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Abstract

This dissertation will explore factorization within orders in a number ring. By

far the most well-understood of these orders are rings of algebraic integers. We will

begin by examining how certain types of subrings may relate to the larger rings in

which they are contained. We will then apply this knowledge, along with additional

techniques, to determine how the elasticity in an order relates to the elasticity of the

full ring of algebraic integers. Using many of the same strategies, we will develop a

corresponding result in the rings of formal power series. Finally, we will explore a

number of additional cases, including several explicit examples of orders of interest.
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Chapter 1

Introduction

1.1 Motivation and Background

Given a ring R, one can consider the structure of R under either its addi-

tion operation or its multiplication operation. Under addition, the elements of R

form an abelian group. Under multiplication, the (nonzero) elements of R form a

semigroup; when R has multiplicative identity, this semigroup is actually a monoid.

Broadly speaking, the goal of this dissertation is to understand the structure of the

multiplicative monoid of certain types of rings. In particular, we will consider how

elements in these rings factor into irreducibles and how we might glean information

about their multiplicative structures from more well-understood related rings. In this

chapter, we will compile the background knowledge necessary to understand the the-

orems that will be presented in later chapters. Much of this discussion will be drawn

from [14], but it will be presented here for completeness.

Fundamental to the discussion presented here is the idea that much more

is known about the structures of certain types of rings than others. For instance,

fields have relatively simple structures because of the tight restrictions placed on
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their definition; thus, their properties are generally well known. Rings of algebraic

integers, which are of particular interest to this dissertation, have, in some sense,

more complex multiplicative structures. Even so, the study of these rings and their

multitude of “nice” properties has a great deal of historical importance and forms the

basis for the field of algebraic number theory. Since so much more is known when

working in these and other similarly well-understood rings, it makes sense to leverage

this knowledge to better understand rings that are closely related. As we will discuss

in Chapter 2, certain types of subrings may retain some multiplicative properties of

the larger rings in which they are contained. This will allow us to draw conclusions

about the properties and structures of subrings within more familiar rings.

One method by which we may try to understand the multiplicative structure of

a ring is how its elements may factor into irreducibles. For instance, it is well-known

that the ring of integers Z has unique factorization, i.e. every integer (other than 0, 1,

and −1) decomposes uniquely (up to sign) into a product of prime numbers. As we will

see, not every ring exhibits such nice factorization properties (and in fact, some rings

do not permit factorization into irreducibles at all). In Chapter 3, we will explore the

idea of elasticity, one metric by which we measure how “badly” unique factorization

may fail. In particular, we will focus on elasticity within orders in algebraic number

fields using what is known about factorization in the corresponding ring of algebraic

integers, as discussed above. We will also see how these results may be extended to

the rings of formal power series over such orders. Chapter 4 will compile a few more

specific cases of what is known, including explicitly determining which orders possess

certain properties. Finally, Chapter 5 will outline directions in which this work may

continue, as well as conjectures based on the results outlined throughout this paper.

The definitions and results in this first chapter are not original and are drawn

from other sources in order to provide necessary background. In the remaining chap-
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ters, definitions and results are original to this dissertation unless otherwise indicated.

1.2 Commutative Algebra

This section will discuss definitions, theorems, and examples relating to the

structures of elements, ideals, and properties present in a commutative ring. A basic

understanding of abstract algebra concepts, including groups and rings, will be as-

sumed. The definitions and results presented here can, for the most part, be found

in a typical algebra text, such as [13], though some will be drawn from other sources;

these additional sources will be identified as needed. As mentioned previously, this

discussion will proceed much as in the first two chapters of [14], though some items

will be omitted, added, or rearranged, as appropriate. Most proofs will not be pre-

sented here and will be left to the source materials. Throughout this section, we will

let R be a commutative ring with identity 1.

1.2.1 Properties of Elements

First, we will consider certain properties that an element of R may have.

Definition 1.2.1. Let α, β ∈ R. We say that α divides β if there exists some

element γ ∈ R such that β = αγ. In this case, we also say that β is divisible by α.

Definition 1.2.2. Let α ∈ R. We say that α is a zero divisor if α|0 nontrivially,

i.e. if there exists some nonzero β ∈ R such that αβ = 0.

Definition 1.2.3. Let α ∈ R. We say that α is a unit if α|1, i.e. if there exists some

β ∈ R such that αβ = 1. In this case, the element β is called the inverse of α and

denoted α−1. The set of all units in R is denoted U(R) (or R×).
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As we will see in later sections, the set of units U(R) will be very important

to the major results of this dissertation. Thus, it will help to know the structure of

this set.

Proposition 1.2.4. U(R) forms an abelian group under the ring multiplication from

R, called the unit group (or group of units) of R.

Definition 1.2.5. Let R be a commutative ring with identity. We say R is an

integral domain if 0 ∈ R is the only zero divisor in R, i.e. αβ = 0 =⇒ α = 0 or

β = 0.

Definition 1.2.6. Let R be a commutative ring with identity. We say R is a field if

0 ∈ R is the only nonunit in R, i.e. U(R) = R\{0}.

The following result shows a relation between units and zero divisors that we

will use frequently.

Proposition 1.2.7. Let α ∈ R be a zero divisor. Then α /∈ U(R). Moreover, if R is

finite, the converse holds, i.e. α /∈ U(R) =⇒ α is a zero divisor when R is finite.

Corollary 1.2.8. If R is a field, then R is also an integral domain. Moreover, if R

is finite, the converse holds, i.e. any finite integral domain is a field.

In addition to these two types of elements, we can also consider a special type

of zero divisor.

Definition 1.2.9. Let α ∈ R. We say that α is nilpotent if there exists some n ∈ N

such that αn = 0.

Especially important to some of the objects presented in Chapter 2 is the idea

of elements in a ring being associated.
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Definition 1.2.10. Let α, β ∈ R. We say that α is an associate of β if there exists

u ∈ U(R) such that α = βu.

Proposition 1.2.11. Let ∼ be the relation on elements of R defined by α ∼ β if and

only if α is an associate of β. Then ∼ is an equivalence relation on the elements of

R, i.e. it is reflexive, symmetric, and transitive.

We will often choose to say that a set of elements {αi}i∈Γ are associates, rather

than that one element is an associate of one other element. One will note that this

usage make sense precisely because of the above proposition.

Proposition 1.2.12. Let R be an integral domain. Then α, β ∈ R are associates if

and only if α|β and β|α.

We will now consider the two types of elements which will be of primary

interest when considering factorization in the ring R.

Definition 1.2.13. Let π ∈ R be a nonunit. We say that π is prime if, for any

α, β ∈ R such that π|αβ, either π|α or π|β.

Definition 1.2.14. Let R be an integral domain and π ∈ R a nonzero, nonunit. We

say that π is irreducible if, for any α, β ∈ R such that π = αβ, either α ∈ U(R) or

β ∈ U(R). The set of irreducible elements in R is denoted Irr(R).

Example 1.2.15. Consider Z, the ring of rational integers. Then U(Z) = ±1, and

Irr(Z) is the set of prime numbers and their negatives. The set of prime elements in

Z is exactly Irr(Z) ∪ {0}.

In this case, note that the concepts of (nonzero) prime and irreducible are

actually equivalent. However, this will not always be the case.
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Proposition 1.2.16. Let R be an integral domain and α ∈ R be a nonzero prime.

Then α is irreducible in R.

Example 1.2.17. Let R = Z[
√
−5] = {a + b

√
−5 | a, b ∈ Z}. Then 2 is irreducible

but not prime. Showing irreducibility will be easier after developing the idea of a

norm on R, which we will see later. However, note that 2|6 = (1 +
√
−5)(1 −

√
−5),

but 2 does not divide either factor. Thus, 2 is not prime in R.

It should also be noted that these definitions rely heavily not just on the

element(s) in question, but also on the ring R itself. This will be an important

concept to keep in mind, especially in the major results presented in Chapter 3.

Example 1.2.18. Consider the rings Z ⊆ Q. Note that 2 lies in both Z and Q, but

is only a unit in Q. On the other hand, 2 is only an irreducible in Z. Moreover, 2

and 3 are associates in Q, but not in Z.

1.2.2 Properties of Ideals

On its face, factorization deals only with individual elements. However, con-

sidering the ideals of R will often be equally, if not more, informative. We start with

the definitions of three special types of ideals.

Definition 1.2.19. Let I be an ideal in R. We say that I is a principal ideal if

there exists some α ∈ R such that I = {αβ|β ∈ R}. In this case, we say that α

generates I, and we write I = (α) (or I = αR, particularly when R may not be

clear from context).

Proposition 1.2.20. Let R be an integral domain. Then (a) = (b) if and only if a

and b are associates.
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Definition 1.2.21. Let P be a proper ideal in R. We say that P is a prime ideal

if, for any α, β ∈ R, αβ ∈ P implies that either α ∈ P or β ∈ P . The collection of

all prime ideals in a ring R is called the spectrum of R, denoted Spec(R).

Proposition 1.2.22. A principal ideal (α) in R is prime if and only if α is a prime

element of R.

Definition 1.2.23. Let M be a proper ideal in R. We say that M is a maximal

ideal if the only ideal of R which strictly contains M is R itself. That is, if I is an

R-ideal with M ⊆ I ⊊ R, then M = I.

The following proposition gives an alternate characterization of prime and

maximal ideals that will frequently be of great utility. Among other things, it will

provide insight into the relationship between these two properties.

Proposition 1.2.24. Let I be an ideal in R. Then I is maximal if and only if R/I

is a field. Similarly, I is prime if and only if R/I is an integral domain.

Corollary 1.2.25. Any maximal ideal of R is also prime.

While these three types of ideals are more foundational and typically of greater

use and interest, we also want to consider two more types of ideals. As we will see in

a moment, these are closely related to prime ideals.

Definition 1.2.26. Let I be an ideal in R. The radical of I is

√
I := {α ∈ R | ∃ n ∈ N s.t. αn ∈ I} ⊇ I.

If I =
√
I, we say that I is a radical ideal.

Definition 1.2.27. Let I be a proper ideal in R. We say that I is a primary ideal

if, for any α, β ∈ R, αβ ∈ I implies that either α ∈ I or βn ∈ I for some n ∈ N.

7



Proposition 1.2.28. Let I be an ideal in R. Then I is a prime ideal if and only if

I is both radical and primary.

As before, we can characterize these two types of ideals by their quotient rings.

Proposition 1.2.29. Let I be an ideal in R. Then I is a radical ideal if and only if

R/I has no nonzero nilpotent elements. Similarly, a proper ideal I is primary if and

only if every zero divisor in R/I is nilpotent.

The final type of ideal we will define here is actually an object associated with

a ring extension.

Definition 1.2.30. Let T be a commutative ring with identity and R ⊆ T a subring.

The conductor from T into R is (R : T ) := {α ∈ R |αT ⊆ R}. For any α ∈ (R : T ),

we say that α conducts T into R.

Proposition 1.2.31. Let T be a commutative ring with identity and R a subring.

Then (R : T ) is an ideal of both R and T . Moreover, (R : T ) is the largest T -ideal

contained in R (i.e. it is the union of all T -ideals contained in R). For this reason,

(R : T ) is often called the conductor ideal from T into R.

The conductor ideal of a ring extension is one of the most important objects

of study in this dissertation. As we will see in Chapters 2, 3, and 4, the structure

of this ideal can often tell us a great deal about the rings R and T , especially which

properties of T are “inherited” by its subring R.

It is worth noting that in this dissertation, we will assume the Axiom of Choice.

In the field of commutative algebra, this is necessary to prove many well-known and

interesting results, including the next proposition and its corollaries. In the interest of

completeness, we will include here a statement of Zorn’s Lemma, which is equivalent
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to the Axiom of Choice and is quite often a more useful statement in commutative

algebra.

Axiom 1.2.32. Zorn’s Lemma. Let S be a partially ordered set. If every chain

(totally ordered subset) in S has an upper bound in S, then S contains a maximal

element.

Proposition 1.2.33. Let I be a proper ideal of R. Then I is contained in some

maximal ideal of R.

Corollary 1.2.34. Let α ∈ R be a nonunit. Then α is contained in some maximal

ideal of R.

Corollary 1.2.35. Every commutative ring with identity contains a maximal ideal.

Finally, we conclude our discussion of ideals with a famous result that will be

of particular use to us in the results presented in Chapter 2. As this result can often

be found in a number of different forms throughout the literature (and was not part

of the discussion in [14]), we will present this result with proof for the convenience of

the reader.

Proposition 1.2.36. Prime Avoidance Lemma. Let {Ii}ni=1 be a finite collection

of ideals in R, with Ii prime for i ≥ 3. Then for any ideal J of R, J ⊆
⋃n

i=1 Ii =⇒

J ⊆ Ii for some 1 ≤ i ≤ n.

Proof. First, note that if n = 1, then the result is trivial. Now assume that n = 2

and J ⊆ I1 ∪ I2. If we assume that J is not a subset of either I1 or I2, then there

exist α1 ∈ J\I2 and α2 ∈ J\I1. Note that since J is in the union of these two

ideals, α1 ∈ I1 and α2 ∈ I2. Since J is closed under addition, α1 + α2 ∈ J , and thus

must be in either I1 or I2 (without loss of generality, assume α1 + α2 ∈ I1). Then

(α1 + α2) − α1 = α2 ∈ I1, a contradiction. Then the result holds when n = 2.

9



Now working toward induction, assume that we have shown the result for any

n < m for some m ≥ 3. Let {Ii}mi=1 be a collection of R-ideals such that Ii is prime for

i ≥ 3 and J ⊆
⋃m

i=1 Ii. Namely, Im is a prime ideal. Then if J is contained in the union

of any sub-collection of m − 1 of the ideals {Ii}mi=1, the inductive hypothesis shows

that J must be contained in one of the ideals Ii. Otherwise, for each 1 ≤ j ≤ m,

there exists some αj ∈ J\
⋃

i ̸=j Ii; note that αj ∈ Ij for every 1 ≤ j ≤ m. Then

consider the element α := αm + α1α2 . . . αm−1 ∈ J . Since J is contained in the

union of the Ii’s, there is some 1 ≤ i ≤ m such that α ∈ Ii. If i < m, then note

that α − (α1α2 . . . αm−1) = αm ∈ Ii, a contradiction. On the other hand, if i = m,

then α − αn = α1α2 . . . αm−1 ∈ Im. However, Im is a prime ideal, and αj /∈ Im for

1 ≤ j < m. Then this is also a contradiction. Then by induction, the result holds for

any n ∈ N.

1.2.3 Properties of Rings

With this terminology and toolset, we can now consider properties of an entire

ring R. To begin, we introduce three types of integral domains that will be of special

interest to the later discussion of factorization.

Definition 1.2.37. Let R be an integral domain. We say that R is an atomic do-

main if for any nonzero, nonunit α ∈ R, there exist π1, . . . , πn ∈ Irr(R) for some

n ∈ N such that α = π1 . . . πn. Such an expression is called an irreducible factor-

ization of the element α.

In other words, an atomic domain is an integral domain in which every nonzero,

nonunit can be factored into a product of irreducibles. This should seem familiar;

after all, it is well-known that integers (other than 0 and ±1) can be factored into

a product of prime numbers. However, note that in this definition, we don’t assume
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that such an irreducible factorization of α ∈ R is unique, as prime factorizations in

Z are. This brings us to our next definition.

Definition 1.2.38. Let R be an atomic domain. We say that R is a unique fac-

torization domain (UFD) if the following conditions hold:

1. If π1 . . . πm = τ1 . . . τn with πi, τj ∈ Irr(R) for 1 ≤ i ≤ m, 1 ≤ j ≤ n, then

m = n; in other words, the two factorizations are of the same length.

2. If π1 . . . πn = τ1 . . . τn with πi, τj ∈ Irr(R) for 1 ≤ i, j ≤ n, then there is some

permutation σ ∈ Sn such that πi is an associate of τσ(i) for every 1 ≤ i ≤

n; in other words, the two factorizations are the same up to reordering and

multiplication by units.

In this sense, UFDs are the domains with the “nicest” factorization properties:

every element breaks down into irreducibles, and any two irreducible factorizations of

the same element are the same up to reordering and associates. Note the importance

of allowing the irreducibles in two factorizations to be reordered and to be associates

of one another rather than strictly the same element. In Z, for example, one could

write 6 = 2 · 3 = (−3) · (−2); under this definition, these factorizations would be

considered equivalent. As it turns out, the irreducibles in UFDs have an additional

nice property that is not immediately obvious.

Proposition 1.2.39. Let R be a UFD. If π ∈ Irr(R), then π is a prime element of

R.

Recall that in general, any nonzero prime element is irreducible. This propo-

sition tells us that in a UFD, the converse holds as well. This is why in the ring

of rational integers Z, which is a UFD, we generally make no distinction between

(nonzero) primes and irreducibles.
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However, as we will see in a moment, not every atomic domain exhibits unique

factorization. One might then ask: can we create a metric by which we can measure

how “badly” an atomic domain fails to be a UFD? Although it is certainly not the

only such metric, one measurement we may use is called elasticity.

Definition 1.2.40. Let R be an atomic domain. For any nonzero, nonunit α ∈ R,

denote ℓ(α) := {n ∈ N | ∃ π1, . . . , πn ∈ Irr(R) s.t. α = π1 . . . , πn}, the set of lengths

of irreducible factorizations of α in R. The elasticity of α in R is

ρR(α) =
sup(ℓ(α))

inf(ℓ(α))
.

The elasticity of R is ρ(R) = sup{ρR(α)|α ∈ R\(U(R) ∪ {0})}.

Elasticity as a concept was first introduced in [21]. Fittingly, the elasticity of

an element describes how far one can “stretch” the lengths of its irreducible factor-

izations. Similarly, the elasticity of an atomic domain is a measure of how stretchy its

stretchiest element is. One will note that the elasticity of any element or any atomic

domain must be at least one. Immediately from the definition, it should be clear

that any UFD has an elasticity of exactly one. However, this feature alone does not

fully characterize a UFD. This brings us to the next type of domain we will consider.

Along with elasticity as a whole, this type of domain will be one of the chief objects

of interest in Chapters 3 and 4.

Definition 1.2.41. Let R be an atomic domain. We say that R is a half-factorial

domain (HFD) if ρ(R) = 1. In other words, if π1 . . . πm = τ1 . . . τn for πi, τj ∈ Irr(R),

then m = n, i.e. any two irreducible factorizations of the same element must be of

the same length.

It is worth noting that historically, elasticity was originally introduced to gen-
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eralize observations that had been made about HFDs. In fact, HFDs were originally

studied thirty years prior by Carlitz in [2]. In this paper, the term half-factorial

domain is not used, and the study of such a domain is restricted only to rings of

algebraic integers (which we will discuss later). It was Zaks who coined the phrase

half-factorial domain and broadened their study in [23] and [24]. Study into these

concepts, as well as into factorization as a whole, really picked up steam in the 1990s;

since then, this has been a vast and vibrant field of study.

From the definition of a UFD, one can see that an HFD is simply an atomic

domain that satisfies “half” of the conditions to be a UFD. Unsurprisingly, this was

the original motivation behind Zaks’ terminology. Clearly, any UFD is an HFD, and

any HFD is an atomic domain. However, as the following examples will show, the

converses of these implications do not hold in general.

Example 1.2.42. Z, Z[i], and Z[x] are all UFDs. In general, if R is a UFD, then

R[x] is a UFD.

Example 1.2.43. Z[
√
−5] is an HFD which is not a UFD; in particular, the two

irreducible factorizations 2 ·3 = 6 = (1 +
√
−5)(1−

√
−5) of 6 are of the same length,

but not equivalent. Furthermore, if K ⊊ L are fields, then K + xL[x] is an HFD

which is not a UFD [22].

Example 1.2.44. Z[ω], where ω = e
2πi
23 is a primitive 23rd root of of 1, is an atomic

domain which is not an HFD [12]. For any squarefree d ∈ Z and n ∈ N, with n

neither a prime number nor twice an odd prime number, Z[n
√
d] is an atomic domain

which is not an HFD [10].

Example 1.2.45. R = Z + xQ[x] is an integral domain which is not atomic. In

particular, the element x ∈ R cannot be written as a product of irreducibles. A, the
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ring of all algebraic integers (which we will define later) is also an integral domain

which is not atomic; in fact, A has no irreducible elements at all.

The three types of domains presented here are defined based on their factoriza-

tion behavior. Although there are more ways that we could categorize domains based

on their factorization (BFDs, FFDs, etc.), these will not be discussed here. However,

we will discuss another type of domain which may at first glance seem unrelated to

the previous discussion. As we will see in a moment, this type of domain is actu-

ally intimately connected to the idea of unique factorization, especially in contexts of

interest that we will discuss later.

Definition 1.2.46. Let R be an integral domain. We say that R is a principal

ideal domain (PID) if every ideal I of R is principal, i.e. I = (α) for some α ∈ R.

Proposition 1.2.47. If R is a PID, then R is also a UFD.

Even though the definition of a PID does not directly mention factorization

at all, this proposition shows that any PID necessarily has unique factorization. The

following example shows that the converse does not hold in general.

Example 1.2.48. As noted eariler, if R is a UFD, then R[x] is a UFD as well. R[x]

is a PID if and only if R is a field. In particular, this means that if R is a UFD when

is not a field (such as when R = Z), then R[x] is a UFD which is not a PID.

Although the concepts of a PID and UFD are not equivalent, they actually

will be in a particular context of great interest that we will discuss later. In order

to build up to the discussion of this context, we must first introduce some additional

concepts and definitions.
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Definition 1.2.49. Let P be a prime ideal in R. The height of P is

ht(P ) = sup{n ∈ N | ∃ Pi ∈ Spec(R), 0 ≤ i ≤ n s.t. P0 ⊆ P1 ⊆ · · · ⊆ Pn = P}.

In other words, the height of P is a measure of how many prime ideals could be

“stacked” under P .

Definition 1.2.50. The Krull dimension of R is dim(R) = sup{ht(P ) | P ∈

Spec(R)}. In other words, dim(R) is a measure of the highest possible “stack” of

primes in R.

The Krull dimension is a very important tool in the field of commutative

algebra. In the types of rings of interest to the major results of this dissertation, the

Krull dimension will be well-behaved, as we will see later.

Definition 1.2.51. Let S be a multiplicatively closed subset of R, and suppose

that S contains no zero divisors. The localization of R by S, denoted S−1R is

the smallest ring containing R in which every element of S is a unit. Explicitly,

S−1R = { r
s
| s ∈ S, r ∈ R, r1

s1
= r2

s2
⇐⇒ r1s2 = r2s1}.

It should be noted here that this definition is often adjusted to allow for S to

contain zero divisors (or even zero itself). For our purposes, this simpler definition

will suffice. Two types of localizations that are particularly useful are given in the

following examples.

Example 1.2.52. Let P be a prime ideal of R. Then R\P is a multiplicatively closed

set. The localization (R\P )−1R is commonly referred to as the localization of R at

P and denoted RP .

Example 1.2.53. Let R be an integral domain. Then R\{0} is a multiplicatively
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closed set (in fact, {0} is a prime ideal). The localization (R\{0})−1R is commonly

referred to as the field of fractions (or quotient field) of R.

The localizations of a ring R at its prime ideals are often studied instead of R

itself, as they are often simpler to work with and can give useful information about

R. We will return to this concept later. Fields of fractions are also important, and

serve as a larger context in which to consider certain features of R. The next two

definitions give examples of when it is useful to consider R within this (or another)

larger context.

Definition 1.2.54. Let R and T be integral domains with R a subring of T . We say

that α ∈ T is integral over R if α is a root of some monic polynomial f ∈ R[x] (i.e.

the leading coefficient of f is 1). The set of all elements of T which are integral over

R is called the integral closure of R in T , denoted RT . If R = RT , we say that R

is integrally closed in T . If T = RT , we say that T is an integral extension of R.

When T is not specified, it is assumed to be the field of fractions of R.

Definition 1.2.55. Let R and T be integral domains with R ⊆ T . We say that

α ∈ T is almost integral over R if there is some nonzero r ∈ R such that rαn ∈ R

for every n ∈ N. The set of all elements of T which are almost integral over R is called

the complete integral closure of R in T , denoted R′
T . If R = R′

T , we say that

R is completely integrally closed in T . If T = R′
T , we say that T is an almost

integral extension of R. When T is not specified, it is assumed to be the field of

fractions of R.

As the names might suggest, integrality is closely related to almost integrality,

as the following proposition will show.

Proposition 1.2.56. Let R be an integral domain with field of fractions K. If α ∈ K

is integral over R, it is also almost integral over R.
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Corollary 1.2.57. Let R be an integral domain. Then R ⊆ R′, and if R is completely

integrally closed, it is also integrally closed.

It is also worth noting the following.

Proposition 1.2.58. Let R and T be integral domains with R ⊆ T . Then RT and

R′
T are both closed under addition and multiplication. Thus, RT and R′

T are integral

domains.

Although integrality tends to have nicer properties than almost integrality

(and has historically been more studied), both properties are important. Even when

working in a context in which integrality is more useful, understanding almost inte-

grality can still be helpful. For one thing, it is sometimes easier to check if an element

is almost integral over a ring than it is to check if the element is integral. Likewise,

when a ring is completely integrally closed, it is often easier to show this than that

the ring is integrally closed (despite the former being a stronger property). One im-

portant class of domains in which we will be particularly interested will always be

completely integrally closed, so we will be able to take advantage of this relationship.

Before continuing to the next definition, we will note the following useful

characteristic of integral extensions.

Proposition 1.2.59. Let R and T be integral domains with R ⊆ T and T an integral

extension of R. Then U(R) = R ∩ U(T ), i.e. any α ∈ R which has a multiplicative

inverse α−1 ∈ T actually has α−1 ∈ R.

We now turn our attention to a type of ring whose ideals have useful finiteness

conditions.

Definition 1.2.60. Let R be a commutative ring with identity. We say that R is

a Noetherian ring if any ascending chain of ideals I1 ⊆ I2 ⊆ . . . is eventually
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constant, i.e. there exists n ∈ N such that Im = In for every m ≥ n. Equivalently,

any strictly ascending chain of ideals must be finite.

The following proposition provides useful equivalent characterizations of a

Noetherian ring. It is worth mentioning again that we are assuming the Axiom

of Choice; without this additional axiom, this equivalence does not hold.

Proposition 1.2.61. Let R be a commutative ring with identity. The following are

equivalent:

1. R is Noetherian;

2. Every ideal I of R is finitely generated, i.e. there exist α1, . . . , αn ∈ R such that

I = (α1, . . . , αn);

3. Every nonempty collection S of ideals of R has a maximal member, i.e. there

exists some M ∈ S such that M ⊆ I ∈ S =⇒ M = I.

The following result relates Noetherian rings back to our earlier discussion

about factorization.

Proposition 1.2.62. Let R be a Noetherian domain. Then R is atomic.

With this terminology in hand, we are finally ready to define one of the most

important classes of domains to the results in this dissertation.

Definition 1.2.63. Let R be an integral domain. We say that R is a Dedekind

domain if the following conditions hold:

1. R is Noetherian;

2. dim(R) ≤ 1, i.e. every nonzero prime ideal in R is maximal;
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3. R is integrally closed.

It is worth noting here that under this definition, a field is a Dedekind domain.

Under certain conventions in the literature, a field may not be considered to be

Dedekind. In this case, we would only need to change the second condition above to

require dim(R) = 1, i.e. disallow dim(R) = 0. For our purposes, we will consider a

field to act as a trivial example of a Dedekind domain.

Proposition 1.2.64. Let R be an integral domain. The following are equivalent:

1. R is Dedekind;

2. R is Noetherian, and RM is a PID for every maximal ideal M of R;

3. Every nonzero ideal I of R can be (uniquely) expressed as a product of prime

ideals in R under the standard ideal multiplication

I · J = {α1β1 + · · · + αnβn|n ∈ N, αi ∈ I, βi ∈ I}.

Here, R itself is considered to be an empty product of primes.

Dedekind domains are a very nice context in which to work, and as we will see

later, are very significant in the field of algebraic number theory. Especially useful

is the fact that every nonzero ideal in a Dedekind domain can be expressed uniquely

as a product of primes. This will allow us to easily determine properties of ideals.

Furthermore, this means that once we understand the structure of the prime ideals

in a Dedekind domain, we can extend this knowledge to understand any ideal. We

will now collect a number of useful properties of Dedekind domains.

Proposition 1.2.65. Ideal Cancellation. Let R be a Dedekind domain and I, J1,

and J2 ideals in R, with I nonzero. If IJ1 = IJ2, then J1 = J2.
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Proposition 1.2.66. Let R be a Dedekind domain and I and J ideals in R. Then

I|J if and only if I ⊇ J .

Proposition 1.2.67. Let R be a Dedekind domain and I and J nonzero ideals in

R. Let I = P a1
1 . . . P ak

k and J = P b1
1 . . . P bk

k be the unique factorizations of I and

J into prime ideals in R. That is, Pi ∈ Spec(R) and ai, bi ∈ N0 for 1 ≤ i ≤ k.

Then I + J = Pm1
1 . . . Pmk

k and I ∩ J = PM1
1 . . . PMk

k , where mi = min{ai, bi} and

Mi = max{ai, bi} for 1 ≤ i ≤ k.

Corollary 1.2.68. Let R be a Dedekind domain and I and J nonzero ideals in R.

Then I and J are relatively prime, i.e. R = I + J , if and only if no prime ideal P of

R divides both I and J .

Proposition 1.2.69. Let R be a Dedekind domain and I a nonzero ideal in R. Let

I = P a1
1 . . . P ak

k be the unique factorization of I into prime ideals of R. Then I is a

primary ideal if and only if k = 1, i.e. if and only if I is a power of a prime ideal. I

is a radical ideal if and only if ai = 1 for every 1 ≤ i ≤ k, i.e. if and only if I is a

product of distinct prime ideals.

Proposition 1.2.70. Let R be a Dedekind domain. Then R is a UFD if and only if

R is a PID.

Proposition 1.2.71. Let R be a Dedekind domain. Then R is completely integrally

closed.

1.2.4 The Ideal Class Group

Thus far, for commutative rings with identity, we have considered properties

of the elements, the ideals, and the rings themselves. In an integral domain, and in

particular in a Dedekind domain, there is an additional structure on the ideals which
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we can consider. First, we will define a more general concept of an ideal which will

help us to define this structure.

Definition 1.2.72. Let R be an integral domain with field of fractions K. A frac-

tional ideal I of R is an R-submodule of K for which there exists some nonzero

α ∈ R such that αI ⊆ R. Equivalently, I = α−1J for some α ∈ R and ideal J of R.

The collection of all fractional ideals of R will be denoted Frac(R).

From this definition, one can see why the term “fractional ideal” may be

appropriate for such an object. In some sense, a fractional ideal I is simply an ideal

of R which is allowed to have denominators, so long as the denominator of every

element in I can be cleared by the same element α ∈ R. When discussing both ideals

of R (under the standard definition) and fractional ideals of R, we will often refer to

ideals in R as integral ideals to avoid confusion. One will note that any integral

ideal I of R is also a fractional ideal of R, since αI ⊆ R for any α ∈ R.

Now to determine what additional structure is present in Frac(R), we will

define inverses and an operation on this set.

Definition 1.2.73. Let R be an integral domain and I ∈ Frac(R). The inverse of

I, denoted I−1, is defined to be I−1 = {α ∈ K | αI ⊆ R}.

Proposition 1.2.74. Let R be an integral domain and I, J nonzero fractional ideals

of R. Then I−1 and IJ := {α1β1 + · · ·+αnβn |n ∈ N, αi ∈ I, βi ∈ J} are also nonzero

fractional ideals of R.

With this, we now have a way to multiply two fractional ideals and a way

to find the inverse of a fractional ideal. Furthermore, we have an identity fractional

ideal, R itself, with the property that IR = I for any fractional ideal I of R. One

might expect that the inverse of a fractional ideal will be the inverse with respect
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to the multiplication defined here, i.e. that II−1 = R. However, this is not true in

general.

Proposition 1.2.75. Let R be an integral domain and I a fractional ideal of R.

Then II−1 ⊆ R and I ⊆ (I−1)−1. Moreover, if there is some fractional ideal J of R

for which IJ = R, then J = I−1. However, it is not always true that II−1 = R.

Example 1.2.76. Let R = Z[x] and I = (2, x). Since I is an integral ideal of R, it

is also a fractional ideal of R. Upon inspection, one will note that I−1 = R. Then

II−1 = IR = I ̸= R.

Since Frac(R) has an associative and commutative multiplication operation

(note that it inherits these properties from multiplication in R) and a multiplica-

tive identity, Frac(R) is a commutative monoid under this operation. However, this

proposition and example show that Frac(R) may not be a group, since fractional ide-

als may not have an inverse with respect to this operation. In order to impose this

additional structure, we must restrict our choices of fractional ideals to ensure that

inverses exist.

Definition 1.2.77. Let R be an integral domain and I a fractional ideal of R. We say

that I is an invertible ideal if II−1 = R. We denote the collection of all invertible

ideals of R by Inv(R).

Proposition 1.2.78. Let R be an integral domain and I, J ∈ Inv(R). Then I−1 and

IJ are also invertible ideals, with (I−1)−1 = I and (IJ)−1 = I−1J−1. Thus, Inv(R)

forms an abelian group under multiplication with identity R.

With this, we have constructed a group consisting of the invertible fractional

ideals of R. Although this group can certainly be useful, its structure actually carries
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a great deal of redundant information. In order to filter out the noise and make best

use of this group, we will first want to identify a large class of invertible ideals.

Proposition 1.2.79. Let R be an integral domain, K its field of fractions, and I a

nonzero principal fractional ideal of R, i.e. I = αR for some nonzero α ∈ K. Then

I is an invertible ideal of R with inverse I−1 = α−1R. Moreover, Prin(R), the set of

all principal fractional ideals of R, is a subgroup of Inv(R).

Now since Inv(R) is an abelian group with subgroup Prin(R), Prin(R) is actu-

ally a normal subgroup. Then we can consider the quotient of Inv(R) by this normal

subgroup. In essence, this will give us an idea of how the invertible ideals of R behave

after we have removed the redundant information carried by the nonzero elements of

K themselves (the principal fractional ideals).

Definition 1.2.80. Let R be an integral domain. The quotient group Inv(R)/Prin(R)

is called the ideal class group (or just class group) of R, denoted Cl(R). We call

elements of Cl(R) ideal classes, and we will denote by [I] the ideal class containing

the fractional ideal I.

Proposition 1.2.81. Let R be an integral domain and I an invertible ideal of R.

Then the ideal class [I] contains some integral ideal J , i.e. there is an integral ideal

J ⊆ R such that [J ] = [I]. Namely, given any nonzero α ∈ R such that αI ⊆ R

(which must exist by definition of a fractional ideal), J = αI is an integral ideal such

that [J ] = [αI] = [I].

This result shows that when considering the ideal class group Cl(R), it actually

suffices to only consider ideal classes containing invertible integral ideals. In other

words, we need not concern ourselves with fractional ideals which are not contained

in R.
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The ideal class group will be of particular interest in the field of algebraic

number theory, as we will discuss later. However, Dedekind domains in general have

a very nice characterization in terms of fractional ideals which will make their class

groups particularly easy to work with.

Proposition 1.2.82. Let R be an integral domain. The following are equivalent:

1. R is Dedekind;

2. Every nonzero fractional ideal of R is invertible.

In other words, to construct the ideal class group of a Dedekind domain, we

do not need to first determine which ideals are invertible. Since every fractional ideal

is invertible and every ideal class contains an integral ideal, the ideal class group of a

Dedekind domain really provides a structure on all the integral ideals. This allows us

to construct the ideal class group of a Dedekind domain in a different manner that

does not reference fractional ideals (or even the field of fractions).

Proposition 1.2.83. Let R be a Dedekind domain, and let S denote the set of all

nonzero (integral) ideals of R. Define an equivalence relation ∼ on S by I ∼ J ⇐⇒

αI = βJ for some nonzero α, β ∈ R. Then Cl(R) ∼= S/∼.

Now from the definition of a class group, note that Cl(R) is trivial if and only

if every invertible ideal of R is principal. Then in the case of a Dedekind domain, in

which every fractional ideal is invertible, we immediately get the following corollary

to Proposition 1.2.70.

Corollary 1.2.84. Let R be a Dedekind domain. Then
∣∣Cl(R)

∣∣ = 1 if and only if R

is a UFD.
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1.2.5 Orders and Free Abelian Groups

To understand the major results of this paper, there is one more type of ring

(more precisely, a type of subring) which we must define.

Definition 1.2.85. Let R be a finite-dimensional algebra over Q. A subring (with

unity) O of R is called an order in R if O is a Z-module generated by a basis for R

over Q.

Example 1.2.86. Let d ∈ Z be a squarefree integer and R = Q[
√
d]. Then O =

Z[n
√
d] is an order in R for any n ∈ N. Note that {1, n

√
d} is a Z-basis for O and a

Q-basis for R.

As we will see in Chapters 2, 3, and 4, orders are the primary focus of the

main results of this dissertation. In order to fully understand orders (as well as certain

additional objects which we will discuss in the next section), we will need to make a

detour through group theory. In particular, we will need some results regarding the

structure of free abelian groups. For convenience, we recall the definition of a free

abelian group.

Definition 1.2.87. Let G be an abelian group. We say that G is a free abelian

group if there exists a subset B of G, called a basis for G, such that every element

of G can be uniquely expressed as a finite sum of elements of B and their negatives.

That is,

G =
⊕
b∈B

bZ ∼=
⊕
b∈B

Z.

Proposition 1.2.88. Let G be a free abelian group and B1, B2 two bases for G. Then

|B1| = |B2|. The cardinality of any basis for G is called the rank of G.

Note that by definition, the additive group of an order is a free abelian group of

finite rank. Examining how such groups interact with their subgroups will be helpful
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when moving through the rest of this dissertation. For full proofs of the following

statements, see [14].

Proposition 1.2.89. Let G be a free abelian group of finite rank n. Then if H is a

subgroup of G, H is a free abelian group of rank at most n.

Corollary 1.2.90. Let G be a group. Suppose that G is a subgroup of H1 and contains

a subgroup H2, with both H1 and H2 free abelian groups of finite rank n. Then G is

a free abelian group of rank n.

Lemma 1.2.91. Let G be a free abelian group of finite rank n, and let H be a subgroup

of G. Then the quotient G/H is a finite group if and only if H is a free abelian group

of rank n.

Proposition 1.2.92. Let G be a free abelian group of finite rank n and H a free

abelian subgroup of G of rank n. Then there exists a basis β1, . . . , βn for G and

positive integers d1, . . . , dn such that dn|dn−1| . . . |d2|d1 and d1β1, . . . , dnβn forms a

basis for H.

It should be noted in this proposition that although such a basis must exist, it

may not always be the most obvious basis for G, as the following example illustrates.

Example 1.2.93. Let G = Z⊕Z, a rank 2 free abelian group, and H = ⟨(3, 1), (2, 3)⟩ ≤

G. Then
∣∣∣G/H∣∣∣ = 7 and {(1, 0), (3, 1)} is a basis for G such that {7(1, 0), (3, 1)} is a

basis for H. Note that with {(1, 0), (0, 1)}, the typical basis for G, we cannot choose

integer multiples of the basis elements to serve as a basis for H.

1.3 Algebraic Number Theory

Although the methods and results of this dissertation will largely fall under the

umbrella of commutative algebra, many of the particular objects of interest come from
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the realm of algebraic number theory. Thus, in order to understand the statements

and proofs of the major results in Chapters 2, 3, and 4, one needs to have some

familiarity with algebraic number theory. The results presented in this section can

mostly be found in [12]; for proofs, see [12] or [14].

1.3.1 Algebraic Numbers and Integers

We start with the definitions of the fundamental objects of algebraic number

theory.

Definition 1.3.1. Let K be a subfield of C. If K is a field extension of Q of finite

degree, i.e. if [K : Q] < ∞, then we call K a number field.

Definition 1.3.2. Let α ∈ C. We say that α is an algebraic number if α is integral

over Q, i.e. if α is a root of a monic polynomial f ∈ Q[x] (equivalently, if α is a root

of any nonzero in Q[x]). If α ∈ C is not algebraic, we say that α is transcendental.

Example 1.3.3.
√

2 and 1√
2

are both algebraic, as they are roots of x2−2 and x2− 1
2
,

respectively. However, it is well-known that π and e are transcendental.

As the following proposition will show, the concepts of number fields and

algebraic numbers are intimately related.

Proposition 1.3.4. Let K be a number field. Then we have the following:

1. Any α ∈ K is a root of some monic polynomial f ∈ Q[x], with deg(f) ≤ [K : Q];

thus, α is an algebraic number.

2. K = Q[α] for some algebraic number α.

While algebraic numbers and number fields are certainly important, they are

not particularly interesting in and of themselves from a factorization standpoint.
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After all, fields exhibit a form of trivial factorization, in that every nonzero element

is a unit. However, just as the field of rational numbers has a very important subring

with nice factorization properties, namely the ring of integers, so too do number fields.

Definition 1.3.5. Let α ∈ C. We say that α is an algebraic integer if α is integral

over Z, i.e. if α is a root of a monic polynomial in Z[x].

Definition 1.3.6. Let K be a number field. The set of all algebraic integers in K is

called the ring of algebraic integers in K (or the number ring corresponding to

K), denoted OK . Since OK = ZK , Proposition 1.2.58 tells us that OK is an integral

domain.

Example 1.3.7. Let K = Q, the field of rational numbers. Then OK = Z; thus, Z

is often referred to as the ring of rational integers. If K = Q[
√

2], then OK = Z[
√

2].

Rings of algebraic integers are another very important object to the major re-

sults of this dissertation. As it turns out, these rings also have a number of properties

that make them a particularly nice type of ring to work in, especially with regards to

factorization. Before examining the structure of number rings themselves, we will first

look into the relationship between a number field and its ring of algebraic integers.

Proposition 1.3.8. Let K be a number field and OK its ring of algebraic integers.

Then we have the following:

1. K is the field of fractions of OK.

2. For any α ∈ K, there is some c ∈ N such that cα ∈ OK.

3. K = Q[α] for some α ∈ OK.

In this proposition, note that item 1 tells us that any α ∈ K has some β ∈ OK

such that βα ∈ OK . Item 2 simply states that we can be more selective in choosing

β. Finally, item 3 actually follows as an application of item 2.
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1.3.2 Structure of a Number Ring

We will now describe the structure of rings of algebraic integers using the

terminology and results we developed in the previous section. To start, we have the

following result regarding the additive structure of number rings.

Proposition 1.3.9. Let K be a number field and OK its ring of algebraic integers.

Then OK is an order in K, i.e. the additive group of OK is a free abelian group of

rank n = [K : Q].

Definition 1.3.10. Let K be a number field, OK its ring of algebraic integers, and

n = [K : Q]. Any Z-basis for OK , i.e. any α1, . . . , αn ∈ OK such that OK =

α1Z + · · · + αnZ, is called an integral basis for OK .

Proposition 1.3.11. Let K be a number field and OK its ring of algebraic integers.

Then any integral basis for OK is also a Q-basis for K. In particular, this means that

K has a basis over Q consisting only of algebraic integers.

As we discussed previously, free abelian groups have many useful properties.

In particular, their subgroups, especially those of the same rank, are well-structured.

The following result should suggest why these properties are useful in the field of

algebraic number theory.

Proposition 1.3.12. Let K be a number field, OK its ring of algebraic integers, and

I a nonzero ideal of OK. Then the additive group of I is a free abelian group of rank

n = [K : Q].

Thus, we can apply the results of our previous discussion of free abelian groups

to ideals in a number ring.

Corollary 1.3.13. Let K be a number field, OK its ring of algebraic integers, I an

ideal of OK, and n = [K : Q]. Then OK/I is a finite quotient ring. Moreover, there
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exists an integral basis {α1, . . . , αn} for OK and d1, . . . , dn ∈ N with d1| . . . |dn such

that {d1α1, . . . , dnαn} forms a Z-basis for I. Also note that
∣∣∣OK/I

∣∣∣ = d1 . . . dn. We

will often refer to
∣∣∣OK/I

∣∣∣ as the norm of the ideal I.

The next major structural result about rings of algebraic integers is arguably

more important. However, much of the proof for the following statement actually

follows from this discussion of the free abelian additive group.

Proposition 1.3.14. Let K be a number field and OK its ring of algebraic integers.

Then OK is a Dedekind domain.

This result is incredibly significant to the field of algebraic number theory. It

tell us that any number ring is Noetherian, has Krull dimension 1 (i.e. any nonzero

prime ideal is maximal), and is integrally closed. As we have discussed previously, it

also tells us that ideals can be factored into products of prime ideals and that every

fractional ideal is invertible. We will discuss these properties in more detail later.

1.3.3 Trace, Norm, and Discriminant

The fact that any number ring is Dedekind is very important to understanding

its structure. However, this alone is not enough to fully understand how factorization

works in a given number ring. After all, a domain being Dedekind only tells us that

the ideals factor uniquely into a product of prime ideals; that is, if we understand the

prime ideals, we understand all the ideals. How, then, do we determine the structure

and properties of the prime ideals? Moreover, how do the elements themselves factor?

In order to tackle these questions, we will need to develop three useful tools to help

us describe the properties of the elements of R. First, we must discuss minimal

polynomials and embeddings.
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Definition 1.3.15. Let α be an algebraic number. The minimal polynomial of

α is the unique monic polynomial of minimal degree in Q[x] of which α is a root.

If f ∈ Q[x] is the minimal polynomial of α, then any algebraic number β for which

f(β) = 0 is called a conjugate of α.

Proposition 1.3.16. Let α be an algebraic number with minimal polynomial f , with

n = deg(f). Then α has exactly n distinct conjugates (including itself) and n =

[Q[α] : Q].

Corollary 1.3.17. Let K be a number field, α ∈ K, and f the minimal polynomial

for α. Then deg(f) ≤ [K : Q].

Proposition 1.3.18. Let α be an algebraic integer. Then the minimal polynomial for

α (as an algebraic number) lies in Z[x]. Thus, every conjugate of α is an algebraic

integer as well.

Related to the idea of conjugates (though perhaps not on the surface) are

embeddings of a number field in C.

Proposition 1.3.19. Let K and L be number fields with L ⊆ K. Then there are

exactly n = [K : L] embeddings of K into C which fix L pointwise.

Corollary 1.3.20. Let K be a number field. Then there are exactly n = [K : Q]

embeddings of K into C.

Definition 1.3.21. Let K and L be number fields with L ⊆ K. If the embeddings

of K into C which fix L pointwise are actually automorphisms of K, we say that the

extension K/L is Galois (or normal). In this case, the group of automorphisms of

K which fix L pointwise is called the Galois group of the extension K/L, denoted

Gal(K/L).
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Proposition 1.3.22. Let K be a number field and α ∈ K. Then β ∈ C is a conjugate

of α if and only if there exists an embedding σ of K into C such that σ(α) = β.

Example 1.3.23. Let d ∈ Z be a squarefree integer and K = Q[
√
d]. Because

[K : Q] = 2, there are exactly 2 embeddings of K into C: σ1, the identity on K; and

σ2 defined by σ2(a + b
√
d) = a− b

√
d for all a, b ∈ Q.

Example 1.3.24. Let d ∈ Z be a cube-free integer, K = Q[ 3
√
d], and ω = e

2πi
3 ,

a primitive cube root of 1. Since [K : Q] = 3, there are exactly 3 embeddings of

K into C: σ1, the identity on K; σ2 defined by σ2(
3
√
d) = ω 3

√
d; and σ3 defined by

σ3(
3
√
d) = ω2 3

√
d.

With these tools in hand, we are ready to define the trace, norm, and discrim-

inant.

Definition 1.3.25. Let K be a number field with n = [K : Q], and let σ1, . . . , σn be

the n embeddings of K into C. For any α ∈ K, the trace of α is defined by

TK(α) :=
n∑

i=1

σi(α).

Then norm of α is defined by

NK(α) :=
n∏

i=1

σi(α).

For an n-tuple (α1, . . . , αn) ∈ Kn, the discriminant is defined by the square deter-

minant

discK(α1, . . . , αn) :=

∣∣∣∣∣∣∣∣∣∣
σ1(α1) . . . σ1(αn)

...
. . .

...

σn(α1) . . . σn(αn)

∣∣∣∣∣∣∣∣∣∣

2

.
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For convenience, given α ∈ K, we will denote discK(α) := discK(1, α, . . . , αn−1). If

K is clear from context, we will often omit K from the above notation.

Proposition 1.3.26. Let K be a number field with n = [K : Q], α, β ∈ K, and

c ∈ Q. Then we have the following:

1. T (α + β) = T (α) + T (β);

2. N(αβ) = N(α)N(β);

3. T (c) = nc;

4. N(c) = cn;

5. T (cα) = cT (α);

6. N(cα) = cnN(α);

7. Let α1, . . . , αm be the distinct conjugates of α, so m = [Q[α] : Q]. Then T (α) =

[K : Q[α]]
(∑m

i=1 αi

)
and N(α) =

(∏m
i=1 αi

)[K:Q[α]]
.

8. N(α) =
∣∣∣OK/(α)

∣∣∣; that is, the norm of a principal ideal is equal to the norm of

its generator.

One will note that, as a sum (respectively, a product) of algebraic integers, the

trace (respectively, the norm) of an algebraic number must be an algebraic number.

However, close inspection of item 7 above will show that in fact, the trace and norm

of some α are coefficients in the minimal polynomial for α (potentially multiplied by

an integer or raised to an integer power). This gives the following result.

Corollary 1.3.27. Let K be a number field and α ∈ K. Then T (α) and N(α) lie in

Q. Furthermore, if α ∈ OK, then T (α) and N(α) lie in Z.
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Corollary 1.3.28. Let K be a number field and α ∈ OK. Then α ∈ U(OK) if and

only if N(α) = ±1.

These results, particularly those regarding the norm, are very important when

considering factorization in a number ring. For instance, we claimed in Example 1.2.43

that the elements 2, 3, and 1 ±
√
−5 are irreducible in Z[

√
−5]. The norm provides

a way to prove this in an easier manner than the näıve approach.

Example 1.3.29. Let K = Q[
√
−5]. Then n = [K : Q] = 2 and OK = Z[

√
−5]. Note

that for any α = a+b
√
−5 ∈ OK , we have N(α) = (a+b

√
−5)(a−b

√
−5) = a2 +5b2.

Then N(2) = 4, N(3) = 9, and N(1 ±
√
−5) = 6. However, one will note that there

are no elements in OK of norm ±2 or ±3. Then if 1 ±
√
−5 = βγ, with β, γ ∈ OK ,

we must have that 6 = N(1 ±
√
−5) = N(β)N(γ). Since N(β) and N(γ) must both

be integers, but neither can be 2 or 3, then one of these norms must be ±1, meaning

that either β or γ must be a unit in OK . Then 1 ±
√
−5 is irreducible in OK ; the

proof that 2 and 3 are irreducible follows similarly.

This discussion shows that the trace and norm are not only more well-behaved

than one might initially suspect, but also more useful. The same can be said about

the discriminant.

Proposition 1.3.30. Let K be a number field with n = [K : Q], and let α1, . . . , αn ∈

K. Then disc(α1, . . . , αn) ∈ Q. Furthermore, if each αi ∈ OK, then disc(α1, . . . , αn) ∈

Z.

Proposition 1.3.31. Let K be a number field and α1, . . . , αn ∈ K. Then we have

that disc(α1, . . . , αn) = 0 if and only if the αi are linearly dependent over Q.

Proposition 1.3.32. Let K be a number field and R a free Z-submodule of K of

rank n = [K : Q]. If α1, . . . , αn and β1, . . . , βn are bases for R over Z, then
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disc(α1, . . . , αn) = disc(β1, . . . , βn). In other words, any two n-tuples in K which

generate the same R-module have the same discriminant.

In this sense, the discriminant can be seen as a property of rank n = [K : Q]

Z-submodules of K, rather than of n-tuples in K. This gives us another way to define

the discriminant.

Definition 1.3.33. Let K be a number field and R a free Z-submodule of K of rank

n = [K : Q]. The discriminant of R is disc(R) := disc(α1, . . . , αn), where α1, . . . , αn

form a basis for R over Z and the discriminant of this n-tuple is as defined above.

When R = OK , we will often denote disc(OK) as disc(K) or ∆K .

Proposition 1.3.34. Let K be a number field and R, S be free Z-submodules of K,

both of rank n = [K : Q], with R ⊆ S. Then disc(R) =
∣∣∣S/R∣∣∣2disc(S).

Corollary 1.3.35. Let K be a number field and α1, . . . , αn ∈ OK. Then the αi form

an integral basis for OK if and only if disc(OK) = disc(α1, . . . , αn).

Then among other things, the discriminant can help us determine when a

given n-tuple is an integral basis for OK . Although a ring of algebraic integers cannot

always be written in this form, it is often easiest to work with number rings of the form

OK = Z[α] for some α ∈ OK . This corollary shows us that this is possible if and only

if there is some α ∈ OK such that disc(OK) = disc(α). We conclude this discussion

with the following result on integral bases, along with an explicit construction in the

simplest case.

Proposition 1.3.36. Let K be a number field and α ∈ OK such that K = Q[α].

Then there exist integers d1|d2| . . . |dn−1 and monic polynomials f1, . . . , fn−1 ∈ Z[x],

with deg(fi) = i for 1 ≤ i ≤ n − 1, such that {1, f1(α)
d1

, . . . , fn−1(α)
dn−1

} forms an inte-

gral basis for OK. Moreover, the di are uniquely determined by α, and disc(α) =

(d1 . . . dn−1)
2disc(OK).
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Proposition 1.3.37. Let K be a quadratic number field, i.e. [K : Q] = 2. Then

K = Q[
√
d] for some squarefree d ∈ Z. The ring of integers of K is

OK =


Z[
√
d], d ≡ 2, 3 (mod 4);

Z[1+
√
d

2
], d ≡ 1 (mod 4).

Furthermore, the discriminant of OK is

∆K =


4d, d ≡ 2, 3 (mod 4);

d, d ≡ 1 (mod 4).

Before moving on to discuss prime and irreducibles in a number ring, we should

take this moment to mention the units. As mentioned before, an algebraic integer is a

unit if and only if its norm is ±1. Large unit groups mean large associate classes of the

elements of a ring, which provides some degree of “freedom” to the irreducibles. This

will especially be something we are concerned about in Chapter 2, when discussing

a particular type of interesting subring. The structure of the unit group in a ring of

algebraic integers is described in the following result.

Proposition 1.3.38. Dirichlet’s Unit Theorem. Let K be a number field with

n = [K : Q]. Then U(OK), the group of units in the ring of algebraic integers OK,

can be expressed as a direct product U(OK) ∼= W×V , where W is a finite cyclic group

consisting of the roots of 1 in OK and V is a free abelian group of rank r1 + r2 − 1.

Here r1 is the number of real embeddings of K into C (i.e. the number of embeddings

σ of K into C such that σ(K) ⊆ R), and r2 is the number of complex conjugate pairs

of non-real embeddings of K into C, i.e. n = r1 + 2r2.

Definition 1.3.39. Let K be a number field. In the notation of Dirichlet’s Unit
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Theorem above, if the rank of V as a free abelian group is 1, we call any generator

of V a fundamental unit of OK . Note that a fundamental unit exists if and only if

n = r1 = 2; n = 3 and r1 = r2 = 1; or n = 4 and r2 = 2.

Example 1.3.40. Let K = Q[i]. Both embeddings of K into C are non-real embed-

dings, so r1 = 0 and r2 = 1. Then the rank of V is 0 + 1 − 1 = 0, i.e. U(OK) is a

finite cyclic group, U(OK) = ⟨i⟩.

Example 1.3.41. Let K = Q[
√

2]. This time, both embeddings of K into C are real,

so r1 = 2 and r2 = 0. Then the only roots of unity in OK are ±1 and the rank of V

is 2 + 0 − 1 = 1, i.e. U(OK) ∼= Z2 × Z. A fundamental unit of OK is 1 +
√

2 (note

that N(1 +
√

2) = 1 − 2 = −1, so this is a unit), so U(OK) = {±(1 +
√

2)k|k ∈ Z}.

1.3.4 Prime Decomposition

In the ring of rational integers, we know how prime and irreducible elements

behave. Namely, every irreducible element is prime, and the prime elements are

exactly the prime numbers and zero. Furthermore, since any ring of algebraic integers

is a Dedekind domain, we know that any ideal factors uniquely into a product of prime

ideals. The question, then, is how we may describe the prime ideals and irreducible

elements in a number ring. As it turns out, we can leverage our knowledge of the

rational primes to understand prime ideals in a generic ring of algebraic integers.

Definition 1.3.42. Let K be a number field and p ∈ Z a rational prime. Let

pOK = P e1
1 . . . P er

r be the factorization of the ideal pOK into prime OK-ideals. We

define the following.

1. For each 1 ≤ i ≤ r, we say that Pi is a prime lying over p and note that

pZ = Pi ∩ Z.
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2. For each 1 ≤ i ≤ r, we call the exponent ei the ramification index of Pi over

p, denoted e(Pi|p).

3. For each 1 ≤ i ≤ r, we call fi ∈ N such that
∣∣∣OK/Pi

∣∣∣ = pfi the inertial degree

of Pi over p, denoted f(Pi|p).

4. If r > 1, we say that p splits in K (or in OK). If e(Pi|p) = f(Pi|p) = 1 for

every 1 ≤ i ≤ r, we say that p splits completely in K (or in OK).

5. If e(Pi|p) > 1 for some 1 ≤ i ≤ r, we say that p ramifies in K (or in OK). If

r = 1 and f(P1|p) = 1, we say that p is totally ramified in K (or in OK).

6. If pOK is a prime OK ideal (i.e. r = 1 and e(P1|p) = 1), we say that p is inert

in K (or in OK).

Proposition 1.3.43. Let K be a number field and p ∈ Z a rational prime. Let

pOK = P e1
1 . . . P er

r be the factorization of the ideal pOK into prime OK-ideals and fi

denote the inertial degree f(Pi|p) for 1 ≤ i ≤ r. Then [K : Q] =
∑r

i=1 eifi.

Proposition 1.3.44. Let K be a number field and p ∈ Z a rational prime. If K

is Galois over Q, then every prime OK-ideal lying over p has the same ramification

index and inertial degree.

This gives us terminology to use to describe the way in which a rational prime

decomposes into prime ideals in a number ring. However, it fails to actually tell

us how to produce these factorizations. The following proposition describes how we

might derive such a factorization.

Proposition 1.3.45. Let K = Q[α] be a number field with α ∈ OK, f the minimal

polynomial of α in Z[x], and p ∈ Z a rational prime which does not divide
∣∣∣OK/Z[α]

∣∣∣.
Let f be the the polynomial in Zp[x] found by reducing the coefficients of f modulo p,
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and f = g1
e1g2

e2 . . . gr
er the unique factorization of f into irreducible polynomials in

Zp[x] (here each gi is a polynomial in Z[x]). Then the factorization of pOK into prime

OK-ideals is given by pOK = P e1
1 . . . P er

r , with Pi = (p, gi(α)) and f(Pi|p) = deg(gi)

for 1 ≤ i ≤ r.

Thus, the decomposition of all but finitely many rational primes in a number

field K can be determined by factoring a degree n = [K : Q] polynomial modulo p. If

we apply this proposition to the case of a quadratic number field, we get the following

corollary.

Corollary 1.3.46. Let K = Q[
√
d] be a quadratic number field, p ∈ Z a rational

prime, and
(

d
p

)
the Legendre symbol. Since [K : Q] = 2, p must either split com-

pletely, totally ramify, or be inert in K. If p is odd, then p splits completely if and

only if
(

d
p

)
= 1, p is inert if and only if

(
d
p

)
= −1, and p ramifies if and only

if
(

d
p

)
= 0 (i.e. if and only if p|d). For p = 2, 2 splits completely if and only if

d ≡ 1 (mod 8), 2 is inert if and only if d ≡ 5 (mod 8), and 2 ramifies otherwise.

From the quadratic case, one might notice a pattern with the primes that

ramify, especially after considering Proposition 1.3.37. The following shows that this

pattern is not a coincidence, and actually holds for any number field.

Proposition 1.3.47. Let K be a number field, ∆K its discriminant, and p a rational

prime. Then p ramifies in K if and only if p|∆K.

With this, we can decompose each rational prime into prime ideals to fully

determine the ideal structure of a number ring. We will use these methods of prime

factorization a great deal in Chapter 4.
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1.3.5 The Ideal Class Group of a Number Ring

Recall that any ring of algebraic integers is a Dedekind domain. Furthermore,

every (fractional) ideal in a Dedekind domain is invertible, making their ideal class

groups particularly informative. In the case of a ring of algebraic integers, the class

group is even nicer, carrying additional properties that tell us a great deal about the

structure of the ring. In particular, it actually tells us about how well factorization

behaves. To start, we have the following basic result.

Proposition 1.3.48. Let K be a number field. Then Cl(OK), often also denoted

Cl(K), is a finite group.

Definition 1.3.49. Let K be a number field. We call
∣∣Cl(OK)

∣∣ the class number

of K, often denoted hK . When K is clear from context, it may be omitted from this

notation.

This result tells us that there are only finitely many ideal classes which the

ideals of a number ring can fall into. Furthermore, since we already know that Cl(OK)

is an abelian group, we know that Cl(OK) can be expressed as a finite direct product

of finite cyclic groups.

In addition to the structure of the class group Cl(OK) itself, we may also ask

how the ideals are distributed amongst these ideal classes. The following result shows

again that rings of algebraic integers have particularly nice class groups.

Proposition 1.3.50. Let K be a number field and [I] ∈ Cl(OK). Then there are

infinitely many prime ideals in the ideal class [I].

Regardless of how nice these properties are, they do us little good unless we

can reliably construct the class group of a number ring. One might reasonably ask at

this point if such a thing is even possible. Even though there are only finitely many

40



ideal classes, how might we tell when we have identified every class? The following

result addresses exactly this concern.

Proposition 1.3.51. Minkowski’s Bound. Let K be a number field. Then every

ideal class in Cl(OK) contains an ideal I such that:

∣∣∣OK/I
∣∣∣ ≤ n!

nn

(
4

π

)r2 √
|∆K |.

Here, n = [K : Q], r2 refers to the number of complex conjugate pairs of embeddings

of K into C, and ∆K refers to the discriminant of K.

Using this theorem along with what we know about prime decomposition in

a ring of algebraic integers, we can see that Minkowski’s Bound allows us to check

only finitely many ideals to produce all the ideal classes in Cl(OK). In particular, we

should factor each rational prime p ∈ Z which is less than or equal to this bound,

determine from this all the ideals I in R which have norm less than or equal to the

bound, then determine which ideal classes these ideals belong to. Once we have done

so, we have determined the class group of OK .

Example 1.3.52. Let K = Q[
√
−5]; then OK = Z[

√
−5]. In this case, note that in

the notation above, n = 2, r2 = 1, and ∆K = −20. Plugging into the formula for

Minkowski’s Bound, this tells us that every ideal class in Cl(OK) must contain an

ideal I such that
∣∣∣OK/I

∣∣∣ ≤ 4
√
5

π
< 3, so we should consider the ideals of norm 1 or 2.

OK itself is the only ideal of norm 1, which belongs to the principal (identity) class

of Cl(OK). Corollary 1.3.46 tells us that 2OK is ramified; Proposition 1.3.45 tells us

that 2OK = (2, 1 +
√
−5)2. This ideal has norm 2, and since no elements in OK have

norm 2, it is a non-principal ideal (and thus is not in the identity class). These two

ideals must cover every ideal class in Cl(OK). Thus, hK = 2, so Cl(OK) ∼= Z2.
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Now that we can construct the ideal class group of a ring of algebraic integers,

we can use it to discuss factorization. First, we note that an irreducible element in an

integral domain can equivalently be defined as an element generating a proper princi-

pal ideal which is maximal among the proper principal ideals of the domain. Then in

a number ring, we might ask how such proper principal ideals can be constructed. If

we multiply a number of prime ideals together and the result is a principal ideal (i.e.

lies in the identity class of Cl(OK)), but no (nontrivial) proper sub-product of these

prime ideals multiply to be a principal ideal, then any generator of that principal

ideal is irreducible in OK .

Example 1.3.53. Let K = Q[
√
−5], as above. We know that (2, 1 +

√
−5), a prime

ideal, is non-principal. If we square this ideal, we get (2, 1 +
√
−5) = (2). Since this

ideal is principal, but no (nontrivial) proper sub-product of (2, 1+
√
−5)2 is principal,

we can conclude that 2 is irreducible in OK .

This discussion motivates us to consider the Davenport constant.

Definition 1.3.54. Let G be a finite abelian group and {g1, . . . , gn} ⊆ G a sequence

of elements of G (we do not require the gi to be distinct). We say that {g1, . . . , gn}

is a 0-sequence of G if g1 + · · · + gn = 0. Similarly, we say that {g1, . . . , gn} has a

0-subsequence if there exist 1 ≤ i1 < i2 < · · · < im ≤ n such that gi1 + · · ·+gim = 0.

The Davenport constant of G is

D(G) := min{n ∈ N | {g1, . . . , gn} ⊆ G =⇒ ∃ a 0-subsequence of {g1, . . . , gn}}.

In other words, the Davenport constant is the smallest number such that any sequence

of elements of G of that length is guaranteed to have a 0-subsequence. Equivalently,

D(G) is the length of the longest 0-sequence in G which has no proper 0-subsequence.
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Proposition 1.3.55. Let G be a finite abelian group. Then D(G) ≤ |G|. If G ∼= Zn

is cyclic, then D(G) = n. If G ∼= Zm × Zn with n|m, then D(G) = m + n − 1

[18]. If G ∼= Zpa1 × · · · × Zpan is a p-group for some prime p ∈ N, then D(G) =(∑n
i=1 p

ai
)
− n + 1 [17].

The concept of 0-sequences and 0-subsequences should look familiar from our

earlier discussion of how to construct irreducible elements in OK . In particular, any 0-

sequence in Cl(OK) with no proper 0-subsequences can be used to find an irreducible

element by multiplying a prime ideal from each class in the 0-subsequence, then

finding a generator for the resulting principal ideal. Then it may come as no surprise

that we can use the Davenport constant of the class group to give us information about

factorization (in particular, elasticity) in a ring of algebraic integers. The following

result comes from [15] and demonstrates just how well-understood factorization is in

rings of algebraic integers.

Proposition 1.3.56. Let K be a number field. If hK = 1, we know that OK is a

UFD, so ρ(OK) = 1. If hK > 1, then ρ(OK) = D(OK)
2

.

Corollary 1.3.57. Let K be a number field. Then OK is an HFD if and only if∣∣Cl(OK)
∣∣ ≤ 2.

Although this corollary follows immediately from the proposition, it is worth

noting that it was originally shown by Carlitz in [2] and predates the proposition by

over 30 years. In fact, this is generally considered the first description of an HFD

that is not a UFD in the literature, before such a ring would even have been called

half-factorial.

Example 1.3.58. Let K = Z[
√
−5]. We determined above that Cl(OK) ∼= Z2. Then

OK = Z[
√
−5] is an HFD.
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Thus, the elasticity of a number ring is determined entirely by its class group.

Since we can determine the class group of a number ring using Minkowski’s bound,

we can determine the elasticity of any given ring of algebraic integers in finitely many

steps. We will make heavy use of these results throughout the rest of this dissertation.

1.3.6 Orders in a Number Field

The final object which we need to discuss before getting to the main results of

this dissertation is actually the primary object of interest. We have already seen the

definition of an order; we will specifically be interested in orders which lie in number

fields. The following gives an alternate characterization of an order in this context.

Proposition 1.3.59. Let K be a number field and O a subring (with unity) of K.

Then O is an order in K if and only if O ⊆ OK and the additive group of O is a

rank n = [K : Q] free abelian group.

Corollary 1.3.60. Let K be a number field. Then OK is the maximal order in K,

i.e. OK is an order of K, and for any order O in K, O ⊆ OK.

Corollary 1.3.61. Let K be a number field and O an order in K. Then there exists

some c ∈ N such that cα ∈ O for every α ∈ OK. Moreover, for any α ∈ K, there

exists some d ∈ N such that dα ∈ O.

Corollary 1.3.62. Let K be a number field and O an order in K. Then the conductor

ideal (O : OK) is nonzero. We will often refer to (O : OK) as the conductor ideal

of O without specifying OK.

As we will see in later chapters, the conductor ideal of an order in a number

field can actually tell us a great deal about the order itself. In particular, we will
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see that when this conductor ideal is radical, we can often relate the factorization

properties of the order more intimately to those of the ring of algebraic integers.

Recall that a number ring is Dedekind; that is, it is Noetherian, has Krull

dimension 1, and is integrally closed. However, this structure will not be maintained

for a general order in a number field. The following result outlines which of these

three properties carry over.

Proposition 1.3.63. Let K be a number field and O an order in K. Then O is

Noetherian and dim(O) = 1. The field of fractions of O is K, and O = OK. In

particular, this means that O is integrally closed if and only if it is Dedekind, which

holds if and only if O = OK.

Although the main results of this dissertation pertain to orders in any number

field, it will help to more fully understand orders in quadratic number fields. Not

only are these fields relatively simple and can thus be used to construct helpful and

illustrative examples, they connect to a prior result that served as a foundation for

those found in this dissertation.

Proposition 1.3.64. Let d ∈ Z be squarefree, K = Q[
√
d] and OK = Z[α], where

α is the generator from Proposition 1.3.37. Then any order in K is of the form

O = Z[nα] for some n ∈ N. Moreover, the conductor ideal of O is the principal ideal

nOK. We will often refer to such n ∈ N as the index of O.

Note that in the quadratic case, an order can be determined solely by its

conductor ideal. However, this will not be true in general.

Example 1.3.65. Let K = Q[ 3
√

2]. Then OK = Z[ 3
√

2], and the orders O1 = Z +

n 3
√

2Z + n2 3
√

4Z, O2 = Z + n2 3
√

2Z + n 3
√

4Z, and O3 = Z + n2 3
√

2Z + n2 3
√

4Z in K all

have the same conductor ideal, namely n2OK .
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To conclude this discussion, we present the following theorem of Halter-Koch [10],

which serves as a basis for much of the work presented in the following chapters. This

result demonstrates how we may use what we know about factorization in a ring of

algebraic integers and extend that knowledge to orders, which we know comparatively

little about. It should be noted that in this theorem, we will use the notation that

will be used throughout the rest of this dissertation; namely, we will denote an order

in a number field by R and the ring of algebraic integers OK by R.

Theorem 1.3.66. Let d ∈ Z be squarefree and K = Q[
√
d] the quadratic number

field defined by d. Let R = Z[nα] be the index n ∈ N\{1} order in K, where α =
√
d

if d ≡ 2, 3 (mod 4) or α = 1+
√
d

2
if d ≡ 1 (mod 4) so that R = Z[α]. Then R is an

HFD if and only if the following properties hold:

1. R is an HFD;

2. R = R · U(R);

3. n = p for some prime p ∈ N, or n = 2p for some odd prime p ∈ N.
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Chapter 2

Associated Subrings and Related

Properties

As explored throughout the introduction, certain mathematical objects are

much more well understood than others. For instance, the structure in a ring of

algebraic integers has been studied in great detail. We know that such a ring is

Dedekind, has a free abelian additive group of known rank, and admits algorithms

for explicitly finding the prime ideals and elasticity, among other nice properties.

However, there are other types of rings about which we know relatively little of the

factorization properties. Even orders in an algebraic number field, which possess a

great deal of structure themselves and are closely related to number rings, do not have

a simple, known algorithm for determining elasticity. One might ask, then, if we can

leverage our knowledge about these well-understood rings to grant insight into the

properties of their subrings. This chapter will explore this question, first exploring

the relationships that might be present between a ring and its subring, then seeing

how these relationships can be leveraged to provide information. In the next chapter,

we will specifically apply these results to the question of elasticity.
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2.1 Associated and Ideal-Preserving Subrings

Recall Theorem 1.3.66 from the previous chapter [10]:

Theorem 1.3.66. Let d ∈ Z be squarefree and K = Q[
√
d] the quadratic number

field defined by d. Let R = Z[nα] be the index n ∈ N\{1} order in K, where α =
√
d

if d ≡ 2, 3 (mod 4) or α = 1+
√
d

2
if d ≡ 1 (mod 4) so that R = Z[α]. Then R is an

HFD if and only if the following properties hold:

1. R is an HFD;

2. R = R · U(R);

3. n = p for some prime p ∈ N, or n = 2p for some odd prime p ∈ N.

Among these three properties, easily the least explored is the second, R =

R · U(R). In fact, it is difficult to find any mention of this property or anything

similar before the work of Halter-Koch. In the years since, this property has largely

only been explored within the context of HFD orders in algebraic number fields, and

not in-depth as a standalone property. In this chapter, we will explore a more general

version of this property. We will also consider related properties and how they may

apply in particular settings.

We start with the following definition:

Definition 2.1.1. Let T be a commutative ring with unity and R ⊆ T a subring (not

necessarily with unity). We say that R is an associated subring of T if T = R·U(T );

that is, if for any t ∈ T , there exist r ∈ R and u ∈ U(T ) such that t = ru.

The following examples illustrate what such rings may look like. To start, we

have three trivial examples.
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Example 2.1.2. Any commutative ring with identity T is an associated subring of

itself. Let T be any field and R any nonzero subring of T . Then R is an associated

subring of T . Let R be an associated subring of a ring T , and let S be any subring

of T containing R. Then S is an associated subring of T .

Example 2.1.3. Let R = Z[
√

5] and T = R = Z[1+
√
5

2
]. Then u = 1+

√
5

2
∈ U(T ), and

any element of T is of the form t = a + b1+
√
5

2
. If b is even, then t ∈ R; if a is even,

then t = ru for some r ∈ R; if a and b are of the same parity, then t = ru2 for some

r ∈ R. Then R is an associated subring of T . Note that in this case, R is actually an

HFD by Theorem 1.3.66.

Example 2.1.4. Let m,n ∈ N with m|ni for some i ∈ N, and let T = Z[ 1
n
] and

R = mZ ⊆ T . Note that any element of T is of the form t = a
nk for some a ∈ Z

and k ∈ N (this form not necessarily reduced). Then t = (nia) · 1
ni+k , with nia ∈ R

and 1
ni+k ∈ U(T ). Then R is an associated subring of T . Note that in this case, for

m ̸= 1, R is a subring without identity.

As the term “associate” is used to refer to a unit multiple of an element in

a ring, it should be clear why the term “associated subring” is appropriate for such

a subring. It is also worth noting that there are two ways to think of this property.

First, as stated above, one can think of “decomposing” an element t ∈ T into t = ru,

with r ∈ R and u ∈ U(T ). On the other hand (and clearly equivalently), one can

think of finding an associate ut ∈ R for any t ∈ T . Though it is immediately obvious

that these are equivalent (if t = ru, then u−1t = r ∈ R, and vice versa), it will at

times be convenient to frame this property in one way or the other.

We now introduce another definition that at first glance seems totally unrelated

to the concept of an associated subring. However, we will see in a moment that these

concepts are naturally connected.
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Definition 2.1.5. Let T be a commutative ring and R a subring (neither assumed

to have identity). We say that R is an ideal-preserving subring of T if, for any

T -ideals J1 ̸⊆ J2, R ∩ J1 ̸⊆ J2 (equivalently, R ∩ J1 ̸⊆ R ∩ J2).

Example 2.1.6. Any commutative ring T is an ideal-preserving subring of itself. Let

T be any field and R any nonzero subring of T . Then R is an ideal-preserving subring

of T . Let R be an ideal-preserving subring of a ring T , and let S be any subring of

T containing R. Then S is an ideal-preserving subring of T .

Again, the term “ideal-preserving” is quite appropriate for such a subring.

What this property really says is that two distinct T -ideals will remain distinct (are

preserved) when they are restricted to R (and in fact, incomparable ideals remain

incomparable).

Proposition 2.1.7. Let T be a commutative ring with identity and R an associated

subring of T . Then R is an ideal-preserving subring of T .

Proof. Let J1 ̸⊆ J2 be two T -ideals (note that we can always select two such ideals,

since J1 = T and J2 = {0} will always satisfy this relationship) and take any t ∈ J1\J2.

Since R is an associated subring of T , there must be some u ∈ U(T ) such that ut ∈ R.

Then note that ut ∈ R ∩ J1. Furthermore, if ut ∈ J2, then u−1(ut) = t ∈ J2, a

contradiction. Then R ∩ J1 ̸⊆ J2, so R is ideal-preserving.

As the following example illustrates, the converse of this statement is not

necessarily true.

Example 2.1.8. Let T = Z[
√

2] and R = Z[5
√

2]. Then R is not an associated

subring of T (in particular, U(T ) = {±(1 +
√

2)k | k ∈ N}, so 1 + 2
√

2 /∈ R · U(T )),

but R is an ideal-preserving subring of T . These facts will both be easier to see after

developing these ideas further.
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2.2 Equivalent Characterizations

Now that the concepts of associated subrings and ideal-preserving subrings

have been defined, we will explore some of their equivalent characterizations. For

many of these characterizations, we will require additional assumptions about the

rings T and R. Throughout this discussion, one should keep in mind Proposition

2.1.7, i.e. that any of the equivalent characterizations of an associated subring implies

any of the equivalent characterizations of an ideal-preserving subring.

First, we will see how these properties can be characterized in an integral

domain. As we will see, this will illustrate how closely related associated subrings are

to ideal-preserving subrings.

Proposition 2.2.1. Let T be an integral domain and R a subring (possibly without

identity) of T . The following are equivalent:

1. R is an ideal-preserving subring of T .

2. For any T -ideal J and x ∈ T , x /∈ J =⇒ R ∩ (x) ̸⊆ J .

Proof. Since T is an integral domain, note that x /∈ J is equivalent to (x) ̸⊆ J . Then

Condition 2 above is simply the standard definition of an ideal-preserving subring,

but where J1 is restricted to being a principal ideal. Then 1 =⇒ 2 trivially. To

show the converse, let J1 and J2 be T -ideals such that J1 ̸⊆ J2. Then there exists

some x ∈ J1\J2. Since x /∈ J2, Condition 2 tells us that R ∩ (x) ̸⊆ J2. Then there

exists y ∈ R ∩ (x) ⊆ R ∩ J1 which is not contained in J2, so R ∩ J1 ̸⊆ J2. Thus,

2 =⇒ 1.

We will now see two equivalent ways to characterize associated subrings of an

integral domain. These characterizations will give us an idea of what “extra” we need

to produce the converse of Proposition 2.1.7.
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Proposition 2.2.2. Let T be an integral domain and R a subring (possibly without

identity) of T . The following are equivalent:

1. R is an associated subring of T .

2. R is an ideal-preserving subring of T , and for any principal ideal (x) of T and

collection of T -ideals {Iα}α∈Γ,

R ∩ (x) ⊆
⋃
α∈Γ

Iα ⇐⇒ ∃ α ∈ Γ s.t. R ∩ (x) ⊆ Iα.

3. For any x ∈ T and collection of T -ideals {Iα}α∈Γ,

R ∩ (x) ⊆
⋃
α∈Γ

Iα ⇐⇒ ∃ α ∈ Γ s.t. x ∈ Iα.

Proof. We have already seen that any associated subring is ideal-preserving. To

complete the proof of 1 =⇒ 2, assume that R is an associated subring of T . Let

(x) be a principal ideal of T and {Iα}α∈Γ be an arbitrary collection of T -ideals. Then

note that if R ∩ (x) ⊆ Iα for some α ∈ Γ, R ∩ (x) ⊆
⋃

α∈Γ Iα trivially. To show the

converse, note that since R is an associated subring of T , there is some u ∈ U(T )

such that ux ∈ R. Then ux ∈ R ∩ (x) ⊆
⋃

α∈Γ Iα, so ux ∈ Iα for some α ∈ Γ. Then

(x) = (ux) ⊆ Iα, so R ∩ (ux) ⊆ Iα. Then 1 =⇒ 2 (in fact, we have shown that

1 =⇒ 3 in the process).

We will now show that 2 =⇒ 3. Let x ∈ T and {Iα}α∈Γ be a collection of

T -ideals such that R ∩ (x) ⊆
⋃

α∈Γ Iα. Then Condition 2 tells us that there is some

α ∈ Γ such that R ∩ (x) ⊆ Iα. Then since R is ideal-preserving, (x) ⊆ Iα, so x ∈ Iα.

Then 2 =⇒ 3.

All that remains to show is that 3 =⇒ 1. Let x ∈ T ; we want to show that
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there is some u ∈ U(T ) such that ux ∈ R. Let {Iα}α∈Γ be the collection of all T -ideals

which do not contain x. Then by Condition 3, we have R ∩ (x) ̸⊆
⋃

α∈Γ Iα. Then

there must be some y ∈ R ∩ (x) which is not contained in any Iα. Then since (y) is

a T -ideal which contains y, (y) cannot be any of the Iα, i.e. (y) must contain (x).

Then (y) = (x), and since T is an integral domain, y = ux ∈ R for some u ∈ U(T ).

Then 3 =⇒ 1, completing the proof.

Note a few things about these conditions. First, if the principal ideal (x)

is replaced with a non-principal ideal J , neither Condition 2 nor 3 can ever hold;

indeed, we can take the collection {(α)}α∈J . The union of these ideals will always

contain R∩ J , but J is not contained in any individual (α). In that sense, the use of

principal ideals is not an arbitrary choice, and in fact these are the only ideals with any

chance of satisfying these conditions. Next, Condition 2 is primarily presented here

to show the relationship between associated subrings and ideal-preserving subrings.

It is also presented in a way to illustrate that, just like ideal-preserving subrings,

associated subrings can be characterized from a purely ideal-theoretic standpoint.

Finally, Condition 3 illustrates that associated subrings are, in a sense, “strongly”

ideal-preserving, as Condition 2 from Proposition 2.2.1 is exactly the same statement

but without allowing for an arbitrary union.

We will now consider these properties in the realm of Dedekind domains. Since

ideals in Dedekind domains can be expressed (uniquely) as a product of prime ideals,

we will see in both cases that the ideal-theoretic characterizations can be put in terms

of only prime ideals.

Proposition 2.2.3. Let T be a Dedekind domain and R a subring (possibly without

identity) of T . The following are equivalent:

1. R is an ideal-preserving subring of T .
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2. For any nonzero prime T -ideals P1 ̸= P2, R∩P1 ̸⊆ R∩P2 and R∩P1 ̸= R∩P 2
1 .

Proof. First, note that since T is a Dedekind domain, any two nonzero prime ideals

P1 and P2 are incomparable and P1 ̸⊆ P 2
1 . Then Condition 2 follows immediately

from the definition of ideal-preserving subrings, i.e. 1 =⇒ 2.

Now assume that condition 2 holds and let J1 ̸⊆ J2 be two T -ideals. Since T is

a Dedekind domain, we can factor these ideals into prime ideals, J1 = P a1
1 . . . P ak

k and

J2 = P b1
1 . . . P bk

k . Since J1 ̸⊆ J2, i.e. J2 ∤ J1, then ai < bi for some 1 ≤ i ≤ k. Now note

that for j ̸= i, R ∩ Pj ̸⊆ Pi; furthermore, R ∩ Pi ̸⊆ P 2
i . Then select αi ∈ R ∩ Pi\P 2

i ,

and for j ̸= i, select αj ∈ R∩Pj\Pi. Then α := αa1
1 . . . αak

k ∈ R∩P a1
1 . . . P ak

k = R∩J1.

However, α /∈ P ai+1
i ⊇ P bi

i ⊇ J2, so α ∈ R ∩ J1\J2, and thus R ∩ J1 ̸⊆ J2. Then R is

ideal-preserving, i.e. 2 =⇒ 1.

Proposition 2.2.4. Let T be a Dedekind domain and R a subring (possibly without

identity) of T . The following are equivalent:

1. R is an associated subring of T .

2. For any nonzero principal T -ideal (x) = P a1
1 . . . P ak

k ,

R ∩ (x) ̸⊆

 k⋃
i=1

P ai+1
i

 ∪

 ⋃
Q∈Spec(T ),Q∤(x)

Q

 .

Proof. First, assume that R is an associated subring. We will be using the third

characterization of associated subrings from Proposition 2.2.2. Note that since x is

not contained in any of the prime ideals Q ∤ (x) or P ai+1
i , then R∩(x) is not contained

in the union of these ideals. Then 1 =⇒ 2.

Now assume that condition 2 holds. Then let {Iα}α∈Γ be an arbitrary collection

of ideals such that x /∈ Iα for every α ∈ Γ. Then Iα ∤ (x), so either Iα has too many
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factors of Pi for some 1 ≤ i ≤ k (i.e. P ai+1
i |Iα) or Iα has a prime divisor which does

not divide (x) (i.e. there is some Q ∤ (x) such that Q|Iα). In either case, each Iα is

contained in the union of ideals in the statement of condition 2. Then

R ∩ (x) ̸⊆

 k⋃
i=1

P ai+1
i

 ∪

 ⋃
Q∈Spec(T ),Q∤(x)

Q

 ⊇
⋃
α∈Γ

Iα,

so R ∩ (x) ̸⊆
⋃

α∈Γ Iα. Then by Proposition 2.2.2, R is an associated subring of T , so

2 =⇒ 1.

These equivalent conditions allow us to only work with prime ideals in the

case of a Dedekind domain. Now, we will see that if the conductor ideal (R : T ) is

nonzero and R contains 1, we can restrict our consideration to a finite set of prime

ideals for ideal-preserving subrings.

Proposition 2.2.5. Let T be a Dedekind domain and R a subring (with identity) of

T such that the conductor ideal I = (R : T ) is nonzero. The following are equivalent:

1. R is an ideal-preserving subring of T .

2. For any prime T -ideals P1 ̸= P2 dividing I, R∩P1 ̸⊆ R∩P2 and R∩P1 ̸= R∩P 2
1 .

Proof. First, note that Proposition 2.2.3 gives us that any ideal-preserving subring of

T satisfies condition 2 for any nonzero prime ideals, not just those dividing I. Then

1 =⇒ 2.

For the converse, we will show that condition 2 from Proposition 2.2.3 is always

satisfied if either P1, P2, or both do not divide I. First, suppose that P2 ∤ I. Then

since I ̸⊆ P2, there must exist some β ∈ I\P2. Then letting α ∈ P1\P2, we have that

αβ ∈ R ∩ P1\P2, so R ∩ P1 ̸⊆ R ∩ P2.
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Now assume that P1 ∤ I but P2 | I. Note that P1 and I are relatively prime

in T . Then there must be some α ∈ P1 and β ∈ I such that 1 = α + β. Then

α = 1 − β ∈ R ∩ P1. Since β ∈ I ⊆ P2, then α = 1 − β /∈ P2, i.e. α ∈ R ∩ P1\P2.

Then R ∩ P1 ̸⊆ P2.

All that remains to show is that if P1 ∤ I, then R ∩ P1 ̸= R ∩ P 2
1 . To see this,

let α ∈ P1\P 2
1 and β ∈ I\P1. Then αβ ∈ R ∩ P1\P 2

1 , i.e. R ∩ P1 ̸= R ∩ P 2
1 . Then

2 =⇒ 1.

Note that with this characterization, it is possible to check only finitely many

prime ideals to check whether R is an ideal-preserving subring of T . Returning to

Example 2.1.8, one can see that the conductor ideal I = (R : T ) = 5T , which is

prime in T . Then we only need to check that R ∩ 5T = 5T ̸= 25T = R ∩ (5T )2.

Then by this new equivalent characterization, R is an ideal-preserving subring of T .

This characterization also allows us to easily produce a large class of ideal-preserving

subrings of a Dedekind domain T .

Corollary 2.2.6. Let T be a Dedekind domain and R a subring (with identity) of T

such that the conductor ideal I = (R : T ) is a nonzero prime ideal of T . Then R is

an ideal-preserving subring of T .

Proof. By the proposition, note that since I only has a single prime divisor, the

only check that must be made is that R ∩ I ̸= R ∩ I2. Since I2 ⊊ I ⊊ R, then

R ∩ I2 = I2 ⊊ I = R ∩ I. Then R is ideal-preserving.

Under the assumption that the conductor ideal I = (R : T ) is nonzero, we can

similarly make it easier to check whether a subring is associated.

Proposition 2.2.7. Let T be a commutative ring with identity and R a subring (with

identity) of T such that the conductor ideal I = (R : T ) is nonzero. The following

are equivalent:
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1. R is an associated subring of T .

2. For any subset {uα}α∈U(T )/U(R) of U(T ) such that uα is a representative of the

coset α ∈ U(T )/U(R) and t ∈ T , there exists α ∈ U(T )/U(R) and β ∈ I such that

uα(t + β) ∈ R. That is, in a slight abuse of notation, T/I = R/I · U(T )/U(R).

Proof. First, note that if R is an associated subring of T , i.e. T = R·U(T ), then every

t ∈ T has some u ∈ U(T ) such that ut ∈ R. Then there is some α ∈ U(T )/U(R) such

that uv = uα for some v ∈ U(R). Letting β = 0, this gives uα(t + β) = (ut)v ∈ R, so

1 =⇒ 2.

Now assume that condition 2 holds, and let t ∈ T . Then given any set of coset

representatives {uα}α∈U(T )/U(R), there is some uα and β ∈ I such that uα(t+β) = r ∈ R.

Note that since β ∈ I = (R : T ), uαβ ∈ R as well. Then uαt = r − uαβ ∈ R, so R is

an associated subring. Thus, 2 =⇒ 1.

Although this characterization is not always one which can be checked in

finitely many steps, as in Proposition 2.2.5, when R is an order in a number field

and T = R is the corresponding number ring, T/I, R/I, and U(T )/U(R) are all finite.

Thus, this characterization is able to be finitely checked in this particular case. This

can be used to check that the subring in Example 2.1.8 is indeed associated. In this

case, we can pick three coset representatives {1, 1 +
√

2, 3 + 2
√

2} ⊆ U(T ) and the

element t = 1 + 2
√

2 and verify that none of these units multiply t into R. Then R

is not an associated subring of T , since 1 + 2
√

2 ∈ T\R · U(T ).

It is also worth noting that the last two propositions, which assume that

I = (R : T ) is a nonzero ideal, technically hold when I = {0} as well. However,

if I = {0}, then every nonzero prime T -ideal divides (contains I) and T/I ∼= T , so

nothing new is really being presented.
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Since the primary context of interest for this dissertation is still in the realm of

orders in algebraic number fields, we note that all of these results will hold when R is

an order in a number field and T = R. Then we combine these propositions to get the

following theorems. For ease, we will also include an additional characterization of

ideal-preserving subrings, the discussion and proof of which fits better in the following

section.

Theorem 2.2.8. Let R be an order in a number field K with conductor ideal I. The

following are equivalent:

1. For any R-ideals J1 ̸⊆ J2, R∩ J1 ̸⊆ J2; that is, R is an ideal-preserving subring

of R.

2. For any R-ideal J and x ∈ R, x /∈ J =⇒ R ∩ (x) ̸⊆ J .

3. For any nonzero prime R-ideals P1 ̸= P2, R ∩ P1 ̸⊆ P2 and R ∩ P1 ̸= R ∩ P 2
1 .

4. For any prime R-ideals P1 ̸= P2 dividing I, R∩P1 ̸⊆ R∩P2 and R∩P1 ̸= R∩P 2
1 .

5. If I = P a1
1 . . . P ak

k is the factorization of I into prime R-ideals, then R ∩ Pi ̸=

R ∩ P 2
i for 1 ≤ i ≤ k and

R/I ∼= R/R ∩ P a1
1 × · · · × R/R ∩ P ak

k
∼= R+ P a1

1 /P a1
1 × · · · × R+ P ak

k /P ak

k .

For simplicity, we will refer to any such order as an ideal-preserving order.

Theorem 2.2.9. Let R be an order in a number field K. The following are equivalent:

1. R = R · U(R); that is, R is an associated subring of R.
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2. R is an ideal-preserving order, and for any principal ideal (x) of R and collection

of R-ideals {Iα}α∈Γ,

R ∩ (x) ⊆
⋃
α∈Γ

Iα ⇐⇒ ∃ α ∈ Γ s.t. R ∩ (x) ⊆ Iα.

3. For any x ∈ R and collection of R-ideals {Iα}α∈Γ,

R ∩ (x) ⊆
⋃
α∈Γ

Iα ⇐⇒ ∃ α ∈ Γ s.t. x ∈ Iα.

4. For any nonzero principal R-ideal (x) = P a1
1 . . . P ak

k ,

R ∩ (x) ̸⊆

 k⋃
i=1

P ai+1
i

 ∪

 ⋃
Q∈Spec(R),Q∤(x)

Q

 .

5. For any subset {uα}α∈U(R)/U(R) of U(R) such that uα is a representative of the

coset α ∈ U(R)/U(R) and t ∈ R, there exists α ∈ U(R)/U(R) and β ∈ I such that

uα(t + β) ∈ R. That is, in a slight abuse of notation, R/I = R/I · U(R)/U(R).

For simplicity, we will refer to any such order as an associated order.

2.3 Related Rings

In many of the results we will show in the next chapter, it will be necessary

to understand how properties of an order R in a number field K can inform us about

properties of related orders. To this end, we will now examine how associated or

ideal-preserving subrings of a ring T can tell us information about related subrings of

T . Throughout this discussion, one should keep in mind Proposition 2.1.7, i.e. that
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any associated subring is also ideal-preserving. Furthermore, the results presented

here will all apply to orders in an algebraic number field.

To start, we will see how a subring R ⊆ T can be built into a larger subring.

Theorem 2.3.1. Let T be a Dedekind domain and R an ideal-preserving subring

(with identity) of T . Let I = (R : T ). Then for any T -ideal J , (R + J : T ) = I + J .

Proof. First, note that I + J is a T -ideal which divides J , and R + J = R + (I + J).

Then it will suffice to show that for any T -ideal J which divides I, the ring R + J

has conductor ideal (R + J : T ) = J .

Now assume that J is a T -ideal dividing I and consider the subring R + J

of T . First, note that J ⊆ R + J trivially. Then letting A = (R + J : T ), we have

that J ⊆ A. If A = J , then we are done. Otherwise, assume that J ⊊ A. Then

R + J ⊆ R + A ⊆ R + (R + J) = R + J , so R + J = R + A.

Since T is a Dedekind domain, we can now factor ideals into products of prime

ideals. Let I = P a1
1 . . . P ak

k . Then J = P b1
1 . . . P bk

k for some bi ≤ ai for 1 ≤ i ≤ k.

Now since R is an ideal-preserving subring of T , we have that for each 1 ≤ i ≤ k,

R ∩ Pi ̸⊆ R ∩ P 2
i , and for i ̸= j, R ∩ Pi ̸⊆ R ∩ Pj. Since R has identity, each R ∩ Pi

remains prime in R, so prime avoidance tells us that for each 1 ≤ i ≤ k, there exists

some ri ∈ R∩Pi\
(
P 2
i ∪

⋃
j ̸=i Pj

)
. Then letting β =

∏k
i=1 r

ai−bi
i , we have that β ∈ R

and βT + I = P a1−b1
1 . . . P ak−bk

k = (I : J).

Now note that β(R+A) = β(R+ J) = βR+ βJ . Since β ∈ R, βR ⊆ R; since

β ∈ (I : J), βJ ⊆ I. Then β(R + A) = βR + βJ ⊆ R + I = R. Then β conducts

any element of R + A into R, i.e. β ∈ (R : R + A). Now since J ⊆ A, and J ̸= A,

this means that A ̸⊆ J . Since R is an ideal-preserving subring of T , R ∩ A ̸⊆ J .

Then let α ∈ R ∩ A\J . Since (α) ⊈ J , there must be some 1 ≤ i ≤ k such that

P bi
i ∤ (α). Now consider the element αβ. Note that for any t ∈ T , αt ∈ A ⊆ R + A,
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so αβt = β(αt) ∈ R. Then αβ ∈ (R : T ) = I, i.e. I|(αβ). However, note that as

there is some 1 ≤ i ≤ k such that P bi
i ∤ (α) and the exact power of Pi dividing (β)

is P ai−bi
i , P ai

i ∤ (αβ), a contradiction. Then the conductor ideal (R + J : T ) must be

exactly J .

With this result, we can start by considering a particular ideal-preserving

subring R of T and construct intermediate subrings of the form R + J of T , which

will still be ideal-preserving. As we will see, especially in the next chapter, breaking

down a subring R into these “simpler” components will be very useful when trying to

determine the properties of R itself. The following result shows how this “breaking

down” process works.

Theorem 2.3.2. Let R be an order in a number field K and I = (R : R) its conductor

ideal. Let I = P a1
1 . . . P ak

k be the factorization of I into prime R ideals. The following

are equivalent:

1. R is an ideal-preserving order.

2. If I = P a1
1 . . . P ak

k is the factorization of I into prime R-ideals, R∩Pi ̸= R∩P 2
i

for 1 ≤ i ≤ k and

R/I ∼= R/R ∩ P a1
1 × · · · × R/R ∩ P ak

k
∼= R+ P a1

1 /P a1
1 × · · · × R+ P ak

k /P ak

k .

Proof. Note that when R is ideal-preserving, then R ∩ Pi ̸= R ∩ P 2
i for 1 ≤ i ≤ k by

definition. Then for the implication 1 =⇒ 2, we only need to show the isomorphism.

First, we will note that the second isomorphism in the statement of condition 2

will always hold. The mapping f(r+R∩P a1
1 , . . . , r+R∩P ak

k ) = (r+P a1
1 , . . . , r+P ak

k )

makes this straightforward to see. For the first isomorphism, recall by the Chinese
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Remainder Theorem that

R/I ∼= R/P a1
1 × · · · × R/P ak

k .

Now let π be the canonical projection isomorphism π : R/I → R/P a1
1 × · · · × R/P ak

k ,

and define τ : R/I → R+ P a1
1 /P a1

1 × · · · × R+ P ak

k /P ak

k by τ(r + I) = π(r + I). Since

τ is defined as a restriction of an isomorphism, we immediately have that τ is an

injective homomorphism; then we need only show that τ is also surjective. To show

this, we will show that for each 1 ≤ i ≤ k, there is some ri ∈ R such that τ(ri + I)

is 0 in every coordinate except the ith, in which it is 1 + P ai
i . Since R is ideal-

preserving, we have that R ∩
∏

j ̸=i P
aj
j ̸⊆ Pi, so let xi ∈ R ∩

∏
j ̸=i P

aj
j \Pi. Note

that τ(xi + I) is 0 in every coordinate except the ith, though it may not be 1 + P ai
i

in the ith coordinate as desired. However, since R/P ai
i is a finite quotient ring and

P ai
i is primary, every element is either a unit or nilpotent. Then since xi /∈ Pi,

xi + P ai
i ∈ R+ P ai

i /P ai
i ∩ U(R/P ai

i ) = U(R+ P ai
i /P ai

i ). Then there is some yi ∈ R such

that xiyi +P ai
i = 1 +P ai

i . Then letting ri = xiyi, we have that τ(ri + I) is 0 in every

coordinate except the ith, in which it is 1 + P ai
i . Then τ is surjective, so 1 =⇒ 2.

Now assume Condition 2 holds. By Proposition 2.2.5, it will suffice to show

that for i ̸= j, R ∩ Pj ̸⊆ Pi. Then letting τ : R/I → R/R ∩ P a1
1 × · · · × R/R ∩ P ak

k be

the canonical isomorphism such that τ(r + I) = (r1 + R ∩ P a1
1 , . . . , rk + R ∩ P ak

k ).

Since this is an isomorphism (and is thus surjective), there exists some ri ∈ R for

each 1 ≤ i ≤ k such that r1 + P ai
i = 1 + P ai

i and r ∈ R ∩ P
aj
j = 0 for j ̸= i. Then

this ri lies in R ∩ Pj\Pi for every j ̸= i. Then for any i ̸= j, R ∩ Pj ̸⊆ R ∩ Pi, so

2 =⇒ 1.

The above result gives the final characterization of ideal-preserving orders
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presented in Theorem 2.2.8. This will allow us to utilize techniques similar to the

Chinese Remainder Theorem when working with ideal-preserving subrings, which will

be very useful to the major results of this dissertation. This will also allow us to show

the following result, which gives a view of how we might bring together multiple

intermediate orders of the form R + J , where J is a T -ideal.

Theorem 2.3.3. Let T be a Dedekind domain and R an ideal-preserving subring

(with identity) of T . Let J1 and J2 be two T -ideals dividing I = (R : T ), and

define R1 := R + J1 and R2 := R + J2. Then R1 ∩ R2 is a subring of T such that

R ⊆ R+J1∩J2 ⊆ R1∩R2 and the conductor ideal (R1∩R2 : T ) = J1∩J2. Moreover,

if R is an order in a number field and T = R, R1 ∩R2 = R + J1 ∩ J2.

Proof. First, note that the inclusions R ⊆ R+J1∩J2 ⊆ R1∩R2 are trivial. This also

gives us that J1∩J2 ⊆ R1∩R2, so J1∩J2 ⊆ (R1∩R2 : T ). Now from Theorem 2.3.1,

we have that (R1 : T ) = J1 and (R2 : T ) = J2. Then for any α ∈ (R1 ∩ R2 : T ), note

that αT ⊆ R1 ∩ R2. Then by definition of the conductor ideal, α ∈ J1 and α ∈ J2.

Then α ∈ J1 ∩ J2, so (R1 ∩R2 : T ) ⊆ J1 ∩ J2. Then (R1 ∩R2 : T ) = J1 ∩ J2.

All that remains to show is that when R is an order in a number field and

T = R, R1 ∩R2 ⊆ R + J1 ∩ J2. To start, note that R + J1 ∩ J2 is an ideal-preserving

order with conductor ideal J1∩J2, and Ri = R+Ji = (R+J1∩J2)+Ji for i ∈ {1, 2}.

Then without loss of generality, we can assume that J1 ∩ J2 = I.

For now, we will also assume that J1 and J2 are relatively prime and show

that R1 ∩ R2 ⊆ R. Applying Theorem 2.3.2 first to R, then R1 and R2, we get that

R/I ∼= R1/J1 × R2/J2. Then letting t ∈ R1 ∩ R2 and τ : R/I → R1/J1 × R2/J2, there

must be some r ∈ I such that τ(r + I) = (r + J1, r + J2) = (t + J1, t + J2). Then

r − t ∈ J1 ∩ J2 = I, so t = r + β ∈ R for some β ∈ I. Then R1 ∩R2 ⊆ R.

We will now show that when J1 ∩ J2 = I, R1 ∩ R2 ⊆ R even when J1 and
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J2 are not relatively prime. Write I = P a1
1 . . . P ak

k , where each Pi is a prime R-ideal.

Then since J1 ∩ J2 = I, we can write J1 = P b1
1 . . . P bk

k and J2 = P c1
1 . . . P ck

k , with

ai = max{bi, ci} for 1 ≤ i ≤ k. Now let t ∈ R1 ∩ R2. Since R1 ⊆ R + P bi
i and

R2 ⊆ R + P ci
i for each 1 ≤ i ≤ k, we have that t ∈ (R + P bi

i ) ∩ (R + P ci
i ) = R + P ai

i

for each 1 ≤ i ≤ k. Then by the relatively prime case above, t ∈
⋂k

i=1(R + P ai
i ) = R.

Then R1 ∩R2 ⊆ R, completing the proof.

The results thus far show how an ideal-preserving subring R of a Dedekind

domain T (or more specifically, an order in a number field) relate to rings of the

form R + J , with J an ideal of T . In other words, we are constructing intermediate

subrings S with R ⊆ S ⊆ T . However, we can also examine how properties might be

“inherited” when moving to a smaller subring S ⊆ R ⊆ T , as the following results

will demonstrate.

Theorem 2.3.4. Let R1 and R2 be two subrings of the same commutative ring with

unity T , and let J1 = (R1 : T ) and J2 = (R2 : T ). Then R := R1 ∩ R2 is a subring

of T with conductor ideal I = (R : T ) = J1 ∩ J2. Moreover, if R1 and R2 are orders

in a number field, T = R1 = R2 = R, and J1 and J2 are relatively prime as R-ideals,

then R1 = R + J1, R2 = R + J2, and

R/I ∼= R1/J1 × R2/J2.

Proof. Let I = (R : T ). Then I ⊆ R = R1 ∩ R2, so I is contained in both R1

and R2. Then since I is a T -ideal contained in these subrings, it is contained in the

conductor ideals J1 = (R1 : T ) and J2 = (R2 : T ), i.e. I ⊆ J1 ∩ J2. On the other

hand, J1 ∩ J2 ⊆ R1 ∩ R2 = R, so J1 ∩ J2 must be contained in (R : T ) = I. Then

J1 ∩ J2 ⊆ I, so I = J1 ∩ J2.
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We will now assume that R1 and R2 are orders in the same number field K,

and T is the ring of algebraic integers; equivalently, T = R1 = R2 = R. Furthermore,

we will assume that J1 and J2 are relatively prime R-ideals. Now consider τ : R/I →

R1/J1×R2/J2 defined by τ(r+I) = (r+J1, r+J2). Since R = R1∩R2 and I = J1∩J2,

this is a well-defined homomorphism. Furthermore, if τ(r + I) = (0 + J1, 0 + J2),

then r ∈ J1 ∩ J2 = I, i.e. r + I = 0 + I. Then τ is an injective homomorphism.

Now let r1 ∈ R1 and r2 ∈ R2. By the Chinese Remainder Theorem, we know that

there must exist some r ∈ R such that r ≡ r1 (mod J1) and r ≡ r2 (mod J2), i.e.

r − r1 ∈ J1 and r − r2 ∈ J2. Then r ∈ R1 ∩ R2 = R, so r + I ∈ R/I is such that

τ(r+I) = (r1 +J1, r2 +J2). Therefore, τ is surjective and thus an isomorphism. Note

that this also tells us that for any r1 ∈ R1, there is some r ∈ R such that r1 = r+β1 for

some β1 ∈ J1, i.e. R1 ⊆ R+J1 (and by a similar argument, R2 ⊆ R+J2). The reverse

inclusions are immediate, so R1 = R+J1, R2 = R+J2, and R/I ∼= R1/J1×R2/J2.

In this result, the assumption that J1 and J2 are relatively prime is actually

important to showing that descending in this manner is possible. The following

example illustrates how this may fail in general.

Example 2.3.5. Let K = Q[ 3
√

2]. Since the polynomial x3 − 2 has no roots modulo

7, note that 7 is an inert prime in K, i.e. (7) is a prime ideal in the ring of integers

OK = Z[ 3
√

2] of K. Then let R1 = Z+7 3
√

2Z+ 3
√

4Z and R2 = Z+ 3
√

2Z+7 3
√

4Z; these

are both orders in K. Note that since these are properly contained inside OK and (7) is

contained in both of these orders, then J1 = J2 = (7) (since (7) is prime and therefore

maximal in OK). By the theorem, R := R1∩R2 = Z+7 3
√

2Z+7 3
√

4Z is an order in K

with conductor ideal I = J1∩J2 = (7) (this is also easy to verify independently of the

result). However, R + J1 = R ̸= R1 and R + J2 = R ̸= R2. Furthermore,
∣∣∣R/I∣∣∣ = 7

and
∣∣∣R1/J1

∣∣∣ =
∣∣∣R2/J2

∣∣∣ = 49, so
∣∣∣R/I∣∣∣ = 7 ̸= 492 =

∣∣∣R1/J1 × R2/J2
∣∣∣. In particular, this
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means that these rings are not isomorphic.

Using these results, we can now start with two subrings of a commutative ring

and determine properties of their intersection. In the case of orders in a number field,

these larger orders will often be easier to work with, allowing us to start with large,

simple orders, then extend their properties to their intersections, which may be more

complex. A natural question to ask, then, is which properties will be “inherited”

when such an intersection is considered. As the following result shows, the property

of being an ideal-preserving subring is “nice” in the sense that it is easily inherited

in this way.

Theorem 2.3.6. Let R1 and R2 be two ideal-preserving subrings (with unity) of the

same Dedekind domain T , and let J1 = (R1 : T ) and J2 = (R2 : T ) be relatively prime

as T -ideals. Then R = R1 ∩R2 is an ideal-preserving subring of T .

Proof. First, note by Theorem 2.3.4, R is a subring of T with conductor ideal I =

(R : T ) = J1 ∩ J2 = J1J2. If either J1 or J2 is the zero ideal, then note that the

other must be T , as J1 + J2 = T . Without loss of generality, assume R2 = T . Then

R = R1 ∩ R2 = R1, which is an ideal-preserving subring of T . From this point, we

will assume that J1 and J2 are relatively prime nonzero T -ideals. Thus, we can factor

J1 and J2 into products of prime T -ideals, and any prime dividing J1 cannot divide

J2 (and vice versa).

Since R = R1 ∩ R2 is contained in both R1 and R2, then if R is an ideal-

preserving subring of T , R1 and R2 will both be ideal-preserving trivially. On the

other hand, suppose that R1 and R2 are both ideal-preserving. To show that R

is ideal-preserving, Proposition 2.2.5 tells us that it will suffice to show that any

distinct prime T -ideals dividing I = J1J2 remain distinct from each other and from

their squares when restricting to R.
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Let P be a prime T -ideal dividing I. Then P must divide exactly one of J1

or J2; without loss of generality, suppose P |J1. Then since R1 is ideal-preserving,

select α ∈ R1 ∩ P\P 2 and β ∈ R1 ∩ J2\P . Then αβ ∈ R1 ∩ J2 ⊆ R1 ∩ R2 = R, and

αβ ∈ P\P 2. Then R ∩ P ̸⊆ R ∩ P 2.

Now suppose that we have distinct prime T -ideals P1 ̸= P2, both of which

divide I. Again, each of these primes must divide either J1 or J2 but not both.

Without loss of generality, assume that P1|J1. If P2|J1, then we can proceed similarly

to the previous case. Since R1 is ideal preserving, we can select α ∈ R1 ∩ P1\P2 and

β ∈ R1 ∩ J2\P2. Then αβ ∈ R1 ∩ J2 ⊆ R and αβ ∈ P1\P2, so R ∩ P1 ̸⊆ P2. If P2|J2,

we will instead make use of the fact that R2 is ideal-preserving. In this case, select

α ∈ R2 ∩ P1\P2 and β ∈ R2 ∩ J1\P2. Then αβ ∈ R2 ∩ J1 ⊆ R and αβ ∈ P1\P2, so

R ∩ P1 ̸⊆ P2. Thus, R is an ideal-preserving subring of T .

This result shows that the property of being an ideal-preserving subring is

“inherited” when intersecting subrings in a Dedekind domain with relatively prime

conductor ideals. While this may seem like a very specific case, this will be very useful

when looking for ideal-preserving orders in a number field. The following example

shows that the property of being an associated subring is not so nicely inherited, even

within the context of orders in a number field.

Example 2.3.7. Let R1 = Z[3
√

2], R2 = Z[11
√

2], and T = R = Z[
√

2]. It can be

verified that R1 and R2 are both associated subrings of T (in particular, one can use

the characterization from Proposition 2.2.7). However, R = R1 ∩ R2 = Z[33
√

2] is

not an associated subring. This can be verified by finding an element of T\R ·U(T ),

but an easier method of showing this will be developed later.
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2.4 Locally Associated Subrings

The final property that we will explore in this section is also closely related to

the idea of an associated subring. This property is presented here, separately from

the others, primarily since its utility at present is largely restricted to the context of

orders in a number ring.

Definition 2.4.1. Let T be a commutative ring with identity, R ⊆ T a subring (with

identity) of T , and I := (R : T ). We say that R is a locally associated subring of

T if

U(T )/U(R) ∼= U(T/I)/U(R/I).

Note that as with some alternate characterizations of associated or ideal-

preserving subrings, this property only really makes sense to consider when I = (R :

T ) ̸= {0} (from the definition, any subring R with I = (R : T ) = {0} is immediately

locally associated). As the name suggests, locally associated subrings are very closely

related to associated subrings. While this may not be immediately obvious from the

definition presented here, it will become apparent after the following discussion.

First, we present an equivalent characterization of a locally associated subring

that will help to illustrate the relation to associated subrings.

Proposition 2.4.2. Let T be a commutative ring with unity, R ⊆ T a subring (with

unity) of T , and I := (R : T ). The following are equivalent:

1. R is a locally associated subring of T .

2. Every coset in U(T/I)/U(R/I) contains a unit in T ; that is, for any t+I ∈ U(T/I),

there exists some r + I ∈ U(R/I) and β ∈ I such that tr + β ∈ U(T ).

68



3. If t ∈ T is relatively prime to I, i.e. tT + I = T , then there exists r ∈ R

relatively prime to I, i.e. rR + I = R, and u ∈ U(T ) such that t = ru.

Proof. First, we will consider in general the map ϕ : U(T ) → U(T/I)/U(R/I) defined

by ϕ(u) = (u + I)U(R/I). It is trivial to see that ϕ is a well-defined (multiplicative

group) homomorphism. Suppose that u ∈ U(R); then note that u + I ∈ U(R/I),

so ϕ(u) = (1 + I)U(R/I). Then U(R) ⊆ ker(ϕ). On the other hand, suppose that

u ∈ ker(ϕ), i.e. ϕ(u) = (1 + I)U(R/I). Then there is some r + I ∈ U(R/I) such that

u+ I = r+ I, so u ∈ R. Furthermore, note that since u ∈ U(T ), then u−1 exists in T ,

and thus ϕ(u−1) = ϕ(u−1)ϕ(u) = ϕ(uu−1) = ϕ(1) = (1 + I)U(R/I). Then as before,

u−1 ∈ R, so u ∈ U(R). Then ker(ϕ) = U(R), so by the first isomorphism theorem,

U(T )/U(R) ∼= ϕ(U(T )).

Since ϕ(U(T )) is a subgroup of U(T/I)/U(R/I), the above discussion tells us that

R is a locally associated subring of T if and only if ϕ is onto. Furthermore, condition

2 above is equivalent to ϕ being onto; to illustrate this, suppose that ϕ is onto. Then

for every t + I ∈ U(T/I), there is some u ∈ U(T ) such that ϕ(u) = (u + I)U(R/I) =

(t+I)U(R/I). Then there exists r+I ∈ U(R/I) such that u+I = (t+I)(r+I) = tr+I,

and thus there is some β ∈ I such that tr + β = u ∈ U(T ). The converse follows by

reversing this same argument. Then 1 ⇐⇒ 2.

Now to show that 2 ⇐⇒ 3, note that t ∈ T is relatively prime to I, i.e.

tT + I = T , if and only if t + I ∈ U(T/I) (similarly, rR + I = R if and only if

r + I ∈ U(R/I)). Then assuming Condition 2, let t ∈ T be relatively prime to

I. Condition 2 tells us that there is some r + I ∈ U(R/I) and β ∈ I such that

tr + β = u ∈ U(T ). Letting s ∈ R such that s + I = (r + I)−1 ∈ U(R/I), this gives

us that t = us + β′ for some β′ ∈ I, and thus t = (s + β′u−1)u. Then 2 =⇒ 3.

Finally, assume that Condition 3 holds and let t + I ∈ U(T/I). Since t ∈ T
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is relatively prime to I, Condition 3 tells us that there exist s ∈ R relatively prime

to I and u ∈ U(T ) such that t = su. Then letting r + I = (s + I)−1 ∈ U(R/I), we

have tr + I = u + I, i.e. there is some β ∈ I such that tr + β = u ∈ U(T ). Then

3 =⇒ 2.

Note that this third characterization of locally associated subrings shows the

relationship to associated subrings. Namely, rather than every element of T having

an associate which lies in R, every element of T relatively prime to I has an an

associate which lies in R and remains relatively prime to I. Interestingly, this leaves

open the possibility of a subring being associated without being locally associated, as

the following example shows.

Example 2.4.3. Let T = Q[x] and R = Z + Zx + x2Q[x] ⊆ T . Note that in this

case, I = (R : T ) = x2T . Now let t = r0
s0

+ r1
s1
x + · · · + rn

sn
xn ∈ T , with ri, si ∈ Z,

si ̸= 0 for 0 ≤ i ≤ n. Then we have that

t = (r0s1 + r1s0x + · · · +
rns0s1
sn

xn) · 1

s0s1
∈ R · U(T ).

Then R is an associated subring of T . However, R is not a locally associated subring

of T . To see this, let t = 2+3x ∈ R ⊆ T and note that (2+3x)(1
2
− 3

4
x) ≡ 1 (mod I),

so t + I ∈ U(T/I). However, note that any element of U(R/I) must have a constant

term of ±1. Then for any u ∈ U(T ) = Q, ut = 2u+ 3ux ∈ U(R/I) =⇒ u = ±1
2
, but

3u = ±3
2
/∈ Z. Then t ∈ T is relatively prime to I, but has no associates which lie in

R and are relatively prime to I, so R is not a locally associated subring of T .

Despite this example, in many cases (in particular, when R is an order in a

number field and T = R), a subring being associated will imply that it is also locally

associated. In fact, an immediate result follows from the characterizations presented
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in Proposition 2.4.2.

Corollary 2.4.4. Let T be a commutative ring with unity, R ⊆ T a subring (with

unity) of T , and I := (R : T ). Also assume that U(R/I) = R/I ∩ U(T/I), i.e. any

element of R which has an inverse modulo I in T has that inverse also lying in R.

Then if R is an associated subring of T , it is a locally associated subring of T . In

particular, this will hold when T is integral over R.

Proof. Let R ⊆ T be as described above, and assume that R is an associated subring

of T . Then for any t + I ∈ U(T/I), there is some u ∈ U(T ) such that tu ∈ R.

Then since tu + I ∈ R/I ∩ U(T/I) = U(R/I), there is some r + I ∈ U(R/I) such that

tur ≡ 1 (mod I). Then for some β ∈ I, tr + β = u−1 ∈ U(T ). Then R is a locally

associated subring.

Note that when T is integral over R, T/I is integral over R/I. Then in this

case, U(R/I) = R ∩ U(T/I), as discussed in Proposition 1.2.59.

It will often be the case that it will be easier to check that a subring is locally

associated than to check if it is associated (this will be especially true in the case of

orders in a number field, as we will see in a moment). The following result shows that

in some cases, it is sufficient to show that a subring is locally associated to show that

it is also associated.

Proposition 2.4.5. Let T be a commutative ring with unity, R ⊆ T a subring (with

unity) of T , and I := (R : T ). Also assume that I is a maximal T -ideal. Then if R

is a locally associated subring of T , it is also an associated subring of T .

Proof. Let t ∈ T . If t /∈ I, then I being maximal means that t is relatively prime to

I. Then since R is a locally associated subring of T , there is some u ∈ U(T ) such

that ut ∈ R. Otherwise, t ∈ I, in which case ut ∈ I ⊆ R for every u ∈ U(T ). Then

t ∈ R · U(T ), so R is an associated subring of T .
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We will now turn our attention to this property in orders of algebraic number

fields. In this context, we have the following well-known result found in [16] that

provided the original motivation for the definition of locally associated subrings.

Proposition 2.4.6. Let R be an order in a number field K with conductor ideal I.

Then there is an exact sequence

1 → U(R) → U(R) × U(R/I) → U(R/I) → Cl(R) → Cl(R) → 1.

Thus, the class numbers
∣∣Cl(R)

∣∣ and ∣∣∣Cl(R)
∣∣∣ are related as follows:

∣∣Cl(R)
∣∣ =

∣∣∣Cl(R)
∣∣∣

∣∣∣U(R/I)
∣∣∣∣∣∣U(R/I)

∣∣∣ · ∣∣∣U(R)/U(R)

∣∣∣ .
A detailed proof of this result can be found in [14]. It should be noted that

since R is an order in a number field, R/I, R/I, and Cl(R) are finite; from this result,

we also get that Cl(R) and U(R)/U(R) are finite as well. This exact sequence and

subsequent relation between the sizes of Cl(R) and Cl(R) have been used a great

deal, including in [4] and [20]; we will discuss this latter paper in greater detail in the

subsequent chapters.

From this result, we get the following equivalent definitions of locally associ-

ated subrings in the context of orders in a number field.

Corollary 2.4.7. Let R be an order in a number field K with conductor ideal I. The

following are equivalent:

1. R is a locally associated subring of R.

2.
∣∣∣U(R)/U(R)

∣∣∣ =
|U(R/I)|
|U(R/I)| .

3.
∣∣∣Cl(R)

∣∣∣ =
∣∣Cl(R)

∣∣.
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4. Cl(R) ∼= Cl(R).

For convenience, we will call any order satisfying these properties a locally associ-

ated order.

Proof. Recall from the proof of Proposition 2.4.2 that there is an injective homomor-

phism ϕ : U(R)/U(R) → U(R/I)/U(R/I). Furthermore, from the exact sequence above,

we know that there is a surjective homomorphism τ : Cl(R) → Cl(R). Since the

domains and codomains of ϕ and τ are all finite groups, ϕ and τ are isomorphisms

if and only if the orders of their domains and codomains are equal. Thus, 1 ⇐⇒ 2

and 3 ⇐⇒ 4. Finally, 2 ⇐⇒ 3 follows immediately from the proposition.

These equivalent characterizations of locally associated orders, particularly

condition 2, make this a useful type of order to study. First, the structures of orders in

a number field make this second condition particularly simple to check, as everything

involved is a well-understood finite quantity. Moreover, it gives us a way to count

units and determine how they must be distributed modulo I, which will be useful in

some of the arguments found in Chapter 4.

Finally, we present some concluding results on locally associated subrings,

which will, in part, describe how this property interacts with related subrings and

the other two properties discussed earlier.

Theorem 2.4.8. Let T be a commutative ring with unity, R ⊆ T a subring (with

unity) of T , and I = (R : T ). Also assume that I is contained in some unique

maximal T -ideal M . Then if R is a locally associated subring of T , any subring S of

T with R ⊆ S ⊆ T is also a locally associated subring of T . In particular, this will

hold when T is Dedekind and I = P n for some prime T -ideal P and n ∈ N.

Proof. First, let J = (S : T ) and note that I ⊆ J . Then if J is contained in a

maximal ideal N , I ⊆ J ⊆ N =⇒ N = M . Then either J = S = T , in which
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case S is trivially a locally associated subring of T , or J is also contained in only the

maximal ideal M . Then note that an element t ∈ T is relatively prime to I if and

only if it is relatively prime to J if and only if it lies outside M . Then for any t ∈ T ,

we know that there is some u ∈ U(T ) and r ∈ R relatively prime to I for which

t = ru. Then since r ∈ R ⊆ S and is also relatively prime to J , we have that S is

also a locally associated subring of T .

Unlike associated and ideal-preserving subrings, locally associated subrings

do not pass on their defining property in general to intermediate subrings, as the

following example illustrates.

Example 2.4.9. Let T = Q[x] and R = Z[x]. Note that I = (R : T ) = {0}, so R is

trivially a locally associated subring of T . Let S = Z + Zx + x2Q[x], and note that

R ⊆ S ⊆ T . However, recall from Example 2.4.3 that S is not a locally associated

subring of T .

Even though this property is not inherited by intermediate subrings in general,

we can use Corollary 2.4.7 to show that such inheritance does hold in the realm of

orders in a number field. First, we require the following lemmas, both from [4].

Lemma 2.4.10. Let R be an order in a number field K with conductor ideal I. Then

any R-ideal which is relatively prime to I is invertible. That is, if J is an ideal in R

such that J + I = R, then JJ−1 = R, with J−1 = {α ∈ K|αJ ⊆ R}.

Lemma 2.4.11. Let R be an order in a number field K and J an ideal in R. Then

every ideal class in Cl(R) contains a representative which is an integral ideal of R that

is relatively prime to J . That is, for any invertible A ∈ Inv(R), there exists α ∈ K

such that αA ⊆ R and αA + J = R.
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Theorem 2.4.12. Let R be an order in a number field K with conductor ideal I, and

let S be an intermediate order, R ⊆ S ⊆ R. Then the mapping ϕ : Cl(R) → Cl(S)

such that ϕ([J ]) = [JS] is a surjective homomorphism.

Proof. First, note that ϕ is well-defined. If [J1] = [J2] for two invertible fractional

R-ideals J1 and J2, then J1 = αJ2 for some α ∈ K. Thus, J1S = αJ2S, so ϕ([J1]) =

[J1S] = [J2S] = ϕ([J2]). Furthermore, ϕ is a homomorphism, since for any invertible

fractional R-ideals J1 and J2, ϕ([J1J2]) = [J1J2S] = [J1S][J2S] = ϕ([J1])ϕ([J2]). All

that remains to show is that ϕ is surjective.

Let [A] ∈ Cl(S). Since I ⊆ S, we can use the second lemma above to assume

without loss of generality that A is an integral ideal of S which is relatively prime

to I. Then let J = R ∩ A. Since A is relatively prime to I, we know that there is

some α ∈ A and β ∈ I such that α + β = 1. Then α = 1 − β ∈ R, so in fact α ∈ J .

Then J is relatively prime to I as an R-ideal. The first lemma above tells us that

J ∈ Inv(R). Moreover, note the following:

A = AR = A(J + I) = AJ + AI ⊆ JS ⊆ A.

Then A = JS, so ϕ([J ]) = [JS] = [A]. Thus, ϕ is a surjective homomorphism.

Corollary 2.4.13. Let R be a locally associated order in a number field K. Then if

S is an intermediate order to R, i.e. R ⊆ S ⊆ R, S is also locally associated.

Proof. By Corollary 2.4.7, we know that since R is locally associated,
∣∣Cl(R)

∣∣ =∣∣∣Cl(R)
∣∣∣. By the theorem,

∣∣Cl(R)
∣∣ ≥ ∣∣Cl(S)

∣∣; by Proposition 2.4.6,
∣∣Cl(S)

∣∣ ≥ ∣∣∣Cl(R)
∣∣∣.

Then
∣∣Cl(S)

∣∣ ≥ ∣∣∣Cl(R)
∣∣∣ =

∣∣Cl(R)
∣∣ ≥ ∣∣Cl(S)

∣∣, so
∣∣Cl(S)

∣∣ =
∣∣∣Cl(R)

∣∣∣. Then again using

Corollary 2.4.7, we have that S is locally associated.

Recall that in the case of orders in a number field, any associated order is also
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locally associated. An important question to ask, then, is how far locally associated

orders are from being associated; in other words, what additional properties must be

present to conclude that a locally associated order is associated. While this question

does not seem to have a simple answer in general, when the conductor ideal I of

the order R is radical, this question is much more manageable. As we will see in

the following chapter, orders with radical conductor ideal are an important subclass

when studying elasticity.

Theorem 2.4.14. Let R be an order in a number field K with radical conductor ideal

I. Then R is an associated order if and only if the following hold:

1. R is locally associated;

2. For any R-ideals J1 and J2 such that I = J1J2, (R + J1) ∩ (R + J2) = R.

Proof. We have already seen throughout this chapter that the forward direction holds.

What remains to show is that if R is a locally associated order and (R+J1)∩(R+J2) =

R for R-ideals J1 and J2 such that I = J1J2, then R is associated. To show this

direction, let t ∈ R and define J1 := tR + I and J2 = IJ−1
1 . Note that since I

is radical, t is relatively prime to J2. By prime avoidance, there also exists some

s ∈ J2 which is relatively prime to J1 (i.e. is not contained in any of the prime ideals

dividing J1). Then note that t + s is not contained in any prime ideals containing

I, i.e. t + s is relatively prime to I. Then since R is locally associated, there is

some u ∈ U(R) such that (t + s)u = r ∈ R. Then tu = r − su ∈ R + J2, and so

tu ∈ J1 ∩ (R + J2) ⊆ (R + J1) ∩ (R + J2) = R. Then R is an associated order.

From this result and Theorem 2.3.3, we immediately get the following corollary.
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Corollary 2.4.15. Let R be an order in a number field K with radical conductor

ideal I. Then R is an associated order if and only if it is both locally associated and

ideal-preserving.
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Chapter 3

Elasticity of Orders in a Number

Field and Their Power Series Rings

As in the previous chapter, we begin by recalling Theorem 1.3.66 from Halter-

Koch [10].

Theorem 1.3.66. Let d ∈ Z be squarefree and K = Q[
√
d] the quadratic number

field defined by d. Let R = Z[nα] be the index n ∈ N\{1} order in K, where α =
√
d

if d ≡ 2, 3 (mod 4) or α = 1+
√
d

2
if d ≡ 1 (mod 4) so that R = Z[α]. Then R is an

HFD if and only if the following properties hold:

1. R is an HFD;

2. R is an associated order, i.e. R = R · U(R);

3. n = p for some prime p ∈ N, or n = 2p for some odd prime p ∈ N.

This theorem gives a full characterization of half-factorial orders in quadratic

number fields. From this result, some natural questions may arise. For instance,

recall that a half-factorial domain is really just an atomic domain with elasticity 1;
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are there similar characterizations for orders with other elasticities? One might also

ask what happens when R is allowed to be an order in a general number ring (not just

quadratic). The results presented in this section will serve to address these questions.

Furthermore, they will examine how these results can be extended to the power series

ring R[[x]] over such orders R.

Throughout this section, one might want to keep in mind previous work de-

scribing how HFDs pass (or more accurately, fail to pass) their elasticity to extension

rings in general. For instance, [7] and [6] demonstrate that for a general HFD R, any

of R[x], R[[x]], R, or R′ can fail to be an HFD. However, number rings are much nicer

in this sense. It has been shown that if R is a ring of algebraic integers which is an

HFD, then all of R[x] ([1]), R[[x]] ([14]), R, and R′ (both trivial) must be HFDs as

well. In the case of a half-factorial order R in a number field, R and R′ (which are

both equal to the corresponding number ring) must be HFDs as well, though R[x]

need not be [1]. The results of this section serve to expand these ideas into larger

elasticities as well as tackle the question of whether R[[x]] must be an HFD when R

is a half-factorial order in a number field.

It is worth noting here that recent work, found in [20], has provided a charac-

terization of HFD orders in a general number field. We will state this result later in

this chapter. As we will discuss later, this result is important and may prove to be

quite useful moving forward in this field. Although the original results presented in

this section will be closely related to those in [20], neither this dissertation nor the

paper in question will imply the results of the other.
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3.1 Elasticity of an Order

We begin with considering the elasticity of an order R in a number field K. In

particular, we are interested when the elasticity of R will be equal to the elasticity of

the ring of integers R, since the elasticity of R is already well understood. Throughout

this discussion, we will be using the concepts of associated, ideal-preserving, and

locally associated orders as developed in the previous chapter. To start, we need a

few lemmas leading toward an inequality which will hold in general and will serve as

a jumping-off point for the following discussion. The first comes from [4].

Lemma 3.1.1. Let R be an order in a number field with conductor ideal I. Any

R-ideal relatively prime to I has unique factorization into prime R-ideals relatively

prime to I. Moreover, all but finitely many prime ideals in R are relatively prime to

I.

The next lemma comes from [19] and generalizes a result we have already seen

for number rings.

Lemma 3.1.2. Let R be an order in a number field. Every ideal class in Cl(R)

contains infinitely many prime ideals.

One will note that together, these lemmas tell us that each ideal class in Cl(R)

actually contains infinitely many prime ideals which are relatively prime to I. The

last lemma we need relates the Davenport constants of the ideal class groups for two

orders in a number field.

Lemma 3.1.3. Let R and T be orders in the same number field K with R ⊆ T . Then

D(Cl(R)) ≥ D(Cl(T )).

Proof. Recall by Theorem 2.4.12 that there exists a surjective homomorphism τ from

Cl(R) onto Cl(T ). Then let k = D(Cl(T )) and {g1, . . . , gk} ⊆ Cl(T ) be a 0-sequence
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with no proper 0-subsequence. Since τ is surjective, there must exist hi ∈ Cl(R) such

that τ(hi) = gi for each 1 ≤ i ≤ k. Since {g1, . . . , gk} does not have any proper

0-subsequence, neither can the sequence {h1, . . . , hk} ⊆ Cl(R). If {h1, . . . , hk} is a

0-sequence, then Cl(R) has a 0-sequence of length k with no proper 0-subsequence.

If not, then note that (using additive notation) {h1, . . . , hk,−(h1 + · · · + hk)} is a 0-

sequence of length k+1 in Cl(R). Moreover, it is clear that this 0-sequence cannot have

any proper 0-subsequence, since this would force {h1, . . . , hk} to have a 0-subsequence.

Then in this case, Cl(R) has a 0-sequence of length k+1 with no proper 0-subsequence.

Since D(Cl(R)) gives the length of the longest 0-sequence in Cl(R) with no proper

0-subsequence, D(Cl(R)) ≥ k = D(Cl(T )).

In particular, this result will be useful to us in the case that T = R. The

following theorem displays this utility.

Theorem 3.1.4. Let R be an order in a number field. Then ρ(R) ≥ ρ(R).

Proof. First, note that if ρ(R) = 1, then the result is trivial. Otherwise, recall from

Proposition 1.3.56 that ρ(R) = D(Cl(R))
2

.

Now let k = D(Cl(R)) and {[I1], . . . , [Ik]} be a 0-sequence in Cl(R) with

no 0-subsequence. As we saw from the above lemmas, we can now pick a prime

ideal Pi ∈ [Ii] relatively prime to the conductor ideal I of R for each 1 ≤ i ≤ k.

Furthermore, we can pick a prime ideal Qi ∈ [Ii]
−1 relatively prime to I for each

1 ≤ i ≤ k. Then let α ∈ R be a generator of the principal ideal P1 . . . Pk; β ∈ R

be a generator of the principal ideal Q1 . . . Qk; and for each 1 ≤ i ≤ k, γi ∈ R be

a generator of the principal ideal PiQi. Also assume without loss of generality that

αβ = γ1 . . . γk (if not, these elements are associates; we can absorb the unit into one

of the generators). Now note that α, β, and each γi are relatively prime to I; then

any divisor of these elements must also be relatively prime to I.
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Suppose α = ab for some a, b ∈ R. Then the principal ideals aR and bR are

relatively prime to I and must thus factor uniquely into products of prime R-ideals

relatively prime to I by Lemma 3.1.1. Since αR = P1 . . . Pk = aR · bR, we must

have (after possible reordering) that aR = P1 . . . Pi and bR = Pi+1 . . . Pk for some

1 ≤ i ≤ k. Then {[P1], . . . , [Pi]} is a 0-subsequence of {[I1], . . . , [Ik]} in Cl(R). Then

since this 0-sequence has no proper 0-subsequence, either aR = R, an empty product

of prime ideals, or aR = αR. In either case, either a or b must be a unit, so α is

irreducible. By similar arguments, β and each γi must be irreducible.

We now have αβ = γ1 . . . γk, with α, β, and each γi an irreducible element of

R. Then by definition of elasticity and using Lemma 3.1.3, ρ(R) ≥ k
2

= D(Cl(R))
2

≥
D(Cl(R))

2
= ρ(R).

This result tells us that in general, factorization will only get “worse” when

passing from a ring of algebraic integers to an order contained within. In particular,

it tells us that if an order in a number field is half-factorial, i.e. has elasticity one,

then so does its integral closure. However, it does nothing to tell us about the reverse

inequality. The following results will serve to show under what circumstances these

elasticities may actually be equal. To start, we need the following result regarding

the distribution of units in an associated order.

Theorem 3.1.5. Let R be an associated order in a number field K with conductor

ideal I. Let J1, J2 be R-ideals containing I such that J1, J2, and J3 = I(J1J2)
−1 are

pairwise relatively prime. Denote R1 = R + IJ−1
1 = R + J2J3, R2 = R + IJ−1

2 =

R + J1J3, and R3 = R + J3. Then U(R3) = U(R1) · U(R2), i.e. for every unit

u ∈ U(R3), there exist u1 ∈ U(R1) and u2 ∈ U(R2) such that u = u1u2.

Proof. First, note that from their definitions, R1 and R2 are both contained in R3.

Then U(R1) · U(R2) ⊆ U(R3) trivially. We must show the reverse inclusion. In
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order to show this, we will first simplify the problem. To start, note that if every

coset of U(R3)/U(R) contains an element of U(R1) · U(R2), then we are done. This is

because then every element u ∈ U(R3) can be written as u = u1u2v, with u1 ∈ U(R1),

u2 ∈ U(R2), and v ∈ U(R). Since R ⊆ R2, then u = u1(u2v) ∈ U(R1) · U(R2). Then

it will suffice to show the result modulo U(R), i.e.

U(R3)/U(R) = U(R1)/U(R) · U(R2)/U(R).

Now suppose that we have u1, v1 ∈ U(R1) and u2, v2 ∈ U(R2) such that u1u2 ≡

v1v2 (mod U(R)), i.e. there exists some w ∈ U(R) such that u1u2 = v1v2w. Then

u1v
−1
1 = u−1

2 v2w, with the left-hand side of this identity lying in U(R1) and the right-

hand side lying in U(R2). Then in fact, both sides lie in U(R1)∩U(R2). Since both R1

and R2 are integral over R, and R1∩R2 = R by Theorem 2.3.3, U(R1)∩U(R2) = U(R),

and so u1 ≡ v1 (mod U(R)) and u2 ≡ v2 (mod U(R)). This means that for each

distinct choice of cosets u1U(R) ∈ U(R1)/U(R) and u2U(R) ∈ U(R2)/U(R), we will get

a unique product coset u1u2U(R) ∈ U(R3)/U(R). Then since U(Ri)/U(R) is finite for

i = 1, 2, 3, it will suffice to show that

∣∣∣U(R3)/U(R)

∣∣∣ =
∣∣∣U(R1)/U(R)

∣∣∣ · ∣∣∣U(R2)/U(R)

∣∣∣.
Now recall from Corollary 2.4.4 that R, R1, R2, and R3 are all locally associated

orders. In particular, this means that

∣∣∣U(R)/U(R)

∣∣∣ =

∣∣∣U(R/I)
∣∣∣∣∣∣U(R/I)
∣∣∣ ,

and similarly for R1, R2, and R3. We will make extensive use of this property.
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Note the following:

∣∣∣U(R3)/U(R)

∣∣∣ =

∣∣∣U(R)/U(R)

∣∣∣∣∣∣U(R)/U(R3)

∣∣∣ =

∣∣∣U(R/I)
∣∣∣ · ∣∣∣U(R3/J3)

∣∣∣∣∣∣U(R/J3)
∣∣∣ · ∣∣∣U(R/I)

∣∣∣
=

∣∣∣U(R/J1)
∣∣∣ · ∣∣∣U(R/J2)

∣∣∣ · ∣∣∣U(R/J3)
∣∣∣ · ∣∣∣U(R3/J3)

∣∣∣∣∣∣U(R/J3)
∣∣∣ · ∣∣∣U(R/I)

∣∣∣
=

∣∣∣U(R/J1)
∣∣∣ · ∣∣∣U(R/J2)

∣∣∣ · ∣∣∣U(R3/J3)
∣∣∣∣∣∣U(R/I)

∣∣∣ .

The identities in the first line come from a simple quotient group property and the fact

that R and R3 are locally associated orders. The second line follows from applying

the Chinese Remainder Theorem to R/I. The final line comes from canceling out the

common factor of
∣∣∣U(R/J3)

∣∣∣. By applying largely the same process to R1 and R2, we

get:

∣∣∣U(R1)/U(R)

∣∣∣ =

∣∣∣U(R/J1)
∣∣∣ · ∣∣∣U(R1/IJ−1

1 )
∣∣∣∣∣∣U(R/I)

∣∣∣ ,

∣∣∣U(R2)/U(R)

∣∣∣ =

∣∣∣U(R/J2)
∣∣∣ · ∣∣∣U(R2/IJ−1

2 )
∣∣∣∣∣∣U(R/I)

∣∣∣ .

Finally, we can multiply these last two identities and simplify to obtain:

∣∣∣U(R1/U(R))
∣∣∣ · ∣∣∣U(R2/U(R))

∣∣∣ =
∣∣∣U(R3)/U(R)

∣∣∣ ·
∣∣∣U(R1/IJ−1

1 )
∣∣∣ · ∣∣∣U(R2/IJ−1

2 )
∣∣∣∣∣∣U(R3/J3)

∣∣∣ · ∣∣∣U(R/I)
∣∣∣ .

Note that this gives us the desired identity, but with an additional fraction multiplied

on the right-hand side. To show the desired identity, we simply need to show that
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this fraction is equal to 1. To do so, note from Theorem 2.2.8 that

R1/IJ−1
1

∼= R+ J2/J2 × R3/J3,

R2/IJ−1
2

∼= R+ J1/J1 × R3/J3,

R/I ∼= R+ J1/J1 × R+ J2/J2 × R3/J3.

Thus,

R1/IJ−1
1 × R2/IJ−1

2
∼= R/I × R3/J3,

so in particular,

∣∣∣U(R1/IJ−1
1 )

∣∣∣ · ∣∣∣U(R2/IJ−1
2 )

∣∣∣ =
∣∣∣U(R/I)

∣∣∣ · ∣∣∣U(R3/J3)
∣∣∣

Then this gives the desired identity above, completing the proof.

With this result, we can now consider how factorization in R will influence

factorization in R. For the arguments presented here, we will need to assume that

R has a radical conductor ideal. Among other things, this assumption will allow us

to apply the above theorem quite frequently, since it will be much easier to produce

relatively prime ideals J1, J2, and J3 as in the statement of the theorem. We will

discuss this assumption more following the presentation of the following results.

Theorem 3.1.6. Let R be an associated order in a number field K with radical

conductor ideal I. Then any irreducible element in R remains irreducible in R.

Proof. Let α be an irreducible element in R, and write α = βγ for some β, γ ∈ R.

To show that α remains irreducible in R, we want to show that either β or γ must
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be a unit in R. Since R is an associated order, we can pick some u, v ∈ U(R) such

that uβ, vγ ∈ R. We will use this notation throughout the proof.

First, assume that α is relatively prime to I, i.e. α + I ∈ U(R/I). Then

uv + I = ((uβ)(vγ) + I)(α+ I)−1 ∈ R/I. Then uv ∈ U(R), so (uv)α is an associate of

α in R and thus must also be irreducible in R. Then either uβ or vγ must be a unit

in R, and thus either β or γ must be a unit in R. Then α remains irreducible in R.

Now removing the assumption that α is relatively prime to I, write I = J1J2J3

as follows: let J1 = βR + I, the minimal divisor of I which contains β; let J2 =

γR + IJ−1
1 , the minimal divisor of I which contains γ and is relatively prime to J1;

and let J3 = I(J1J2)
−1. Note that as I is radical, J1, J2, and J3 are pairwise relatively

prime. As in the previous theorem, we will write R1 = R + IJ−1
1 , R2 = R + IJ−1

2 ,

and R3 = R + J3. Then note that α is relatively prime to J3. By the previous case,

this tells us that uv ∈ U(R3). We can now use the previous theorem to conclude

that there must exist w1 ∈ U(R1) and w2 ∈ U(R2) such that (uv)−1 = w1w2. Then

α = (w1w2)(uv)α = (w1uβ)(w2vγ). Now note that w1uβ ∈ R1 ∩ J1 ⊆ R and w2vγ ∈

R2 ∩ J2 ⊆ R. Then α = (w1uβ)(w2vγ) is a factorization of α into two elements of R,

so either w1uβ or w2vγ is a unit in R. Thus, either β or γ must be a unit in R, so α

remains irreducible in R.

We can now build on this result to relate the elasticity of R to that of R. The

definition of elasticity can be found in Definition 1.2.40.

Theorem 3.1.7. Let R be an associated order in a number field K with radical

conductor ideal I. Then for any nonzero, nonunit α ∈ R, ρR(α) = ρR(α). Moreover,

ρ(R) = ρ(R).

Proof. By the previous theorem, any irreducible in R will remain irreducible in R.

Then for any nonzero, nonunit α ∈ R, any factorization of α into irreducibles in R is
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also a factorization of α into irreducibles in R. Then ℓR(α) ⊆ ℓR(α), so ρR(α) ≤ ρR(α)

for every nonzero, nonunit α ∈ R. Note that since R ⊆ R, this also gives ρ(R) ≤ ρ(R).

By Theorem 3.1.4, ρ(R) = ρ(R).

Now let α = π1 . . . πk be a factorization of α ∈ R into irreducibles πi ∈ Irr(R).

As in the proof of the previous theorem, we can find u1, . . . , uk ∈ U(R) such that

uiπi ∈ R for each 1 ≤ i ≤ k. Now define ideals J1 := π1R + I, the minimal ideal

dividing I which contains π1, and for 2 ≤ i ≤ k, define Ji := πiR + I(J1 . . . Ji−1)
−1,

the minimal ideal dividing I which contains πi and is relatively prime to each Jj for

1 ≤ j ≤ i − 1. Finally, define Jk+1 := I(J1 . . . Jk)−1 so that I = J1 . . . Jk+1. Since I

is radical, these Ji’s are pairwise relatively prime. For ease of notation, we will also

define Rk+1 := R + Jk+1, and for 1 ≤ i ≤ k, Ri := R + IJ−1
i . As seen in the previous

proof, since α is relatively prime to Jk+1, u1 . . . uk ∈ U(Rk+1). Furthermore, we can

repeatedly apply Theorem 3.1.5 to get

U(Rk+1) = U(R1) . . . U(Rk).

Then there exist vi ∈ U(Ri) for 1 ≤ i ≤ k such that (u1 . . . uk)−1 = v1 . . . vk, and so

α = (v1u1π1) . . . (vkukπk). Each viuiπi ∈ Ri ∩Ji ⊆ R, so this is a factorization of α in

R. Furthermore, each viuiπi is an associate of πi in R, and so is also irreducible in R

(and must thus be irreducible in R). Then any irreducible factorization α = π1 . . . πk

in R gives rise in this way to an irreducible factorization α = (v1u1π1) . . . (vkukπk)

in R of the same length. Then for any nonzero, nonunit α ∈ R, ℓR(α) ⊆ ℓR(α), so

ρR(α) ≤ ρR(α). Thus, ρR(α) = ρR(α).

From these results, we know that any associated order in a number field K

with radical conductor ideal will inherit its elasticity from its integral closure (the full

ring of integers in K). In particular, this gives us a large class of half-factorial orders:

87



associated orders with radical conductor ideal whose integral closures are HFDs. For

the proofs presented here, one will note that the assumption that the conductor ideal

is radical is a vital component. However, this condition is not necessary for an order

to be an HFD. As we will discuss in the next chapter, examples exist of half-factorial

orders with non-radical conductor ideal. One such example is presented in [20]; work

independently producing another example can be found in the next chapter. It is

worth noting, however, that it is not enough just to assume that R is an associated

order. Indeed, it is not particularly difficult to find examples of an associated order

which does not have the same elasticity as its integral closure, though any such order

must have non-radical conductor ideal.

Example 3.1.8. Let R = Z[9
√

2]. Note that R = Z[
√

2] is a UFD (and thus an

HFD). Furthermore, one can verify that R is an associated order (in particular, the

characterization given in Proposition 2.2.7 can be checked in finite steps). However,

note that I = (R : R) = 9R = (3R)2 is a non-radical conductor ideal. Moreover,

by Theorem 1.3.66, R is not an HFD, i.e. its elasticity does not match that of its

integral closure.

Several additional examples of such orders in number fields have been found.

These examples, along with methods by which such examples may be produced, can

be found in the next chapter.

3.2 Extending to Power Series

In the previous section, we discussed how to relate the elasticity of an order

R in a number field to that of its integral closure. In particular, we say that these

elasticities agree when R is an associated order with radical conductor ideal. In this
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section, we will see how these results may be extended to study the elasticity of the

ring of formal power series R[[x]]. First, it will help to consider a similar result to

Theorem 3.1.5, which we will do in two parts.

Lemma 3.2.1. Let R be an associated order in a number field K. Let I be the

conductor ideal of R and J1, J2 be relatively prime R-ideals such that I = J1J2.

Denote R1 = R + J1 and R2 = R + J2. Then U(R[[x]]) = U(R1[[x]]) · U(R2[[x]]).

Proof. Recall that a power series over a commutative ring with unity T is a unit if

and only if its constant term is a unit. Then an arbitrary element of U(R[[x]]) looks

like u(x) = u0 + b1x + b2x
2 + . . . , with bi ∈ R for i ∈ N and u0 ∈ U(R). To prove

the lemma, we would like to construct v1(x) = u1 + c1x+ c2x
2 + · · · ∈ U(R1[[x]]) and

v2(x) = u2 + d1x + d2x
2 + · · · ∈ U(R2[[x]]) such that u = v1v2. By Theorem 3.1.5,

we know that we can pick constant terms u1 ∈ U(R1) and u2 ∈ U(R2) such that

u0 = u1u2. Then we need to find ci ∈ R1 and di ∈ R2 for i ≥ 1 such that the equation

bk = cku2 +
k−1∑
i=1

cidk−i + dku1

is satisfied for each k ≥ 1. Note that this equation can equivalently be stated as

cku2 + dku1 = bk −
k−1∑
i=1

cidk−i.

If we assume for some k ≥ 1 that we have constructed ci, di for 1 ≤ i < k such that

each previous equation is satisfied, this becomes a problem of finding ck ∈ R1 and

dk ∈ R2 such that cku2 + dku1 is equal to some fixed element of R. Then note that

R ⊇ u2R1 + u1R2 ⊇ u2J1 + u1J2 = J1 + J2 = R. Then finding such ck and dk is

possible for every k ≥ 1 (in fact, we could select ck ∈ J1 and dk ∈ J2 if we so wished),

so we can indeed construct v1 ∈ U(R1[[x]]) and v2 ∈ U(R2[[x]]) such that u = v1v2.
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Then U(R[[x]]) = U(R1[[x]]) · U(R2[[x]]).

Theorem 3.2.2. Let R be an associated order in a number field K with conductor

ideal I. Let J1, J2 be R-ideals containing I such that J1, J2, and J3 = I(J1J2)
−1 are

pairwise relatively prime. Denote R1 = R + IJ−1
1 , R2 = R + IJ−1

2 , and R3 = R + J3.

Then U(R3[[x]]) = U(R1[[x]]) · U(R2[[x]]).

Proof. Let u ∈ U(R3[[x]]). Since this is an element in U(R[[x]]), we can use the

lemma to construct v1 ∈ U((R+J1)[[x]]) and v2 ∈ U((R+J2)[[x]]) such that u = v1v2

(the lemma would actually give v2 ∈ U((R+J2J3)[[x]]) ⊆ U((R+J2)[[x]]), but we do

not need this added specificity). Now note that since J1[[x]], J2[[x]], and J3[[x]] are

pairwise relatively prime ideals of R[[x]], we can use the Chinese Remainder Theorem

to decompose:

R/I[[x]] ∼= R/J1[[x]] × R/J2[[x]] × R/J3[[x]].

Then we will pick some coset representative w ∈ R[[x]] of the congruence class modulo

I[[x]] such that w ≡ 1 (mod J1[[x]]), w ≡ 1 (mod J2[[x]]), and w ≡ v−1
1 (mod J3[[x]]).

Note that although w itself is not necessarily a unit in R[[x]], its constant term, say w0,

is congruent to a unit modulo J1, J2, and J3, so w0 + I ∈ U(R/I). Since R is a locally

associated order, there exists r + I ∈ U(R/I) and β ∈ I such that w0r + β ∈ U(R).

Define w′ = wr + β ∈ U(R[[x]]) and s ∈ R such that s + I = (r + I)−1 ∈ U(R/I).

Now note that u = v1v2 = (v1w
′)(v2w

′−1). Moreover:

v1w
′ ≡ v1(wr + β) ≡ v1r (mod J1[[x]]) =⇒ v1w

′ ∈ (R + J1)[[x]];

v1w
′ ≡ v1(wr + β) ≡ v1v

−1
1 r ≡ r (mod J3[[x]]) =⇒ v1w

′ ∈ R3[[x]];

v2w
′−1 ≡ v2(wr + β)−1 ≡ v2s (mod J2[[x]]) =⇒ v2w

′−1 ∈ (R + J2)[[x]];
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v2w
′−1 ≡ v2(wr + β)−1 ≡ v2v1s ≡ us (mod J3[[x]]) =⇒ v2w

′−1 ∈ R3[[x]].

Then since R is an ideal-preserving order and J1, J2, and J3 are relatively prime,

v1w
′ ∈ (R + J1)[[x]] ∩R3[[x]] = R2[[x]] and v2w

′−1 ∈ (R + J2)[[x]] ∩R3[[x]] = R1[[x]].

Furthermore, since v1, v2, and w′ are all units in R[[x]], then v1w
′ ∈ U(R2[[x]]) and

v2w
′−1 ∈ U(R1[[x]]), completing the proof.

This result shows us that, when R is an associated order, we can “break

down” units in the power series rings over intermediate orders just like we could in

the intermediate orders themselves. As before, this result will be easiest to use when

the conductor ideal I is radical.

Now working toward an analogous elasticity result to Theorem 3.1.7 for the

ring of formal power series R[[x]], we first take note the following important lemma

dealing with associated subrings.

Lemma 3.2.3. Let R be an associated order in a number field K with radical con-

ductor ideal I. Then R[[x]] is an associated subring of R[[x]].

Proof. Let a(x) = a0 + a1x + a2x
2 + · · · ∈ R[[x]]. We want to show that there exist

r(x) = r0 + r1x+ r2x
2 + · · · ∈ R[[x]] and u(x) = u0 + b1x+ b2x

2 + · · · ∈ U(R[[x]]) such

that a = ru. First, note that since R is an associated order, we can find constant

terms r0 and u0 such that a0 = r0u0.

Working toward an inductive argument, we will start by assuming that I is

prime. If a ∈ I[[x]], then we could choose r = a and u = 1. Otherwise, a /∈ I[[x]]; for

now, we will also assume that a0 /∈ I. Since a0 = r0u0, this means that r0 /∈ I; since

I is prime, r0 + I ∈ U(R/I). We now need to construct ri ∈ R and bi ∈ R for i ∈ N
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such that for each k ∈ N,

ak = r0bk +
k−1∑
i=1

ribk−i + rku0;

equivalently,

r0bk + rku0 = ak −
k−1∑
i=1

ribk−i.

Assume that for some k ∈ N, we have selected ri and bi for every 1 ≤ i < k such that

all previous equations are satisfied. Then note that R ⊇ r0R + u0R ⊇ r0R + I = R.

Then selecting rk ∈ R and bk ∈ R to satisfy the kth such equation is always possible,

so we can construct r ∈ R[[x]] and u ∈ U(R[[x]]) such that a = ru.

Now assume that I is prime and a /∈ I[[x]], but a0 ∈ I. Since a /∈ I[[x]], there

is some minimal j ∈ N such that aj /∈ I (i.e. ai ∈ I for all 0 ≤ i < j). Then write

a(x) = (a0 + a1x + · · · + aj−1x
j−1) + xj(aj + aj+1x + . . . ) = b + cxj, with b ∈ I[x]

and c ∈ R[[x]] having constant term aj /∈ I. By the previous case, there must exist

r ∈ R[[x]] and u ∈ U(R[[x]]) such that c = ru. Then a = b + cxj = (bu−1 + rxj)u,

with bu−1 + rxj ∈ R[[x]] and u ∈ U(R[[x]]). This completes the case when I is prime.

Now assume that I is not prime (but is still radical), and for the inductive

argument, assume that for every R-ideal J properly dividing I, (R + J)[[x]] is an

associated subring of R[[x]] (note that any such R + J is an associated order with

radical conductor ideal J). Since I is not prime, we can write I = J1J2, with neither

J1 nor J2 equal to I; since I is radical, J1 and J2 are relatively prime. For ease

of notation, denote R1 = R + J1 and R2 = R + J2. By the inductive hypothesis,

we can select r1 ∈ R1[[x]] and u ∈ U(R[[x]]) such that a = r1u. Furthermore, we

can select r2 ∈ R2[[x]] and v ∈ U(R[[x]]) such that r1 = r2v. Finally, by Lemma

3.2.1, we can select w1 ∈ U(R1[[x]]) and w2 ∈ U(R2[[x]]) such that v = w1w2. Then
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note that r1 = r2v = r2w1w2 =⇒ r1w
−1
1 = r2w2. Since the left-hand side of this

equality lies in R1[[x]] and the right-hand side lies in R2[[x]], both must actually lie

in R1[[x]] ∩R2[[x]] = R[[x]]. Then a = r1u = r2vu = (r2w2)(w1u) ∈ R[[x]] · U(R[[x]]).

Then R[[x]] is an associated subring of R[[x]].

With these tools in hand, we are now ready to tackle the questions of irre-

ducibility and elasticity in R[[x]].

Theorem 3.2.4. Let R be an associated order in a number field K with radical

conductor ideal I. Then any irreducible element in R[[x]] remains irreducible in R[[x]].

Proof. Let f be an irreducible power series in R[[x]], and write f = gh for g, h ∈ R[[x]].

To show that f remains irreducible in R[[x]], we want to show that either g or h is

a unit. The previous theorem tells us that R[[x]] is an associated subring of R[[x]],

so there exist u, v ∈ U(R[[x]]) such that ug, vh ∈ R[[x]]. We will use this notation

throughout the rest of the proof.

First, we will consider the case when f /∈ I[[x]] and I is a prime R-ideal. We

write uv = u0 + b1x + b2x
2 + · · · ∈ U(R[[x]]), f = r0 + r1x + r2x

2 + · · · ∈ R[[x]],

and (uv)f = a0 + a1x + a2x
2 + · · · ∈ R[[x]] (note that (uv)f must lie in R[[x]] as the

product of ug and vh, both of which lie in R[[x]]). Since f /∈ I[[x]], there is some

minimal n ∈ N0 such that rn /∈ I (i.e. ri ∈ I for 0 ≤ i < n). Then

an = u0rn +
n∑

i=1

birn−i =⇒ u0rn = an −
n∑

i=1

birn−i.

Note that an ∈ R and rn−i ∈ I for 1 ≤ i ≤ n, so the right-hand side of this equation

lies in R. Furthermore, since I is prime and rn /∈ I, rn + I ∈ U(R/I), so

u0 + I =

an −
n∑

i=1

birn−i + I

 (rn + I)−1 ∈ R/I.
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then u0 ∈ U(R).

Now for some k > n, we will assume that u0 ∈ U(R) and bi ∈ R for 1 ≤ i <

k − n. Similarly to before, we write

ak = u0rk +
k−n−1∑
i=1

birk−i + bk−nrn +
k∑

i=k−n+1

birk−i;

rearranging, this gives

bk−nrn = ak − u0rk −
k−n−1∑
i=1

birk−i −
k∑

i=k−n+1

birk−i.

On the right-hand side of this equation, note that ak ∈ R, u0rk ∈ R, birk−i ∈ R for

1 ≤ i ≤ k − n − 1, and rk−i ∈ I for i ≥ k − n + 1. Then the right-hand side of this

equation is in R, so we can proceed as before to multiply by the inverse of rn modulo

I to get

bk−n + I =

ak − u0rk −
k−n−1∑
i=1

birk−i −
k∑

i=k−n+1

birk−i + I

 (rn + I)−1 ∈ R/I.

Then bi ∈ R for every i ∈ N, so uv ∈ U(R[[x]]). Then uvf is an associate of f in

R[[x]], and must thus remain irreducible in R[[x]]. Therefore, either ug or vh must be

a unit in R[[x]], meaning that either g or h must be a unit in R[[x]]. Thus, f remains

irreducible in R[[x]].

Now removing the assumption that I is prime, we will split I into relatively

prime factors much as in the proof of Theorem 3.1.6: let J1 be the minimal divisor

of I such that J1[[x]] contains g; let J2 be the minimal divisor of IJ−1
1 such that

J2[[x]] contains h; and let J3 = I(J1J2)
−1. As before, we will denote R1 = R + IJ−1

1 ,

R2 = R + IJ−1
2 , and R3 = R + J3. Since P [[x]] is a prime R[[x]]-ideal for any prime
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ideal P , note that α is not contained in P [[x]] for any prime divisor P of J3. By the

previous case, this tells us that uv ∈ (R + P )[[x]] for every prime divisor P of J3,

and thus uv ∈
⋂

P |J3(R + P )[[x]] = R3[[x]]. Then since uv ∈ U(R3[[x]]), we can use

Theorem 3.2.2 to conclude that there must exist w1 ∈ U(R1[[x]]) and w2 ∈ U(R2[[x]])

such that (uv)−1 = w1w2. Then f = (uv)−1(ug)(vh) = (w1ug)(w2vh), with w1ug ∈

R1[[x]]∩J1[[x]] ⊆ R[[x]] and w2vh ∈ R2[[x]]∩J2[[x]] ⊆ R[[x]]. Then f = (w1ug)(w2vh)

is a factorization of f in R[[x]], so either w1ug or w2vh is a unit in R[[x]]. Then either

g or h must be a unit in R[[x]], meaning that f is irreducible in R[[x]].

Theorem 3.2.5. Let R be an associated order in a number field K with radical

conductor ideal I. Then for any nonzero, nonunit f ∈ R[[x]], ρR[[x]](f) = ρR[[x]](f).

Moreover, ρ(R[[x]]) = ρ(R[[x]]).

Proof. By the previous theorem, any irreducible in R[[x]] remains irreducible in

R[[x]]. Then for any nonzero, nonunit f ∈ R[[x]], any factorization of f into R[[x]]-

irreducibles is also a factorization of f into R[[x]]-irreducibles. Then ℓR[[x]](f) ⊆

ℓR[[x]](f), so ρR[[x]](f) ≤ ρR[[x]](f) for every nonzero, nonunit f ∈ R[[x]]. Note that

this also gives ρ(R[[x]]) ≤ ρ(R[[x]]).

Now let f = g1 . . . gk be a factorization of some nonzero, nonunit f ∈ R[[x]]

into irreducibles gi ∈ Irr(R[[x]]). By Lemma 3.2.3, we can find u1, . . . , uk ∈ U(R[[x]])

such that uigi ∈ R[[x]] for every 1 ≤ i ≤ k. Now let J1 be the minimal divisor of

I such that J1[[x]] contains g1, and for 2 ≤ i ≤ k, let Ji be the minimal divisor

of I(J1 . . . Ji−1)
−1 such that Ji[[x]] contains gi. Finally, let Jk+1 = I(J1 . . . Jk)−1 so

that J1, . . . , Jk+1 are pairwise relatively prime ideals such that I = J1 . . . Jk+1 and

gi ∈ Ji[[x]] for 1 ≤ i ≤ k. For ease of notation, we will denote Rk+1 = R + Jk+1 and

Ri = R+ IJ−1
i for 1 ≤ i ≤ k. Then as in the proof of the previous theorem, since f is

not contained in P [[x]] for any prime R-ideal P dividing Jk+1, u1 . . . uk ∈ U(Rk+1[[x]]).
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By repeatedly applying Theorem 3.2.2, we have that

U(Rk+1[[x]]) = U(R1[[x]]) . . . U(Rk[[x]]).

Then there exist vi ∈ U(Ri[[x]]) for 1 ≤ i ≤ k such that (u1 . . . uk)−1 = v1 . . . vk.

Thus, f = (v1u1g1) . . . (vkukgk). Note that each viuigi ∈ Ri[[x]] ∩ Ji[[x]] ⊆ R[[x]];

furthermore, since each viuigi is an associate of gi ∈ Irr(R[[x]]), each of these ele-

ments is irreducible in R[[x]] (and thus also irreducible in R[[x]]). Then the irre-

ducible factorization f = g1 . . . gk in R[[x]] gave rise to an irreducible factorization

f = (v1u1g1) . . . (vkukgk) in R[[x]] of the same length. Then ℓR[[x]](f) ⊆ ℓR[[x]](f),

so ρR[[x]](f) ≤ ρR[[x]](f) for every nonzero, nonunit f ∈ R[[x]]. Thus, ρR[[x]](f) =

ρR[[x]](f).

All that remains to show is that ρ(R[[x]]) = ρ(R[[x]]). We already know that

ρ(R[[x]]) ≤ ρ(R[[x]]); furthermore, for any nonzero, nonunit f ∈ R[[x]], we know that

ρR[[x]](f) = ρR[[x]](f). Then if we can show that for any nonzero f ∈ R[[x]], there

exists g ∈ R[[x]] such that ρR[[x]](f) = ρR[[x]](g), this would complete the proof. To

do so, recall that by Lemma 3.2.3, there exists u ∈ U(R[[x]]) such that uf ∈ R[[x]].

Then since f and uf are associates in R[[x]], we know that ρR[[x]](uf) = ρR[[x]](f).

Furthermore, the previous argument tells us that since uf ∈ R[[x]], ρR[[x]](uf) =

ρR[[x]](uf). Then for any nonzero, nonunit f ∈ R[[x]], there is some g ∈ R[[x]] (in this

construction, g = uf) such that ρR[[x]](f) = ρR[[x]](g). Then ρ(R[[x]]) ≤ ρ(R[[x]]), so

ρ(R[[x]]) = ρ(R[[x]]).
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3.3 Half-Factorial Orders

Recall that a half-factorial domain is characterized by being an atomic domain

with elasticity 1, i.e. any two factorizations of the same nonzero, nonunit element

into irreducibles must have the same length. Then naturally, the results from this

chapter will apply very nicely to the half-factorial property for orders in a number

field. First, it will help to consider the recent characterization of half-factorial orders

in a number field from [20]. We will present this characterization in the notation of

this dissertation, rather than that used in the original paper.

Theorem 3.3.1. Let K be a number field and R an order in K with conductor ideal

I. Let I = P a1
1 . . . P ak

k be the factorization of I into prime R-ideals, and denote

Qi := R ∩ Pi for each 1 ≤ i ≤ k. Then R is an HFD if and only if the following

properties hold:

1. R is an HFD;

2. R is an associated order;

3. For each 1 ≤ i ≤ k, ai ≤ 4, and letting πi be an arbitrary prime element

of RQi
, vπi

(Irr(RQi
)) ⊆ {1, 2}. If Pi is a principal ideal, then ai ≤ 2 and

vπi
(Irr(RQi

)) = {1}.

Here, RQi
refers to the localization of R at the prime ideal Qi (with RQi

analogously

defined) and vπi
is the valuation associated with the element πi.

One will note that the first two conditions in this characterization are the

same as those for quadratic HFD orders from Theorem 1.3.66. Although the third

condition does not in general require R to have a radical conductor ideal, it does

restrict the prime powers which can divide the conductor. It is also worth noting the
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relationship between this result and the previously discussed results. First, note that

this characterization shows what is needed for the converse to Theorem 3.1.7 in the

case that R is an HFD. As we have alluded to (and will show in the next chapter),

not every HFD order in a number field will necessarily have radical conductor ideal.

On the other hand, Theorem 3.1.7 applies more generally to orders in a number field

with elasticities other than 1 (and more explicitly gives a large class of ideals which

satisfy Condition 3 above).

Two of the features that make HFD orders particularly nice to work with are

given in the above characterization: their integral closures are HFDs (i.e. Cl(K) ≤

2), and they are associated orders. Another fact that makes half-factorial orders

especially nice to work with in the context of this dissertation comes from [14] using

a handful of results found in [13], [9], [3], [8], and [23]. We will include here an

additional equivalent condition not present in [14] which follows immediately from

the proof.

Theorem 3.3.2. Let R be an integrally closed order in a number field K, i.e. R =

R = OK. The following are equivalent:

1. R is an HFD.

2. R[[x1, . . . , xn]] is an HFD for some n ∈ N.

3. R[[x1, . . . , xn]] is an HFD for all n ∈ N.

While it is currently unknown whether the elasticity of a ring of integers carries

over to its ring of formal power series in general, this tells us that this relationship

holds at least when this elasticity is 1. From this and the previous results in this

chapter, we get the following.
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Corollary 3.3.3. Let R be an order in a number field K with radical conductor ideal

I. Then R is an HFD if and only if R[[x]] is an HFD.

Proof. First, assume that R[[x]] is an HFD. Since R is Noetherian, we know that R

must be atomic. Then consider two factorizations π1 . . . πm = τ1 . . . τn, with σi and

τj irreducibles in R for 1 ≤ i ≤ m, 1 ≤ j ≤ n. By considering just the constant

terms of any potential factorizations of πi or τj in R[[x]], one can clearly see that

these elements must remain irreducible in R[[x]]. Then since R[[x]] is an HFD, we

must have that m = n, so R is an HFD.

Now assume that R is an HFD. From Theorem 3.3.1, we know that R must

be an associated order and R must be an HFD. From Theorem 3.2.5, we know that

R[[x]] must have the same elasticity as R[[x]]. Finally, the previous theorem tells us

that R[[x]] is an HFD. Then R[[x]] must be an HFD.

One might ask following this result whether the same holds even when I is

non-radical; this question is not yet answered. As mentioned before, examples of half-

factorial orders in a number field have been found which have non-radical conductor -

the rings of formal power series over these orders have not yet been explored in detail.

The methods used in the proofs presented here are not sufficient to conclude that the

R[[x]] must also be an HFD for such orders R (though we will still know that R and

R[[x]] are HFDs). Moreover, one might ask if the same conclusion holds for elasticities

other than 1. In particular, can we always conclude that ρ(R[[x]]) = ρ(R)? Again,

this question is yet unanswered, but will require a different argument than that found

in [14] for Theorem 3.3.2.

We will now turn our attention even more specifically to the context of HFD

orders in quadratic number fields. As mentioned several times, this context was of

particular interest to Halter-Koch, and such orders were completely characterized in
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[10]. We restate this characterization here for convenience.

Theorem 1.3.66. Let d ∈ Z be squarefree and K = Q[
√
d] the quadratic number

field defined by d. Let R = Z[nα] be the index n ∈ N\{1} order in K, where α =
√
d

if d ≡ 2, 3 (mod 4) or α = 1+
√
d

2
if d ≡ 1 (mod 4) so that R = Z[α]. Then R is an

HFD if and only if the following properties hold:

1. R is an HFD;

2. R is an associated order, i.e. R = R · U(R);

3. n = p for some prime p ∈ N, or n = 2p for some odd prime p ∈ N.

Additionally, it is well-known that for an order R of index n (i.e. R = Z[nα]),

the conductor ideal of R is I = nR, and any prime p ∈ Z dividing n must be inert in

K. The fact that I = nR is easy to see; the fact that the primes dividing n must be

inert follows almost immediately from results in this dissertation.

Proposition 3.3.4. Let R = Z[nα] be an HFD order in a quadratic ring of integers

K, with notation as in Theorem 1.3.66. Then any prime p ∈ Z dividing n must be

inert in K.

Proof. Assume that n has a prime divisor p ∈ Z which is not inert in K. Then pR

has some proper prime ideal divisor P , so
∣∣∣R/P ∣∣∣ = p. Since R is an HFD order, it

must be an associated (and therefore ideal-preserving) order. Then R + P must be

an order in K with conductor ideal P . However, this means that

∣∣∣R/P ∣∣∣ =
∣∣∣R/R∣∣∣ · ∣∣∣R/P ∣∣∣ = p.

Since p is prime in Z, this means that either R = R, a contradiction, or R = P , a

contradiction (since 1 ∈ R\P ). Then p must be inert.
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This gives a corollary that is particularly interesting after seeing the main

results of this chapter.

Corollary 3.3.5. Let R be an HFD order in a quadratic ring of integers K. Then

R has a radical conductor ideal.

Proof. From Theorem 1.3.66, we know that the conductor ideal of R must be I = nR,

with n either prime in Z or twice an odd prime. In either case, the proposition gives

us that the primes dividing n must be inert, and thus I = nR is a product of distinct

prime ideals in R. Then I is radical.

This, along with Corollary 3.3.3, gives another immediate corollary.

Corollary 3.3.6. Let R be an order in a quadratic number field K. Then R is an

HFD if and only if R[[x]] is an HFD.

Now recall that from Theorem 3.1.7, we know in general that an order R in

any number field K is an HFD if R is an HFD, R is an associated order, and the

conductor ideal I is radical. Theorem 1.3.66 actually tells us that in the case of

orders in a quadratic number field, we can actually restrict the possible conductor

ideals even further. This gives the following interesting result regarding associated

orders.

Proposition 3.3.7. Let R be the order of index n (i.e. I = nR) in a quadratic

number field K such that R is an HFD. If n has two distinct odd prime divisors in

Z, then R is not an associated order.

Proof. Assume that n has two distinct odd prime divisors p, q ∈ Z. First, note that

as in the proof of Proposition 3.3.4, if either p or q are not inert, then R cannot be

an associated order. This is because in this case, I has a prime ideal divisor P with
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∣∣∣R/P ∣∣∣ a prime integer, so R + P cannot have conductor ideal P . If p and q are both

inert primes, then we can consider the order S = R+pqR. If R is an associated order,

then S is also an associated order. Furthermore, S has radical conductor ideal pqR,

since pR and qR are prime R-ideals. Then since S = R is an HFD, S is an HFD.

However, this contradicts Theorem 1.3.66, since pq is neither an odd prime nor twice

an odd prime. Then R cannot be an associated order.

Example 3.3.8. Let R = Z[33
√

2]. Since R = Z[
√

2] is an HFD and 33 has two

distinct prime divisors (3 and 11), the proposition tells us that R cannot be an

associated order. Note that this holds despite the fact that both Z[3
√

2] and Z[11
√

2]

are both associated subrings (and thus HFDs), which can easily be checked using

Proposition 2.4.5.

Finally, we present an alternative characterization of HFD orders in a quadratic

number field. One will note from Theorem 1.3.66 that to show that an order R in a

quadratic number field is an HFD, one needs to show that R is an associated order.

This condition can often be time-consuming to check. However, as the following

characterization will show, one can simplify the process considerably.

Theorem 3.3.9. Let R be an order in a quadratic number field K with conductor

ideal I. Then R is an HFD if and only if the following properties hold:

1. R is an HFD;

2. R is a locally associated order, i.e.
∣∣∣U(R)/U(R)

∣∣∣ =
|U(R/I)|
|U(R/I)| ;

3. I = nR, where n ∈ Z is either n = p, with p an inert prime in K, or n = 2p,

with 2 and p inert primes in K.

Proof. We already know from Theorem 1.3.66, Corollary 2.4.4, and Proposition 3.3.4

that if R is an HFD, then these three conditions hold. We simply need to show the
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converse. Suppose that R is an order satisfying the above three conditions. From

Theorem 1.3.66, to show that R is an HFD, it will be sufficient to show that R is

an associated order. If n = p, then I is a prime (and thus maximal) ideal. Then

Proposition 2.4.5 immediately gives us that R is an associated order and thus an

HFD. If n = 2p, then note that 2 ∈ (2R ∩ R)\pR and p ∈ (pR ∩ R)\2R. Then R

is an ideal-preserving order, so Theorem 2.4.15 tells us that R is an associated order

and thus an HFD.

In general, checking that an order is locally associated is easier than check-

ing that it is associated. For the former, one really only needs to find the order of

U(R)/U(R); For the latter, one needs to pick a coset representative from each coset of

U(R)/U(R) (which requires knowing the order of this group), then perform a number

of multiplications. Furthermore, checking that a prime p ∈ Z is inert in a quadratic

number field only requires use of the Legendre symbol. Then this alternate charac-

terization will often make checking that an order in a quadratic number field is an

HFD easier.
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Chapter 4

Examples and Additional Cases

Up to this point, most of the results that we have seen have been abstracted

for generality with a few examples sprinkled throughout. In Chapter 2, we explored

properties of associated, ideal-preserving, and locally associated subrings. In Chapter

3, we explored elasticity in orders of algebraic number fields and their rings of formal

power series. In both cases, we focused more on proving general results and less on

explicitly determining when a specific order in a number field possessed the properties

we were interested in. This chapter will examine these orders more closely, first

using the knowledge we have developed to determine large swaths of orders which

either must be or cannot be locally associated, ideal-preserving, associated, or half-

factorial. Then, we will make use of MATLAB to explicitly find orders which possess

these properties. Finally, we will use what we have found to produce an example of

particular interest to this dissertation.
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4.1 Summary of Results

Before getting into specific cases and explicitly stating examples, it will help

to present a summary of useful results. Many of these results come from Chapter 2,

though they will be restated here in terms specific to orders in a number field. Such

results will be presented without proof; those presented with proof are new.

Theorem 4.1.1. Let R be an order in a number field K and S a subring of R

containing R. Then S is an order in K. If R is an associated order, then so is S; if

R is an ideal-preserving order, then so is S; finally, if R is a locally associated order,

then so is S.

When searching for orders with these three properties, this will be one of the

most important results to keep in mind. For instance, we noted in Example 2.1.8

that the order R = Z[5
√

2] in the number field K = Q[
√

2] is not associated. This

theorem tells us that any order contained in R cannot be associated; thus, we would

have no need to check if Z[25
√

2] is associated.

Theorem 4.1.2. Let R be an ideal-preserving order in a number field K with con-

ductor ideal I. Then for any T -ideal J , R + J is an order in K with conductor ideal

I + J . In particular, if J |I, then R + J has conductor ideal J .

Lemma 4.1.3. Let R be an order in a number field with conductor ideal I. Then∣∣∣R/I∣∣∣ is not a rational prime.

Proof. Assume that there exists some number field K with order R such that the

conductor ideal I of R has prime norm in R; that is,
∣∣∣R/I∣∣∣ = p for some rational

prime p. One will note that if R = R, then I = R, i.e. I would have norm 1. Thus,

R is a non-maximal order. Now considering the additive groups of R, R, and I, we

have that p =
∣∣∣R/I∣∣∣ =

∣∣∣R/R∣∣∣ · ∣∣∣R/I∣∣∣. Since both factors on the right-hand side of
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this equality must be positive integers which multiply to be the prime integer p, it

must be the case that one of these factors is equal to 1. However, we have already

established that R ̸= R, so we must have R = I. However, note that 1 ∈ R\I, a

contradiction. Then
∣∣∣R/I∣∣∣ cannot be prime.

Theorem 4.1.4. Let R be an ideal-preserving order in a number field K with con-

ductor ideal I, and let P be a prime divisor of I which lies over the rational prime p.

Then the inertial degree f(P |p) > 1.

Proof. Suppose that I has a prime divisor P which lies over p ∈ Z and f(P |p) = 1.

This means that
∣∣∣R/I∣∣∣ = p. By the above results, we know that R + P is an order in

K with conductor ideal P . However, the lemma tells us that this is impossible, since

P has prime norm. Then any prime divisor P of I must have f(P |p) > 1.

This result will allow us to rule out the possibility of many orders being ideal-

preserving. For instance, we know that Z[2
√

2] is not an ideal-preserving order. This

is because its conductor ideal is I = (2) = (
√

2)2, with f((
√

2)|2) = 1.

Theorem 4.1.5. Let R be an order in a number field with conductor ideal I. If

every prime divisor of I is principal in R and can be generated (as an R-ideal) by an

element of R, then R is ideal-preserving.

Proof. Assume that I is as described in the theorem statement. Recall that to show

that R is ideal-preserving, we simply need to show that for any primes P1 and P2

dividing I, R ∩ P1 ̸= R ∩ P2 and R ∩ P1 ̸= R ∩ P 2
1 . By the assumption, such P1 and

P2 are principal and generated by an element of R. Let π1 ∈ R such that P1 = π1R.

Then π1 ∈ R ∩ P1. However, if π1 ∈ P2 or π1 ∈ P 2
1 , that would imply that P1

itself is contained in one of these ideals, a contradiction. Then R ∩ P1 ̸= R ∩ P2 and

R ∩ P1 ̸= R ∩ P 2
1 , meaning that R is ideal-preserving.
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Although this theorem has a strong assumption associated with it, it will

actually be very useful to us in one scenario in particular. Recalling that Z ⊆ R for

any order R in a number field, we get the following immediate corollary.

Corollary 4.1.6. Let R be an order in a number field with conductor ideal I = nR

for some n ∈ Z. If every rational prime divisor of n is an inert prime in R, then R

is ideal-preserving.

Theorem 4.1.7. Let R1 and R2 be orders in a number field K with conductor ideals J1

and J2, respectively. Then R1∩R2 is an order in K with conductor ideal J1∩J2. If J1

and J2 are relatively prime, then R1 = R+J1, R2 = R+J2, and R/I ∼= R1/J1×R2/J2.

If we also assume that R1 and R2 are ideal-preserving orders, then so is R1 ∩R2.

Whereas the previous results largely helped us to rule out the possibility of

an order being associated or ideal-preserving, this result can actually save us a lot

of work in determining which orders are ideal-preserving. For instance, Z[3
√

2] and

Z[11
√

2] are both ideal-preserving orders; from this, we know that their intersection,

Z[33
√

2], must also be ideal-preserving.

Theorem 4.1.8. Let R be an order in a number field with conductor ideal I. If I is

prime, then R is ideal-preserving.

The applications of this result are obvious. We mentioned in the previous

paragraph that Z[3
√

2] and Z[11
√

2] are ideal-preserving; this result tells us this

immediately given the knowledge that 3 and 11 are inert primes in Z[
√

2]. Note

that in this specific case, we can also use Corollary 4.1.6, though the theorem can be

applied more generally.

Theorem 4.1.9. Let R be an order in a number field with conductor ideal I. If R

is an associated order, then R is both ideal-preserving and locally associated. If I is
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radical, i.e. if I is a product of distinct prime R-ideals, then R is an associated order

if and only if R is both ideal-preserving and locally associated.

As a bidirectional statement, this result actually helps us in two ways. In some

cases, checking whether an order is ideal-preserving is actually quite simple. Similarly,

checking that an order is locally associated is almost universally easier than checking

that the order is associated. On the one hand, if either of these conditions fail, then

there is no need to check if the order is associated. On the other, if the order happens

to have radical conductor ideal, we only need to check these two simpler conditions;

if both hold, the order must be associated.

Finally, we have another result with a similar bidirectional statement. When

reading this statement, one should keep in mind Theorem 4.1.5.

Theorem 4.1.10. Let R be an order in a number field with conductor ideal I. Also

assume that every prime divisor of I is a principal ideal which can be generated (as

an R-ideal) by an element of R. Then R is an associated order if and only if R is

locally associated.

Proof. First, note that as before, any associated order R is locally associated. Then

we will only need to show that any locally associated order R with conductor ideal

I as described above is associated. Suppose that R is such an order, and let α ∈ R.

Let I = P a1
1 . . . P ak

k be the prime factorization of I into prime R-ideals, and for each

1 ≤ i ≤ k, let bi be the exact power of Pi dividing (α) (note that some or all of the bi’s

may be zero). Since each Pi is a principal R-ideal generated by an element of R, then

so is P b1
1 . . . P bk

k |(α). Let β ∈ R be a generator of this ideal, and note that α = βγ for

some γ ∈ R relatively prime to I. Now since R is a locally associated order, there must

exist some r ∈ R and u ∈ U(R) such that γ = ru. Then α = βγ = (βr)u ∈ R ·U(R),

so R is an associated order.
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Recall from Theorem 4.1.5 that any order whose conductor ideal satisfies the

hypothesis of this theorem must be ideal-preserving. Then much like Theorem 4.1.9,

this result gives us a case in which showing an order is both ideal-preserving and

locally associated suffices to show that the order is associated. We will make use of

this result in the following section.

4.2 Quadratic Orders

We will now apply these findings to the simplest types of orders: those found

in quadratic number fields. Recall the following statement about orders in a quadratic

number field:

Proposition 4.2.1. Let d ∈ Z be squarefree, K = Q[
√
d] and OK = Z[α], where

α =
√
d if d ≡ 2, 3 (mod 4) or α = 1+

√
d

2
if d ≡ 1 (mod 4). Then any order in K is

of the form O = Z[nα] for some n ∈ N. Moreover, the conductor ideal of O is the

principal ideal nOK. We will often refer to such n ∈ N as the index of O.

This result tells us exactly the form of an order in a quadratic number field;

in particular, an order in a given quadratic number field is completely determined

by the index (equivalently, by the conductor ideal). Thus, an order in any quadratic

number field will be totally determined by two integer values: d, the squarefree integer

determining the number field in which the order is contained; and n, the index of the

order in that number field. Now using the results we discussed above, we get the

following regarding ideal-preserving quadratic orders.

Theorem 4.2.2. Let K = Q[
√
d] for some squarefree d ∈ Z and R the index n order

in K. Then R is ideal-preserving if and only if every rational prime divisor of n is

inert in K.
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Proof. First, we will note that Corollary 4.1.6 tells us that if every rational prime

divisor of n is inert in K, R is ideal-preserving. Now assume that R is ideal-preserving

and let p be a divisor of n. Since K is a quadratic number field, p must either be

inert or be a product of two (not necessarily distinct) prime R-ideals of norm p. Since

R is ideal-preserving, then its conductor ideal nR cannot have any prime divisors of

prime norm. Thus, every rational prime dividing n must be inert.

With this theorem, we have completely characterized which orders in a quadratic

number field are ideal-preserving. For each squarefree d ∈ Z and n ∈ N, we simply

need to consider the Legendre symbols
(

d
p

)
for each odd p|n to determine if p is inert

(recall: for odd p this happens when
(

d
p

)
= −1); for p = 2, we simply need to check

that d ≡ 5 (mod 8). Thus, we can focus on determining which orders are locally asso-

ciated, keeping in mind our previous results. Once we have done so, we immediately

get the following corollary from the previous theorem and Theorem 4.1.10.

Corollary 4.2.3. Let R be an order in a quadratic number field. Then R is associated

if and only if it is both ideal-preserving and locally associated.

This corollary will allow us to check two much simpler conditions to determine

whether a given order in a number field is associated. Finally, we can use Theorems

1.3.66 and 3.1.7 to find the elasticities of any associated orders with radical conductor

ideals.

4.2.1 Non-Real Quadratic Orders

We will start by restricting our interest to non-real quadratic fields, i.e. Q[
√
d]

such that d < 0. By Dirichlet’s Unit Theorem, note that in this case, the unit group

of the ring of algebraic integers is a finite cyclic group consisting of the roots of 1. In
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particular, when d = −1, the unit group is generated by i; when d = −3, the unit

group is generated by 1+
√
−3

2
; otherwise, the unit group is generated by −1. Note

further that for any order R = Z[nα] in these rings with n > 1, U(R) = {±1} (since

no non-maximal order in Q[i] or Q[
√
−3] will contain i or 1+

√
−3

2
, respectively). Then

in any case, we know the value of
∣∣∣U(R)/U(R)

∣∣∣ and can use this to determine when R

is locally associated.

Theorem 4.2.4. Let R be the order of index n > 1 in the quadratic number field

K = Q[
√
d], where d < 0 is squarefree. Then R is locally associated if and only if one

of the following conditions holds:

1. d ≡ 1 (mod 8) and n = 2;

2. d = −1 and n = 2;

3. d = −3 and n ∈ {2, 3}.

Proof. To check if an order is locally associated, we will check the equivalent condition

∣∣∣U(R)/U(R)

∣∣∣ =

∣∣∣U(R/I)
∣∣∣∣∣∣U(R/I)
∣∣∣ .

From the above discussion, we will always know the value of the left-hand side of this

equation:

∣∣∣U(R)/U(R)

∣∣∣ =


2, d = −1;

3, d = −3;

1, otherwise.

Then if we choose n such that the right-hand side of the equation matches the left,

R will be locally associated. For convenience, we will denote n = pa11 . . . pakk .
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First, note that since R = Z[nα] and I = nZ[α], the cosets in R/I can each be

represented by an integer modulo n. Thus, a coset in R/I will be a unit if and only

if its integer coset representative is relatively prime to n. Then
∣∣∣U(R/I)

∣∣∣ = ϕ(n) =∏k
i=1 p

ai−1
i (pi−1). Tackling

∣∣∣U(R/I)
∣∣∣ is slightly more complicated. Using the Chinese

Remainder Theorem, we can separate this into

∣∣∣U(R/I)
∣∣∣ =

k∏
i=1

∣∣∣U(R/(pi)ai)
∣∣∣.

Thus, we can determine the size of this unit group for prime-power n, then use the

fact that it is multiplicative. We will need to consider three cases: when pi is inert;

when pi is split; and when pi is ramified.

If pi is inert, i.e. (pi) is a prime ideal:

∣∣∣U(R/(pi)ai)
∣∣∣ =

∣∣∣R/(pi)ai

∣∣∣− ∣∣∣(pi)/(pi)ai

∣∣∣ = p2aii − p
2(ai−1)
i = p

2(ai−1)
i (p2i − 1).

If pi is split, i.e. (pi) = PQ for two distinct prime R-ideals P and Q:

∣∣∣U(R/(pi)ai)
∣∣∣ =

∣∣∣U(R/P ai)
∣∣∣ · ∣∣∣U(R/Qai)

∣∣∣ =

(∣∣∣R/P ai

∣∣∣− ∣∣∣P/P ai

∣∣∣)2

= p
2(ai−1)
i (pi − 1)2.

If pi is ramified, i.e. (pi) = P 2 for some prime R-ideal P :

∣∣∣U(R/(pi)ai)
∣∣∣ =

∣∣∣R/P 2ai

∣∣∣− ∣∣∣P/P 2ai

∣∣∣ = p2aii − p2ai−1
i = p2ai−1

i (pi − 1).

Now since both
∣∣∣U(R/I)

∣∣∣ and
∣∣∣U(R/I)

∣∣∣ are multiplicative, their ratio will be as

well. This again allows us to consider this ratio for only the prime-power factors of
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n. If pi is inert:

∣∣∣U(R/(pi)ai)
∣∣∣∣∣∣U(R+ (pi)

ai/(pi)ai)
∣∣∣ =

p
2(ai−1)
i (p2i − 1)

pai−1
i (pi − 1)

= pai−1
i (pi + 1).

If pi is split:

∣∣∣U(R/(pi)ai)
∣∣∣∣∣∣U(R+ (pi)

ai/(pi)ai)
∣∣∣ =

p
2(ai−1)
i (pi − 1)2

pai−1
i (pi − 1)

= pai−1
i (pi − 1).

If pi is ramified: ∣∣∣U(R/(pi)ai)
∣∣∣∣∣∣U(R+ (pi)

ai/(pi)ai)
∣∣∣ =

p2ai−1
i (pi − 1)

pai−1
i (pi − 1)

= paii .

By inspection, the only one of these which could possibly be equal to 1 is when

pi is split, which is equal to 1 if and only if pi = 2 and ai = 1. Then the order R of

index n > 1 in Q[
√
d], with d a negative squarefree integer other than −1 and −3,

is locally associated if and only if n = 2 and 2 is split, which happens if and only if

d ≡ 1 (mod 8).

Now we can focus on the cases when d = −1 and d = −3. In both cases, note

that we are looking for the above fraction equal to a prime number, and no prime-

power yields this fraction being equal to 1. Then for R to be locally associated, n

must be a prime power. When d = −1, we are looking for the above fraction to be

equal to 2. Note that this is only possible when n = 2, with 2 ramified; n = 3 with 3

split; or n = 4 with 2 split. Since 2 is ramified and 3 is inert in Z[i], the only locally

associated order in Q[i] is Z[2i]. When d = −3, we are looking for the fraction equal

to 3. This is only possible when n = 2 with 2 inert or n = 3 with 3 ramified. Since

2 is inert and 3 is ramified in Z[1+
√
−3

2
], the only locally associated orders in Q[

√
−3]
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are Z[
√
−3] and Z[3+3

√
−3

2
]. This completes the proof.

Keeping in mind our previous results, this immediately yields the following

corollary.

Corollary 4.2.5. Let R be the order of index n > 1 in the quadratic number field

K = Q[
√
d], where d < 0 is squarefree. Then R is associated if and only if d = −3

and n = 2.

Note in this case, R = Z[1+
√
−3

2
] is an HFD (in fact, a UFD), R is associated,

and n = 2 is prime. This gives an alternate proof of a result originally from [5].

Corollary 4.2.6. Let R = Z[
√
−3], the index 2 order in the number field K =

Q[
√
−3]. Then R is an HFD. Moreover, this is the only non-integrally closed half-

factorial order in a non-real quadratic number field.

4.2.2 Real Quadratic Orders

We can now focus our attention on orders contained in real quadratic number

fields, i.e. orders in fields of the form Q[
√
d] for d a squarefree positive integer. In the

rings of integers of such fields, Dirichlet’s Unit Theorem states that the unit group

will be of the form W × V , with W finite cyclic and V free abelian of rank 1. In

this case, the only roots of unity will be ±1, so the unit group will be of the form

{±uk|k ∈ Z} for some unit u, called the fundamental unit. Since ±1 ∈ Z ⊆ R for

any order R, we can determine
∣∣∣U(R)/U(R)

∣∣∣ by finding the minimal power of u which

lies in R. Unfortunately, this means that the process of finding whether an order in

a real quadratic field is locally associated will be more difficult than the process for

non-real quadratic fields. Fortunately, many of the results from the non-real case will

still hold for
∣∣∣U(R/I)

∣∣∣ and
∣∣∣U(R/I)

∣∣∣.
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In order to determine when orders in real quadratic number fields are locally

associated and associated, we will make use of the MATLAB program quadLA.m; this

code can be found in the appendix. Also included are the programs primePowers.m,

polyMult.m, quadFundUnit.m, and isSquare.m, which are utilized by this program.

To make use of this code, one will need to input n, the index of the desired order,

and d, the squarefree integer defining the field. The output of this program is a

vector [lao ao], where lao and ao are Boolean values stating whether the order is

locally associated and associated, respectively. Table 4.1 summarizes the output of

this program for selected values of n and d. In this table, ‘-’ indicates that an order

is not locally associated; ‘L’ indicates that it is locally associated but not associated;

and ‘A’ indicates that it is associated (and thus locally associated).

Looking through Table 4.1, one might notice that several patterns emerge in

both the rows and columns. For instance, in columns 3, 7, 11, 19, and 23 (the prime

numbers congruent to 3 modulo 4), no orders are associated, and the orders which

are locally associated seem to be exactly those of the form dk or 2dk for some k ∈ N0.

Furthermore, columns 6, 14, and 22 (twice the primes we just discussed) seem to

have only a single locally associated order: that of index d
2
. In the rows, one may

notice that no order listed here of index n = 4k for k ≥ 2 is associated, and even the

locally associated orders of these indices seem to be sparser than those of many other

indices. Although these patterns could certainly be products of the fact that only a

limited number of cases have been considered here, they are certainly interesting in

their own right. Looking further into these patterns could also illuminate structures

among such orders that might lead to a general characterization of locally associated

or associated orders in quadratic number fields.

Now recall Theorem 1.3.66, which gave a characterization of orders in quadratic

number fields which are HFDs. Using the database of algebraic number fields (in-
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Table 4.1: Real Quadratic (Locally) Associated Orders

n

d
2 3 5 6 7 10 11 13 14 15 17 19 21 22 23 26 29 30

2 L L A - L L L A - L L L A - L L A -

3 A L A L - L - L - L A - L - - A A L

4 L - A - - L - A - - L - - - - L A -

5 - - L - - L - - - L - - - - - - - L

6 - L A - - - - L - L L - - - - - A -

7 L - A - L A - A L - A - L - - A L -

8 L - - - - L - - - - - - - - - L - -

9 A L A - - L - L - - A - L - - A - L

10 - - L - - L - - - L - - - - - - - -

11 A - L - - A L - - - - - - L - L A -

12 - - - - - - - - - - - - - - - - - -

13 - - - - - - - L - - - - - - - L - -

14 - - A - L - - A - - L - L - - - - -

15 - - L - - L - - - L - - - - - - - L

16 L - - - - L - - - - - - - - - L - -

17 - - - - - - - - - - L - - - - - - -

18 - L - - - - - - - - L - - - - - - -

19 A - L - - - - A - - L L - - - L A -

20 - - L - - L - - - - - - - - - - - -

21 - - - - - - - - - - - - L - - - - -

22 - - L - - - L - - - - - - - - - - -

23 L - A - - A - L - - A - - - L L L -

24 - - - - - - - - - - - - - - - - - -

25 - - L - - L - - - L - - - - - - - L

26 - - - - - - - L - - - - - - - L - -

27 A L A - - L - L - - A - L - - A - L

28 - - - - - - - - - - - - - - - - - -

29 - - - - - - - - - - - - - - - - L -

30 - - L - - - - - - L - - - - - - - -
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cluding their class groups) found at [11], we note that
∣∣∣Cl(Q[

√
d])

∣∣∣ ≤ 2 for every

d ≤ 30. This tells us that the integral closure of every order in Table 4.1 is an HFD.

Thus, the associated orders in this table whose index n is either prime or twice an

odd prime are exactly the HFD orders in this table. Therefore, there are exactly 27

half-factorial orders of index 2 ≤ n ≤ 30 in real quadratic number fields of the form

Q[
√
d] for squarefree d ≤ 30.

More generally, for an order in a quadratic number field whose integral closure

is not an HFD, we could use Theorem 3.1.7 to determine when the elasticity of the

order might match that of its integral closure. Specifically, any associated order with

radical conductor ideal (that is, any order which outputs ao = true from quadLA.m

whose index n is squarefree) must have the same elasticity as its integral closure.

Again, we can check the elasticity of such a number field using the class group; the

database at [11] can provide these class groups for many number fields.

4.3 Other Orders

Moving beyond quadratic number fields, the situation gets decidedly more

complicated. For instance, orders are no longer uniquely defined by their conductor

ideal, and these conductor ideals need not be principal, let alone generated by an inte-

ger. Furthermore, the prime decomposition of rational primes may be more nuanced

than simply inert, split completely, or totally ramified. Integral bases for the rings of

algebraic integers may be more difficult to find, especially bases which interact nicely

with the order, as in Proposition 1.2.92. Perhaps most troubling, especially when

trying to determine if a given order is (locally) associated, is that the group of units

may have a free abelian part of rank greater than 1.

In some cases, we can rely on the same results from the quadratic case. For
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instance, if every prime ideal dividing the conductor is principal and generated by an

element of R (such as when the prime ideal is generated by an inert rational prime),

we know that R is ideal-preserving. Similarly, if any prime divisors of the conductor

ideal have prime norm, the order is not ideal-preserving. Beyond these results, we

will not explore ideal-preserving orders in depth beyond the quadratic case.

In order to simplify the process of determining whether an order is (locally)

associated, we will be making three big assumptions about the ring of algebraic

integers, then explaining in loose terms how one might extend to a more general

case. First, given an order R, we will assume that R = Z[α] for some α ∈ R. While

this is certainly always true in the quadratic case, it can fail even in a cubic extension.

To check that this assumption holds, we will rely on the database found at [11]; among

other features of a number field, this database includes an integral basis for the ring

of algebraic integers.

The second assumption we will make is even more limiting; we will assume

that R admits a fundamental unit. As discussed in the introduction, this limits us

to quadratic number fields (which we have already discussed), cubic number fields

with exactly one real embedding (such as pure cubic extensions, Q[ 3
√
d]), and quartic

number fields with no real embeddings. This will make it much easier to determine

whether an order is locally associated, as then
∣∣∣U(R)/U(R)

∣∣∣ is simply the smallest

power of the fundamental unit which lies in R, perhaps multiplied by the smallest

power of the generating root of 1 which lies in R. This will also make storing units

in order to determine if an order is associated easier. Again, we will use the database

at [11] to check this assumption.

Note that these two assumptions only restrict the number field in which the

order is contained, not the order itself within any number field. The final assumption

we will make is specific to the order. We will assume that an integral basis {β1, . . . , βn}
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for R and integers c1, . . . , cn, d1, . . . , dn exist such that {c1β1, . . . , cnβn} is a basis for

R and {d1β1, . . . , dnβn} is a basis for I. Recall by Proposition 1.2.92 that choosing

such a basis and such integers is always possible for any free abelian group with a free

abelian subgroup of the same (finite) rank. However, it may not always be possible

to do this for three nested free abelian groups of the same rank. Whether it is always

possible to do this specifically for an order in a number field, its conductor ideal, and

its integral closure is unknown. In the cases we will consider, it will be possible.

With these assumptions laid out, we will examine orders in the number field

K = Q[α], with α a root of the polynomial f(x) = x3 − x2 + 1. Pulling from

the database at [11], we note that this is a cubic number field with class number∣∣Cl(K)
∣∣ = 1 and exactly one real embedding. Moreover, the ring of algebraic integers

in this number field is Z[α]. As the ring of integers in a cubic number field with

exactly one real embedding, Z[α] admits a fundamental unit - in this case, α itself.

Thus, this number field will satisfy the first two assumptions stated above.

When selecting an order to consider, we will start by selecting the conductor

ideal. To find prime ideals in the number ring, we will use the MATLAB program

polyFactor.m (included in the appendix) to factor f(x) modulo a rational prime p.

By Proposition 1.3.45, this will determine how p decomposes into prime ideals in the

number ring. After choosing a conductor ideal, we will select one or more orders

with that conductor ideal (if such orders exist) to test. Then, we will determine a

basis for R, R, and I as described above (if such a basis exists) and find
∣∣∣U(R/I)

∣∣∣
and

∣∣∣U(R/I)
∣∣∣. Finally, we will make use of the MATLAB program polyLA.m (in-

cluded in the appendix) to determine whether the order is (locally) associated. As in

the quadratic case, the output of this program is a Boolean vector [lao ao] which

indicates whether the order is locally associated and associated.

Rather than pass arguments as inputs to the program, we will edit the first
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few lines of polyLA.m directly. This is primarily because of the large amount of

information we will need to input to the program. To test whether an order is

(locally) associated, we will change the values on the first six lines. The following

procedure shows how we would carry out this process for one such order.

1. First, we choose a conductor ideal. Using polyFactor.m to factor x3 − x2 + 1

modulo 5 tells us that (5) = (5, 3 + α)(5, 2 + α + α2). Using polyNorm.m

(included in the appendix) and the knowledge that OK is a UFD, we find

principal generators for these ideals to get (5) = (−2 + α)(2 + α + α2). The

ideal (−2 + α) has prime norm 5, and so cannot be the conductor ideal of an

order. We will choose our conductor ideal to be I = (2 + α + α2).

2. Next, we choose an order R which has conductor ideal I. Note that Z+ I must

be contained in any such order, Z+I is closed under multiplication (and is thus

an order in K), and
∣∣∣OK/Z+ I

∣∣∣ = 5, a prime. Then in fact, R = Z + I is the

only order in K with conductor ideal I.

3. We now want to select an integral basis for R following the conditions of our

assumption above. In this case, we note that {1, α, 2 + α + α2} is a basis for

R. Furthermore, Z+ 5αZ+ (2 +α+α2)Z is an index 5 additive subgroup of R

which is contained in R, and thus must be the additive group of R itself. Then

{1, 5α, 2 + α + α2} is a basis for R. Similarly, we find that {5, 5α, 2 + α + α2}

is a basis for I.

4. Noting that I is a prime ideal in R of norm 25, we get that
∣∣∣U(R/I)

∣∣∣ = 24.

Furthermore, since the classes in R/I can be represented by the integers modulo

5, we know that
∣∣∣U(R/I)

∣∣∣ = 4.

5. We are now ready to use polyLA.m. First, we input the minimal polynomial
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for α, f(x) = x3 − x2 + 1, by setting poly = [1 0 -1]. Then, we enter the

fundamental unit u = α by setting u = [0 1 0]. Together, these indicate the

important features of K.

6. We now indicate the structure of R and I by setting R = [1 5 1] (the multiples

of the basis elements above that form a basis for R), I = [5 5 1] (the multiples

of the basis elements above that form a basis for I), and basis = [1 0 0; 0

1 0; 2 1 1] (the elements of the basis above encoded as rows of a matrix).

Finally, we set goal = 6, which indicates how large
∣∣∣U(R)/U(R)

∣∣∣ needs to be for

R to be locally associated.

7. Running the program, we get an output vector of [1 1]. The first 1 indicates

that R is locally associated; the second indicates that R is associated.

Table 4.3 below gives the results from running this program on a number

of orders in this same number field. We could also use this code to test orders in

other number fields which satisfy the three assumptions stated earlier, though we will

reserve this for only a few key examples that we will explore later.

Of course, there is room to improve this MATLAB code. We will not discuss

the efficiency of the program here, but it is worth noting that there are certainly

potential improvements to be made in this aspect. Instead, we will focus on the

assumptions that were made and discuss briefly how the code might be altered to

relax these requirements.

First, recall that we assumed that there existed some α ∈ R such that R =

Z[α]. While this is not always the case, we know by Proposition 1.3.36 that we

can create an integral basis for R using polynomials in α of a particular form. As

stated previously, we can draw such an integral basis for many number rings from the

database at [11]. If one first indicated the polynomials in such an integral basis, one
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Table 4.2: (Locally) Associated Orders in Q[α], where α3 − α2 + 1 = 0
R I basis goal Locally Associated? Associated?

[1 2 2] [2 2 2]

1 0 0
0 1 0
0 0 1

 7 Yes Yes

[1 3 3] [3 3 3]

1 0 0
0 1 0
0 0 1

 13 Yes Yes

[1 4 4] [4 4 4]

1 0 0
0 1 0
0 0 1

 28 No No

[1 2 4] [4 4 4]

1 0 0
0 1 0
0 0 1

 14 Yes Yes

[1 4 2] [4 4 4]

1 0 0
0 1 0
0 0 1

 14 No No

[1 5 1] [5 5 1]

1 0 0
0 1 0
2 1 1

 6 Yes Yes

[1 6 6] [6 6 6]

1 0 0
0 1 0
0 0 1

 91 Yes Yes

[1 7 1] [7 7 1]

 1 0 0
0 1 0
−2 3 1

 8 Yes Yes

[1 11 1] [11 11 1]

1 0 0
0 1 0
6 8 1

 12 Yes Yes

[1 11 11] [11 11 11]

1 0 0
0 1 0
0 0 1

 120 Yes No

[1 23 23] [23 23 23]

1 0 0
0 1 0
0 0 1

 506 Yes No

[1 35 1] [35 35 1]

 1 0 0
0 1 0
12 −4 1

 48 No No
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could use this to convert among relevant bases.

Second, we assumed that R admitted a fundamental unit, which greatly re-

stricted our choices of number fields that we could consider here. However, recall that

U(R)/U(R) is a finite abelian group. By choosing representative units in each of the

generating cosets of U(R)/U(R), one could store these units and use them to determine

whether R is associated. However, it should be noted that such an implementation

would require prior knowledge of
∣∣∣U(R)/U(R)

∣∣∣. Thus, this would only be relevant if

one could determine first whether such an order were locally associated, then find

the generating units as described here, and finally use this to decide whether R is

associated.

Finally, we assumed that an integral basis for R existed which had integer

multiples that served as bases for R and I. As mentioned previously, it is unclear

whether this assumption will always hold for any order R. If such a basis always

exists, we certainly would not need to make the additional assumption. In the case

that such a basis does not exist, one might store two separate bases which are of the

form in Proposition 1.2.92: one for R over R, and one for R over I (depending on

the implementation, it may be more convenient to substitute one of these bases with

a basis for R over I). For the various checks that need to be made in this code, one

would then need to convert among the various bases used.

4.4 HFD Orders with Non-Radical Conductor

Recall the major result from the previous section regarding the elasticity of

an order in a number field.

Theorem 3.1.7. Let R be an associated order in a number field K with radical

conductor ideal I. Then for any nonzero, nonunit α ∈ R, ρR(α) = ρR(α). Moreover,
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ρ(R) = ρ(R).

This allows us to determine when the elasticity of an order is equal to the

elasticity of its integral closure. In particular, when R is an HFD, this theorem tells

us when we can also conclude that R is an HFD. Now also recall from Theorem 1.3.66

(with some of the discussion from the previous section) that when R is an order in a

quadratic number field, the converse holds as well. That is, an order R in a quadratic

number field is an HFD if and only if R is an HFD, R is associated, and the conductor

ideal of R is radical. The question that remains, then, is whether this holds in a more

general number field.

Recall the following characterization of a half-factorial order in a number field

from [20]:

Theorem 3.3.1. Let K be a number field and R an order in K with conductor ideal

I. Let I = P a1
1 . . . P ak

k be the factorization of I into prime R-ideals, and denote

Qi := R ∩ Pi for each 1 ≤ i ≤ k. Then R is an HFD if and only if the following

properties hold:

1. R is an HFD;

2. R is an associated order;

3. For each 1 ≤ i ≤ k, ai ≤ 4, and letting πi be an arbitrary prime element

of RQi
, vπi

(Irr(RQi
)) ⊆ {1, 2}. If Pi is a principal ideal, then ai ≤ 2 and

vπi
(Irr(RQi

)) = {1}.

Here, RQi
refers to the localization of R at the prime ideal Qi (with RQi

analogously

defined) and vπi
is the valuation associated with the element πi.

In particular, we can see that any half-factorial order in a number field must

have half-factorial integral closure and must be associated. However, we will note

124



that in this theorem, it is not explicitly required that the conductor ideal be radical

for the order to be an HFD. That being said, it is also not immediately obvious that

a half-factorial order in a number field with non-radical conductor ideal must exist.

Throughout the remainder of this chapter, we will discuss a number of results that

came to light as a result of the search for such an order. These results will narrow

down where such orders might exist, making them easier to find. Finally, we will

present two examples of such orders: one which is presented in [20]; and one which

was discovered independently using the results presented here.

To simplify this process, we will make use of a lemma from [20]. It will be

presented here in the notation used in this dissertation and in a statement that makes

use of the theorem above.

Lemma 4.4.1. Let R be an order in a number field K. Then R is an HFD if and

only if the following properties hold:

1. R is an HFD;

2. R is an associated order;

3. Irr(R) ⊆ Irr(R), i.e. every irreducible in R remains irreducible in R.

This result tells us that if R is an associated order in a number field whose

integral closure is an HFD, we can conclude that R is an HFD if the irreducible

elements of R remain irreducible in R. Moreover, if any irreducible in R becomes

reducible when extending to R, we can conclude that R is not an HFD. We will use

both of these facts to our advantage.

In the following results, we will primarily focus on orders in a number field

with conductor ideal I = P 2 for some prime R-ideal P . As we will see throughout

this discussion, the cases for such orders will be dramatically different depending on
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whether the prime ideal P in question is principal or non-principal. We will also

carefully examine the behavior of the units in R. Since any half-factorial order R

must be associated, i.e. R = R · U(R), it will help to consider which units might

multiply a given element α ∈ R into R. We begin with the following results regarding

these units.

Lemma 4.4.2. Let R be an order in a number field K with conductor ideal I = P 2

for some prime R-ideal P . Define R1 := R + P , and for any α ∈ R, Uα := {u ∈

U(R)|uα ∈ R}. Then for any α ∈ P and u ∈ U(R), u ∈ Uα if and only if uv ∈ Uα

for every v ∈ U(R1). In particular, U(R1) ⊆ Uα for every α ∈ R ∩ P .

Proof. Let α ∈ P and u ∈ U(R), and suppose that uv ∈ Uα for every v ∈ U(R1).

Since 1 ∈ U(R1), this means that u ∈ Uα. For the converse, suppose that u ∈ Uα, i.e.

uα ∈ R. Then for any v ∈ U(R1), write v = r + β, with r ∈ R and β ∈ P . Then

uvα = uα(r + β) = uαr + uαβ. Since uα and r are both element of R, so is their

product uαr. Since α and β are both in P , then αβ ∈ P 2 = I. Then uvα ∈ R+I = R,

so uv ∈ Uα.

One will note from this lemma that for any α ∈ R∩P , Uα is a subset of U(R)

which contains U(R1). Moreover, U(R)/U(R1) can be neatly divided into two disjoint

subsets: the cosets which only contain elements of Uα; and the cosets which contain

no elements of Uα. This leads us into the following theorem.

Theorem 4.4.3. Let R be an associated order in a number field K with conductor

ideal I = P 2 for some principal prime R-ideal P = πR with π ∈ R. Let R1 and Uα be

defined as before. Then letting Uπ/U(R1) denote the subset of U(R)/U(R1) whose cosets
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consist of elements in Uπ,

∣∣∣Uπ/U(R1)

∣∣∣ =

∣∣∣R ∩ P/I
∣∣∣− 1∣∣∣R1/P
∣∣∣− 1

.

Proof. First, note that the assumption that π ∈ R can be made without loss of

generality. For any π ∈ R such that P = (π), the fact that R is associated tells us

that there is some u ∈ U(R) such that uπ ∈ R. Then P = (π) = (uπ), and thus

P is generated by an element of R. Also note by the lemma that since π ∈ R ∩ P ,

U(R1) ⊆ Uπ, and every coset of U(R)/U(R1) which contains an element of Uπ consists

entirely of elements of Uπ.

Now since R and R1 are both associated, we know they are locally associated as

well. Furthermore, R is ideal-preserving, so we know that R1 = R+P has conductor

ideal P , a prime R-ideal. Then

∣∣∣U(R)/U(R1)

∣∣∣ =

∣∣∣U(R/P )
∣∣∣∣∣∣U(R1/P )
∣∣∣ =

∣∣∣R/P ∣∣∣− 1∣∣∣R1/P
∣∣∣− 1

.

Using the fact that
∣∣∣R/P ∣∣∣ =

∣∣∣P/I∣∣∣ and
∣∣∣R1/P

∣∣∣ =
∣∣∣R/R ∩ P

∣∣∣, this gives

∣∣∣P/I∣∣∣− 1 =

(∣∣∣R/R ∩ P

∣∣∣− 1

)
·
∣∣∣U(R)/U(R1)

∣∣∣.
We will now make use of the fact that R is an associated order and consider

elements of P\I. Since P is principal and generated by π, we know that any such

element can be written as απ for some α ∈ R\P . Furthermore, since R is associated,

we can write each α ∈ R\P as α = ru for some r ∈ R\P and u ∈ U(R). Then every

element of P\I is expressible as ruπ for some r ∈ R\P and u ∈ U(R).
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Now consider the nonzero cosets of P/I, which must all be of the form ruπ+I,

as above. First, note that if v ≡ u (mod U(R1)), i.e. v−1u ∈ U(R1), then we can

write u−1v = s + β, with s ∈ R\P and β ∈ P . Then ruπ + I = rv(v−1u)π + I =

rv(s + β)π + I = (rs)vπ + I, with rs ∈ R\P and v ∈ U(R). Then we could instead

choose to represent this nonzero coset using the unit v ∈ U(R) rather than u. Thus,

when selecting the unit in the representation of a nonzero coset ruπ+ I, we can limit

our choice of u to only one coset representative from each coset in U(R)/U(R1).

Now suppose that we have written some nonzero coset of P/I as ruπ + I, with

u chosen from one of the
∣∣∣U(R)/U(R1)

∣∣∣ coset representatives we selected, as outlined

above. Suppose also that s ∈ R\P with s ≡ r (mod P ), i.e. r − s ∈ P . Then

ruπ + I = suπ + (r − s)uπ + I = suπ + I. Thus, without changing the coset

representative u, we can limit our selection of r to only a single coset representative

from each nonzero coset of R/R ∩ P .

In this way, we know that we can represent each of the
∣∣∣P/I∣∣∣−1 nonzero cosets

in P/I by first selecting one of the
∣∣∣U(R)/U(R1)

∣∣∣ cosets in U(R)/U(R1), then selecting

one of the
∣∣∣R/R ∩ P

∣∣∣− 1 nonzero cosets in R/R ∩ P . However, recall from above that

∣∣∣P/I∣∣∣− 1 =

(∣∣∣R/R ∩ P

∣∣∣− 1

)
·
∣∣∣U(R)/U(R1)

∣∣∣.
Then in fact, each distinct choice of coset uU(R1) ∈ U(R)/U(R1) and nonzero coset

r + I ∈ R/R ∩ P must produce a distinct nonzero coset ruπ + I ∈ P/I.

Finally, we will make the observation that if u ∈ Uπ, then r(uπ) ∈ R for any

r ∈ R. Moreover, if r ∈ R\P , then r + I ∈ U(R/I). Then for any u ∈ U(R) such

that ruπ ∈ R, we have uπ + I = (r + I)−1(ruπ + I) ∈ R/I, so uπ ∈ R and thus

u ∈ Uπ. Then a nonzero coset ruπ + I ∈ P/I is in R ∩ P/I if and only if u ∈ Uπ. The

number of nonzero cosets in R ∩ P/I is
∣∣∣R ∩ P/I

∣∣∣− 1, and each of these cosets can be
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expressed uniquely as ruπ+I, with r a coset representative of one of the
∣∣∣R/R ∩ P

∣∣∣−1

nonzero cosets of R/R ∩ P and u a coset representative of one of the
∣∣∣Uπ/U(R1)

∣∣∣ cosets

in U(R)/U(R1) consisting of elements of Uπ. Then

∣∣∣R ∩ P/I
∣∣∣−1 =

(∣∣∣R/R ∩ P

∣∣∣− 1

) ∣∣∣Uπ/U(R1)

∣∣∣ =⇒
∣∣∣Uπ/U(R1)

∣∣∣ =

∣∣∣R ∩ P/I
∣∣∣− 1∣∣∣R/R ∩ P

∣∣∣− 1
=

∣∣∣R ∩ P/I
∣∣∣− 1∣∣∣R1/P
∣∣∣− 1

.

With these tools in hand, we will now examine how the behavior of these units

may force irreducibles in R to reduce in R. Throughout this discussion, we will keep

in mind Lemma 4.4.1.

Lemma 4.4.4. Let R be an associated order in a number field K with conductor ideal

I = P 2 for some principal prime R-ideal P = πR with π ∈ R. Let Uπ be as before. If

Uπ · Uπ = {uv|u, v ∈ Uπ} ≠ U(R), then R is not an HFD.

Proof. By Lemma 4.4.1, it will suffice to show that there is some irreducible element

of R which reduces in R. Assume that Uπ ·Uπ ̸= U(R). Then there is some u ∈ U(R)

which cannot be written as a product of two elements in Uπ. Then let α = uπ2, and

note that α = uπ · π. Since neither uπ nor π is a unit in R, α is reducible in R. We

will now show that α is irreducible in R.

Suppose that α = βγ for some β, γ ∈ R. Then uπ2 = βγ, with π a prime

element of R, so one of three cases must hold: π2|β and γ is a unit; π2|γ and β

is a unit; or π|β and π|γ. In either of the first two cases, we are done. Then

suppose that π|β and π|γ, and write β = cπ and γ = dπ for some c, d ∈ R. Then

α = uπ2 = βγ = (cd)π2, so u = cd. Then necessarily, c = uv and d = v−1 for some

v ∈ U(R). Then note that since β = uvπ ∈ R, uv ∈ Uπ. On the other hand, since

γ = v−1π ∈ R, v−1 ∈ Uπ. Then u = (uv)v−1 ∈ Uπ ·Uπ, a contradiction. Then α must
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be irreducible in R. Since an irreducible element of R exists which reduces in R, R

is not an HFD.

Lemma 4.4.5. Let R be an associated order in a number field K with conductor

ideal I = P 2 for some principal prime R-ideal P = πR with π ∈ R. Let R1, Uπ and

Uπ/U(R1) be as above, and let m =
∣∣∣Uπ/U(R1)

∣∣∣. If
m(m + 1)

2
<

∣∣∣U(R)/U(R1)

∣∣∣,
then R is not an HFD.

Proof. From the previous lemma note that if Uπ ·Uπ ̸= U(R), then R is not an HFD.

Then considering these units modulo U(R1), R will not be an HFD in the case that

Uπ/U(R1) ·Uπ/U(R1) ̸= U(R)/U(R1). Now since Uπ/U(R1) is a finite set with m elements,

the number of possible products of two elements from this set is m2. However, since

R is commutative, the number of distinct products in Uπ/U(R1) · Uπ/U(R1) is at most

the mth triangular number, m(m+1)
2

. Then if

m(m + 1)

2
<

∣∣∣U(R)/U(R1)

∣∣∣,
there are not enough distinct products to cover every element in U(R)/U(R1), so R

cannot be an HFD.

Using these lemmas, we can now show the following result, which will rule out

the possibility of certain orders from being half-factorial.

Theorem 4.4.6. Let R be an order in a number field K with conductor ideal I = P 2

for some principal prime R-ideal P = πR with π ∈ R, and let p ∈ N be the rational

prime lying under P . If the inertial degree f := f(P |p) ≤ 3, then R is not an HFD.
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Proof. First, note that if R is not an associated order, then R is not an HFD by

Theorem 3.3.1. Then we will focus on the case when R is associated. Recall that∣∣∣R/P ∣∣∣ = pf , with f being the inertial degree of P over p. We will show the result in

three cases: when f = 1; when f = 2; and when f = 3.

First assume f = 1. Since R is associated (and thus ideal-preserving), R1 :=

R+P must be an order with conductor ideal P . However, Lemma 4.1.3 tells us that

the norm of the conductor ideal of an order cannot be a rational prime. Then this

case is impossible.

Now assume f = 2, i.e.
∣∣∣R/P ∣∣∣ =

∣∣∣P/I∣∣∣ = p2. Then since I ⊊ R ∩ P ⊊ P ⊊

R1 ⊊ R, it must be the case that
∣∣∣R/R1

∣∣∣ =
∣∣∣R1/P

∣∣∣ =
∣∣∣P/R ∩ P

∣∣∣ =
∣∣∣R ∩ P/I

∣∣∣ = p. By

Theorem 4.4.3, this means that m :=
∣∣∣Uπ/U(R1)

∣∣∣ = 1. Then

∣∣∣U(R)/U(R1)

∣∣∣ =

∣∣∣U(R/P )
∣∣∣∣∣∣U(R1/P )
∣∣∣ =

p2 − 1

p− 1
= p + 1 > 1 =

m(m + 1)

2
,

so by Lemma 4.4.5, R is not an HFD.

Finally, assume f = 3, i.e.
∣∣∣R/P ∣∣∣ =

∣∣∣P/I∣∣∣ = p3. As before, I ⊊ R ∩ P ⊊ P ⊊

R1 ⊊ R, so
∣∣∣R1/P

∣∣∣ and
∣∣∣R ∩ P/I

∣∣∣ must be either p or p2. Note from Theorem 4.4.3 that∣∣∣R ∩ P/I
∣∣∣ ≥ ∣∣∣R1/P

∣∣∣, so we can consider this in two cases. If
∣∣∣R ∩ P/I

∣∣∣ =
∣∣∣R1/P

∣∣∣, then

Theorem 4.4.3 tells us that
∣∣∣Uπ/U(R1)

∣∣∣ = 1. As before, Lemma 4.4.5 will show us that

R cannot be an HFD. If
∣∣∣R ∩ P/I

∣∣∣ = p2 and
∣∣∣R1/P

∣∣∣ = p, then m :=
∣∣∣Uπ/U(R1)

∣∣∣ = p+1,

so m(m+1)
2

= p2+3p+2
2

. On the other hand,

∣∣∣U(R)/U(R1)

∣∣∣ =

∣∣∣U(R/P )
∣∣∣∣∣∣U(R1/P )
∣∣∣ =

p3 − 1

p− 1
= p2 + p + 1.

One can easily verify that for p > 2, p2 + p + 1 > p2+3p+2
2

. Once again, Lemma 4.4.5
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gives us that R is not an HFD.

Immediately from this theorem, we get the following corollary.

Corollary 4.4.7. Let R be an order in a cubic number field K with conductor ideal

I = P 2 for some principal prime R-ideal P . Then R is not an HFD.

These results serve to tell us when a particular order in a number field cannot

be an HFD. Similarly, we can examine the irreducible elements in an order to see

when it must be an HFD. First, we need the following lemma.

Lemma 4.4.8. Let R be an associated order in a number field K with conductor

ideal I = P 2 for some prime R-ideal P . Then any irreducible element in R which lies

outside of I remains irreducible in R.

Proof. Let α ∈ R\I be irreducible, and write α = βγ for some β, γ ∈ R. Since

α /∈ I = P 2, we know that either β or γ must lie outside P . Without loss of

generality, assume that γ /∈ P . We will also let Uα, Uβ, and Uγ be as above. Since R

is an associated order, we know that none of these three sets are empty.

Let v ∈ Uγ, i.e. vγ ∈ R. Then if u ∈ Uβ, note that (uv)α = (uβ)(vγ) ∈ R.

Then uv ∈ Uα, so vUβ ⊆ Uα. Similarly, if u ∈ Uα, then uα = uβγ = (uv−1β)(vγ) ∈ R.

Since vγ ∈ R\P , we know that vγ + I ∈ U(R/I). Then uv−1β + I = (uα + I)(vγ +

I)−1 ∈ R/I, so uv−1 ∈ Uβ. Thus, v−1Uα ⊆ Uβ =⇒ Uα ⊆ vUβ. Therefore, Uα = vUβ

for any v ∈ Uγ.

Now note that since α ∈ R, 1 ∈ Uα. Then v−1 ∈ Uβ, so α = (v−1β)(vγ), with

both v−1β and vγ lying in R. Since α is irreducible in R, this means that either v−1β

or vγ must be a unit in R. Then either β or γ is a unit in R, meaning that α remains

irreducible in R.
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From Lemma 4.4.1, we know that half-factorial orders are intrinsically linked

to irreducible elements which reduce in the integral closure. The lemma we have just

shown tells us that to find such an element (or prove such an element cannot exist),

we only need to consider irreducible elements in the conductor ideal. This gives the

following result.

Theorem 4.4.9. Let R be an associated order in a number field K such that
∣∣Cl(K)

∣∣ =

2, i.e. R is an HFD which is not a UFD. Let I = P 2 be the conductor ideal of R for

some non-principal R-ideal P . Then R is an HFD.

Proof. Since R is an HFD and R is an associated order, Lemma 4.4.1 tells us that

it will suffice to show that every irreducible in R remains irreducible in R. By

Lemma 4.4.8, we only need to check the irreducibles which lie in I. Note that since

I = P 2 for a non-principal prime R-ideal P , it must be the case that I is principal

and generated by an irreducible element π ∈ Irr(R).

Now let α ∈ I be irreducible in R. Since I = (π), we know that α = βπ for

some β ∈ R. Since R is an associated order, we can write β = ru for some r ∈ R

and u ∈ U(R). Then α = (u−1β)(uπ), with u−1β, uπ ∈ R. Since α is irreducible in

R, this means that either β or π is a unit; since π ∈ I, it must be the case that β is

the unit. Then the only elements of I which are irreducible in R are associates of π,

which are also irreducible in R. Then every irreducible in R remains irreducible in

R, so R is an HFD.

We can now use this result to produce an example of a half-factorial order in

a number field whose conductor ideal is non-radical.

Example 4.4.10. Let K = Q[α], with α a root of x3 + 4x− 1. From the database at

[11], we get that the ring of algebraic integers in K is OK = Z[α],
∣∣Cl(K)

∣∣ = 2, and
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OK admits the fundamental unit α. Using Proposition 1.3.45 and polyFactor.m, we

can see that the rational prime 3 factors as 3R = (3, 1+α)(3, 2+2α+α2), with both of

these prime factors being non-principal. Then let I = (3, 2+2α+α2)2 = (2−4α+α2)

and R = Z + I, an order in K with conductor ideal I. Then R is an order in a

number field whose integral closure is an HFD and whose conductor ideal is I = P 2,

with P a non-principal prime R-ideal. Noting that R = Z + αZ + (2 − 4α + α2)Z,

R = Z+9αZ+(2−4α+α2)Z, and I = 9Z+9αZ+(2−4α+α2)Z, we can once again

use the MATLAB program polyLA.m to see that R is an associated order. Then by

the theorem, R is an HFD.

Another similar example comes from [20].

Example 4.4.11. Let K = Q[α], with α a root of x3 − 8x − 19. Letting P =

(2, 1 +α+α2) (one of the non-principal primes lying over 2), I = P 2, and R = Z+ I,

we have that R is a half-factorial order in K with non-radical conductor ideal I. This

is shown in [20] and can also be verified using the process from the previous example.
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Chapter 5

Conclusion and Future Work

Throughout this dissertation, we have explored the properties of orders in a

number field. We began by defining associated, ideal-preserving, and locally associ-

ated subrings and exploring how these properties can give us insight into the structure

of an order in a number field. Then, we examined elasticity in orders of a number

field; in particular, we looked at when an order might have the same elasticity as its

integral closure or its ring of formal power series. In both cases, we are motivated

by a desire to use what is known about a simpler or more well-studied type of ring

to provide information about the ring we are interested in. Finally, we used what

we had found to explicitly construct examples of associated, ideal-preserving, locally

associated, and half-factorial orders in number fields.

In this chapter, we will conclude this discussion by first restating the major

original results from this dissertation. Then, we will state a handful of conjectures,

questions, and directions for future work in this area.
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5.1 Major Results

Arguably the two most important original results from this dissertation are

the following elasticity results from Chapter 3.

Theorem 3.1.7. Let R be an associated order in a number field K with radical

conductor ideal I. Then for any nonzero, nonunit α ∈ R, ρR(α) = ρR(α). Moreover,

ρ(R) = ρ(R).

Theorem 3.2.5. Let R be an associated order in a number field K with radical

conductor ideal I. Then for any nonzero, nonunit f ∈ R[[x]], ρR[[x]](f) = ρR[[x]](f).

Moreover, ρ(R[[x]]) = ρ(R[[x]]).

Throughout this dissertation, we concerned ourselves with the relationships

that may arise between two rings which satisfy certain properties. The two results

stated here apply this knowledge to the realm of factorization, describing how we

might apply our knowledge of elasticity in one ring to find the elasticity of another

ring.

Recall that HFDs are defined as atomic domains with elasticity one. Then as

we have seen, these results naturally apply to the study of half-factorial orders in a

number field. Although these results rely on the fact that the conductor ideal I is

radical, we saw from the characterization of half-factorial orders in [20] that a half-

factorial order in a number field does not necessarily need to have radical conductor

ideal. In the previous chapter, we provided two examples of such orders, one drawn

from [20], the other found using the methods developed in this dissertation.

One significant application of the previous results to the specific case that the

order in question is an HFD was the following result.

Theorem 3.3.3. Let R be an order in a quadratic number field K. Then R is an

136



HFD if and only if R[[x]] is an HFD.

5.2 Conjectures and Future Work

In the interest of developing this field further and encouraging future work,

we will now discuss questions that remain open, conjectures to the answers of those

questions, and additional directions that may naturally follow from the work done

here. First, we will explore how the major results of this paper may be expanded

upon.

Conjecture 5.2.1. Let R be an order in a number field K. Then ρ(R[[x]]) = ρ(R).

This conjecture would be a vast generalization of Theorem 3.3.3. It is worth

noting that the work done thus far in determining the elasticity of such a ring of

power series R[[x]] has depended on relating it to the elasticities of R[[x]] and R.

Thus, tackling this conjecture in full generality would be quite difficult, especially

when the elasticity of R and R are not the same. Instead, we might focus on some

particular cases first.

Conjecture 5.2.2. Let R be a ring of algebraic integers, i.e. an integrally closed

order in a number field. Then ρ(R[[x]]) = ρ(R).

As we have discussed previously, rings of algebraic integers are much more well-

structured and well-understood than more general orders in a number field. Thus,

this case might be easier to prove than the more general case above. In fact, we know

from Theorem 3.3.2 that this conjecture holds in the case that R is an HFD. However,

as we have stated previously, the techniques used in the original proof of Theorem

3.3.2, found in [14], will not apply to this more general statement.
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Similarly, we might consider the following conjecture which initially served as

the motivation for this research project.

Conjecture 5.2.3. Let R be an order in a number field. Then R is an HFD if and

only if R[[x]] is an HFD.

Again, this serves as a more specific, easier to consider version of Conjecture

5.2.1. By Theorems 3.2.5, 3.3.1, and 3.3.2, it would actually suffice to consider this

conjecture for half-factorial orders which have non-radical conductor ideal. Moreover,

it is already known that if R is an HFD, then R and R[[x]] are HFDs as well; a proof

of this conjecture would likely benefit from leveraging this knowledge. A good first

step toward this will be to check whether the rings of formal power series over the

orders from Examples 4.4.10 and 4.4.11 are half-factorial.

It would seem at this point that Conjectures 5.2.2 and 5.2.3 are more likely to

hold than Conjecture 5.2.1. If the general conjecture does not hold, we might consider

the following question.

Question 5.2.4. Let R be an order in a number field. Can we in general use prop-

erties of R to determine the elasticity of R[[x]]?

A good first step toward answering this question may be to first consider the

following.

Question 5.2.5. Let R be an order in a number field. If we know the elasticity

of R, what additional information do we need to know to find the elasticity of R?

For instance, can we determine some multiplier m ∈ Q, perhaps based on the prime

factorization of the conductor ideal I of R and the set R · U(R) ⊆ R, such that

ρ(R) = mρ(R)? Can we similarly determine ρ(R[[x]]) from ρ(R[[x]])?

Related to these questions is the following conjecture which would go a long

way toward understanding how the elasticity in orders in a number field might evolve.
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Conjecture 5.2.6. Let R be an order in a number field and T an intermediate order,

i.e. R ⊆ T ⊆ R. Then ρ(T ) ≤ ρ(R); in particular, if R is an HFD, then T is an

HFD as well.

This conjecture is actually a generalization of Theorem 3.1.4, which states

that this inequality holds when T = R. The theorem tells us that factorization can

only get “worse” when moving from a ring of algebraic integers to an order contained

within. This conjecture plays off of that same idea: that factorization should not

“improve” by then passing to an order even further removed from R. However, the

techniques used to prove Theorem 3.1.4 relied on the Davenport constant, which only

tell us the elasticity of a ring of algebraic integers, not a more general order in a

number field; thus, the proof will not immediately generalize.

For the HFD portion of this conjecture, one will note that if R is an HFD order

with radical conductor ideal, then any intermediate order will automatically also be an

HFD by Theorem 3.1.7. Furthermore, since any intermediate order strictly containing

the orders from Examples 4.4.10 and 4.4.11 are either integrally closed or have prime

conductor ideal, the conjecture holds for these orders as well. Whether this will hold

in general is still open.

We will now consider questions related to Theorem 3.3.1 from [20].

Question 5.2.7. Can the characterization of half-factorial orders in [20] be stated

in an easier-to-check way or solely ideal-theoretic manner? Are any of the allowances

in this characterization extraneous? For instance, do there exist any half-factorial

orders whose conductor ideal has divisor P 2 for principal prime ideal P or divisor P 4

for non-principal prime ideal P?

The following conjecture generalizes one of the conditions from Theorem 3.3.1

to the case when the order in question may not be an HFD.
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Conjecture 5.2.8. Let R be an order in a number field such that ρ(R) = ρ(R). Then

R is an associated order.

One will note that this question naturally arises from Theorem 3.3.1, since

the condition that R is a half-factorial order can equivalently be stated as ρ(R) =

ρ(R) = 1. Finally, we have some conjectures and questions related to associated,

locally associated, and ideal-preserving orders.

Conjecture 5.2.9. Let R be an order in a number field. Then R is associated if and

only if R is both ideal-preserving and locally associated.

Recall from Corollaries 2.4.15 and 4.2.3 that this bidirectional statement will

hold if we also assume that R either has radical conductor ideal or lies in a quadratic

number field. Moreover, if R is associated, then we know that R is both ideal-

preserving and locally associated without any additional assumptions. Whether an

example exists of an ideal-preserving and locally associated order which is not asso-

ciated is still open.

The last set of questions arises from Table 4.1 in the previous chapter.

Question 5.2.10. Consider Table 4.1. Can we describe the patterns that arise in a

way that will provide a characterization of locally associated (or associated) orders

in quadratic number fields? If such a characterization exists, can it be generalized to

orders in higher-degree number fields? Can we also find a simple characterization of

ideal-preserving orders in higher-degree number fields?

Recall that any half-factorial order in a number field must be associated (and

thus locally associated and ideal-preserving). By finding an easy characterization of

any of these properties, we will therefore be making it easier to find orders with the

potential of being half-factorial.
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Appendix A MATLAB Code

quadLA.m

function [lao ,ao] = quadLA(n,d)

%determines whether the index n array in Q[sqrt(d)] is (locally)

associated

%fu is the fundamental unit

%lao will indicate whether R is LA

%ao will indicate whether R is associated

pf = primePowers(n); %factors n into prime numbers

a = size(pf);

a = a(1); %the number of distinct prime factors of n

ao = true;

fu = quadFundUnit(d); %finds the fundamental unit in Rbar

%first , we will calculate the sizes of U(Rbar/I) and U(R/I)

num = 1; %this will hold the size of U(Rbar/I)

for i=1:a

if pf(i,1) == 2

if mod(d,8) == 5 %if p is inert

num = num *2^(2*( pf(i,2) -1))*3;

else

ao = false;

if mod(d,8) == 1 %if p splits

num = num *2^(2*( pf(i,2) -1));

else %if p ramifies

num = num *2^(2* pf(i,2) -1);

end

end

else
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if jacobiSymbol(d,pf(i,1))==-1 %if p is inert

num = num*pf(i,1) ^(2*(pf(i,2) -1))*(pf(i,1)^2-1);

else

ao = false;

if jacobiSymbol(d,pf(i))==1 %if p is split

num = num*(pf(i,1)^(pf(i,2) -1)*(pf(i,1) -1))^2;

else %if p is ramified

num = num*pf(i,1) ^(2*pf(i,2) -1)*(pf(i,1) -1);

end

end

end

end

%now , ao actually tells us if R is ideal -preserving

den = eulerPhi(n); %this will always be the size of U(R/I)

goal = num/den; %if this is the minimal power of fu that lands

in R, R is locally associated

b = [mod(fu,n)]; %this will hold powers of fu mod n to

determine if they lie in R

for i=1:goal -1

if b(i,2) ==0

lao = false; %if too small a power of fu lies in R, not

LA

ao = false; %if not LA , certainly not associated

return;

end

if i==goal -1

break; %we don 't need to calculate fu^goal

end

%now calculate next power of fu

143



if mod(d,4) ==1

b = [b; mod(polyMult(b(i,:),fu ,[(1-d)/4,-1]),n)];

else

b = [b; mod(polyMult(b(i,:),fu ,[-d,0]),n)];

end

end

lao = true; %if we make it this far , R is locally associated

%R is associated iff it is locally assocaited and ideal -preserving

%thus , we don 't need to check anything more to determine associated
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primePowers.m

function p = primePowers(n) %factors n into prime powers

%each row of p is [q a], where q^a

divides n

pf = factor(n); %find the prime factorization of n

p = [pf(1) 1]; %this will encode pf more usefully

j = 1; %counter for the following loop

for i=2: length(pf)

if pf(i)==pf(i-1)

p(j,2) = p(j,2)+1;

else

p = [p; pf(i) 1];

j = j+1;

end

end
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polyMult.m

function M = polyMult(a,b,p)

%multiplies a*b in Q[alpha], where alpha is a root of the

polynomial p

%a=a1+a2*alpha +...+ an*alpha ^(n-1)

%b=b1+b2*alpha +...+ bn*alpha ^(n-1)

%p(x)=p1+p2*x+...+ pn*x^(n-1)+x^n

n = size(a);

n = n(2); %n = the degree [Q[alpha ]:Q], also the length of a,b,p

A = zeros(n,n,n);

B = zeros(n,2*n-1);

p=-p; %now , p encodes alpha^n=p1+p2*alpha +...+ pn*alpha ^(n-1)

B(1:n,1:n)=eye(n);

B(1:n,n+1)=p; %the i^th column of B will encode alpha^i

for i=n+2:2*n-1

q = [zeros(1,i-n-1),p(1:n-(i-n-1))];

B(1:n,i)=q;

for j=n+1:i-1 %fills in the columns of B

B(1:n,i)=B(1:n,i)+B(1:n,j)*p(n-(i-j)+1);

end

end

for i=1:n

for j=1:n

for k=1:n

A(i,j,k)=B(k,i+j-1); %forms an n by n by n matrix ,

where A(i,j) encodes alpha ^(i-1)*alpha ^(j-1)

end
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end

end

M=basisMult(a,b,A);

%carries out the multiplication a*b; M=a*b=M1+M2*alpha +...+ Mn*

alpha^(n-1)
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quadFundUnit.m

function u = quadFundUnit(d)

%determines the fundemantal unit in Q[sqrt(d)]

if mod(d,4) ==1 %determines the denominator of the integers

c = 2;

else

c = 1;

end

b = 1;

while true %searches for units; unit with smallest b is fu

if isSquare(d*b^2-c^2)

a = sqrt(d*b^2-c^2);

break;

end

if isSquare(d*b^2+c^2)

a = sqrt(d*b^2+c^2);

break;

end

b = b+1;

end

if mod(d,4) ==1 %outputs in form u=[a b]=a+b*\ alpha

u = [(a-b)/2 b];

%alpha = sqrt(d) if d=2,3 mod 4, (1+ sqrt(d))/2 if d=1 mod 4

else

u = [a b];

end
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isSquare.m

function y = isSquare(n)

%determines if the positive integer n is a square

%outputs true if square , false if not

if n==1

y = 1; %1 is a square

return;

end

pf = primePowers(n); %factor n into primes

a = size(pf);

a = a(1); %the number of distinct prime factors of n

y = true;

for i=1:a

if mod(pf(i,2) ,2)== 1

y = false;

%n is square iff every prime divides an even number of times

return;

end

end
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polyFactor.m

function M = polyFactor(poly ,p)

%factors the polynomial poly modulo the prime p

%poly=poly (1)+poly (2)*x+...+ poly(n)*x^(n-1)+x^n

n = size(poly);

n = n(2); %n is the degree of the polynomial to be factored

poly = [poly ,1]; %appends 1 onto poly to represent the x^n term

boom = false;

%a Boolean variable that will indicate when we find a factor

if mod(poly (1),p)==0

N = polyFactor(poly (2:n),p);

s = size(N);

M = [0,1,zeros(1,n-1);N zeros(s(1),n+1-s(2))];

%if poly has a factor of x, pull it out and factor what remains

return;

end

for i=1: floor(n/2)

%searches for factors of degree <n/2 to determine if poly

factors

a = [1,zeros(1,i-1) ,1];

%initializes potential factor of degree i, starts as x^i+1

b = [zeros(1,n-i) ,1];

%initializes other factor st poly = a*b, starts as x^(n-i)

a = [a,zeros(1,n-i)];

b = [b,zeros(1,i)]; %fills in remaining coeffients with 0

done = false;

%boolean variable to determine when we are done with a

certain degree i
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while ~done

for j=1:n-i

boom = false; %resets boom to false

goal = mod(poly(j),p);

for k=1:j-1

goal = mod(goal -b(k)*a(j+1-k),p);

end

%after this loop if a*b=poly mod p, goal=a(1)*b(j) mod p

for c=1:p-1

if mod(c*a(1),p)==goal

b(j)=c;

%sets b(j) to the value needed to make poly=a*b,

if one exists

boom = true;

break;

end

end

if ~boom

break;

%if no b(j) value is possible , moves to the next

potential factor a

end

end

if boom

for j=n-i+1:n

goal = 0;

for k=1:j

goal = mod(goal+b(k)*a(j+1-k),p);
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end

%after this loop , goal is the coefficient of x^(j-1)

in a*b

if goal~=mod(poly(j),p)

boom = false;

break;

%if this value doesn 't match the coefficient of

x^(j-1) in poly , try another a

end

end

end

if boom

break;

%exits the process if a factorization poly=a*b has been

found

end

a(1) = mod(a(1)+1,p);

%this line and the loop moves to the next potential factor a

for j=2:i

if a(j-1) ==0

a(j) = mod(a(j)+1,p);

else

break;

end

end

done = true;

for j=1:i

done = done &&(a(j)==0);

end

if a(1) ==0

a(1)=1;
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%we know at this point that poly has no factors of x, so

a shouldn 't either

end

end

if boom

break;

%exits the process if a factorization poly=a*b has been

found

end

end

if boom

N = polyFactor(b(1:n-i),p);

%if poly=a*b, factor b further; a is already irreducible

s = size(N);

M = [a;N zeros(s(1),n+1-s(2))];

%output is a matrix whose rows encode the factors of poly

else

M = mod(poly ,p);

%if no factorization was found , return the original poly

end
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polyNorm.m

function N = polyNorm(a,roots)

%finds the norm in Q[alpha] of the element a

%a = a1+a2*alpha +...+ an*alpha ^(n-1)

%roots are the n conjugates of alpha

n = length(a); %n is the degree [Q[alpha ]:Q], also the length of a

evals = zeros(1,n);

%this will hold the values of sigma(a) for each embedding sigma

of Q[alpha] into C

for i=1:n

for j = 1:n

evals(i) = evals(i)+a(j)*roots(i)^(j-1);

%fills in the values of evals

end

end

N = round(prod(evals));

%multiplies the values of the embeddings to give norm
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polyLA.m

poly = [1 0 -1];

%the minimal polynomial for alpha , working in Q[alpha]

u = [0 1 0];

%fundamental unit of Rbar in standard basis 1,alpha ,..., alpha ^(n-1)

%values above this line are specific only to the number field

%values below this line are specific to the order within that field

R = [1 5 1];

%integer multiples of the basis that serve as basis for R

I = [5 5 1];

%integer multiples of the basis that serve as basis for I

basis = [1 0 0; 0 1 0; 2 1 1];

%a basis for Rbar , each row is b1+b2*alpha +...+ bn*alpha ^(n-1)

%integer multiples of this basis should work as bases for R, I

goal = 6; %|U(Rbar/I)|/|U(R/I)|

%values ABOVE this line should be changed; everything else stays

basisi = round(inv(basis));

%inverse of basis to allow for change of basis

n = length(poly); %the degree [Q[alpha ]:Q]

b = [mod(u*basisi ,I)*basis;zeros(goal -2,n)];

%this will hold powers of generating units to determine whether

they lie in R

for i=1:goal -1

if ~any(mod(b(i,:)*basisi ,R))

[false , false] %if too small a power lies in R, not locally

associated or associated

return;

else
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if i~=goal -1

b(i+1,:) = mod(polyMult(b(i,:),u,poly)*basisi ,I)*basis;

%find next power if necessary

end

end

end

a = zeros(1,n); %this will count through elements of Rbar/I

%a is stored in terms of the non -standard basis

while true

%will verify that every element Rbar has an associate in R

a(1) = a(1)+1;

for i=2:n

if a(i-1)==R(i-1)

a(i) = a(i)+1;

else

break;

end

end

a = mod(a,R);

if ~any(a)

break;

end

done = false;

for i=1:goal -1

if ~any(mod(polyMult(a*basis ,b(i,:),poly)*basisi ,R))

done = true;

break;

end

end
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if ~done

[true , false] %locally associated , but not associated

return;

end

end

[true true] %both locally associated and associated
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