∇f(y), x− y⟩| ≤

(Lf/2)∥x− y∥2 with an absolute value at the left-hand side also holds; however, the weaker version

stated in the above lemma is already sufficient for all the analysis throughout our dissertation.

In addition to smoothness, if f is also convex, we can obtain several more properties. We use

notation F
1,1
Lf ,∥·∥(R

n) to denote the set of functions f : Rn → R that are both Lf -smooth (associated

with norm ∥·∥) and convex.1 When the associated norm is Euclidean, we will use a simpler notation

F
1,1
Lf

(Rn). In the remainder of this section, the properties of convex smooth functions are described.

Such properties will be utilized in the convergence analysis throughout this dissertation.

1The notation F
1,1
Lf ,∥·∥(R

n) follows from the book [24]. Such functions are also known as convex smooth functions.

Here F stands for the set of convex functions; the superscript “1, 1” denotes that f is continuously differentiable and
its gradient is Lipschitz continuous; the subscript Lf , ∥ · ∥ denotes that the Lipschitz constant is Lf with respect to
the norm ∥ · ∥.

2

Lemma 1.1.2. For any function f ∈ F
1,1
Lf ,∥·∥(R

n) and any x, y ∈ Rn, we have

1

Lf
∥∇f(x)−∇f(y)∥2∗ ≤ ⟨∇f(x)−∇f(y), x− y⟩.

Specially, with y = x∗ we have

1

Lf
∥∇f(x)∥2∗ ≤ ⟨∇f(x), x− x∗⟩. (1.1)

The lemma above states that the inner product of gradient difference ∇f(x) −∇f(y) and

point difference (x− y) is lower bounded by the scaled squared gradient norm difference ∥∇f(x)−

∇f(y)∥2∗/Lf . Note that the special case (1.1) of the above lemma has an important implication.

Specifically, for any differentiable convex function f , the following property holds for its minimizer

x∗:

0 ≤ ⟨∇f(x), x− x∗⟩.

The above relationship is indeed an optimality condition for convex and differentiable functions.

The property (1.1) states that for convex smooth functions, its optimality condition can be stronger

than the above equation with an extra gradient norm.

Lemma 1.1.3. For any function f ∈ F
1,1
Lf ,∥·∥(R

n) and any x, y ∈ Rn, we have

0 ≤ f(x)− f(y)− ⟨∇f(y), x− y⟩ ≤ Lf

2
∥x− y∥2. (1.2)

Specially, with y = x∗ we have

f(x)− f(x∗) ≤ Lf

2
∥x− x∗∥2.

The relation (1.2) is stronger than the result described in Lemma 1.1.1 since the difference

between f(x) and its linear approximation at y is now lower bounded by 0 due to convexity. Note

that for such lower bound to hold, we only require that f is convex and differentiable. Indeed, for

convex smooth functions such lower bound can be further strengthened, as stated in the lemma

3

below.

Lemma 1.1.4. For any function f ∈ F
1,1
Lf ,∥·∥(R

n) and any x, y ∈ Rn, we have

f(x)− f(y)− ⟨∇f(y), x− y⟩ ≥ 1

2Lf
∥∇f(x)−∇f(y)∥2∗.

Specially, with y = x∗ we have

1

2Lf
∥∇f(x)∥2∗ ≤ f(x)− f(x∗).

Lemmas 1.1.2, 1.1.3 and 1.1.4 are the fundamental properties of the function class F1,1
Lf

(Rn)

that play important roles in the analysis of convex smooth optimization problems. Throughout this

dissertation we rely on them to perform convergence analysis of several first-order methods.

With the essential properties of smooth functions and convex smooth functions introduced,

in the following section we introduce two commonly seen first-order methods that are related to this

dissertation.

1.2 Acceleration of the gradient descent method

In this section, we introduce two commonly seen first-order methods for the following convex

smooth optimization problem:

min
x∈X

f(x). (1.3)

Here X ⊆ Rn is a closed convex set and f ∈ F
1,1
Lf ,∥·∥(R

n). Our goal is to compute an approximate

solution with accuracy threshold ε. Note that there are several different possible definitions of ε-

approximate solutions. For instance, we will define an ε-approximate solution x as one that satisfies

∥x − x∗∥ ≤ ε in Chapter 2 or as one that satisfies ∥∇f(x)∥2∗ ≤ ε for gradient norm minimization

in Chapter 3. In this subsection, our goal is to compute an approximate solution x such that

f(x)− f(x∗) ≤ ε, where x∗ is an optimal solution to problem (1.3).

There have been several possible methods for solving problem (1.3). Our focus is on first-

order methods; such methods are commonly used when the accuracy threshold ε is modest and the

dimension n is large. In such cases, higher order methods (Newton’s method, etc.) requires more

4

computational time per iteration and becomes less favorable.

1.2.1 The gradient descent method

The most commonly used first-order method for solving problem (1.3) is the gradient descent

method. It is based on a straightforward observation that for any differentiable function, its negative

gradient at a point is the direction along which the function decreases the fastest locally at such

point. We describe the gradient descent method and analyze its convergence performance in this

subsection. For simplicity, we let the feasible set X be Rn and assume that f is Lf -smooth with

respect to the Euclidean norm. The gradient descent algorithm is described below.

Algorithm 1.2.1 The gradient descent method

Require: Initial point x0 ∈ Rn, stepsize h > 0
for t = 0, 1, . . . , N do

xt+1 = xt − h∇f(xt). (1.4)

end for

For f ∈ F
1,1
Lf

(Rn), we can derive the convergence result of the gradient method in terms of

function value difference f(xN)− f(x∗). The derivation is based on the analysis of the relationship

between f(xt)− x∗ and f(xt−1)− x∗, as detailed in the proof of the following proposition.

Proposition 1.2.1. Let f be a function in the function class F1,1
Lf

(Rn) and {xt}Nt=0 be the iterations

of the gradient descent method applied to minimize f . If we have 0 < h < 1/(2Lf), then for any

N ≥ 0,

f(xN)− f(x∗) ≤ 2(f(x0)− f(x∗))∥x0 − x∗∥2

2∥x0 − x∗∥2 +Nh(2− Lfh)(f(x0)− f(x∗))
. (1.5)

Proof. First, by the definition of xt (1.4) in the description of Algorithm 1.2.1, the relationship (1.1)

5

in Lemma 1.1.2, and noting that ∇f(x∗) = 0, we have

∥xt+1 − x∗∥2 =∥xt − x∗ − h∇f(xt)∥2

=∥xt − x∗∥2 − 2h⟨∇f(xt), xt − x∗⟩+ h2∥∇f(xt)∥2

≤∥xt − x∗∥2 − h

(
2

Lf
− h

)
∥∇f(xt)∥2.

Thus for any t, we have ∥xt+1 − x∗∥ ≤ ∥xt − x∗∥. Consequently, we can observe that ∥xt − x∗∥ ≤

∥x0 − x∗∥.

Next, by Lemma 1.1.3 and the description of xt (1.4) in the gradient descent algorithm, we

have

f(xt+1) ≤f(xt) + ⟨∇f(xt), xt+1 − xt⟩+
Lf

2
∥xt+1 − xt∥2

=f(xt)− h

(
1− Lf

2
h

)
∥∇f(xt)∥2.

(1.6)

Since the function f is convex differentiable, recalling our previous observation that ∥xt − x∗∥ ≤

∥x0 − x∗∥, we know that

f(xt)− f(x∗) ≤ ⟨∇f(xt), xt − x∗⟩ ≤ ∥∇f(xt)∥ · ∥xt − x∗∥ ≤ ∥∇f(xt)∥ · ∥x0 − x∗∥.

Thus by (1.6), we obtain

f(xt+1) ≤f(xt)− h

(
1− Lf

2
h

)
(f(xt)− f(x∗))2

∥x0 − x∗∥2
,

i.e.

f(xt+1)− f(x∗) ≤f(xt)− f(x∗)− h

(
1− Lf

2
h

)
(f(xt)− f(x∗))2

∥x0 − x∗∥2
.

Dividing (f(xt)− f(x∗)) (f(xt+1)− f(x∗)) on both sides (note that the proof is trivial when f(xt) =

6

f(x∗) or f(xt+1) = f(x∗)), we have

1

f(xt+1)− f(x∗)
≥ 1

f(xt)− f(x∗)
+

h(1− Lf

2 h)

∥x0 − x∗∥2
· f(xt)− f(x∗)

f(xt+1)− f(x∗)

≥ 1

f(xt)− f(x∗)
+

h(1− Lf

2 h)

∥x0 − x∗∥2
.

Summing the inequalities above from t = 0, ..., N − 1, we have

1

f(xN)− f(x∗)
≥ 1

f(x0)− f(x∗)
+N ·

h(1− Lf

2 h)

∥x0 − x∗∥2
.

The above result implies (1.5) immediately.

In the convergence property above, the right-hand side of the result in (1.5) is dependent

on the stepsize h. Theoretically, the best choice of stepsize h is the one such that h(1− (Lf/2)h) in

the denominator of the right-hand side is maximized, i.e., when h = 1/Lf . The convergence result

when h = 1/Lf is described in the theorem below.

Theorem 1.2.1. Let f be a function in function class F1,1
Lf

(Rn) and {xt}Nt=0 be the iterations of the

gradient descent method. If the step size is chosen to h = 1/Lf , then for any N ≥ 0 we have

f(xN)− f(x∗) ≤ 2Lf∥x0 − x∗∥2

N + 4
. (1.7)

Proof. The convergence result in (1.7) follows directly from Proposition 1.2.1 (with stepsize h =

1/Lf).

Remark from Theorem 1.2.1 that the gradient evaluation complexity of the gradient descent

method is of order O(1/ε). In the following section, we show that the gradient evaluation complexity

can be improved to O(1/
√
ε) through the accelerated gradient descent method. The following section

can be viewed as the acceleration technique for the classical gradient descent method.

1.2.2 Accelerated gradient descent method

In this subsection, we introduce the accelerated gradient descent method for solving the

optimization problem (1.3). Unlike the previous section on gradient descent method, here we allow

7

general closed convex feasible set X and any norm ∥ · ∥. The first version of accelerated gradient

descent method appears in [23]. After the work in [23], there have been several extensions and

modifications proposed in the literature (see, e.g., [22, 24, 11] and the references within). It has

already been shown that the accelerated gradient descent method is an optimal first-order method for

minimizing function value difference in convex smooth optimization (see, e.g., [24, 20]). The concept

of acceleration in this method is essential to several convergence analysis performed throughout

this dissertation. In Subsection 2.2.2 of Chapter 2, we will apply the accelerated gradient descent

method to obtain an approximate solution minimizing ∥x − x∗∥ with O (log(1/ε)) matrix-vector

multiplication complexity. When solving the problem of interest in Chapter 3, the methods we

proposed can be considered as the dual version of accelerated gradient descent method.

Our description of the accelerated gradient method in Algorithm 1.2.2 and the analysis are

based on [11]. Here we use a general prox function setting associated with arbitrary norm ∥ · ∥.

Specifically, the prox function V : Xo ×X → R+ is a proximity measure defined by

V (x, y) = v(y)− v(x)− ⟨∇v(x), y − x⟩. (1.8)

The set Xo is defined as Xo = {x ∈ X : there exist p ∈ Rn such that x ∈ argminu∈X [p⊤u+ v(u)]},

and the distance generating function v : X → R is continuously differentiable and strongly convex

with respect to the general norm ∥ · ∥. The accelerated gradient method is described in Algorithm

1.2.2.

Algorithm 1.2.2 Accelerated gradient descent method

Require: Initial point x0 ∈ X, qt ∈ [0, 1], γt ≥ 0, αt ∈ [0, 1]
Set x0 = x0.
for t = 1, . . . , N do

Compute

xt =(1− qt)xt−1 + qtxt−1,

xt =argmin
x∈X

{γt⟨∇f(xt), x⟩+ V (xt−1, x)},

xt =(1− αt)xt−1 + αtxt.

end for
Output approximate solution xN .

Here, {(xt, xt, xt)}Nt=0 are the iterates generated by the accelerated gradient descent method.

Specifically, the notation xt denotes the iterates at which gradients of f are computed. Here the

8

underline notation is since any gradient evaluation ∇f(xt) provides a linear approximation lower

bound f(xt) + ⟨∇f(xt), x− xt⟩ of the function f(x). The notation xt denotes the iterates at which

we perform gradient-descent-like updates. The notation xt denotes the outputs of the approximate

solutions of the algorithm. Here the overline is since f(xt) ≥ f(x∗) is an overestimate of the optimal

objective function value. We can immediately observe that if we have the feasible set X = Rn,

the prox function V (x, y) = (1/2)∥x− y∥22 be the half squared Euclidean norm, and the parameters

αt = 1 and γt = h for t = 0, . . . , N−1, the accelerated gradient descent method in Algorithm 1.2.2 is

identical to the gradient descent method in Algorithm 1.2.1. In the following proposition, we prove

that the certain choices of algorithm parameters qt, αt and γt can lead us to a recursive relationship

between the t-th and (t− 1)-th iterates of Algorithm 1.2.2.

Proposition 1.2.2. Let f be a function such that f ∈ F
1,1
Lf

(Rn) and {(xt, xt, xt)}Nt=0 be the iterates

generated by accelerated gradient descent method in Algorithm 1.2.2 to minimize f . If parameters

qt, αt and γt satisfy the following relationships:

αt ≥ qt, (1.9)

Lf (αt − qt)

1− qt
≤ 0, (1.10)

Lfqt(1− αt)

1− qt
≤ 1

γt
, t = 1, ..., N, (1.11)

then for any x ∈ X, we have

f(xt)− f(x) +
αt

γt
V (xt, x) ≤ (1− αt)[f(xt−1)− f(x)] +

αt

γt
V (xt−1, x). (1.12)

Proof. First, by the definitions of xt, xt and xt in Algorithm 1.2.2, we have

xt − xt =(qt − αt)xt−1 + αtxt − qtxt−1

=αt

[
xt −

αt − qt
αt(1− qt)

xt −
qt(1− αt)

αt(1− qt)
xt−1

]
=αt

[
(

αt − qt
αt(1− qt)

+
qt(1− αt)

αt(1− qt)
)xt −

αt − qt
αt(1− qt)

xt −
qt(1− αt)

αt(1− qt)
xt−1

]
=αt

[
αt − qt

αt(1− qt)
(xt − xt) +

qt(1− αt)

αt(1− qt)
(xt − xt−1)

]
.

9

Thus by the relationship αt ≥ qt of αt and qt in (1.9) and the convexity of norms, we obtain

∥xt − xt∥2 ≤ αt

[
αt − qt
1− qt

∥xt − xt∥2 +
qt(1− αt)

1− qt
∥xt − xt−1∥2

]
. (1.13)

Next, by property (1.2) in Lemma 1.1.3, the relationship xt = (1−αt)xt−1+αtxt described

in Algorithm 1.2.2, the convexity of f , and inequalities (1.13), (1.10) and (1.11) above, we are able

to derive that

f(xt) ≤f(xt) + ⟨∇f(xt), xt − xt⟩+
Lf

2
∥xt − xt∥2

=(1− αt) [f(xt) + ⟨∇f(xt), xt−1 − xt⟩] + αt [f(xt) + ⟨∇f(xt), xt − xt⟩] +
Lf

2
∥xt − xt∥2

≤(1− αt)f(xt−1)

+ αt

[
f(xt) + ⟨∇f(xt), xt − xt⟩+

Lf (αt − qt)

2(1− qt)
∥xt − xt∥2 +

Lfqt(1− αt)

2(1− qt)
∥xt − xt−1∥2

]
≤(1− αt)f(xt−1) + αt

[
f(xt) + ⟨∇f(xt), xt − xt⟩+

1

γt
V (xt, xt−1)

2

]
.

Finally, by the optimality condition of xt in its definition in Algorithm 1.2.2, we have that

for all x ∈ X,

γt⟨∇f(xt), xt⟩+ V (xt−1, xt) ≤ γt⟨∇f(xt), x⟩+ V (xt−1, x).

Hence combining with the fact that V (xt−1, xt) ≥ V (xt−1, x)− V (xt, x) and the convexity of f , we

conclude that

f(xt) ≤(1− αt)f(xt−1) + αt [f(xt) + ⟨∇f(xt), x− xt⟩] +
αt

γt
V (xt−1, x)−

αt

γt
V (xt, x)

≤(1− αt)f(xt−1) + αtf(x) +
αt

γt
V (xt−1, x)−

αt

γt
V (xt, x).

In the above proposition, we prove that when the parameters satisfy (1.9), (1.10) and (1.11),

we can obtain a recursive relationship between the t-th and (t− 1)-th iterates of Nesterov’s gradient

method (1.12). Consequently, we show in the following proposition that by induction it is now

possible to expand the aforementioned relationship to one that is between the N -th and the initial

10

iterates.

Proposition 1.2.3. Let f be a function such that f ∈ F
1,1
Lf

(Rn) and {(xt, xt, xt)}Nt=0 be the iterates

generated by accelerated gradient descent method to minimize f . If αt = qt, Lfαt ≤ 1/γt and

γt(1− αt)/αt ≤ γt−1/αt−1 for all t = 1, ..., N , then it holds that

f(xN)− f(x∗) +
αN

γN
V (xN , x∗) ≤ αN (1− α1)γ1

γNα1
[f(x0)− f(x∗)] +

αN

γN
V (x0, x

∗). (1.14)

Proof. It is straightforward to verify that assumptions (1.9)–(1.11) holds and hence we can use

Proposition 1.2.2 to conclude that

f(xt)− f(x∗) +
αt

γt
V (xt, x

∗) ≤ (1− αt)[f(xt−1)− f(x∗)] +
αt

γt
V (xt−1, x

∗).

Applying relationship γt(1− αt)/αt ≤ γt−1/αt−1 to the above result, we have

γt
αt

[f(xt)− f(x∗)] + V (xt, x
∗) ≤ (1− αt)γt

αt
[f(xt−1)− f(x∗)] + V (xt−1, x

∗)

≤ γt−1

αt−1
[f(xt−1)− f(x∗)] + V (xt−1, x

∗).

Repeating the above relationship inductively for N times, we are able to derive that

γN
αN

[f(xN)− f(x∗)] + V (xN , x∗) ≤ (1− α1)γ1
α1

[f(x0)− f(x∗)] + V (x0, x
∗)

and conclude (1.14).

With help from the above result, we are now ready to analyze the convergence properties

of Algorithm 1.2.2.

Theorem 1.2.2. Suppose that f is a function that belongs to function class F
1,1
Lf

(Rn), and that

{(xt, xt, xt)}Nt=0 are the iterates generated by accelerated gradient descent method with parameters

αt = qt = 2/(t+ 1), γt = t/(2Lf). Then we have

f(xN)− f(x∗) ≤ 4Lf

N(N + 1)
V (x0, x

∗).

11

Proof. By the choices of αt, qt, and γt, we have that αt/γt = 4Lf/(t(t+ 1)) and it is easy to verify

that the assumptions of Proposition 1.2.3 hold. Thus by Proposition 1.2.3, we obtain

f(xN)− f(x∗) ≤ 4Lf

N(N + 1)
(V (x0, x

∗)− V (xN , x∗)) ≤ 4Lf

N(N + 1)
V (x0, x

∗).

Remark from Theorem 1.2.1 that the gradient evaluation complexity of accelerated gradient

descent method for computing an approximate solution of problem (1.3) is O(1/
√
ε), which is better

than that of the gradient descent method and is optimal for function value difference minimization

(see, e.g., the lower complexity bound analysis in [20, 24]). We will incorporate such acceleration

strategy in our algorithm design later in Chapter 2. However, note that the gradient evaluation

is performed at a different point than the output approximate solution in each iteration of the

accelerated gradient descent method, which is less convenient for gradient norm minimization. We

will elaborate on algorithm design and complexity analysis for gradient norm minimization later in

Chapter 3.

12

Chapter 2

Exact matrix-vector multiplication

complexity for kernel projection

and its application on distributed

consensus optimization

Motivated by the consensus problem in distributed optimization, in this chapter we study the

problem of computing a matrix kernel projection of a vector, when the matrix is not known, but its

matrix-vector oracle is accessible. We first study this problem from three perspectives: the control

perspective, the optimization perspective, and the linear algebra perspective. From the control

perspective, we find that a previous method in control literature converges slower than it is claimed,

as its best linear convergence rate has an additional logarithmic term in the worst case. From the

optimization perspective, we derive a novel first-order method based on the accelerated gradient

method, which has a linear convergence rate that is optimal in the order. From the linear algebra

perspective, there has been known study of exact oracle complexity for solving a linear equation

provided with the same matrix-vector oracle, but such result is not readily applicable to our problem

of interest. Here we use the term “exact complexity” to emphasize that not only the complexity is

optimal in order, but also the constant appearing in the complexity bound is unimprovable. Based

13

on our observations from the three perspectives, under a linear span assumption, we propose a novel

iterative method which attains the exact oracle complexity for our problem of interest. In the realm

of general methods, we provide an exact lower complexity bound under the assumption that the

dimension of our problem is sufficiently large.

2.1 Introduction

The problem of interest in this chapter is the following kernel projection problem:

min
x∈Rn

1

2
∥x− u∥2 subject to Ax = 0. (2.1)

Here we assume that A is symmetric and positive semi-definite and our goal is to compute an

Euclidean projection of vector u to the kernel space of A, denoted by kerA. The problem above

clearly has a unique optimum, which we denote as x∗, the orthogonal projection of u onto kerA. Our

goal is to compute an ε-solution x such that ∥x− x∗∥ ≤ ε. The above problem is motivated by the

distributed consensus problem widely studied in optimization and control literature. Specifically, we

have m-agents with their respective u(i)’s hoping to reach a consensus by solving problem

min
y∈Rd

1

2

m∑
i=1

∥y − u(i)∥2. (2.2)

To solve the above problem, the agents are only able to communicate with each other through a

communication network G = (V,E). At each time-step, an agent is only able to communicate with

its neighboring agents. In order to solve problem (2.2), it is a common approach to reformulate it

to

min
x∈Rn

1

2
∥x− u∥2 subject to (W ⊗ Id)x = x, (2.3)

where n = md, u = ((u(1))⊤, . . . , (u(m))⊤)⊤ ∈ Rn, Id is the d × d identity matrix, ⊗ denotes

the Kronecker product, and W ∈ Rm × Rm is a symmetric positive semi-definite matrix that is

determined by the network topology. The assumption on W is that its largest eigenvalue is 1

with multiplicity 1 and associated eigenvector 1m := (1, . . . , 1)⊤ ∈ Rm. With such assumption of

W , if we denote x = ((x(1))⊤, . . . , (x(m))⊤) ∈ Rn where x(i) ∈ Rd for all i, then the constraint

14

(W ⊗ Id)x = x enforces that all components x(i)’s are the same, i.e., that the agents have consensus

x(1) = . . . = x(m). Indeed, any symmetric positive semi-definite W that satisfies the aforementioned

eigenvalue and eigenvector assumption can be used for enforcing the consensus constraint; any W

that satisfies such assumptions are usually referred to as a mixing matrix. For some examples of

mixing matrices, see, e.g., [27]. The formulation (2.3) is clearly a special case of our problem of

interest (2.1) with A := In −W ⊗ Id.

2.1.1 Notations

We denote the kernel and image space for a matrix A ∈ Rn×n as kerA := {x ∈ Rn|Ax = 0}

and imA := {y ∈ Rn|y = Ax, x ∈ Rn}, respectively. For a symmetric matrix A with eigenvalue

decomposition A = UΛU⊤ where U is an orthogonal matrix and Λ is a diagonal matrix, we denote

|A| := U |Λ|U⊤, where |Λ| is a diagonal matrix whose entries are absolute values of that of Λ. If A is

in addition positive semi-definite A, we denote Aα := UΛαU⊤, where the power function (·)α acts

element-wisely on the entries of Λ. We assume that the largest and smallest nonzero eigenvalues of

A are ℓ and σ, respectively. We use ∥ · ∥ to denote the Euclidean norm on vectors or the spectral

norm for matrices. For any positive integer n, we use In ∈ Rn×n to denote the identity matrix. The

i-th standard basis vector is denoted by ei := (0, . . . , 0, 1, 0, . . . , 0)⊤.

2.2 Three perspectives associated with the problem

In this section, we provide three perspectives on studying the kernel projection problem (2.1).

First, we study the problem from the control perspective, following the result on linear iterations

for distributed averaging [16]. Second, we study the problem from the optimization perspective by

reformulating it as a least squares problem and solving it using a first-order method in [24]. Third,

we study the problem from the linear algebra perspective, following the exact complexity analysis

for solving linear systems in [21]. We will point out the possibility for small improvements in each

perspective. With the small improvements, we will show in the next sections that by modifying and

associating the results in the three perspectives together, we are able to develop the exact matrix-

vector complexity for problem (2.1) and obtain a new result on distributed consensus optimization.

15

2.2.1 The control perspective

In this subsection, we discuss our problem of interest (2.1) from the control perspective,

following the analysis on distributed consensus optimization in [16]. The goal of [16] is to design

a weighted averaging type iterative algorithm for solving the consensus problem (2.2). In each

iteration, it is assumed that each agent will use the mixing matrix W to update its local variable

x(i). For example, the simpliest consensus update scheme is x
(i)
t+1 = Wx

(i)
t , where x

(i)
t+1 and x

(i)
t are

the local variable x(i) in iterations t + 1 and t, respectively. The authors in [16] propose to study

the weighted averaging type algorithm of form x
(i)
t+1 = (g + 1)Wx

(i)
t − gx

(i)
t−1 and study the best

weights g ∈ (−1, 1) for achieving the fastest convergence to consensus. Note that using our notation

of A = In −W ⊗ Id, such weighted averaging type algorithm becomes

xt+1 = (g + 1)(In −A)xt − gxt−1, t ≥ 1. (2.4)

The core concept behind the analysis of [16] is to study the fix point iteration properties

of algorithm in (2.4) and the best choice of parameter g. In [16] the authors first proved that this

algorithm converges to the optimal solution when g ∈ (−1, 1):

Proposition 2.2.1. When applying iteration (2.4) to solve problem (2.2) with initial iterates x1 =

x0 = u, the iterates xt of converges asymptotically to the optimal solution of problem (2.2) if and

only if g ∈ (−1, 1).

Our focus throughout this subsection is to review the analysis of [16] on the convergence of

algorithm in (2.4) and establish an explicit matrix-vector multiplication complexity.

Clearly the system (2.4) will give an x⋆ ∈ kerA if it has a fixed point, e.g., x⋆ = (g+1)(In−

A)x⋆ − gx⋆ and hence Ax⋆ = 0.

In order to study the fix point iteration property of the algorithm in (2.4), the authors of

[16] reformulate it as a linear system of form zt+1 = Bzt and study its eigenvalue and eigenvector

properties:

zt+1 :=

xt+1

xt

 = Bzt :=

(g + 1)(In −A) −gIn

In 0

 xt

xt−1

 . (2.5)

16

Clearly, fixed points of the above system is z⋆ =

x⋆

x⋆

 where x⋆ is a fixed point of system (2.4).

The matrices B and A are related in the following way:

Proposition 2.2.2. The characteristic polynomials of B and A satisfy that det(λI2n − B) =

det[(λ2 − gλ − λ + g)In + λ(g + 1)A]. Moreover, for each multiplicity of eigenvalue µ ∈ [0, 1] of

A, the complex pair λ+ and λ− of form

λ± =
(g + 1)(1− µ)±

√
−1
√

4g − (g + 1)2(1− µ)2

2

contributes to one pair of eigenvalues of B. Specifically, λ± are solutions to the quadratic equation

−(λ2 − gλ− λ+ g) = µ(g + 1)λ (2.6)

with respect to λ. As a consequence, the second largest absolute value of the eigenvalues of B is

ρ(g) =

(g+1)(1−σ)+

√
(g+1)2(1−σ)2−4g

2 if − 1 < g ≤ g⋆

√
g if g⋆ ≤ g < 1.

Here g⋆ :=
(
1−

√
2σ−σ2

1−σ

)2
.

Proof. We study the relationship between the eigenspaces of B and A by relating the matrix poly-

nomial below,

det(λI2n −B) = det

λIn − (g + 1)(In −A) gIn

−In λIn

= det(λIn) det[λIn − (g + 1)(In −A)− gIn(λIn)

−1(−In)]

= det(λIn) det[(λ− g − 1 + g/λ)In + (g + 1)A]

= λn det[(λ− g − 1 + g/λ)In + (g + 1)A]

= det[(λ2 − gλ− λ+ g)In + λ(g + 1)A].

Here the second equality follows from the Schur complement of the lower right block, and the rest

of the equalities follow from properties of matrix determinant. Notice that the behavior of system

17

(2.5) relies completely on the spectral radius of B, or more precisely, the maximum absolute value

of eigenvalues of B which are not 1, and the corresponding eigenspace.

Clearly, for any eigenvalue µ ∈ [0, 1] of A, the solutions

λ =
(g + 1)(1− µ)±

√
(g + 1)2(1− µ)2 − 4g

2
=

(g + 1)(1− µ)±
√
−1
√
4g − (g + 1)2(1− µ)2

2

of quadratic equation −λ2−gλ−λ+g
λ(g+1) = µ with respect to (w.r.t.) λ give a pair of eigenvalues of B;

e.g., when µ = 0, we have λ ∈ {1, g}, where λ = 1 acts as an identity map on its eigenspace of

system (2.5), and λ = g acts as a contraction on its eigenspace of system (2.5). Due to the fact that

these solutions are both positive or both complex, and hence the monotonicity of |λ| w.r.t. µ, the

maximum absolute value of eigenvalues of B which do not equal 1 is

ρ(g) =

(g+1)(1−σ)+

√
(g+1)2(1−σ)2−4g

2 if (g + 1)2(1− σ)2 ≥ 4g

√
g if σ ≥ 1− 2

√
g

1+g

=

(g+1)(1−σ)+

√
(g+1)2(1−σ)2−4g

2 if − 1 < g ≤ g⋆

√
g if g⋆ ≤ g < 1

because |λ| is monotonic w.r.t. µ.

The above proposition is a more detailed description of the results in Lemmas 1, 4, 5 and

Proposition 3 in [16]. Clearly, the value of ρ(g) is the smallest with ρ(g⋆) =
√
g⋆ = 1−

√
2σ−σ2

1−σ when

g = g⋆. Based on the observation of the g value that yields the smallest ρ(g), it is concluded in [16]

that such a choice of g is the best choice for the consensus algorithm in (2.4).

The convergence rate of algorithm in (2.4) is not discussed in [16]. Below we extend their

results by providing the convergence in terms of ∥xt+1 − x⋆∥:

Theorem 2.2.1. The algorithm in (2.4) satiesfies that

∥xt+1 − x⋆∥ =

tρ(g)tO(1)∥u− x⋆∥ if g = g⋆

ρ(g)tO(1)∥u− x⋆∥ if g ̸= g⋆, −1 < g < 1.

Proof. It is important to note that, even if A is symmetric and admits an orthogonal diagonalization,

18

it is not the case for B. In fact, Liu and Morse showed Lemma 1 in [16] that, if (2.6) holds, (µ, a) is

an eigenvalue-eigenvector pair of A if and only if (λ, [a⊤, a⊤/λ]⊤) is an eigenvalue-eigenvector pair

of B.

Indeed, compute

(λI2n −B)

a
b

 =

λIn − (g + 1)(In −A) λIn

−In λIn

a
b

 = 0

we must have that a = λb from the second row, and substitute into the first row and obtain [(λ−g−

1+g/λ)In+(g+1)A]a = 0. Note that (2.6) holds, the above equation becomes (g+1)(−µIn+A)a = 0,

i.e., (µIn −A)a = 0, (µ, a) must be an eigenvalue-eigenvector pair of A. Hence

a
b

 =

 a

a/λ

 is the

only eigenvector which associates to (µ, a) of A. This means (i), if (2.6) has no repeated solution for

all eigenvalues µ of A, then B is diagonalizable; and (ii), if (2.6) has repeated solutions λ+ = λ− for

some eigenvalue µ of A, then B is NOT diagonalizable, as it has a 2 × 2 Jordan block of the formλ 1

0 λ

. It is also important to note that in the case g = g⋆, λ+ = λ− give a pair of repeated root

for each multiplicity of µ = σ, which results in a Jordan block of the form

√g⋆ 1

0
√
g⋆

.
Hence we have two kinds of vectors in the eigenspace of B for a pair of λ±, (i) an eigenvector

v such that Bv = λv for λ ∈ {λ±}, or (ii) a vector w such that (B−λI2n)w = v for some eigenvector v

which satisfies that Bv = λv. Then for case (ii), clearly Btw = λtw+tλt−1v = λtw+tλt−1(Bw−λw)

for all t ≥ 1; here it is expressed in terms of w for a simplified notation by omitting v.

Let us introduce the Jordan decomposition B in Bû = V JV −1û, where V is an invertible

but not necessary orthogonal matrix, J is the block diagonal matrix which consists of either 1×1 or

2×2 Jordan blocks, and û :=

u
u

. Furthermore, denote y := V −1û ∈ R2n, i.e., û = V y =
∑2n

j=1 yjvj ,

19

where vi is the i-th column of V . Hence for the algorithm in (2.4),

zt+1 =Btz1 = Btû =

2n∑
j=1

yjB
tvj

=
∑

j:vj eigenvector

yjB
tvj +

∑
j:vj non-eigenvector

yjB
tvj

=
∑

j:vj eigenvector

yjλ
t
jvj +

∑
j:vj non-eigenvector

yj [λ
t
jvj + tλt−1

j (Bvj − λjvj)]

=

2n∑
j=1

yjλ
t
jvj + t

∑
j:vj non-eigenvector

yjλ
t−1
j (Bvj − λjvj)

The convergence of zt+1 relies on the spectral radius B, thus the limit z⋆ of the z-trajectory is exactly

yjvj for vj being the eigenvector associated with λj = 1. By computing zt+1 − z⋆, all remaining

eigenvalues have absolute values strictly less than 1, therefore

∥z1 − z⋆∥ =

∥∥∥∥ ∑
j:λj ̸=1

yjvj

∥∥∥∥
and, more generally,

∥zt+1 − z⋆∥ =

∥∥∥∥ ∑
j:λj ̸=1

yjλ
t
jvj + t

∑
j:vj non-eigenvector

yjλ
t−1
j (Bvj − λjvj)

∥∥∥∥
≤
∑

j:λj ̸=1

∥yjλt
jvj∥+ t

∑
j:vj non-eigenvector

∥yjλt−1
j (Bvj − λjvj)∥

≤ρ(g)t
∑

j:λj ̸=1

∥yjvj∥+ tρ(g)t−1
∑

j:vj non-eigenvector

∥yj(Bvj − λjvj)∥

=tρ(g)tO(1)∥z1 − z⋆∥.

Here the first inequality is triangle inequality for vector norm, the second inequality follows from

the definition of ρ(g). For the last equality, note that if B is diagonalizable for a particular choice of

g, then the second summation involving non-eigenvectors will not exist, then the bound reduces to

∥zt+1 − z⋆∥ = ρ(g)tO(1)∥z1 − z⋆∥.

Finally, by definition, ∥xt+1 − x⋆∥ ≤ ∥zt+1 − z⋆∥, and ∥z1 − z⋆∥ =
√
2∥u− x⋆∥, we can translate the

results in terms of x.

20

From Theorem 2.2.1 we can observe that the number of matrix-vector multiplications in

order to obtain an ε-solution is of order Ω(
√

ℓ
σ log(1ε log

1
ε)), which is optimal in order but converges

slower with a double logarithm.

2.2.2 The optimization perspective

In this subsection, we study our problem of interest (2.1) from an optimization perspective.

Specifically, we show that the Lagrangian dual problem of (2.1) can be formulated as a convex

quadratic program and solved by gradient based methods, e.g., the accelerated gradient method

[23] (see also [24, 11]). We show that linear convergence can be established by observing the strong

convexity of the dual problem in imA. Our analysis follows that of [11] and adopting the analysis

in [24].

It should be noted that the kernel projection problem is equivalent to

min
x∈Rn

1

2
∥x− u∥2 subject to A1/2x = 0, (2.7)

The equivalence of problems (2.1) and (2.7) is straightforward by observing that kerA = kerA1/2.

The above problem (2.7) can also be equivalently formulated as the following saddle point problem

with primal vector x and dual vector z:

min
x∈Rn

max
z∈Rn

1

2
∥x− u∥2 +

〈
A1/2x, z

〉
= max

z∈Rn
min
x∈Rn

1

2
∥x− u∥2 +

〈
A1/2x, z

〉
. (2.8)

The equivalence between the above reformulation and the original problem (2.1) is trivial: whenever

A1/2x ̸= 0, the maximization problem associated with z will be unbounded.

Consider the equivalently formulated Lagrangian dual problem (2.8). The saddle point

(x∗, z∗) of (2.8) satisfies x∗ − u + A1/2z∗ = 0 and A1/2x∗ = 0. Therefore, to compute an optimal

solution, we may simply maintain the relation x = u−A1/2z for any solution pair (x, z). Applying

such relation to (2.8) and change the maximization with respect to z to minimization for convenience,

we obtain the following dual problem:

min
z∈Rn

1

2
∥A1/2z − u∥2 − 1

2
∥u∥2. (2.9)

21

Note that as long as we obtain a dual optimal solution z∗ for problem (2.9), then x∗ := u−A1/2z∗

is immediately an optimal solution to the kernel projection problem (2.7).

The dual problem (2.9) can be solved numerically through any gradient-based algorithm,

e.g., accelerated gradient descent method [24]. Unfortunately, the gradient of the objective function

in problem (2.9) at any z is Az − A1/2u, in which the information of A1/2u may not be readily

available to us. However, we will show that by implementing a non-Euclidean version of accelerated

gradient descent method (see, e.g., [11]), we are able to compute approximate solution x̂t to the

kernel problem (2.7) without requiring any information on A1/2. Specifically, introducing a change

of variable vector w := A1/2z in problem (2.9), we can reformulate it equivalently as

min
w∈imA1/2

d(w) :=
1

2
∥w − u∥2 − 1

2
∥u∥2. (2.10)

We propose to use accelerated gradient descent method with prox function V (w1, w2) :=
1
2∥A

−1/2(w1−

w2)∥2. Our algorithm is described in Algorithm 2.2.3.

Algorithm 2.2.3 Accelerated gradient descent method

Require: Initial point W0 ∈ Rn, γ ∈ [0, 1], β ≥ 0, q ≥ 0, ξ ∈ [0, 1]
Set Ŵ0 = w0.
for t = 1, . . . , N do

Compute

wt =(1− γ)ŵt−1 + γwt−1,

wt =argmin
w∈Rn

{
1

q
[⟨∇d(wt), w⟩+ βV (wt, w)] + V (wt−1, w)

}
,

ŵt =(1− ξ)ŵt−1 + ξwt.

end for
Output approximate solution xN .

Here our prox-function V : X0 × X → R+ is defined with a continuously differentiable

function v that is strongly convex with respect to Euclidean norm on X0. For example, if we

choose X = Rn, X0 = imA and v(X) = 1/2∥A−1/2X∥2, then we derive a prox function V (x, y) =

1/2∥A−1/2(x− y)∥2.

The convergence properties of the accelerated gradient method is well-known in the litera-

ture; in this chapter we adopt the description in [11]. Specifically, by Theorem 3.7 in [11], we have

the following result:

22

Proposition 2.2.3. If function d is strongly convex with respect to the prox function V , and the

parameters in Algorithm 2.2.3 are chosen to be β = σ, ξ =
√

σ
L , γ = ξ

1+ξ , q = σ(1−ξ)
ξ , then the

approximate solution x̄N satisfies

d(ŵN)− d(w) ≤ (1− ξ)N [d(ŵ0)− d(w) + ξ(σ + q)V (w1, w)] .

By definition of d(w) in (2.10), if ŵt − w ∈ imA, d(ŵt) − d(w) = 1
2∥ŵt − w∥2 for any

t = 0, ..., N . Then for (2.10), Theorem 3.7 in [11] becomes the following proposition.

Proposition 2.2.4. If wt, ŵt, wt, t = 0, ..., N are iterates of Algorithm 2.2.3, and β = σ, ξ =
√

σ
L ,

γ = ξ
1+ξ , q = σ(1−ξ)

ξ , then for any w ∈ imA, the approximate solution x̄N satisfies

1

2
∥ŵN − w∥2 + σV (wN−1, w) ≤ (1− ξ)N

[
1

2
∥ŵ0 − w∥2 + σV (w1, w)

]
.

Furthermore,

1

2
∥ŵN − w∥2 ≤ (1− ξ)N

[
1

2
∥ŵ0 − w∥2 + σV (w1, w)

]
. (2.11)

To apply the above result, it suffices to demonstrate that d is strongly convex with respect

to the prox function V defined in (1.8). To prove this strong convex result, we need to make use of

the following lemma.

We can see directly from the definition of A1/2 that since w = A1/2z, w ∈ imA1/2 = imA.

The strong convexity of d proved in Lemma 2.2.2 follows immediately from Lemma 2.2.1:

Lemma 2.2.1. For any x ∈ imA, we have

σ
∥∥∥A−1/2x

∥∥∥2 ≤ ∥x∥2 ≤ ℓ
∥∥∥A−1/2x

∥∥∥2 (2.12)

Proof. Since A = UΛU⊤, for any x ∈ imA, x ∈ imU , there exists y, z such that x = Uy, x = Az =

23

UΛU⊤z. Hence x = UIy = UU⊤Uy = UU⊤x, and U⊤x = ΛU⊤z ∈ imΛ.

∥x∥2 =x⊤UU⊤UU⊤X = x⊤UU⊤x

=x⊤UΛ−1/2ΛΛ−1/2U⊤x+ x⊤U
(
I − Λ−1/2ΛΛ−1/2

)
U⊤x

=x⊤UΛ−1/2ΛΛ−1/2U⊤x

∈
[
σ∥Λ−1/2U⊤x∥2, ℓ∥Λ−1/2U⊤x∥2

]
(2.13)

Here we have the third equality derived because Λ is a diagonal matrix and I − Λ−1/2ΛΛ−1/2 ∈

(imΛ)⊥.

We observe that in (2.13), ∥Λ−1/2U⊤x∥2 = x⊤UΛ−1/2U⊤UΛ−1/2U⊤x = x⊤A−1/2A−1/2x =

∥A−1/2x∥2, then (2.12) is obtained.

Lemma 2.2.2. The dual problem (2.9) is strong convex on imA with prox function V (w1, w2) :=

1
2∥A

−1/2(w1 − w2)∥2.

Proof. For any z1, z2 ∈ imA, there exist w1, w2, and σ > 0 such that w1 = A1/2z1, w2 = A1/2z2.

By (2.10) and Lemma 2.2.1, d(w1) − d(w2) − ⟨∇d(w2), w1 − w2⟩ − σV (w1, w2) = 1
2∥w1 − w2∥2 −

σ
2 ∥A

−1/2(w1 − w2)∥2 ≥ 0. In other words, the dual problem is strongly convex with respect to the

prox function V (w1, w2) :=
1
2∥A

−1/2(w1 − w2)∥2.

It should be noted that we choose the prox function V as an operation norm defined by

operator T : Rn → imA, T (x) = A−1/2x (instead of the trivial Euclidean version under which d is

trivially strongly convex) for the sole purpose of avoiding the requirement on knowledge of A1/2.

Indeed, we can show that the accelerated gradient method in Algorithm 2.2.3 can be described

equivalently as in Algorithm 2.2.4. Although they are equivalent, to distinguish their different

descriptoins, we denote Algorithm 2.2.3 and 2.2.4 by AGD and AGD2 respectively.

Recall that our purpose is to solve the primal problem of x. Following directly from (2.11),

Therom 2.2.2 showed that Algorithm 2.2.4 converge linearly with respect to x̂t.

Theorem 2.2.2. If we have that β = σ, ξ =
√

σ
L , γ = ξ

1+ξ and q = σ(1−ξ)
ξ , then Algorithm 2.2.4

24

Algorithm 2.2.4 An equivalent description of accelerated gradient descent method (AGD2)

Require: Initial point x̂0 = u− w0 ∈ Rn, ŵ0, w0, w0 ∈ imA
for t = 0, 1, . . . , N do

wt = (1− γ)ŵt−1 + γwt−1,

xt = u− wt,

wt =
1

qσ + q
(qσwt + qwt−1 +Axt),

ŵt = (1− ξ)ŵt−1 + ξwt,

x̂t = u− ŵt.

end for

has a O

(√
ℓ
σ log 1

ε

)
complexity with,

∥x̂N − x∗∥2 ≤ 2
(
1−

√
σ/ℓ
)N

∥x̂0 − x∗∥2, (2.14)

Proof. By definition of d(w) in (2.10), since ŵN − w∗ ∈ imA, d(ŵN)− d(w∗) = 1
2∥ŵN − w∗∥2. Let

w = w∗ in (2.11), we obtain

∥ŵN − w∥2 ≤(1− ξ)N
[
∥ŵ0 − w∥2 + 2σV (w1, w)

]
.

=
(
1−

√
σ/ℓ
)t [

∥ŵ0 − w∗∥2 + σ∥A−1/2(w0 − w∗)∥2
]

≤2
(
1−

√
σ/ℓ
)N

∥ŵ0 − w∗∥2.

Since ŵt = u − x̂t, t = 0, 1, ..., N and w∗ = u − x∗, the above inequality becomes (2.14). Without

loss of generality, we can define w0 = w0 = w−1 = 0.

Remark that Theorem 2.2.2 shows an ε-approximate solution is obtained with O
(√

ℓ/σ log 1/ε
)

matrix-vector multiplication complexity.

2.2.3 The linear algebra perspective

From the optimization perspective described in the previous subsection, we observed that

our problem of interest (2.1) has a dual problem (2.9) with respect to dual variable vector z. The

25

optimality condition of the dual problem is

Az = b where b := A1/2u. (2.15)

As mentioned in the previous subsection, the information of b is not readily available. However,

if we assume that we know the value of b, it suffices to solve the above linear system to compute

an approximate dual optimal solution. Moreover, the iteration complexity theory on solving linear

systems has already been well developed thanks to [21]. In this subsection, we describe the results in

[21] concerning the complexity for solving the linear system (2.15) by matrix-vector multiplications

concerning A.

As described in the introduction, in complexity analysis we are interested in both the upper

and lower bounds, where the upper bounds are established by analyzing the convergence properties

of numerical methods, and the lower bounds are established by constructing worst-case instances.

Concerning the complexity analysis on solving the linear system (2.15), the numerical methods of

interest are methods that only utilizes matrix-vector multiplications, and the worst-case instances

would be the worst possible choice of matrix A and b in problem (2.15). To better describe the core

idea in [21], we deter the technical discussion on general matrix-vector multiplication methods and

make a further simplification that the numerical methods of interest are Krylov subspace methods,

namely they have iterations in the linear span:

zt ∈ span{b, Ab, . . . , Atb}.

Note that the above assumption is equivalent to zt = q(A)b, where q is a polynomial such that

deg q ≤ t. The design of a Krylov subspace type method is equivalent to find a proper polynomial q.

Therefore, the complexity analysis for problem (2.15) can be informally formulated as the following

saddle point problem:

inf
q: deg q≤t

sup
A,b

∥q(A)b− z∗∥.

Here z∗ is an optimal solution to problem (2.15). The above saddle point problem captures the nature

of upper and lower complexity bounds. For the infimum problem, we are interested at designing a

numerical method (namely finding q) whose iterate zt has small error ∥zt − z∗∥ in the worst-case.

26

For the supremum problem, we are interested at designing worst-case problem instances with A and

b such that the best possible performance among all numerical methods yield large error ∥zt − z∗∥.

Formally, in [21] it is assumed that the problem class for A and b are the following:

V(Σ, R) := {(A, b)| positive spectrum of A ⊂ Σ,

Az∗(A, b) = b, z∗(A, b) ∈ imA, ∥z∗(A, b)∥ ≤ R.}

The main result of [21] indicates that the best worst-case approximate linear span method, which

realizes its worst-case approximation error for some problem instance, will be the best amongst all

deterministic methods in terms of the worst-case error, as long as the problem dimension n at least

doubles the maximum number of iterations.

Proposition 2.2.5. Let Σ be a compact set, then for each t,

inf
q: deg q≤t

sup
A,b

∥(q(A)A− In)z
∗(A, b)∥ = Rmax

t∈Σ
|p∗(t)|.

The best linear span method can be determined by Chebyshev polynomial, when Σ is a

closed interval that is strictly positive; see [19] for a reference:

Lemma 2.2.3. Let Σ = [σ, ℓ], then p∗(t) = Tk+1

(
ℓ+σ−2t
ℓ−σ

)
/Tk+1

(
ℓ+σ
ℓ−σ

)
, and

q∗(t) =
(
Tk+1

(ℓ+ σ − 2t

ℓ− σ

)
/Tk+1

(ℓ+ σ

ℓ− σ

)
− 1
)
/t.

It should be noted that our discussion in this subsection does not apply directly to our

problem of interest, since in the linear system (2.15) the value of b = A1/2u is not available. Moreover,

there is a drawback in the above results of [21] for practical implementation since the total number

of iterations k should be fixed in priori. However, we will show in the next section that we can adopt

the technique in [18] to solve our problem of interest by making some modifications. Moreover, for

our problem, our analysis does not require knowledge on the total number of iterations.

27

2.3 Exact complexity under a linear span assumption

In this section, we prove that the lower complexity bound for solving problem 2.1 is able

to be obtained by Chebyshev method. Specifically, for any algorithm methods which are in the

linear span of (A, u) we design a worst-case problem of problem (2.1) such that the total number

of matrix-vector multiplications required by this algorithm when solving problem (2.1) has to be

greater than or equal to

log
(
(R+

√
R2 − ε2)/ε

)
/ log

(
(
√
ℓ+

√
σ)/(

√
ℓ−

√
σ)
)
.

Therefore, the lower complexity bound is in the order of Ω
(√

ℓ/σ log(R/ε)
)
. Such complexity is

obtained by our proposed Chebyshev method. Moreover, the proposed algorithm achieves not only

the optimal complexity with respect to order O
(√

ℓ/σ log(R/ε)
)
, but also the optimal complexity

with respect to the constant leading the logarithm.

2.3.1 Lower complexity bound under linear span assumption

In this subsection, we consider the lower oracle complexity bound for the following con-

strained optimization problem (2.1) where A is a parameter matrix of size n×n such that A⊤ = A,

∥A∥ = ℓ, and the smallest nonzero eigenvalue of A is σ > 0; u ∈ Rn is a parameter vector. We define

such problem as P(A, u).

In P(A, u) of problem (2.1), the optimality condition is as follows,

x∗(A, u)− u+ y∗(A, u) = 0

y∗(A, u) = Az∗(A, u)

Ax∗(A, u) = 0.

(2.16)

Note here that u = x∗(A, u) + y∗(A, u) is the unique decomposition with respect to the direct sum

Rn = kerA⊕ imA. We define the accuracy of x as an approximate solution to problem P(A, u) by

ε∗(x,A, u) := ∥x− x∗(A, u)∥.

Oracle Assumption. Assume when solving P(A, u) of problem (2.1), u is explicitly given, but A

is not, and at each step we can perform multiplication Av at any v ∈ Rn of our choice.

28

Define the Problem Class of interest

U(Σ, R) := {P(A, u)| positive spectrum of A ⊂ Σ,

y∗(A, u) ∈ imA, ∥y∗(A, u)∥ ≤ R.}
(2.17)

We fix compact set Σ ⊂ R which consists only positive values, e.g., Σ = [σ, ℓ], and let t > 0

be an integer. Define

δ(t,Σ) = min
q: deg q≤t,q(0)=1

max
t∈Σ

|q(s)|. (2.18)

Recall that in this section, we only consider the methods which are in the linear span of (A, u), i.e.,

the t-th approximate solution (what the method returns after t multiplications of A and recursively

computed vectors) xt ∈ u − span{Au, . . . , Atu}, where t is the iteration counter. In other words,

xt = q(A)u where q is a polynomial such that deg q ≤ t and q(0) = 1. Let qΣ,t(s) be the optimal

solution to the above problem δ(t,Σ). Let MΣ be the method such that, as applied to P(A, u), it

queries at points u,Au,A2u . . ., recursively computes Au,A2u,A3u, . . ., and returns the points

x̂t(A, u) := qΣ,t(A)u

as approximate solutions.

By (2.16), we have that xt = x∗(A, u) + q(A)y∗(A, u) and ε∗(x,A, u) = ∥x − x∗(A, u)∥ =

∥q(A)y∗(A, u)∥. We formulate the problem of finding the “best” method which gives the “worst-case

guarantee” as follows:

inf
q: deg q≤t, q(0)=1

sup
P(A,u)∈U

∥x− x∗(A, u)∥2

= min
q: deg q≤t, q(0)=1

max
a∈Σm, b∈Rm,m<n: ∥b∥≤R

m∑
i=1

(q(ai)bi)
2

= min
q: deg q≤t, q(0)=1

max
a∈Σm,m<n

max
i=1,...,m

R2(q(ai))
2

=R2 min
q: deg q≤t, q(0)=1

max
s∈Σ

(q(s))2

(2.19)

The first equality holds because whenA = UΛU⊤ is diagonalizable, ∥q(A)y∗(A, u)∥ = ∥q(Λ)(U⊤y∗(A, u))∥,

∥U⊤y∗(A, u)∥ = ∥y∗(A, u)∥, hence it all boils down to the positive eigenvalues of A.

By standard uniform polynomial approximation (see cf. [20], Exercise 12.6.2), we have the

29

following lemma, which indicates that as long as n > t+ 1, the last equality of the above holds.

Lemma 2.3.1. A polynomial q is optimal to

min
q: deg q≤t, q(0)=1

max
s∈Σ

|q(s)|

if and only if there exists (t+ 1) points a0 < . . . < at in Σ such that

q(ai) = (−1)i max
t∈Σ

|q(t)|, or q(ai) = (−1)i+1 max
t∈Σ

|q(s)|.

In the case that Σ = [σ, ℓ], the optimizer polynomial is based on Chebyshev polynomial Tt

of degree t:

q∗(s) = Tt

(ℓ+ σ − 2s

ℓ− σ

)
/Tt

(ℓ+ σ

ℓ− σ

)
,

where

Tt(s) =

cos(t arccos s) s ∈ [−1, 1]

1
2 [(s−

√
s2 − 1)t + (s+

√
s2 − 1)t] otherwise

(2.20)

Hence the method we propose is

x̂t =
Tt(

ℓ+σ
ℓ−σ In − 2

ℓ−σA)

Tt(
ℓ+σ
ℓ−σ)

u

Based on the property of Chebyshev polynomials and the chain of equalities (2.19), we note

that the problem P(A, u) which produces the maximum worst-case error, regardless of the method

polynomial q, satisfies that

{λ > 0 : λ is an eigenvalue of A} ⊃ {1
2
[(L+ σ)− (L− σ) cos(jπ/t)] : j = 0, . . . , t};

note that the above enlisted eigenvalues are all maximizers of |Tt(
ℓ+σ−2s
ℓ−σ)|.

Note that Chebyshev polynomial satisfies that T0(s) = 1, T1(s) = s, Tt+1(s) = 2sTt(s) −

Tt−1(t) for all t ≥ 1, we have recurrence Algorithm 2.3.5.

Here the sequence xt = Tt(
ℓ+σ
ℓ−σ In − 2

ℓ−σA)u is always well defined, because the eigenvalues

30

Algorithm 2.3.5 Chebyshev method

Require: Initial point x0 = u ∈ Rn, ℓ > σ > 0

x1 =
ℓ+ σ

ℓ− σ
u− 2

ℓ− σ
Au.

for t = 1, . . . , T do

xt+1 = 2
ℓ+ σ

ℓ− σ
xt −

4

ℓ− σ
Axt − xt−1,

x̂t =
2(

√
ℓ−

√
σ√

ℓ+
√
σ
)t

(
√
ℓ−

√
σ√

ℓ+
√
σ
)2t + 1

xt.

end for

of ℓ+σ
ℓ−σ In − 2

ℓ−σA are all in [−1, 1].

We prove in this subsection that the lower complexity bound for solving problem (2.1) is

able to be obtained by Chebyshev method. In the following section, we will explicitly provide the

convergence analysis of Chebyshev method.

2.3.2 Chebyshev method

Recall that without loss of generality, we can assume that ∥A∥ = ℓ and the smallest nonzero

eigenvalue of A is σ. Also we can perform decomposition of vector u as u = x∗ + y∗, such that

Ax∗ = 0 and y∗ = Az∗ for some z∗. In other words, y∗ ∈ imA, x∗ ∈ kerA. Decompose the matrix A

as A = UΛU⊤ with matrix U orthogonal. Λ is a diagonal matrix and diagonal entries are eigenvalues

of matrix A. Since y∗ ∈ imA and x∗ ∈ kerA, we have that U⊤y∗ ∈ imΛ and U⊤x∗ ∈ kerΛ. Assume

that ∥y∗∥ = ∥u− x∗∥ ≤ R. We have the optimal Algorithm 2.3.5 solving 2.1 equivalently expressed

as Algorithm 2.3.6.

Algorithm 2.3.6 Chebyshev method

Require: Initial point x̂0 = u ∈ Rn

for t = 0, 1, . . . , T do

xt = u− P (A)Au.

end for

The convergence analysis of Algorithm 2.3.6 for solving Problem (2.1) is provided in the

following theorem,

31

Theorem 2.3.1. Let {xt}Nt=0 be iterate of Algorithm 2.3.6 for solving problem (2.1). If the polyno-

mial P is defined as

P (s) =
1

s

[
Tt

(
ℓ+ σ

ℓ− σ

)
− Tt

(
ℓ+ σ − 2s

ℓ− σ

)]
/Tt

(
ℓ+ σ

ℓ− σ

)
,∀s ∈ [σ, ℓ], (2.21)

where Tt is the Chebyshev polynomial defines in (2.20), then we have

∥xt − x∗∥ ≤R/

∣∣∣∣Tt

(
ℓ+ σ

ℓ− σ

)∣∣∣∣ .
Proof. Combining the above with xk − x∗ = u− P (A)Ay∗ − x∗ = y∗ − P (A)Ay∗ and ∥y∗∥ ≤ R, we

have that

∥xt − x∗∥ =∥y∗ − P (A)Ay∗∥ = ∥UU⊤y∗ − UΛP (Λ)U⊤(x∗ + y∗)∥

=∥UU⊤y∗ − UΛP (Λ)U⊤y∗∥ = ∥U⊤y∗ − ΛP (Λ)U⊤y∗∥

≤∥U⊤y∗∥ · ∥I − ΛP (Λ)∥ ≤ R · ∥I − ΛP (Λ)∥.

(2.22)

Let A be a matrix with eigenvalues a(1),...,a(m),0,...,0, such that a(i) ∈ [σ, ℓ], for i = 1, ...,m.

Then by (2.22), we have that

∥xt − x∗∥2 ≤ max
a∈[σ,ℓ]m

max
i=1,...,m

R2(1− a(i)P (a(i)))2 ≤ max
s∈[σ,ℓ]

R2(1− sP (s))2

Thus to find the upper bound of ∥xt − x∗∥, it is suffices to solve maxs∈[σ,ℓ] R|1 − sP (s)|. In other

words,

∥xt − x∗∥ ≤ max
s∈[σ,ℓ]

R|1− sP (s)|. (2.23)

By definition of P in (2.21), P satisfies

1− sP (s) = Tt

(
ℓ+ σ − 2s

ℓ− σ

)
/Tt

(
ℓ+ σ

ℓ− σ

)
, ∀s ∈ [σ, ℓ]. (2.24)

By the previously aquired inequality (2.24), we have that

|1− sP (s)| ≤
∣∣∣∣Tt

(
ℓ+ σ − 2s

ℓ− σ

)∣∣∣∣ / ∣∣∣∣Tt

(
ℓ+ σ

ℓ− σ

)∣∣∣∣ , ∀s ∈ [σ, ℓ]. (2.25)

32

With t ≤ m+ 1, consider a′ such that

a′ =arg max
s∈[σ,ℓ]

∣∣∣∣Tt

(
ℓ+ σ − 2s

ℓ− σ

)∣∣∣∣ / ∣∣∣∣Tt

(
ℓ+ σ

ℓ− σ

)∣∣∣∣
=arg max

s∈[σ,ℓ]

∣∣∣∣Tt

(
ℓ+ σ − 2s

ℓ− σ

)∣∣∣∣ .
By the definition of Chebyshev function (2.20), we have that

a′ =
1

2

[
ℓ+ σ − (ℓ− σ) cos (

jπ

t
)

]
, j = 0, ..., t. (2.26)

And when (2.26) satisfies,

∣∣∣∣Tt

(
ℓ+ σ − 2a′

ℓ− σ

)∣∣∣∣ = 1,

and thus by (2.25) for any s ∈ [σ, ℓ], we have that

|1− sP (s)| ≤
∣∣∣∣Tt

(
ℓ+ σ − 2a′

ℓ− σ

)∣∣∣∣ / ∣∣∣∣Tt

(
ℓ+ σ

ℓ− σ

)∣∣∣∣ = 1/

∣∣∣∣Tt

(
ℓ+ σ

ℓ− σ

)∣∣∣∣ . (2.27)

Combining (2.27) with (2.23), we have the upper bound of Algorithm 2.3.6 as

∥xt − x∗∥ ≤ max
s∈[σ,ℓ]

R|1− sP (s)| ≤ R/

∣∣∣∣Tt

(
ℓ+ σ

ℓ− σ

)∣∣∣∣ .

Observe from the previous theorem that since 1/Tt

(
ℓ+σ
ℓ−σ

)
∈

[
1
2

(√
ℓ/σ−1√
ℓ/σ+1

)t

,

(√
ℓ/σ−1√
ℓ/σ+1

)t
]
,

we have that the upper bound of ∥xt − x∗∥ lies in

R
2

(√
ℓ/σ − 1√
ℓ/σ + 1

)t

, R

(√
ℓ/σ − 1√
ℓ/σ + 1

)t
 .

Specifically, observe from Theorem 2.3.1 and that to obtain an approximate solution such that

33

∥xt − x∗∥ ≤ ε, the total number of iteration N satisfies

R

ε
=

1

2

(√
ℓ+

√
σ√

ℓ−
√
σ

)N

+

(√
ℓ−

√
σ√

ℓ+
√
σ

)N
 .

Noting that the above is a quadratic equation in terms of
(√

ℓ+
√
σ√

ℓ−
√
σ

)N
that is greater than 1, we can

derive that

(√
ℓ+

√
σ√

ℓ−
√
σ

)N

=
R

ε
+

√
R2

ε2
− 1.

This gives the exact total number of matrix-vector multiplications required by this algorithm when

solving P(A, u) has to be greater than or equal to

N = log
(
(R+

√
R2 − ε2)/ε

)
/ log

(
(
√
ℓ+

√
σ)/(

√
ℓ−

√
σ)
)
.

Remark that in the previous subsection we proved that the lower matrix-vector multiplications com-

plexity is obtained exactly by Chebyshev method in Algorithm 2.3.6. Thus the upper matrix-vector

multiplications complexity bound of the proposed algorithm, in the order of O
(√

ℓ/σ log(R/ε)
)
,

matches exactly with our lower complexity bound. More specifically, the proposed algorithm achieves

not only the optimal complexity with respect to order, but also the optimal complexity with respect

to the constant leading the logarithm.

2.4 Lower complexity bound analysis for general determin-

istic methods

In this section, we consider more general deterministic methods for problem P(A, u) of

problem (2.1) which are not necessarily in the linear span of (A, u).

For each deterministic method M solving problems from a collection U of problems based

on the oracle assumption, we let xM(t, A, u) denote the t-th approximate solution (what the method

returns after t multiplications of A and recursively computed vectors), then the worst-case accuracy

34

measure w.r.t. collection U is

ε(M, t,U) = sup
(A,u)∈U

ε∗(xM(t, A, u), A, u),

and the best possible worst-case accuracy is

e(t,U) = inf
M

ε(M, t,U).

Define the Problem Class of interest

U(Σ, R) := {(A, u)| positive spectrum of A ⊂ Σ,

y∗(A, u) ∈ imA, ∥y∗(A, u)∥ ≤ R.}

Fix compact set Σ ⊂ R which consists only positive values, e.g., Σ = [σ, ℓ], and let t > 0 be

an integer. Define

δ(t,Σ) = min
q: deg q≤t, q(0)=1

max
t∈Σ

|q(s)|,

where q is a function describing M. Let qΣ,t(s) be the optimal solution to the above problem. Let

MΣ be the method such that, as applied to (A, u), it queries at points u,Au,A2u . . ., recursively

computes Au,A2u,A3u, . . ., and returns the points

x̂t(A, u) := qΣ,t(A)u (2.28)

as approximate solutions.

Let H2 ⊂ H1 such that H1 = span{x∗}⊕H2 and that x∗ ⊥ H2. To compute the worst-case

accuracy measure, we first introduce the following lemma that shows the approximate solutions are

able to be decomposed as a sum of a point on a Krylov space and H2.

Lemma 2.4.1 (Main Lemma). Let M be an arbitrary deterministic method solving problems from

U0, let 2t ≤ n−3. Then there exists an orthogonal matrix V ∈ Rn×n, V u = u such that the following

holds:

R(t, V): the t-th approximate solution xt found by M as appied to (V A0V
⊤, u) lies in

Gt = Et(V A0V
⊤, u) + V H2,

35

where Et(B, b) := span{b, Bb, . . . , Btb} is the t-th Krylov space of (B, b) ∈ Rn×n × Rn.

With the help of Lemma 2.4.1, we are able to show in the following theorem that the

accuracy measure is Rδ(t,Σ).

Theorem 2.4.1. Let Σ be a compact set, then for each t,

ε(MΣ, t,U(Σ, R)) ≤ Rδ(t,Σ), (2.29)

and for each t ≤ n−3
2 ,

ε(MΣ, t,U(Σ, R)) = e(t,U(Σ, R)) ≥ Rδ(t,Σ).

Proof. Step (a), consider any problem (A, u) ∈ U(Σ, R), let A = UΛU⊤ be its diagonalization, then

∥ε∗(xMΣ(t, A, u), A, u)∥2 = ∥x̂t(A, u)− x∗(A, u)∥2

= ∥(qΣ,t(0)− 1)x∗(A, u) + qΣ,t(A)y∗(A, u)∥2

= ∥qΣ,t(A)y∗(A, u)∥2

= ∥WqΣ,t(Λ)W
⊤y∗(A, u)∥2

≤ ∥qΣ,t(Λ)∥2R2

≤ R2 δ2(t,Σ).

Here the first equality is substitution of (2.28); the second equality follows from optimality conditions

(2.16); the third equality follows from qΣ,t(0) = 1; the first inequality follows from (2.17); the second

inequality follows from (2.17) and (2.18), the maximum of which is over entire Σ. Since (A, u) is

arbitrary, (2.29) is shown.

Step (b), since {q : deg q ≤ t, q(0) = 1} is a vector space of dimension t, then there exists

Σ′ ⊂ Σ containing at most (t+ 1) points such that

δ(t,Σ) = min
q: deg q≤t, q(0)=1

max
s∈Σ′

|q(s)|.

Let Σ′ = {s1, . . . , sL} be the set of maximizers of the optimal q for some L ≤ t + 1. Let µ =

36

(µ1, . . . , µL) be some probability distribution such that

δ2(t,Σ) = min
q: deg q≤t,q(0)=1

L∑
i=1

µi|q(si)|2. (2.30)

Step (c), let H0 = span{e1, . . . , eL}, H1 = H⊥
0 . Define A0 ∈ Rn×n such that

A0ei = siei 1 ≤ i ≤ L,

A0x = 0 x ∈ H1.

Let y∗ = R
∑L

i=1 µ
1/2
i ei, and let x∗ ∈ H1 be arbitrary so its magnitude can be arbitrarily large.

Further, since H2 ⊂ H1, H1 = span{x∗} ⊕H2 and x∗ ⊥ H2. Define

U0 := {(A, u)|A = V A0V
⊤ for some orthogonal V ∈ Rn×n such that V u = u.}

It is evident that U0 ⊂ U(Σ, R): firstly, (A0, u) ∈ U0 by definition; for any orthogonal V with

V u = u, the optimality condition of problem (V A0V
⊤, u) can be written as

u = V ⊤x∗(A, u) + V ⊤y∗(A, u)

V ⊤y∗(A, u) = A0V
⊤z∗(A, u)

A0V
⊤x∗(A, u) = 0,

hence, by the unique decomposition of u in terms of Rn = kerA ⊕ imA, we know x∗(A, u) = V x∗,

y∗(A, u) = V y∗ = RV
∑L

i=1 µ
1/2
i ei.

We utilize Lemma 2.4.1 to complete the proof of theorem. Let M be a deterministic method,

let (A, u) = (V A0V
⊤, u) be the corresponding problem as in Lemma 2.4.1, then ε∗(xt, A, u) =

∥xt−x∗(A, u)∥ = ∥xt−V x∗∥ = ∥V ⊤xt−x∗∥. Since xt ∈ Et(V A0V
⊤, u)+V H2, V

⊤Et(V A0V
⊤, u) =

Et(A0, u), we know V ⊤xt = w + v, w = q(A0)u, v ∈ H2 for some polynomial q such that deg q ≤ t.

37

Note that by definition, Rn = H0 ⊕H2 ⊕ span{x∗}, clearly,

∥V ⊤xt − x∗∥2 = ∥q(A0)u+ v − x∗∥2

= ∥(q(0)− 1)x∗ + q(A0)y
∗ + v∥2

= (q(0)− 1)2∥x∗∥2 + ∥q(A0)y
∗∥2 + ∥v∥2

= (q(0)− 1)2∥x∗∥2 +
L∑

i=1

R2q2(si)µi + ∥v∥2

≥
L∑

i=1

R2q2(si)µi s.t. deg q ≤ t, q(0) = 1

≥ R2 δ2(t,Σ).

Here the second equality follows from optimality conditions (2.16); the third equality follows because

the three vectors are pairwise orthogonal; the fourth equality follows from (2.30); the first inequality

follows from the arbitrariness of x∗ ∈ H1; the second inequality follows from (2.30). The proof is

therefore complete.

Remark 2.4.1. In fact from the analysis of any Krylov type algorithm which returns V ⊤xt =

q(A0)u + v = q(0)x∗ + q(A0)y
∗ + v, we notice that it will not be optimal if v ̸= 0, nor in the case

that x∗ is possibly large, hence the algorithm must have q(0) = 1.

Remark 2.4.2. It is commonly seen in concensus updates that the mixing matrix W satisfies that

W1 = 1. In our context where A = In −W , it means that 1 ∈ kerA. Although 1 /∈ kerA0 = H1,

we can still find an orthogonal matrix V ∈ Rn×n, V u = u which makes In − A = In − V A0V
⊤ a

mixing matrix. Since kerV A0V
⊤ = V H1, it suffices to make sure that V ⊤1 ∈ H1. An orthogonal

matrix V ∈ Rn×n which satisfies V ⊤u = u and V ⊤1 ∈ H1 is not hard to find, and it has (n − 3)

degree of freedom.

The proof below of the Main Lemma can be moved to the appendix.

Proof of Lemma 2.4.1. Step (i), prove by induction on t̂ that for each t̂ ∈ {0, . . . , t+1}, there exists

an orthogonal Vt̂ ∈ Rn×n, Vt̂u = u, and an t̂-dimensional subspace H t̂ ⊂ H2 such that the following

holds:

38

R∗(t̂, Vt̂, H
t̂): the points x(1), . . . , x(t̂) at which M queries during the first t̂ iterations as

appied to (Vt̂A0V
⊤
t̂
, u) belongs to subspace

Ft̂ = Et̂−1(Vt̂A0V
⊤
t̂
, u) + Vt̂H

t̂,

here we let E−1(B, b) := {0}.

To ensure R∗(0, V0, H
0), as no query/multiplication has been performed yet, we set V0 = In,

H0 = {0}, so F0 = {0}.

Assume t̂ ≤ t and R∗(t̂, Vt̂, H
t̂) holds for certain Vt̂ and H t̂, show R∗(t̂+1, Vt̂+1, H

t̂+1) with

choice of Vt̂+1 and H t̂+1.

Let x(t̂+1) be the (t̂+1)-st point at which M queries as applied to (At̂, u) := (Vt̂A0V
⊤
t̂
, u),

let x(t̂+1) = w+ v be an orthogonal decomposition, where w ∈ Et̂(At̂, u) and v ∈ Et̂(At̂, u)
⊥. Note

that dim(Vt̂H2) = dim(H2) = n− L− 1 ≥ n− t− 2, while dim(Vt̂H
t̂) = t̂ ≤ t. Since 2t ≤ n− 3, we

know dim(Vt̂H2) ≥ dim(Vt̂H
t̂) + 1, then there exists a unit vector

f = Vt̂ϕ, ϕ ∈ H2, (2.31)

which is orthogonal to Vt̂H
t̂. Since Vt̂Et̂(A0, u) ⊂ Vt̂(H0+span{x∗}) and Et̂(At̂, u) = Et̂(Vt̂A0V

⊤
t̂
, u) =

Vt̂Et̂(A0, u), we know Vt̂H2 ⊥ Vt̂Et̂(A0, u) = Et̂(At̂, u), hence f ⊥ Et̂(At̂, u).

Consider P = Et̂(At̂, u) + Vt̂H
t̂, Q = P + span{v}, and S = P + span{f}. Here f ⊥ P , so

there exists an orthogonal W ∈ Rn×n such that

Wx = x ∀x ∈ P

WS ⊃ Q;

(2.32)

here W can be found because dim(S) ≤ 2t̂+ 2 ≤ 2t+ 2 ≤ n− 1.

Since v ⊥ Et̂(At̂, u), W |Et̂(At̂,u)
= In|Et̂(At̂,u)

and Et̂(At̂, u) ⊥ (Vt̂H
t̂ + span{f}), we have

W (Vt̂H
t̂ + span{f}) = Vt̂H

t̂ + span{v}.

Now define

H t̂+1 = H t̂ + span{ϕ}, Vt̂+1 = WVt̂.

Now we prove that R∗(t̂+1, Vt̂+1, H
t̂+1) holds. Clearly, Vt̂+1 is orthogonal, dim(H t̂+1) = t̂+1, and

39

H t̂+1 ⊂ H2. Since u ∈ Et̂(At̂, u) ⊂ P , by (2.32), Vt̂+1u = WVt̂u = Wu = u.

We then show that the first (t̂+1)-st points at whichM queries as applied to (At̂+1, u) = (Vt̂+1A0V
⊤
t̂+1

, u) =

(WAt̂W
⊤, u) belong to Et̂(At̂+1, u) + Vt̂+1H

t̂+1. Note that

Et̂(At̂+1, u) + Vt̂+1H
t̂+1 = W [Et̂(At̂, u) + Vt̂(H

t̂ + span{ϕ})]

= W (P + span{f})

⊃ Q.

The first equality follows from the definition of At̂+1, Vt̂+1, and H t̂+1. The second equality follows

from the definition of P and (2.31). The last inclusion follows from (2.32). It then suffices to show

that the query points all lie in Q, so we prove that,

the first t̂ points at which M queries as applied to problem (At̂+1, u) are

x(1), . . . , x(t̂), the points at which M queries as applied to problem (At̂, u).

(2.33)

It suffices to show

At̂+1x(i) = At̂x(i) for i = 1, . . . , t̂. (2.34)

By induction assumption R∗(t̂, Vt̂, H
t̂), for i ≤ t̂, x(i) ∈ Et̂−1(At̂, u) + Vt̂H

t̂ ⊂ P , so, follows

from (2.32), At̂+1x(i) = WAt̂W
⊤x(i) = WAt̂x(i). Further, since At̂Et̂−1(At̂, u) ⊂ Et̂(At̂, u) and

At̂Vt̂H
t̂ = Vt̂A0H

t̂ = {0} ⊂ Vt̂H
t̂, we have that At̂x(i) ∈ Et̂(At̂, u)+Vt̂H

t̂ = P , which together with

(2.32) implies that WAt̂x(i) = At̂x(i), so (2.34) is shown.

Given that method M is deterministic, by (2.33) and (2.34), the point defined as the (t̂+1)-

st query at which M applies to (At̂, u) is at the same time the (t̂ + 1)-st query at which M applies

to (At̂+1, u). Hence x(t̂+ 1) = u+ v ∈ Et̂(At̂, u) + span{v} ⊂ Q, and for i ∈ {1, . . . , t̂},

x(i) ∈ Et̂−1(At̂, u) + Vt̂H
t̂ ⊂ Et̂(At̂, u) + Vt̂H

t̂ = P = W [Et̂(At̂, u) + Vt̂H
t̂].

40

hence for i ∈ {1, . . . , t̂+ 1},

x(i) ∈ W [Et̂(At̂, u) + Vt̂H
t̂ + span{f}]

= Et̂(At̂+1, u) +WVt̂H
t̂+1

= Et̂(At̂+1, u) + Vt̂+1H
t̂+1.

Here the first equality follows because Vt̂H
t̂ + span{f} = Vt̂(H

t̂ + span{ϕ}) due to (2.31), and

WEt̂(At̂, u) = WVt̂Et̂(A0, u) = Vt̂+1Et̂(A0, u) = Et̂(At̂+1, u). Step (i) is hence complete.

Step (ii) we prove the main lemma. Let t (≥ 0) satisfy the premise of the lemma and M

be a method. Without changing any of the first t points at which M queries as applied to (A, u),

assume with out loss of generality that the (t̂+1)-st point xA,u(t̂+1) at which M queries is exactly

the t-th approximate solution xM(t, A, u).

By the proposition in Step (i), we can find orthogonal Vt+1 ∈ Rn×n, Vt+1u = u, a (t + 1)-

dimensional subspace Ht+1 ⊂ H2, such that

xVt+1A0V ⊤
t+1,u

(t+ 1) = xM(t, Vt+1A0V
⊤
t+1, u)

∈ Et(Vt+1A0V
⊤
t+1, u) + Vt+1H

t+1

⊂ Et(Vt+1A0V
⊤
t+1, u) + Vt+1H2,

which shows R(t, V) for V = Vt+1.

2.5 Conclusion

In this chapter we study the problem of computing a matrix kernel projection of a vector,

when the matrix is not known, but its matrix-vector oracle is accessible. We studied this problem

from three perspectives: the control perspective, the optimization perspective, and the linear algebra

perspective. From the control perspective, we find that the best known method by [16] contributes

a non-diagonalizable Jordan block for each pair of repeated eigenvalue in their update system, so

to obtain their smallest linear convergence rate, an additional logarithmic term would appear in the

worst-case; from the optimization perspective, we designed a novel accelerated gradient method, yet

its convergence is only optimal in the order of linear convergence; from the linear algebra perspective,

41

we reviewed that the known study of exact oracle complexity for solving a linear equation [19]

provided with the same matrix-vector oracle, yet this result is not readily applicable to our problem

of interest. Based on our observations from the three perspectives, under a linear-span assumption,

we propose a novel iterative method which attains the exact oracle complexity for our problem of

interest. The analysis of our method does not require knowledge on the total number of iterations.

In the realm of general methods, we provide an exact lower complexity bound with the assumption

that n − 3 ≥ 2t, where t is the number of matrix-vector oracle calls, and n is the dimension of our

problem.

42

Chapter 3

Gradient norm minimization

through a gradient extrapolation

method

In this chapter, we propose to study the gradient extrapolation method in [11]. While it

is developed for minimizing function value in convex smooth optimization problems, we show that

it can be adapted to solve gradient norm minimization problems as well. Moreover, we are able to

achieve the optimal gradient evaluation complexity for gradient norm minimization.

3.1 Introduction

The problem of interest in this chapter is the following unconstrained convex smooth opti-

mization problem:

f∗ := min
x∈Rn

f(x). (3.1)

Here we assume that f is convex and smooth, i.e., f ∈ F
1,1
Lf

(Rn). Our goal is to compute an ε-

approximate solution x ∈ Rn such that ∥∇f(x)∥2 ≤ ε, where and throughout this chapter ∥ · ∥ is the

Euclidean norm. Throughout this chapter, we refer to the aforementioned problem as the gradient

43

norm minimization problem. Complexity analysis of first-order methods for solving such problem

is among the traditional research focuses of nonlinear optimization. In fact, checking whether the

gradient norm satisfies the accuracy threshold ∥∇f(x)∥2 ≤ ε is one of the most widely used stopping

criterion in practice. Other commonly used stopping criterion in theoretical studies include function

value difference f(x)− f∗ ≤ ε and distance to optimal solution ∥x− x∗∥2 ≤ ε. However, the latter

two criteria are less useful in practice, since accessing the knowledge of f∗ and x∗ is usually as

difficult as solving the original problem itself.

There has been a rich body of literature on the complexity analysis of first-order methods for

gradient norm minimization. The lower complexity bound for gradient norm minimization is known

to be order O
(
1/ε1/4

)
(see [19] and [4]). There have been many attempts designing optimal first-

order methods with a match upper complexity bound. For example, in [24], a monotone convergence

accelerated gradient method is proposed, which is able to compute an ε-solution with at most

O(1/ε1/3) iterations. By perturbing the objective function f of to fδ(x) := f(x) + (δ/2)∥x − x0∥2

and minimizing the perturbed function fδ instead, in [24] one other first-order method is proposed

with O
(
ln(1/ε)/ε1/4

)
complexity, which is sub-optimal with an extra logarithm multiple. In [10] a

first-order method called the optimized gradient method for gradient norm minimization (OGM-G)

is proposed, which computes an ε-solution with at most O(
√
(f(x0)− f(x∗))/ε) iterations. The

convergence analysis of [10] is based on the performance enhancement program introduced in [7],

which is a computer-aided proof system for analyzing first-order algorithm complexity. An alternate

proof using potential functions is later developed in [6]. Later, in [25], it is pointed out that by

a two-phase algorithm design, namely, running ⌈N/2⌉ steps of any optimal method for minimizing

function value difference and ⌈N/2⌉ steps of OGM-G, where N = O(1/ε1/4), one actually is able to

obtain the optimal O(1/ε1/4) complexity for gradient norm minimization. Such observation makes

OGM-G in [10] the first optimal first-order method for gradient norm minimization. However, in

the OGM-G iterations, the total number of iteration N need to be specified in advance, and the

knowledge on the exact value of Lipschitz constant Lf is required. Such problems are addressed

in [12], in which an optimal and parameter free algorithm with O(1/ε1/4) complexity is proposed

through an accumulative regularization technique. To the best of our knowledge, the aforementioned

methods are the only known resolutions for achieving the O(1/ε1/4) complexity in the literature. To

summarize, at present, one should either adopt a two-phase algorithm design structure suggested in

[25] or the accumulative regularization technique developed in [12].

44

However, there are still two remaining issues concerning the two possible resolutions above

for achieving the O(1/ε1/4) complexity. For the OGM-G type algorithms [10, 6, 25], current re-

sults in the literature all require the two-phase algorithm design that run two different algorithms

consecutively. For the accumulative regularization technique developed in [12], although the pro-

posed algorithm no longer has the two-phase structure, in each iteration it needs to call one other

algorithm as subroutine to solve its subproblem. The remaining issues motivates us to study the

following research question concerning gradient norm minimization: can we obtain the optimal gra-

dient evaluation complexity for gradient norm minimization by one uniform, single-loop algorithm

without any subroutine?

In this chapter, we provide a partial answer to the above research question. Specifically, we

show that the gradient extrapolation method (GEM) designed previously for function value difference

minimization [15] (see also [11]) can be adapted for solving the gradient norm minimization problem.

Specifically, given the maximum number of iterations N , we show that by running ⌈N/2⌉ iterations

of GEM using the parameters described in [15] and ⌈N/2⌉ iterations of GEM using a novel set of

parameters, we are able to achieve the O(1/ε1/4) gradient evaluation complexity for the gradient

norm minimization problem. Although our proposed resolution does not solve the aforementioned

research question completely (since we have to use two sets of parameters when applying GEM), it

is using one uniform algorithm and does not require any subroutine.

This chapter is organized as follows. In Section 3.2, we describe GEM and its convergence

analysis for computing an approximate solution such that f(xN) − f(x∗) ≤ ε. The results have

already been developed in [15] and we are including this section for the sake of completeness. In

Section 3.3, we prove a new result that GEM can be described alternatively as the linear span of

previous gradients under certain appropriate choice of parameters. With the help of such equivalence,

we are then able to show in Section 3.4 a novel result that GEM with certain choice of parameters

is able to compute an approximate solution to the gradient norm minimization problem with at

most O(
√
(f(x0)− f(x∗))/ε) iterations. Consequently, we can apply the observation concerning

two-phase algorithm design in [25] to achieve the O(1/ε1/4) gradient evaluation complexity. Here

in the two-phase algorithm design we are calling GEM uniformly, only with two different sets of

parameters.

45

3.2 The gradient extrapolation method

In this section, we state the parameter choice and its convergence analysis of GEM for

function value difference minimization. The content of of this section is all based on the description

of GEM in Section 5.2.1 of [11]; we only add this section for the sake of completeness. Recall that

in Section 1.2.2, accelerated gradient descent method is described with O (1/
√
ε) complexity for

function value difference minimization. However, we are able to observe from Algorithm 1.2.2 that

the gradient evaluation and the output approximate solution of accelerated gradient descent method

are performed on different points xt and xt. Since our goal is gradient norm minimization throughout

this chapter, it is imperative that we perform gradient evaluation at the output approximate solution.

Consequently, we would like to study optimal first-order methods whose output approximate solution

is also the same point for gradient evaluation. GEM is such an optimal method for function value

difference minimization.

The GEM algorithm is listed below in Algorithm 3.2.7. With appropriately chosen param-

eters, we will show that an ε-approximate solution such that f(xN) − f(x∗) ≤ ε can be obtained

within O (1/
√
ε) gradient evaluations.

Algorithm 3.2.7 The gradient extrapolation method (GEM)

Require: Initial point u0 = x0 ∈ Rn, g0 = ∇f(x0), g−1 = g0, ξt, ηt, τt ≥ 0 for t = 1, 2, . . . , N
for t = 1, 2, . . . , N do

ĝt = ξt(gt−1 − gt−2) + gt−1, (3.2)

ut = ut−1 − ĝt/ηt, (3.3)

xt = (ut + τtxt−1)/(1 + τt), (3.4)

gt = ∇f(xt). (3.5)

end for
Output xN

In Algorithm 3.2.7, we denote the gradient of each iterate xN as gt = ∇f(xt) as in (3.5).

We first perform a gradient extrapolation step (3.2) to compute ĝt from gradients gt−1 and gt−2 of

two previous iterations. Next, in (3.3), we perform a gradient descent step along the direction of ĝt.

The computed point ut is then combined with the previous approximate solution xt−1 in (3.4); such

46

convex combination becomes the new approximate solution xt.

Now we will start to describe the convergence analysis of Algorithm 3.2.7 for solving problem

(3.1) to obtain an ε-approximate solution xN such that f(xN)− f∗ ≤ ε. The following proposition

shows that when solving (3.1) by GEM, if the parameters {ηt}Nt=1, {τt}Nt=1 and {ξt}Nt=1 in Algorithm

3.2.7 satisfy conditions described in (3.6) to (3.10), then we are able to estimate an upper bound of

the function value difference f(xN)− f∗ at the output approximate solution.

Proposition 3.2.1. Let f be a function such that f ∈ F
1,1
Lf

(Rn), {xt}Nt=0 be the iterations of Algo-

rithm 3.2.7 applied for solving (3.1), and θt are nonnegative constants for t = 1, . . . , N. Suppose the

parameters {ηt}Nt=1, {τt}Nt=1 and {ξt}Nt=1 in Algorithm 3.2.7 satisfy τ1 = 0 and

θt−1 =ξtθt, t = 2, . . . , N, (3.6)

θtηt ≤θt−1ηt−1, t = 2, . . . , N, (3.7)

θtτt =θt−1(1 + τt−1), t = 2, . . . , N, (3.8)

ξtLf ≤τt−1ηt, t = 3, . . . , N, (3.9)

2Lf ≤τNηN , (3.10)

then we have that for any x ∈ Rn,

θN (1 + τN)(f(xN)− f(x)) +
θNηN
4

∥uN − x∥2

≤θ1η1
2

∥x0 − x∥2 + θ1
2

(
ξ2L

2
f

η2
− η1

)
∥u1 − u0∥2.

(3.11)

Proof. In Algorithm 3.2.7, since ut = ut−1 − ĝt/ηt and ĝt = ξt(gt−1 − gt−2) + gt−1, we have

⟨ξt(gt−1 − gt−2) + gt−1, ut − x⟩ =ηt⟨ut−1 − ut, ut − x⟩

=
ηt
2
∥x− ut−1∥2 −

ηt
2
∥x− ut∥2 −

ηt
2
∥ut − ut−1∥2

(3.12)

for any x ∈ Rn. Recalling that f is convex smooth, xt = (ut + τtxt−1)/(1 + τt) and gt = ∇f(xt) in

47

Algorithm 3.2.7, we are able to derive from (3.12) and Lemma 1.1.4 that

(1 + τt)f(xt)− f(x) ≤(1 + τt)f(xt)− (f(xt) + ⟨gt, x− xt⟩)

=τt[f(xt)− ⟨gt, xt − xt−1⟩]− ⟨gt, x− ut⟩

≤ − τt
2Lf

∥gt − gt−1∥2 + τtf(xt−1)− ⟨gt, x− ut⟩, ∀x ∈ Rn.

(3.13)

Combining (3.12) with (3.13), we obtain that

(1 + τt)f(xt)− f(x)

≤− τt
2Lf

∥gt − gt−1∥2 + τtf(xt−1) + ⟨gt − gt−1 − ξt(gt−1 − gt−2), ut − x⟩

+
ηt
2
∥x− ut−1∥2 −

ηt
2
∥x− ut∥2 −

ηt
2
∥ut − ut−1∥2, ∀x ∈ Rn.

(3.14)

Multiplying both sides of (3.14) with θt and summing up from t = 1, . . . , N , we have

N∑
t=1

θt(1 + τt)f(xt)−
N∑
t=1

θtf(x) ≤−
N∑
t=1

θtτt
2Lf

∥gt − gt−1∥2 +
N∑
t=1

θtτtf(xt−1)

+

N∑
t=1

θt⟨gt − gt−1 − ξt(gt−1 − gt−2), ut − x⟩

+

N∑
t=1

θt

[ηt
2
∥x− ut−1∥2 −

ηt
2
∥x− ut∥2 −

ηt
2
∥ut − ut−1∥2

]
(3.15)

for any x ∈ Rn. We make a few observations in the above relation. First, recalling (3.6) and the

fact that g−1 = g0, we have that

N∑
t=1

θt⟨gt − gt−1 − ξt(gt−1 − gt−2), ut − x⟩

=θN ⟨gN − gN−1, uN − x⟩ −
N∑
t=2

θtξt⟨gt−1 − gt−2, ut − ut−1⟩, ∀x ∈ Rn.

(3.16)

Second, by inequality (3.7) we have

N∑
t=1

θt

[ηt
2
∥x− ut−1∥2 −

ηt
2
∥x− ut∥2

]
≤ θ1η1

2
∥x− u0∥2 −

θNηN
2

∥x− uN∥2, ∀x ∈ Rn. (3.17)

48

Third, by equality (3.8) we can derive that

N∑
t=1

θt[(1 + τt)f(xt)− τtf(xt−1)] = θN (1 + τN)f(xN)− θ1τ1f(x0). (3.18)

Fourth, we can also obtain from (3.8) that

N∑
t=1

θt =

N∑
t=2

(θtτt − θt−1τt−1) + θN = θN (1 + τN)− θ1τ1. (3.19)

Thus with τ1 = 0, applying our observations (3.16), (3.17), (3.18) and (3.19) to (3.15) we have

θN (1 + τN)(f(xN)− f(x))

≤− θ2ξ2⟨g1 − g0, u2 − u1⟩ −
θ2η2
2

∥u2 − u1∥2 −
θ1η1
2

∥u1 − u0∥2

−
N∑
t=3

[
θt−1τt−1

2Lf
∥gt−1 − gt−2∥2 + θtξt⟨gt−1 − gt−2, ut − ut−1⟩+

θtηt
2

∥ut − ut−1∥2
]

− θN

[
τN
2Lf

∥gN − gN−1∥2 − ⟨gN − gN−1, uN − x⟩+ ηN
2
∥x− uN∥2

]
+

θ1η1
2

∥x− u0∥2.

(3.20)

for arbitrary x ∈ Rn. Observe that for any scalar a > 0, b ∈ R and vector u, v, we have b⟨u, v⟩ −

a∥v∥2/2 ≤ b2∥u∥2/(2a). By this simple relation and (3.6), (3.9) and (3.10), we are able to obtain

the following three results:

− θ2ξ2⟨g1 − g0, u2 − u1⟩ −
θ2η2
2

∥u2 − u1∥2 ≤ θ2ξ
2
2

2η2
∥g1 − g0∥2 ≤

θ1ξ2L
2
f

2η2
∥u1 − u0∥2, (3.21)

−
N∑
t=3

[
θt−1τt−1

2Lf
∥gt−1 − gt−2∥2 + θtξt⟨gt−1 − gt−2, ut − ut−1⟩+

θtηt
2

∥ut − ut−1∥2
]

≤
N∑
t=3

θt
2

(
ξtLf

τt−1
− ηt

)
∥ut − ut−1∥2 ≤ 0,

(3.22)

− θN

[
τN
2Lf

∥gN − gN−1∥2 − ⟨gN − gN−1, uN − x⟩+ ηN
4
∥x− uN∥2

]
≤θN

2

(
Lf

τN
− ηN

2

)
∥x− uN∥2 ≤ 0, ∀x ∈ Rn.

(3.23)

The second inequality sign of (3.21) is obtained by the Lf -smoothness of f and the fact that x0 = u0,

x1 = u1. Applying (3.21), (3.22) and (3.23) to (3.20), we conclude (3.11).

49

Proposition 3.2.1 shows an upper bound estimate of function value difference f(xN) − f∗.

The following theorem provides a specific set of parameters such that all conditions in Proposition

3.2.1 are satisfied.

Theorem 3.2.1. Let f be a function such that f ∈ F
1,1
Lf

(Rn) and {xt}Nt=0 be the iterations of

Algorithm 3.2.7 for solving (3.1). Let x∗ be an optimal solution of (3.1), and the parameters {ηt}Nt=1,

{τt}Nt=1 and {ξt}Nt=1 in Algorithm 3.2.7 are set to ηt = 6Lf/t, τt = (t− 1)/2 and ξt = (t− 1)/t, for

t = 1, . . . , N . Then we have

f(xN)− f∗ ≤ 6Lf

N(N + 1)
∥x0 − x∗∥2. (3.24)

Proof. Defining θt = t for t = 1, . . . , N , (3.6) to (3.10) are satisfied. Thus by Proposition 3.2.1 with

the described parameter settings in the theorem applied to (3.11), we conclude (3.24).

By the above theorem, that to obtain an approximate solution for function value difference

minimization such that f(xN)− f(x∗) ≤ ε, the number of iterations required by Algorithm 3.2.7 to

solve (2.1) is upper bounded by O
(√

6Lf∥x0 − x∗∥2/ε
)
. As discussed previously in Section 3.1, to

obtain an ε-approximate solution that for gradient norm minimization with O(1/ε1/4) complexity,

we may utilize a two-phase algorithm design as suggested in [25]. GEM could serve as an optimal

algorithm for function value difference minimization in the first phase. However, to the best of our

knowledge, no GEM parameters have been proposed for solving the gradient norm minimization

problem. Therefore, it would be interesting if we are able to find a set of parameters of GEM such

that ∥∇f(xN)∥2 ≤ ε when the number of iterations N is greater than O (1/
√
ε). If such set of

parameters can be discovered, we have a uniform algorithm (namely GEM) framework for solving

the gradient norm minimization problem with optimal complexity. The remainder of this chapter is

dedicated to the derivation of such set of parameters. We start in the following section by describing

an alternate description of GEM, which is convenient for our analysis on gradient norm minimization.

50

3.3 GEM as linear span of gradients

In this section, we show that GEM can be visualized as the linear span of gradients. Specif-

ically, we can describe GEM alternatively as in Algorithm 3.3.8. Our description in Algorithm 3.3.8

is not novel; rather, it has been studied previously in the literature (see, e.g., [9, 24, 7, 6, 10]). In-

deed, the algorithm structure in Algorithm 3.3.8 is the necessary tool utilized in [10] for discovering

the first algorithm with O(1/ε1/4) complexity for computing an approximate solution x such that

∥∇f(x)∥2 ≤ ε. We will establish the equivalence between Algorithms 3.2.7 and 3.3.8 for certain pa-

rameters. With the help of such equivalence, we are then able to show in the next section that GEM

with certain choice of parameters is able to achieve the aforementioned O(1/ε1/4) upper complexity

bound for gradient norm minimization.

Algorithm 3.3.8 A linear span type algorithm description for solving problem (3.1)

Require: Initial point x0 ∈ Rn, maximum number of iterations N
for t = 1, . . . , N do

Compute

gt−1 = ∇f(xt−1),

xt = xt−1 −
1

Lf

t−1∑
k=0

ht,kgk.

end for
Output approximate solution xN .

From the description of Algorithm 3.3.8, we can observe that the next iterate xt is evaluated

as a point in the set xt−1 + span{∇f(x0), . . . ,∇f(xt−1)}. By induction, we may also conclude that

xt is also in the set x0 + span{∇f(x0), . . . ,∇f(xt−1)}. The goal of algorithm design is to choose

appropriate parameters ht,k so that the algorithm achieves desirable convergence properties. In the

case when f is a quadratic function (thus the optimization problem is equivalent to solving a linear

system), such methods are known as Krylov subspace type methods in numerical linear algebra.

Such linear span description is also commonly seen in algorithm design and complexity analysis of

first-order methods (see, e.g., [24]). The format in the description of Algorithm 3.3.8 appears the

first time in [7] for analyzing first-order methods for minimizing function values of unconstrained

convex optimization. In [9], the ht,k parameters of Algorithm 3.3.8 are defined with the structure in

(3.25) below. The following proposition shows that if ht,k are defined as in (3.25), then there exists

51

parameters of GEM that is equivalent to the linear span description in Algorithm 3.3.8.

Proposition 3.3.1. For any function f ∈ F
1,1
Lf

(Rn) and initial point x0 ∈ Rn, Algorithms 3.2.7

and Algorithm 3.3.8 are equivalent and produce exactly the same sequence of approximate solutions

{xt}Nt=1 under the choices of parameters described as follows. In Algorithm 3.3.8, the parameters

{ht,k} satisfies

htk =

1 + (αt − αt+1)(γt − γt−1), t = 1, ..., N, k = t− 1

(αt − αt+1)(γk+1 − γk), t = 2, ..., N, k = 0, ..., t− 2

(3.25)

where αt and γt are positive constants such that γt ≥ γt−1 for all t = 1, . . . , N . In Algorithm 3.2.7,

the parameters τt, ηt and ξt satisfies (1 + τt)(αt − αt+1) = τt−1(αt−1 − αt) and

ξt =
αt − αt+1

(αt−1 − αt)(1 + (αt − αt+1)(γt − γt−1))− (αt − αt+1)
,

ηt =
L

1 + τt

αt−1 − αt

(αt − αt+1)
ξt.

Proof. Applying (3.25) to iterates xt = xt−1 − 1
L

∑t−1
k=0 ht,kgk of Algorithm 3.3.8, we have that

xt−1 − xt −
1

L
gt−1 =

αt − αt+1

L

t−1∑
k=0

(γk+1 − γk)gk, ∀t = 1, ..., N. (3.26)

Note that (3.26) also implies that for all t ≥ 2

xt−1 − xt −
1

L
gt−1

=
αt − αt+1

L

(
(γt − γt−1)gt−1 +

L

αt−1 − αt

(
xt−2 − xt−1 −

1

L
gt−2

))
.

(3.27)

Rearranging terms of (3.27), we obtain that

xt =

(
1 +

αt − αt+1

αt−1 − αt

)
xt−1 −

αt − αt+1

αt−1 − αt

(
xt−2 −

1

L
gt−2

)
− 1

L
(1 + (αt − αt+1)(γt − γt−1))gt−1.

(3.28)

Recalling that τt’s are positive parameters such that (1 + τt)(αt − αt+1) = τt−1(αt−1 − αt), and

52

letting {ut}Nt=0 be vectors such that

xt =
τt

1 + τt
xt−1 +

1

1 + τt
ut, ∀t = 1, ..., N, (3.29)

Note that if ut in (3.29) is equivalently defined as in (3.3) of Algorithm 3.2.7, then (3.29) is equivalent

to (3.4) in Algorithm 3.2.7 and the equivalence of Algorithm 3.2.7 and Algorithm 3.3.8 is proved.

We can observe from (3.29) that

τt
1 + τt

xt−1 =
τt

1 + τt

τt−1

1 + τt−1
xt−2 +

τt
1 + τt

1

1 + τt−1
ut−1,

which is equivalent to

xt −
(
1 +

αt − αt+1

αt−1 − αt

)
xt−1 +

αt − αt+1

αt−1 − αt
xt−2

=

[
τt

1 + τt

τt−1

1 + τt−1
−
(
1 +

αt − αt+1

αt−1 − αt

)
τt−1

1 + τt−1
+

αt − αt+1

αt−1 − αt

]
xt−2

+
1

1 + τt
ut −

1

1 + τt−1

(
1 +

αt − αt+1

αt−1 − αt
− τt

1 + τt

)
ut−1.

(3.30)

In the above equality, using the relation (1+ τt)(αt−αt+1) = τt−1(αt−1−αt) again, we can observe

that

τt
1 + τt

τt−1

1 + τt−1
−
(
1 +

αt − αt+1

αt−1 − αt

)
τt−1

1 + τt−1
+

αt − αt+1

αt−1 − αt
= 0,

and

1

1 + τt−1

(
1 +

αt − αt+1

αt−1 − αt
− τt

1 + τt

)
=

1

1 + τt−1

(
1 +

τt−1

1 + τt
− τt

1 + τt

)
=

1

1 + τt
.

Hence (3.30) can be simplified as

xt −
(
1 +

αt − αt+1

αt−1 − αt

)
xt−1 +

αt − αt+1

αt−1 − αt
xt−2 =

1

(1 + τt)
(ut − ut−1). (3.31)

Recall from (3.28) that the left-hand side of (3.31) can also be expressed as a linear combination of

the previous gradients gt−1 and gt−2. Combining (3.28) and (3.31), we may eliminate xt, xt−1, and

53

xt−2 and obtain that

1

(1 + τt)
(ut − ut−1) =

1

L

(
αt − αt+1

αt−1 − αt
gt−2 − (1 + (αt − αt+1)(γt − γt−1))gt−1

)
. (3.32)

We will next show that the right-hand side of (3.32) can be expressed as ĝt defined in (3.2) multiplied

by a scalar. Letting ξt in Algorithm 3.2.7 be positive scalars such that

1 + ξt
ξ1

= (1 + (αt − αt+1)(γt − γt−1))
αt−1 − αt

αt − αt+1
,

we are able to have ξt and 1 + ξt expressed explicitly as

ξt =
αt − αt+1

(αt−1 − αt)(1 + (αt − αt+1)(γt − γt−1))− (αt − αt+1)
,

1 + ξt =
(αt−1 − αt)(1 + (αt − αt+1)(γt − γt−1))

(αt−1 − αt)(1 + (αt − αt+1)(γt − γt−1))− (αt − αt+1)
.

Defining ĝt = ξt(gt−1 − gt−2) + gt−1 as in Algorithm 3.2.7, we can derive from (3.32) that

ut − ut−1 =− 1 + τt
L

(αt−1 − αt)(1 + (αt − αt+1)(γt − γt−1))− (αt − αt+1)

αt−1 − αt
ĝt. (3.33)

In Algorithm 3.2.7, ut are defined as ut = ut−1− ĝt/ηt. Observe from (3.33) that if ηt are defined as

ηt =
L

1 + τt

αt−1 − αt

(αt−1 − αt)(1 + (αt − αt+1)(γt − γt−1))− (αt − αt+1)

=
L

1 + τt

αt−1 − αt

(αt − αt+1)
ξt,

then (3.33) can be expressed equivalently as in Algorithm 3.2.7. Hence (3.29) is equivalent to (3.4)

in Algorithm 3.2.7 and the equivalence of Algorithm 3.2.7 and Algorithm 3.3.8 is proved.

There has been several linear span type algorithms proposed in the literature for gradient

norm minimization; see, e.g., [10, 6, 9]. With the results in the above proposition, we are now able

to link such results to GEM parameters. In the following section, we will show that the results in

[9] yield a set of GEM parameters for gradient norm minimization.

54

3.4 GEM for gradient norm minimization

With the help of Proposition 3.3.1, in this section we are able to derive GEM parameters

for gradient norm minimization. Our results is based on the following proposition, a results derived

in [9].

Proposition 3.4.1. Let f be a function such that f ∈ F
1,1
Lf

(Rn) and {xt}Nt=0 be the iterations of

Algorithm 3.3.8. Suppose that the parameters {ht,k} in Algorithm 3.3.8 are set to

hik =

1 +

2(N − t+ 1)(N − t+ 2)(N − t+ 3)

(N − k + 1)(N − k + 2)(N − k + 3)
, t = 1, ..., N, k = t− 1;

2(N − t+ 1)(N − t+ 2)(N − t+ 3)

(N − k + 1)(N − k + 2)(N − k + 3)
, t = 2, ..., N, k = 0, ..., t− 2,

(3.34)

then we have

||gN ||2 ≤ 6Lf

(N + 2)(N + 3)
(f(x0)− f(x∗)). (3.35)

The above proposition describes a parameter setting of the linear span algorithm described in

Algorithm 3.3.8 that solves the gradient norm minimization problem with O
(√

Lf (f(x0)− f(x∗))/ε
)

complexity. Combining the results in the previous two sections, we can already obtain a two-phase

algorithm with O(
√
Lf∥x0 − x∗∥/ε1/4) complexity for gradient norm minimization. Specifically, the

algorithms used in the first and second phases are GEM with parameters described in Theorem

3.2.1 and the linear span described Algorithm 3.3.8 with parameters in the above proposition. With

the help of previously developed Proposition 3.3.1 on the equivalence of algorithms, we will show in

Proposition 3.4.2 below that Algorithm 3.3.8 with parameters described in the above proposition is

indeed equivalent to GEM. Consequently, running GEM with two sets of parameters will solve the

gradient norm minimization problem with the optimal O(
√
Lf∥x0 − x∗∥/ε1/4) complexity.

Proposition 3.4.2. Let f be a function such that f ∈ F
1,1
L (Rn) and {xt}Nt=0 be the iterations of

Algorithm 3.2.7. If x∗ is an optimal solution of (1.3), and the parameters {ηt}Nt=1, {τt}Nt=1 and

55

{ξt}Nt=1 in Algorithm 3.2.7 are set to

ξt =
N − t+ 1

2N − 2t+ 5
, (3.36)

τt =
(4τ0 −N)(N + 1)(N + 2)(N + 3)

4(N − t+ 1)(N − t+ 2)(N − t+ 3)
+

N − t

4
,

ηt =
L

1 + τt

N − t+ 4

2N − 2t+ 5
,

then Algorithm 3.3.8 is equivalent to Algorithm 3.2.7.

Proof. Applying Proposition 3.3.1 to algorithms with parameters (3.36) and (3.34) respectively, with

αt and γk set to

αt =
1

24
(N − t+ 1)(N − t+ 2)(N − t+ 3)(N − t+ 4),

γk =
6

(N − k + 2)(N − k + 3)
,

we conclude the equivalence of Algorithm 3.3.8 and Algorithm 3.2.7.

With the help of Theorem 3.2.1 and Proposition 3.4.2, we are now ready to prove that

running GEM with two sets of parameters will yield the optimal O(
√

Lf∥x0 − x∗∥/ε1/4) complexity

for gradient norm minimization.

Theorem 3.4.1. Suppose that the maximum number of iterations N is pre-specified. Let f be a

convex smooth function such that f ∈ F
1,1
Lf

(Rn) and {xt}Nt=1 be iterates of Algorithm 3.2.7. When

running GEM described in Algorithm 3.2.7, if we choose the parameters as in Theorem 3.2.1 during

the first ⌈N/2⌉ steps, followed by the parameters described in Proposition 3.4.2 for the next ⌈N/2⌉

steps, then we have

∥gN∥2 ≤
576L2

f∥x0 − x∗∥2

(N + 1)(N + 3)(N + 5)(N + 7)
. (3.37)

Proof. For the first ⌈N/2⌉ steps of GEM with parameters in Theorem 3.2.1, by the complexity bound

(3.24) we have

f(x⌈N/2⌉)− f(x∗) ≤ 24Lf∥x0 − x∗∥2

(N + 1)(N + 3)
. (3.38)

56

Next, starting from xN/2 and running ⌈N/2⌉ steps of GEM with parameters defined in Proposition

3.2.1, by the complexity bound (3.35) we have

||gN ||2 ≤ 24Lf

(N + 5)(N + 7)
(f(x⌈N/2⌉)− f(x∗)). (3.39)

Combining (3.38) and (3.39), we conclude (3.37).

According to the result (3.37) in the above theorem, in order to make sure that the output

approximate solution xN of GEM is an ε-approximate solution with ∥∇f(xN)∥2 ≤ ε, it suffices to

set the total number of iterations N to

N ≥ O

(√
Lf∥x0 − x∗∥

ε1/4

)
,

which has been proven to be optimal (see [19] and [4]) for gradient norm minimization. Remark that

although we need to utilize two different sets of parameters in the first ⌈N/2⌉ iterations and the last

⌈N/2⌉ iterations, the optimal complexity bound is obtained by one uniform algorithm (GEM).

3.5 Conclusion

In this chapter, we show that the gradient extrapolation method (GEM), which was pre-

viously developed for function value minimization, can also be adapted to solve the gradient norm

minimization problem. Specifically, we show that by running GEM with two sets of parame-

ters, we are able to compute an ε-approximate solution such that ∥∇f(xN)∥2 ≤ ε with at most

O
(√

Lf∥x0 − x∗∥/ε1/4
)
gradient evaluations. Such complexity matches the lower complexity bound

for gradient norm minimization. Although such optimal complexity can also be obtained by other

first-order methods (e.g., [10, 6, 9, 12]), we provide in this chapter the first framework with one

uniform algorithm (GEM) and no subroutine. One drawback of our proposed framework is that we

need to apply two different sets of parameters in order to obtain the optimal complexity for gradient

norm minimization. An interesting future research topic would be the design of a method that could

achieve the optimal complexity through only one set of parameters and no subroutines.

57

Chapter 4

Conditional gradient methods for

smooth functional constrained

optimization

In this chapter we focus on projection-free algorithms for solving functional constrained

smooth nonlinear optimization problems. Methods for solving convex and nonconvex functional

constrained optimization problems are proposed respectively. We describe the problem of interest

in detail and introduce the essential definitions in the following section.

4.1 Introduction

The problem of interest in this chapter is the following functional constrained smooth non-

linear optimization problem:

f∗ := min
x∈X

f(x), s.t. gi(x) ≤ 0, i = 1, . . . ,m. (4.1)

Here X ∈ Rn is a compact set. We assume that an optimal solution x∗ exists, the objective

function f is Lf -smooth with respect to norm ∥ · ∥, and the constraint functions gi are all Lg-

smooth with respect to the same norm. Our goal is to design projection-free first-order methods to

58

compute numerical solutions with specified accuracy thresholds. We use the term “projection-free”

to emphasize that our methods of interest should avoid computing projections onto the compact

set X. We consider several different possible definitions of numerical solutions in terms of their

associated accuracy threshold, which are listed below. In our definitions, for any real number u we

denote [u]+ := max{u, 0}.

Definition 4.1.1. We say that x̂ ∈ X is an (εf , εg)-approximate solution to problem (4.1) if it

satisfies f(x̂)− f∗ ≤ εf and [gi(x̂)]+ ≤ εg for all i = 1, . . . ,m.

The (εf , εg)-approximate solution defined in Definition 4.1.1 ensures that the objective func-

tion value difference f(x̂)−f∗ and the feasibility violation [gi(x̂)]+ are within the specified tolerances

εf and εg, respectively. Clearly, when εf = εg = 0, x̂ becomes an optimal solution to problem (4.1).

We will study the complexity for computing an (εf , εg)-approximate solution to (4.1) when it is a

convex optimization problem. When it is nonconvex, we will study the complexity of computing two

different definitions of numerical solutions, as described below.

Definition 4.1.2. We say that x̂ ∈ X is an (εf , εg)-stationary point to problem (4.1) if it satisfies

[gi(x̂)]+ ≤ εg for all i = 1, . . . ,m and

⟨∇f(x̂), x̂− x⟩ ≤ εf , ∀x ∈ X s.t. gi(x) ≤ 0 for all i = 1, . . . ,m.

Definition 4.1.3. We say that x̂ ∈ X is an (εf , εg)-Fritz-John (FJ) point to problem (4.1) if it

satisfies [gi(x̂)]+ ≤ εg for all i = 1, . . . ,m and there exists nonnegative multipliers λ0, . . . , λm such

that
∑m

i=0 λi = 1 and

⟨λ0∇f(x̂) +

m∑
i=1

λi∇gi(x̂), x̂− x⟩ ≤ εf , ∀x ∈ X. (4.2)

The (εf , εg)-stationary point defined in Definition 4.1.2 ensures that theWolfe gap ⟨∇f(x̂), x̂−

x⟩ and the feasibility violation [gi(x̂)]+ are within the specified tolerances εf and εg, respectively.

When εf = εg = 0, x̂ satisfies a first-order necessary optimality condition for problem (4.1).

The (εf , εg)-FJ point defined in Definition 4.1.3 ensures that the Fritz-John condition violation

59

⟨λ0∇f(x̂) +
∑m

i=1 λi∇gi(x̂), x̂− x⟩ and the feasibility violation [gi(x̂)]+ are within the specified tol-

erances εf and εg, respectively. When εf = εg = 0, x̂ satisfies the first-order Fritz-John necessary

optimality condition for problem (4.1). The FJ condition is weaker than the Karush-Kuhn-Tucker

(KKT) necessary condition, which requires that λ0 ̸= 0 in (4.2). However, for an optimal solution

to satisfy the first-order KKT necessary condition, the KKT theorem requires additional constraint

qualification. On the other hand, the FJ theorem does not require any additional condition for an

optimal solution to satisfy the FJ condition. It should also be pointed out that the FJ condition does

not require that
∑m

i=0 λi = 1 as stated in Definition 4.1.3; rather, it only requires that λ0, . . . , λm

are not all zero. Consequently, if x̂ satisfies the FJ condition with multipliers λ0, . . . , λm, then it

also satisfies the FJ condition with multiplier cλ0, . . . , cλm for any c > 0. However, for the definition

of approximate FJ points, we need to regularize the multiplies λ0, . . . , λm so that the tolerance εf

can be properly enforced. Without this regularization, the multipliers could be scaled arbitrarily,

making it impossible to evaluate the complexity of algorithms for obtaining the specified tolerance

levels.

There has been previous literature on algorithm design and complexity analysis of first-order

methods for solving problem (4.1). We briefly describe the existing results and related works below.

For the simplicity of description, we denote ε := min{εf , εg} and state the complexity results only

in terms of their order of dependence on ε.

We first focus on algorithms solving convex constrained optimization problems. Since The

lower complexity bound of projection-free method for solving constrained optimization problems

is currently unknown, to conjecture the ideal complexity, we can consider the projection-based

method as well as unconstrained or affinely constrained problems. For convex optimization prob-

lem minx∈X f(x) with no constraints, the lower gradient evaluations complexity bound for any

projection-based methods in order to compute an ε-solution is O(1/
√
ε) (see [19]). In [8], the lower

complexity bound for solving linear objective optimization subproblems for projection-free methods

is O(1/ε). Also, [26] shows that the lower complexity bound of first-order methods for solving an

affinely constrained convex problems is of order O(1/ε). As we mentioned before, for functional

constrained problems, the lower gradient evaluation complexity has not yet been studied in the lit-

erature. But we can conjecture from the above three lower complexity bound that our desired upper

complexity bound is similar. In [28], a projection-based method, Accelerated Constrained Gradient

Descent (ACGD) with sliding is proposed with O(1/
√
ε) complexity for solving convex functional

60

constrained optimization problems. Observe that such lower complexity bound is identical to the

lower complexity bound of projection-based methods for solving unconstrained convex optimization

problem, which is inspiring for designing projection-free methods for solving functional constrained

methods. We conjecture that the lower complexity bound for solving unconstrained convex opti-

mization problem might be able to achieved also by projection-free methods for solving constrained

convex optimization problems. Going back to our focus on designing projection-free methods, there

are some existing results of projection-free methods for solving convex functional constrained prob-

lems. A level conditional gradient method is proposed in [5] for solving convex functional constrained

optimization problems with a O(log(1/ε)/ε2) complexity. In [13], a constraint extrapolated condi-

tion gradient (Co-exCG) method is proposed for solving both smooth and structured nonsmooth

function constrained convex optimization with a O(1/ε2) complexity. As we have conjectured, we

speculate that such complexity results can be further improved.

Next, we move on to the case when the objective function is nonconvex. We will discuss

when the constraint functions are convex and nonconvex respectively. Since the lower complexity

bound of projection-free methods for solving such problems are not yet studied, we conjecture from

the complexity property of projection-based method for solving unconstrained problems or func-

tional constrained problems. The description of [2] and [3] gives the lower complexity bound for

solving a nonconvex optimization problem without constraints as O(1/ε2). However, the lower com-

plexity bound for functional constrained nonconvex optimization problems has not yet been studied,

no matter the functional constraints are convex or nonconvex. A related result is established when

the constraints are affine. In [17], the lower complexity complexity bound of a projection-based

first-order method for solving affinely constrained nonconvex problems are proved to be O(1/ε2).

We can conjecture from the above lower complexity bound that the O(1/ε2) complexity can also be

achieved by projection-free method for solving nonconvex constrained problems. It is described in

[5] and [1], the study on algorithms for solving nonconvex functional constrained problems is scarce.

In [5], the Level Inexact Proximal Point (IPP-LCG) method and the Direct Nonconvex Conditional

Gradient (DNCG) method are introduced for solving nonconvex constrained optimization problems.

The IPP-LCG convert the nonconvex problem into a series of convex subproblems and obtain an

O(log(1/ε)/ε3) complexity. The DNCG is a single-loop projection-free method with O(1/ε4) com-

plexity. As we have conjectured, we speculate that such complexity results can be further improved.

Now with the related studies are described, the structure of this chapters is as follows.

61

In Section 4.2, we focus on projection-free algorithms for solving convex optimization prob-

lems with convex constrained. A constrained conditional gradient (CCG) method is introduced such

that the gradient evaluation complexity and the linear objective optimization complexity are both

of order O(1/ε). Then motivated by the projection-based accelerated constrained gradient descent

method with sliding (ACGD-S) proposed in [28], we propose an CCG with sliding (CCG-S) method

for solving convex functional constrained problems with an O(1/
√
ε) gradient evaluation complexity

and O(1/ε) linear objective optimization complexity.

In Section 4.3, we develop algorithms solving nonconvex optimization problems with convex

and nonconvex constraints. Although the CCG-S method has lower gradient evaluation complexity,

the convergence performance has not yet been studied for nonconvex constrained problem. Our

focus is on projection-free conditional gradient (CG) type algorithms. We propose CCG with line

search to obtain an approximate solution with in O(1/ε2) iterations.

In next section, we will first consider when the functional constrained optimization problem

is convex.

4.2 Convex smooth functional constrained optimization

In this chapter, we study first-order projection-free methods for solving convex smooth

functional constrained optimization problems, i.e., when the objective function f and constraints

gi, i = 1, . . . ,m in problem (4.1) are all convex functions. We start by introducing a straightfor-

ward adaptation of CG method and extend to scenarios with functional constraints. Specifically,

in subsection 4.2.1, we propose a constrained conditional gradient (CCG) method and analyze its

convergence properties for solving problem (4.1). We show that CCG is a parameter-free algorithm

that can compute an (εf , εg)-approximate solution in at most O
(
max{LfD

2
X/εf , LgD

2
X/εg}

)
gradi-

ent evaluations. Then in subsection 4.2.2, we show that the gradient evaluation complexity can be

improved to O
(
max{

√
LfD2

X/εf ,
√
LgD2

X/εg}
)
.

4.2.1 Constrained conditional gradient method

We begin with the straightforward adaptation of the CG method for functional constrained

optimization and propose a constrained conditional gradient (CCG) method. The proposed CCG

method for solving problem (4.1) is described in Algorithm 4.2.9. The idea of the algorithm is the

62

same to vanilla CG: We first perform a conditional gradient step (4.3) to obtain the moving direction

st−xt−1, then obtain a new iterate xt from the previous iterate xt−1 by moving along such direction

with step size γt.

Algorithm 4.2.9 Constrained conditional gradient method (CCG) for solving (4.1)

Require: x0 ∈ X for all i = 1, . . . ,m.
for t = 1, . . . , N do

Compute

st ∈ argmin
x∈X

⟨∇f(xt−1), x⟩

s. t. gi(x
t−1) + ⟨∇gi(x

t−1), x− xt−1⟩ ≤ 0, i = 1, . . . ,m,

(4.3)

xt = (1− γt)xt−1 + γtst. (4.4)

end for
Output xN .

A few remarks concerning Algorithm 4.2.9 are in place. First, the optimization problem in

(4.3) is always feasible. This is since x∗ ∈ X always satisfies gi(x
t−1) + ⟨∇gi(x

t−1), x∗ − xt−1⟩ ≤

gi(x
∗) ≤ 0 due to the convexity of gi’s for all i = 1, . . . , N . Second, since we assume that X is a

compact set, the optimization problem in (4.3) is bounded. Finally, by (4.4) we have xt ∈ X for all

t, although they are not necessarily feasible for the original problem (4.1).

Our analysis of CCG is a straightforward adaptation of that of the CG method without

functional constraints. We start with two technical lemmas.

Lemma 4.2.1. Suppose that h : Rn → R is a L-smooth function (with respect to norm ∥ · ∥). For

any xt, xt−1, st ∈ Rn and γt ∈ [0, 1] that satisfies (4.4), we have

h(xt) ≤ (1− γt)h(xt−1) + γt(h(xt−1) + ⟨∇h(xt−1), st − xt−1⟩) + L (γt)
2

2
∥st − xt−1∥2. (4.5)

Proof. Recalling that the L-smoothness of h implies that

h(xt) ≤ h(xt−1) + ⟨∇h(xt−1), xt − xt−1⟩+ L

2
∥xt − xt−1∥2,

applying (4.4) to the above relation, we conclude (4.5).

While we are studying convex optimization problems in this section, note that the only

requirement of the function h in Lemma 4.2.1 is smoothness; the convexity is not necessarily needed.

63

The inequality (4.5) shows that for any xt, xt−1, st ∈ Rn and γt ∈ [0, 1] that satisfies a convex

combination relation in (4.4), h(xt) can be upper bounded by the sum of a linear approximation of

h(xt) and the norm of st − xt−1.

The following lemma of a simple algebraic relationship is also needed in the convergence

analysis.

Lemma 4.2.2. Suppose that {ωt}Nt=1, {at}Nt=0 are nonnegative real-valued sequences and {γt}Nt=1,

{bt}Nt=1 are real-valued sequences. If they satisfy γ1 = 1, γt ≤ 1 and ωt−1 ≥ ωt(1− γt) for all t ≥ 2,

and

at ≤ (1− γt)at−1 + bt, ∀t = 1, . . . , N, (4.6)

then we have

ωtat ≤
t∑

k=1

ωkbk, ∀t = 1, . . . , N.

Proof. The result is immediate by multiplying (4.6) by ωt and summing from k = 1 . . . , t.

With the help of the above Lemmas 4.2.1 and 4.2.2, we are able to analyze the convergence

properties of CCG in Algorithm 4.2.9 for solving convex smooth functional constrained optimization

problems.

Theorem 4.2.1. If the parameters in Algorithm 4.2.9 are set to γt = 2/(t+1), the objective function

f is Lf -smooth with respect to norm ∥ · ∥, and the constraint functions gi are all Lg-smooth with

respect to norm ∥ · ∥, then we have

f(xt)− f(x∗) ≤2LfD
2
X

t+ 1
and (4.7)

[gi(x
t)]+ ≤2LgD

2
X

t+ 1
, ∀i = 1, . . . ,m, (4.8)

where DX := minx,y∈X ∥x− y∥ is the diameter of X with respect to norm ∥ · ∥.

64

Proof. Applying Lemma 4.2.1 to the objective function f and constraint functions gi’s we have

f(xt) ≤(1− γt)f(xt−1) + γt(f(xt−1) + ⟨∇f(xt−1), st − xt−1⟩) + Lf (γ
t)

2

2
∥st − xt−1∥2, (4.9)

gi(x
t) ≤(1− γt)gi(x

t−1) + γt(gi(x
t−1) + ⟨∇gi(x

t−1), st − xt−1⟩) + Lg (γ
t)

2

2
∥st − xt−1∥2.(4.10)

Here applying the optimality condition of st in (4.3) and the convexity of f to (4.9) we have

f(xt) ≤(1− γt)f(xt−1) + γt(f(xt−1) + ⟨∇f(xt−1), x∗ − xt−1⟩) + Lf (γ
t)

2

2
∥st − xt−1∥2

≤(1− γt)f(xt−1) + γtf(x∗) +
Lf (γ

t)
2

2
∥st − xt−1∥2.

Rearranging terms in the above relation and noting that st, xt−1 ∈ X we have

f(xt)− f(x∗) ≤ (1− γt)(f(xt−1)− f(x∗)) +
Lf (γ

t)
2

2
D2

X .

Define a sequence {ωt}Nt=1 such that ωt = t(t + 1)/2, then ωt and γt = 2/(t + 1) satisfy the

assumptions in Lemma 4.2.2, applying the lemma to the above relation we obtain

ωt(f(xt)− f(x∗)) ≤ LfD
2
X

2

t∑
k=1

ωk
(
γk
)2

=
LfD

2
X

2

t∑
k=1

2k

k + 1
≤ tLfD

2
X ,

which yields (4.7). Also, applying the feasibility condition of st in (4.3) to (4.10) and noting that

st, xt−1 ∈ X and γt ∈ [0, 1] we have

gi(x
t) ≤ (1− γt)gi(x

t−1) +
Lg (γ

t)
2

2
D2

X ≤ (1− γt)[gi(x
t−1)]+ +

Lg (γ
t)

2

2
D2

X .

Since the right-hand side of 4.2.1 is non-negative, the above relation implies that

[gi(x
t)]+ ≤ (1− γt)[gi(x

t−1)]+ +
Lg (γ

t)
2

2
D2

X .

Recalling that ωt = t(t + 1)/2 and γt = 2/(t + 1) and applying Lemma 4.2.2 to the above relation

we conclude (4.8).

65

A few remarks are in place for the above theorem. First, in order to compute an (εf , εg)-

approximate solution to the original problem (4.1), the number of iterations required by Algorithm

4.2.9 is bounded by O
(
max{LfD

2
X/εf , LgD

2
X/εg}

)
. Second, note that the above analysis applies

to any Lipschitz smoothness conditions of f and gi’s with respect to any norm ∥ · ∥. Therefore,

the convergence result applies to the best possible geometric structure of the problem (in terms of

Lipschitz smoothness constants Lf , Lg, the associated norm ∥ · ∥, and diameter DX). This is indeed

a well-known feature of CG-type algorithms when solving problems with no functional constraint.

Our result above shows that such feature persists in our proposed Algorithm 4.2.9 for functional

constrained problems. In the following subsection, we will propose another projection-free method

for solving convex constrained optimization problems.

4.2.2 Conditional gradient sliding for convex constrained optimization

As mentioned in the remark after Theorem 4.2.1, denote ε = min{εf , εg} for simplicity, the

complexity for the number of gradient evaluations of∇f , ∇gi’s, and the linear objective optimization

subproblems are all in the order O(1/ε). Among the complexity results, it is known that the lower

complexity bound for the number of linear objective optimization subproblems for projection-free

methods is O(1/ε) (see, [8]). However, for functional constrained problems, the lower complexity

bounds for the number of gradient evaluations of ∇f and ∇gi’s have not yet been studied in the

literature. At present, the only related lower complexity bound known in the literature is the

number of gradient evaluations of ∇f in the objective function. Specifically, for problem of form

minx∈X f(x), the number of gradient evaluations of ∇f of any projection-based methods in order

to compute an ε-solution is lower bounded by O(1/
√
ε). The lower complexity results involving

gradient evaluations of gi’s is still open for general convex smooth constraint functions; there are

only some results for the special case when gi’s are affine functions (see, [26]).

Based on the above summary concerning lower complexity bounds, it is an interesting re-

search question to study whether it is possible to develop projection-free methods that has bet-

ter complexity results than that of Algorithm 4.2.9 in terms of gradient evaluations of ∇f and

∇gi’s. Indeed, there has been existing methods in the literature that motivates us to develop better

projection-free algorithms. Specifically, for problem of form minx∈X f(x), it has been shown in [14]

66

that the upper complexity bound for gradient evaluations of∇f and linear objective subproblems are

O(1/
√
ε) and O(1/ε) respectively. It has also been shown in ([28]) that the upper complexity bounds

on the number of gradient evaluations of ∇f and ∇gi’s are both of order O(1/
√
ε). Therefore, we

might expect that the upper complexity bounds of gradient evaluations of both the objective and

constraint functions described in Theorem 4.2.1 can be improved. In this section, motivated by the

projection-based accelerated constrained gradient descent method with sliding (ACGD-S) proposed

in [28], we propose CCG with sliding for solving convex functional constrained problems.

Algorithm 4.2.10 The CCG with sliding (CCG-S) outer loop for solving (4.1)

Require: x0 = x̄0 ∈ X for all i = 1, . . . ,m.
for t = 1, . . . , N do

Compute

xt = (1− βt)x̄t−1 + βtxt−1. (4.11)

Construct the quadratic program

argmin
x∈X

lf (x
t;x) +

ηt

2
∥x− xt−1∥2

s. t. lgi(x
t;x) ≤ 0, ∀i = 1, . . . ,m.

Run the CG sliding subroutine described in Algorithm 4.2.11 with y0 = xt−1 and accuracy
requirement δt to obtain an inexact solution xt.

Set x̄t to

x̄t = (1− βt)x̄t−1 + βtxt, (4.12)

end for
Output x̄N .

To begin with, if functions h are smooth, we define the linear approximation function of h

at y as

lh(y;x) =h(y) + ⟨x− y,∇h(y)⟩.

Then we have the CCG-S algorithm defined in Algorithm 4.2.10. In each iteration of the outer loop

step in Algorithm 4.2.10, we first update xt for gradient evaluation with a convex combination x̄t−1

and xt−1 of previous iteration. Then a CG sliding subroutine Algorithm (4.2.11) is performed to

find the direction xt − x̄t−1. Finally in (4.12), we update our iterate x̄t by moving from x̄t−1 to the

direction xt− x̄t−1 with step size parameter βt. In each CG sliding subroutine in Algorithm (4.2.11),

67

Algorithm 4.2.11 The CG sliding subroutine of Algorithm 4.2.10 for solving (4.1)

Require: y0 = xt−1 and target accuracy δ
for s = 0, 1, 2, 3, . . . do

Compute

dt,s = argmin
y∈X

lf (x
t; y) + η⟨y, yt,s − xt−1⟩

s. t. lg(x
t; y) ≤ 0, ∀i = 1, . . . ,m.

(4.13)

End loop if

G(yt,s) := ⟨yt,s − dt,s,∇f(xt) + η(yt,s − xt−1)⟩ ≤ δ.

Set ys+1 to

yt,s+1 = αt,s+1dt,s + (1− αt,s+1)yt,s. (4.14)

end for
Output yt,s.

a conditional gradient problem is solve to update the direction yt,s− x̄t−1 = xt− x̄t−1. Remark that

since there is only one gradient evaluation in each loop of the subroutine, the gradient evaluation

complexity of the out loop stays the same. The convergence analysis of each subroutine is provided

in in Lemma 4.2.3. With help of Lemma 4.2.3, we will then give the convergence analysis of the

outer loop in Proposition 4.2.1.

Lemma 4.2.3. Consider the iterates {yt,s} generated by the CG sliding subroutine in Algorithm

4.2.10 with αt,1 = 1

αt,s = min{1, ⟨y
t,s−1 − dt,s−1,∇f(xt) + η(yt,s−1 − xt−1)⟩

η∥yt,s−1 − xt−1∥2
}, s = 2, . . . , N. (4.15)

Let S denote the number of inner iterations when the solution xt := yt,S is output by the method,

the following relation is valid

lf (x
t;xt)− lf (x

t;x∗) +
η

2
[∥xt − x∗∥2 + ∥xt − xt−1∥2] ≤η

2
∥xt−1 − x∗∥2 + δ (4.16)

λlg(x
t;xt) ≤0, ∀λ. (4.17)

And we have S ≤ cηD2
X/δ, where η is some universal constant.

Proof. Let X(t) denote the feasible region {x ∈ X : lg(x;∇g(xt)) ≤ 0}. Note that X(t) is convex

68

for all t = 1, . . . , N . With xt = yt,S , the termination condition implies that G(xt) ≤ δ. Since dt,S is

the minimizer of (4.13) and the optimal solution of (4.1) satisfy x∗ ∈ X(t), we have

⟨xt − x∗,∇f(xt) + η(xt − xt−1)⟩ ≤ ⟨xt − dt,S ,∇f(xt) + η(xt − xt−1)⟩ = G(xt) ≤ δ. (4.18)

The following qualities are derived from simple algebraic.

⟨xt − x∗, η(xt − xt−1)⟩ = η

2
[∥xt − x∗∥2 + ∥xt − xt−1∥2 − ∥xt−1 − x∗∥2], (4.19)

⟨xt − x∗,∇f(xt)⟩ = lf (x
t;xt)− lf (x

t;x∗). (4.20)

Combining (4.18), (4.19) and (4.20), we are able to obtain (4.16). Moreover, since X(t) is convex

and fixes throughout the sliding updates, and with αt,1 = 1, the iterates xt are convex combinations

of points in X(t), we have that xt ∈ X(t) and (4.17) is satisfied for any λ ∈ Rm
+ .

We now derive the number of iterations required in the sliding subroutine in Algorithm

(4.2.11) to generate the output xt.

Notice our objective function for the sliding subroutine is given by ft below

ft(y) := lf (x
t; y) +

η

2
∥y − xt−1∥2.

Since f is a convex smooth function, we are able to conclude that ft is also convex and smooth

with Lipschitz constant η. Applying Lemma 4.2.1 and the convexity of ft, we obtain the following

inequality for any γt,s ∈ [0, 1] and ỹt,s := γt,sdt,s + (1− γt,s)yt,s−1

ft(ỹ
t,s)− f∗

t ≤ (1− γt,s)(ft(y
t,s−1)− f∗

t) + (γt,s)2
ηD2

X

2
. (4.21)

According to (4.14), yt,s lies on the line interval [yt,s−1, yt,s−1 + dt,s−1] and is determined by the

step size αt,s. In particular, we choose step size αs ∈ [0, 1] such that the quadratic function ft is

minimized.

Since when αs = ⟨yt,s−1 − dt,s−1,∇f(xt) + η(yt,s−1 − xt−1)⟩/η∥yt,s−1 − xt−1∥2 we have

that

∂ft
∂αs

= ⟨dt,s−1 − yt,s−1,∇f(xt) + η(yt,s−1 − xt−1)⟩+ αsη∥yt,s−1 − xt−1∥2 = 0,

69

and (4.15) gives the appropriate step size αt. With such step size αt, y
t,s is the minimizer of ft and

ft(y
t,s)− f∗

t ≤ ft(ỹ
t,s)− f∗

t . Thus we derive from (4.21) that

ft(y
t,s)− f∗

t ≤ (1− γt,s)(ft(y
t,s−1)− f∗

t) + (γt,s)2
ηD2

X

2
.

In particular, by Lemma 4.2.2, we can select γt,s = 2/(s+ 1) and ωs = s(s+ 1) to obtain

ft(y
t,s)− f∗

t ≤ 2ηD2
X

s+ 1
, ∀s ≥ 1.

By the smoothness of function ft, we derive from ft(y
t,s)− f∗

t ≤ ft(ỹ
t,s)− f∗

t that

γt,sG(yt,s) ≤(ft(y
t,s)− f∗

t)− (ft(ỹ
s+1)− f∗

t) + (γt,s)2
η

2
∥dt,s − yt,s∥2

≤(ft(y
t,s)− f∗

t)− (ft(y
s+1)− f∗

t) + (γt,s)2
ηD2

X

2
,

(4.22)

where G(yt,s) = ⟨yt,s − dt,s,∇f(xt) + η(yt,s − xt−1)⟩. Apply the weight ωs = s(s+ 1) on (4.22) and

sum from s = 1 to s = S, we are able to obtain

(
S∑

s=1

ωsγt,s

)
min

s=1,...,S
G(yt,s)

≤
S∑

s=2

(ωs − ωs−1)(ft(y
t,s)− f∗

t) + ω1(ft(y
t,1)− f∗

t)− ωS(ft(y
S+1)− f∗

t) +

S∑
s=1

ωs(γt,s)2
ηD2

X

2

≤
S∑

s=2

(ωs − ωs−1)(ft(y
t,s)− f∗

t) +

S∑
s=1

ωs(γt,s)2
ηD2

X

2
,

where the second inequality is derived from the fact that ω0 = 0 and ft(y
t,S+1) − f∗

t ≥ 0. With

ωs = s(s+ 1) and γt,s = 1/(s+ 1), we have

min
s=1,...,S

G(yt,s) ≤ 1

S(S + 1)

(
S∑

s=2

s

s+ 1
4ηD2

X + 2SηD2
X

)
≤ 6ηD2

X

S + 1
,

and S ≤ 6ηD2
X/δ implies that the end loop condition G(yt,s) ≤ δ is satisfied.

Remark that Lemma 4.2.3 implied that the iteration complexity of each subroutine is

bounded by an universal constant, which will result that the total complexity of CCG-S method

is determined by the complexity of the outer loop. The next proposition establishes an important

70

recursive relation for the CCG-S outer loop.

Proposition 4.2.1. Consider xt generated by the CCG-S Algorithm in (4.2.10) with the proximal

parameter chosen to satisfy ηt ≥ L(Λ)βt, where L(Λ) := Lf + Lg(Λ) with Lg(Λ) representing an

upper bound Lipschitz smoothness constant of
∑m

i−1 λigi(x) for any λ ∈ Λ, then we have

f(x̄t)− f∗ + λg(x̄t) +
βtηt

2
∥xt − x∗∥2

≤(1− βt)(f(x̄t−1)− f∗ + λg(x̄t−1)) +
βtηt

2
∥xt−1 − x∗∥2 + βtδt, ∀λ ∈ Λ.

(4.23)

Moreover, if there exists some weight ωt satisfying ωtβtηt ≥ ωt−1βt−1ηt−1, and ωt−1 ≥ ωt(1− βt),

then we have

f(x̄N)− f∗ + λg(x̄N)

≤ 1

ωN

(
ω1(1− β1)(f(x0)− f∗ + λg(x̄0)) +

ω1β1η1

2
D2

X +

m∑
i=1

ωtβtδt

)
, ∀λ ∈ Λ.

(4.24)

In particular, choosing βt = 3/(t+2), ηt = 3L(Λ)/(t+2), δt = L(Λ)D2
X/t(t+1), ωt = t(t+1)(t+2)

would lead to

f(x̄N)− f∗ + λg(x̄N) ≤ 3L(Λ)D2
X

2N(N + 1)
, ∀λ ∈ Λ.

Proof. Since f + λg is convex smooth, denote the Lipschitz continuous constant as L(Λ) ≤ βtηt, by

(4.11) and (4.12) in Algorithm (4.2.10), we have that

f(x̄t) + λg(x̄t)

≤lf (x
t; x̄t) + λlg(x

t; x̄t) +
L(Λ)

2
∥x̄t − x∥2

≤(1− βt)[lf (x
t; x̄t−1) + λlg(x

t; x̄t−1)] + βt[lf (x
t;xt) + λlg(x

t;xt)] +
βtηt

2
∥xt − xt−1∥2

≤(1− βt)[f(x̄t−1) + λg(x̄t−1)] + βt[lf (x
t;xt) + λlg(x

t;xt)] +
βtηt

2
∥xt − xt−1∥2, ∀λ ∈ Λ.

(4.25)

71

where the last inequality follows from convexity. By Lemma 4.2.3, we have that

lf (x
t;xt)− lf (x

t;x∗) +
η

2
[∥xt − x∗∥2 + ∥xt − xt−1∥2] ≤η

2
∥xt−1 − x∗∥2 + δ (4.26)

λlg(x
t;xt) ≤0, ∀λ ∈ Λ. (4.27)

Combining (4.25) with (4.26) and (4.27), we have

f(x̄t) + λg(x̄t) ≤(1− βt)[f(x̄t−1) + λg(x̄t−1)] + βtlf (x
t;x∗)

+
βtηt

2
(∥xt−1 − x∗∥2 − ∥xt − x∗∥2) + βtδt

≤(1− βt)[f(x̄t−1) + λg(x̄t−1)] + βtf(x∗)

+
βtηt

2
(∥xt−1 − x∗∥2 − ∥xt − x∗∥2) + βtδt, ∀λ ∈ Λ.

(4.28)

where the last inequality follows from the convexity of f and g. Rearrange (4.28), (4.23) is derived.

If ωt satisfies ωtβtηt ≥ ωt−1βt−1ηt−1, and ωt−1 ≥ ωt(1 − βt), then by multiplying ωt to

(4.23) and summing up for t = 1, . . . , N , we have

ωN (f(x̄N)− f∗ + λg(x̄N))

≤

(
ω1(1− β1)(f(x0)− f∗ + λg(x̄0)) +

ω1β1η1

2
∥x0 − x∗∥2 − ωtβtηt

2
∥xt − x∗∥2 +

m∑
i=1

ωtβtδt

)

≤

(
ω1(1− β1)(f(x0)− f∗ + λg(x̄0)) +

ω1β1η1

2
D2

X +

m∑
i=1

ωtβtδt

)
, ∀λ ∈ Λ,

and (4.24) in derived. In particular, choosing βt = 3/(t+2), ηt = 3L(Λ)/(t+2), δt = L(Λ)D2
X/t(t+

1), ωt = t(t+ 1)(t+ 2) would lead to

f(x̄N)− f∗ + λg(x̄N) ≤ 1

N(N + 1)(N + 2)

(
3L(Λ)D2

X +
3NL(Λ)D2

X

2

)
=

3L(Λ)D2
X

2N(N + 1)
,

where λ is arbitrary in Λ.

Remark that the above proposition implies f(x̄N) − f∗ + λg(x̄N) ≤ ε if N is greater than

O(
√
L(Λ)D2

X/ε) for any accuracy threshold ε. The following theorem further proved that if (4.24)

in Proposition 4.2.1 is satisfied, xN is an (εf , εg)-approximate solution such that f(x̄N) − f∗ ≤ εf

72

and [g(x̄N)]+ ≤ εg.

Theorem 4.2.2. Consider xt generated by the ACGD Algorithm in (4.2.10) with the proximal

parameter chosen to satisfy ηt ≥ L(Λ)βt, where L(Λ) := Lf+Lg(Λ) with Lg(Λ) representing an upper

bound Lipschitz smoothness constant of
∑m

i−1 λigi(x) for any λ ∈ Λ, and there exists some weight

ωt satisfying ωtβtηt ≥ ωt−1βt−1ηt−1, and ωt−1 ≥ ωt(1 − βt). If we choose Λ = λ∗ + ∥λ∗∥B(0, 1),

then x̄N is an (εf , εg)-approximate solution such that f(x̄N) − f∗ ≤ εf and [g(x̄N)]+ ≤ εg with

N = O(max{
√

L(Λ)D2
X/εf ,

√
L(Λ)D2

X/εg}).

Proof. By Proposition 4.2.1, with such choice of parameters {ηt}Nt=1 and {βt}Nt=1, if the total number

of iterations N is greater than N = O(max{
√

L(Λ)D2
X/εf ,

√
L(Λ)D2

X/εg}), then f(x̄N) − f∗ +

λg(x̄N) ≤ min{εf , εg} for any λ ∈ Λ. Since λ is arbitrary, if we choose λ = 0, then f(x̄N)− f∗ ≤ εf

is derived. Denote (x̄∗, λ∗) as the saddle point of f(x)+λg(x). Without loss of generality we assume

∥λ∗∥ = 1. Then we have that

0 ≤ f(x̄N)− f∗ + λ∗g(x̄N)− 0⊤g(x̄∗) = f(x̄N)− f∗ + λ∗g(x̄N). (4.29)

Choose λ = λ∗ + [g(x̄N)]+/∥[g(x̄N)]+∥, then we are able to derive from (4.29) that

[g(x̄N)]+ ≤ ∥[g(x̄N)]+∥ ≤ f(x̄N)− f∗ + λg(x̄N) ≤ εg/∥λ∗∥ = εg.

Remark from Theorem 4.2.2 that since there is only one gradient evaluation of functions

f and g in each subroutine, the total iteration number required to obtain an (εf , εg)-approximate

solution is greater than N = O(max{
√
L(Λ)D2

X/εf ,
√
L(Λ)D2

X/εg}). This is a better complexity

result for solving convex constrained optimization problem (4.1) than the CCG method. However,

the complexity property of CCG-S has for solving nonconvex optimization problems has not yet been

studied. In next section, the constrained conditional gradient method with line search is proposed

for solving nonconvex problem (4.1).

73

4.3 Nonconvex smooth functional constrained optimization

In this section, we continue to examine the nonconvex optimization scenario where the

convexity assumption for f is relaxed. However, we continue to uphold the assumption that the

feasible set X remains convex. In Section 4.3.1, the constraints gi, i = 1, . . . ,m are convex, and the

corresponding convergence analysis are given. In Section 4.3.2, gi, i = 1, . . . ,m are also nonconvex

with the convergence analysis given.

For nonconvex smooth optimization, two optimality conditions are commonly known in the

literature: the Fritz-John (FJ) and the Karush–Kuhn–Tucker (KKT) conditions. Specifically, the FJ

necessary condition of problem (4.1) at a feasible point x̂ is that there exists nonnegative multipliers

λ0, . . . , λm that are not all zero such that

⟨λ0∇f(x̂) +

m∑
i=1

λi∇gi(x̂), x̂− x⟩ ≤ 0, ∀x ∈ X.

Without loss of generality, we assume that
∑m

i=1 λi = 1. The KKT necessary condition is a special

case of FJ in which λ0 = 1. Our goal is to obtain am approximate FJ point.

We propose the CCG with line search algorithm in Algorithm 4.3.12 solving nonconvex

optimization problems. The structure is based on the original CCG algorithm in Algorithm 4.2.9.

To accelerate the convergence of CCG, we add a line search step (4.31) for a best step size γt.

Algorithm 4.3.12 Conditional gradient method with line search (CCG-L) for solving (4.1)

Require: x0 ∈ X for all i = 1, . . . ,m.
for t = 1, . . . , N do

Compute

st ∈ argmin
x∈X

⟨∇f(xt−1), x⟩

s. t. gi(x
t−1) + ⟨∇gi(x

t−1), x− xt−1⟩ ≤ 0, ∀i = 1, . . . ,m.

(4.30)

Set xt to

xt = (1− γt)xt−1 + γtst,

where γt is chosen such that

γt ∈ argmin
γ≥0

f((1− γ)xt−1 + γst) s.t. gi((1− γ)xt−1 + γst) ≤ εg,∀i = 1, . . . ,m. (4.31)

end for
Output xN .

74

Before we discuss the convergence analysis of CCG-L when the constraints are convex and

nonconvex respectively, remark that the feasibility of the the convergence analysis of CCG in Section

4.2 is derived by convexity. Without the convexity assumption, in Algorithm 4.3.12 the optimization

problem in (4.30) is not necessarily feasible. The following Proposition show that if an iterate xt−1

is assumed to be εg-feasible, even if the optimization problem in (4.3) is not feasible, xt−1 is an

(εf , εg)-approximate FJ point as defined in Definition 4.1.3.

Proposition 4.3.1. If xt−1 in Algorithm 4.2.9 is εg-feasible but the optimization problem in (4.3)

is infeasible, then xt−1 is an (εf , εg)-approximate FJ point.

Proof. To construct an (εf , εg)-approximate FJ point, we first consider the feasibility problem

min
x∈X

0

s. t. gi(x
t−1) + ⟨∇gi(x

t−1), x− xt−1⟩ ≤ 0, i = 1, . . . ,m

(4.32)

associated with problem (4.3), whose dual problem is

max
λ1,...,λm≥0

min
x∈X

m∑
i=1

λi(gi(x
t−1) + ⟨∇gi(x

t−1), x− xt−1⟩).

Note that the dual problem is always feasible (with λ1 = · · · = λm = 0). Therefore, problem

(4.32) is infeasible if and only if there exists λ1, . . . , λm ≥ 0 such that minx∈X

∑m
i=1 λi(gi(x

t−1) +

⟨∇gi(x
t−1), x− xt−1⟩) > 0, i.e.,

m∑
i=1

λi⟨∇gi(x
t−1), xt−1 − x⟩ <

m∑
i=1

λigi(x
t−1), ∀x ∈ X.

Clearly, we have
∑m

i=1 λi > 0; otherwise the above inequality will not hold. Without loss of gener-

ality, we assume that
∑m

i=1 λi = 1. Recalling the assumption that xt−1 is εg-feasible, with λ0 = 0,

we have

〈
0 · ∇f(xt−1) +

m∑
i=1

λi∇gi(x
t−1), xt−1 − x

〉
< εg ≤ εf .

Therefore, xt−1 is an approximate FJ point.

75

As shown in the previous proposition, we would like to keep the εg-feasibility of iterates.

The following lemma shows that if an iterate xt−1 is εg-feasible, then with appropriate parameters

γt chosen, the iterates will remain εg-feasible.

Lemma 4.3.1. Suppose that xt−1 is εg-feasible in Algorithm 4.2.9. Then xt is also εg-feasible if

γt ≤ εg/LgD
2
X ≤ 1.

Proof. Applying Lemma 4.2.1, denote ∆t := γt[γtLgD
2
X/2− g(xt)], we have that g(xt+1) ≤ g(xt) +

∆t. Since γt ≤ εg/LgD
2
X , we have that γtLgD

2
X/2 ≤ εg/2. If εg/2 < gi(x

t) < εg, then ∆t < 0, and

hence gi(x
t+1) < gi(x

t) < εg. Otherwise, if gi(x
t) ≤ εg/2, then ∆t ≤ γtεg/2 ≤ εg/2 with γt ≤ 1.

Thus gi(x
t+1) ≤ gi(x

t) + ∆t ≤ εg/2 + εg/2 ≤ εg. In conclusion, maxi gi(x
t+1) ≤ εg and xt+1 is

εg-feasible.

Lemma 4.3.1 implies that with an εg-feasible starting point x0, all the iterates xt are εg-

feasible. Since we add a line search step for the best step size parameter γt, we are not able to choose

a constant γt as in the convergence analysis of CCG when the problem is convex. however, note that

Lemma 4.3.1 implies that there always exists an γt ≤ εg/LgD
2
X ≤ 1 such that (4.31) is feasible with

an εg-feasible starting point x0. The convergence analysis of the line search algorithm Algorithm

4.3.12 is provided in the following sections for solving the nonconvex optimization problem (4.1)

with both convex constraints and nonconvex constraints. We will first provide the convergence of

the convex constrained problem.

4.3.1 Convergence analysis for solving convex constrained nonconvex op-

timization problem

In this subsection, we first consider the nonconvex constrained optimization where the con-

straints gi, i = 1, . . . ,m are convex. The following Theorem shows that with appropriate parameters

chosen, we are able to obtain an (εf , εg)-stationary point solution.

Theorem 4.3.1. Consider (4.1) with convex constraints gi, i = 1, . . . ,m. In Algorithm 4.2.9,

if we start from an εg-feasible starting point x0, then denote ∆f := f(x0) − f(x∗), there exists

76

t ∈ {1, 2, . . . , N} such that

⟨∇f(xt−1), xt−1 − x⟩ ≤ ∆fD
2
X

N min{ εf
Lf

,
εg
Lg

}
+

εf
2
,∀x ∈ X s.t. gi(x) ≤ 0, i = 1, . . . ,m and (4.33)

gi(x
t−1) ≤εg, ∀i = 1, . . . ,m, t = 1, . . . , N.

Proof. Since we start from an εg-feasible solution x0, the iterates always remain εg-feasible. Thus

it suffices to only consider the convergence of the Wolfe gap maxg(x)≤0,x∈X⟨xt −x,∇f(xt)⟩. Denote

X0 := {x ∈ X, g(x) ≤ 0}, X1 := {x ∈ X, ⟨∇g(xt−1), x−xt−1t⟩+g(xt−1) ≤ 0}. Since gi, i = 1, . . . ,m

are convex and X0 ⊆ X1,

max
x∈X0

⟨∇f(xt−1), xt−1 − x⟩ ≤max
s∈X1

⟨∇f(xt−1), xt−1 − x⟩ = ⟨∇f(xt−1), xt−1 − st⟩. (4.34)

The last equality is derived from (4.30). Define xt = (1 − γ)xt−1 + γst, where γ =

min{εf/LfD
2, εg/LgD

2}, then derive from Lemma (4.2.1) and the smoothness of the objective

function f that

γ⟨∇f(xt−1), xt−1 − st⟩ ≤f(xt−1)− f(xt) + γ2Lf

2
∥st − xt−1∥22 (4.35)

≤f(xt−1)− f(xt) + γ2Lf

2
D2

X .

where the second inequality is obtained by the fact that f(xt) ≤ f(xt) and st, xt−1 ∈ X. Summing

up the above inequality (4.35) for t = 1, . . . , N , since f(x0)− f(xN) ≤ f(x0)− f(x∗), we have

N∑
t=1

γ⟨∇f(xt−1), xt−1 − st⟩ ≤(f(x0)− f(x∗)) +

N∑
t=1

γ2LfD
2
X

2
. (4.36)

Derive from (4.34) that ⟨∇f(xt−1), xt−1 − x⟩ ≤ ⟨∇f(xt−1), xt−1 − st⟩, ∀x ∈ X0, t ∈ {1, . . . , N},

(4.36) implies that there exists an t such that (4.33) is derived.

Remark from the above theorem that the number of iterations required by Algorithm 4.3.12

is bounded by O
(
max{∆fLfD

2
X/ε2f ,∆fLgD

2
X/εfεg}

)
to obtain an (εf , εg)-stationary point solution

to the original problem (4.1). In the following subsection, we will continue to the general nonconvex

constrained optimization problems.

77

4.3.2 Convergence analysis for solving nonconvex constrained nonconvex

optimization problem

In this subsection, we perform the convergence analysis of Algorithm 4.3.12 for solving (4.1)

with nonconvex objective and constraint functions. The following Theorem provides complexity

analysis for computing an (εf , εg)-approximate FJ point.

Theorem 4.3.2. In Algorithm 4.2.9, if we start from an εg-feasible starting point x0, and the total

iteration number N ≥ 2max{∆fLfD
2
X/ε2f ,∆fLgD

2
X/εfεg}, then denote ∆f := f(x0)−f(x∗), there

exists λi ≥ 0, i = 0, . . . ,m and k ∈ {1, . . . , N} such that

⟨λ0∇f(xt−1) +

m∑
i=1

λ̂i∇gi(x
t−1), xt−1 − x⟩ ≤ εf , ∀x ∈ X. (4.37)

gi(x
t−1) ≤εg, ∀i = 1, . . . ,m, t = 1, . . . , N.

Proof. Since we start from an εg-feasible solution x0, the iterates always remain εg-feasible. By

Proposition 4.3.1, if the optimization problem in (4.30) is infeasible, then xt−1 is an (εf , εg)-

approximate FJ point. Thus we only consider when (4.30) is feasible.

Define xt = (1− γ)xt−1 + γst, where γ := min{εf/LfD
2
X , εg/LgD

2
X}. From Lemma (4.2.1)

and the smoothness of the objective function f , we have

γ⟨∇f(xt−1), xt−1 − st⟩ ≤f(xt−1)− f(xt) + γ2Lf

2
∥st − xt−1∥22

≤f(xt−1)− f(xt) + γ2Lf

2
D2

X .

Therefore, summing from t = 1, . . . , N and recalling that γ := min{εf/LfD
2, εg/LgD

2} we have

min
t=1,...,N

⟨∇f(xt−1), xt−1 − st⟩ ≤ 1

N

N∑
t=1

⟨∇f(xt−1), xt−1 − st⟩ ≤ ∆f

γN
+

γLfD
2
X

2

≤ ∆fD
2
X

N min{ εf
Lf

,
εg
Lg

}
+

εf
2
.

(4.38)

Let us use k to denote the index such that

⟨∇f(xk−1), xk−1 − sk⟩ = min
t=1,...,N

⟨∇f(xt−1), xt−1 − st⟩

78

and study the optimization problem

min
x∈X

⟨∇f(xk−1), x− xk−1⟩

s. t. gi(x
k−1) + ⟨∇gi(x

k−1), x− xk−1⟩ ≤ 0, ∀i = 1, . . . ,m

in which one optimal solution is x = sk. The saddle point form of the above problem is

min
x∈X

max
λ≥0

⟨∇f(xk−1), x− xk−1⟩+
m∑
i=1

λi

(
gi(x

k−1) + ⟨∇gi(x
k−1), x− xk−1⟩

)
.

From the optimality condition and complementary slackness, there exists optimal multipliers λ̂ ≥ 0

such that

⟨∇f(xk−1), sk − xk−1⟩

=⟨∇f(xk−1), sk − xk−1⟩+
m∑
i=1

λ̂i

(
gi(x

k−1) + ⟨∇gi(x
k−1), sk − xk−1⟩

)
≤⟨∇f(xk−1), x− xk−1⟩+

m∑
i=1

λ̂i

(
gi(x

k−1) + ⟨∇gi(x
k−1), x− xk−1⟩

)
.

From the above relation and (4.38) we have

⟨∇f(xk−1), xk−1 − x⟩+
m∑
i=1

λ̂i⟨∇gi(x
k−1), xk−1 − x)⟩

≤⟨∇f(xk−1), xk−1 − sk⟩+
m∑
i=1

λ̂igi(x
k−1), ∀x ∈ X

≤ ∆fD
2
X

N min{ εf
Lf

,
εg
Lg

}
+

εf
2

+

m∑
i=1

λ̂iεg.

Denote λ0 = (1 +
∑m

i=1 λ̂i)
−1 and λi = λ̂0λ̂i for i = 1, 2, . . . ,m.

With N ≥ 2max{∆fLfD
2
X/ε2f ,∆fLgD

2
X/εfεg}, derive from (4.39) that there exists k ∈

{1, 2, . . . , N} such that

⟨λ0∇f(xk−1) +

m∑
i=1

λi∇gi(x
k−1), xk−1 − x⟩ ≤ λ0

(
εf +

m∑
i=1

λ̂iεf

)
≤ εf , ∀x ∈ X. (4.39)

thus (4.37) is derived.

79

Remark from (4.37) that if the number of iterations N required by Algorithm 4.3.12 satisfies

N ≥ O
(
max{∆fLfD

2
X/ε2f ,∆fLgD

2
X/εfεg}

)
, then zt ≤ εf , and iterate xt is an (εf , εg)-approximate

FJ point of Algorithm 4.2.9 for solving (4.1).

4.4 Conclusion

We now have a brief summary of this chapter. The research goal is to design projection-free

algorithms for solving functional constrained optimization problem in this chapter. We first describe

the problem of interest and essential definitions of different types of approximate solutions in Section

4.1. Secondly, in Section 4.2, we provide two projection-free methods for solving convex constrained

optimization problems. The constrained conditional gradient (CCG) method is proposed such that

the gradient evaluation complexity and the linear objective optimization complexity are both of order

O(1/ε). Then CCG with sliding (CCG-S) method is described with an O(1/
√
ε) gradient evaluation

complexity and O(1/ε) linear objective optimization complexity. Finally, in Section 4.3, we develop

projection-free conditional gradient (CG) type algorithms for solving nonconvex constrained opti-

mization problems. We propose CCG with line search (CCG-L) to obtain an approximate solution

with in O(1/ε2) iterations no matter the constraint functions are convex or nonconvex.

80

Bibliography

[1] Digvijay Boob, Qi Deng, and Guanghui Lan. Stochastic first-order methods for convex and
nonconvex functional constrained optimization. Mathematical Programming, 197(1):215–279,
2023.

[2] Yair Carmon, John C Duchi, Oliver Hinder, and Aaron Sidford. Lower bounds for finding
stationary points I. arXiv preprint arXiv:1710.11606, 2017.

[3] Yair Carmon, John C Duchi, Oliver Hinder, and Aaron Sidford. Lower bounds for finding
stationary points II: First-order methods. arXiv preprint arXiv:1711.00841, 2017.

[4] Yair Carmon, John C Duchi, Oliver Hinder, and Aaron Sidford. Lower bounds for finding
stationary points i. Mathematical Programming, 184(1):71–120, 2020.

[5] Yi Cheng, Guanghui Lan, and H Edwin Romeijn. Functional constrained optimization for risk
aversion and sparsity control. arXiv preprint arXiv:2210.05108, 2022.

[6] Jelena Diakonikolas and Puqian Wang. Potential function-based framework for minimizing
gradients in convex and min-max optimization. SIAM Journal on Optimization, 32(3):1668–
1697, 2022.

[7] Yoel Drori and Marc Teboulle. Performance of first-order methods for smooth convex mini-
mization: a novel approach. Mathematical Programming, 145(1):451–482, 2014.

[8] Martin Jaggi. Revisiting frank-wolfe: Projection-free sparse convex optimization. In Proceedings
of the 30th International Conference on Machine Learning (ICML-13), pages 427–435, 2013.

[9] Yunheng Jiang. Optimal first order methods for reducing gradient norm in unconstrained convex
smooth optimization. Master’s thesis, Clemson University, South Carolina, USA, 2022.

[10] Donghwan Kim and Jeffrey A Fessler. Optimizing the efficiency of first-order methods for
decreasing the gradient of smooth convex functions. Journal of optimization theory and appli-
cations, 188(1):192–219, 2021.

[11] Guanghui Lan. First-order and stochastic optimization methods for machine learning. Springer,
2020.

[12] Guanghui Lan, Yuyuan Ouyang, and Zhe Zhang. Optimal and parameter-free gradient mini-
mization methods for convex and nonconvex optimization. arXiv e-prints, pages arXiv–2310,
2023.

[13] Guanghui Lan, Edwin Romeijn, and Zhiqiang Zhou. Conditional gradient methods for convex
optimization with general affine and nonlinear constraints. SIAM Journal on Optimization,
31(3):2307–2339, 2021.

81

[14] Guanghui Lan and Yi Zhou. Conditional gradient sliding for convex optimization. SIAM
Journal on Optimization, 26(2):1379–1409, 2016.

[15] Guanghui Lan and Yi Zhou. Random gradient extrapolation for distributed and stochastic
optimization. SIAM Journal on Optimization, 28(4):2753–2782, 2018.

[16] Ji Liu and A Stephen Morse. Accelerated linear iterations for distributed averaging. Annual
Reviews in Control, 35(2):160–165, 2011.

[17] Wei Liu, Qihang Lin, and Yangyang Xu. First-order methods for affinely constrained composite
non-convex non-smooth problems: Lower complexity bound and near-optimal methods. arXiv
preprint arXiv:2307.07605, 2023.

[18] A. Nemirovski and D. Yudin. Problem complexity and method efficiency in optimization. Wiley-
Interscience Series in Discrete Mathematics. John Wiley, XV, 1983.

[19] A. S. Nemirovski. Information-based complexity of linear operator equations. Journal of Com-
plexity, 8(2):153–175, 1992.

[20] Arkadi Nemirovski. Information-based complexity of convex programming. Lecture notes, 834,
1995.

[21] AS Nemirovsky. On optimality of krylov’s information when solving linear operator equations.
Journal of Complexity, 7(2):121–130, 1991.

[22] Yu Nesterov. Smooth minimization of non-smooth functions. Mathematical programming,
103(1):127–152, 2005.

[23] Yurii Nesterov. A method for unconstrained convex minimization problem with the rate of
convergence O(1/k2). In Doklady an ussr, volume 269, pages 543–547, 1983.

[24] Yurii Nesterov. Lectures on convex optimization, volume 137. Springer, 2018.

[25] Yurii Nesterov, Alexander Gasnikov, Sergey Guminov, and Pavel Dvurechensky. Primal–dual
accelerated gradient methods with small-dimensional relaxation oracle. Optimization Methods
and Software, 36(4):773–810, 2021.

[26] Yuyuan Ouyang and Yangyang Xu. Lower complexity bounds of first-order methods for convex-
concave bilinear saddle-point problems. Mathematical Programming, 185(1):1–35, 2021.

[27] Wei Shi, Qing Ling, Gang Wu, and Wotao Yin. EXTRA: An exact first-order algorithm for
decentralized consensus optimization. SIAM Journal on Optimization, 25(2):944–966, 2015.

[28] Zhe Zhang and Guanghui Lan. Solving convex smooth function constrained optimization is
almost as easy as unconstrained optimization. arXiv preprint arXiv:2210.05807, 2022.

82

	Efficient First-Order Methods for Some Smooth Nonlinear Optimization Problems
	Recommended Citation

	Title Page
	Abstract
	Preliminaries
	Properties of smooth functions
	Acceleration of the gradient descent method

	Exact matrix-vector multiplication complexity for kernel projection and its application on distributed consensus optimization
	Introduction
	Three perspectives associated with the problem
	Exact complexity under a linear span assumption
	Lower complexity bound analysis for general deterministic methods
	Conclusion

	Gradient norm minimization through a gradient extrapolation method
	Introduction
	The gradient extrapolation method
	GEM as linear span of gradients
	GEM for gradient norm minimization
	Conclusion

	Conditional gradient methods for smooth functional constrained optimization
	Introduction
	Convex smooth functional constrained optimization
	Nonconvex smooth functional constrained optimization
	Conclusion

	Bibliography

