
Clemson University Clemson University

TigerPrints TigerPrints

All Dissertations Dissertations

8-2024

Optimization Strategies for Political Redistricting Optimization Strategies for Political Redistricting

Blake Splitter
Clemson University, bsplitt@clemson.edu

Follow this and additional works at: https://open.clemson.edu/all_dissertations

 Part of the Other Applied Mathematics Commons

Recommended Citation Recommended Citation
Splitter, Blake, "Optimization Strategies for Political Redistricting" (2024). All Dissertations. 3727.
https://open.clemson.edu/all_dissertations/3727

This Dissertation is brought to you for free and open access by the Dissertations at TigerPrints. It has been
accepted for inclusion in All Dissertations by an authorized administrator of TigerPrints. For more information,
please contact kokeefe@clemson.edu.

https://open.clemson.edu/
https://open.clemson.edu/all_dissertations
https://open.clemson.edu/dissertations
https://open.clemson.edu/all_dissertations?utm_source=open.clemson.edu%2Fall_dissertations%2F3727&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/122?utm_source=open.clemson.edu%2Fall_dissertations%2F3727&utm_medium=PDF&utm_campaign=PDFCoverPages
https://open.clemson.edu/all_dissertations/3727?utm_source=open.clemson.edu%2Fall_dissertations%2F3727&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:kokeefe@clemson.edu

Optimization Strategies for Political Redistricting

A Dissertation

Presented to

the Graduate School of

Clemson University

In Partial Fulfillment

of the Requirements for the Degree

Doctor of Philosophy

Mathematics

by

Blake Splitter

August 2024

Accepted by:

Dr. Matthew J. Saltzman, Committee Chair

Dr. Mary E. Kurz, Committee Co-Chair

Dr. William Bridges

Dr. Neil Calkin

Abstract

Political redistricting has remained a hot-button issue in the United States for several

decades. Every ten years, most states need to redraw their districts to account for changing popu-

lations. Sometimes, these district plans can be drawn with the malevolent intention of aiding one

political party over another. This dissertation summarizes four distinct methods of drawing these dis-

tricts using computer algorithms while keeping several objectives in mind. We test these approaches

on the case study state of South Carolina, since it provides a sufficiently challenging problem for us

to test various algorithms. We find that many of these approaches improve upon the current South

Carolina district map, and many of the algorithms improve upon or remain competitive with other

redistricting procedures available in the literature.

ii

Dedication

This dissertation is dedicated to the people that fight for democracy in the U.S. and around

the globe. It is easy to take freedom for granted, but the fragility of democracy demands constant

attention and relentless defenders. For without the ideals of democracy and equality, this project

would not even be possible.

iii

Acknowledgments

I would like to acknowledge several people who have helped me in this seven-year journey

as I worked to finish my Ph.D. In no particular order, thank you to:

• Clemson University’s Palmetto Cluster support team; their supercomputer was invaluable as I

conducted thousands of experiments, and could not have completed this dissertation without

them;

• Dr. Gregory Herschlag for providing portions of his code for me to use;

• My advisor, Dr. Matthew Saltzman for his constant vigilance and guidance over the the

entirety of my research journey at Clemson;

• My committee co-chair, Dr. Mary E. Kurz for her expertise in metaheuristics and regular

advice as I progressed through the most challenging segment of this research;

• My other committee members, Dr. William Bridges and Dr. Neil Calkin for their feedback

throughout the process;

• Amy Burton for her assistance with building portions of this code;

• Dr. Meredith Burr for her excellent supervisory skills as I learned to teach calculus as an

instructor of record;

• Dr. Trevor Squires for his inspirational ideas during my Master’s project;

• All of my friends and colleagues who kept me sane during my time as a graduate student;

• My family for their unwavering support during this journey, and particularly my brother

Brandon for checking over my code on occasion;

iv

• The late Dr. Kevin James for accepting me into Clemson;

• Anna-Marie Morra for her assistance near the beginning of this project.

v

Table of Contents

Title Page . i

Abstract . ii

Dedication . iii

Acknowledgments . iv

List of Tables . viii

List of Figures . ix

1 Introduction . 1
1.1 Objectives Used . 2
1.2 Dissertation Outline . 5

2 Literature Review . 6

3 Mixed-Integer Programming Approach . 9
3.1 Formulations . 9
3.2 Methods . 19
3.3 Results . 21
3.4 Conclusion . 23

4 Optimizing Compactness Using Simulated Annealing 24
4.1 Introduction and Overview . 24
4.2 Our Simulated Annealing Algorithm . 25
4.3 Experimental Design . 32
4.4 Results . 35
4.5 Conclusions . 39

5 MOSA2: Multiobjective Simulated Annealing 2 44
5.1 Multiobjective Optimization . 44
5.2 The Algorithm . 47
5.3 Experimental Design . 54
5.4 MOSA2 Results . 56

6 NSGA-II for Political Redistricting . 64
6.1 Introduction . 64
6.2 Methods . 65
6.3 Results . 75
6.4 Conclusion and Future Work . 83

vi

7 Conclusions . 84

Appendices . 85
A MIP Codes . 86
B Simulated Annealing Codes . 97
C MOSA2 Codes . 130
D NSGA-II Codes . 171
E VNSGA-II Codes . 210

Bibliography .250

vii

List of Tables

3.1 MIP Results for ±5% Population Deviation . 21
3.2 MIP Results for ±1% Population Deviation . 21
3.3 Optimal plans from MIP . 23

4.1 Population power p as a function of percent of simulated annealing (SA) steps taken. 28
4.2 Table of Sample ∆E Values . 31
4.3 Input Data for each Experiment . 34
4.4 Summary Data per Experiment . 37
4.5 Average value for each parameter . 43

5.1 Experiments Performed . 56
5.2 Input Parameters for MOSA2 . 56
5.3 Summary of Hypervolume Graphs for Each Experiment 60
5.4 Ideal Point Values and their Sources . 61

6.1 Summary of Experiments . 76
6.3 Hypervolume Graphs for Our Approach and VNSGA-II 79
6.4 Average Runtimes for each Experiment in Seconds 80
6.5 Average Pareto Front (PF) Sizes at the Conclusion of each Experiment 80
6.6 Comparison of Objectives between Current Congressional Plan and our Plan 80
6.7 The Covered Size of Space Metric Values Comparing Our Approach to VNSGA-II . 81

viii

List of Figures

3.1 Starting Plan . 20

4.1 Demonstrating a Flip . 26
4.2 County-District Intersection . 30
4.3 The values of ∆E based on the values of ∆C and ∆x 31
4.4 The 2019 SC Congressional Plan . 36
4.5 Most Compact Plan . 37
4.6 Plan with Fewest County Splits . 38
4.7 Plan with Worst Compactness Score . 38
4.8 Experiment 6 Run 1 Compactness Graph . 39
4.9 Experiment 3 Run 1 Compactness Graph . 40
4.10 Experiment 1 Run 10 Compactness Graph . 40
4.11 Plan with Dumbbell Phenomenon . 41
4.12 Box-and-Whisker Plots for Determining how Inputs affect Compactness 42
4.13 Box-and-Whisker Plots for Determining how Inputs affect County Splits 43

5.1 Biobjective optimization problem objective function space 46
5.2 Hypervolume for a set of outcomes . 46
5.3 Mean Ideal Gap Values for Experiments in MOSA2 61
5.4 MOSA2 Plan with Best Compactness (PD = 37949, PPi = 2.745). Experiment 15. . 62
5.5 MOSA2 Box-and-Whisker Plots for Assessing Input Parameter Effects 62

6.1 An example of two potential parents. Each node represents a GU and each edge
signifies that those GUs are adjacent. Node colors correspond to different districts. . 67

6.2 An example of a cluster graph . 69
6.3 Crossover steps . 71
6.4 Comparison of Plans . 81
6.5 Mean Ideal Gap for Our Approach . 82
6.6 Mean Ideal Gap for VNSGA-II . 82

ix

Chapter 1

Introduction

In the United States, 44 out of the 50 states have a sufficiently large population to send

more than one representative to the House of Representatives. Each of these states must divide

itself into two or more districts, each of which will elect a representative. The larger the population

of the state, the more districts it has. The way in which these districts are drawn has a dramatic

impact on who gets elected. Because populations change over time, the United States requires that

every state redraws their districts every 10 years in response to the decennial census. This process is

known as redistricting. With modern computing and enormous data sets on voting behavior, it has

become very easy to draw the districts in such a way as to advantage one party over the other. This

biased map drawing is known as gerrymandering, a term originally coined by the Boston newspaper

Weekly Messenger in 1812, criticizing a district drawn by Governor Elbridge Gerry that vaguely

looked like a salamander.

Although the Supreme Court of the United States has offered several decisions that place

some constraints on how districts are drawn (see [2, 27, 39]), there is still ample opportunity to draw

gerrymandered districts. In this dissertation, we argue that districts should be equally populated,

politically fair, geographically compact, and county-preserving. This dissertation summarizes a

variety of techniques that the author has developed over the past several years to solve the problem

of dividing people into fair and equitable voting districts. We conduct our studies on congressional

plans, but similar studies could be conducted on state houses or state senates.

When creating district plans, it is necessary to discretize the state into geographic units

(GUs) that represent the smallest blocks of land that can be assigned to districts. In our work,

1

we choose to use precincts as our geographic units since those are seldom split when assigning

districts, though it is possible to consider finer discretizations such as census tracts or census blocks.

Formally, we define a plan as an assignment of precincts to districts. In this dissertation, we choose

to perform all of our algorithmic tests on the state of South Carolina, where Clemson University is

located. In South Carolina, there were 2262 precincts in 2019, when the data was collected. Two of

these precincts resided entirely inside other precincts, and were therefore merged into the enclosing

precinct for our purposes.

District plans are constrained by the concept of contiguity. That is, every district must

not have any disconnected pieces except in the case where landmasses can be considered adjacent if

there is a body of water between them. Contiguity is a hard constraint that must not be broken at

any point during any of the algorithms we propose.

1.1 Objectives Used

To assess the quality of a district plan, one must use a variety of objective measures. In

the studies conducted in this dissertation, a total of six different objectives are considered. Each

objective is defined so that it has an optimal value of zero and can only take on nonnegative values.

Those objectives are:

1. Population Deviation from Ideal, PD: According to Supreme Court doctrine of “One

Person, One Vote,” established in cases Wesberry v. Sanders and Reynolds v. Sims, districts

that elect representatives to state or federal legislatures need to be equally populated to the

extent possible [27, 39]. This prevents the construction of districts with excess voting power

due to their relatively small populations. In our algorithms, population deviation is measured

using equation 1.1, where D is the set of districts, pd is the population of the dth district,

and pI is ideal population of a district (i.e. the total population of the state divided by the

number of districts). Because of the importance of population equinumerosity, this objective

is considered in every approach taken in this dissertation, and in some cases is emphasized

more strongly than other objectives.

PD =
∑
d∈D

|pd − pI | (1.1)

2

2. Polsby-Popper Compactness, PP : District compactness is generally acknowledged as a

necessary constraint to discourage gerrymandering. Broadly speaking, a district is compact

if it is tightly packed in; it is not spread far. There are a variety of ways to measure a

district’s compactness, some that consider the geometry of the district, some that consider

the distribution of people, and some that rely on the underlying graph. We direct the reader

to [12] for a more comprehensive view of several compactness measures. In this dissertation,

we utilize Polsby-Popper compactness, which is a geometric measure that calculates the ratio

of a district’s area to the area of a circle with the same perimeter as the district, though other

compactness measures work as well. We opt to use this compactness measure because (1) it

is easy to compute, (2) it is used in at least one state’s (Arizona’s) independent redistricting

commission, and (3) it passes the eye-test for what most people consider “compact” [16].

Normally, Polsby-Popper scores have a range between 0 and 1, with 1 corresponding to an

ideally compact district (i.e, a circle). However, because we intend to minimize each objective,

and wish to define its optimal value as zero, we either calculate the shifted Polsby-Popper

score, detailed in equation (1.2); or the inverse Polsby-Popper score, detailed in equation

(1.3). In both equations, D is the set of districts, Ad is the area of the dth district, and ρd is

the perimeter of the dth district.

PPs =
1

|D|
∑
d∈D

(
1− 4πAd

ρ2d

)
(1.2)

PPi =
1

|D|
∑
d∈D

(
ρ2d

4πAd

)
− 1 (1.3)

3. Efficiency Gap, EG: Originally developed by Stephanopoulos and McGhee, the efficiency

gap is an objective that seeks to distinguish fair plans from unfair plans [32]. Essentially, this

objective counts the number of ‘wasted’ votes cast for the two main parties and determines if

the difference between those two totals signifies an unfair plan. To predict this measure before

elections, we often use past voter behavior to predict future voting behavior. The efficiency

gap is calculated by subtracting the wasted votes of party B from the wasted votes of party

A and then dividing this difference by the total votes. Wasted votes are (1) all votes for the

losing side and (2) all votes beyond the win threshold for the winning side. We calculate the

efficiency gap for each district and add those values together to get the statewide efficiency

3

gap. We desire for the absolute efficiency gap to be minimized, since a large efficiency gap in

magnitude represents a partisan advantage. The calculation for absolute efficiency gap can be

found in equation (1.4), where ωAd represents the wasted votes for party A in the dth district,

ωBd represents the wasted votes for party B in the dth district, and t represents the total vote

count of the state.

EG =

∣∣∣∣∣∑
d∈D

(
ωAd − ωBd

t

)∣∣∣∣∣ (1.4)

4. Median-Mean fairness score, MM : The median-mean fairness score is a measure of how

‘fair’ a plan is politically. The premise underlying this objective is that district plans that do

not reflect the mean voter distribution in a state are undesirable. For instance, if 55% of a

state’s voters voted for one political party, then we would want about 55% of the seats in the

legislature to represent that political party. To represent this mathematically, consider the set

S of party A’s vote share percentages in each district and calculate both the mean and median

of this set. The median-mean score is calculated by subtracting the mean from the median.

Positive values for this objective indicate an advantage for party A, while negative objective

values indicate a disadvantage for party A. Values near zero are desirable and demonstrate

that the districts approximately reflect the will of the voters. McDonald and Best explain

finer details of the median-mean calculation and how it could demonstrate gerrymanders [21].

In our calculations, it is desirable to minimize the absolute value of the median-mean score

because we want the advantage of the parties to be as small as possible. This calculation is

found in equation (1.5).

MM = |median(S)−mean(S)| (1.5)

5. County Splits, CS: A county split occurs when a county is split between two or more districts.

Because counties often have a sense of shared community (from shared laws and government),

it is desirable to avoid splitting counties into multiple districts. The number of county splits is

found by subtracting the minimum of the number of counties and districts from the number of

county-district intersections, as detailed in equation (1.6), where CDI represents the number

of county-district-intersections, C represents the set of counties, and D is the set of districts.

4

CS = CDI −min(|C|, |D|) (1.6)

6. Excess Geographic Units, EGU : Excess geographic units represent the number of the

GUs in a county that are not part of the largest district in that county (as measured by

number of GUs). Minimizing excess geographic units is a conduit to minimizing county splits,

so optimizing both objectives better aims to reduce county splits. The number of excess

geographic units is found using equation (1.7), where GUc is the number of GUs in county c

and GUcd is the number of GUs that are in both county c and district d.

EGU =
∑
c∈C

(GUc −max
d∈D

(GUcd)), (1.7)

The projects that follow utilize a subset of these objectives. There are several other ob-

jectives that we do not consider in this dissertation, including (a) adherence to the Voting Rights

Act, (b) racial makeup of districts, (c) preservation of communities of interest, (d) similarity to

previous plans, and (e) incumbent location. We have assessed that these objectives are too difficult

to mathematically model, lack reliable data, or would not improve the district plans if considered.

Furthermore, every additional objective potentially decreases the quality of each proposed plan as

we must sacrifice existing objectives to account for new ones.

1.2 Dissertation Outline

This dissertation is divided as follows. In Chapter 2, we explore the numerous redistricting

strategies that other authors have employed so far. In Chapter 3, we explain how the redistricting

problem can be written as a mixed-integer-program. To follow, we discuss a simulated annealing

approach for maximizing compactness in Chapter 4. Then we expand on the simulated annealing

concept in Chapter 5, which brings other objectives into a multi-objective framework. Finally, we

discuss a genetic algorithm approach in Chapter 6, and make concluding remarks in Chapter 7.

5

Chapter 2

Literature Review

In the United States, every state’s Congressional map must be redrawn every decade to

account for changing populations. Gerrymandering is the process of creating voting districts that

unfairly advantage one group of people over another. The problem of creating voting districts that

fairly represent their populations is one of the most well-studied problems in political science, and

the impulse to remove human bias from redistricting seems a natural one. In fact, the desire to

automate the redistricting process dates back to at least the early 1960s when Vickrey writes that,

“[T]he [redistricting] process should be completely mechanical, so that once set up, there is no room

at all for human choice” [37]. Since then, there have been many attempts to utilize computers in an

effort to automate district drawing.

It is important to distinguish our work as a project meant to create district plans; many

other authors study the important, but very different problem of assessing districts plans after

they have been proposed. Early work on this front was done by quantifying the compactness of

legislative districts, arguing that noncompact districts may be evidence of gerrymandering. In view

of this, many authors developed “compactness tests” to pinpoint gerrymandering [10, 23, 26]. Other

authors have sought to uncover gerrymandering with political fairness tests. These tests use previous

voting data as an estimate for future voting patterns. Based on these predictions, authors develop

metrics to determine how ‘fair’ a district plan is. Tests such as median-mean [21], efficiency gap [32],

and partisan asymmetry [38] all fall into this category of work. Finally, many important works

seek to determine how unfair a district plan is by comparing it to a host of reasonable alternative

plans. Ideally, we would enumerate every possible districting plan and compare the proposal to the

6

universe of options, but the number of legal districting plans is incomprehensibly large, making any

enumerative strategy effectively impossible. The seminal work by Duchin uses Markov chain outlier

analysis to determine that a Pennsylvania redistricting plan was likely chosen explicitly to provide

partisan advantage to Republicans [11]

In contrast to studying gerrymandering ex post facto, our work focuses primarily on elimi-

nating the gerrymander before it can emerge. Many works before us have sought to create district

plans using computer automation in some way or another. Several authors utilize Voronoi ap-

proaches (a technique designed to divide many data points into clusters) to create compact districts

of relatively equal populations [e.g. 19, 25, 33]. A variety of metaheuristic techniques have been

attempted, including simulated annealing, tabu search, old bachelor acceptance, genetic algorithms,

and more. Most of these approaches optimize a single weighted-sum objective function consisting of

one or more metrics meant to indicate a good districting plan. See for example [5], [20], and [28].

Other authors have sought direct integer programming approaches. This work starts in

1965 with Hess et al., where they worked to optimize compactness via moment of inertia geometric

calculations [14]. This work modeled a hypothetical IP to solve this problem, without actually solving

it. In 1983, Birge formulated a quadratic program to minimize the number of county splits [4]. This

work was later eclipsed by Shahmizad and Buchanan in 2023, when they found the optimal county

split value for every state [30]. In 2021, Gurnee et al. developed a dynamic column-generation

heuristic for solving IPs meant to optimize efficiency gap [13]. Heuristics were necessary to fully solve

these IPs. Finally, Belloti et al. attempted to optimize compactness using counties as geographic

units in 2023 [3].

More recently, there have been several attempts to utilize multicriteria optimization in

redistricting. These experiments yield a set of viable solutions that seek to optimize two or more

objective functions. The outcome set of districting plans estimates a Pareto frontier. Vanneschi et al.

uses a multiobjective approach based on a genetic algorithm to create an approximate Pareto front

for compactness and population equality [36]. Kim uses a spanning tree approach to create artificial

districts on a n × n grid of squares, optimizing both population equality and compactness [17].

In 2022, Swamy performs a case study on Wisconsin’s congressional districts, optimizing political

fairness metrics against compactness using an integer programming approach [35].

The work in this dissertation follows previous approaches by two different authors. Chapter

5 follows the work done by Rincón-Garćıa [29]. Much of our work in this chapter is based on their

7

initial invention, which is a multiobjective simulated annealing (MOSA) algorithm that optimizes

compactness and population equinumerosity. We have expanded upon this idea in this paper with

MOSA2, by adding many additional objectives and modifying the way in which perturbations are

performed.

Chapter 6 follows the work done by Vanneschi et al. in [36]. This work utilized the Non-

dominated Sorting Genetic Algorithm-II (NSGA-II) to optimize compactness and population devi-

ation in a variety of states. We adapt the approach to incorporate more objectives and implement

a novel clustering approach to better fit the theme of genetic algorithms.

8

Chapter 3

Mixed-Integer Programming

Approach

The first attempt at optimizing political redistricting is the very direct approach of mixed-

integer programming. This technique hopes to optimize every individual objective subject to popu-

lation and contiguity constraints. The plans produced through this approach may provide a baseline

for multiobjective approaches, introduced in later chapters.

3.1 Formulations

3.1.1 Feasible Plans

In order to find a feasible districting plan, we mimic a formulation from Shirabe [31]. We

insist that districts are contiguous and that they satisfy population equinumerosity constraints.

The decision variables are as follows:

• xij = 1 ⇐⇒ geographic unit i is assigned to district j.

• wij = 1 ⇐⇒ geographic unit i is assigned to be the hub for district j.

• fuvj is the “flow” on edge (u, v) in district j. This quantity is positive if and only if both

endpoints u and v are in district j and is equal to 0 otherwise. These variables are the ones

used for enforcing contiguity.

9

The sets used are:

• V : the set of vertices in the underlying graph G. This set is normally indexed by i, u, or v.

• E: the set of edges in the underlying graph G. This set is normally indexed by (u, v), where

u, v ∈ V and (u, v) is an edge in the graph G.

• D: the set of districts. This set is normally indexed by j.

Other data used includes:

• L: the lower bound on population for all districts. This can be user-defined.

• U : the upper bound on population for all districts. This can be user-defined.

• Pi: the population in geographic unit i.

FEAS

min 0

S.t.
∑
j∈D

xij = 1 ∀i ∈ V (3.1)

L ≤
∑
i∈V

Pixij ≤ U ∀j ∈ D (3.2)

∑
i∈V

wij = 1 ∀j ∈ D (3.3)

∑
v:(u,v)∈E

fuvj −
∑

v:(u,v)∈E

fvuj ≥ xuj − |V |wuj ∀u ∈ V, j ∈ D (3.4)

∑
v:(v,u)∈E

fuvj ≤ (|V | − 1)xuj ∀u ∈ V, j ∈ D (3.5)

xij ∈ B ∀i, j ∈ D (3.6)

wij ∈ B ∀i ∈ V, j ∈ D (3.7)

fuvj ∈ R+ ∀(u, v) ∈ E, j ∈ D (3.8)

The constraints can be thought of as follows:

• Constraint (3.1) defines that every geographic unit i is assigned to exactly one district j.

• Constraint (3.2) defines the population constraints of each district j.

10

• Constraint (3.3) defines that each district gets exactly one hub.

• Constraints (3.4) and (3.5) define the flow from a district hub v ∈ V to other geographic units

u ∈ V in district j.

• Constraints (3.6), (3.7), and (3.8) define the domains for the variables.

We can add a variety of objectives and appropriate defining constraints to create MIPs that

find optimality with respect to those objectives.

3.1.2 Population Deviation

We often consider population equinumerosity of the districts as a constraint, rather than an

objective, but it can be advantageous to find a plan that minimizes population deviation from ideal.

To do so, we define the decision variable dj to be the absolute population deviation from ideal for

district j. We also define I to be the ideal population of a district. Note that I = 1
|D|

∑
i∈V Pi.

Then the MIP that minimizes the sum of population deviations over all districts is:

POP

min
∑
j∈D

dj (3.9)

S.t. dj ≥
∑
i∈V

Pixij − I ∀j ∈ D (3.10)

dj ≥ I −
∑
i∈V

Pixij ∀j ∈ D (3.11)

dj ∈ Z+ ∀j ∈ D (3.12)

(3.1), (3.3)− (3.8)

Here, constraints (3.10) and (3.11) ensure that we are maximizing the sums of the abso-

lute differences between population and ideal. Constraint (3.2) is excluded, because minimizing

population deviation renders lower and upper bounds on population useless.

3.1.3 Compactness

In this chapter, we opt to minimize the inverse Polsby-Popper score. We can do that by

defining the following variables:

11

• zj = inverse Polsby-Popper score of district j.

• aj = area of district j.

• ρj = perimeter of district j.

• yuvj = 1 ⇐⇒ edge (u, v) is a cut edge (i.e., an edge that separates two districts) and

geographic unit u is in district j.

Other data includes:

• Ei is the boundary edge length for geographic unit i. In other words, if geographic unit i is on

the state’s boundary, Ei represents the length of that boundary. If geographic unit i is not on

the state’s boundary, Ei = 0.

• Suv is the boundary length of edge e := (u, v) between geographic units u and v.

• Ai is the area of geographic unit i.

Utilizing the formulation from Belotti et al., we establish the quadratically-constrained MIP for

compactness with the following minimization problem [3].

COMP

min
1

|D|
∑
j∈D

zj (3.13)

S.t. 4πAjzj ≥ ρ2j ∀j ∈ D (3.14)

ρj =
∑
i∈V

Eixij +
∑

(u,v)∈E

Suvyuvj ∀j ∈ D (3.15)

Aj =
∑
i∈V

Aixij ∀j ∈ D (3.16)

xuj − xvj ≤ yuvj ∀(u, v) ∈ E, j ∈ D (3.17)

xvj − xuj ≤ yuvj ∀(u, v) ∈ E, j ∈ D (3.18)

zj ≥ 0 ∀j ∈ D (3.19)

yuvj ∈ B ∀(u, v) ∈ E, j ∈ D (3.20)

(3.1)− (3.8)

12

Objective 3.13 minimizes the average Polsby-Popper scores amongst all districts j. The

constraints can be explained as follows:

• Constraint (3.14) defines the inverse Polsby-Popper score.

• Constraint (3.15) defines the perimeter of district j.

• Constraint (3.16) defines the area of district j.

• Constraints (3.17) defines the cut edges yuvj as described above.

3.1.4 County Splits

County splits occur when two or more districts occupy a single county. If n districts occupy

a single county, then that county has n− 1 county splits. It is desirable to avoid splitting counties

into multiple districts. To optimize this, we define the decision variable:

• hcj = 1 ⇐⇒ county c contains any part of district j.

We use the set C for the set of counties in the state.

We also introduce new data:

• Cic = 1 ⇐⇒ geographic unit i is in county c. In South Carolina, each geographic unit is

entirely within the boundary of a single county.

CS

min
∑
c∈C

∑
j∈D

hcj (3.21)

S.t.
1

|V |
∑
i∈V

Cicxij ≤ hcj ∀c ∈ C, j ∈ D (3.22)

hcj ∈ B ∀c ∈ C, j ∈ D (3.23)

(3.1)− (3.8)

The objective (3.21) minimizes the total number of county splits by summing over both c ∈ C

and j ∈ D. Constraint (3.22) defines hcj as defined above. Essentially, the quantity 1
|V |

∑
i∈V Cicxij

equals 0 if no geographic units in county c are assigned to district j and is ≤ 1 otherwise.

13

3.1.5 Efficiency Gap

To minimize the absolute efficiency gap, let

• rj = number of votes for red party in district j.

• bj = number of votes for blue party in district j.

• tj = winning threshold for district j. (=
bj+rj

2 + 0.5)

Normally, efficiency gap is calculated by dividing by the total number of votes. In this study,

we instead omit that division, since minimizing wasted blue−wasted red
total is the same as minimizing

(wasted blue)−(wasted red). Then for a given district j, the efficiency gap in that district would be

EGj = (wasted blue votes)− (wasted red votes)

=


(bj − tj)− rj , if bj ≥ rj

bj − (rj − tj), if bj < rj

=


(
bj −

(
bj+rj

2 + 0.5
))
− rj , if bj ≥ rj

bj −
(
rj −

(
bj+rj

2 + 0.5
))

, if bj < rj

=


bj
2 −

3rj
2 − 0.5, if bj ≥ rj

3bj
2 −

rj
2 + 0.5, if bj < rj

(3.24)

Then, minimizing (3.24) is the same as minimizing


bj − 3rj − 1, if bj ≥ rj

3bj − rj + 1, if bj < rj

Therefore, we seek to minimize

min

∣∣∣∣∣∣
∑
j

[
(bj − 3rj − 1) · I(bj ≥ rj) + (3bj − rj + 1) · I(rj > bj)

]∣∣∣∣∣∣ (3.25)

where I is the indicator function. Absolute value bars are placed outside the sum because we want

the efficiency gap to be as small (in magnitude) as possible. The bias towards blue or red is irrelevant

for the calculation.

14

This can be enforced with the following MIP:

EG

min z (3.26)

S.t. bj =
∑
i

Bixij ∀j ∈ D (3.27)

rj =
∑
i

Rixij ∀j ∈ D (3.28)

z ≥
∑
j

[(bj − 3rj − 1)Ij + (3bj − rj + 1)Ij] (3.29)

z ≥ −
∑
j

[(bj − 3rj − 1)Ij + (3bj − rj + 1)Ij] (3.30)

bj − rj
N

≤ Ij ≤ 1 +
bj − rj
N

∀j ∈ D (3.31)

bj , rj ∈ Z+ ∀j ∈ D (3.32)

Ij ∈ B ∀j ∈ D (3.33)

(3.1)− (3.8)

where

• Bi is the number of blue votes in the ith GU

• Ri is the number of red votes in the ith GU

• N is the total number of votes in South Carolina.

Then,

• Ij =


1, if bj ≥ rj

0, if bj < rj

Constraints (3.27) and (3.28) define blue votes and red votes in district j. Constraints (3.29) and

(3.30) are used to minimize the absolute value of the objective function in (3.25). Constraints (3.31)

define the indicator function Ij .

15

3.1.6 Median-Mean

In our calculations, it is desirable to minimize the absolute value of the median-mean score

because we want the advantage of the parties to be as small as possible. We define the following

decision variables:

• Bi represents the blue votes in GU i.

• Ri represents the red votes in GU i.

• z represents the absolute median-mean calculation.

• bj represents the blue votes in district j.

• rj represents the red votes in district j.

• βj represents the blue-share-of-votes
(
βj =

bj
bj+rj

)
.

• sk represents the sorted β values. In particular, sk is the kth smallest β value.

• σ represents a |D| × |D| permutation matrix.

• µ represents the median value amongst all β values.

To optimize the absolute median-mean fairness score, we utilize MIP MM1 :

16

FORMULATION 1

MM1

min z (3.34)

S.t. bj =
∑
i∈V

Bixij ∀j ∈ D (3.35)

rj =
∑
i∈V

Rixij ∀j ∈ D (3.36)

(bj + rj)βj = bj ∀j ∈ D (3.37)

sk =
∑
j∈D

σjkβj ∀k ∈ D (3.38)

sk+1 ≥ sk ∀k ∈ D′ (3.39)∑
j∈D

σjk = 1 ∀k ∈ D (3.40)

∑
k∈D

σjk = 1 ∀j ∈ D (3.41)

µ = s(|D|−1)/2 if |D| is odd (3.42)

µ =
1

2
(s(|D|−2)/2 + s|D|/2) if |D| is even (3.43)

z ≥ µ− 1

|D|
∑
j∈D

βj (3.44)

z ≥ 1

|D|
∑
j∈D

βj − µ (3.45)

bj , rj ∈ Z+ ∀j ∈ D (3.46)

µ, z ≥ 0 (3.47)

βj , sj ∈ R+ ∀j ∈ D (3.48)

σjk ∈ B ∀j, k ∈ D (3.49)

(3.1)− (3.8)

where D′ = D except that D′ excludes the last element of D, when D is sorted.

Here, constraints (3.35) and (3.36) define the blue and red votes for each district j. Con-

straint (3.37) defines the blue-share-of-votes variables βj for each district j. Constraint (3.38) per-

mutes the variables βj onto sk. Then (3.39) orders the sk variables. Constraints (3.40) and (3.41)

17

define the permutation matrix σ. Constraints (3.42) and (3.43) define the median variable µ. Con-

straints (3.44) and (3.45) define z to be absolute value of the median-mean quantity. Constraints

(3.46) - (3.49) define the various variable domains.

If we know that there are an odd number of districts, we can use an alternate formulation,

where rather than sorting the β values, we instead force µ to be the median value via big-M

constraints.

FORMULATION 2: Let H = (|D| − 1)/2 represent half of the number of districts,

rounded down. Let mj be a binary variable, where mj = 1 ⇐⇒ µ ≥ βj . Similarly, let nj be a

binary variable where nj = 1 ⇐⇒ µ ≤ βj . Also define M to be a sufficiently large number. Then

18

the second formulation to optimize the absolute median-mean is:

MM2

min z (3.50)

S.t. bj =
∑
i∈V

Bixij ∀j ∈ D (3.51)

rj =
∑
i∈V

Rixij ∀j ∈ D (3.52)

(bj + rj)βj = bj ∀j ∈ D (3.53)∑
j∈D

mj = H + 1 (3.54)

∑
j∈D

nj = H + 1 (3.55)

βj − µ ≤M(1−mj) ∀j ∈ D (3.56)

µ− βj ≤M(1− nj) ∀j ∈ D (3.57)

z ≥ µ− 1

|D|
∑
j∈D

βj (3.58)

z ≥ 1

|D|
∑
j∈D

βj − µ (3.59)

bj , rj ∈ Z+ ∀j ∈ D (3.60)

µ, z ≥ 0 (3.61)

βj ∈ R+ ∀j ∈ D (3.62)

mj , nj ∈ B ∀j ∈ D (3.63)

(3.1)− (3.8)

Constraints (3.56) and (3.57) force µ to take on the value of the median β value. Once

again, this assumes an odd number of districts, else the problem would be infeasible.

3.2 Methods

All models above are developed by the author of this dissertation, with the exception of

FEAS and COMP . These models are all formulated in Python using Gurobi’s Python inter-

19

face Gurobipy, where the “NonConvex” parameter was set at 2 to deal with the various quadratic

constraints. The code used to create these models can be found in Appendix A: MIP Codes.

Each model had a maximum time limit of 71 hours and was run on Clemson University’s Pal-

metto Cluster. Each MIP utilized one node in the Palmetto Cluster, 10 CPUs, 120GB of memory,

and a Fourteen Data Rate (FDR) interconnection. The number of districts was set at seven and

two experiments were run with population deviations from ideal set at ±5% and ±1%. In other

words, (L,U)5% =
(

0.95
|D|

∑
i∈V Pi,

1.05
|D|

∑
i∈V Pi

)
and (L,U)1% =

(
0.99
|D|

∑
i∈V Pi,

1.01
|D|

∑
i∈V Pi

)
in

constraint (3.2). To improve performance, a feasible plan with a population deviation of 483 was

fed into the model to supply starting values for the assignment decision variables xij . This feasible

plan was created by running the MIP that optimizes population deviation, with an objective cutoff

of ≤ 500. That starting plan is pictured in Figure 3.1.

Figure 3.1: Starting Plan

Some constraints that dealt with small decision variables were multiplied by a large con-

stant so that Gurobi wouldn’t accept suboptimal solutions due to insufficiently small tolerances.

Constraints (3.56)–(3.59) were all multiplied by 1000 since the subtractions in those constraints can

yield small results that Gurobi may otherwise round to 0.

20

3.3 Results

After running the experiments described in the Methods section, we report the best objective

values found in Tables 3.1 and 3.2. Any results with run times that have an asterisk did not solve

to optimality; those runs all hit the time limit of 71 hours (255600 seconds).

Objective Runtime (s) Initial Obj Best Obj Found Pop Dev

Population Deviation 255600* 483 9 9
Compactness 255600* 6.852 5.899 59569
County Splits 255600* 30 3 186917
Efficiency Gap 255600* 0.1127 0.0945 197263
Median-Mean (form 1) 45320 0.00451 0.00000 136395
Median-Mean (form 2) 592 0.00451 0.00000 123231

Table 3.1: MIP Results for ±5% Population Deviation

Objective Runtime (s) Initial Obj Best Obj Found Pop Dev

Compactness 255600* 6.852 6.852 483
County Splits 255600* 30 7 28923
Efficiency Gap 255600* 0.1127 0.1058 37353
Median-Mean (form 1) 4577 0.00451 0.00000 33769
Median-Mean (form 2) 976 0.00451 0.00000 35347

Table 3.2: MIP Results for ±1% Population Deviation

Objective ±5% plan ±1% plan

Population

Deviation

21

Compactness

County Splits

Efficiency Gap

Median-Mean

(form 1)

22

Median-Mean

(form 2)

Table 3.3: Optimal plans from MIP

3.4 Conclusion

After observing the results of the various MIPs, a few glaring concerns emerge. First, many

of the experiments were unable to solve in the 71-hour time limit. This is not entirely unexpected,

as each formulation has hundreds of thousands of variables and tens of thousands of constraints.

Secondly, even with 71 hours of processing time, many of the formulations fail to make much progress.

This is most apparent with COMP with ±1% population deviation constraints, which made no

progress over the course of the solve. The authors of the paper from which COMP is defined only

used the formulation on county graphs, so perhaps poor performance on the precinct graph should

be expected. Third, the pictorial evidence seems to suggest that many of the resultant plans bear a

striking resemblance to the starting plan seen in Figure 3.1. This suggests that the MIP is incapable

of solving these models to optimality without serious modifications to the approach.

While the MIP experimentation may seem disheartening, this study does yield some impor-

tant results. Firstly, it’s important to note that these results can be used as a measuring stick for

the heuristics in the following chapters. We should probably expect that the MIP performs better

in each individual objective compared to the multiobjective approaches. The best objectives found

in tables 3.1 and 3.2 can be used as ideal points for the sake of multiobjective optimization.

23

Chapter 4

Optimizing Compactness Using

Simulated Annealing

4.1 Introduction and Overview

Judging by the results in Chapter 3, we can see that sometimes, mathematical programs

cannot always be solved to optimality in any reasonable time frame. The number of variables and

objectives exceeds the capabilities of exact solution strategies.

Thus, we turn our attention to heuristics. This chapter reports on a metaheuristic approach

to optimize district compactness for the congressional districts of South Carolina. In theory, this

approach could be utilized to optimize any objective, but compactness is easy to visualize. A

secondary objective considered in this chapter is county splits. Population deviation is set as a

constraint.

The specific metaheuristic approach used is simulated annealing. Simulated annealing is a

metaheuristic technique that seeks to maximize or minimize an objective function that may have

many local optima. Simulated Annealing is particularly useful in combinatorial problems where

large numbers of configurations are possible. For example, if one were to randomly assign each of

the 2260 precincts in South Carolina to one of the seven congressional districts (with no regard for

contiguity), the number of possible arrangements would be 5.92 × 1019, far too large a number to

consider every possibility.

24

Broadly, simulated annealing works as follows:

• Define a state space Ω, where a given state c ∈ Ω neighbors another state n ∈ Ω if a single

perturbation of c can create n.

• Define a real-valued function E (“E” for “energy”) that needs to be minimized. The energy

of state c is E(c).

• Start at some feasible state c.

• Establish a “high” starting temperature T .

• From the current feasible state, randomly consider a neighbor n. Let ∆E := E(n)− E(c).

– If ∆E < 0 (i.e., transitioning to the neighbor would improve the objective by decreasing

it), then accept the transition and move to the neighbor. Redefine the current state:

c := n.

– If ∆E > 0 (i.e., it is a worsening move), accept the transition with probability
1

exp(∆E)/T
.

If accepted, set c := n.

• Gradually, over the course of the algorithm, reduce T .

• Stop when a local optimum is reached.

The key idea is that at the beginning of the algorithm, when T is large (relative to exp(∆E)),

transitions from one state to another are done essentially at random. Then, near the end of the

algorithm, transitions that improve (decrease) the energy of the system are done almost exclusively.

Simulated annealing has been used in many applications, including the traveling salesman

problem, circuit board design, school timetabling, molecule structure design, and more [1, 18, 34].

Critically, D’Amico et al. used simulated annealing to produce compact police districts [6]. This

study was particularly inspirational for solving our problem.

4.2 Our Simulated Annealing Algorithm

We start by defining a graph G, where each geographic unit (i.e., each precinct) is assigned a

node and an edge is placed between nodes if there is a nonzero length boundary between them. Any

25

Figure 4.1: Demonstrating a Flip

enclave geographic units (GUs) are merged into their enclosing GUs. Any island GUs are declared

to be adjacent to the GU that is geographically closest to them.

The state space Ω is the set of all feasible plans that assign every geographic unit to a district

d ∈ D, where D is the set of all districts. A plan is considered feasible if each district is contiguous.

Contiguity in this context requires that for every pair of geographic units ga and gb assigned to the

district d, there is a path ga, g1, g2, . . . , gb where each node in the path is also in district d.

In order to move from one plan c to a neighboring plan n, we perform a perturbation on

plan c. This perturbation could be many things, but the simplest option (and the one that is used

in this study) is to flip a single GU on a district border from one district to another. Figure 4.1

demonstrates an example of a flip. The starred GU changes from the lighter-colored district to the

darker-colored district.

For each flip, we need to ensure that the district losing a precinct is still contiguous. If such

a flip creates a discontiguous district, we reject the perturbation. However, checking the contiguity

of all GUs in the shrinking district is computationally expensive, so we instead only check whether

the subgraph of all GUs assigned to the shrinking district that are also within distance 2 (measured

by number of edges between nodes) of the transitioning GU are contiguous. This procedure is far less

computationally expensive, but it occasionally rejects flips that actually are legal. It never accepts

an illegal flip, however.

A secondary and less strict constraint is population deviation. Similar to its definition in

subsection 3.1.2, population deviation is the sum of each district’s deviation from the ideal population

of the district. Constitutionally, this value must be as small as possible (generally below 1% in many

cases). However, in order to successfully explore the state space, we allow this deviation to grow

26

arbitrarily large before later requiring perturbations that improve population deviation.

The procedure used in this study differed from traditional simulated annealing (TSA) in

several important ways. Those differences are documented in the following subsections.

4.2.1 Weighting Candidate Flips

Rather than picking a single neighboring plan and either accepting or rejecting that transi-

tion, we select several candidate neighbors and assign a weight to each one based on their energy.

Then, using a random weighted selection, we transition to that neighbor. This also means that

potential transitions that reduce the energy of the system may not be implemented. The weight for

the jth candidate precinct flip is

Wj =
Sp
j ·A

1 + exp
(

∆Ej

T

) , (4.1)

where

• ∆Ej is the “change in energy” from the current state to the proposed state. This is discussed

further in subsection 4.2.3.

• T is the current temperature of the system.

• Sj is a population scaling factor. If the flip improves population balance between the districts,

then Sj > 1. If the flip worsens the population balance, then Sj ∈ (0, 1). If the flip keeps both

modified districts in the desired population window, then Sj = 1. More precisely,

Sj =


1 + 0.1(qℓ + qe), if (qℓ + qe) > 0

1, if qℓ + qe = 0

0.9−(qℓ+qe), if qℓ + qe < 0

(4.2)

where qℓ and qe are population differences (in percentage points) from the acceptable popula-

tion window for the leaving and entering districts, respectively. To be precise, if the acceptable

population window for a district is [L,U], the ideal population is I, and the population of the

27

leaving and entering districts are popℓ and pope, then:

qℓ =



popℓ−U
0.01I (> 0), if popℓ > U

popℓ−L
0.01I (< 0), if popℓ < L

0, if L < popℓ < U

(4.3)

qe =



pope−U
0.01I (< 0), if pope < U

pope−L
0.01I (> 0), if pope > L

0, if L < pope < U

(4.4)

• The exponent p increases the impact of the population scaling factor Sj . Population power p

increases over the course of the algorithm. Conceptually, this is done to encourage the code to

care more about population balance as we advance throughout the algorithm. In particular,

the value of p is documented in Table 4.1.

• A is a binary variable that determines whether the flip maintains district contiguity. A = 1 if

contiguity is maintained, and 0 otherwise.

Percentage of SA Steps Taken Population Power p
[0, 20) 1
[20, 40) 2
[40, 60) 4
[60, 80) 8
[80, 90) 16
[90, 95) 32
[95, 97.5) 64
[97.5, 100] 128

Table 4.1: Population power p as a function of percent of simulated annealing (SA) steps taken.

It is worth noting that the denominator in Equation 4.1 differs from TSA by adding 1. This

is done since candidate flips with ∆Ej < 0 are not automatically accepted. Therefore, without the

+1, the denominator would approach 0 for some values of ∆Ej and Wj would explode to +∞. To

prevent this outcome, we ensure that the denominator is always at least 1.

28

4.2.2 Objectives

Traditional simulated annealing optimizes a single objective. Our modification attempts

to simultaneously optimize two. Those objectives are district compactness and county splits. We

measure compactness using inverse Polsby-Popper scores, detailed in equation 1.3 from Chapter 1,

and also listed below for reference. Recall that D is the set of districts, rd is the perimeter of the

dth district, and Ad is the area of the dth district.

PPi =
1

|D|
∑
d∈D

(
r2d

4πAd

)
− 1

The secondary objective is county splits. As mentioned in Chapter 1, a county split occurs

when one county is occupied by two or more districts. It is desirable to avoid this if possible.

4.2.3 Changes to ∆E

In TSA, an energy is calculated for the current state and the neighboring (proposed) state.

Then ∆E = En−Ec, where Ec is the current energy and En is the energy for the neighboring state.

If ∆E < 0, then the transition to the neighboring state is made; if ∆E > 0, then the flip occurs with

a certain probability as discussed above. In this algorithm however, we instead perform a standalone

calculation for ∆E; that is, we opt not to calculate the energy for each individual state, and instead

calculate a ‘score’ for the proposed transition. That ∆E score is based on the objectives defined in

subsection 4.2.2. In order to minimize both objectives, we invent the following ∆E function:

∆E = B(∆x,∆C)I · (|∆C|+ 1)L · sign(∆C) (4.5)

The variables are best explained through example. In Figure 4.2, Sumter county is split between

three districts of various colors.1 Suppose the proposed flip moves the starred precinct P from the

blue district to the white district. Then:

• ∆x := xℓ−xe, where xℓ is the number of precincts in both P ’s county and the leaving district.

xe is the number of precincts in both P ’s county and the entering district. In the example,

xℓ = 5 and xe = 52, so ∆x = −47.
1These districts are present outside Sumter county as well, but we focus in on a single county.

29

Figure 4.2: Here, Sumter County has parts of three districts in it.

• ∆C := Cn −Cc, where Cn is the inverse Polsby-Popper compactness score after the proposed

flip, and Cc is the current inverse Polsby-Popper compactness score.2

• I is a static, user-specified binary indicator; I = 1 if we care about county boundaries, and

I = 0 otherwise.

• L is a static, user-specified positive value. The larger L is, the more that we emphasize

compactness compared to county splits.

• B(·) is a bolstering function. It either amplifies or diminishes the value of ∆E. In particular,

B(∆x,∆C) =


1 + (∆x)2/3, if sign(∆x) = sign(∆C)

1

1 + (∆x)2/3
, otherwise

(4.6)

Notice that B(∆x,∆C) > 0 in all cases. The idea behind this function is that if ∆x and ∆C

share the same sign, then they are harmonious measures, and B(∆x,∆C) is a “bolstering”

function; it falls in the range [1,∞), thereby increasing the magnitude of ∆E. Conversely, if

∆x and ∆C do not share the same sign, then they are conflicting measures. For example,

2We use inverse Polsby-Popper values here to better distinguish compact plans from non-compact plans.

30

∆x
∆C

-0.25 -0.125 0 0.125 0.25

-25 -11.94 -10.74 0 0.12 0.13
-5 -4.91 -4.41 0 0.29 0.32
0 -1.25 -1.13 0 1.13 1.25
5 -0.32 -0.29 0 4.41 4.91
25 -0.13 -0.12 0 10.74 11.94

Table 4.2: Table of Sample ∆E Values (I = L = 1)

the proposed precinct flip may improve compactness (negative ∆C) but worsen county splits

(positive ∆x). In this case, B(∆x,∆C) resides in (0, 1], thereby decreasing the magnitude of

∆E.

Overall, this formulation of ∆E achieves the following things:

• ∆E < 0 if compactness would improve with the flip.

• ∆E > 0 if compactness would worsen with the flip.

• ∆E ∈ (−∞,−1) if both compactness and county splits would improve with the flip.

• ∆E ∈∼ (−1, 0) if compactness would improve but county splits would worsen with the flip.3

• ∆E ∈∼ (0, 1) if compactness would worsen but county splits would improve with the flip.

• ∆E ∈ (1,∞) if both compactness and county splits would worsen with the flip.

These results are illustrated in Figure 4.3. We further justify this function by showing some sample

∆c and ∆x values in Table 4.2.

-1 0 1

∆C < 0
∆x < 0

∆C < 0
∆x > 0

∆C > 0
∆x < 0

∆C > 0
∆x > 0

∆E

Figure 4.3: The values of ∆E based on the values of ∆C and ∆x

4.2.4 Cooling Schedules

Simulated Annealing algorithms are equipped with cooling schedules. These describe the

method by which temperature decreases. Much work has been done comparing various cooling

3The symbol ∈∼ means “approximately within.” These values can occasionally escape the intervals.

31

schedules. See for example [24]. In this work, we present three cooling schedules:

A. Hill climbing: For the first 50% of iterations, T = 100, and for the last 50% of iterations,

T = 0.1. This technique is tested as a baseline to see if gradual cooling (used by schemes B

and C) has any beneficial effect.

B. Geometric cooling: Tk+1 = αTk. The value α is the geometric ratio and is user-specified as

α ∈ [0.95, 0.999].

C. Heating then geometric cooling: We keep the system at its initial temperature until the com-

pactness score starts to level out, or we reach the halfway point of the user-specified maximum

iterations. Then we start geometric cooling with α ∈ [0.9, 0.999].

In schedules B and C, the Markov chain length is 1000 precinct flips at each temperature.

The code terminates after 1 million iterations. In all schedules, the initial temperature is set to be

T = 100.

4.2.5 Algorithm Pseudocode

The algorithm’s pseudocode is presented in Algorithm 1.

4.3 Experimental Design

To formally conduct experiments to find the plan with the best compactness and the one

that respects county boundaries the most, we ran the algorithm several times at different input

settings. Specifically, there are five input variables that we manipulated:

1. L: The exponent on the compactness measure. The larger this value, the more the code values

compact districts. A default value of 1 works for this parameter, but it could be as arbitrarily

large as we want it to be.

2. I: The indicator variable that determines whether we desire to preserve county boundaries. I

is set to 1 if county splits are to be considered and 0 otherwise.

3. n: The number of boundary precincts sampled in each iteration.

4. Cooling Schedule (CS): The method by which we decrease temperature.

32

Algorithm 1 Main Code

INPUT:
L: The exponent on compactness scores
I: The indicator variable that determines whether we desire to preserve county boundaries
n: The number of boundary precincts sampled in each iteration
Cooling Schedule: the method by which we decrease temperature
α: The geometric ratio used when using cooling schedule B or C
Itmax: The maximum number of iterations to perform

1: for i = 1 : Itmax do
2: Determine temperature T (a decreasing function of iteration number)
3: Determine population power p (an increasing function of iteration number)
4: flag= 0
5: while flag= 0 do
6: Select n precincts on district boundaries
7: for j = 1 : n do
8: Determine how the jth precinct flip would affect district compactness
9: Calculate ∆Ej for the jth precinct flip

10: Calculate population scale variable Sj for the jth precinct flip
11: Calculate the binary adjacency check variable A
12: Assign a weight Wj for the jth precinct flip candidate, using the formula

Wj =
(
Sp
j ·A

)
/ (1 + exp (∆Ej/T))

13: end for
14: if Any weight ̸= 0 (indicating that at least one flip does not break contiguity) then
15: flag= 1
16: Using a weighted selection, choose a precinct to flip over district lines
17: end if
18: end while
19: Update district perimeter, area, compactness score, and population;
20: end for

33

5. α: The geometric ratio used when using cooling schedule B or C. The variable α determines

how quickly the geometric decrease for temperature occurs.

To conduct our experiments, we choose a small sample of test points for our input values.

The possible test points are as follows:

1. L ∈ {1, 10, 50}

2. I ∈ {0, 1}

3. n ∈ {10, 30, 50}

4. Cooling Schedule ∈ {A,B,C}

5. α ∈ {0.985, 0.99}

Because there are 3× 2× 3× 3× 2 = 108 different possible experimental designs with these

input test values, we opt to only test a subset of ten of these experiments. We used D-optimality to

choose particular experiments which we hypothesize will produce differing results. In particular, we

choose the subset of ten designs so that the collection of experiments makes the input variables as

independent as possible. We eventually desire to know which input values cause the biggest change

in our compactness score; we claim that our subset of ten experiments can accomplish that. For a

more in-depth discussion of D-optimality, see The National Institute of Standards and Technology’s

description [22]. The input values for the ten experiments conducted can be found in Table 4.3.

Experiment Number L I n Cooling Schedule α

1 10 0 10 C 0.99
2 1 0 50 C 0.985
3 50 1 30 B 0.985
4 10 1 30 C 0.985
5 1 1 10 B 0.985
6 50 0 50 A –
7 50 1 10 A –
8 50 1 10 C 0.99
9 10 1 50 A –
10 10 0 50 B 0.99

Table 4.3: Input Data for each Experiment

In each of these ten experiments, we run the algorithm back-to-back ten times, so the final

plan created on run one is the first plan used for run two. Therefore, for each set of input variables,

34

the algorithm could run for as many as 10 million iterations. The purpose of doing this back-to-back

so many times is to ensure that each run has a unique starting point and will produce different

results each time. Further, the goal of this study is to validate the claim that compactness can be

improved from the current congressional plan. We argue that this experimental design accomplishes

that goal.

One other concern of ours is to ensure the algorithm does not unnecessarily spend time

doing more iterations once a local optimum is reached. To prevent unnecessary iterations, we allow

the algorithm to “skip ahead” if two conditions are satisfied:

1. The current compactness score is less than half of the maximum compactness score reached,

and

2. The slope of the best fit line for the last 2000 iterations is in the interval [−0.000025, 0.000025].

This ensures that the average change in the last 2000 scores is between −0.05 and 0.05. This

indicates that a local optimum has likely been reached.

These conditions are checked every 1000 iterations. When the algorithm skips ahead, it skips to the

next 10% benchmark. So if the algorithm is currently at iteration 546,000, and the two conditions

above are satisfied, it skips to iteration 600,000 (the 60% benchmark) and adopts the appropriate

temperature T and population power p for that iteration value. This test is not applied in the

final 10% of iterations.

4.4 Results

The 2019 congressional district plan for South Carolina can be found in Figure 4.4. At the

time that this study was conducted, this was the current congressional plan. In this district drawing,

the inverse Polsby-Popper score is 7.7096 and the number of county splits is 12. The experiments we

run seek to improve these objectives. We use this 2019 congressional plan as our starting plan for

each of the experiments performed. The input values for the ten experiments are found in Table 4.3.

The results for each of the ten experiments are summarized in Table 4.4. In each experiment,

the algorithm is run ten times back-to-back. This code was compiled in Matlab and run on Clemson

University’s supercomputer using ten cores, an Intel Xeon chip, and 120 GB of memory. The

specific code can be found in Appendix B: Simulated Annealing Codes. Each statistic in this

35

Figure 4.4: The 2019 South Carolina Congressional Plan

table summarizes those ten runs. For instance, “Best PPi” displays the best inverse Polsby-Popper

score found amongst the ten runs. “Mean PPi” tabulates the average of the best inverse Polsby-

Popper scores found in each of the ten runs. A similar idea holds in columns 4 and 5, where we

analyze county splits. Further, every statistic in columns 2–5 originated out of a plan with district

populations within ±1% of the ideal district population of 690,660 people. Column 6 identifies the

worst instance of the inverse Polsby-Popper measure found. This column corresponds to a plan

that does not necessarily meet population constraints. Column 7 averages the number of iterations

needed in each run of the algorithm.

Next, we highlight some of the starkest results. Out of the tens of millions of iterations, the

most compact plan is produced in experiment 3. The inverse Polsby-Popper score is 1.65 and this

plan can be seen in Figure 4.5. For comparison, the plan which best emphasizes county boundaries

and had the fewest county splits (only 8) is found in experiment 4. This plan can be seen in Figure 4.6.

Both plans met the population constraint. The plan with the absolute worst compactness score across

all experiments is found in experiment 2. This plan had an astronomical inverse Polsby-Popper score

of 152.76 and can be seen in Figure 4.7. This is an example of a plan that is reached in the heating

phase of the algorithm, and we do not guarantee that such a plan satisfies population constraints.

36

Exp. No. Best (min) PPi Mean PPi Min CS Mean CS Worst (max) PPi Mean Iterations

1 2.36 2.71 21 23.7 118.28 546,300
2 2.04 2.46 19 20.8 152.76 582,800
3 1.65 2.12 10 12 10.53 248,700
4 2.57 4.01 8 11 85.24 345,300
5 4.35 4.87 14 16.7 146.00 495,500
6 3.03 3.54 24 29 24.19 613,300
7 2.64 2.76 10 11 14.89 625,400
8 2.64 2.81 10 12.4 12.71 312,100
9 3.08 4.91 9 11.9 96.57 630,900
10 2.31 3.01 21 24.5 109.78 523,500

Table 4.4: Summary Data per Experiment

Figure 4.5: The Most Compact Plan (PPi = 1.65), Experiment 3

37

Figure 4.6: The Plan with Fewest County Splits (8), Experiment 4

Figure 4.7: Plan with Worst PPi Compactness Score (152.76), Experiment 2

38

Figure 4.8: Experiment 6 Run 1 Compactness Graph. Cooling Schedule A

The graphs that display compactness scores at each iteration produce vastly different trends

based on the cooling schedule. To illustrate the three different cooling schedules, consider the com-

pactness graphs in experiments 6, 3, and 1. These graphs are found respectively in Figures 4.8, 4.9,

and 4.10.

4.5 Conclusions

There are a variety of observations we can make about the results produced. To begin, it is

notable that in every experiment, we were able to reliably produce plans that are more compact than

the 2019 congressional district plan. This provides some evidence that the 2019 plan specifically

ignored compactness in an effort to achieve some other goal. Another observation is that if I is set

to zero, then predictably, the districts do not conform to county boundaries well, and the number of

county splits is large. Also, if L is large, then the districts never become excessively noncompact.

A mid-algorithm graph with awful compactness is found in Figure 4.7. In the experiments when

L = 50, the districts tend to migrate their overall shape instead of sprawling all over the state in a

spiderweb-like fashion.

39

Figure 4.9: Experiment 3 Run 1 Compactness Graph. Cooling Schedule B

Figure 4.10: Experiment 1 Run 10 Compactness Graph. Cooling Schedule C

40

Figure 4.11: Plan with Dumbbell Phenomenon

One surprising result is that deemphasizing county boundaries (setting I = 0) does not

produce plans that are regularly more compact than experiments that do emphasize county bound-

aries. One hypothesis to explain this involves the fact that counties are inherently compact shapes.

By forcing a district to conform to county lines, we are also forcing the district to be a generally

compact shape.

Another notable result is that gradual cooling used in cooling schedules B and C outper-

formed the instant drop in cooling schedule A. One possible explanation for this is that when the

plan is still being heated, it sprawls out. If it is instantly cooled, then the sprawled district may seek

to consolidate in two different locations, instead of one, creating a dumbbell-like shape. An example

of this phenomenon can be witnessed in Figure 4.11, which came from experiment 9.

Finally, in order to isolate which parameters affected the outcome the most, we average the

values in each column of Table 4.4 if the experiment used particular parameter values. This data

is reported in Table 4.5. We further analyze how the inputs affected the outputs in Figures 4.12

and 4.13. From these figures, we can conclude that larger values of L lead to better compactness

and county split values. We further observe that the binary input I works as intended; when

I = 0, compactness improves, but county splits worsen. When I = 1, county splits improve, but

41

Figure 4.12: Box-and-Whisker Plots for Determining how Inputs affect Compactness

compactness worsens. Further experimentation would likely need to be performed to make definitive

conclusions about other inputs (n, cooling schedule, α) affect the final results.

Overall, we demonstrate that simulated annealing is a viable tool for optimizing compactness

in South Carolina. Further, we show that modifying the ∆E calculation and the procedure by which

perturbations are performed can be an effective technique for improving county splits as well.

42

Figure 4.13: Box-and-Whisker Plots for Determining how Inputs affect County Splits

Parameter
Metric to Average

Best PPi Mean PPi Min CS Mean CS Worst PPi Mean Iterations

L = 1 4.20 4.67 16.5 18.8 150.38 539150
L = 10 3.58 4.66 14.8 17.8 103.47 511050
L = 50 3.49 3.81 13.5 19.1 16.58 449875
I = 0 3.44 3.93 21.3 24.5 102.85 566475
I = 1 3.82 4.58 10.2 14.5 61.99 442983
n = 10 4.00 4.29 13.8 19.0 73.97 494825
n = 30 3.11 4.07 9.0 11.5 48.89 397050
n = 50 3.62 4.48 18.3 21.6 96.83 587625

CoolSch = A 3.92 4.74 14.3 17.3 46.22 623200
CoolSch = B 3.77 4.33 15.8 17.7 69.77 422567
CoolSch = C 3.40 4.04 14.5 20.0 93.25 446625

α = - 3.92 4.74 14.3 17.3 46.22 623200
α = 0.985 3.65 4.37 12.8 15.1 99.63 418075
α = 0.99 3.44 3.84 17.3 24.2 81.26 460633

Table 4.5: Average value for each parameter

43

Chapter 5

MOSA2: Multiobjective Simulated

Annealing 2

Although the work in the Chapter 4 does a decent job of optimizing compactness and

secondarily minimizing county splits, it lacks the capability to consider other real-world objectives,

particularly regarding political fairness. This chapter extends the concept of simulated annealing to

deal with even more objectives. Before discussing those objectives, it is worth detouring to discuss

multiobjective optimization briefly.

5.1 Multiobjective Optimization

Multiobjective Optimization is the study of simultaneously optimizing two or more objec-

tives subject to one or more constraints. Formally, WLOG, a multiobjective problem can be modeled

as:

min [f1, f2, . . . , fn] (5.1)

S.t. [constraints]

where {fi}ni=1 are the objective functions. In contrast to single-objective problems, multiobjective

problems do not generally have a single solution x∗ that optimizes all objectives simultaneously.

Instead, a set of solutions is considered optimal if there does not exist a solution that can improve

44

at least one objective value without worsening any other objective. For instance, consider a two-

objective (also known as biobjective) minimization problem, with objectives f1 and f2. The optimal

set of solutions is known as the Pareto front and is deemed to be Pareto optimal. Figure 5.1 shows

a sample objective function space for such a problem. It is worth noting that the decision variables{
xj

}
that produce the points in Figure 5.1 need not have any particular geometry.

We say that an outcome y1 dominates outcome y2 if y1
i ≤ y2

i for all objectives i ∈ [n] and

that for at least one objective i∗, y1
i∗ < y2

i∗ . We further say that y2 is dominated by y1. If neither

y1 nor y2 dominates the other, then we say that the two outcomes are nondominated with respect

to each other. The Pareto front will be the set of outcomes that are nondominated with respect to

each other and are not dominated by any other outcome.

Solving multiobjective problems exactly is both possible and well-studied (see for exam-

ple [8]). In this project, however, due to the sheer quantity of feasible solutions, we focus on

metaheuristic techniques. In particular, this chapter utilizes an extension of simulated annealing

into multiple dimensions. To assess the efficacy of the approach, we utilize a hypervolume metric.

Hypervolume is a widely used metric for assessing the performance of a set of multiobjective

outcomes. The hypervolume indicator measures the volume of the objective space dominated by a

given set of outcomes, relative to a reference point. This metric provides a comprehensive assessment

by capturing both the convergence and diversity of the outcome set. It is particularly advantageous as

it considers the entire Pareto front in every generation, thus offering a scalar value that encapsulates

the trade-offs among all objectives. By maximizing the hypervolume, we aim to obtain an outcome

set that is not only close to the true Pareto front but also diverse in its coverage of the objective

space.

Consider Figure 5.2. The area of the region bounded “northeast” of all outcome points

but “southwest” of the reference point represents the hypervolume of this set of outcomes. If a

new outcome is found (y∗ in the figure) that dominates (or is nondominated wrt) one or more

outcomes previously in the set, then the hypervolume increases, since the area grows. As such, any

algorithm that gradually finds more nondominated outcomes should have a monotonically increasing

hypervolume function.

There are several important notes to make about this calculation:

• This can be easily extended into higher dimensions if there are more than 2 objectives.

45

f1

f2

Pareto optimal

Non optimal

Figure 5.1: Biobjective optimization problem objective function space

f1

f2

Reference point

y∗

Figure 5.2: Hypervolume for a set of outcomes

• It is important that there is an upper bound for each objective, for without one, no reference

point could be reliably plotted. One way to ensure this is to reject any outcomes with objectives

greater than some pre-determined upper bound.

• It is wise to scale each objective so that they are all of similar magnitude. For instance, if f1

had an upper bound of 106 and f2 had an upper bound of 1, then improvements to f2 would

have minimal impact on the hypervolume.

• The choice of a reference point can be impactful. Choosing a reference point that is far

northeast of the region would force improvements to hypervolume to be minimal relative to

the current area of the region. A standard choice for the reference point is (1.1, . . . , 1.1) if each

46

objective has upper bound of 1. Ishibuchi discusses additional considerations for choosing a

proper reference point [15].

One other concept that is relevant for multiobjective optimization is the idea of an ideal

point. An ideal point I is the point in the outcome space that presents a theoretical lower bound

for each objective. It is improbable that I can be achieved, but it provides a reference for how good

the outcomes are.

There are two other metrics that can be helpful in evaluating the quality of a Pareto front.

The first metric is the mean ideal gap (MIG). The mean ideal gap measures the distance (along

each objective) between the ideal point and each point y in the Pareto front, sums these distances

together, and divides by the total number of points in the set. Smaller MIG values are better.

Equation (5.2) details the precise calculation, where m is the number of points in the Pareto set,

n is the number of objectives, yj is the jth outcome in the set, I is the ideal point, and U is the

upper bound vector.

MIG =

∑m
j=1

∑n
i=1

(
yj
i − Ii

)
/Ui

m
(5.2)

The second metric, known as Covered size of space (CSS) compares two different Pareto

sets, by analyzing what percentage of the outcome points dominate outcomes from the other set.

Suppose two Pareto sets Y ′ and Y ′′ are provided. CSS is calculated as defined in equation (5.3),

where y′ ∈ Y ′, and “⪯” means “dominates.”1 A value of C(Y ′,Y ′′) = 1 would mean that every

outcome in Y ′′ is dominated by an outcome in Y ′. This calculation will be utilized in Chapter 6.

C(Y ′,Y ′′) =
|{y′′ ∈ Y ′′ : y′ ⪯ y′′}|

|Y ′′|
(5.3)

5.2 The Algorithm

In this paper, we utilize five objectives that the literature indicates are indicative of a fair

districting. Those objectives are (1) population deviation, (2) inverse Polsby-Popper compactness,

(3) median-mean fairness score, (4) county splits, and (5) excess geographic units. Additionally, we

require that no district is discontiguous. In this study, we first explain one approach for turning

1Some authors make the distinction between weak domination (⪯) and strong domination (≺). We omit that
distinction here.

47

simulated annealing into a multiobjective problem, which is by using a weighted objective function.

We then explain how our approach (MultiObjective Simulated Annealing - 2) differs.

5.2.1 Perturbations

When creating a plan that gradually changes the shape of the districts, each iteration of

the process requires perturbing the districts slightly. There are two primary ways to perturb the

districts. The first (and most studied) way of perturbing a districting is to move one GU at a time

from one district into a neighboring one. This process, discussed in detail in section 4.2, is known

as the ‘flip’ algorithm. Flips are computationally inexpensive, but can lead to awkwardly shaped

districts if done at random.

The second way that districts can be perturbed is through recombination (ReCom), first

introduced in [9]. The basic idea behind this technique is to combine two neighboring districts into

one, let each GU represent a vertex in a graph, add an edge if GUs share a nonzero length boundary,

create a spanning tree on the vertices using Wilson’s Algorithm [40], then split the merged districts

into two new districts by removing one edge from the spanning tree. ReCom explores the state space

Ω more thoroughly by shifting many GUs every iteration, rather than moving them one at a time.

In our algorithm, each individual perturbation utilizes both flips and recombinations. We

perform one ReCom step followed by several GU flips. The precise details are explained in subsection

5.2.5.

5.2.2 Weighted-Sum Simulated Annealing

Traditionally, simulated annealing is used in single-objective optimization, as explained in

Chapter 4. In order to adjust this algorithm for multiple competing objectives, a weighted sum of

the objectives can be computed as follows:

1. Compute all objectives as outlined above. Let the vector of objective values for plan be

m(plan).

2. Divide the ith objective value by a predetermined scaling factor λi so that each objective value

is similarly scaled.

3. Weight each scaled objective value using a normalized weight vector α.

48

4. The energy for a given plan is calculated with

E(plan) = (α⊘ λ) ·m(plan), (5.4)

where “⊘” represents componentwise division and · is the standard dot product. Simulated

annealing attempts to locate the plan with the smallest energy, by using the procedure outlined

in Algorithm 2. The final output for this algorithm is one plan that is a local minimum for

the energy function E. This algorithm is functionally identical to single-objective simulated

annealing, except that the energy function is calculated with a weighted sum of multiple

objectives. We argue that such an approach leaves much to be desired, though. Our criticisms

and alternatives are now presented.

Algorithm 2 Simulated Annealing for Redistricting

INPUT:
plan0: The starting plan
T0: Initial temperature
Tf : Final temperature
its: Maximum iteration value
α: normalized weight vector
λ: scaling vector for objectives
λf : scaling vector for flips

1: T ← T0

2: plan← plan0

3: E(plan)← (α⊘ λ) ·m(plan) ▷ ‘⊘’ represents componentwise division
4: γ ← (Tf/T0)

1/its ▷ γ is the cooling rate for geometric cooling
5: for i← 1 to its do
6: plan′ ← perturb(plan) ▷ This could be any perturbation function
7: E(plan′)← (α⊘ λ) ·m(plan′) ▷ ‘⊘’ represents componentwise division
8: ∆E ← E(plan′)− E(plan)
9: if ∆E < 0 then ▷ i.e., plan′ is better than plan

10: plan← plan′

11: else ▷ i.e., plan′ is worse than plan
12: µ← exp

(−∆E
T

)
13: plan← plan′ with probability µ
14: end if
15: T ← γ · T
16: end for
17: return plan

49

5.2.3 Multiobjective Algorithm

One criticism of Algorithm 2 is that the final result is a single plan. While this plan may

have several desirable characteristics, it is hard to argue that this plan is optimal with regards to

every (or even one) objective. In fact, it is likely impossible to find a single plan that optimizes

all objectives simultaneously. Even if a diverse set of weights are explored in Algorithm 2, this

still may not report the entire approximated Pareto front. An alternative approach is the epsilon-

constraint method for multiobjective optimization. However, this approach can be computationally

expensive and may require extensive parameter tuning to achieve a satisfactory coverage of the

Pareto front, which is impractical for the complexity of redistricting problems. In view of this fact,

we implement Algorithm 3, MultiObjective Simulated Annealing 2 (MOSA2). This algorithm is

inspired largely from Rincón-Garćıa’s 2013 paper, which details the invention of the original MOSA

for this problem [29]. Our work differs from theirs in a few key ways:

1. We utilize a larger set of objectives. Their paper focused solely on compactness and population

deviation.

2. We change the way that our perturbations are performed. Rather than performing flips ex-

clusively, we implement both recombinations and flips, detailed in subsections 5.2.1 and 5.2.5

The end result of MOSA2 is a set of high-quality plans that approximate a Pareto front for the

objectives considered.

In Algorithm 3, three functions (generateStartingPlan, perturb, and saProbCalc) are

used; they are detailed in subsections 5.2.4, 5.2.5, and 5.2.6.

5.2.4 Generate a Starting Plan

Before beginning the algorithm, it is imperative that we choose a plan to serve as the starting

point. This is done with the generateStartingPlan(d,U) function. In this function, d districts

are created using a flood-fill technique. In particular, the following steps are performed:

1. Generate a random spanning tree on the GU graph using Wilson’s algorithm. Wilson’s algo-

rithm is a procedure for generating a random spanning tree on a graph. This procedure has a

uniform probability of producing any possible tree for a graph, making it a desirable spanning

tree algorithm for this purpose [40].

50

Algorithm 3 MOSA2: Multiobjective Simulated Annealing 2

INPUT:
(T0, Tf): (initial temperature, final temperature) pair
d: number of districts to create
its: maximum iteration value
λ: scaling vector for objectives
λf : scaling vector for flips
n: maximum archive size
(tol0, tolf): (initial, final) acceptable tolerance for recombined district populations
f : number of flips to perform per iteration
U : upper bound vector for the objectives

1: initialization:
2: plan0 ← generateStartingPlan(d,U) ▷ see subsection 5.2.4
3: T ← T0

4: tol← tol0
5: for i← 1 to n do
6: Create a normalized random weight vector (r.w.v.) αi and add it to a pool W
7: end for
8: plan← plan0

9: Archive A is initialized with maximum size n
10: Add plan to A and assign it a normalized r.w.v. α1

11: γ1 ← (Tf/T0)
1/its

12: γ2 ← (tolf/tol0)
1/its

13: for i← 1 to its do
14: plan′ ← perturb(plan, tol, f,λf , T) ▷ see subsection 5.2.5
15: if ∃i : m(plan′)i > Ui, then
16: Reject plan′ and create a new one. continue.
17: end if
18: if plan′ dominates at least one plan in A, then
19: Remove all dominated plans from A
20: Add plan′ to A and assign it a r.w.v. αi previously assigned to one of the removed plans
21: plan← plan′

22: else if plan′ is dominated by at least one plan in A, then
23: Do not add plan′ to A
24: µ, planA, αA ← saProbCalc(A,λ, plan′, T) ▷ see subsection 5.2.6
25: plan← plan′ with probability µ, else plan← randomChoice(A)
26: else if plan′ is nondominated with respect to A then
27: if |A| < n then
28: Add plan′ to A and assign it a random w.v. αi from pool W
29: plan← plan′

30: else (i.e. |A| = n)
31: µ, planA, αA ← saProbCalc(A,λ, plan′, T) ▷ see subsection 5.2.6
32: In A, replace planA with plan′ with prob. µ; if replaced, assign plan′ the w.v. αA
33: plan← plan′ with probability µ, else plan← randomChoice(A)
34: end if
35: end if
36: T ← γ1 · T
37: tol← γ2 · tol
38: end for
39: return A

51

2. Pick d random GUs to serve as the centers for the districts.

3. For every GU in the tree, add it to the district with the closest center (as measured by graph

distance on the tree)

4. If this process produces a plan with objectives that exceed any of the objective bounds in U ,

reject the plan and try again.

Creating a random starting point allows the algorithm to diversify each time the code is run.

5.2.5 Perturb Function

When perturbing a plan, we use one ReCom step and several flips in the following way:

1. In plan, pick two neighboring districts d1 and d2 with populations p1 and p2, respectively.

Verify that p1 ≥ pI ≥ p2 where pI is the ideal population for a district and perform a re-

combination step for d1 and d2. Ensure that the resulting populations (post-ReCom) p′1 and

p′2 are within a predetermined tolerance tol of the average district population (i.e., p′1, p
′
2 ∈[

(1− tol)
(
p1+p2

2

)
, (1 + tol)

(
p1+p2

2

)]
). Let the resulting districts be d′1 and d′2. Over the course

of the algorithm, tol decreases geometrically to ensure that the district populations are be-

coming more equinumerous.

2. Perform f flips on the newly created districts, flipping GUs from district d′1 to d′2 or vice-versa,

where f is a user-defined input.

(a) If the flip would create a discontiguous district, reject it. Contiguity is checked using the

Python package NetworkX.

(b) Each flip is judged according to a simulated annealing probability calculation. In partic-

ular, we use the following procedure.

i. Let plan and planf be the plans before and after the proposed flip, respectively. Let

α be the weight vector for both plans, let λf be the predetermined scaling factor for

flips (note that this is distinct from the scaling factor discussed in subsection 5.2.2),

and let m(plan) be the function that yields the objectives vector for plan.

ii. Define the energy of the plan as

E(plan) = (α⊘ λf) ·m(plan) (5.5)

52

iii. Define the difference of energies as ∆E = E(planf)− E(plan).

iv. If ∆E < 0, then planf has a smaller energy, and we accept the change. If ∆E ≥ 0,

then the flip is accepted with probability

µ = exp

(
−∆E

T

)
, (5.6)

where T is the current temperature of the algorithm.

It’s important to note that λf should be used instead of λ since flips change the objectives

very minutely. If λ were to be used in equation 5.5, then ∆E in equation 5.6 would be significantly

smaller, resulting in the fraction −∆E
T being about the same regardless of the actual flip performed.

The values for λf must therefore be significantly smaller than those of λ to account for the more

minute change caused by flips.

Alternatively, the algorithmic steps are detailed in Algorithm 4.

Algorithm 4 Perturb

perturb(plan, tol, f,λf , T)

1: Pick two random neighboring districts d1 and d2 in plan with populations p1 and p2 satisfying
p1 ≥ pI ≥ p2, where pI is the ideal population of a district

2: Perform a ReCom step on d1 and d2, ensuring that the resulting populations p′1 and p′2 both
satisfy p′1, p

′
2 ∈

[
(1− tol)

(
p1+p2

2

)
, (1 + tol)

(
p1+p2

2

)]
. Define the new districts as d′1 and d′2.

3: for j ← 1 to f do
4: Pick a random GU gj on the border of d′1 and d′2
5: Let planf be the plan after flipping gj to the neighboring district
6: if planf is discontiguous then
7: reject the flip
8: else
9: E(plan)← (α⊘ λf) ·m(plan) ▷ Note that λf ̸= λ

10: E(planf)← (α⊘ λf) ·m(planf)
11: ∆E ← E(planf)− E(plan)
12: if ∆E < 0 then ▷ if the flip improves the plan
13: plan← planf ▷ accept the flip
14: else ▷ if the flip worsens the plan
15: µ← exp

(−∆E
T

)
16: plan← planf with probability µ
17: end if
18: end if
19: end for

53

5.2.6 SA Probability Calculation Function

The second function performed in Algorithm 3 is saProbCalc(A,λ, plan′, T). This function

compares a perturbed plan (plan′) to a random plan in the archive A (planA) and returns three

things: (1) a probability µ, (2) the random plan from the archive planA, and (3) the weight vector

αA assigned to planA. This value µ is found using the simulated annealing architecture and will

be used to determine the likelihood that plan′ replaces planA in the archive and the likelihood that

perturbations will continue to be made on plan′. Specifically, the function operates according to

Algorithm 5.

Algorithm 5 Simulated Annealing Probability Calculation

saProbCalc(A,λ, plan′, T)

1: planA ← randomChoice(A)
2: αA ← weight vector assigned to planA
3: ∆E ← (αA ⊘ λ) · [m(plan′)−m(planA)]
4: µ← exp

(−∆E
T

)
if ∆E ≥ 0, else µ← 1

5: Return µ, planA, αA

5.2.7 Multistart through Parallelism

The algorithm described in Algorithm 3 creates an archive of high-quality plans that ap-

proximate a Pareto front for the objectives considered. In order to further diversify this Pareto

front and reduce computation time, we run Algorithm 3 several times (excluding the initialization

steps) using parallel processing so that each start generates a unique output set of plans. We then

assess the archive in each parallel process and combine them into one large archive, removing any

dominated plans. This process further diversifies the set of solutions and better approximates the

Pareto front.

5.3 Experimental Design

This algorithm has a large number of adjustable input parameters, all of which could sig-

nificantly impact the output. Rather than running hundreds of experiments that would test every

possible input combination, we run a small subset of experiments to get a wide breadth of outcomes.

These inputs were chosen by using D-optimality (see [22] for details) in an effort to discover which

inputs affect the output most significantly. The adjustable input parameters are:

54

• The various objectives considered in MOSA2

– Population Deviation (PD, always considered)

– Inverse Polsby-Popper Compactness (PPi)

– Median-Mean (MM)

– County Splits (CS)

– Excess geographic units (EGU)

• Number of Recombinations performed

• Starting and ending temperature for simulated annealing T0 and Tf

• Number of flips performed per iteration f

• Archive size n

The fifteen experiments performed are summarized in Table 5.1. In columns PP, MM, CS,

and EGU, an X is present if the algorithm uses that objective in its multicriteria calculations. The

cell is blank if the objective is ignored. Because of the importance of population equinumerosity in

creating districts, we always consider population deviation in our multicriteria calculations. Our code

was written in Python 3, and the experiments are performed on Clemson University’s supercomputer

using ten cores, an Intel Xeon chip, and 120 GB of memory. The codes for this project are found in

Appendix C: MOSA2 Codes.

Other input parameters are held constant for each experiment. Those input parameters are

located in Table 5.2. The vector λ represents the scaling factor for weighted simulated annealing

probability calculations. The vector λf represents the scaling factor for simulated annealing proba-

bility calculations, specifically for flips. Finally, U represents the upper bounds for each objective.

If any plan is presented that exceeds these bounds, then the plan is discarded.

The values in λ and λf were found experimentally. Roughly speaking, the values in λ

represent an average change from iteration to iteration for each objective. The values in λf represent

the average change from an arbitrary GU flip. We find that these values generally place each objective

in the same order of magnitude. The values of U were also chosen through experimentation.

Thirty trials of each experiment are performed. We then analyze the performance of the

algorithm using the hypervolume calculation, discussed in section 5.1. To ensure that the hypervol-

55

Exp No. PP MM CS EGU Recoms T0 Tf Flips Archive Size

1 X X 1000 50 0.1 20 250
2 X X X X 2500 20 0.01 50 250
3 X X X 500 20 0.01 20 50
4 X X X 2500 10 0.005 10 50
5 X X 1000 20 0.01 50 50
6 X X 1000 10 0.005 50 50
7 X X 500 10 0.005 50 125
8 X X 1000 50 0.1 10 125
9 X X X 2500 20 0.01 10 125
10 X X X 500 10 0.005 10 250
11 X X X 500 50 0.1 50 125
12 X X 2500 50 0.1 20 50
13 X X X X 500 50 0.1 10 50
14 X X X 2500 50 0.1 50 250
15 X 2500 10 0.005 20 125

Table 5.1: Experiments Performed

Input Parameter PD PP MM CS EGU

λ 20000 0.5 0.01 1 25
λf 3000 0.05 0.0001 0.05 1
U 2,047,370 9 0.05 50 500

Table 5.2: Input Parameters for MOSA2

ume measures each objective similarly, all objectives are scaled by their upper bounds in U , and the

reference point is placed at (1.1, . . . , 1.1).

5.4 MOSA2 Results

The results of each experiment are detailed in Table 5.3. Since each experiment ran 30 trials,

and each trial utilized parallel processing, creating the hypervolume graphs required some ingenuity.

Specifically, the hypervolume graphs depicted in the table were created by performing the following

steps for each experiment:

• Calculate the median hypervolume value amongst the five threads of the parallel process for

every iteration. For iteration i, call this value hi
med.

• For each iteration i, collect the set of hi
med values for each of the 30 trials performed. For

iteration i, call this set Hi.

56

• Find the median, 25th percentile, and 75th percentile values for Hi.

• Plot the values of Hi by doing the following:

– let a dark line represent the median of Hi for each iteration i,

– let a dark band around the median represent the extent between the 25th and 75th

percentiles,

– let a lighter band around the dark band extend to the largest and smallest values in

Hi ∩
[
ℓ− 3

2IQR, u+ 3
2IQR

]
where ℓ is the 25th percentile value, u is the 75th percentile

value, and IQR is the interquartile range,

– plot red dots for any outliers in Hi\
[
ℓ− 3

2IQR, u+ 3
2IQR

]
.

• At the end of the algorithm, all parallel processes combine their archives of plans, and in-

evitably, the hypervolume increases. Plot this final median hypervolume as a dotted horizontal

line to illustrate the median hypervolume achieved from the 30 trials.

57

Exp Inputs Hypervolume Graph Final Median HV

1

PD: X ReComs: 1000

0.906

PP: T0: 50

MM: X Tf : 0.1

CS: Flips: 20

EGU: X n: 250

2

PD: X ReComs: 2500

0.293

PP: X T0: 20

MM: X Tf : 0.01

CS: X Flips: 50

EGU: X n: 250

3

PD: X ReComs: 500

0.415

PP: X T0: 20

MM: X Tf : 0.01

CS: X Flips: 20

EGU: n: 50

4

PD: X ReComs: 2500

0.685

PP: X T0: 10

MM: Tf : 0.005

CS: Flips: 10

EGU: X n: 50

5

PD: X ReComs: 1000

0.457

PP: X T0: 20

MM: Tf : 0.01

CS: Flips: 50

EGU: X n: 50

58

6

PD: X ReComs: 1000

0.750

PP: T0: 10

MM: X Tf : 0.005

CS: X Flips: 50

EGU: n: 50

7

PD: X ReComs: 500

0.438

PP: T0: 10

MM: Tf : 0.005

CS: X Flips: 50

EGU: X n: 125

8

PD: X ReComs: 1000

0.549

PP: X T0: 50

MM: Tf : 0.1

CS: X Flips: 10

EGU: n: 125

9

PD: X ReComs: 2500

0.610

PP: T0: 20

MM: X Tf : 0.01

CS: X Flips: 10

EGU: X n: 125

10

PD: X ReComs: 500

0.331

PP: X T0: 10

MM: Tf : 0.005

CS: X Flips: 10

EGU: X n: 250

11

PD: X ReComs: 500

0.350

PP: X T0: 50

MM: X Tf : 0.1

CS: Flips: 50

EGU: X n: 125

59

12

PD: X ReComs: 2500

0.576

PP: T0: 50

MM: Tf : 0.1

CS: X Flips: 20

EGU: X n: 50

13

PD: X ReComs: 500

0.297

PP: X T0: 50

MM: X Tf : 0.1

CS: X Flips: 10

EGU: X n: 50

14

PD: X ReComs: 2500

0.439

PP: X T0: 50

MM: X Tf : 0.1

CS: X Flips: 50

EGU: n: 250

15

PD: X ReComs: 2500

0.868

PP: X T0: 10

MM: Tf : 0.005

CS: Flips: 20

EGU: n: 125

Table 5.3: Summary of Hypervolume Graphs for Each Experiment

We also present the mean ideal gap metric for these experiments, with an ideal point de-

scribed in Table 5.4. The source for the various ideal point values comes either from work previously

mentioned in this dissertation or from outside literature. Figure 5.3 displays the box-and-whisker

plots for each experiment, where the data points come from the various trials. As mentioned in

section 5.1, smaller values for MIG are preferable, since this indicates that the outcome plans have

objective values close to the ideal point. As we can see, the MIG values for experiments 1 and 15

are smallest, which follows closely from the hypervolume graphs, since those experiments produced

60

Figure 5.3: Mean Ideal Gap Values for Experiments in MOSA2

the largest hypervolumes. The plan with the best compactness score can be found in Figure 5.4 and

emerged from experiment 15. This plan has a population deviation of 37949, representing less than

a 1% difference from ideal.

Obj I Source

PD 9 Chapter 3
PPi 1.65 Chapter 4
MM 0 Chapter 3
CS 1 Shahmizad and Buchanan [30]
EGU 91 Shahmizad and Buchanan [30]

Table 5.4: Ideal Point Values and their Sources

We also report the box-and-whisker plots that detail how inputs affect the hypervolume for

these parameters as well. Those plots are reported in Figure 5.5. In each of these plots, the y-axis

is hypervolume, and the x-axis reports the various inputs utilized for the experiments. The most

striking result seen here is that hypervolume improves when fewer objectives are considered. In the

first four plots, hypervolume is generally lower when each objective is utilized, and is higher when

the individual objective is not considered.

61

Figure 5.4: MOSA2 Plan with Best Compactness (PD = 37949, PPi = 2.745). Experiment 15.

Figure 5.5: MOSA2 Box-and-Whisker Plots for Assessing Input Parameter Effects

62

Overall, we find that MOSA2 produces quality plans, especially when the number of objec-

tives is small, and when the number of iterations (ReComs) is large. This work represents a more

robust generalization of simulated annealing than the formulation presented in Chapter 4, since more

objectives can be easily considered in this work. We do, however, find better compactness results in

Chapter 4, suggesting that prior work still has merit if political fairness measures are to be ignored.

Future work for this project might include the following ideas:

• Changing how objective scales (λ and λf) are chosen. This experiment chose these values in

a very ad hoc way, so a more systematic approach may be fruitful. It also remains to be seen

what impact choosing these scales has on the final plans produced.

• Adding in other objectives (such as EG, which was omitted here) may provide other interesting

results.

• It would be interesting to explore how much impact the addition of ReComs in the algorithm

improved performance compared to the original algorithm developed by Rincón-Garćıa [29].

63

Chapter 6

NSGA-II for Political Redistricting

6.1 Introduction

Having adapted a traditionally single-objective problem (SA) into a multiobjective problem

(MOSA), we now divert our attention to procedures designed explicitly for multiple objectives. In

particular, we study the multiobjective algorithm of the Non-Dominated Sorting Genetic Algorithm-

II, or NSGA-II for short. We adapt a previous approach taken by Vanneschi et al. to get better

hypervolume results. We also approach this problem by considering more objectives than prior

studies have undertaken.

The objectives we have selected for this project are:

1. Population Deviation (PD)

2. Shifted Polsby-Popper Compactness (PPs)

3. County Splits (CS)

4. Efficiency Gap (EG)

5. Median Mean (MM)

NSGA-II breeds good solutions with one another to produce other high-quality solutions [7]. Doing

this procedure for many generations has shown to be a good metaheuristic strategy for solving many

complex problems. Our work in this paper follows many of the ideas introduced by Vanneschi et al.

in [36]. The novelty in our work emerges on two fronts: (1) the number of objectives considered is

64

larger than that of previous works and (2) the crossover step of NSGA-II utilizes a novel clustering

approach which is better tailored for the context of genetic algorithms.

This study is divided into the following sections. Section 6.2 describes the algorithm used

in this paper and the experimental design employed. Section 6.3 then displays the results of the

experiments and section 6.4 concludes the paper and discusses potential future work.

6.2 Methods

6.2.1 Previous Approaches

Vanneschi et al.’s algorithm uses NSGA-II and Variable Neighborhood Search to perform

political redistricting. For brevity, we refer to Vanneschi’s algorithm as VNSGA-II henceforth.

VNSGA-II is summarized in Algorithm 6.

In general, the philosophy behind genetic algorithms is that if you select two solutions to

be parents, combining the “genes” of the parents oftentimes produces even better children. In

the algorithm above (and all other NSGA-II redistricting works to our knowledge) we notice that

there is nothing inherently valuable about the genes of the parents. In the example from line 2 in

Algorthm 6, there is no reason to believe that the 225th GU being assigned to district 2 influences

(positively or negatively) the quality of the solution. However, we argue that there is inherent value

in determining which GUs should be clustered together in the same districts.

To illustrate our point, consider the example graphs in Figure 6.1. Suppose each node

represents a GU, and an edge is present if the GUs have a nonzero-length boundary. The color

of the nodes represents the districts to which they are assigned. Letting the blue (star pattern)

nodes correspond to district 1, red (diagonal line pattern) nodes correspond to district 2, and yellow

(patternless) nodes correspond to district 3, we can encode the parents as arrays:

s1 =
1 1 2 1 3 2 3 3 2 2 3 3 2 2 2
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

s2 =
3 2 3 2 2 3 1 2 2 3 1 1 1 1 3
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

If we arbitrarily set the crossover point to be 3, then to create child 1 s′1, we iteratively check

through the indices i = 1, 2, 3 from s1 and see if they can change district to s2[i] without violating

65

Algorithm 6 VNSGA-II for Political Redistricting [36]

Input:
n: population size
g: number of generations to run algorithm
G = (V,E): GU graph with vertex set V and edge set E
d: number of districts to create
t: number of solutions to choose for tournament selection
µ: mutation probability
pVNS : probability to use variable neighborhood search

1: Randomly generate n feasible plans and add them to a set P .
2: Encode each plan as an array s with length equal to the number of GUs. The ith element of

this array describes the district to which the ith GU is assigned. For example, s[225] = 2 would
mean that the 225th GU is assigned to district 2.

3: while gen < g do
4: Create empty set P ′ which will contain the children of this generation.
5: while |P ′| < n do
6: if |P ′| < 0.6n then perform crossover:
7: Select two plans s1 and s2 in P to be the parents using tournament selection (described

in lines 8 - 12).
8: for each parent do
9: Randomly select t solutions from P .

10: Amongst those t solutions, pick the solution(s) with the lowest rank (closest to the
best front)

11: If more than one solution is selected, choose the one closest to the median solution
of the front.

12: end for
13: Breed these two parents together to create two children s′1 and s′2.
14: For some GU i, let s1[i] = D1 and s2[i] = D2.
15: Pick a random crossover point c (i.e., pick an integer between 1 and |V |)
16: Breed child 1: s′1 := s1 except for each GU i ≤ c, s′1[i] := D2 if contiguity in s′1 is

not violated.
17: Breed child 2: s′2 := s2 except for each GU i > c, s′2[i] := D1 if contiguity in s′2 is

not violated.
18: Add s′1 and s′2 to P ′.
19: else if |P ′| < 0.9n then perform mutation:
20: Randomly select a plan s ∈ P . Set s′ := s.
21: In s′, randomly swap up to µ|V | GUs to neighboring districts, ensuring contiguity

isn’t violated.
22: Add s′ to |P ′|.
23: else perform copying:
24: Randomly select a plan s ∈ P . Add s to |P ′|.
25: end if
26: end while
27: Perform a variable neighborhood search (VNS) on pVNS · n plans.
28: Amongst all plans in P ∪ P ′, build Pareto fronts according to the objective evaluations.
29: Calculate the crowding distance for each of the plans.
30: Add the best n plans to a set P ′′. Empty P and P ′. P ← P ′′. Empty P ′′.
31: gen← gen+ 1
32: end while

66

Figure 6.1: An example of two potential parents. Each node represents a GU and each edge signifies
that those GUs are adjacent. Node colors correspond to different districts.

11

22 333

44 55 666

77 88 999 101010

1111 1212 131313 141414 151515

11

222 33

444 555 66

77 888 999 1010

1111 1212 1313 1414 1515

contiguity. More precisely, we observe that:

• s1[1] = 1 currently. We check to see if changing to s1[1] = 3 causes any discontiguity. From

Figure 6.1, we notice that node 1 cannot turn yellow, else the yellow district would be discon-

tiguous.

• s1[2] = 1 currently. We check to see if changing to s1[2] = 2 causes any discontiguity. From

Figure 6.1, we notice that node 2 cannot turn red, as the blue district would be discontiguous.

• s1[3] = 2 currently. We check to see if changing to s1[3] = 3 causes any discontiguity. From

Figure 6.1, it does not create a discontiguity, so s′1 is identical to s1 except s1[3] = 3.

The issue here is that s′1 is not ‘inheriting’ any traits from s2. Most NSGA-II efforts are effectively

implementing arbitrary GU flips to generate new plans. Even if the objectives evaluated for both

parents are strong, there is no reason to believe that this crossover generates children with strong

objectives themselves.

VNSGA-II utilizes a variable neighborhood search (VNS) in line 27 of Algorithm 6. This

is where most of the plan improvement occurs. To summarize, VNS seeks to optimize a plan by

repeatedly applying hill climbing with respect to different neighborhood structures {Ni}4i=1. Each

structure defines the type of perturbation that can be performed to get from one plan to another.

For example, structure N1 allows perturbations that flip a GU from one district to a neighboring

district if population balance is improved and district contiguity is maintained. With predetermined

probability pVNS , VNS performs the following steps on a plan s for each neighbor structure Ni:

67

1. Select a solution s from the current population P .

2. Generate a solution s′ by making a legal perturbation according to Ni.

3. Apply hill climbing on s′ using legal perturbations according to Ni to create s′′.

4. If s′′ dominates s with respect to all objectives, set s := s′′.

6.2.2 Our Approach

In contrast to prior works, we use a novel clustering approach which better models the theme

of genetic algorithms. Broadly speaking, we group several neighboring GUs together into ‘clusters’

and use those clusters as building blocks for the districts. The fundamental premise of this approach

is that if a cluster of GUs helps to create a ‘good’ district, it survives from generation to generation.

A rough sketch of our approach can be found in Algorithm 7.

Algorithm 7 Our Approach to NSGA-II

Input:
g: Number of generations
µ: Mutation probability
n: Population size
d: Number of districts
The upper bounds for each objective
G = (V,E): GU graph with vertex set V and edge set E

1: Build n random clusters on the graph G. ▷ See subsection 6.2.2.1
2: Build n districtings on these clusters
3: gen← 0
4: while gen < g do
5: Crossover. Breed n child cluster graphs using a crossover path. ▷ See subsection 6.2.2.2
6: Mutation. Mutate µn children. ▷ See subsection 6.2.2.3
7: Create district plans on these child cluster graphs. ▷ See subsection 6.2.2.4
8: Evaluate the objectives on all 2n plans in generation gen.
9: Sort the 2n plans into ranked fronts, with the rank 1 front being the current approximated

Pareto Front.
10: Assign the best n plans (according to front rank) to be the potential parents of the next

generation. Use crowding distance to determine the worst entrants. ▷ See subsection 6.2.2.5

11: gen← gen+ 1
12: end while

6.2.2.1 Clustering

Our approach utilizes a novel clustering approach, where we cluster several nearby GUs

together to form the building blocks for districts. If this grouping of GUs helps to create quality

68

Figure 6.2: An example of a cluster graph

11

22 33

44 55 66

77 88 99 1010

1111 1212 1313 1414 1515

1616 1717 1818 1919 2020 2121

districts, these clusters are preserved generation to generation. The motivation for this approach

emerges from the observation that it is much easier to create compact districts if the underlying

building blocks (i.e., the clusters) are compact as well.

To demonstrate a clustering example, consider the graph in Figure 6.2. There are six

clusters in Figure 6.2, each represented by a unique color. In our code, clusters are constructed with

anywhere between one and six GUs. The districts are then built using these clusters. For example,

if the cluster graph in Figure 6.2 has three districts, then those districts may contain the following

GUs:

• District 1: GUs 1, 2, 3, 4, 5, 8, 9

• District 2: GUs 6, 10, 14, 15, 19, 20, 21

• District 3: GUs 7, 11, 12, 13, 16, 17, 18

In this algorithm, clustering graphs are created using the procedure outlined in Algorithm 8. The

process by which districts are created on the underlying clusters is explained further in subsection

6.2.2.4.

6.2.2.2 Crossover

When performing the crossover step of NSGA-II, we start by randomly selecting two parents

s1 and s2 from our current generation. Each parent is a clustering—that is, an assignment of GUs

69

Algorithm 8 Building a Cluster Graph

Input:
GU graph G = (V,E) with vertex set V and edge set E

1: while there exists an unassigned GU do
2: Choose a random unassigned GU to serve as the center for a new cluster C.
3: Assign this cluster C a random maximum size MC between 1 and 6.
4: while the number of nodes in C is less than MC do
5: Find all unassigned neighboring GUs of C and choose one randomly* to add to this cluster.
6: *If county splits is an objective considered in the algorithm, then adding a GU from a

different county to the current cluster happens with low probability (set here as 1%).

7: If there are no unassigned neighboring GUs of C, adjust MC to be the current size of the
cluster.

8: end while
9: end while

to clusters (as explained in subsection 6.2.2.1). Then, on the underlying graph G, we split G into

two subgraphs H1 and H2 in the following way:

1. Choose a random boundary GU u (a GU that has nonzero boundary length with the border

of the state).

2. Determine the shortest graph distance ℓuv between GU u and every other boundary GU v.

3. Assign a weight wuv to each (u, v) pair, where wuv = ℓ2uv (the square of the shortest graph

distance between u and v).

4. Using a random weighted selection, pick v. Let the shortest path between u and v be described

as the crossover path.

5. Let H1 and H2 be the subgraphs of G on either side of the crossover path. Randomly choose

either H1 or H2 to include all nodes in the crossover path. If the number of subgraphs is not

exactly two when extracting the nodes of the crossover path from G, reselect u and v from

step 1.

The weighting performed in step 3 is done to incentivize larger subgraphs to be created. If one

subgraph is much smaller than the other, then the genes of the parents mix less, which we seek to

avoid.

Now, for each cluster C in s1, if C is a subgraph of H1 (i.e., C ⊆ H1), then the child s′ adopts

cluster C. Similarly, for each cluster C in s2, if C ⊆ H2, then s′ adopts cluster C. For any GUs

that are left unclustered in s′, assign them to be singleton clusters. To demonstrate this concept,

70

Figure 6.3: Crossover steps

11

22 33

44 55 66

77 88 99 1010

1111 1212 1313 1414 1515

1616 1717 1818 1919 2020 2121

11

22 33

44 55 66

77 88 99 1010

1111 1212 1313 1414 1515

1616 1717 1818 1919 2020 2121

11

22 33

44 55 66

77 88 99 1010

1111 1212 1313 1414 1515

1616 1717 1818 1919 2020 2121

s1 s2 crossover path

11

22 33

44 55 66

77 88 99 1010

1111 1212 1313 1414 1515

1616 1717 1818 1919 2020 2121

11

22 33

44 55 66

77 88 99 1010

1111 1212 1313 1414 1515

1616 1717 1818 1919 2020 2121

11

22 33

44 55 66

77 88 99 1010

1111 1212 1313 1414 1515

1616 1717 1818 1919 2020 2121

s′ after adopting s1’s clusters
(strictly) below crossover path

s′ after adopting s2’s clusters
(on or) above crossover path

s′ after assigning remaining
GUs as singleton clusters

consider Figure 6.3. The parents s1 and s2 breed a child s′ by splitting their clusters along the

crossover path. H2 was randomly chosen to contain all nodes in and above the crossover path, while

H1 contains all nodes below the crossover path. In any given generation, n children are created from

2n randomly chosen parents in the generation, where n is the population size. Therefore, in any

given generation, there are 2n cluster graphs (n parents and n children).

6.2.2.3 Mutation

In our algorithm, mutation occurs in several ways. Denote the mutation probability as µ

and the population size as n. After the n children are bred using crossover, we mutate µn children

(rounding to the nearest integer). There are three operations that are performed on the children:

1. Merging a GU into a neighboring cluster that it is not currently a part of.

2. Splitting a GU that is currently part of a cluster into a singleton cluster.

3. Using recombination to recreate two districts.

71

Regarding the first two operations, if a child has been designated as one to be mutated, we then

randomly pick ⌊µ|V |⌋ of the GUs to mutate (where V is the set of GUs in the graph G). For each

GU designated for mutation, we randomly decide whether it is merged into a neighboring cluster

or whether it is split into a singleton cluster. If the GU selected is already a singleton cluster, then

it is merged into a neighboring cluster. Each time a GU is selected, we first must check whether

removing the GU from the cluster causes the cluster to become discontiguous. If so, then we skip

that mutation. Further, if county splits are considered as an objective, then merges that create

clusters crossing county lines are prohibited.

The third operation occurs only after districts are created. See subsection 6.2.2.4 for details.

6.2.2.4 District Plans

After the mutation step, we then create district plans for the n children. The process by

which districts are constructed emphasizes population equality and compactness. For each child, d

districts are created using the procedure outlined in Algorithm 9. Each district would ideally have

a population of I := P
d , where P is the total population of the state. Algorithm 9 tries to encourage

such districts to be generated, while also building districts in a compact manner.

This algorithm also rejects district plans where the objectives are too large. Those upper

bounds can be specified by the user.

Population equality is encouraged because as the districts grow, the districts with lower

population have a higher probability of being chosen to expand. Compactness is emphasized by

weighting the surrounding clusters proportional to their boundary length with the district. This

procedure makes it less likely that small offshoots from the district emerge.

This code requires that each district have a population between 0.15I and 2Iαgen, where I

is the ideal population of a district, gen is the current generation, and α is a scaling factor slightly less

than 1 such that 2Iαg = 1.5I (where g is the number of generations that are used). These bounds

encourage the population of the districts to slowly approach I over the course of the algorithm.

These values, along with the number of sets of centers used (5) were all found experimentally; they

balance computation time and algorithmic output.

After districts are created, on any plan that was previous mutated, we perform another step

of mutation by recombining two districts in the plan. The concept of recombination (ReCom), first

introduced by DeFord et al., is a way to perturb a district graph by combining two districts together

72

Algorithm 9 District Building

Choose d clusters to be the centers for district creation:

1: Choose five sets of d clusters randomly. Each set is a candidate to become the set of centers.
2: For each set of clusters, calculate the total graph distance between all pairs of centers. That is,

for each set i, find Li =

d∑
j=1
j>k

d∑
k=1

ℓijk where ℓijk is the graph distance between cluster j and cluster

k in the cluster graph CGi.
3: Pick the set of set of centers that are maximally distant from one another to be the centers.

That is, choose the set of clusters in set argmaxi Li.

Choose a district to grow and append a cluster to it:

1: while Any cluster is unassigned do
2: Assign each district a weight that is inversely proportional to the current population of the

district.
3: Based on these weights, use a weighted random selection to designate the district D that

grows.

4: Assign a new weight to each unassigned neighboring cluster of D that is proportional to the
boundary length with district D.

5: Use a weighted random selection to designate the cluster that is appended to district D. Add
the cluster’s population to the population for district D, pD.

6: If pD ≥ 2I ∗ αgen, then remove district D from the list of districts that are eligible to grow.
7: If it is found that no unassigned clusters exist around district D, remove D from the list of

districts that are eligible to grow.

8: end while
9: If this approach failed to assign every cluster to a district or if any district had population less

than 0.15I, restart this procedure by choosing five new sets of centers.
10: Calculate all objective values for the plan.
11: If any objective exceeds the upper bound defined by the user, reject the plan and restart the

procedure by choosing five new sets of centers.

73

and then redistributing the nodes of this graph into two new districts [9]. Our algorithm utilizes

ReCom in the following way:

1. Find two neighboring districts, where one has population above ideal population and the other

has population below ideal population.

2. Perform ReCom on these two districts using clusters as the nodes, ensuring that the resultant

assignment of districts forces both districts to be within 5% of the mean population of the two

districts.

This procedure helps to decrease the population deviation of the plan.

6.2.2.5 Nondominated Sorting and Crowding Distance

The remaining steps in our algorithm follow standard NSGA-II procedure closely. After

district plans are created for the n children, we then decide which n of the 2n candidate plans are

brought to the next generation. Let fij correspond to the ith objective value from the jth plan.

We say that plan sj1 dominates plan sj2 if fij1 ≤ fij2 for all objectives i, and that for at least one

objective i∗, we have fi∗j1 < fi∗j2 . We say that a plan s is nondominated if there is no other plan

that dominates it.

Utilizing some subset of the objectives mentioned in section 6.1, we rank the 2n plans into

fronts based on their domination status. All of the nondominated plans are placed in rank 1; all

plans that are dominated only by plans in rank 1 are then placed in rank 2, and so on until all plans

have a rank.

Then the best n plans (that is, the plans with the best rank) are designated to survive to

the next generation. If a front must be split up to determine which plans survive, then we choose the

plans that are the most diverse. To accomplish this, we calculate the crowding distance for all plans

in the front that must be split up, as shown in Algorithm 10. Then, if x plans must be chosen from

front F , we choose the x plans with the highest crowding distance to survive to the next generation.

This ensures that the population is as diverse as possible.

Once the n plans are designated to survive to the next generation, we maintain their clus-

tering assignments and their district assignments. When breeding children, the parents’ clustering

assignments are used in the crossover step, but the parents’ district assignments are not considered

when breeding children, as explained in subsection 6.2.2.2.

74

Algorithm 10 Crowding Distance

1: Initialize cdj = 0 for each plan j in front F
2: for each objective i do
3: Sort the j plans in ascending order based on objective i
4: cd0, cd|F | ←∞
5: r ← fi|F | − fi0 ▷ This is the range of objective i
6: if r = 0 then
7: r ← 1
8: end if
9: for j = 1→ |F |−1 do

10: cdj ← cdj +
fi(j+1)−fi(j−1)

r
11: end for
12: end for

This overall algorithm repeats until we have reached the predetermined number of genera-

tions.

6.3 Results

6.3.1 Experimental Design

To assess the efficacy of this program, we run both our code and the VNSGA-II using the

same input parameters. Eight experiments are conducted with various objectives being evaluated

in each experiment. Thirty independent trials of each experiment are performed. The summary of

experiments can be found in Table 6.1. For each objective (Population Deviation, Polsby-Popper

Score, Efficiency Gap, Median-Mean, and County Splits), an X is placed in the box if the objective

is considered in the experiment. We choose this set of experiments because Population Deviation

and Polsby-Popper Compactness are generally regarded as essential objectives when constructing a

districting plan, while the other objectives may be de-emphasized or ignored entirely.

All experiments run for 200 generations. The mutation probability is set to 0.3 for all ex-

periments. Experiments with more objectives require a larger population size n to fully approximate

the Pareto front, so we utilize the following population sizes:

• Two objectives: n = 25

• Three objectives: n = 75

• Four objectives: n = 150

75

• Five objectives: n = 250

Each objective has an upper bound to ensure that absurd plans aren’t being considered.

The upper bounds used in this experiment are:

• Population Deviation: PD ≤ 0.4P, where P is the population of the state.

• Polsby-Popper Compactness: PPs ≤ 0.9 (=⇒ PPi ≤ 9).

• Efficiency Gap: EG ≤ 0.24. This is three times the author-recommended EG limit of 0.08 [32].

• Median-Mean: MM ≤ 0.05.

• County Splits: CS ≤ 50.

Experiment Number PD PP EG MM CS

1 X X
2 X X X
3 X X X
4 X X X
5 X X X X
6 X X X X
7 X X X X
8 X X X X X

Table 6.1: Summary of Experiments

For each generation, all objectives are scaled by their respective upper bounds so that

they have the same relative impact on the hypervolume. The reference point is then placed at the

coordinate (1.1, 1.1, . . .). As long as the entire approximate Pareto Front has cardinality less than

or equal to the population size n, then we should expect monotonic increase from the hypervolume

calculation.

We also compare our results to the actual 2024 South Carolina congressional plan, pictured

in Figure 6.4.

6.3.2 Experimental Results

Table 6.3 reports the hypervolume graph summary for each experiment. Each experiment

utilizes 30 trials; the dark line represents the median hypervolume in each generation for those thirty

trials. The dark band surrounding the median represents the middle 50% of those hypervolume

76

values. The light band extends as far as the farthest data point in
[
ℓ− 3

2IQR, u+ 3
2IQR

]
, where ℓ is

the 25th percentile value, u is the 75th percentile value, and IQR is the interquartile range. Finally,

red dots are placed for any outlier values outside the interval
[
ℓ− 3

2IQR, u+ 3
2IQR

]
.

77

Exp Objectives Our Approach VNSGA-II

1

PD: X

PP: X

EG:

MM:

CS:

2

PD: X

PP: X

EG: X

MM:

CS:

3

PD: X

PP: X

EG:

MM: X

CS:

4

PD: X

PP: X

EG:

MM:

CS: X

5

PD: X

PP: X

EG: X

MM: X

CS:

78

Table 6.3 continued from previous page

Exp Objectives Our Approach VNSGA-II

6

PD: X

PP: X

EG: X

MM:

CS: X

7

PD: X

PP: X

EG:

MM: X

CS: X

8

PD: X

PP: X

EG: X

MM: X

CS: X

Table 6.3: Hypervolume Graphs for Our Approach and VNSGA-II

This table provides evidence that our approach is competitive with VNSGA-II in most

experiments. The hypervolume of our approach grows to larger values more quickly and more

reliably than VNSGA-II in all experiments except 1 and 3. One observation to make is that the

hypervolume for any experiment with four or more objectives is not monotonically increasing. This

suggests that the population size n was not large enough for these experiments.

We also found that our approach completed quicker than the alternative. Table 6.4 reports

the average runtime for each experiment. These experiments were coded in Python 3, and the

experiments are performed on Clemson University’s supercomputer using ten cores, an Intel Xeon

chip, and 120 GB of memory. Profiling our rendition of Vanneschi’s approach reveals that the

variable neighborhood search expended the most time while running. We leave open the possibility

that this code could be run more efficiently with better implementation. Our code is documented

79

in Appendix D: NSGA-II Codes, and our rendition of Vanneschi’s code is found in Appendix E:

VNSGA-II Codes.

Our Runtimes (s) VNSGA-II Runtimes (s)
Exp Avg St. Dev. Min Max Avg St. Dev. Min Max
1 5757 150 5550 6242 31336 4170 18646 39189
2 17195 173 16897 17606 57528 6027 50422 71822
3 15223 751 14347 16546 68035 5971 57800 80189
4 15429 212 15071 16011 58672 5832 55071 71239
5 32658 2142 30903 39188 150388 10249 127630 169536
6 35450 4029 31740 41796 135301 10154 121974 159130
7 33287 1923 31167 38776 131429 14928 115112 178401
8 55934 3068 48687 58255 228923 13170 205177 253331

Table 6.4: Average Runtimes for each Experiment in Seconds

Table 6.5 reports the average size of the final Pareto front for each experiment. A large final

front is neither good nor bad, but it does help to enlighten a decision maker on the number of plans

that would need to be chosen from. This table demonstrates that it might be prudent to increase

the population size to fit experiments with more objectives.

Our PF Sizes VNSGA-II PF Sizes
Exp Avg Min Max Avg Min Max
1 29 18 40 19 15 28
2 65 51 76 105 90 116
3 52 26 68 93 56 107
4 27 17 40 101 72 130
5 155 139 168 218 202 240
6 145 105 154 206 188 219
7 123 79 151 194 179 236
8 264 241 286 353 320 383

Table 6.5: Average Pareto Front (PF) Sizes at the Conclusion of each Experiment

We now display a high quality plan produced by our approach and compare it to the 2024

implemented congressional plan. This high-quality plan found by our algorithm is displayed in

Figure 6.4. This plan has incredibly small objectives relative to its peers in the same experiment

and improves upon the current congressional map in every objective except for county splits.

Plan PD PPs EG MM CS
2024 Actual 14136 0.785 0.248 0.032 10

Exp 15, Trial 23, Plan 214 12615 0.784 0.101 0.024 23

Table 6.6: Comparison of Objectives between Current Congressional Plan and our Plan

We also record the Mean Ideal Gap metrics for both our approach (Figure 6.5) and VNSGA-

80

Current Congressional Plan Experiment 15, Trial 23, Plan 214

Figure 6.4: Comparison of Plans

II (Figure 6.6). As mentioned in section 5.1, smaller MIG values are better. We observe that

as the number of objectives increases, the value of the MIG also increases, demonstrating worse

performance.

Finally, we report the covered size of space metric (CSS) mentioned in section 5.1. This

metric compares two sets of Pareto fronts by determining the percentage of the first front that is

dominated by the second. This gives some insight into how well the algorithm actually performed.

To assess the efficacy of our algorithm, we compile all trials of a particular experiment into a single

nondominated Pareto set PN for our code and compare it to the compiled nondominated Pareto set

for VNSGA-II PV . Thus, the quantity C(PN , PV) reports the percentage of plans in PV that are

dominated by any number of plans in PN . In Table 6.7, we report both C(PN , PV) and C(PV , PN),

as 1− C(PN , PV) is not necessarily equal to C(PV , PN).

Exp C(PN , PV) C(PV , PN)
1 0 1
2 0.3440 0.3866
3 0 0.9655
4 0.5469 0.0811
5 0.1775 0.3704
6 0.3325 0.1671
7 0.1277 0.6131
8 0.6038 0.0727

Table 6.7: The Covered Size of Space Metric Values Comparing Our Approach to VNSGA-II

81

Figure 6.5: Mean Ideal Gap for Our Approach

Figure 6.6: Mean Ideal Gap for VNSGA-II

82

6.4 Conclusion and Future Work

Overall, we conclude that utilizing genetic algorithms and in particular, NSGA-II has

promise for optimizing various objectives when making districting plans. We show that utilizing

a novel clustering technique can be an effective tool for building districts, and that it follows the

theme of genetic algorithms closely. Despite being outperformed on the two-objective experiment,

we find that our algorithm works well on nearly every other experiment. We demonstrate that

this algorithm is competitive in both computation time and results with another similar NSGA-II

algorithm developed by Vanneschi et al.

Future work for this project may include the following improvements or changes:

• It remains to be seen whether the objectives could be lowered further with more generations.

Due to time constraints, this code needed to terminate at generation 200, but the overall trend

of the hypervolume graphs suggests that local optima were not yet reached.

• Other objectives, such as similarity to previous plans, grouping communities of interest, and

adherence to the Voting Rights Act, could still be included and measured as part of a multi-

objective framework.

• We used South Carolina as a test case in these examples; future work could include testing on

larger states with more districts.

• The CSS metric in Table 6.7 seems to imply that more work should be done to improve the

coverage of our algorithm. One such approach might be to have children inherit some data

about the district assignment, such as the location of the district center.

83

Chapter 7

Conclusions

In conclusion, this dissertation demonstrates four unique approaches for optimizing the re-

districting process without human bias. Chapter 3 demonstrates that trying to find optimal solutions

even for a single objective can be very challenging with so many constraints and variables. Chap-

ters 4, 5, and 6 all show approaches to optimize one or more objectives. Results from Chapter 4

demonstrate an effective modification to simulated annealing that minimizes inverse Polsby-Popper

compactness. We find a score of PPi = 1.65, while maintaining population deviation within 1% of

ideal. This effectively demonstrates that the implemented Congressional maps sacrificed compact-

ness for the sake of achieving some other aim.

Necessarily, the multiobjective algorithms in Chapters 5 and 6 perform worse on the com-

pactness measures for the sake of also achieving minimization of other objectives. The plans achieved

in these chapters still should be considered high-quality outputs as they sit on an approximate Pareto

front and achieve remarkably small efficiency gap and median-mean objectives.

84

Appendices

85

Appendix A MIP Codes

from gerrychain import Graph

import geopandas as gpd

import networkx as nx

import gurobipy as gp

from gurobipy import GRB

import pickle

import pandas as pd

import matplotlib.pyplot as plt

import sys

import os

class input_c: #short for ’input class ’

def __init__(self , nd , gu , lb , ub , obj , psf , ppn , tl):

self.num_dists = nd

self.GU = gu

self.pop_lb = lb

self.pop_ub = ub

self.obj = obj

if psf == "NoStart ": pass

elif os.path.exists(psf) == False: raise FileNotFoundError(f"File

{psf} not found ")

self.ps_file = psf #Past solution file

self.ps_plan_no = ppn #Past solution plan number

self.timelimit = tl

@classmethod

def Load_from_file(cls , file_name):

""" Reads the input from a file """

with open(file_name) as f:

lines = f.readlines ()

num_dists=int(lines [0])

geo_units=lines [1]. strip()

lower_bound=float(lines [2])

upper_bound=float(lines [3])

objective=lines [4]. strip()

pastsoln_file=lines [5]. strip()

ps_plan_no = int(lines [6])

timelimit = int(lines [7])

return cls(

nd=num_dists ,

gu=geo_units ,

lb=lower_bound ,

ub=upper_bound ,

obj=objective ,

psf=pastsoln_file ,

ppn = ps_plan_no ,

tl=timelimit

)

86

def plot_plan(G, county_lines , ip , status , objval):

""" Plots one plan with county lines """

dists = list(dict(G.nodes("dist")).values ())

G.data["dist"] = dists

fig , ax = plt.subplots ()

for idx , gu in G.data.iterrows ():

if ip.GU == "counties ":

ax.text(gu.geometry.centroid.x, gu.geometry.centroid.y, idx ,

fontsize =8)

G.data.plot(column ="dist", ax=ax , legend=True)

county_lines.data.boundary.plot(ax=ax, color ="black ")

if status == 2: title = f"Optimal {ip.obj} Plan. {ip.obj }={ objval }"

elif status == 9: title = f"TimeLimit {ip.obj} Plan. {ip.obj }={ objval }"

elif status == 15: title = f"Cutoff {ip.obj} Plan. {ip.obj }={ objval }"

legend_label = f"D={ip.num_dists}, LU={ip.pop_lb}-{ip.pop_ub }"

ax.set_title(title)

ax.legend ([legend_label])

fig.show()

def main(*args):

#I’m now using machine -specific license to do this.

options = { #For accessing Gurobi license

#" WLSACCESSID ": "efcde7b0 -5d6f -477b-ab3a -d675f56c5daa",

#" WLSSECRET ": "befb233b -609f-42df -a823 -d5937d6253b7",

"LICENSEID ": 2459526 ,

}

#INPUTS --

if isinstance(args[0], str) == True:

file_name = args [0]

ip = input_c.Load_from_file(file_name)

elif args [0] == None:

print("No input file provided. Running with default parameters ")

ip = input_c(

nd=3,

gu=" counties",

lb=0.8,

ub=1.2,

obj=" Compactness",

psf=None ,

ppn=None

)

#ERROR CHECKS --

if (ip.num_dists %2==0 and ip.obj == "MM"):

raise ValueError ("This median -mean formulation only accepts odd

numbers of districts. Use ’MM2 ’. ")

if ip.GU == "counties" and ip.obj == "CS":

raise ValueError ("The county splits objective must use precincts as

a GU")

87

with open(’stateG.pkl ’, ’rb ’) as fp: stateG = pickle.load(fp)

with open(’county_boundaries.pkl ’, ’rb ’) as fp: countyG =

pickle.load(fp)

try:

with open(’county_boundaries.pkl ’, ’rb ’) as fp: countyG =

pickle.load(fp)

except AttributeError:

countyG = Graph.from_file(

"./ SC_Counties_20_FeaturesToJSO.geojson",

adjacency ="rook",

reproject ="True",

ignore_errors ="True"

)

with open(’county_boundaries.pkl ’, ’wb ’) as fp:

pickle.dump(countyG , fp)

#PARAMETERS AND SETS --

with gp.Env() as env , gp.Model(env=env) as m:

m.params.NonConvex =2

m.params.TimeLimit=ip.timelimit #255600 seconds = 71 hours

if ip.obj == "Compactness ":

m.params.Cutoff= float(’inf ’)

#m.params.FeasibilityPump = 1 --- Not sure that this is even a thing

#m.params.PumpPasses = 10 --- Doesn ’t work since there are

quadratic constraints in the model

if ip.GU == "precincts ":

V = stateG.number_of_nodes ()

E = stateG.number_of_edges ()

G = stateG

elif ip.GU == "counties ":

V = countyG.number_of_nodes ()

E = countyG.number_of_edges ()

G = countyG

else:

raise ValueError (" Incorrect GU type")

D = ip.num_dists

C = len(set(dict(stateG.nodes(" COUNTY ")).values ())) #Number of

counties

fwd_E_list = list(G.edges ())

backward_E_list = [(v2, v1) for (v1 ,v2) in fwd_E_list]

E_list = fwd_E_list + backward_E_list

#DECISION VARIABLES ---

x = m.addVars(V, D, vtype=GRB.BINARY , name="x") #decision variable

for GU -district assignment

f = m.addVars(E_list , D, vtype=GRB.CONTINUOUS , lb=0, name="f")

#flow variables for contiguity

w = m.addVars(V, D, vtype=GRB.BINARY , name="w") #w_ik = 1 if GU i

is assigned to be the hub for district k

pop = m.addVars(D, vtype=GRB.INTEGER , name="pop") #population

variables for districts

88

popdev = m.addVars(D, vtype=GRB.INTEGER , lb=0, name=" popdev ")

#Population deviation for each district

if ip.obj == "Compactness ":

P = m.addVars(D, vtype=GRB.CONTINUOUS , name="P") #perimeter of

each district

A = m.addVars(D, vtype=GRB.CONTINUOUS , name="A") #area of each

district

z = m.addVars(D, vtype=GRB.CONTINUOUS , lb=0, name="z") #inverse

Polsby -Popper Score of each district

y = m.addVars(E_list , D, vtype=GRB.BINARY , name="y") #decision

variable. =1 if edge e is a district edge

elif ip.obj == "CS": #County splits

t = m.addVars(C, D, vtype=GRB.BINARY , name="t") #t_cj = 1 if

county c contains any part of district j

elif ip.obj == "EG": #Efficiency Gap

b = m.addVars(D, vtype=GRB.INTEGER , lb=0, name="b") #blue votes

in the jth district

r = m.addVars(D, vtype=GRB.INTEGER , lb=0, name="r") #red votes

in the jth district

I = m.addVars(D, vtype=GRB.BINARY , name="I") #Indicator

variable. =1 if b_j >= r_j , 0 o/w

eg = m.addVar(vtype=GRB.CONTINUOUS , name="eg") #Variable used

to account for absolute value around efficiency gap

real_eg = m.addVar(vtype=GRB.CONTINUOUS , name=" real_eg ")

#Variable that finds the real efficiency gap (eg is used

for better computation)

elif ip.obj == "MM": #Median -Mean

b = m.addVars(D, vtype=GRB.INTEGER , lb=0, name="b") #blue votes

in the jth district

r = m.addVars(D, vtype=GRB.INTEGER , lb=0, name="r") #red votes

in the jth district

med = m.addVar(vtype=GRB.CONTINUOUS , name="med") #median -mean

calculation

uu = m.addVars(D, vtype=GRB.BINARY , name="uu") #If uu_i=1, then

med >=y_i

vv = m.addVars(D, vtype=GRB.BINARY , name="vv") #If vv_i=1, then

med <=y_i

bsp = m.addVars(D, vtype=GRB.CONTINUOUS , lb=0, name="bsp")

#Blue share for president (=b/(b+r))

amm = m.addVar(vtype=GRB.CONTINUOUS , name="amm") #absolute

value of median mean

elif ip.obj == "MM2": #Median -Mean (second formulation)

b = m.addVars(D, vtype=GRB.INTEGER , lb=0, name="b") #blue votes

in the jth district

r = m.addVars(D, vtype=GRB.INTEGER , lb=0, name="r") #red votes

in the jth district

med = m.addVar(vtype=GRB.CONTINUOUS , name="med") #median -mean

calculation

bsp = m.addVars(D, vtype=GRB.CONTINUOUS , lb=0, name="bsp")

#Blue share for president (=b/(b+r))

so = m.addVars(D, vtype=GRB.CONTINUOUS , lb=0, name="so")

#Sorted bsp ’s

p = m.addVars(D,D, vtype=GRB.BINARY , name="p") #permutation

matrix that sorts the bsp ’s

89

amm = m.addVar(vtype=GRB.CONTINUOUS , name="amm") #absolute

value of median mean

elif ip.obj == "PopDev ": #Population Deviation

m.params.BestObjStop =0

m.update ()

print(" Decision variables loaded ")

#START

VALUES ---

if ip.ps_file == "Default ":

#Establishes the past solution to be used as an incumbent if

not specified

fn = "IP_Red_ {}d_{}_obj{}_{} -{}. xlsx". format(ip.num_dists ,

ip.GU[0], ip.obj , round (100* ip.pop_lb),

round (100* ip.pop_ub))

if os.path.exists(fn): #else no file provides starting values

ip.ps_file = fn

psdf = pd.read_excel(ip.ps_file , sheet_name =" Results ")

#psdf = past solution data frame

for _, row in psdf.iterrows (): #Assumes data is arranged as

[Variable , index , value]

var_name = row[" Variable "]

index_str = row[" index"]

value = row[" value"]

if pd.isna(index_str):

var = m.getVarByName(var_name)

else:

index = index_str.replace (" ", "") # Remove the

space after commas

var = m.getVarByName(f"{ var_name }{ index }")

Set start value

if var is not None:

var.start = value

print(f"Starting variables loaded from {ip.ps_file }")

else: print ("No starting variables loaded ")

elif ip.ps_file [:5] == "NSGA2 ": #if the starting values come from

an NSGA2 output

psdf = pd.read_excel(ip.ps_file , sheet_name ="GU Assignment ")

final_gen = max(psdf[" Generation "])

filtered_df = psdf[(psdf[’Generation ’] == final_gen) &

(psdf[’pop_id ’] == ip.ps_plan_no)]

for _, row in filtered_df.iterrows ():

node = row["node"] - 1

dist = row[" district "]

x[node , dist]. start = 1

print(f"Starting variables loaded from {ip.ps_file }")

elif ip.ps_file [:6] == "IP_Red ": #the starting values come from

IP_Red output

psdf = pd.read_excel(ip.ps_file , sheet_name =" Results ")

for _, row in psdf.iterrows (): #Assumes data is arranged as

[Variable , index , value]

90

var_name = row[" Variable "]

index_str = row[" index"]

value = row["value"]

if pd.isna(index_str):

var = m.getVarByName(var_name)

else:

index = index_str.replace (" ", "") # Remove the space

after commas

var = m.getVarByName(f"{ var_name }{ index }")

Set start value

if var is not None and var_name==’x’:

var.start = value

print(f"Starting variables loaded from {ip.ps_file }")

elif ip.ps_file == "NoStart ":

print ("No starting variables loaded ")

try: del psdf

except NameError: pass

try: del filtered_df

except NameError: pass

m.update ()

#EXTRA CALCULATIONS ---

edge2num = {} #dictionary for enumerating the edges. e.g.,

edge2num [(0,1)] = 0

idx=0

for edge in sorted(G.edges()):

edge2num[edge] = idx

idx=idx+1

total_votes = sum(dict(G.nodes (" PresBlue ")).values ()) + \

sum(dict(G.nodes(" PresRed ")).values ())

#Adjacency matrix

adj = {}

for u in range(V):

for v in range(V):

adj[(u,v)] = 0 #sets baseline of 0

adj[(v,u)] = 0

for (u,v) in G.edges():

adj[(u,v)] = 1

adj[(v,u)] = 1

#County numbers

if ip.GU == "precincts ":

county_list = set()

for n in G.nodes:

county_list.add(G.nodes[n][’COUNTY ’])

county_list = sorted(county_list)

Long county name to short county name. e.g.

longc2shortc [’45003 ’] = 1

91

longc2shortc = {}

for idx , c in enumerate(county_list):

longc2shortc[c] = idx

for n in G.nodes:

G.nodes[n][’county_num ’] =

longc2shortc[G.nodes[n][’COUNTY ’]]

#GU-county relationship

if ip.GU == "precincts ":

s = {}

for i in range(V):

for c in range(C):

if G.nodes[i][’county_num ’] == c:

s[(i,c)] = 1 #s[i,c] = 1 if GU i is in county c

else:

s[(i,c)] = 0

#Ideal Population

ideal_pop = sum(dict(G.nodes(" POPULATION ")).values ()) / D

print(" Extra Calculations finished ")

#OBJECTIVE --

if ip.obj == "Compactness ":

m.setObjective (1/D * sum(z[j] for j in range(D)), GRB.MINIMIZE)

#inverse polsby -popper

elif ip.obj == "CS":

m.setObjective(sum(sum(t[c,j] for j in range(D)) for c in

range(C)), GRB.MINIMIZE) #county splits

elif ip.obj == "EG":

m.setObjective(real_eg , GRB.MINIMIZE)

elif ip.obj == "MM":

m.setObjective(amm , GRB.MINIMIZE)

elif ip.obj == "MM2":

m.setObjective(amm , GRB.MINIMIZE)

elif ip.obj == "PopDev ":

m.setObjective(sum(popdev[j] for j in range(D)), GRB.MINIMIZE)

else: raise NameError ("ip.obj is not input correctly. ip.obj =

{}". format(ip.obj))

m.addConstrs(sum(x[i,j] for j in range(D)) == 1 for i in range(V))

#Each GU assigned to one dist

print(f"Objective loaded: {ip.obj}")

#CONSTRAINTS --

#Compactness constraints

if ip.obj == "Compactness ":

m.addConstrs (4*3.14159265*A[j]*z[j] >= P[j]*P[j] for j in

range(D))

m.addConstrs(A[j] == sum(G.nodes[i][" area "]*x[i,j] for i in

range(V)) for j in range(D))

m.addConstrs(P[j] == (sum(G.nodes[i][" boundary_perim "]*x[i,j]

for i in range(V)) +

sum(G.edges[(u,v)][’shared_perim ’]*y[u,v,j]

for (u,v) in G.edges())) for j in

92

range(D))

m.addConstrs(x[u,j] - x[v,j] <= y[u,v,j] for (u,v) in G.edges()

for j in range(D)) #Cut edges

m.addConstrs(x[v,j] - x[u,j] <= y[u,v,j] for (u,v) in G.edges()

for j in range(D)) #Cut edges

#County Splits constraints

elif ip.obj == "CS":

m.addConstrs(sum(x[i,j]*s[(i,c)] for i in range(V))/V <= t[c,j]

for c in range(C) for j in range(D))

#Efficiency Gap constraints

elif ip.obj == "EG":

m.addConstrs(b[j] == sum(G.nodes[i][" PresBlue "]*x[i,j] for i in

range(V)) for j in range(D)) #defines blue votes per dist

m.addConstrs(r[j] == sum(G.nodes[i][" PresRed "]*x[i,j] for i in

range(V)) for j in range(D)) #defines red votes per dist

m.addConstr(eg >= sum((b[j]-3*r[j]-1)*I[j] +

(3*b[j]-r[j]+1)*(1-I[j]) for j in range(D)))

m.addConstr(eg >= -sum((b[j]-3*r[j]-1)*I[j] +

(3*b[j]-r[j]+1)*(1-I[j]) for j in range(D)))

m.addConstrs(I[j] <= 1+ (b[j]-r[j])/total_votes for j in

range(D))

m.addConstrs(I[j] >= (b[j]-r[j])/total_votes for j in range(D))

m.addConstr(real_eg == eg/(2* total_votes))

elif ip.obj == "MM":

m.addConstrs(b[j] == sum(G.nodes[i][" PresBlue "]*x[i,j] for i in

range(V)) for j in range(D)) #defines blue votes per dist

m.addConstrs(r[j] == sum(G.nodes[i][" PresRed "]*x[i,j] for i in

range(V)) for j in range(D)) #defines red votes per dist

m.addConstrs ((b[j]+r[j])*bsp[j] == b[j] for j in range(D))

#Blue share for president

k = (D-1)/2 #half of the number of districts rounded down

m.addConstr(sum(uu[j] for j in range(D)) == k+1) #Ensures that

only k+1 uu[j]’s are 1

m.addConstr(sum(vv[j] for j in range(D)) == k+1) #Ensures that

only k+1 vv[j]’s are 1

M = 100000 #A sufficiently large number

m.addConstrs (1000* bsp[j] - 1000* med <= M*(1-uu[j]) for j in

range(D)) #If uu[j]=1, then bsp[j] <= med

m.addConstrs (1000* med - 1000* bsp[j] <= M*(1-vv[j]) for j in

range(D)) #If vv[j]=1, then bsp[j] >= med

m.addConstr (1000* amm >= 1000* med - 1000/D * sum(bsp[j] for j in

range(D))) #Ensures that the absolute value of mm is

positive

m.addConstr (1000* amm >= 1000/D * sum(bsp[j] for j in range(D))

- 1000* med) #The 1000 is present so that rounding errors

are less likely

elif ip.obj == "MM2":

m.addConstrs(b[j] == sum(G.nodes[i][" PresBlue "]*x[i,j] for i in

range(V)) for j in range(D)) #defines blue votes per dist

m.addConstrs(r[j] == sum(G.nodes[i][" PresRed "]*x[i,j] for i in

range(V)) for j in range(D)) #defines red votes per dist

m.addConstrs ((b[j]+r[j])*bsp[j] == b[j] for j in range(D))

#Blue share for president

93

m.addConstrs(so[k] == sum(p[j,k]*bsp[j] for j in range(D)) for

k in range(D)) #s[k] are the sorted bsp values

m.addConstrs(so[k+1] >= so[k] for k in range(D-1)) #so[0] is

smallest; s[D-1] is largest

m.addConstrs(sum(p[j,k] for j in range(D)) == 1 for k in

range(D))

m.addConstrs(sum(p[j,k] for k in range(D)) == 1 for j in

range(D)) #this and previous define a permutation matrix of

size D*D

if D%2 == 1: #Odd

m.addConstr(med == so[(D-1) /2]) #Middle value

elif D%2 == 0: #Even

m.addConstr(med == (so[(D-2)/2] + so[D/2]) /2) #mean of two

middle values

m.addConstr (1000* amm >= 1000* med - 1000/D * sum(bsp[j] for j in

range(D))) #Ensures that the absolute value of mm is

positive

m.addConstr (1000* amm >= 1000/D * sum(bsp[j] for j in range(D))

- 1000* med) #The 1000 is present so that rounding errors

are less likely

#elif ip.obj == "PopDev ": # I want to know popdev even if using

other metrics

m.addConstrs(popdev[j] >= pop[j] - ideal_pop for j in range(D))

m.addConstrs(popdev[j] >= ideal_pop - pop[j] for j in range(D))

#Population equinumerosity

m.addConstrs ((ip.pop_lb*ideal_pop <= pop[j] for j in range(D)),

name=" pop_lb ")

m.addConstrs ((ip.pop_ub*ideal_pop >= pop[j] for j in range(D)),

name=" pop_ub ")

m.addConstrs ((pop[j] == sum(G.nodes[i][" POPULATION "]*x[i,j] for i

in range(V)) for j in range(D)), name=" pop_lb ")

#Contiguity

m.addConstrs(sum(w[i,j] for i in range(V)) == 1 for j in range(D))

m.addConstrs(sum(f[u,v,j] for v in range(V) if (u,v) in G.edges())

- sum(f[v,u,j] for v in range(V) if (u,v) in G.edges ()) >=

x[u,j] - V*w[u,j] for u in range(V) for j in range(D))

m.addConstrs(sum(f[v,u,j] for v in range(V) if (u,v) in G.edges())

<= (V-1)*x[u,j] for j in range(D) for u in range(V))

print(" Constraints loaded ")

#OPTIMIZE ---

m.optimize ()

#PRINT RESULTS --

feas = True

if m.status in [2 ,9,15]: #If optimal solution found , time limit

reached , or cutoff found

if ip.GU == "counties ":

for vr in m.getVars ():

try:

if abs(vr.X) > 0.00001: #Only print nonzero

variables

94

print(’%s = %g’ % (vr.VarName , vr.X))

except AttributeError: #This occurs if time limit is

reached and no feasible solution has been found.

feas = False #variable for whether a feasible

solution was found

print("Time limit reached and no feasible solution

was found .")

break

for (i, j), vr in x.items(): #gu = i, dist = j

if feas == True:

if vr.X > 0.9: # best to allow for numerical tolerances

G.nodes[i][" dist"] = j

else: break #This occurs if time limit is reached and no

feasible solution has been found.

ip.runtime=m.Runtime

ip.status=m.status

ip.objval=m.ObjVal

#SAVING TO EXCEL ---

#fields = [" num_dists", "GU", "pop_lb", "pop_ub", "obj"]

input_data = [list(ip.__dict__.values ())]

input_columns = list(ip.__dict__.keys())

df0 = pd.DataFrame(input_data , columns=input_columns)

excel_doc_name =

"IP_Red_ {}d_{}_obj{}_{}-{}. xlsx". format(ip.num_dists ,

ip.GU[0], ip.obj , round (100* ip.pop_lb),

round (100* ip.pop_ub))

if feas == True:

df1 = pd.DataFrame({’Variable ’: var.VarName.split(’[’)[0],

’index ’:[int(i) for i in

var.VarName.split(’[’)[1][: -1]. split(’,’)] if ’[’ in

var.VarName else None , ’value ’: var.X} for var in

m.getVars () if var.X >0.00001)

else:

df1 = pd.DataFrame ()

excel_writer = pd.ExcelWriter(excel_doc_name)

df0.to_excel(excel_writer , sheet_name=’Input ’)

df1.to_excel(excel_writer , sheet_name=’Results ’)

excel_writer.save()

print(f"Saved to {excel_doc_name }")

#PLOTTING RESULTS --

if feas: plot_plan(G, countyG , ip, m.status , m.ObjVal)

print("done with model")

print(" finished ")

if __name__ == "__main__ ":

if len(sys.argv) == 1:

main(’IP_input_c.txt ’) #Use file name if reading from file

95

elif len(sys.argv) == 2:

input_file = sys.argv [1]

main(input_file)

96

Appendix B Simulated Annealing Codes

The following Matlab program in Listing 1 is the main code used to conduct our experiment.

We describe the main ideas behind the code here:

• Lines 20-39: We can change our input values here. Some inputs such as line 20 and 38 are

broken, and will not work unless set to a specific number.

• Lines 83-129: We load our data.

• Line 165: Determines which precincts are on district boundaries.

• Line 273: We calculate the initial Polsby-Popper score for each district.

• Lines 282-287: We calculate the number of precincts in each CDI.

• Line 298: We start our main loop. This loop will iterate a maximum of 1,000,000 times and

will swap exactly one precinct over district lines at each iteration.

• Lines 302-329: The various cooling schedules are defined.

• Lines 337-353: The exponent associated with the population constraint is defined based on

the current iteration. The closer we are to the end of the algorithm, the larger this exponent

becomes.

• Lines 390-427: A while loop that only loops more than once if all of the boundary precincts

would break district contiguity if chosen.

• Line 392: We select n precincts on district boundaries.

• Lines 404-405: We calculate how each district’s area, perimeter, Polsby-Popper score, and

population would be affected if the ith precinct would be swapped across district lines.

• Lines 410-412: We compute the ∆E values for each of the n boundary precincts.

• Lines 413-414: We calculate the population scaling variable.

• Lines 425-426: Weights are assigned to the n precincts, and one is chosen to be swapped based

on those weights.

• Lines 433-436, 454-473: Various values are updated after the precinct swap.

97

• Lines 441-451, 489-497: Results are recorded.

• Lines 506-519: If we use cooling schedule C, we test to see if we compactness is getting worse.

If it is starting to level out, we switch to cooling.

• Lines 532-554: Determines if the algorithm has reached a local optimum. If the slope is shallow

enough, we advance the iteration count to the next 10% benchmark.

Listing 1: Main Code

%% Input

clear

clc

close all

TrialNum = 7;

TS = num2str(TrialNum);

directoryname = [’Trial ’,TS];

mkdir(directoryname)

for run =1:1

MAXPREC = 2232; %Number of precincts

MAXDIST = 7; %Number of districts

MAXNHB = 21; %Maximum precinct neighbor count

MAXCOUNTY = 46; %Number of counties

%Choose 0 if compactness is preferred

%Choose 1 if political boundaries are preferred

input.pref =0; % OPTION 1 DOES NOT WORK

input.Exp =10; %The largest Exp is , the more we value pref chosen above.

input.Exp2 =1; %0 or 1. 0 if we don ’t care about political boundaries

input.n=30; %Number of precincts sampled

input.Itmax =1; %Number of iterations

input.power =1; %Default power for population control. Will change later.

input.comments =0; %1 for command window statements , 0 otherwise

input.CS=2; %Cooling Schedule. 0 for Immediate drop; 1 for Geometric; 2 for

multiple cooling rates

input.MCL =input.Itmax /1000; %Markov Chain Length. This is the number of

iterations at each temperature

input.initT =100; %Initial Temperature --May be overridden depending on

input.CS.

input.alpha = 0.985; %Cooling rate

input.figures =1; %0 for suppressing images; 1 for displaying B/M/E; 2 for

more maps

input.BM =0; %0 for suppressing Boundary Maps; 1 for displaying them.

input.PPL =1; %Population Percent Limit. Must be in (0,5]. Restricts

population limits for districts (i.e. 5 means each district is +-5% of

targetpop)

input.saving =1; %Saving variable. Determines whether we want to save

certain variables. 0 for no , 1 for yes.

98

input.video =0; %Tells us if we want to save a video. 0 for no , 1 for yes.

input.videospace = 5000; %Space between the video frames. Records a picture

every input.videospace iterations

input.eps = .05/2000; %Epsilon. if slope of last 2000 compactness scores is

between -eps and +eps , we advance the code.

input.optcomp =0; %Tells us whether to use the optcomp function or not.

DOESN ’T WORK

input.damping =1; %Tells us whether to use damping factor or divide all

entries by largest. 0 for no damping factor

if run ==1

currdate = datestr(clock ,’mm-dd-yy_HH -MM ’);

end

runnum = num2str(run);

if input.saving ==1 && run ==1

String = [directoryname ,’/Input_ ’,currdate ,’.mat ’];

save(String ,’input ’);

end

%% Initialization

if run ==1

fig =0; % Increases by 1 each time a new figure is needed

end

FinalMapIt=input.Itmax; %Default index value for final map.

T=-inf;

clear Results

%Initializes the Results struct

Results(input.Itmax).DistPop = zeros(MAXDIST ,1);

Results(input.Itmax).PopDiff = zeros(MAXDIST ,1);

Results(input.Itmax).PopScale = -inf;

Results(input.Itmax).DeltaE = -inf;

Results(input.Itmax).DeltaComp = -inf;

Results(input.Itmax).CompactnessScore = -inf;

Results(input.Itmax).MovedPrec = -inf;

Results(input.Itmax).DistrictMoves = [-inf -inf];

Results(input.Itmax).T = -inf;

Results(input.Itmax).CountySum = -inf;

Results(input.Itmax).PI = -inf;

Results(input.Itmax).compchange = -inf;

Results(input.Itmax).county = -inf;

% Results(input.input.Itmax).WCompScore = -inf;

% Results(input.Itmax).maxdiff = -inf;

% Results(input.Itmax).Area=zeros(MAXDIST ,1);

% Results(input.Itmax).Perim=zeros(MAXDIST ,1);

% Results(input.Itmax).DEind = -inf;

% Results(input.Itmax).power = -inf;

Results(input.Itmax).prob = -inf;

if run ==1

Data5 = fopen(’Data5.txt ’,’r’);

Neighbors5 = fopen(’Neighbors5.txt ’,’r’);

BoundaryLengths5 = fopen(’BoundaryLengthskm5.txt ’,’r’);

99

NeighborIndices=fopen(’NeighborIndices.txt ’,’r’);

sizeData = [7 MAXPREC];

sizeNhb = [MAXNHB MAXPREC];

sizeBL = [MAXNHB MAXPREC];

sizeNI = [MAXNHB MAXPREC];

DataT =fscanf(Data5 , ’%lf ’, sizeData);

NeighborsT = fscanf(Neighbors5 ,’%f’,sizeNhb);

BLT = fscanf(BoundaryLengths5 ,’%f’, sizeBL);

NIT = fscanf(NeighborIndices ,’%d’,sizeNI);

Data = DataT ’;

Neighbors = NeighborsT ’;

BL = BLT ’;

NI = NIT ’;

clear DataT NeighborsT BLT NIT Data5 Neighbors5 BoundaryLengths5

clear NeighborIndices sizeData sizeNhb sizeBL sizeNI

SCPrec = struct ([]);

SavedSCPrec = struct ([]);

if isempty(SCPrec)

for i=1: MAXPREC

SCPrec(i).county = Data(i,1); %County , numbered by odds up to 91

SCPrec(i).geoID = Data(i,2); %Unique ID for each precinct.

SCPrec(i).dist = Data(i,3); %Primary district each precinct resides

in

SCPrec(i).perimeter = Data(i,4); %Perimeter in km

SCPrec(i).area = Data(i,5); %Area in km^2

SCPrec(i).pop = Data(i,6); %Population (estimated)

SCPrec(i).moe = Data(i,7); %Margin of Error for population

(estimated)

for j=1: MAXNHB

SCPrec(i).nhb(j) = Neighbors(i,j); %Neighbors for each precinct

SCPrec(i).nhblength(j) = BL(i,j); %Length of boundary with each

neighbor

end

end

end

for i=1: MAXPREC

for j=1: MAXNHB

SCPrec(i).nhbindex(j)=NI(i,j); %Index for each neighbor

end

end

end

%A = zeros(MAXPREC ,MAXNHB);

%Loads Neighbor Indices. We comment this section out because we have

%pre -loaded the neighbor indices.

% for i=1: MAXPREC

% for j=1: MAXNHB

% for k=1: MAXPREC

100

% if SCPrec(i).nhb(j) == SCPrec(k).geoID

% break

% elseif SCPrec(i).nhb(j) == 0

% SCPrec(i).nhbindex(j)=0;

% A(i,j) = 0;

% break

% end

%

% end

% if SCPrec(i).nhb(j) == SCPrec(k).geoID

% SCPrec(i).nhbindex(j)=k;

% A(i,j) = k;

% elseif SCPrec(i).nhb(j) == 0

% SCPrec(i).nhbindex(j)=0;

% A(i,j)=0;

% end

% end

% end

TotalPerim =0;

for i=1: MAXPREC

TotalPerim= TotalPerim + SCPrec(i).perimeter;

end

clear Neighbors Data BL NI

%% Finds Boundary Precincts

SCPrec = FindBoundaryPrecU(SCPrec , MAXPREC , MAXNHB);

%% Establishes Maps

if run ==1

if exist(’CountyMap.mat ’,’file ’)==2

load(’CountyMap.mat ’);

else

countymap = shaperead(’SC_Counties_Export.shp ’);

end

if exist(’PrecMap.mat ’,’file ’)==2

load(’PrecMap.mat ’);

else

precmap = shaperead(’Statewide_Precincts_2016.shp ’);

end

table = struct2table(precmap);

sortedT = sortrows(table , ’PrecinctID ’);

sortedS = table2struct(sortedT);

if input.comments ==1

fprintf(’It has been sorted!’);

end

% This loop is used to assign unsorted districts to the struct ’sortedS ’

% for i=1: MAXPREC +1

% if str2double(sortedS(i).PrecinctID) == 99999

% sortedS(i).Dist = 0;

% % fprintf(’This happened at i= %f’,i);

% continue;

101

% end

% for j=1: MAXPREC +1

% if str2double(sortedS(i).PrecinctID) == SCPrec(j).geoID

% sortedS(i).Dist = SCPrec(j).dist;

% break;

% end

% end

% end

%Quicker loop to assign districts to the struct ’sortedS ’

for i=1: MAXPREC

if str2double(sortedS(i).PrecinctID)~= SCPrec(i).geoID

fprintf(’Not equal at %d\n’,i);

else

sortedS(i).Dist = SCPrec(i).dist;

end

end

sortedS(MAXPREC +1).Dist = 0;

end

if input.video ==1

precspec = makesymbolspec(’Polygon ’,...

{’Dist ’,0, ’FaceColor ’,’k’},...

{’Dist ’,1, ’FaceColor ’,’r’},...

{’Dist ’,2, ’FaceColor ’,’g’},...

{’Dist ’,3, ’FaceColor ’,’c’},...

{’Dist ’,4, ’FaceColor ’,’y’},...

{’Dist ’,5, ’FaceColor ’,’m’},...

{’Dist ’,6, ’FaceColor ’,’b’},...

{’Dist ’,7, ’FaceColor ’,’w’});

countyspec = makesymbolspec(’Polygon ’, {’Default ’, ’FaceAlpha ’,0},...

{’Default ’, ’LineWidth ’,2});

figure

MVcount =1;

end

if input.figures >=1

precspec = makesymbolspec(’Polygon ’,...

{’Dist ’,0, ’FaceColor ’,’k’},...

{’Dist ’,1, ’FaceColor ’,’r’},...

{’Dist ’,2, ’FaceColor ’,’g’},...

{’Dist ’,3, ’FaceColor ’,’c’},...

{’Dist ’,4, ’FaceColor ’,’y’},...

{’Dist ’,5, ’FaceColor ’,’m’},...

{’Dist ’,6, ’FaceColor ’,’b’},...

{’Dist ’,7, ’FaceColor ’,’w’});

countyspec = makesymbolspec(’Polygon ’, {’Default ’, ’FaceAlpha ’,0},...

{’Default ’, ’LineWidth ’,2});

fig = fig+1;

figure(fig)

mapshow(sortedS ,’SymbolSpec ’,precspec);

title(’Current SC Precinct Map ’);

hold on

mapshow(countymap ,’SymbolSpec ’,countyspec);

102

drawnow

end

if input.BM ==1

for i=1: MAXPREC

sortedS(i).boundary=SCPrec(i).boundary;

end

sortedS(MAXPREC +1).boundary =2;

boundaryspec = makesymbolspec(’Polygon ’, {’boundary ’,0,

’FaceColor ’,’b’} ,...

{’boundary ’,1, ’FaceColor ’,’r’},...

{’boundary ’,2, ’FaceColor ’,’k’});

fig = fig+1;

figure(fig)

mapshow(sortedS , ’SymbolSpec ’,boundaryspec);

drawnow

end

if input.saving ==1

String = [directoryname ,’/BegMap_ ’,currdate ,’_run ’,runnum ,’.mat ’];

save(String ,’sortedS ’);

end

%% Calculates Polsby -Popper score for each district.

[DistArea , DistPerim , CurrentPP , DistPop] = PolsbyPopper(SCPrec ,

MAXDIST ,MAXPREC ,MAXNHB);

InitDP = DistPerim;

InitDA = DistArea;

CurrentinvPP = 1./ CurrentPP; %We work with inverse Polsby -Popper

AvgCurrentinvPP = mean(CurrentinvPP);

MaxPP = AvgCurrentinvPP; %Initial maximum Polsby -Popper score achieved

TargetPop = mean(DistPop);

%% Calculates number of precincts in each county/district intersection

PinCperDist = zeros(MAXCOUNTY ,MAXDIST);

for i=1: MAXPREC

j=ceil(SCPrec(i).county /2);

k=SCPrec(i).dist;

PinCperDist(j,k) = PinCperDist(j,k)+1;

end

count =0;

it=1;

trueit =1;

vlc=1;

if input.CS ==2

flag =0;

end

%% Main loop

while it <= input.Itmax

if input.video ==1

clf %clear figure

103

end

if input.CS ==0

if it<input.Itmax /2

T=input.initT;

else

T=.1;

end

elseif input.CS ==1

count=count +1;

if T ==-inf

T=input.initT;

end

if count >input.MCL

T=input.alpha*T;

count =1;

end

elseif input.CS ==2

if flag ==0 %We haven ’t reached peak yet

T = input.initT;

elseif flag ==1 %We’ve reached peak , and are now descending

count=count +1;

if count >input.MCL

T=input.alpha*T;

count =0;

end

else

error(’flag undefined ’);

end

end

%prevents T from getting too small.

if T <0.05

T =0.05;

end

%Increases strength of population control as algorithm progresses

if it/input.Itmax <0.2

input.power = 1;

elseif it/input.Itmax <0.4

input.power = 2;

elseif it/input.Itmax <0.6

input.power = 4;

elseif it/input.Itmax <0.8

input.power = 8;

elseif it/input.Itmax <0.9

input.power = 16;

elseif it/input.Itmax <0.95

input.power = 32;

elseif it/input.Itmax <0.975

input.power = 64;

else

input.power = 128;

end

if it -1 == ceil(input.Itmax /2) && input.saving ==1

104

String = [directoryname ,’/MidMap_ ’,currdate ,’_run ’,runnum ,’.mat ’];

save(String ,’sortedS ’);

end

if input.BM ==1 && it == floor(input.Itmax /2)

for i=1: MAXPREC

sortedS(i).boundary=SCPrec(i).boundary;

end

fig = fig +1;

figure(fig)

mapshow(sortedS ,’SymbolSpec ’,boundaryspec);

drawnow

end

% Saves a map at 20%, 40%, 60%, 80% and 90% of the way through

if input.figures ==2 &&

ismember ((it -1)/input.Itmax ,[0.2 ,0.4 ,0.6 ,0.8 ,0.9])

fig=fig +1;

figure(fig)

mapshow(sortedS ,’SymbolSpec ’,precspec);

hold on

mapshow(countymap ,’SymbolSpec ’,countyspec);

str = sprintf(’SC Precinct Map after %d Iterations ’, it);

title(str);

drawnow

end

if input.comments ==1

fprintf(’\n’);

end

%% Delta E Calculation Loop

DEind = -inf;

%The while loop is used only when the entire list of original boundary

precincts breaks adjacency

while DEind==-inf

%Selects n random precincts on district boundaries

[BoundaryPrecInd ,NhbDist] = BPSelector(SCPrec ,input.n,MAXPREC ,0);

HypDistPP = zeros(MAXDIST ,input.n);

HypDistArea = zeros(MAXDIST ,input.n);

HypDistPerim = zeros(MAXDIST ,input.n);

HypDistPop = zeros(MAXDIST ,input.n);

DeltaE = zeros(input.n,1);

DeltaComp = zeros(input.n,1);

PopScale = zeros(input.n,1);

% Calculates Delta E for the n precincts

for i=1: input.n

[HypDistArea (:,i),HypDistPerim (:,i),HypDistPP(:,i),

HypDistPop (:,i)] = ...

PPUpdate(SCPrec ,BoundaryPrecInd(i),NhbDist(i), DistArea ,

DistPerim , DistPop , MAXNHB);

invDistPP = 1./ HypDistPP;

105

compNew=mean(invDistPP(:,i));

cc= SCPrec(BoundaryPrecInd(i)).county;

ccu=cc /2+0.5;

[DeltaComp(i),DeltaE(i)] = DeltaEComp(PinCperDist(ccu ,:), ...

SCPrec(BoundaryPrecInd(i)).dist , NhbDist(i), compNew , ...

AvgCurrentinvPP , input.pref , input.Exp , input.Exp2 ,

input.damping);

PopScale(i) = PopComp(SCPrec(BoundaryPrecInd(i)).dist ,

NhbDist(i) ,...

DistPop , HypDistPop (:,i),TargetPop ,input.power ,input.PPL);

end

if input.damping ==0

maxDE = max(abs(DeltaE));

DeltaE = DeltaE/maxDE;

end

%Picks a precinct to swap over district lines. If all precinct

%choices break adjacency , we retry (DEind = -inf if all choices

%break adjacency).

[DEind , MovingPrecIndex , NewDist , prob] =

Pickswap(BoundaryPrecInd ,...

NhbDist , SCPrec , DeltaE , PopScale , T, input.n, MAXNHB ,

input.comments);

end

%% Updates

%Updates the district area , perimeter , and population after the moving

%precinct has been chosen

OldDistArea=DistArea;

OldDistPerim=DistPerim;

DistArea=HypDistArea (:,DEind);

DistPerim=HypDistPerim (:,DEind);

if sum(DistPerim) > TotalPerim

error(’Max perimeter exceeded ’);

end

DistPop = HypDistPop (:,DEind);

% Results(trueit).Area=DistArea;

% Results(trueit).Perim=DistPerim;

Results(trueit).DistPop=DistPop;

% Results(trueit).DEind = DEind;

Results(trueit).PopDiff = 100*(DistPop -TargetPop)/TargetPop;

Results(trueit).PopScale = PopScale(DEind);

Results(trueit).DeltaE = DeltaE(DEind);

% Results(trueit).power = power;

Results(trueit).prob = prob;

Results(trueit).DeltaComp = DeltaComp(DEind);

% Results(trueit).maxdiff = max(abs(Results(trueit).PopDiff));

%Calculates current Polsby -Popper Score

CurrentPP = 4*3.141592* OldDistArea ./(OldDistPerim .^2);

AvgCurrentinvPP = mean (1./ CurrentPP);

%Modifies the chosen prencinct ’s district

106

OldDist=SCPrec(MovingPrecIndex).dist;

SCPrec(MovingPrecIndex).dist=NewDist;

sortedS(MovingPrecIndex).Dist=NewDist;

%Modifies PinCperDist

cc = SCPrec(MovingPrecIndex).county;

ccu = cc /2+0.5;

PinCperDist(ccu ,OldDist) = PinCperDist(ccu ,OldDist) -1;

PinCperDist(ccu ,NewDist) = PinCperDist(ccu ,NewDist)+1;

%Modifies CountySum

CountySum = nnz(PinCperDist)-MAXCOUNTY;

Results(trueit).CountySum = CountySum;

%Modifies which precincts are on boundaries

SCPrec = BPUpdate(MovingPrecIndex , SCPrec , MAXNHB);

NewDistPP = 4*3.141592* DistArea ./(DistPerim .^2);

AverageNewPP = mean (1./ NewDistPP);

change = AverageNewPP - AvgCurrentinvPP;

if input.comments ==1

fprintf(’We are on iteration %d. T = %f\n’,it ,T);

fprintf(’We moved precinct %d (index %d) from district %d to

district %d.\n’,...

SCPrec(MovingPrecIndex).geoID , MovingPrecIndex , OldDist ,

NewDist);

fprintf(’The new compactness score is %f. This is a change of %f

from the old score .\n’,...

AverageNewPP ,change);

elseif input.comments ==0 && floor(trueit /500) == trueit /500

fprintf(’We are on iteration %d. T = %f\n’,it ,T);

end

Results(trueit).CompactnessScore=AverageNewPP;

Results(trueit).MovedPrec = SCPrec(MovingPrecIndex).geoID;

Results(trueit).PI = MovingPrecIndex;

Results(trueit).DistrictMoves (1) = OldDist;

Results(trueit).DistrictMoves (2) = NewDist;

Results(trueit).T = T;

%Results(trueit).count=count;

Results(trueit).compchange=change;

Results(trueit).county = SCPrec(MovingPrecIndex).county;

% if it==1

% Results(trueit).PerimChange = Results(trueit).Perim -InitDP;

% else

% Results(trueit).PerimChange = Results(trueit).Perim -

Results(it -1).Perim;

% end

if input.CS ==2 && flag ==0

if trueit /500 == floor(trueit /500) && trueit >=1000

PastScores = [Results(trueit -999: trueit).CompactnessScore];

107

x=linspace (1 ,1000 ,1000);

p1=polyfit(x,PastScores ,1);

%Swtiches to decreasing temperature if we ’ve reached peak or we

%are halfway through

if (p1(1) <0.00005 && p1(1) > -0.00005) || it/input.Itmax >=.5

flag =1;

greenmarker =trueit;

fprintf(’We switched to decreasing temperature at iteration

%d\n’,it);

end

end

end

if it > .9* input.Itmax && max(abs(Results(trueit).PopDiff)) <=input.PPL

SavedSCPrec = SCPrec;

FinalMapIt = trueit;

end

if AverageNewPP > MaxPP

MaxPP = AverageNewPP;

end

%Advances the code to the next benchmark if we aren ’t improving

%compactness

if floor(it /1000) == it/1000 && AverageNewPP <0.5* MaxPP &&trueit >=2000

&& it/input.Itmax <0.9

PastScores = [Results(trueit -1999: trueit).CompactnessScore];

x=linspace (1 ,2000 ,2000);

p2=polyfit(x,PastScores ,1);

fprintf(’We are checking slope !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

The slope is %f.\n’,p2(1));

if p2(1)<input.eps && p2(1) >-input.eps

oldit=it;

it = floor(input.Itmax*ceil(it/input.Itmax *10) /10);

fprintf(’Slope is small enough. Old it = %d. New it =

%d.\n’,oldit , it);

if it ~= oldit

count =0;

vertlines(vlc) = trueit;

itvals(vlc) = it /1000;

vlc=vlc +1;

end

if input.CS ==1

T = input.initT*input.alpha^(it/input.MCL);

elseif input.CS ==2

T = input.initT*input.alpha ^((it -greenmarker)/input.MCL);

end

end

end

if input.video ==1

if floor(it/input.videospace) == it/input.videospace || it ==1

mapshow(sortedS ,’SymbolSpec ’,precspec);

hold on

108

mapshow(countymap ,’SymbolSpec ’,countyspec);

str = sprintf(’SC Precinct Map after %d Iterations ’, it);

title(str);

movieVector(MVcount) = getframe;

MVcount=MVcount +1;

end

end

it=it+1;

trueit = trueit +1;

end

if input.optcomp ==1 %DOESN ’T WORK

[SCPrec ,Results] = MaxComp(SCPrec ,input ,TargetPop);

end

Results(trueit:input.Itmax)=[]; % Empties the zeros left in the Results

struct

if input.video ==1

mywriter = VideoWriter ([’Map_ ’,currdate],’MPEG -4’);

mywriter.FrameRate = 2;

mywriter.Quality = 100;

open(mywriter);

writeVideo(mywriter ,movieVector);

close(mywriter);

end

distprec= zeros(MAXPREC , MAXDIST);

row=ones(1,MAXDIST);

% Creates matrix detailing which precincts are in which districts

for i=1: MAXPREC

for j=1: MAXDIST

if SCPrec(i).dist ==j

distprec(row(j),j) = SCPrec(i).geoID;

row(j)=row(j)+1;

end

end

end

distprec(max(row):MAXPREC ,:) = [];

%Presents the map that has correct population constraints.

if isempty(SavedSCPrec)

fprintf(’None of the final maps had the correct population requirements

:(\n’);

FinalMapIt =trueit -1;

else

for i=1: MAXPREC

sortedS(i).Dist = SavedSCPrec(i).dist;

end

fprintf(’This final map occurred at iteration %d\n’,FinalMapIt);

end

109

NewDistPP

FinalCompScore = Results(FinalMapIt).CompactnessScore

AverageDeltaE = mean([Results.DeltaE])

AverageComp = mean([Results.DeltaComp])

if input.figures >=1

% Displays final map

fig = fig+1;

figure(fig)

mapshow(sortedS ,’SymbolSpec ’,precspec);

hold on

mapshow(countymap ,’SymbolSpec ’,countyspec);

str = sprintf(’SC Precinct Map after %d Iterations ’, FinalMapIt);

title(str);

drawnow

% Displays compactness score over time

fig = fig+1;

figure(fig)

if exist(’itvals ’,’var ’) ==1

for i=1: length(itvals)

list{1,i} = num2str(itvals(i));

end

end

plot([Results.CompactnessScore]);

if exist(’vertlines ’,’var ’)==1

vline(vertlines ,’r’);

input.vertlines = vertlines;

end

if exist(’greenmarker ’,’var ’)==1

vline(greenmarker ,’g’);

input.greenmarker = greenmarker;

end

title(’Inverse Polsby -Popper Score by Iteration ’);

xlabel(’Iteration ’);

ylabel(’Inverse Polsby -Popper Score ’);

% Displays CountySum values over time

fig=fig+1;

figure(fig)

plot([Results.CountySum]);

title(’County Sum by Iteration ’);

xlabel(’Iteration ’);

ylabel(’County Sum ’);

%Displays histogram of which counties had precincts swaps in them the

%most often.

fig=fig+1;

figure(fig)

histogram ([Results.county]);

title(’Counties with precinct swaps ’);

xlabel(’County Number ’);

ylabel(’Number of swaps in this county ’);

% Displays histogram of which precincts were swapped most often

110

fig=fig+1;

figure(fig)

histogram ([Results.PI],MAXPREC);

title(’Histogram of Precinct swaps ’);

xlabel(’Precinct ID ’);

ylabel(’Number of swaps ’);

end

if input.BM ==1

for i=1: MAXPREC

sortedS(i).boundary=SCPrec(i).boundary;

end

fig = fig + 1;

figure(fig)

mapshow(sortedS ,’SymbolSpec ’,boundaryspec);

drawnow

end

if input.saving ==1

String = [directoryname ,’/Results_ ’,currdate ,’_run ’,runnum ,’.mat ’];

save(String ,’Results ’);

String = [directoryname ,’/FinMap_ ’,currdate ,’_run ’,runnum ,’.mat ’];

save(String ,’sortedS ’);

end

clear str oldit ans cc ccu i j k it NewDist OldDist NhbDist vlc x

clear HypDistArea HypDistPerim HypDistPop HypDistPP MovingPrecIndex

clear table SavedScores p2 OldDistArea OldDistPerim count prob change

clear compNew DEind

end

111

The function FindBoundaryPrecU examines all of South Carolina’s precincts and determines

which of them are on district boundaries. It saves the result in SCPrec, which is the struct containing

the data about the precincts.

Listing 2: FindBoundaryPrecU function

function [SCPrec] = FindBoundaryPrecU(SCPrec , MAXPREC , MAXNHB)

% This function examines all precincts and determines which ones are on

district boundaries

for i=1: MAXPREC

SCPrec(i).boundary =0; % Indicates that the precinct is not on a

district boundary

end

for i=1: MAXPREC

if SCPrec(i).boundary ==1

continue

end

Dist = SCPrec(i).dist;

for k=1: MAXNHB

if SCPrec(i).nhbindex(k)==0

break

end

NI = SCPrec(i).nhbindex(k);

NDist = SCPrec(NI).dist;

% If the precinct is on a district boundary , its boundary field is

% changed

if Dist ~= NDist

SCPrec(i).boundary =1;

SCPrec(NI).boundary =1;

end

end

end

end

112

The PolsbyPopper function will calculate the Polsby-Popper score for each district as well

as each district’s area, perimeter, and population. To calculate perimeter, we added together the

perimeter of each precinct in a district and then subtracted the perimeter that was on the interior

of the district.

Listing 3: PolsbyPopper function

function [DistArea , DistPerim , DistPP , DistPop] = PolsbyPopper(SCPrec ,

MAXDIST ,MAXPREC ,MAXNHB)

%PolsbyPopper calculates the Polsby -Popper score for each district

AreaSum = zeros(MAXDIST ,1);

TotalPerim = zeros(MAXDIST ,1);

IntPerim = zeros(MAXDIST ,1);

DistPop = zeros(MAXDIST ,1);

for i=1: MAXDIST

for j=1: MAXPREC

if SCPrec(j).dist==i

DistPop(i) = DistPop(i) + SCPrec(j).pop;

AreaSum(i)=AreaSum(i)+SCPrec(j).area;

TotalPerim(i)=TotalPerim(i)+SCPrec(j).perimeter;

for k=1: MAXNHB

CNI = SCPrec(j).nhbindex(k);

if CNI ==0

break

elseif SCPrec(j).dist == SCPrec(CNI).dist

IntPerim(i)=IntPerim(i)+SCPrec(j).nhblength(k);

end

end

end

end

end

OuterPerim=TotalPerim -IntPerim;

DistPP = 4*3.141592* AreaSum ./(OuterPerim .^2);

DistArea=AreaSum;

DistPerim=OuterPerim;

end

113

BPSelector (Boundary Precinct Selector) selects n precincts on district boundaries. It will

also find the district that neighbors each of those precincts. If there are two or more districts that

neighbor a single precinct, we will pick one at random (the random number is given on line 19).

Everything after line 28 was not used for this project.

Listing 4: BPSelector function

function [BoundaryPrecInd , NhbDist] = BPSelector(SCPrec , n, MAXPREC ,

newcode)

%This selects n precincts on district boundaries

% Case where we use GC_4_0

if newcode ~= 5

boundaryprecs = find([SCPrec.boundary]);

BoundaryPrecInd = datasample(boundaryprecs ,n);

NhbDist = zeros(n,1);

BPind = zeros(n,1);

for i=1:n

flag =0;

BPind(i) = BoundaryPrecInd(i);

BPDist = SCPrec(BPind(i)).dist;

nhbcount = nnz([SCPrec(BPind(i)).nhbindex]);

while flag ==0

r=randi(nhbcount);

NI = SCPrec(BPind(i)).nhbindex(r);

if BPDist ~= SCPrec(NI).dist

flag =1;

NhbDist(i)=SCPrec(NI).dist;

end

end

end

% Case where we use GC_5_0

else

flag =0;

while flag == 0

HypPrecInd = randi(MAXPREC);

if SCPrec(HypPrecInd).boundary ==1

flag =1;

BoundaryPrecInd =HypPrecInd;

end

end

flag =0;

BPind = BoundaryPrecInd;

BPDist = SCPrec(BPind).dist;

nhbcount = nnz([SCPrec(BPind).nhbindex]);

while flag ==0

r=randi(nhbcount);

114

NI = SCPrec(BPind).nhbindex(r);

if BPDist ~= SCPrec(NI).dist

flag =1;

NhbDist=SCPrec(NI).dist;

end

end

end

end

115

PPUpdate (Polsby-Popper Update) is a function that calculates hypothetical district areas,

perimeters, Polsby-Popper scores, and populations for a given precinct swap. By inputting the

candidate precinct (MovingPrec) and the district we are proposing it move to (NewDist), we can

easily update each of the items above.

Listing 5: PPUpdate function

function [DistArea , DistPerim , DistPP , DistPop] = PPUpdate(

SCPrec ,MovingPrec ,NewDist , DistArea , DistPerim , DistPop , MAXNHB)

% Updates the Polsby -Popper scores for each district without recomputing

% everything

OldDist = SCPrec(MovingPrec).dist;

%Adjust population of old and new district

DistPop(NewDist) = DistPop(NewDist)+SCPrec(MovingPrec).pop;

DistPop(OldDist) = DistPop(OldDist)-SCPrec(MovingPrec).pop;

%Adjusts area of the new district

DistArea(NewDist)=DistArea(NewDist)+SCPrec(MovingPrec).area;

DistArea(OldDist)=DistArea(OldDist)-SCPrec(MovingPrec).area;

% Preliminarily adjusts perimeter of the new district

DistPerim(NewDist)=DistPerim(NewDist)+SCPrec(MovingPrec).perimeter;

DistPerim(OldDist)=DistPerim(OldDist)-SCPrec(MovingPrec).perimeter;

if DistPerim(OldDist) <0

error(’Perimeter is less than 0 (OldDist)\n’);

elseif DistPerim(NewDist) <0

error(’Perimeter is less than 0 (NewDist)\n’);

end

% Runs through neighbors of MovingPrec to adjust the perimeter

for k=1: MAXNHB

if SCPrec(MovingPrec).nhbindex(k)==0

break;

else

NI = SCPrec(MovingPrec).nhbindex(k);

%fprintf(’MovingPrec = %d, NI = %d,

SCPrec(MovingPrec).nhblength(k)=%f\n’,MovingPrec ,NI,SCPrec(MovingPrec).nhblength(k));

if SCPrec(NI).dist == OldDist

DistPerim(OldDist)=DistPerim(OldDist)+2* SCPrec(MovingPrec).nhblength(k);

if DistPerim(OldDist) <0

error(’Perimeter is less than 0 (OldDist)\n’);

end

elseif SCPrec(NI).dist == NewDist

DistPerim(NewDist)=DistPerim(NewDist) -2*SCPrec(MovingPrec).nhblength(k);

if DistPerim(NewDist) <0

error(’Perimeter is less than 0 (NewDist)\n’);

end

%This multiplication by 2 occurs because we have doubled up on

%the perimeter between the MovingPrec and NewDist

end

116

end

end

DistPP= 4*3.141592* DistArea ./(DistPerim).^2;

end

117

DeltaEComp (∆E Computation) is a function which computes ∆E values for the proposed

precinct swap. This formulation is described in detail in subsection 4.2.3. Everything past line 29

was not used in this project.

Listing 6: DeltaEComp function

function [DeltaComp , DeltaE] = DeltaEComp(PinCrow , OldDist , NewDist ,

compN , compC , pref , Exp , Exp2 , damp)

%DeltaEComp Computes the DeltaE score for the proposed swap

PCOld = PinCrow(OldDist);

PCNew = PinCrow(NewDist);

DeltaComp = compN -compC;

% if DeltaComp <-1

% fprintf(’DeltaComp was too negative. DeltaComp = %f\n’, DeltaComp);

% DeltaComp = -1;

% elseif DeltaComp >1

% fprintf(’DeltaComp was too positive. DeltaComp = %f\n’, DeltaComp);

% DeltaComp = 1;

% end

x=PCOld -PCNew;

if pref == 0 %Case where swaps that improve compactness are incentivized

if sign(x)==sign(DeltaComp)

S = 1+(x^2) ^(1/3);

else

S = 1/(1+(x^2) ^(1/3));

end

if DeltaComp <0

DeltaE=S^Exp2*(-DeltaComp +1)^Exp*sign(DeltaComp);

elseif DeltaComp >=0

DeltaE=S^Exp2*(DeltaComp +1)^Exp*sign(DeltaComp);

end

elseif pref == 1 %Case where we incentivize swaps that make political

boundaries nicer

S = sign(x)*nthroot(x^2,3);

if sign(x) == sign(DeltaComp)

f = abs(DeltaComp)+1;

else

f = 1/(damp+abs(DeltaComp));

end

DeltaE=S*f^Exp; %As of 5-20-19, THIS WILL NOT WORK WITH EXP =/= 1.

end

end

118

PopComp (Population Computation) is a function which calculates the population scaling

factor Sj mentioned in Equation (4.1). Let’s suppose that the proposed precinct swap is from “old

district” to “new district.” In this function, DistPop is a vector containing the population of each

district after the proposed swap. OldDistPop is the vector containing the population of each district

before the proposed swap. Then, we calculate the population scaling variable as follows:

• We start by calculating a variable q for the old district. The variable q is the number of

percentage points that the population of the old district is away from the ideal population

window.

– If the old district’s population is above the ideal population window, then q will be

positive. This is good, since this proposed swap will reduce the population of the old

district.

– If the old district’s population is below the ideal population window, then q will be

negative. This is bad, because the proposed swap will reduce the population of the old

district.

– If the old district’s population is within the ideal population window, then q will be 0.

• We then calculate a second q for the new district, in a mirrored way.

– If the new district’s population is above the ideal population window, then q will be

negative.

– If the new district’s population is below the ideal population window, then q will be

positive.

– If the new district’s population is within the ideal population window, then q will be 0.

• We add the two q values together.

• We now calculate a variable y based on the sign of q.

– If q > 0, then y = 0.1 ∗ q.

– If q == 0, then y = 0.

– If q < 0, then y = 0.9−q − 1.

• Finally, we calculate the population scaling variable. Sj = (1 + y) and Sp
j = (1 + y)p.

119

The idea behind the calculation of y is that if q is positive, then 1 + y ∈ (1,∞), so the scaling

variable will be greater than one. Conversely, if q < 0, then 1 + y ∈ (0, 1), so the scaling variable

will also be in (0, 1).

Listing 7: PopComp function

function [PopScale] = PopComp(OldDist , NewDist ,OldDistPop , DistPop ,

TargetPop , power ,PPL)

% PopComp computes a number which is a multiplier for the probability

% function. If the swap gets the districts closer to the target

% populations , the scaling is an increase , otherwise , the probability of

% making that swap diminishes.

uppop = (1+0.01* PPL)*TargetPop;

lwrpop = (1 -0.01* PPL)*TargetPop;

%Establishes q for OldDist

if DistPop(OldDist) >uppop

q=(DistPop(OldDist)-uppop)/(0.01* TargetPop); %positive q

elseif DistPop(OldDist) <= uppop && DistPop(OldDist) >= lwrpop &&

OldDistPop(OldDist) <= uppop && OldDistPop(OldDist) >=lwrpop

q=0;

elseif DistPop(OldDist) <= uppop && DistPop(OldDist) && OldDistPop(OldDist)

> uppop

q=(OldDistPop(OldDist)-uppop)/(0.01* TargetPop); %positive q

elseif DistPop(OldDist) <= uppop && DistPop(OldDist) && OldDistPop(OldDist)

< lwrpop

q=(OldDistPop(OldDist)-lwrpop)/(0.01* TargetPop); %negative q

elseif DistPop(OldDist) <lwrpop

q=(DistPop(OldDist)-lwrpop)/(0.01* TargetPop); %negative q

else

error(’q was not assigned (OldDist)’);

end

%Modifies q for NewDist

if DistPop(NewDist) >uppop

q=q-(DistPop(NewDist)-uppop)/(0.01* TargetPop); %subtracting positive

number

elseif DistPop(NewDist) <= uppop && DistPop(NewDist) >= lwrpop &&

OldDistPop(NewDist) <= uppop && OldDistPop(NewDist) >=lwrpop

q=q-0;

elseif DistPop(NewDist) <= uppop && DistPop(NewDist) >= lwrpop &&

OldDistPop(NewDist) > uppop

q=q-(OldDistPop(NewDist)-uppop)/(0.01* TargetPop); %subtracting positive

number

elseif DistPop(NewDist) <= uppop && DistPop(NewDist) >= lwrpop &&

OldDistPop(NewDist) < lwrpop

q=q-(OldDistPop(NewDist)-lwrpop)/(0.01* TargetPop); %subtracting

negative number

elseif DistPop(NewDist) <lwrpop

q=q-(DistPop(NewDist)-lwrpop)/(0.01* TargetPop); %subtracting negative

number

else

120

error(’q was not assigned (NewDist)’);

end

if q>0

y=0.1*q;

elseif q==0

y=0;

elseif q<0

y=(0.9)^(-q) -1;

end

PopScale = (1+y)^power;

%fprintf(’q is %f and y is %f, resulting in PopScale = %f\n’,q,y,PopScale);

121

PickSwap is the function that assigns weights to each of the n boundary precincts, and then

picks one to move over district lines. The equation dictating how weights are assigned can be found

in equation (4.1). In order to save computation time, we only check the contiguity of the districts

after we have picked a precinct to swap over district lines. If that precinct would break contiguity,

we choose another one. The call to the function which checks contiguity is found on line 54.

Listing 8: Pickswap function

function [DEind , MovingPrecInd ,NewDist , prob] = Pickswap(BoundaryPrecInd ,

NhbDist , SCPrec , DeltaE , PopScale , T, n, MAXNHB , comments)

%Picks a prencinct to swap over district lines

MovingPrecInd = -inf;

NewDist = -inf;

% for i=1:n

% if PopScale(i) <10^-50

% PopScale(i)=0;

% end

% end

Probability = PopScale ./(1+ exp(DeltaE/T));

%Forces exceptionally small probabilities to be zero

for i=1:n

if Probability(i) <0

error(’A probability is less than 0’);

elseif Probability(i) == inf

fprintf(’A probability was infinity\n’);

MovingPrecInd = BoundaryPrecInd(i);

DEind=i;

NewDist = NhbDist(i);

prob =100;

return

elseif Probability(i) <=10^(-50)

% Probability(i)=0;

end

end

ProbabilityInts = zeros(n,1);

ProbabilityInts (1) = Probability (1);

for i=2:n

ProbabilityInts(i) = Probability(i)+ProbabilityInts(i-1);

end

Adj = 0; %Starting value.

while Adj ==0

if ProbabilityInts(n) <= 0

122

fprintf(’All swap choices break adjacency; choosing new boundary

precincts .\n’);

DEind=-inf;

prob=-inf;

return;

end

RandomNumber = rand*ProbabilityInts(n);

maxprob =100* max(Probability/sum(Probability));

if RandomNumber <= ProbabilityInts (1) && RandomNumber >0

MovingPrecInd=BoundaryPrecInd (1);

Adj = CheckAdjacency(MovingPrecInd , SCPrec , MAXNHB);

if Adj == 0

if comments ==1

fprintf(’FIRST LOOP: Our original precinct choice (geoID

%d, index %d, dist %d) violated adjacency of the old

district\n’,SCPrec(MovingPrecInd).geoID , MovingPrecInd ,

SCPrec(MovingPrecInd).dist);

fprintf(’RandomNumber is %.3f. In interval (0, %.3f].

Chance of choosing: %f percent.

\n’,RandomNumber ,ProbabilityInts (1),

100* ProbabilityInts (1)/ProbabilityInts(n));

end

Probability (1)=0;

ProbabilityInts (1)=0; %Makes probability of choosing this swap 0

for j=2:n

ProbabilityInts(j)=ProbabilityInts(j)-ProbabilityInts (1);

%Adjusts all subsequent intervals

end

continue;

end

NewDist = NhbDist (1);

if comments ==1

fprintf(’The probability of this pick is %f percent; largest

was %f. \n’ ,100*(ProbabilityInts (1))/ProbabilityInts(n),

maxprob);

fprintf(’PopScale was %f\n’,PopScale (1));

fprintf(’We are using the 1st element in BoundaryPrecInd\n’);

end

i=1;

break

else

for i=2:n

if RandomNumber <= ProbabilityInts(i) && RandomNumber

>ProbabilityInts(i-1)

MovingPrecInd=BoundaryPrecInd(i);

Adj = CheckAdjacency(MovingPrecInd , SCPrec , MAXNHB);

if Adj == 0 %Considers what happens when adjacency is

broken from this swap

difference=ProbabilityInts(i)-ProbabilityInts(i-1);

if comments ==1

fprintf(’Our original precinct choice (geoID %d,

index %d, dist %d) violated adjacency of the

old district\n’,SCPrec(MovingPrecInd).geoID ,

MovingPrecInd , SCPrec(MovingPrecInd).dist);

123

fprintf(’RandomNumber is %.3f. In interval (%.3f,

%.3f]. Chance of choosing: %f

percent .\n’,RandomNumber ,ProbabilityInts(i-1),

ProbabilityInts(i) ,100* difference/ProbabilityInts(n));

end

ProbabilityInts(i)=ProbabilityInts(i-1); %Makes

probability of choosing this swap 0

Probability(i)=0;

for j=i+1:n

ProbabilityInts(j)=ProbabilityInts(j)-difference;

%Adjusts all subsequent intervals

end

break;

end

NewDist = NhbDist(i);

if comments ==1

fprintf(’The probability of this pick is %f percent;

largest was %f.

\n’ ,100*(ProbabilityInts(i)-ProbabilityInts(i-1))/ProbabilityInts(n),

maxprob);

fprintf(’PopScale was %f\n’,PopScale(i));

fprintf(’We are using the %dth element in

BoundaryPrecInd\n’,i);

end

break;

end

end

end

end

DEind = i;

if i>1

prob = 100*(ProbabilityInts(i)-ProbabilityInts(i-1))/ProbabilityInts(n);

else

prob = 100* ProbabilityInts (1)/ProbabilityInts(n);

end

if MovingPrecInd == -Inf || NewDist == -Inf

fprintf(’ERROR. No Precinct has been chosen , likely because all weights

are zero. Choosing a precinct at random: \n’);

DEind = randi(n);

end

end

124

The CheckAdjacency function checks whether districts are still contiguous after the swap

is made. To do this, it is only necessary to analyze the district that the precinct originated from.

Further, we need only ensure that the neighbors of the moved precinct remain connected after the

swap. To check if the neighbors are still connected, we consider all of the neighbors’ neighbors within

the district excluding the moving precinct. If the set of all neighbors and neighbors’ neighbors

excluding the moving precinct are connected, then we say that the district would be contiguous

after the swap. This is not perfect. There exist contrived examples where a precinct swap should be

allowable, but is considered to break contiguity by this function. These examples seem quite rare

and did not dramatically affect this analysis.

Listing 9: CheckAdjacency function

function [Adj] = CheckAdjacency(p, SCPrec , MAXNHB)

%Determines if all districts maintain contiguity after a precinct changes

%districts

queue = zeros (50,1);

checked = zeros (50 ,1);

visited = zeros (50 ,1);

adjMatrix = zeros(50, MAXNHB +1);

i=1;

qc=2;

m=1;

jmax =0;

iterations =0;

PNcount =0;

count =0;

D = SCPrec(p).dist;

queue (1)=p;

% This while loop will build a precinct which represents the

subgraph

% containing neighbors up to two edges away and in the same district

while queue (1)~=0

v=queue (1);

l=1;

while queue(l)~=0

queue(l)=queue(l+1); % Moves all elements in the

queue up one spot

l=l+1;

end

qc=qc -1;

adjMatrix(i,1)=v;

k=1;

j=2;

125

while SCPrec(v).nhbindex(k)~=0

% fprintf(’Index: %d. geoID: %d. Neighbor: %d. Neighbor Index:

%d\n’,v,SCPrec(v).geoID ,k,SCPrec(v).nhbindex(k));

NI = SCPrec(v).nhbindex(k);

overlap =0;

n=1;

while checked(n)~=0

if NI== checked(n)

overlap =1; % Checks to see if

precinct has been counted as a

neighbor already

end

n=n+1;

end

if SCPrec(NI).dist==D && NI~=p

adjMatrix(i,j)=NI;

if(iterations <PNcount +1 && overlap ==0)

queue(qc)=NI; % Add new precinct

into queue if it hasn ’t already

been considered and isn ’t too

far away.

qc=qc+1;

checked(m)=NI;

m=m+1;

if(iterations ==0)

PNcount=PNcount +1;

end

end

j=j+1;

if j>jmax

jmax=j;

end

if jmax >MAXNHB +1

%fprintf(’You are trying to make jmax too large! v= %d

and NI = %d.\n’,v,NI);

jmax=MAXNHB +1; %Something is wrong here.

end

end

k=k+1;

if k>MAXNHB

break;

end

end

iterations=iterations +1;

i=i+1;

end

imax=i;

qc=2;

k=2;

126

queue (1)=adjMatrix (2,1);

visited (1)=adjMatrix (2,1);

% This loop does a breadth first search to determine if the graph

is still connected when we remove the precinct p.

while queue (1)~=0

v=queue (1);

l=1;

while queue(l)~=0

queue(l)=queue(l+1);

l=l+1;

end

qc=qc -1;

for b=1: imax

if adjMatrix(b,1)==v

i=b;

end

end

for j=1: jmax

% sprintf(’Test 1: We are examining (%d,%d)\n’,i,j);

if adjMatrix(i,j)==0

break;

end

n=1;

overlap =0;

while checked(n)~=0

if adjMatrix(i,j)== checked(n)

overlap = 1;

break;

end

n=n+1;

end

m=1;

overlap2 =0;

while visited(m)~=0

if adjMatrix(i,j)== visited(m)

overlap2 =1;

break;

end

m=m+1;

end

if overlap ==1 && overlap2 ==0

queue(qc)=adjMatrix(i,j);

qc=qc+1;

visited(k)=adjMatrix(i,j);

k=k+1;

end

end

127

count=count +1;

if count >50

break;

end

end

adjMatrix (1:imax ,1: jmax);

a=nnz(checked)+1;

if k==a

Adj =1;

else

Adj =0;

end

end

128

BPUpdate (Boundary Precinct Update) is a function that updates the precincts that are

on district boundaries after a swap has occurred. To update these, it is only necessary to update

the precincts immediately neighboring the moved precinct.

Listing 10: BPUpdate function

function [SCPrec] = BPUpdate(MovedPrec , SCPrec , MAXNHB)

% This function updates all precincts on district boundaries

for k=1: MAXNHB

if SCPrec(MovedPrec).nhbindex(k)==0

break

end

flag =0;

NI = SCPrec(MovedPrec).nhbindex(k);

NDist = SCPrec(NI).dist;

%Checking neighbors ’ neighbors

for l=1: MAXNHB

if SCPrec(NI).nhbindex(l)==0

break

end

NNI = SCPrec(NI).nhbindex(l);

NNDist = SCPrec(NNI).dist;

if NDist ~= NNDist

SCPrec(NI).boundary =1;

flag =1;

break

end

end

% This removes the precinct with index NI from boundary list if it is no

% longer on a district boundary

if flag ==0

SCPrec(NI).boundary =0;

end

end

end

129

Appendix C MOSA2 Codes

"""

Created on Sun Jan 23 18:55:59 2022

@author: Blake Splitter with assistance from Amy Burton and Dr. Matthew

Saltzman

"""

from copy import deepcopy

from multiprocessing.sharedctypes import Value

import sys

import datetime

import random

from inspect import signature

import networkx as nx

import numpy as np

import math

import pandas as pd

import statistics

import concurrent.futures

from gerrychain import Graph

from gerrychain.updaters import Tally , cut_edges

import warnings

import json

import matplotlib.pyplot as plt

import ast

import pickle

from pymoo.indicators.hv import HV

import secrets

import matplotlib.colors as mcolors

class input_vals:

def __init__(self , fjs , in_p_f , in_n_f , in_c_f , in_vb_f , in_vr_f , dc ,

nr , t, fin_t , tol , fin_tol , mfr , mff , nf , obj_s ,

obj_s_f , nipt ,

nm , mtu , par , psm , palp , alp , mpm , pw , nt , mm):

lst = [fjs , in_p_f , in_n_f , in_c_f , in_vb_f , in_vr_f , dc ,

nr , t, fin_t , tol , fin_tol , mfr , mff , nf , obj_s ,

obj_s_f , nipt ,

nm , mtu , par , psm , palp , alp , mpm , pw , nt , mm]

if all(v is None for v in lst):

self.default_user_input ()

else:

self.file_json = fjs

self.in_pop_field = in_p_f

self.in_name_field = in_n_f

self.in_county_field = in_c_f

self.in_voteblue_field = in_vb_f

self.in_votered_field = in_vr_f

self.distcount = int(dc)

self.num_recoms = int(nr)

self.temp = float(t)

130

self.final_temp = float(fin_t)

self.tol = float(tol)

self.final_tol = float(fin_tol)

self.max_failed_recoms = int(mfr)

self.max_failed_flips = int(mff)

self.num_flips = int(nf)

self.objective_scales = json.loads(obj_s)

self.objective_scales_flips = json.loads(obj_s_f)

self.num_its_per_temp = int(nipt)

self.num_maps = int(nm)

self.metrics_to_use = json.loads(mtu)

self.parallel = eval(par.lower ().capitalize ())

self.preselected_start_map = eval(psm.lower ().capitalize ())

self.preselect_alphas = eval(palp.lower ().capitalize ())

self.alphas = ast.literal_eval(alp)

self.max_pop_multiplier = float(mpm)

self.pop_window = float(pw)

self.num_threads = int(nt)

self.met_maxes = json.loads(mm)

self.input_validation ()

def default_user_input(self):

self.file_json = "./ SC_Precincts_2_FeaturesToJSO.geojson"

self.in_pop_field = "POPULATION"

self.in_name_field = "OBJECTID"

self.in_county_field = "COUNTY"

self.in_voteblue_field = "PresBlue"

self.in_votered_field = "PresRed"

self.distcount = 7

self.num_recoms = 6

self.temp = 10

self.final_temp = 0.005

self.tol = 30

self.final_tol = 0.1

self.max_failed_recoms = 2

self.max_failed_flips = 1

self.num_flips = 15

self.objective_scales = [20000 , 0.5, 0.066641 , 1, 25, 0.01] #These

are the scaling factors for pop_dev , compactness , efficiency

gap , CDI , eGU , and MM respectively

#self.objective_scales_flips = [3000 , 0.01, 0.001 , 0.1, 1, 0.001]

#------------------------------pop , comp , eg , cdi , egu , mm

self.objective_scales_flips = [3000, 0.05, 0.001, 0.05, 1, 0.001]

self.num_its_per_temp = 1

self.num_maps = 500

self.metrics_to_use = [1, 1, 0, 0, 0, 0] #Puts 1s in the spots for

metrics we do want to use. [0]: Pop_dev , [1]: comp , [2]: eg ,

[3]: CDI , [4]: eGU , [5]: MM

self.parallel = True

self.preselected_start_map = False

self.preselect_alphas = True

self.alphas = [[0.5, 0.5, 0, 0, 0, 0], [0.25, 0.75, 0, 0, 0, 0]]

#self.alphas = []

self.max_pop_multiplier = 100

self.pop_window = 0.01

131

self.num_threads = 4

self.met_maxes = [-1, 10, 0.24, 50, 500, 0.05] #Popdev max

established later

self.input_validation ()

def pop_max(self , stateG):

""" Finds met_maxes [0] (the population deviation maximum)"""

if self.met_maxes [0] == -1:

self.met_maxes [0] =

sum(dict(stateG.nodes(" POPULATION ")).values ())*0.4

@property

def coolingrate(self):

""" Calculates the necessary cooling rate to get from initial

temperature to

final temperature in the requested number of recom steps """

return (self.final_temp / self.temp) ** (1 / self.num_recoms)

@property

def total_obj_vals_entries(self):

""" Returns the number of objective value entries needed """

return (self.num_its_per_temp * (self.num_recoms *

(self.num_flips +1))+1)

@property

def tol_coolingrate(self):

""" Calculates the cooling rate to get from starting tol to final

tol """

return (self.final_tol / self.tol) ** (1 / self.num_recoms)

@property

def total_iterations(self):

""" Calculates the total number of loops in the SA algorithm we will

do"""

return self.num_recoms * self.num_its_per_temp

def pop_multiplier(self , count):

""" Calculates how much we should multiply the population value by

in this algorithm """

inv_pm = (self.total_iterations -

count.recomcount)/self.total_iterations #The fraction of

iterations that have yet to be done

try: pm = min (1/ inv_pm , self.max_pop_multiplier) #population

multiplier is capped

except ZeroDivisionError: pm = self.max_pop_multiplier

if pm < 1: raise ValueError ("The population multiplier is <1, which

should not happen .")

sq_pm = pm**2 #Squares the population multiplier to make it more

important

return sq_pm

def input_validation(self):

""" Verifies that the input given is appropriate """

132

if self.alphas == None: raise ValueError (" alphas should either be

an empty list [] or a list of weight vectors ")

if not isinstance(self.file_json , str): raise ValueError (" file_json

is the wrong variable type")

if not isinstance(self.in_pop_field , str): raise

ValueError (" in_pop_field is the wrong variable type")

if not isinstance(self.in_name_field , str): raise

ValueError (" in_name_field is the wrong variable type")

if not isinstance(self.in_county_field , str): raise

ValueError (" in_county_field is the wrong variable type")

if not isinstance(self.in_voteblue_field , str): raise

ValueError (" in_voteblue_field is the wrong variable type")

if not isinstance(self.in_votered_field , str): raise

ValueError (" in_votered_field is the wrong variable type")

if not isinstance(self.distcount , (int , float)): raise

ValueError (" distcount is the wrong variable type")

if not isinstance(self.num_recoms , (int , float)): raise

ValueError (" num_recoms is the wrong variable type")

if not isinstance(self.temp , (int , float)): raise ValueError ("temp

is the wrong variable type")

if not isinstance(self.final_temp , (int , float)): raise

ValueError (" final_temp is the wrong variable type")

if not isinstance(self.tol , (int , float)): raise ValueError ("tol is

the wrong variable type")

if not isinstance(self.final_tol , (int , float)): raise

ValueError (" final_tol is the wrong variable type")

if not isinstance(self.max_failed_recoms , (int , float)): raise

ValueError (" max_failed_recoms is the wrong variable type")

if not isinstance(self.max_failed_flips , (int , float)): raise

ValueError (" max_failed_flips is the wrong variable type")

if not isinstance(self.num_flips , (int , float)): raise

ValueError (" num_flips is the wrong variable type")

if not isinstance(self.objective_scales , list): raise

ValueError (" objective_scales is the wrong variable type")

if not isinstance(self.objective_scales_flips , list): raise

ValueError (" objective_scales_flips is the wrong variable type")

if not isinstance(self.num_its_per_temp , (int , float)): raise

ValueError (" num_its_per_temp is the wrong variable type")

if not isinstance(self.num_maps , (int , float)): raise

ValueError (" num_maps is the wrong variable type")

if not isinstance(self.metrics_to_use , list): raise

ValueError (" metrics_to_use is the wrong variable type")

if not isinstance(self.parallel , bool): raise ValueError (" parallel

is the wrong variable type")

if not isinstance(self.preselected_start_map , bool): raise

ValueError (" preselected_start_map is the wrong variable type")

if not isinstance(self.preselect_alphas , bool): raise

ValueError(f"preselect_alphas is type

{type(self.preselect_alphas)}")

if not isinstance(self.alphas , list): raise ValueError (" alphas is

the wrong variable type")

if not isinstance(self.max_pop_multiplier , (int , float)): raise

ValueError (" max_pop_multiplier is the wrong variable type")

if not isinstance(self.pop_window , (int , float)): raise

ValueError (" pop_window is the wrong variable type")

133

if not isinstance(self.num_threads , (int , float)): raise

ValueError (" num_threads is the wrong variable type")

for variable in [self.distcount , self.num_recoms ,

self.max_failed_recoms , self.max_failed_flips , self.num_flips ,

self.num_its_per_temp , self.num_maps , self.num_threads]:

self.check_if_int(variable)

for variable in [self.distcount , self.num_recoms , self.temp ,

self.final_temp , self.tol , self.final_tol ,

self.max_failed_recoms , self.max_failed_flips , self.num_flips , \

self.num_its_per_temp , self.num_maps ,

self.max_pop_multiplier , self.pop_window ,

self.num_threads]:

self.check_if_positive(variable)

if self.temp <= self.final_temp: raise ValueError ("temp should be

higher than final_temp ")

if self.tol <= self.final_tol: raise ValueError ("tol should be

higher than final_tol ")

#if self.num_recoms <= self.num_maps: raise ValueError (" num_recoms

should be larger than num_maps ")

if self.pop_window > 1: raise ValueError (" pop_window should be

between 0 and 1.")

def check_if_int(self , variable):

""" Checks if the variable is an integer """

if isinstance(variable , int): pass

elif isinstance(variable , float):

if variable.is_integer () == True: pass

else: raise ValueError(f"{ variable} is not an integer ")

def check_if_positive(self , variable):

""" Checks if the variable is positive """

if variable <= 0: raise ValueError(f"{ variable} is not positive ")

class objective_vals:

def __init__(self , ip):

self.dev_vals = [0] * ip.total_obj_vals_entries

self.avg_comp_vals = [0] * ip.total_obj_vals_entries

self.eg_score_vals = [0] * ip.total_obj_vals_entries

self.CDI_Count_vals = [0] * ip.total_obj_vals_entries

self.excess_GU_vals = [0] * ip.total_obj_vals_entries

self.mm_vals = [0] * ip.total_obj_vals_entries

self.change_type_vals = [None] * ip.total_obj_vals_entries

self.sa_probability = [None] * ip.total_obj_vals_entries

self.map_conclusion_vals = [None] * (ip.total_iterations +1) #What

happens to the map? Is it added to the archive? Is it discarded?

134

self.best_pop = [0] * (ip.total_iterations +1) #Best population

deviation in the archive at a given iteration

self.best_comp = [0] * (ip.total_iterations +1) #Best compactness in

the archive at a given iteration

self.best_eg = [0] * (ip.total_iterations +1) #Best efficiency gap

in the archive at a given iteration

self.best_cdi = [0] * (ip.total_iterations +1) #Best CDI count in

the archive at a given iteration

self.best_excess_GU = [0] * (ip.total_iterations +1) #Best excess GU

count in the archive at a given iteration

self.best_mm = [0] * (ip.total_iterations +1) #Best median mean in

the archive at a given iteration

self.hvol = [0] * (ip.total_iterations +1) #Hypervolume at each

iteration

def fill_obj_vals(self , ip , dist_list , cdi_data , change , it ,

sa_prob=None):

self.dev_vals[it] = District.pop_deviation(dist_list)

self.avg_comp_vals[it] = District.comp_score(dist_list)

self.eg_score_vals[it] = District.eg_score(dist_list)

self.CDI_Count_vals[it] = cdi_data.cdi_count

self.excess_GU_vals[it] = cdi_data.excess_GU

self.mm_vals[it] = District.median_mean(dist_list)

self.change_type_vals[it] = change

self.sa_probability[it] = sa_prob

#self.map_conclusion_vals[it] = None ### NEED TO FIGURE OUT HOW TO

DOCUMENT WHEN THE LAST FLIP OCCURS

def __repr__(self):

last_it = np.max(np.nonzero(self.dev_vals))

dev = self.dev_vals[last_it]

eg = self.eg_score_vals[last_it]

cdi = self.CDI_Count_vals[last_it]

eGU = self.excess_GU_vals[last_it]

ct = self.change_type_vals[last_it]

mm = self.mm_vals[last_it]

return f"{ last_it} iterations filled. Last entry: deviation =

{dev}, eg = {eg}, cdi_count = {cdi}, excess_GU = {eGU}, mm =

{mm}, change_type = {ct}"

class District:

"""A class that will hold the statistics associated with each

district """

ideal_pop = None #The ideal population that a district would like to be

num_dists = None #The number of districts

def __init__(self , num):

self.num = num #District numbers will range from 0 to n-1

self.Area = None #Area in units of square kilometers

self.Perimeter = None #Perimeter in units of kilometers

self.VoteCountRed = None #Red votes in a district

self.VoteCountBlue = None #Blue votes in a district

self.Population = None #Population of the district

135

def __eq__(self , other):

""" Tests whether other is equivalent to self """

return self.__dict__ == other.__dict__

def __repr__(self):

return f"District Number {self.num}. Population: {self.Population }.

Area: {self.Area} km^2. Perimeter: {self.Perimeter} km. PP

Score: {self.PPCompactScore }. Ideal population target:

{self.ideal_pop }."

def Nodes(self , G):

’’’Returns all nodes in this district , using graph G as input ’’’

node_list = []

for n in G.nodes():

if G.nodes[n][" District Number "] == self.num:

node_list.append(n)

return node_list

def BoundaryEdges(self , G):

’’’Returns all boundary edges for this district ’’’

return list(nx.edge_boundary(G, self.Nodes(G)))

def BoundaryNodes(self , G):

’’’Returns all boundary nodes for this district ’’’

return list(nx.node_boundary(G, self.Nodes(G)))

def Dist_nbrs(self , G):

’’’Returns all district neighbors ’’’

Dist_Edge_List = set()

for e in self.BoundaryEdges(G):

e0_dist = G.nodes[e[0]][" District Number "]

e1_dist = G.nodes[e[1]][" District Number "]

if e0_dist < 0 or e1_dist < 0: ValueError (" e0dist and e1_dist

must be nonnegative .")

Dist_Edge_List.add(e0_dist)

Dist_Edge_List.add(e1_dist)

Dist_Edge_List = list(Dist_Edge_List)

try: Dist_Edge_List.remove(self.num)

except ValueError: pass

return Dist_Edge_List

@property

def PPCompactScore(self):

’’’Polsby -Popper Compactness Score (ranges from 0 to 1; 1 is

best)’’’

try:

if self.Perimeter < 0:

raise ValueError (" Perimeter must be nonnegative .")

return 4 * math.pi * self.Area / self.Perimeter ** 2 if

self.Perimeter != 0 else None

except TypeError:

return None

@property

def invPPCompactScore(self):

136

’’’Returns the inverse of the Polsby -Popper Compactness Score and

subtracts 1 so that the ideal score is 0’’’

return (1 / self.PPCompactScore) - 1 if self.PPCompactScore != 0

and self.PPCompactScore != None else None

@property

def shiftedPPCompactScore(self):

’’’Returns 1-PP. Range: [0,1], with 0 ideal. ’’’

return 1 - self.PPCompactScore

@property

def TotalVotes(self):

’’’Sums red votes and blue votes for a district ’’’

try:

return self.VoteCountBlue + self.VoteCountRed

except TypeError:

return None

@property

def BlueShare(self):

’’’Returns the share of blue votes as a proportion of total votes ’’’

try:

return self.VoteCountBlue / self.TotalVotes if self.TotalVotes

!= 0 else None

except TypeError:

return None

@property

def EfficiencyGap(self):

’’’Returns the Efficiency gap as calculated by (wastedRed votes -

wastedBlue votes) / total votes ’’’

try:

return (self.WastedRed - self.WastedBlue) / self.TotalVotes if

self.TotalVotes != 0 else None

except TypeError:

return None

@property

def AbsEfficiencyGap(self):

’’’Returns the absolute value of the efficiency gap ’’’

try:

return abs(self.EfficiencyGap)

except TypeError:

return None

@property

def WinThreshold(self):

’’’Returns the number of votes needed to win an election in a

district ’’’

try:

return math.ceil(self.TotalVotes /2 + 0.5) #The ’+0.5’ is

needed to deal with cases where the total number of votes

is even

except TypeError:

return None

137

@property

def WastedBlue(self):

’’’Returns the number of wasted blue votes. If the blue party wins ,

then this value will be

the number of blue votes beyond the win threshold. If the blue

party loses , then this will be the

number of blue votes. For coding simplicity , all ties are won by

the blue party.’’’

try:

if self.VoteCountBlue >= self.VoteCountRed:

return self.VoteCountBlue - self.WinThreshold

else:

return self.VoteCountBlue

except TypeError:

return None

@property

def WastedRed(self):

’’’Returns the number of wasted red votes. If the red party wins ,

then this value will be

the number of red votes beyond the win threshold. If the red party

loses , then this will be the

number of red votes. For coding simplicity , all ties are won by the

blue party.’’’

try:

if self.VoteCountRed >= self.VoteCountBlue:

return self.VoteCountRed - self.WinThreshold

else:

return self.VoteCountRed

except TypeError:

return None

@staticmethod

def pop_list(dist_list):

’’’Returns a list of populations for each district ’’’

pop_list = [d.Population for d in dist_list]

pop_list = remove_nones(pop_list)

return pop_list

@staticmethod

def EG_list(dist_list , AV=False):

’’’Returns a list of efficiency gaps for each district. If AV is

true , then we return the absolute values ’’’

if AV == False:

eg_list = [d.EfficiencyGap for d in dist_list]

else:

eg_list = [d.AbsEfficiencyGap for d in dist_list]

eg_list = remove_nones(eg_list)

return eg_list

@staticmethod

def blue_share_list(dist_list):

138

’’’Returns a list of blue proportions of votes (as a fraction of

total votes in district) for each district.’’’

bs_list = [d.BlueShare for d in dist_list]

bs_list = remove_nones(bs_list)

return bs_list

def reset_vals(self):

’’’Resets several values. Useful during recom ’’’

self.Area = 0

self.Perimeter = 0

self.VoteCountRed = 0

self.VoteCountBlue = 0

self.Population = 0

def check_value_integrity(self):

""" Checks that all attributes make sense for the given district ."""

if self.Area < 0 or self.Population < 0 or self.Perimeter < 0 or

self.VoteCountRed < 0 or self.VoteCountBlue < 0:

raise ValueError ("A metric in this district is negative .")

@staticmethod

def pop_deviation(dist_list):

’’’Returns a single positive integer that sums each district ’s

deviation from the ideal population.

Lower numbers for ’deviation ’ are better. A value of zero would

indicate that every district has an equal number of people ’’’

distcount = District.num_dists

if distcount <= 0: raise ValueError (" distcount should be positive ")

absdev = [0 for _ in range(distcount)]

for i in range(distcount):

if dist_list[i]. Population != None:

absdev[i] = abs(dist_list[i]. Population -

District.ideal_pop)

deviation = round(sum(absdev))

return deviation

@staticmethod

def comp_score(dist_list , inverse=True):

’’’Computes the average Polsby -Popper score for a list of

districts ’’’

if inverse == False:

comp_list = [d.PPCompactScore for d in dist_list]

else:

comp_list = [d.invPPCompactScore for d in dist_list]

comp_list = remove_nones(comp_list)

if len(comp_list) != District.num_dists:

raise ValueError(f"comp_score did not return the proper number

of districts. len(comp_list) = {len(comp_list)},

District.num_dists = {District.num_dists }")

139

PP_Comp_Score = sum(comp_list) / len(comp_list) #Averages the

compactness scores

return PP_Comp_Score

@staticmethod

def eg_score(dist_list , AV=False):

’’’Computes the average efficiency gap score for the map ’’’

eg_list = District.EG_list(dist_list , AV) #Gets list of efficiency

gaps

eg_list = remove_nones(eg_list)

if len(eg_list) != District.num_dists:

raise ValueError(f"eg_score did not return the proper number of

districts. len(eg_list) = {len(eg_list)},

District.num_dists = {District.num_dists }")

eg_score = abs(sum(eg_list) / len(eg_list)) #Averages the EG

score , then takes absolute values

return eg_score

@staticmethod

def median_mean(dist_list):

""" Returns the blue vote median -mean score for the map.

Positive numbers are considered beneficial for the blue party.

We return the absolute value of the median -mean score ,

and want values of zero ."""

bs_list = District.blue_share_list(dist_list)

bs_median = statistics.median(bs_list)

bs_mean = sum(bs_list) / len(bs_list)

bmm_score = bs_median - bs_mean

return abs(bmm_score)

class CDI:

"""A class that will contain all information about the

county -district -intersection matrix """

def __init__(self , stateG):

distcount = len(set(dict(stateG.nodes(" District

Number ")).values ())) #Finds number of unique districts

num_counties = len(set(dict(stateG.nodes(" Reduced

County ")).values ())) #Finds number of unique counties

units_in_CDI = np.zeros([distcount , num_counties], dtype=int)

if distcount <= 0: raise ValueError (" distcount is either 0 or

negative .")

if num_counties <= 0: raise ValueError (" num_counties is either 0 or

negative .")

#Adds 1 to the matrix element A[i,j] if there is a GU in the ith

district and (j-1)th county

for n in stateG:

i = stateG.nodes[n][" District Number "]

j = stateG.nodes[n][" Reduced County "] - 1

units_in_CDI[i][j] += 1

self.cdi_mat = units_in_CDI

140

self.distcount = distcount

self.num_counties = num_counties

@property

def cdi_count(self):

’’’Counts number of nonzero entries in the CDI matrix. Then

subtracts either the distcount

or number of counties , so that the ideal value will be zero.’’’

return np.count_nonzero(self.cdi_mat) - max(self.distcount ,

self.num_counties)

@property

def excess_GU(self):

’’’GU stands for Geographical Unit. In this loop , we count the

number of GUs in each county that

are not in the most prevalent district. The ideal number of excess

GUs is zero.’’’

excess_GU_mat = [0] * max(self.distcount , self.num_counties)

transpose = self.cdi_mat.transpose ()

idx = 0

for row in transpose: #for each county

maxval = max(row) #maxval is the number of GUs in the county

that belong to the most prominent district in that county

excess_GU_mat[idx] = sum(row) - maxval

idx += 1

return sum(excess_GU_mat)

def upd_cdi_mat_flip(self , stateG , GU , leaving_dist , entering_dist):

’’’Updates the cdi matrix after a flip ’’’

if leaving_dist < 0 or entering_dist < 0:

raise ValueError(f"Neither leaving_dist nor entering_dist

should be negative. l_d = {leaving_dist }. e_d =

{entering_dist }")

self.cdi_mat[leaving_dist][stateG.nodes[GU][" Reduced County "] - 1]

-= 1

if self.cdi_mat[leaving_dist][stateG.nodes[GU][" Reduced County "] -

1] < 0:

raise ValueError(f"Entries in the CDI matrix cannot be

negative. The CDI matrix is {self.cdi_mat }. GU = {GU}. l_d

= {leaving_dist}, e_d = {entering_dist }.")

self.cdi_mat[entering_dist][stateG.nodes[GU][" Reduced County "] - 1]

+= 1

class counters:

’’’A class that will contain the counters used in the simulated

annealing step ’’’

def __init__(self):

self.flipcount = 0 #The number of flips done in total in the code

self.recomcount = 0 #The number of recombination steps done in

total in the code

self.total_it_count = 0 #The number of iterations the code has done

self.failed_recom_counter = 0 #The number of consecutive failed

recombination steps in the current iteration

141

self.failed_flip_counter = 0 #The number of consecutive failed

flip steps in the current flip attempt

self.alphacount = 0 #The number of alpha values utilized previously

self.its_at_temp = 0 #The number of iterations that have occurred

at this temperature

@property

def currentit(self):

’’’Returns the sum of the flip count and the recom count ’’’

return self.flipcount + self.recomcount #This returns the index

that will be populated in obj_vals

def __repr__(self):

return f"flipcount = {self.flipcount }. recomcount =

{self.recomcount }. failed_recom_counter =

{self.failed_recom_counter }. currentit = {self.currentit }"

class Map_class:

"""A class that will contain a graph and its associated metric values """

def __init__(self , graph , alpha , dist_list , cdi_data):

self.graph = graph

self.alpha = alpha

self.dist_list = dist_list

self.cdi_data = cdi_data

self.alpha.assigned = True

def __eq__(self , other) :

if isinstance(other , Map_class) == False: return False

return self.__dict__ == other.__dict__

@property

def pop_dev(self):

""" Calculates population deviation for this map """

return District.pop_deviation(self.dist_list)

@property

def compactness(self):

""" Calculates Inverse Polsby -Popper compactness (minus 1) for this

map """

return District.comp_score(self.dist_list)

@property

def eg(self):

""" Calculates efficiency gap score for this map """

return District.eg_score(self.dist_list)

@property

def cdi_num(self):

""" Calculates the number of county -district intersections for this

map """

return self.cdi_data.cdi_count

@property

def excess_GU_num(self):

142

""" Calculates the number of excess GUs for this map """

return self.cdi_data.excess_GU

@property

def mm(self):

""" Calculates the median -mean score for the map """

return District.median_mean(self.dist_list)

@property

def metrics(self):

""" Returns a list of metrics """

return [self.pop_dev , self.compactness , self.eg, self.cdi_num ,

self.excess_GU_num , self.mm]

def compare_objs(self , rng , pareto_set , ip):

""" Compares the current map with all maps in the pareto set to

determine if

1. The current map dominates at least one map in the pareto set

2. The current map is dominated by at least one map in the pareto

set

3. The current map neither dominates nor is dominated by any map in

the pareto set

"""

nonequal_flag = False #Flag that is True if some map in the PS is

not equal to self

rng.shuffle(pareto_set)

dominated_maps = [] #Contains the set of maps that are dominated

by self

for Map in pareto_set:

objs_to_check = [(self.pop_dev , Map.pop_dev),

(self.compactness , Map.compactness),

(self.eg , Map.eg),

(self.cdi_num , Map.cdi_num),

(self.excess_GU_num , Map.excess_GU_num),

(self.mm , Map.mm)]

all_objs = deepcopy(objs_to_check)

objs_to_check = [objs_to_check[i] for i in

range(len(ip.metrics_to_use)) if ip.metrics_to_use[i] == 1]

diff = []

for entry in objs_to_check:

diff.append(int(np.sign(entry [1] - entry [0]))) #old -new

sign #PS - candidate

if list(set(diff)) == [0]:

#This is the case where all metrics are equal. May occur if

we compare self to self

continue

elif list(set(diff)) == [-1]:

#This is the case where self (candidate) is dominated

if dominated_maps != []: raise ValueError ("This map was

both dominant and dominated. This shouldn ’t happen ")

return -1, Map

elif list(set(diff)) == [1]:

#This is the case where self dominates

143

dominated_maps.append(Map)

nonequal_flag = True

#return 1, Map

else:

#This is the case where self neither dominates nor is

dominated.

#We need to check all maps , so we pass here

nonequal_flag = True #signifies that at least one

different map is in the Pareto set

if nonequal_flag == False: #We will be here if list(set(diff)) ==

[0] for every Map in pareto_set

all_objs_diffs = []

for tuple_ in all_objs:

all_objs_diffs.append(tuple_ [1] - tuple_ [0])

if list(set(all_objs_diffs)) == [0]:

return -2, -2 #Returns -2, -2 if the maps in the Pareto

set all are exactly the same as self (this shouldn ’t

happen)

else: return 0, 0

elif dominated_maps != []:

return 1, dominated_maps

else:

return 0, 0 #Returns 0, 0 if self is not dominated by any map

and self does not dominate any map

def check_objs(self , ip):

""" Checks whether the objectives of this plan are under the

user -defined upper bounds """

under_ub = []

for idx , met_used in enumerate(ip.metrics_to_use):

if met_used == 1:

under_ub.append(self.metrics[idx]<=ip.met_maxes[idx])

#else: #met_used ==0

#under_ub.append(None)

return under_ub

class Weight_vector:

"""A member of this class is a weight vector alpha , where the entries

sum to 1. """

def __repr__(self):

return f"{self.alpha.wv}"

def __init__(self , rng , metric_count):

self.assigned = False

alpha = []

for _ in range(metric_count):

alpha.append(rng.randint(1, 100000))

alpha = norm(alpha)

self.wv = alpha

def hypervolume(list_of_maps , ip):

144

""" Calculates the hypervolume given a list of maps """

ref = [1.1 for _ in range(sum(ip.metrics_to_use))]

ind = HV(ref_point=ref)

metrics = [None for _ in range(len(list_of_maps))]

for idx , map_ in enumerate(list_of_maps):

for i in range(len(ip.metrics_to_use)):

if map_.metrics[i] > ip.met_maxes[i] and ip.metrics_to_use[i]

== 1:

raise RuntimeError(f"We shouldn ’t have the objective values

exceed the met_max. map_.metrics = {map_.metrics},

ip.met_maxes = {ip.met_maxes }")

metrics[idx] = [map_.metrics[i]/ip.met_maxes[i] for i in

range(len(ip.metrics_to_use)) if ip.metrics_to_use[i] == 1]

metrics = np.array(metrics)

volume = ind(metrics)

return volume

def remove_nones(val_list):

""" Removes all ’None ’ entries from a list """

return [val for val in val_list if val != None]

def norm(vector):

""" Input is a list of nonnegative numbers. Returns a normed vector ,

i.e. a vector that sums to 1."""

if any(t < 0 for t in vector):

raise ValueError ("All entries in this vector must be nonnegative .")

tot = sum(vector)

for i in range(len(vector)):

vector[i] = vector[i] / tot

eps = 0.000001

if sum(vector) > 1 + eps or sum(vector) < 1 - eps:

raise ValueError ("The elements of this vector must sum to 1.

Something is wrong with the norm method .")

return vector

def build_alpha(rng , metric_count , ip):

’’’Builds the normalized weight vectors for use in simulated

annealing ’’’

if len(ip.alphas) > ip.num_maps:

raise ValueError ("Too many weight vectors were chosen. We must have

fewer than the number of archive spots .")

for vec in ip.alphas:

if len(vec) != 6:

raise ValueError ("Each weight vector must be a length of 6.")

for idx , entry in enumerate(vec):

if (ip.metrics_to_use[idx] == 0 and entry != 0) or

(ip.metrics_to_use[idx] != 0 and entry == 0):

raise ValueError ("Each entry in the weight vectors should

match the metrics_to_use list")

alphas = [None] * ip.num_maps

if ip.preselect_alphas == False:

for i in range(ip.num_maps):

alphas[i] = Weight_vector(rng , metric_count)

else: #If we want specific weight vectors

145

for i in range(ip.num_maps):

alphas[i] = Weight_vector(rng , metric_count)

i=0

for vec in ip.alphas:

for j in range(len(vec)):

if vec[j] == 0: vec[j] = None

vec = remove_nones(vec)

alphas[i].wv = norm(vec)

i+=1

return alphas

def initialize_map3(rng , ip):

’’’Builds a graph based on a json file supplied by the user ’’’

#stateG = Graph.from_file(ip.file_json , adjacency ="rook",

reproject ="True", ignore_errors =" False")

with open(’stateG.pkl ’, ’rb ’) as fp: stateG = pickle.load(fp)

create_county_dict(stateG)

stateG = generate_random_starting_map2(rng , stateG , ip)

return stateG

def create_county_dict(stateG):

’’’Populates county_dict with 1-x, based on the sorted county numbers ’’’

county_list = dict(stateG.nodes (" COUNTY ")).values ()

county_list = list(map(int , county_list)) #Converts strings to integers

county_list = sorted(list(set(county_list))) #Sorts the list and

deletes duplicate values

county_dict = {}

i = 1

for county in county_list:

county_dict[county] = i #Populates a dictionary that associates

each original county value with its sorted value

i += 1

for n in stateG.nodes:

stateG.nodes[n][" Reduced County "] =

county_dict[int(stateG.nodes[n][" COUNTY "])]

def generate_random_starting_map2(rng , G, ip):

’’’Generates a random starting map for the graph of G by generating 7

random centers ’’’

tree = wilson(G, random)

#spl = dict(nx.all_pairs_shortest_path_length(G))

spl = dict(nx.all_pairs_shortest_path_length(tree))

while True:

#centers = rng.sample(list(G.nodes), ip.distcount)

centers = rng.sample(list(tree.nodes), ip.distcount)

dist_pops = [0]*ip.distcount

#for n in list(G.nodes):

for n in list(tree.nodes):

n_len_to_center = [None]*ip.distcount

for i in range(len(centers)):

146

n_len_to_center[i] = spl[n][centers[i]]

minlen = min(n_len_to_center)

minlenidx = n_len_to_center.index(minlen)

G.nodes[n][" District Number "] = minlenidx

G.nodes[n][" Original District Number "] = minlenidx

tree.nodes[n][" District Number "] = minlenidx

tree.nodes[n][" Original District Number "] = minlenidx

#Calculate the objectives

dist_pops[minlenidx] += tree.nodes[n][" POPULATION "]

District.ideal_pop = sum(dist_pops) / ip.distcount

#if all(dp > District.ideal_pop *0.3 and dp < District.ideal_pop *3

for dp in dist_pops):

if min(dist_pops) > District.ideal_pop *0.4 and max(dist_pops) <

District.ideal_pop *3:

break

else:

print (" Failed to create a proper partitioning. Retrying ...")

continue

#Initializing Boundary status for each edge:

dist_boundary = {} #Initializes a dictionary that will describe each

edge as being a boundary edge or not

for e in G.edges:

n0 = e[0]

n1 = e[1]

n0_dist = G.nodes[n0][" District Number "]

n1_dist = G.nodes[n1][" District Number "]

if n0_dist != n1_dist:

if n0_dist < 0 or n1_dist < 0:

raise ValueError ("The district should not be negative ")

else:

dist_boundary[e] = 1 #If edge represents a district

boundary

else:

dist_boundary[e] = 0 #If edge is not a district boundary

print(" Adding Boundary status attribute for edges")

nx.set_edge_attributes(G, dist_boundary , "Dist_Boundary ")

return G

def populate_dist_list(stateG , dist_list):

’’’Populates dist_list with all statistics based on the stateG graph ’’’

distcount = len(set(dict(stateG.nodes(" District Number ")).values ()))

#Finds number of unique districts

for i in range(distcount):

dist_list[i] = District(i) #Reinitializes (and therefore resets)

the dist_list so that district numbers range from 0 to n-1.

for n in stateG.nodes:

dist_num = stateG.nodes[n][" District Number "]

if dist_list[dist_num].Area == None:

147

dist_list[dist_num].Area = 0

if dist_list[dist_num]. Population == None:

dist_list[dist_num]. Population = 0

if dist_list[dist_num]. VoteCountBlue == None:

dist_list[dist_num]. VoteCountBlue = 0

if dist_list[dist_num]. VoteCountRed == None:

dist_list[dist_num]. VoteCountRed = 0

dist_list[dist_num].Area += stateG.nodes[n][" area"]

dist_list[dist_num]. Population += stateG.nodes[n][" POPULATION "]

dist_list[dist_num]. VoteCountBlue += stateG.nodes[n][" PresBlue "]

dist_list[dist_num]. VoteCountRed += stateG.nodes[n][" PresRed "]

ideal_pop = round(sum(District.pop_list(dist_list)) / distcount)

District.ideal_pop = ideal_pop

District.num_dists = distcount

print(f"The starting population of each district is

{District.pop_list(dist_list)}. Thus , the ideal population for a

district is {ideal_pop }.")

for d in dist_list:

if d.Perimeter == None:

d.Perimeter = 0

for e in list(stateG.edges): #Cycles through all edges to find

district perimeter

if stateG[e[0]][e[1]][" Dist_Boundary "] == 1:

dist_num0 = stateG.nodes[e[0]][" District Number "]

dist_num1 = stateG.nodes[e[1]][" District Number "]

dist_list[dist_num0]. Perimeter +=

stateG[e[0]][e[1]][" shared_perim "]

dist_list[dist_num1]. Perimeter +=

stateG[e[0]][e[1]][" shared_perim "]

for n in stateG.nodes: #Cycles through all nodes to find boundary

nodes and add state edge perimeter

if stateG.nodes[n][" boundary_node "] == True:

dist_num = stateG.nodes[n][" District Number "]

dist_list[dist_num]. Perimeter +=

stateG.nodes[n][" boundary_perim "]

def flip(rng , map_for_flip , temp , ip , count , dist1=None , dist2=None ,

procid=None):

’’’This is the flip algorithm. We move one GU across district lines.

If GU and entering_dist are provided , then we consider that possible

flip.

If dist1 and dist2 are provided , we will flip one GU from dist1 to

dist2 or vice -versa.’’’

stateG = map_for_flip.graph

dist_list = map_for_flip.dist_list

cdi_data = map_for_flip.cdi_data

distcount = len(dist_list)

148

#Records starting values for these inputs

s_stateG = deepcopy(stateG)

s_dist_list = deepcopy(dist_list)

s_cdi_data = deepcopy(cdi_data)

adj_flag = False

edge_count = stateG.number_of_edges ()

if (dist1 == None and dist2 != None) or (dist1 != None and dist2 ==

None):

ValueError ("dist1 and dist2 must both be None or both be inputs ")

if dist1 == dist2:

ValueError(f"dist1 and dist2 cannot be equal. They are both

{dist1 }")

if dist1 != None and (dist1 >= distcount or dist1 < 0):

raise ValueError (" dist1 was outside of the appropriate range .")

if dist2 != None and (dist2 >= distcount or dist2 < 0):

raise ValueError (" dist2 was outside of the appropriate range .")

while adj_flag == False:

#This portion of code finds a random boundary edge

boundaryflag = False

while boundaryflag == False:

if dist1 != None: #Finds a boundary edge on the dist1 -dist2

border

dist1_b_edges = dist_list[dist1]. BoundaryEdges(stateG)

dist2_b_edges = dist_list[dist2]. BoundaryEdges(stateG)

for idx , e in enumerate(dist1_b_edges):

if e[0] > e[1]:

dist1_b_edges[idx] = (e[1], e[0])

for idx , e in enumerate(dist2_b_edges):

if e[0] > e[1]:

dist2_b_edges[idx] = (e[1], e[0])

common_edges = list(set(dist1_b_edges) &

set(dist2_b_edges)) #Finds boundary edges that both

dist1 and dist2 have

if common_edges == []: raise RuntimeError (" common_edges

should not be empty ")

pair = list(rng.choice(common_edges))

rng.shuffle(pair)

GU = pair [0]

other_GU = pair [1]

boundaryflag = True

else: #Finds a random boundary edge

rand_edge = rng.randint(0, edge_count - 1) #Selects a

random edge from stateG.edges

pair = list(stateG.edges)[rand_edge]

rng.shuffle(pair)

GU = pair [0]

other_GU = pair [1]

if stateG[GU][other_GU][" Dist_Boundary "] == 1: #If the

edge represents a district boundary

boundaryflag = True

149

else:

continue #Resets the loop if the edge does not

represent a district boundary

#This portion of code determines which GU will move

leaving_dist = stateG.nodes[GU][" District Number "]

entering_dist = stateG.nodes[other_GU][" District Number "]

if leaving_dist == entering_dist:

raise RuntimeError (" leaving_dist should not be the same as

entering_dist ")

DistrictNodes = dist_list[leaving_dist]. Nodes(stateG) #Finds all

nodes in leaving_dist

DistrictNodes.remove(GU)

sg_for_leaving_dist = stateG.subgraph(DistrictNodes) #Creates a

subgraph containing all nodes from DistrictNodes

if nx.is_connected(sg_for_leaving_dist):

adj_flag = True #True if the leaving_dist is still contiguous

else:

adj_flag = False #Keeps the adj_flag at False if the move

would create a discontiguity

stateG.nodes[GU][" District Number "] = entering_dist #Changes the

district number in stateG

for nbr in stateG.neighbors(GU): #Cycles through neighboring nodes to

adjust boundary status , perimeter , and district neighbors

nbr_dist = stateG.nodes[nbr][" District Number "]

if nbr_dist == entering_dist:

stateG[GU][nbr][" Dist_Boundary "] = 0

dist_list[entering_dist]. Perimeter -=

stateG[GU][nbr][" shared_perim "] #This is now ’interior ’

perimeter

dist_list[leaving_dist]. Perimeter -=

stateG[GU][nbr][" shared_perim "] #Neither GU nor nbr is in

leaving_dist

elif nbr_dist == leaving_dist: #If nbr is part of the leaving_dist

stateG[GU][nbr][" Dist_Boundary "] = 1

dist_list[entering_dist]. Perimeter +=

stateG[GU][nbr][" shared_perim "]

dist_list[leaving_dist]. Perimeter +=

stateG[GU][nbr][" shared_perim "]

else: #Neighboring district is not entering_dist , leaving_dist , or

the dummy district

stateG[GU][nbr][" Dist_Boundary "] = 1

dist_list[entering_dist]. Perimeter +=

stateG[GU][nbr][" shared_perim "]

dist_list[leaving_dist]. Perimeter -=

stateG[GU][nbr][" shared_perim "]

dist_list[entering_dist]. Population += stateG.nodes[GU][" POPULATION "]

#Adds population to the dist_list population entry corresponding to

entering_dist

150

dist_list[leaving_dist]. Population -= stateG.nodes[GU][" POPULATION "]

#Subtracts population from the dist_list population entry

corresponding to leaving_dist

dist_list[entering_dist].Area += stateG.nodes[GU][" area"] #Adds area

to the dist_list area entry corresponding to entering_dist

dist_list[leaving_dist].Area -= stateG.nodes[GU][" area"] #Subtracts

area from the dist_list area entry corresponding to leaving_dist

dist_list[entering_dist]. VoteCountRed += stateG.nodes[GU][" PresRed "]

#Adds red votes to the dist_list red votes entry corresponding to

entering_dist

dist_list[leaving_dist]. VoteCountRed -= stateG.nodes[GU][" PresRed "]

#Subtracts red votes from the dist_list red votes entry

corresponding to leaving_dist

dist_list[entering_dist]. VoteCountBlue += stateG.nodes[GU][" PresBlue "]

#Adds blue votes to the dist_list blue votes entry corresponding to

entering_dist

dist_list[leaving_dist]. VoteCountBlue -= stateG.nodes[GU][" PresBlue "]

#Subtracts blue votes from the dist_list blue votes entry

corresponding to leaving_dist

cdi_data.upd_cdi_mat_flip(stateG , GU, leaving_dist , entering_dist)

#Updates the CDI matrix

map_u = Map_class(s_stateG , map_for_flip.alpha , s_dist_list ,

s_cdi_data) #old

map_v = Map_class(stateG , map_for_flip.alpha , dist_list , cdi_data)

#new , proposed

if temp == None: return True

do_flip , sa_prob = sa_prob_calc(rng , map_v , map_u , temp , ip , count ,

type_="Flip")

#print(f"PI{procid }. R{count.recomcount }. Completed Flip algorithm.

Flipped GU {GU} from district {leaving_dist} to district

{entering_dist }.")

if leaving_dist == entering_dist:

print(" entering_dist and leaving_dist are the same. This should not

happen .")

return do_flip , sa_prob #Will return True if the flip should be done ,

False otherwise

def recom(rng , map_v , tol , count , dist1=None , dist2=None , procid=None):

’’’Does a Recombination step for the graph stateG

1. Determine if two districts are adjacent

2. Grab all GUs from those two districts and create a subgraph.

3. Error check: Verify that the subgraph is connected

4. Wilson ’s Algorithm

5. Make sure that the resulting tree acquires all attributes from stateG

6. FindEdgeCut

7. Reassign the new subgraphs to their proper districts ’’’

stateG = map_v.graph

151

dist_list = map_v.dist_list

#distcount = len(set(dict(stateG.nodes(" District Number ")).values ()))

#Finds number of unique districts

distcount = District.num_dists

dist_adj_flag = False

if dist1 == None and dist2 != None:

raise ValueError (" Either both dist1 and dist2 must be None or

neither should be")

if dist2 == None and dist1 != None:

raise ValueError (" Either both dist1 and dist2 must be None or

neither should be")

if dist1 != None and (dist1 >= distcount or dist1 < 0):

raise ValueError (" dist1 was outside of the appropriate range .")

if dist2 != None and (dist2 >= distcount or dist2 < 0):

raise ValueError (" dist2 was outside of the appropriate range .")

while dist_adj_flag == False:

if dist1 == None:

dist1 = rng.randint(0, distcount - 1) #Randomly selects dist1

if it wasn ’t provided as input or if it is out of range

while dist2 == None:

dist2 = rng.choice(dist_list[dist1]. Dist_nbrs(stateG))

#Finds an appopriate dist2

if dist1 not in dist_list[dist2]. Dist_nbrs(stateG):

dist1 = None

dist2 = None

continue #Restarts the loop if this district neighbor pair

can ’t be located in dist_list

d1pop = dist_list[dist1]. Population

d2pop = dist_list[dist2]. Population

if np.sign(d1pop - District.ideal_pop) == np.sign(d2pop -

District.ideal_pop):

dist1 = None

dist2 = None

continue #Restarts the loop if this district neighbor pair

doesn ’t have pops on opposite sides of ideal_pop

dist1_and_dist2_nodes = []

for n in stateG.nodes():

if stateG.nodes[n][" District Number "] == dist1 or

stateG.nodes[n][" District Number "] == dist2:

dist1_and_dist2_nodes.append(n)

two_dist_graph = stateG.subgraph(dist1_and_dist2_nodes) #Creates a

subgraph of the two districts

if nx.is_connected(two_dist_graph) == False:

print(f"District {dist1} and District {dist2} are not adjacent.

Reselecting districts ")

dist1 = None

dist2 = None

dist_adj_flag = False #Keeps the flag at False

else: #If the two districts are indeed adjacent

dist_adj_flag = True

152

tree = wilson(two_dist_graph , rng) #Creates a uniform random spanning

tree for two_dist_graph using Wilson ’s algorithm

subgraphs = find_edge_cut(rng , tree , tol) #Finds an edge to remove

from the tree to create two districts

#This next section of code decides which subgraph should become

district 1 and which should become district 2

if subgraphs: #If subgraphs is not empty

s0d1count = 0

s0d2count = 0

s1d1count = 0

s1d2count = 0

for i in subgraphs [0]:

if stateG.nodes[i][" District Number "] == dist1:

s0d1count += 1

elif stateG.nodes[i][" District Number "] == dist2:

s0d2count += 1

for i in subgraphs [1]:

if stateG.nodes[i][" District Number "] == dist1:

s1d1count += 1

elif stateG.nodes[i][" District Number "] == dist2:

s1d2count += 1

#Assigns either dist1 or dist2 to the moved GUs

if s0d1count + s1d2count >= s0d2count + s1d1count:

for i in subgraphs [0]:

stateG.nodes[i][" District Number "] = dist1

for i in subgraphs [1]:

stateG.nodes[i][" District Number "] = dist2

else:

for i in subgraphs [0]:

stateG.nodes[i][" District Number "] = dist2

for i in subgraphs [1]:

stateG.nodes[i][" District Number "] = dist1

#Resets dist_list entries

dist_list[dist1]. reset_vals ()

dist_list[dist2]. reset_vals ()

#Cycles through nodes to update boundary list

for GU in two_dist_graph.nodes:

GU_dist = stateG.nodes[GU][" District Number "]

for nbr in list(stateG.neighbors(GU)): #Cycles through

neighboring nodes to update boundary status , perimeter , and

Dist_nbrs

nbr_dist = stateG.nodes[nbr][" District Number "]

if nbr_dist == GU_dist:

stateG[GU][nbr][" Dist_Boundary "] = 0

dist_list[GU_dist]. Perimeter += 0

else: #If the GU and nbr are in different districts

stateG[GU][nbr][" Dist_Boundary "] = 1

153

dist_list[GU_dist]. Perimeter +=

stateG[GU][nbr][" shared_perim "]

#Cycles through all nodes to find boundary nodes and add state

edge perimeter

if stateG.nodes[GU][" boundary_node "] == True:

dist_num = stateG.nodes[GU][" District Number "]

dist_list[dist_num]. Perimeter +=

stateG.nodes[GU][" boundary_perim "]

#Updates the dist_list instance

dist_list[GU_dist].Area += stateG.nodes[GU][" area"]

dist_list[GU_dist]. Population += stateG.nodes[GU][" POPULATION "]

dist_list[GU_dist]. VoteCountRed += stateG.nodes[GU][" PresRed "]

dist_list[GU_dist]. VoteCountBlue += stateG.nodes[GU][" PresBlue "]

dist_list[GU_dist]. check_value_integrity () #Returns an error

if anything is negative

map_v.cdi_data = CDI(stateG) #Reinitializes the CDI data after

this recom step.

print(f"PI{procid }. Recom number {count.recomcount} succeeded.

Reorganized districts {dist1} and {dist2 }")

return dist1 , dist2 , True #Indicates that the recom_success_flag

is True

else: #If subgraphs were empty (i.e. we couldn ’t find an edge to cut

that split population within tolerance)

map_v.cdi_data = CDI(stateG)

return dist1 , dist2 , False #Indicates that the recom_success_flag

is False

def wilson(graph , rng):

’’’Returns a uniform spanning tree on G’’’

walk = loopErasedWalk(graph , rng)

currentNodes = [n for n in walk]

uniformTree = nx.Graph ()

for i in range(len(walk) - 1):

uniformTree.add_edge(walk[i], walk[i + 1])

treeNodes = set(uniformTree.nodes)

neededNodes = set(graph.nodes) - treeNodes

while neededNodes:

v = rng.choice(sorted(list(neededNodes))) # sort for code

repeatability

walk = loopErasedWalk(graph , rng , v1 = [v], v2 = currentNodes)

currentNodes += walk

for i in range(len(walk) - 1):

uniformTree.add_edge(walk[i], walk[i + 1])

treeNodes = set(uniformTree.nodes)

neededNodes = set(graph.nodes) - treeNodes

154

pass

nx.set_node_attributes(uniformTree , dict(graph.nodes (" POPULATION ")),

"POPULATION ")

nx.set_node_attributes(uniformTree , dict(graph.nodes (" District

Number ")), "District Number ")

nx.set_node_attributes(uniformTree , dict(graph.nodes (" Original District

Number ")), "Original District Number ")

nx.set_node_attributes(uniformTree , dict(graph.nodes (" Reduced

County ")), "Reduced County ")

nx.set_node_attributes(uniformTree , dict(graph.nodes ("area")), "area")

nx.set_node_attributes(uniformTree , dict(graph.nodes (" PresBlue ")),

"PresBlue ")

nx.set_node_attributes(uniformTree , dict(graph.nodes (" PresRed ")),

"PresRed ")

nx.set_edge_attributes(uniformTree , dict(graph.edges (" shared_perim ")),

"shared_perim ")

nx.set_edge_attributes(uniformTree , dict(graph.edges (" Dist_Boundary ")),

"Dist_Boundary ")

return uniformTree

def loopErasedWalk(graph , rng , v1 = None , v2 = None):

’’’Returns a loop -erased random walk between components v1 & v2’’’

if v1 is None:

v1 = [rng.choice(sorted(list(graph.nodes)))]

if v2 is None:

v2 = [rng.choice(sorted(list(graph.nodes)))]

v = rng.choice(sorted(v1))

walk = [v]

while v not in v2:

v = rng.choice(sorted(list(graph.neighbors(v))))

if v in walk:

walk = walk [0: walk.index(v)]

walk.append(v)

return walk

def find_edge_cut(rng , tree , tol):

’’’Input a tree graph and a percent tolerance. The function will remove

a

random edge that splits the tree into two pieces such that each piece

has population within that percent tolerance. The variable ’tol ’ should

be a positive real

number in (0,100].’’’

if tol > 100 or tol <= 0 or (isinstance(tol , float) == False and

isinstance(tol , int) == False):

raise ValueError(f"tol={tol} must be a float or integer variable in

the range (0 ,100].")

if nx.is_tree(tree) == False:

raise ValueError ("The input graph must be a tree .")

tree_edge_list = list(tree.edges)

rng.shuffle(tree_edge_list) #Randomly shuffles the edges of T

155

e = None

num_edges = len(tree_edge_list)

for i in range(num_edges):

e = tree_edge_list[i] #Edge to delete

tree.remove_edge (*e)

subgraphs = nx.connected_components(tree)

subgraphs_lst = list(subgraphs)

subgraphs_lst [0] = sorted(subgraphs_lst [0])

subgraphs_lst [1] = sorted(subgraphs_lst [1])

dist_pop1 = sum(value for key , value in

nx.get_node_attributes(tree , "POPULATION ").items () if key in

subgraphs_lst [0]) #Finds population sum for first district

dist_pop2 = sum(value for key , value in

nx.get_node_attributes(tree , "POPULATION ").items () if key in

subgraphs_lst [1]) #Finds population sum for second district

total_pop = dist_pop1 + dist_pop2

avg_pop = total_pop / 2

if abs(dist_pop1 - avg_pop) > 0.01 * tol * avg_pop or abs(dist_pop2

- avg_pop) > 0.01 * tol * avg_pop: #If either proposed

district is outside the prescribed tolerance

tree.add_edge (*e) #Adds the edge back to the tree if it didn ’t

meet the tolerance

else: #This is what we want: both proposed districts within the

prescribed tolerance

print(f"Population requirement was met. Removing edge {e}.

Required {i+1} iteration .")

pass

return subgraphs_lst

if i == num_edges - 1:

#print(f"No subgraphs with appropriate criteria requirements

were found. Required {i+1} iterations .")

return [] #Returns empty subgraphs list if no appropriate

subgraphs were found.

def sa_prob_calc(rng , map_v , map_u , temp , ip , count , type_=" Recom"):

""" Uses simulated annealing architecture to determine whether we should

discard map_v or make it our current solution.

Positive values for delta_f are preferred , since we are subtracting old

solution minus new solution. """

pop_dev_diff = map_u.pop_dev - map_v.pop_dev

compactness_diff = map_u.compactness - map_v.compactness

eg_diff = map_u.eg - map_v.eg

cdi_diff = map_u.cdi_num - map_v.cdi_num

eGU_diff = map_u.excess_GU_num - map_v.excess_GU_num

mm_diff = map_u.mm - map_v.mm

met_diffs = [map_u.metrics[i] - map_v.metrics[i] for i in

range(len(ip.metrics_to_use))]

pop_dev_diff = met_diffs [0]

compactness_diff = met_diffs [1]

eg_diff = met_diffs [2]

cdi_diff = met_diffs [3]

156

eGU_diff = met_diffs [4]

mm_diff = met_diffs [5]

append_diffs(ip , type_ , met_diffs)

if type_ == "Flip":

objscales = ip.objective_scales_flips

elif type_ == "Recom ":

objscales = ip.objective_scales

else:

raise ValueError(f"’type_ ’ is not defined properly from

sa_prob_calc. type_ = {type_ }")

#These obj_diffs are weighted so that all objectives are of similar

value

obj_diffs = [None] * len(ip.metrics_to_use)

distance_from_pop_window_u = [None] * ip.distcount

for i, pop in enumerate(District.pop_list(map_u.dist_list)):

if pop > District.ideal_pop *(1+ip.pop_window):

distance_from_pop_window_u[i] = pop -

District.ideal_pop *(1+ip.pop_window) #population is too

large

elif District.ideal_pop *(1-ip.pop_window) <= pop <=

District.ideal_pop *(1+ip.pop_window):

distance_from_pop_window_u[i] = 0 #population is in the target

window

else:

distance_from_pop_window_u[i] = pop -

District.ideal_pop *(1-ip.pop_window) #population is too

small

distance_from_pop_window_v = [None] * ip.distcount

for i, pop in enumerate(District.pop_list(map_v.dist_list)):

if pop > District.ideal_pop *(1+ip.pop_window):

distance_from_pop_window_v[i] = pop -

District.ideal_pop *(1+ip.pop_window) #population is too

large

elif District.ideal_pop *(1-ip.pop_window) <= pop <=

District.ideal_pop *(1+ip.pop_window):

distance_from_pop_window_v[i] = 0 #population is in the target

window

else:

distance_from_pop_window_v[i] = pop -

District.ideal_pop *(1-ip.pop_window) #population is too

small

if all(distance_from_pop_window_u) == 0 and

all(distance_from_pop_window_v) == 0:

#if map_u.pop_dev < ip.pop_window*District.ideal_pop and map_v.pop_dev

< ip.pop_window*District.ideal_pop:

#if both the old map and new map are within the acceptable

population window , pop_multiplier is set to 1.

obj_diffs [0] = pop_dev_diff / objscales [0] if ip.metrics_to_use [0]

== 1 else None

else:

157

#if either the new map or old map has a population outside the

acceptable population window , emphasize pop with pop_multiplier

obj_diffs [0] = pop_dev_diff * ip.pop_multiplier(count) /

objscales [0] if ip.metrics_to_use [0] == 1 else None

obj_diffs [1] = compactness_diff / objscales [1] if ip.metrics_to_use [1]

== 1 else None

obj_diffs [2] = eg_diff / objscales [2] if ip.metrics_to_use [2] == 1 else

None

obj_diffs [3] = cdi_diff / objscales [3] if ip.metrics_to_use [3] == 1

else None

obj_diffs [4] = eGU_diff / objscales [4] if ip.metrics_to_use [4] == 1

else None

obj_diffs [5] = mm_diff / objscales [5] if ip.metrics_to_use [5] == 1 else

None

obj_diffs = remove_nones(obj_diffs)

#change in energy

delta_f = np.dot(map_u.alpha.wv , obj_diffs)

try:

rho = math.exp(delta_f / temp) if delta_f < 0 else 1 #If delta_f <

0, we got worse.

except OverflowError:

rho = 0

if rho > 1 or rho < 0:

raise ValueError(f"rho should be between 0 and 1. rho = {rho}")

r = rng.uniform (0,1)

if r <= rho:

return True , rho

else:

return False , rho

def append_diffs(ip , type_ , met_diffs):

"""For analysis. Appends an entry to examine the differences found in

each iteration for each metric """

if type_ == "Flip":

try: ip.met_diffs_flips.append(met_diffs)

except AttributeError: ip.met_diffs_flips = []

elif type_ == "Recom ":

try: ip.met_diffs_recoms.append(met_diffs)

except AttributeError: ip.met_diffs_recoms = []

return

def replace_map(rng , pareto_set , map_p , map_v):

""" Replaces map_p in the Pareto set with map_v """

if isinstance(map_p , list) == False:

map_v.alpha = map_p.alpha

map_p = [map_p] #If only one map is in map_p , we make it into a

list

else:

map_v.alpha = rng.choice(map_p).alpha

for map in map_p:

pareto_set.remove(map)

158

map.alpha.assigned = False

pareto_set.append(map_v)

map_v.alpha.assigned = True

return pareto_set

def deep_copy_data(map_v):

"""The map that we want to perturb is the input. We return copies of

stateG ,

dist_list , and cdi_data so that we don ’t unintentionally change data

for map_v ."""

#map_u = deepcopy(map_v)

stateG = deepcopy(map_v.graph)

dist_list = deepcopy(map_v.dist_list)

cdi_data = deepcopy(map_v.cdi_data)

new_alpha = deepcopy(map_v.alpha)

return stateG , dist_list , cdi_data , new_alpha

def record_best_metrics(ov , count , pareto_set):

""" Finds the best metric in the archive at a given iteration """

best_pop = np.inf

best_comp = np.inf

best_eg = np.inf

best_cdi = np.inf

best_egu = np.inf

best_mm = np.inf

for plan in pareto_set:

if plan.pop_dev < best_pop: best_pop = plan.pop_dev

if plan.compactness < best_comp: best_comp = plan.compactness

if plan.eg < best_eg: best_eg = plan.eg

if plan.cdi_num < best_cdi: best_cdi = plan.cdi_num

if plan.excess_GU_num < best_egu: best_egu = plan.excess_GU_num

if plan.mm < best_mm: best_mm = plan.mm

ov.best_pop[count.recomcount] = best_pop

ov.best_comp[count.recomcount] = best_comp

ov.best_eg[count.recomcount] = best_eg

ov.best_cdi[count.recomcount] = best_cdi

ov.best_excess_GU[count.recomcount] = best_egu

ov.best_mm[count.recomcount] = best_mm

return

def plot_plan(G, idx):

""" Plots one plan with county lines """

high_contrast_colors = [’blue ’, ’green ’, ’yellow ’, ’magenta ’, ’cyan ’,

’orange ’, ’purple ’]

cmap = mcolors.ListedColormap(high_contrast_colors)

with open(’county_boundaries.pkl ’, ’rb ’) as fp: countyG =

pickle.load(fp)

planx = ’plan ’ + f’{idx}’

fig , ax = plt.subplots(figsize =(10 ,10))

G.data.plot(column=planx , ax=ax , legend=True , cmap=cmap)

countyG.data.boundary.plot(ax=ax , color=" black ")

159

fig.show()

def plot_plans(G, min_idx=0, max_idx=None):

""" Plots all maps between min_idx and max_idx """

high_contrast_colors = [’blue ’, ’green ’, ’yellow ’, ’magenta ’, ’cyan ’,

’orange ’, ’purple ’]

cmap = mcolors.ListedColormap(high_contrast_colors)

with open(’county_boundaries.pkl ’, ’rb ’) as fp: countyG =

pickle.load(fp)

if max_idx == None:

i=min_idx

planx = ’plan ’ + f’{i}’

while planx in G.data:

fig , ax = plt.subplots(figsize =(10 ,10))

G.data.plot(column=planx , ax=ax , legend=True , cmap=cmap)

countyG.data.boundary.plot(ax=ax , color=" black")

fig.show()

i += 1

planx = ’plan ’ + f’{i}’

else:

for i in range(min_idx , max_idx):

planx = ’plan ’ + f’{i}’

fig , ax = plt.subplots(figsize =(10 ,10))

G.data.plot(column=planx , ax=ax , legend=True)

countyG.data.boundary.plot(ax=ax ,color=" black")

fig.show()

def main_loop(args):

procid = args [0]

count = args [1]

ip = args [2]

ov = args [3]

now = args [4]

alpha = args [5]

map0 = args [6]

temp = args [7]

tol = args [8]

stateG = args [9]

dist_list = args [10]

cdi_data = args [11]

pareto_set = args [12]

rand_seed = args [13]

rng = args [14]

rng.seed(rand_seed)

District.num_dists = ip.distcount

District.ideal_pop = round(sum(District.pop_list(dist_list)) /

District.num_dists)

print(f"We are in subprocess {procid }")

#Starting the main line of the Simulated Annealing Algorithm

while count.recomcount < ip.total_iterations:

acceptable_mets = False

160

count.unacceptable_met_counter = 0 #Resets the

unacceptable_met_counter

while acceptable_mets == False: #Will be true if we produce metrics

that are acceptable

if temp == ip.temp: alpha_val = map0.alpha

map_v = Map_class(stateG , alpha_val , dist_list , cdi_data)

RECOM STEP

count.failed_recom_counter = 0 #Resets the failed_recom_counter

recom_success_flag = False

while recom_success_flag == False:

while True: #This list selects a District Neighbor pair

where one district is above the ideal pop and the other

is below

dist1 = rng.randint(0, District.num_dists - 1)

dist2 = rng.choice(dist_list[dist1]. Dist_nbrs(stateG))

d1pop = dist_list[dist1]. Population

d2pop = dist_list[dist2]. Population

if np.sign(d1pop - District.ideal_pop) != np.sign(d2pop

- District.ideal_pop): break #districts are on

opposite sides of ideal_pop

dist1 , dist2 , recom_success_flag = recom(rng , map_v , tol ,

count , dist1=dist1 , dist2=dist2 , procid=procid) #Does

recombination algorithm and returns "True" if recom

succeeded

if recom_success_flag == False: count.failed_recom_counter

+= 1

if count.failed_recom_counter >= ip.max_failed_recoms:

print(f"PI{procid }. We failed in

{count.failed_recom_counter} consecutive recom

attempts. Skipping this recom step .")

break

count.recomcount += 1

if recom_success_flag == True:

ov.fill_obj_vals(ip , dist_list , cdi_data , "recom",

count.currentit)

else:

ov.fill_obj_vals(ip , dist_list , cdi_data , "failed_recom",

count.currentit)

FLIP STEPS

for _ in range(ip.num_flips):

count.failed_flip_counter = 0 #Resets the

failed_flip_counter

flip_success_flag = False

while flip_success_flag == False and

count.failed_flip_counter < ip.max_failed_flips:

flip_success_flag , sa_prob = flip(rng , map_v , temp , ip,

count , dist1 , dist2 , procid) #Does the Flip

algorithm and returns "True" if flip succeeded

if flip_success_flag == False:

count.failed_flip_counter += 1

161

count.flipcount += 1

if flip_success_flag == True:

ov.fill_obj_vals(ip, dist_list , cdi_data , "flip",

count.currentit , sa_prob)

else:

#print(f"PI{procid }. R{count.recomcount }. Flip

algorithm failed after {count.failed_flip_counter}

attempts. Skipping this flip .")

ov.fill_obj_vals(ip, dist_list , cdi_data ,

"failed_flip", count.currentit , sa_prob)

ip.pop_max(stateG) #Sets the maximum for population deviation

if all([map_v.metrics[i] <= ip.met_maxes[i] for i in

range(len(ip.met_maxes)) if ip.metrics_to_use[i] == 1]):

acceptable_mets = True

##May want to add an input possibility instead of 5

elif count.unacceptable_met_counter < 5: #if some metric is

unacceptable. Will recreate the map

acceptable_mets = False

count.unacceptable_met_counter += 1

print (" Unacceptable metrics found. Redoing the recom and

flips .")

count.recomcount -= 1

count.flipcount -= ip.num_flips

else:

acceptable_mets = False

print(f"Unacceptable maps were produced {5} times in a row.

Recording this as a failed map.")

break #breaks from ’while acceptable_mets == False ’ loop

#ov.fill_obj_vals(ip , dist_list , cdi_data ,

"unacceptable_metrics", count.currentit)

if acceptable_mets == True:

code , map_p = map_v.compare_objs(rng , pareto_set , ip)

else:

code = -3

map_p = None

if code == 1: #If perturbed map is dominant

pareto_set = replace_map(rng , pareto_set , map_p , map_v)

#Replaces map_p with map_v in PS

if isinstance(map_p , list):

count.alphacount -= len(map_p) - 1

stateG , dist_list , cdi_data , alpha_val = deep_copy_data(map_v)

print(f"PI{procid }. map_v is dominant over a map in the Pareto

set. Adding map_v to the Pareto set , and removing

{len(map_p)} map(s).")

ov.map_conclusion_vals[count.recomcount] = f"PI{procid }.

Dominant. Removed {len(map_p)} map(s)"

elif code == 0 and len(pareto_set) < ip.num_maps: #If the

perturbed map is neither dominated nor dominant over any PS

maps and there are fewer than 10 maps in the PS

try:

162

unassigned_alphas = [x for x in alpha if x.assigned ==

False]

map_v.alpha = rng.choice(unassigned_alphas)

#map_v.alpha = alpha[count.alphacount]

except IndexError: #In case we didn ’t build enough alpha

values in the beginning

add_alpha_row(alpha)

map_v.alpha = alpha[count.alphacount]

count.alphacount += 1

pareto_set.append(map_v)

stateG , dist_list , cdi_data , alpha_val = deep_copy_data(map_v)

print(f"PI{procid }. map_v is middling. Adding map_v to the

Pareto set since there aren ’t yet {ip.num_maps} maps in the

PS.")

ov.map_conclusion_vals[count.recomcount] = "Middling. Added to

archive (not full)"

elif (code == 0 and len(pareto_set) >= ip.num_maps) or code == -2:

#If the perturbed map is neither dominated nor dominant over

any PS maps and there are at least 10 maps in the PS

if code == -2:

warnings.warn("All maps in the Pareto set match the

perturbed map. This generally should not happen .")

map_p = rng.choice(pareto_set) #A random map from the Pareto

set

add_to_PS , sa_prob = sa_prob_calc(rng , map_v , map_p , temp , ip,

count)

if add_to_PS == True:

pareto_set = replace_map(rng , pareto_set , map_p , map_v)

print(f"PI{procid }. map_v is middling. By the SA

probability , we add this to the PS.")

ov.map_conclusion_vals[count.recomcount] = "Middling. Added

to archive (SA Prob)"

else:

print(f"PI{procid }. map_v is middling. By the SA

probability , we DO NOT add this to the PS.")

ov.map_conclusion_vals[count.recomcount] = "Middling. Not

added to archive (SA Prob)"

accept_perturbation , sa_prob = sa_prob_calc(rng , map_v , map_p ,

temp , ip, count)

if accept_perturbation == True:

stateG , dist_list , cdi_data , alpha_val =

deep_copy_data(map_v)

print(f"PI{procid }. We will continue to make perturbations

to map_v .")

else:

stateG , dist_list , cdi_data , alpha_val =

deep_copy_data(rng.choice(pareto_set))

print(f"PI{procid }. Discarding map_v and reselecting a map

from the Pareto set .")

elif code == -1: #If the perturbed map is dominated by some map in

the pareto set

163

accept_perturbation , sa_prob = sa_prob_calc(rng , map_v , map_p ,

temp , ip, count)

print(f"PI{procid }. map_v is dominated by a map in the Pareto

set. We will not add it to the PS.")

ov.map_conclusion_vals[count.recomcount] = "Dominated. Not

added to archive"

if accept_perturbation == True:

stateG , dist_list , cdi_data , alpha_val =

deep_copy_data(map_v)

print(f"PI{procid }. We will continue to make perturbations

to map_v .")

else:

stateG , dist_list , cdi_data , alpha_val =

deep_copy_data(rng.choice(pareto_set))

print(f"PI{procid }. Discarding map_v and reselecting a map

from the Pareto set .")

elif code == -3: #If the map had a metric that was unacceptable

ov.map_conclusion_vals[count.recomcount] = "Unacceptable

Metrics. Not added to archive"

else:

raise RuntimeError(f"Unexpected code returned. code = {code }")

record_best_metrics(ov , count , pareto_set)

ov.hvol[count.recomcount] = hypervolume(pareto_set , ip)

#print ("\n")

#Reduces temperature and tolerance if we ’ve done the proper number

of iterations at this temperature

count.its_at_temp += 1

if count.its_at_temp >= ip.num_its_per_temp:

count.its_at_temp = 0

temp = temp * ip.coolingrate

tol = tol * ip.tol_coolingrate

return pareto_set , ov

def main(*args):

""" Runs the primary instance of the algorithm ."""

rng = random.Random(args [0])

print(f"random seed is {args [0]}.")

#Get user input

sig = signature(input_vals.__init__)

if len(sys.argv) > 2:

warnings.warn("Too many arguments were provided. Only the first

will be considered ")

if len(sys.argv) > 1: #If any argument was provided on the command line

input_file_name = sys.argv [1]

with open(input_file_name) as f:

input_data_from_file = [line.strip () for line in f.readlines ()]

print(input_data_from_file)

164

if len(input_data_from_file) != len(sig.parameters) -1: #-1 because

of "self"

raise ValueError(f"Incorrect number of arguments given in the

input text document. Need {len(sig.parameters) -1}. Have

{len(input_data_from_file)}")

ip = input_vals (* input_data_from_file)

print(ip.__dict__.values ())

elif len(args) == len(sig.parameters):

print(" Using args")

ip = input_vals(args) #Second , tries to take input from explicit

input into main()

else:

print(" Using default variable choices ")

#Inserting dummy values to be overwritten in next line

None_list = [None] * (len(sig.parameters) -1)

ip = input_vals (* None_list)

ip.default_user_input () #Finally , manually assigns input values if

they aren ’t provided

#Marking the start time of the run.

now = datetime.datetime.now()

print(" Starting date and time : {}". format(now.strftime ("%m-%d-%y

%H:%M:%S")))

timetxt = now.strftime ("_%m%d%y_%H%M%S_%f")

#This builds alpha , which is the normalized unit vector that details

how much we care about any given metric.

metric_count = sum(ip.metrics_to_use)

alpha = build_alpha(rng , metric_count , ip)

tol = ip.tol #tol will be modified later

temp = ip.temp #temp will be modified later

#Creates an initial map

while True:

if ip.preselected_start_map == False: #If we want to use random

starting map do these steps , we initialize a random map

stateG = initialize_map3(rng , ip)

else:

raise ValueError (" preselected_start_map must be False for now")

#Initializes pop_dev maximum

ip.pop_max(stateG)

#Creates an instance of District for each District

dist_list = [None] * (ip.distcount)

for i in range(ip.distcount):

dist_list[i] = District(i) #Initializes District variables for

each district

165

populate_dist_list(stateG , dist_list)

for idx , use_met in enumerate(ip.metrics_to_use):

if use_met == 1:

viable_objs = [dist_list.metrics]

#Populates County -District -Intersection (CDI) values

cdi_data = CDI(stateG)

print(f"CDI_Count = {cdi_data.cdi_count }")

print(f"Total number of precincts (calculated by

np.sum(cdi_data.cdi_mat)) = {np.sum(cdi_data.cdi_mat)}")

#Creates vectors of zeros that will hold values for population

deviation , average compactness , etc.

ov = objective_vals(ip)

#Populates the zeroth entry for all vectors

ov.fill_obj_vals(ip, dist_list , cdi_data , "initialization", 0)

#Initializing the main line of the Simulated Annealing Algorithm

count = counters () #Keeps track of the various counters needed

pareto_set = [] #The list that will contain all high -quality maps

in the Pareto Set

#Populates zeroth entry for the pareto set

map0 = Map_class(stateG , alpha [0], dist_list , cdi_data)

under_ub = map0.check_objs(ip)

if set(under_ub) == {True}: break #Breaks if all metrics are

beneath upper bounds

count.alphacount = 1 #We used the first alpha value in the previous

line

pareto_set.append(map0)

ov.map_conclusion_vals [0] = "Initialization"

record_best_metrics(ov , count , pareto_set)

stateG = deepcopy(stateG) #Creates a new instance of stateG so that

future changes won ’t affect map0

dist_list = deepcopy(dist_list)

cdi_data = deepcopy(cdi_data)

#################################### PROCESS POOL EXECUTOR

##

procid = []

rand_seeds = []

length_to_r_list = rng.sample(range (800, 1000), ip.num_threads)

rand_list = rng.sample(range (99999999) , ip.num_threads *1001)

l = 0

for i in range(ip.num_threads):

l += length_to_r_list[i] #How far in the random list we go to

retrieve a random number

procid.append(i) #The process ID for each process

rand_seeds.append(rand_list[l]) #Gives each process its own random

seed

args_main_loop = []

166

pareto_set_list = []

ov_list = []

for i in range(ip.num_threads):

#Each entry of args_main_loop is a list containing the values

needed for the main loop

args_main_loop.append ([procid[i], count , ip, ov, now , alpha , map0 ,

temp , tol , stateG , dist_list , cdi_data , pareto_set ,

rand_seeds[i], rng])

if ip.parallel == True:

print(" Starting Parallel Processes ")

with concurrent.futures.ProcessPoolExecutor () as executor:

results = [executor.submit(main_loop , args_main_loop[i]) for i

in range(ip.num_threads)]

for i in results:

ps = i.result ()[0]

ov_i = i.result ()[1]

pareto_set_list.append(ps) #Compiles all pareto sets from each

parallel run into one list

ov_list.append(ov_i) #Compiles all objective value lists into

one list

print(" Parallel processes finished ")

else:

results , ov = main_loop(args_main_loop [0])

pareto_set_list = results

print("Main loop finished ")

##

ending_time = datetime.datetime.now()

elapsed_time = ending_time - now

input_data = [list(ip.__dict__.values ())]

input_columns = list(ip.__dict__.keys())

input_data [0]. append(rand_seeds)

input_columns.append (" rand_seeds ")

input_data [0]. append(elapsed_time.seconds)

input_columns.append ("time expended ")

df0 = pd.DataFrame(input_data , columns=input_columns)

print(" Starting data :")

starting_data = [[map0.pop_dev , map0.compactness , map0.eg ,

map0.cdi_num , map0.excess_GU_num , map0.mm]]

df1 = pd.DataFrame(starting_data , columns = [" Population Deviation",

"Compactness", "Efficiency Gap", "CDI", "excess GU", "Median Mean "])

print(df1)

data_table = []

if not isinstance(pareto_set_list , list): pareto_set_list =

[pareto_set_list] #For non -parallel runs

if not isinstance(pareto_set_list [0], list): pareto_set_list =

[pareto_set_list] #For non -parallel runs

map_list = [item for sublist in pareto_set_list for item in sublist]

for m in map_list: #’m’ for ’map ’

167

wv = list(np.around(np.array(m.alpha.wv) ,3)) #Rounds the weight

vector to 3 decimal places

data_table.append ([m.pop_dev , m.compactness , m.eg , m.cdi_num ,

m.excess_GU_num , m.mm , wv])

data_table_keep = [None] * len(data_table)

for m1_idx , map1 in enumerate(data_table):

for m2_idx , map2 in enumerate(data_table [: m1_idx] +

data_table[m1_idx +1:]): #Cycles through data_table *except* for

map1

m1_m2_comparison = []

m1_m2_comparison.append(np.sign(map1 [0] - map2 [0])) #pop_dev

m1_m2_comparison.append(np.sign(map1 [1] - map2 [1])) #compactness

m1_m2_comparison.append(np.sign(map1 [2] - map2 [2])) #eg

m1_m2_comparison.append(np.sign(map1 [3] - map2 [3])) #cdi_num

m1_m2_comparison.append(np.sign(map1 [4] - map2 [4]))

#excess_GU_num

m1_m2_comparison.append(np.sign(map1 [5] - map2 [5])) #mm

for idx , metric in enumerate(ip.metrics_to_use):

if metric == 0:

m1_m2_comparison[idx] = None

m1_m2_comparison = remove_nones(m1_m2_comparison)

if set(m1_m2_comparison) == {1}: #All metrics in map1 are worse

than map2

data_table_keep[m1_idx] = 0 #Indicates that we will NOT

keep this map; it is dominated

break

elif set(m1_m2_comparison) == {0} and m2_idx >= m1_idx: #All

metrics in map1 are the same as map2

data_table_keep[m1_idx] = 1 #We keep this (duplicate) map.

We keep the first duplicate

continue

elif set(m1_m2_comparison) == {0} and m2_idx < m1_idx: #All

metrics in map1 are the same as map2

data_table_keep[m1_idx] = 0

break

if m2_idx == len(data_table [: m1_idx] + data_table[m1_idx +1:]) -

1: #If we reached the final map in the m2 loop

data_table_keep[m1_idx] = 1 #Keep this entry in the PS

for idx , i in enumerate(data_table_keep):

if i == 0:

data_table[idx] = None

map_list[idx] = None

data_table = remove_nones(data_table)

map_list = remove_nones(map_list)

df2 = pd.DataFrame(data_table , columns = [" Population Deviation",

"Compactness", "Efficiency Gap", "CDI", "excess GU", "Median Mean",

"Weight Vector "])

print(df2)

##

#Printing to Excel

168

met_string = ’’

for idx , met in enumerate(ip.metrics_to_use):

if met ==1: met_string += ’O’

else: met_string += ’X’

excel_doc_name = f"MOSA2_" + met_string + timetxt + ".xlsx"

col_1_header = "GU Number"

ps_col_headers = []

for i in range(len(map_list)):

ps_col_headers.append(f"Plan {i}")

node_list = list(stateG.nodes)

node_list = [x+1 for x in node_list] #+1 so nodes start at 1, not 0.

excel_dict = {}

excel_dict[col_1_header] = node_list

for i in range(len(map_list)):

excel_dict[ps_col_headers[i]] =

list(dict(map_list[i].graph.nodes (" District Number ")).values ())

#Gets the district assignments

df3 = pd.DataFrame(excel_dict)

#Hypervolume

if ip.parallel:

df4_dict = {}

for i in range(len(ov_list)):

df4_dict[f’hypervolume thread {i}’] = [ov_list[i].hvol[it] for

it in range(ip.num_recoms)]

df4 = pd.DataFrame(df4_dict)

final_hv_val = hypervolume(map_list , ip)

final_hv_row = pd.DataFrame ([[final_hv_val] * df4.shape [1]],

columns=df4.columns)

df4 = pd.concat ([df4 , final_hv_row], ignore_index=True)

else: #not parallel

df4_dict = {} #Contains generational measures

df4_dict[’hypervolume ’] = [ov.hvol[it] for it in

range(ip.num_recoms)]

df4 = pd.DataFrame(df4_dict)

excel_writer = pd.ExcelWriter(excel_doc_name)

df0.to_excel(excel_writer , sheet_name=’Input Data ’)

df1.to_excel(excel_writer , sheet_name=’Starting Data ’)

df2.to_excel(excel_writer , sheet_name=’Metrics ’)

df3.to_excel(excel_writer , sheet_name=’District Assignments ’)

df4.to_excel(excel_writer , sheet_name=’Hypervolume ’)

excel_writer.save()

##

Plotting results

if ip.parallel:

pf = map_list #pf = pareto front

else:

pf = pareto_set

169

#Plot Plans

psda = [None]*len(pf)

for i in range(len(pf)):

psda[i] = df3 [["GU Number", f"Plan {i}"]] #psda=pareto set dist

assignment

pf[i].graph.data = pf[i].graph.data.merge(right=psda[i],

left_on=’OBJECTID ’, right_on=’GU Number ’, validate =’1:1’) #adds

this data to pareto_set graph df

pf[i].graph.data = pf[i].graph.data.drop(’GU Number ’, axis =1)

#deletes ’GU Number ’ column

pf[i].graph.data = pf[i].graph.data.rename(columns ={f’Plan {i}’:

f’plan{i}’}) #Shortens the plan name column

plot_plan(pf[i].graph , i)

##

print(" Ending date and time : {}". format(ending_time.strftime ("%m-%d-%y

%H:%M:%S")))

print(f"Elapsed time = {elapsed_time }")

print(" Finished !")

if __name__ == "__main__ ":

rseed = secrets.randbelow(sys.maxsize)

#rseed = 7066382009700737341

main(rseed)

170

Appendix D NSGA-II Codes

from gerrychain import Graph

import geopandas as gpd

import networkx as nx

import time

import datetime

import math

import random

import numpy as np

import pickle

import pandas as pd

import matplotlib.pyplot as plt

import sys

import plotly.express as px

import secrets

from pymoo.indicators.hv import HV

import copy

import matplotlib.colors as mcolors

#from pyMultiobjective.utils import indicators

#from deap.tools import hypervolume as hv

#from deap.benchmarks.tools import hypervolume

#import hv

class input_c: #short for ’input class ’

def __init__(self , json_file , ps , mp , nd , ng , met , cf , lmn , rnd , rad):

self.json_file = json_file #Input file for the graph

self.pop_size = ps #Population size

self.mutation_probability = mp #Mutaiton probability

self.num_districts = nd #Number of districts

self.num_generations = ng #Number of generations

self.metrics = met #Metrics dictionary. Contains either True or

False for each metric

self.county_file = cf #File countaining counties

self.long_met_names = lmn #Long metric names

self.randomness = rnd #Randomness level

self.radius = rad #Radius for contiguity checks. Higher values are

more thorough.

Max cluster num. Entries will be (gen , pop_id): max_cl_num

self.max_cl_num = {}

def __repr__(self):

met_string = ’’

for met in self.metrics:

if self.metrics[met]== True: met_string += ’O’

else: met_string += ’X’

return f"<INPUT: pop_size = {self.pop_size}, num_gens =

{self.num_generations}, mets = [{ met_string }]>"

@classmethod

def Load_from_file(cls , file_name):

171

""" Reads the input from a file """

with open(file_name) as f:

lines = f.readlines ()

json_file = lines [0]. strip()

pop_size = int(lines [1])

mut_prob = float(lines [2])

num_districts = int(lines [3])

num_generations = int(lines [4])

metrics = {"dpop": eval(lines [5]. strip().lower().capitalize ()),

"comp": eval(lines [6]. strip().lower().capitalize ()),

"eg": eval(lines [7]. strip().lower().capitalize ()),

"mm": eval(lines [8]. strip().lower().capitalize ()),

"cs": eval(lines [9]. strip().lower().capitalize ()),

"egu": eval(lines [10]. strip().lower().capitalize ())

}

county_file = lines [11][0: -1]

met_long_names = {"dpop": lines [12]. strip (),

"comp": lines [13]. strip(),

"eg": lines [14]. strip(),

"mm": lines [15]. strip(),

"cs": lines [16]. strip(),

"egu": lines [17]. strip(),

}

randomness = int(lines [18])

radius = float(lines [19])

return cls(

json_file=json_file ,

ps=pop_size ,

mp=mut_prob ,

nd=num_districts ,

ng=num_generations ,

met=metrics ,

cf=county_file ,

lmn=met_long_names ,

rnd=randomness ,

rad=radius

)

def total_pop(G, ip):

""" Calculates the total population of the graph """

try:

return ip.total_pop

except AttributeError:

ip.total_pop = sum(dict(G.nodes (" POPULATION ")).values ())

return ip.total_pop

def target_pop(G, ip):

""" Calculates the target population for each district """

try:

return ip.ideal_pop

except AttributeError: # In the event that ideal_pop has not yet been

calculated

ip.total_pop = sum(dict(G.nodes (" POPULATION ")).values ())

172

ip.ideal_pop = ip.total_pop/ip.num_districts

return ip.ideal_pop

def make_nbr_graphs(G, radius =3):

""" Makes neighbor graphs for every node at a distance of ’radius ’ away.

G: Base graph.

radius : Include all neighbors of distance <= radius from n. Default 3"""

if radius == float(’inf ’): radius = nx.diameter(G) #if radius is

infinity , redefine to its diameter

nbr_graphs = {}

for n in G:

nbr_graphs[n] = nx.ego_graph(G, n, radius=radius) #All

neighborhoods of radius 3 for each node

return nbr_graphs

def initialize_graph(ip):

""" Builds a graph based on a json file supplied by the user """

try:

with open(’stateG.pkl ’, ’rb ’) as fp: G = pickle.load(fp)

except FileNotFoundError:

cols_to_add = [’OBJECTID ’, ’ID’, ’VTD ’, ’COUNTY ’, ’STATE ’, ’NAME ’,

’POPULATION ’,

’CountyName ’, ’Reg_Voters ’, ’PresBlue ’, ’PresRed ’,

’PresOther ’,

’SenBlue ’, ’SenRed ’, ’SenOther ’, ’Cong2011 ’, ’Sen2011 ’,

’House2011 ’,

’Cong2021 ’, ’Sen2021 ’, ’House2021 ’, ’geometry ’]

try:

G = Graph.from_file(

ip.json_file ,

adjacency ="rook",

cols_to_add=cols_to_add ,

reproject ="True",

ignore_errors ="True"

)

except KeyError:

G = Graph.from_file(

ip.json_file ,

adjacency ="rook",

cols_to_add=None , # Will add all columns

reproject ="True",

ignore_errors ="True"

)

#Initialize the layer

G.layer = 0

#Initialize front [0] sizes

G.front0_sizes = []

#Save stateG if it hasn ’t been saved before

with open(’stateG.pkl ’, ’wb ’) as fp: pickle.dump(G, fp)

#Initialize the metric keepers

if ip.metrics[’dpop ’] == True:

G.pop_dev = np.zeros((ip.num_generations +1, 2*ip.pop_size))

173

if ip.metrics[’comp ’] == True:

G.comp = np.zeros((ip.num_generations +1, 2*ip.pop_size))

if ip.metrics[’eg ’] == True:

G.eg = np.zeros((ip.num_generations +1, 2*ip.pop_size))

if ip.metrics[’mm ’] == True:

G.mm = np.zeros((ip.num_generations +1, 2*ip.pop_size))

if ip.metrics[’cs ’] == True:

G.cs = np.zeros((ip.num_generations +1, 2*ip.pop_size))

if ip.metrics[’egu ’] == True:

G.egu = np.zeros((ip.num_generations +1, 2*ip.pop_size))

G.metrics = np.zeros((ip.num_generations +1, 2*ip.pop_size ,

sum(ip.metrics.values ())))

ip.num_GUs = G.number_of_nodes ()

county_list = set()

for n in G.nodes:

G.nodes[n][’gen ’] = np.full(

shape =(ip.num_generations +1, ip.pop_size*2, 2), fill_value =(-1,

-1))

2 represents that each entry of G.nodes[n][’gen ’][g][c] will

return a (clustering , districting) tuple

county_list.add(G.nodes[n][’COUNTY ’])

county_list = sorted(county_list)

Long county name to short county name. e.g. longc2shortc [’45003 ’] = 1

longc2shortc = {}

for idx , c in enumerate(county_list):

longc2shortc[c] = idx

for n in G.nodes:

G.nodes[n][’county_num ’] = longc2shortc[G.nodes[n][’COUNTY ’]]

return G

def create_attr_graph(G, ip , attr=None , gen_id_cldi=None):

""" Creates a graph that merges all nodes of a certain attribute (attr)

together

’G’ is NOT amended in this function

gen_id_cldi will be entered only if ’attr ’ is not entered.

gen_id_cldi represents the triplet (generation , clustering/districting

pop_id , clustering/districting)

’generation ’ sets the current generation [0 ,1000]

’pop_id ’ sets the identification number for the clustering/districting

pair [0 ,49]

’cldi ’ sets whether we are grouping a clustering or a districting [0:

clustering , 1: districting] """

if attr == None and gen_id_cldi == None:

raise ValueError (" Either ’attr ’ or ’gen_id_cldi ’ must be defined ")

if attr != None and gen_id_cldi != None:

raise ValueError (" Either ’attr ’ or ’gen_id_cldi ’ must be defined ,

but not both")

gen = None

pop_id = None

cldi = None

if gen_id_cldi != None:

gen = gen_id_cldi [0]

pop_id = gen_id_cldi [1]

cldi = gen_id_cldi [2]

174

cg = nx.Graph () #cg = contracted graph

cg.layer = G.layer + 1

node2supernode = {}

node_attr_list = [

’area ’,

’POPULATION ’,

’Reg_Voters ’,

’PresBlue ’,

’PresRed ’,

’PresOther ’,

’SenBlue ’,

’SenRed ’,

’SenOther ’,

]

Removes all edges from graph G where one end has different attribute

(attr) values than the other end

#boundary_edges = []

for e in G.edges():

n0 = e[0]

n1 = e[1]

if attr != None: # we are separating by attribute

sn0 = G.nodes[n0][attr]

sn1 = G.nodes[n1][attr]

elif gen_id_cldi != None: #we are separating by either districting

or clustering

sn0 = G.nodes[n0][’gen ’][gen][pop_id][cldi]

sn1 = G.nodes[n1][’gen ’][gen][pop_id][cldi]

else: raise ValueError (" Either attr or gen_id_cldi should be

defined ")

node2supernode[n0] = sn0

node2supernode[n1] = sn1

if sn0 != sn1: #i.e, this edge represents a boundary for the

attribute

#boundary_edges += [e]

try: supernode2node[sn0]. append(n0)

except KeyError: supernode2node[sn0] = [n0]

try: supernode2node[sn1]. append(n1)

except KeyError: supernode2node[sn1] = [n1]

cg.add_node(sn0)

cg.add_node(sn1)

cg.add_edge(sn0 , sn1)

#Adds shared perimeter to total perimeter attribute for nodes

try: cg.nodes[sn0][’total_perim ’] += G.edges[(n0 ,

n1)][’shared_perim ’]

except KeyError: cg.nodes[sn0][’total_perim ’] = G.edges [(n0,

n1)][’shared_perim ’]

try: cg.nodes[sn1][’total_perim ’] += G.edges[(n0 ,

n1)][’shared_perim ’]

except KeyError: cg.nodes[sn1][’total_perim ’] = G.edges [(n0,

n1)][’shared_perim ’]

175

#Add edge attributes to cg *only* if it was a boundary edge

try: cg[sn0][sn1][’shared_perim ’] += G.edges[(n0 ,

n1)][’shared_perim ’]

except KeyError: cg.edges [(sn0 , sn1)][’shared_perim ’] =

G.edges[(n0 , n1)][’shared_perim ’]

Creates a list of all edges that created this supernode edge

cg[sn0][sn1][’contributing_edges ’] = []

if cg.layer == 1: #If we’re contracting the base graph

cg[sn0][sn1][’ contributing_edges ’] += [e]

else: #If we’re contracting an already contracted graph

cg[sn0][sn1][’ contributing_edges ’] = ’maybe add later?’

for sn in cg.nodes():

cg.nodes[sn][’boundary_perim ’] = 0

cg.nodes[sn][’GUs ’] = []

if cg.layer == 2:

cg.nodes[sn][’clgu ’] = {}

#cg.nodes[sn][’districting ’] = sn

for n in G.nodes():

sn = node2supernode[n]

if cg.layer == 1: #Creating a clustering graph

cg.nodes[sn][’GUs ’]. append(n)

#if len(cg.nodes[sn][’GUs ’]) > 12 and attr != ’county_num ’:

print ("This is also a problem ")

elif cg.layer > 1: #Creating a districting graph

if ’GUs ’ in cg.nodes[sn]: cg.nodes[sn][’GUs ’] +=

G.nodes[n][’GUs ’]

else: cg.nodes[sn][’GUs ’] = G.nodes[n][’GUs ’]

#Initialize and populate the attributes

for nattr in node_attr_list:

if nattr in cg.nodes[sn]: cg.nodes[sn][nattr] +=

G.nodes[n][nattr]

else: cg.nodes[sn][nattr] = G.nodes[n][nattr]

#For boundary_perim

try:

cg.nodes[sn][’boundary_perim ’] += G.nodes[n][’boundary_perim ’]

cg.nodes[sn][’total_perim ’] += G.nodes[n][’boundary_perim ’]

except KeyError: #If supernode isn ’t on a state boundary

cg.nodes[sn][’boundary_perim ’] += 0

cg.nodes[sn][’total_perim ’] += 0

#For knowing the number of GUs in each county

if cg.layer == 1:

county_num = G.nodes[n][’county_num ’]

try: cg.nodes[sn][’county_dict ’][county_num] += 1

except KeyError:

cg.nodes[sn][’county_dict ’] = {}

cg.nodes[sn][’county_dict ’][county_num] = 1

176

Names the county if the attribute is ’COUNTY ’ (done more times

than necessary , but that ’s ok)

if attr == ’COUNTY ’ or attr == ’county_num ’:

cg.nodes[sn][’CountyName ’] = G.nodes[n][’CountyName ’]

#Establishing a cluster: GU dictionary if cg is a district graph

if cg.layer == 2:

cg.nodes[sn][’clgu ’][n] = G.nodes[n][’GUs ’] #n is a cluster.

#sn is a district

if len(G.nodes[n][’GUs ’]) > 12:

print ("This is a big problem ")

for sn in cg.nodes():

if cg.layer == 1: # indicating that we’re grouping by clustering

#cg.nodes[sn][’clustering ’] = sn

cg.nodes[sn][’districting ’] = -1

#cg.nodes[sn][’clgu ’] = {}

#cg.nodes[sn][’clgu ’][sn] = cg.nodes[sn][’GUs ’] # A dictionary

with one entry. cluster: [GU_list]

cg.nodes[sn][’counties ’] = set([G.nodes[gu][’county_num ’] for

gu in cg.nodes[sn][" GUs "]])

If we are creating the district plan , calculate the metrics

if cg.layer == 2:

try: cg.total_pop = ip.total_pop

except AttributeError:

cg.total_pop = sum(dict(cg.nodes (" POPULATION ")).values ())

ip.total_pop = cg.total_pop

try: cg.ideal_pop = ip.ideal_pop

except AttributeError:

cg.ideal_pop = cg.total_pop / ip.num_districts

ip.ideal_pop = cg.ideal_pop

CDI_matrix[dist][county]

CDI_matrix = np.zeros ((ip.num_districts , ip.num_counties),

dtype=np.int16)

for d in cg.nodes: #’d’ represents a district

cg.nodes[d][’pp_compactness ’] = 4 * math.pi *

cg.nodes[d][’area ’] / (cg.nodes[d][’total_perim ’] ** 2)

cg.nodes[d][’ shifted_pp_compactness ’] = 1 -

cg.nodes[d][’pp_compactness ’]

cg.nodes[d][’total_Pvotes ’] = cg.nodes[d][’PresBlue ’] +

cg.nodes[d][’PresRed ’] + cg.nodes[d][’PresOther ’]

cg.nodes[d][’total_Svotes ’] = cg.nodes[d][’SenBlue ’] +

cg.nodes[d][’SenRed ’] + cg.nodes[d][’SenOther ’]

cg.nodes[d][’blue_Pshare ’] = cg.nodes[d][’PresBlue ’] /

cg.nodes[d][’total_Pvotes ’] if

cg.nodes[d][’total_Pvotes ’]>0 else 0

cg.nodes[d][’red_Pshare ’] = cg.nodes[d][’PresRed ’] /

cg.nodes[d][’total_Pvotes ’] if

cg.nodes[d][’total_Pvotes ’]>0 else 0

cg.nodes[d][’other_Pshare ’] = cg.nodes[d][’PresOther ’] /

cg.nodes[d][’total_Pvotes ’] if

cg.nodes[d][’total_Pvotes ’]>0 else 0

cg.nodes[d][’blue_Sshare ’] = cg.nodes[d][’SenBlue ’] /

cg.nodes[d][’total_Svotes ’] if

177

cg.nodes[d][’total_Svotes ’]>0 else 0

cg.nodes[d][’red_Sshare ’] = cg.nodes[d][’SenRed ’] /

cg.nodes[d][’total_Svotes ’] if

cg.nodes[d][’total_Svotes ’]>0 else 0

cg.nodes[d][’other_Sshare ’] = cg.nodes[d][’SenOther ’] /

cg.nodes[d][’total_Svotes ’] if

cg.nodes[d][’total_Svotes ’]>0 else 0

cg.nodes[d][’win_threshold_P ’] =

math.ceil(cg.nodes[d][’total_Pvotes ’]/2 + 0.5)

cg.nodes[d][’win_threshold_S ’] =

math.ceil(cg.nodes[d][’total_Svotes ’]/2 + 0.5)

cg.nodes[d][’Rwasted_votes_P ’] = cg.nodes[d][’PresRed ’] -

cg.nodes[d][’win_threshold_P ’] if cg.nodes[d][’PresRed ’] >

cg.nodes[d][’PresBlue ’] else cg.nodes[d][’PresRed ’]

cg.nodes[d][’Bwasted_votes_P ’] = cg.nodes[d][’PresBlue ’] -

cg.nodes[d][’win_threshold_P ’] if cg.nodes[d][’PresRed ’] <=

cg.nodes[d][’PresBlue ’] else cg.nodes[d][’PresBlue ’]

for cl in cg.nodes[d][’clgu ’]:

county_dict = G.nodes[cl][’county_dict ’]

for c, v in county_dict.items(): #c = county , v = value

(number of GUs in cluster -county intersection)

CDI_matrix[d][c] += v

cg.pop_dev_sum = round(sum(abs(p-cg.ideal_pop) for p in

dict(cg.nodes (" POPULATION ")).values ()))

cg.pop_dev_max = round(max(abs(p-cg.ideal_pop) for p in

dict(cg.nodes (" POPULATION ")).values ()))

cg.exc_county_splits = np.count_nonzero(CDI_matrix) -

max(ip.num_counties , ip.num_districts)

cg.exc_gus = sum(np.sum(CDI_matrix , axis =0) - np.max(CDI_matrix ,

axis =0))

#cg.cbm = cg.exc_county_splits + ip.num_counties / ip.num_GUs *

cg.exc_gus # cbm = county -boundary -metric

cg.cs = cg.exc_county_splits

cg.egu = cg.exc_gus

cg.pp_comp = round(sum([cg.nodes[d][’pp_compactness ’] for d in

cg.nodes]) / cg.number_of_nodes (), 3)

cg.shifted_pp_comp = 1-cg.pp_comp

bsP_list = [cg.nodes[d][’blue_Pshare ’] for d in cg.nodes] # bsP =

blue share for president

bsP_list = sorted(bsP_list)

if ip.num_districts % 2 == 0: # even

bsP_median = (bsP_list[int(ip.num_districts /2)] +

bsP_list[ip.num_districts /2 -1])/2

else: # odd

bsP_median = bsP_list[int(ip.num_districts /2 -0.5)]

bsP_mean = sum(bsP_list)/ip.num_districts

cg.mm = abs(bsP_median - bsP_mean) # median -mean

bwv_P = sum([cg.nodes[d][’Bwasted_votes_P ’] for d in cg.nodes])

rwv_P = sum([cg.nodes[d][’Rwasted_votes_P ’] for d in cg.nodes])

cg.total_Pvotes = sum([cg.nodes[d][’total_Pvotes ’] for d in

cg.nodes])

cg.eg = abs((bwv_P - rwv_P)/cg.total_Pvotes) # absolute efficiency

gap

cg.all_metrics = [cg.pop_dev_sum , cg.shifted_pp_comp , cg.eg, cg.mm,

cg.cs , cg.egu]

178

cg.metric_keys = [’dpop ’, ’comp ’, ’eg’, ’mm’, ’cs’, ’egu ’]

cg.metrics = [m for idx , m in enumerate(cg.all_metrics) if

ip.metrics[cg.metric_keys[idx]] == True]

return cg

def initialize_clustering(rng , G, ip , pop_id , num_clusters=None):

""" Assigns each node a cluster number """

if num_clusters == None:

num_clusters = math.ceil(G.number_of_nodes () /3.5)

centers = rng.sample(list(G.nodes), num_clusters)

unassigned_nodes = list(set(G.nodes()) - set(centers))

rng.shuffle(unassigned_nodes)

maxsize = {} # The maximum size of each cluster

currsize = {} # The current size of each cluster; to be updated and

not to exceed maxsize

nodecluster = {} # A dictionary that will contain the list of nodes in

each cluster. i.e., nodecluster [0] = [1,2,3] would mean that nodes

1,2,3 are in cluster 0.

cluster_nbrs = {} # A dictionary that contains all neighbors of nodes

in the cluster

clusternum will identify the cluster number

for clusternum , center in enumerate(centers):

G.nodes[center][’gen ’][0][pop_id][0] = clusternum

#unassigned_nodes.remove(center)

maxsize[clusternum] = rng.randint(1, 6)

currsize[clusternum] = 1

cluster_nbrs[clusternum] = set(G.neighbors(center))

try:

appends to the list if it exists

nodecluster[clusternum] += [center]

except KeyError:

creates the list if it is brand new

nodecluster[clusternum] = [center]

rng.shuffle(centers)

for center in centers:

clusternum = G.nodes[center][’gen ’][0][pop_id][0]

while currsize[clusternum] < maxsize[clusternum]:

currsize , maxsize , unassigned_nodes , nodecluster , _,

cluster_nbrs , _ = grow_group(rng ,

G, ip, clusternum , 0, pop_id , currsize , maxsize ,

unassigned_nodes , nodecluster , cluster_nbrs , None , None)

while len(unassigned_nodes) > 0: # While there are still unassigned

nodes

clusternum = max(currsize.keys()) + 1

center = unassigned_nodes.pop()

num_clusters += 1

centers += [center]

maxsize[clusternum] = rng.randint(1, 6)

currsize[clusternum] = 1

cluster_nbrs[clusternum] = set(G.neighbors(center))

try:

nodecluster[clusternum] += [center] # appends to the list if it

exists

except KeyError:

179

nodecluster[clusternum] = [center] # creates the list if it is

brand new

G.nodes[center][’gen ’][0][pop_id][0] = clusternum

while currsize[clusternum] < maxsize[clusternum]:

currsize , maxsize , unassigned_nodes , nodecluster , _,

cluster_nbrs , _ = grow_group(rng ,

G, ip, clusternum , 0, pop_id , currsize , maxsize ,

unassigned_nodes , nodecluster , cluster_nbrs , None , None)

Saves the maximum cluster number for the (gen , pop_id) pair

ip.max_cl_num [(0, pop_id)] = max(currsize.keys())

def flip(G, n, dist , gen , pop_id , nbr_graphs , contig=float(’inf ’)):

""" Performs a flip where we move GU ’n’ to distrist ’dist ’. This checks

that contiguity will be maintained.

G: Base graph

n: Node to be flipped

dist: district that n will be moved into

gen: current generation

pop_id: the population ID for the flip

nbr_graphs: the k-layer neighbor graph dictionary for all nodes.

nbr_graphs[n] = [list of nodes k away from n]

contig: The level of contiguity to check. Can be float(’inf ’) or any

positive integer.

If float(’inf ’), then we collect all GUs in current district and

see if removing n creates discontiguity.

If a positive integer ’k’ is used , we only check GUs in the current

district that are at most k away from n, and see if removing n

creates discontiguity ."""

n_dist = G.nodes[n][’district ’][gen][pop_id]

if contig == float(’inf ’): #Check full contiguity

nbrhd = nx.subgraph(G, [x for x in G.nodes() if

G.nodes[x][’district ’][gen][pop_id] == n_dist and x!=n])

else: #Check k-layer contiguity

nbrhd = nx.subgraph(nbr_graphs[n], [x for x in

nbr_graphs[n]. nodes() if G.nodes[x][’district ’][gen][pop_id] ==

n_dist and x!=n])

if nx.is_connected(nbrhd):

G.nodes[n][’district ’][gen][pop_id] = dist

return True #signifies flip was successful

else: #flip would create discontiguity

return False #signifies flip was unsuccessful

def grow_group(rng , G, ip , groupnum , gen , pop_id , currsize , maxsize ,

unassigned_nodes , nodegroup , group_nbrs , nbrlengths , viable_dists):

""" Grows the group (cluster/district) ’groupnum ’ by one GU (or cluster)

unless it can ’t

G: Graph

ip: input

groupnum: the group number to be expanded

gen: The generation we ’re on

pop_id: The pop_id of the group under consideration

currsize: a dictionary containing the current size (in nodes) of each

group

maxsize: a dictionary containing the the maximum size (in nodes) of

each group

180

unassigned_nodes: A list of nodes that have not yet been assigned a

group

nodegroup: A dictionary detailing all the nodes in each cluster/district

group_nbrs: A dictionary detailing all the nbrs of nodes in the group

(group_nbrs [0] = {set of nbr nodes})

nbrlengths: A dictionary detailing the boundary length of each

district ’s neighbors. Only used for districts.

ex: nbrlengths [0][646] would return the boundary length between

cluster 646 and district 0.

viable_dists: Not used , but lists all the viable districts that could

be expanded """

if G.layer != 0 and G.layer != 1: raise ValueError ("G’s layer must be 0

or 1")

if groupnum == -1: raise ValueError (" groupnum should be nonnegative ")

if nbrlengths == None:

nbrs = list(group_nbrs[groupnum]) #Occurs when building *clusters*

else:

nbrs = list(nbrlengths[groupnum].keys())

if G.layer ==0: #For building clusters

nbrs = nbrs

elif len(nbrs) > 0: #For building districts

if ip.randomness == 0:

nbrs = nbrs

elif ip.randomness == 1:

nbrs = weighted_shuffle(rng , nbrs ,

weights=list(nbrlengths[groupnum]. values ()))

elif ip.randomness == 2:

nbrs = nbrs

i=-1 #for cycling for nbrs indices

adj_max_size = True #flag relevant for district building

while True: # We break once a nbr is found or all nbrs are exhausted

if ip.randomness <=1:

if len(nbrs) == 0: break

i += 1

nbr = nbrs[i]

elif ip.randomness ==2: #If nbrs are chosen at random

nbr_idx = rng.choice(range(len(nbrs)))

nbr = nbrs[nbr_idx]

if G.layer == 0:

nbr_groupnum = G.nodes[nbr][’gen ’][gen][pop_id][0] #Growing a

cluster

nbr_county = G.nodes[nbr][’county_num ’]

elif G.layer == 1: # Occurs if G was not the base graph with GUs

nbr_groupnum = G.nodes[nbr][’districting ’] #Growing a district

nbr_county = G.nodes[nbr][’counties ’]

if nbr_groupnum == -1: # If the nbr has not been assigned a group

already

if G.layer == 0:

r = rng.random () #for county purposes

181

n = nodegroup[groupnum][0] #a node in the current cluster

(I think this will necessarily be the center)

#If (county splits are important and counties don ’t match

and 1% probability hits) or (CS aren ’t important) or

(CS are important and counties match)

if (ip.metrics[’cs ’] and

nbr_county !=G.nodes[n][’county_num ’] and r <=0.01) or

ip.metrics[’cs ’]== False or (ip.metrics[’cs ’] and

nbr_county == G.nodes[n][’county_num ’]):

G.nodes[nbr][’gen ’][gen][pop_id][0] = groupnum

elif i == len(nbrs) -1: break #breaks if we’ve searched all

neighbors

else: continue #search for a new nbr

elif G.layer == 1: # Occurs if G was not the base graph with GUs

r = rng.random () #for county purposes

n = nodegroup[groupnum][0] #a node in the current district

(I think this will necessarily be the center)

#If (county splits are important and counties don ’t match

and 25% probability hits) or (CS aren ’t important) or

(CS are important and counties match)

if (ip.metrics[’cs ’] and nbr_county !=G.nodes[n][’counties ’]

and r <=0.25) or ip.metrics[’cs ’]== False or

(ip.metrics[’cs ’] and nbr_county ==

G.nodes[n][’counties ’]):

G.nodes[nbr][’districting ’] = groupnum

elif i == len(nbrs) -1:

adj_max_size = False #we do NOT adjust the maxsize if

we break from this search.

break #breaks if we ’ve searched all neighbors

else: continue #search for a new nbr

nodegroup[groupnum] += [nbr]

unassigned_nodes.remove(nbr)

currsize[groupnum] += 1

nbrlengths = update_nbrlengths(G, ip , nbrlengths , nbr , groupnum)

if nbrlengths != None and nbrlengths[groupnum] == {}:

maxsize[groupnum] = currsize[groupnum]

return currsize , maxsize , unassigned_nodes , nodegroup , nbr ,

group_nbrs , nbrlengths

else: # If the nbr has been assigned

if ip.randomness <=1:

if i == len(nbrs) -1:

break #breaks from ’while True ’ loop

else:

nbrs[nbr_idx] = nbrs[-1]

nbrs.pop()

if len(nbrs) == 0: break

If we made it this far , it ’s because we checked all neighbors and

can ’t append any to the current group

if adj_max_size: maxsize[groupnum] = currsize[groupnum] # Adjusts the

maxsize of this group so we don ’t iterate through its neighbors

again

return currsize , maxsize , unassigned_nodes , nodegroup , None ,

group_nbrs , nbrlengths

182

def weighted_shuffle(rng , items , weights , rvs=True ,):

""" Given a list of items and weights for each one , we return a list of

those shuffled items where higher weights are more probable """

order = sorted(range(len(items)), key=lambda i: rng.random () ** (1.0 /

weights[i]), reverse=rvs)

return [items[i] for i in order]

def update_nbrlengths(G, ip , nbrlengths , newnbr , dist):

""" Updates the nbrlengths dictionary after newnbr was added to

district """

if nbrlengths == None: return None #Occurs when we are in the

initialize_clustering function

del nbrlengths[dist][newnbr] #Since newnbr is in dist now , dist doesn ’t

neighbor newnbr

for nn in G.neighbors(newnbr):

if G.nodes[nn][’districting ’] == -1:

try:

nbrlengths[dist][nn] += G.edges[(nn ,

newnbr)][’shared_perim ’]

except KeyError:

nbrlengths[dist][nn] = G.edges[(nn , newnbr)][’shared_perim ’]

elif G.nodes[nn][’districting ’] != dist:

nndist = G.nodes[nn][’districting ’]

try: del nbrlengths[nndist][newnbr] #Occurs if nn is already

assigned a district

except KeyError: pass

if ip.randomness <= 1:

nbrlengths[dist] = dict(sorted(nbrlengths[dist]. items(), key=lambda

x:x[1], reverse=True))

return nbrlengths

def clear_clustering(G, gen , pop_id , stateG=None):

"""For each node n, clears entered value for

G.nodes[n][’gen ’][gen][pop_id][cldi] and replaces it with -1

G: cluster graph

gen: current generation

pop_id: the population id to be cleared

stateG: the underlying GU graph """

if G.layer ==1: # If the input graph isn ’t the stateG graph

for n in G.nodes:

G.nodes[n][’districting ’] = -1

if stateG != None:

for n in stateG.nodes:

stateG.nodes[n][’gen ’][gen][pop_id][1] = -1

def node_list_by_attr(G, attr_str , attr_val):

""" Returns a list of all nodes matching the given attribute ."""

try: return G.boundary_nodes

except AttributeError:

G.boundary_nodes = [n for n in G if G.nodes[n][attr_str] ==

attr_val]

return G.boundary_nodes

def node_list_by_cluster(G, gen , pop_id , cl_val):

183

""" Returns a list of all nodes matching the given cluster pop_id and

generation """

return [n for n in G if G.nodes[n][’gen ’][gen][pop_id][0] == cl_val]

def node_list_by_district(G, gen , pop_id , dist_val):

""" Returns a list of all nodes in the given district at the provided

generation """

return [n for n in G if G.nodes[n][’gen ’][gen][pop_id][1] == dist_val]

def create_cut_line(rng , G, sp , spl , n1=None , n2=None):

""" Finds the shortest path between node n1 and n2. The resultant cut

line must split the graph into exactly 2 pieces.

sp = shortest_paths

spl = shortest path lengths

returns the two halves of the graph and the cut_line after the cut line

splits the graph """

if n1 == None and n2 != None:

raise ValueError ("If n2 is specified , n1 must be too")

nodes_specified = False

if n1 != None:

nodes_specified = True

boundary_GUs = node_list_by_attr(G, ’boundary_node ’, True)

while True: # breaks only when a valid cut line is created

if n1 == None:

n1 = rng.choice(boundary_GUs)

node_prob = {} # Dictionary that will contain the probability

of node n2 being chosen. Nodes farther from n1 are more

likely

for n in boundary_GUs:

node_prob[n] = spl[n1][n] ** 2 #probability is proportional to

the square of the path length

if n2 == None:

n2 = rng.choices(boundary_GUs , node_prob.values (), k=1) [0]

path = sp[n1][n2]

G2 = G.copy()

G2.remove_nodes_from(path)

connected_comps = list(nx.connected_components(G2))

r = rng.randint (0,1)

#nodes_for_H = [None , None]

#nodes_for_H [0] = connected_comps [0]

#nodes_for_H [1] = connected_comps [1]

#connected_comps[r] = G.subgraph(nodes_for_H[r])

if len(connected_comps) == 2: # Need *exactly* 2 connected

components to break

connected_comps[r]. update(path) #Adds path to one of the

subgraphs

break

else:

if nodes_specified == True:

raise ValueError ("No valid cut line could be established

between nodes {n1} and {n2}.")

184

n1 = None

n2 = None

return connected_comps

def crossover(G, ip , p0 , p1 , halves , gen , childid):

""" Takes two parent clusterings and creates a child by merging

qualities from each parent

G: Base graph

ip: input

p0: parent 0 clustering

p1: parent 1 clustering

halves: nodes from G that represent two halves of the graphs

gen: generation we ’re on

childid: labeled from 50 to 99. (assuming pop size 50) Will go here:

stateG.nodes[n][’gen ’][gen][childid] = (cl, dist)"""

if p0.layer != 1 or p1.layer != 1: raise ValueError (" parents must be

clustering graphs ")

max_cl_num = 0

for cl in p0.nodes:

GU_nodes = p0.nodes[cl][’GUs ’]

if(all(x in halves [0] for x in GU_nodes)):

for gu in GU_nodes:

G.nodes[gu][’gen ’][gen][childid][0] = max_cl_num

max_cl_num += 1

for cl in p1.nodes:

GU_nodes = p1.nodes[cl][’GUs ’]

if(all(x in halves [1] for x in GU_nodes)):

for gu in GU_nodes:

G.nodes[gu][’gen ’][gen][childid][0] = max_cl_num

max_cl_num += 1

unassigned_GUs = [n for n in G.nodes if

G.nodes[n][’gen ’][gen][childid][0] == -1]

if len(halves [0]) < len(halves [1]):

parents = [p0 , p1]

else:

parents = [p1 , p0]

for p in parents:

for cl in p.nodes:

GU_nodes = p.nodes[cl][’GUs ’]

if (all(x in unassigned_GUs for x in GU_nodes)):

for gu in GU_nodes:

G.nodes[gu][’gen ’][gen][childid][0] = max_cl_num

max_cl_num += 1

unassigned_GUs = list(set(unassigned_GUs) - set(GU_nodes))

for gu in unassigned_GUs: #By default , all leftover nodes are

singletons.

G.nodes[gu][’gen ’][gen][childid][0] = max_cl_num

max_cl_num += 1

ip.max_cl_num [(gen , childid)] = max_cl_num -1

185

def mutation(rng , G, ip , gen , pop_id):

""" mutates the graph based on the mutation probability """

mut_prob = ip.mutation_probability

for n in G.nodes():

mut_type = None

n_cl = G.nodes[n][’gen ’][gen][pop_id][0] # The cluster number that

n is in

n_county = G.nodes[n][’county_num ’]

r = rng.random ()

if r < mut_prob: # If we hit that low probability

nodes_in_n_cl = node_list_by_cluster(G, gen=gen , pop_id=pop_id ,

cl_val=n_cl)

nodes_in_n_cl.remove(n)

if len(nodes_in_n_cl) == 0: # If n was in a singleton cluster

already

mut_type = ’merge ’

else: # If n was not in a singleton cluster

subgraph = nx.induced_subgraph(G, nodes_in_n_cl)

If removing n does not disconnect the current cluster

if nx.is_connected(subgraph):

mut_type = rng.choice([’singleton ’, ’merge ’])

else:

continue

if mut_type == ’merge ’: # We will randomly merge n into a

neighboring cluster if possible

nbrs = list(G.neighbors(n))

rng.shuffle(nbrs)

merge_success = False

for nbr in nbrs:

nbr_cl = G.nodes[nbr][’gen ’][gen][pop_id][0] # The cluster

number for nbr

nbr_county = G.nodes[nbr][’county_num ’]

if n_cl != nbr_cl:

if (ip.metrics[’cs ’] == False) or (ip.metrics[’cs ’] ==

True and nbr_county == n_county):

G.nodes[n][’gen ’][gen][pop_id][0] = nbr_cl

#Reassigns n’s cluster number

merge_success = True

break

if len(nodes_in_n_cl) == 0 and merge_success == True: # If n

was in a singleton cluster before the merge

nodes_in_max_cl = node_list_by_cluster(G, gen=gen ,

pop_id=pop_id , cl_val=ip.max_cl_num [(gen , pop_id)])

The cluster number n_cl no longer exists in this

clustering , so we reassign the largest enumerated

cluster to n_cl

for node in nodes_in_max_cl:

G.nodes[node][’gen ’][gen][pop_id][0] = n_cl

ip.max_cl_num [(gen , pop_id)] -= 1

elif mut_type == ’singleton ’: # We make node n become a singleton

cluster

new_cl_num = ip.max_cl_num [(gen , pop_id)] + 1

186

G.nodes[n][’gen ’][gen][pop_id][0] = new_cl_num

ip.max_cl_num [(gen , pop_id)] += 1

def generate_plan(rng , G, ip , gen , cl_graph , pop_id):

""" Generates a districting plan based on the clustering

G: base graph """

fpc = 0 #’failed plan count ’

revert=False

while True: #Perpertual loop that will occur until a viable plan is

created

if fpc >0 and ip.randomness ==0:

revert=True

ip.randomness =1

used_centers , nbrlengths = generate_centers(rng , cl_graph ,

pop_id , ip , gen)

else:

used_centers , nbrlengths = generate_centers(rng , cl_graph ,

pop_id , ip , gen)

A dictionary that details which nodes are in a district

(dist2node[dist] = [list of nodes])

dist2node = {}

for d in range(ip.num_districts): dist2node[d] = []

A dictionary containing the maximum size (in nodes) of each

district

maxsize = {}

A dictionary containing the current size (in nodes) of each

district

currsize = {}

A dictionary containing the cluster neighbors of the district

dist_nbrs = {}

unassigned_nodes = list(cl_graph[gen][pop_id].nodes)

viable_dists = list(range(ip.num_districts))

distpops = [0]*ip.num_districts

for dist_num , center in enumerate(used_centers):

maxsize[dist_num] = float(’inf ’) # The districts should not be

constrained by number of nodes

currsize[dist_num] = 1

distpops[dist_num] +=

cl_graph[gen][pop_id].nodes[center][’POPULATION ’]

dist_nbrs[dist_num] =

set(cl_graph[gen][pop_id]. neighbors(center))

unassigned_nodes.remove(center)

dist2node[dist_num]. append(center)

GUs_in_center = cl_graph[gen][pop_id]. nodes[center][’GUs ’]

for gu in GUs_in_center:

Assigns a distict number to the GU in the underlying graph

G.nodes[gu][’gen ’][gen][pop_id][1] = dist_num

cl_graph[gen][pop_id].nodes[center][’districting ’] = dist_num

failed_plan = False

while unassigned_nodes != []:

if viable_dists == []: #If no districts can be grown and/or

they are over 2* ideal_pop

failed_plan = True

187

fpc += 1

clear_clustering(cl_graph[gen][pop_id], gen , pop_id ,

stateG=G)

print(f"Gen {gen}. Failed districting {pop_id} (no viable

districts).")

break #Breaks from ’while unassigned_nodes != []’ loop;

Restarts the ’while True ’ loop

if ip.randomness ==0: #deterministic district choices. Picks

least populated viable district

dist = -1

distpops_copy = distpops.copy()

while dist not in viable_dists:

if dist != -1:

distpops_copy[dist] = np.inf

dist = distpops_copy.index(min(distpops_copy))

elif ip.randomness ==1: #pseudo -random district choices

#Picks a random viable district (weighted inversely

proportional to number of nodes in district)

pop_weights = [total_pop(G, ip)-distpops[i] for i in

range(len(viable_dists))]

mdw = min(pop_weights)

pop_weights = [pop_weights[i] - mdw+1 for i in

range(len(pop_weights))]

dist = rng.choices(viable_dists , weights=pop_weights ,

k=1)[0]

elif ip.randomness ==2: #random district choices

dist = rng.choice(viable_dists)

if nbrlengths[dist] == {}: #Can occur if previous removal of GU

from another district impacts this district

viable_dists.remove(dist)

continue

currsize , maxsize , unassigned_nodes , dist2node , added_node ,

dist_nbrs , nbrlengths = grow_group(rng ,

cl_graph[gen][pop_id], ip, dist , gen , pop_id , currsize ,

maxsize , unassigned_nodes , dist2node , dist_nbrs ,

nbrlengths , viable_dists)

if currsize[dist] == maxsize[dist]:

This occurs if dist cannot add any more clusters because

all surrounding clusters are assigned

viable_dists.remove(dist)

if added_node != None:

GUs_in_added_node =

cl_graph[gen][pop_id].nodes[added_node][’GUs ’]

for gu in GUs_in_added_node:

G.nodes[gu][’gen ’][gen][pop_id][1] = dist

distpops[dist] +=

cl_graph[gen][pop_id].nodes[added_node][’POPULATION ’]

ideal_pop = target_pop(G, ip)

If a district has exceeded twice the ideal population ,

stop adding clusters to it

if distpops[dist] > 2* ideal_pop*ip.alpha **gen:

#ip.alpha**gen is a modifier that slowly reduces this

UB to tighten population requirements

188

try: viable_dists.remove(dist)

except ValueError: pass #May have already removed dist

from viable_dists in currsize == maxsize check

if any(distpops[i] < 0.15* target_pop(G, ip) for i in

range(ip.num_districts)) and failed_plan == False: #’and ’

present so we clear clustering only once

failed_plan = True

clear_clustering(cl_graph[gen][pop_id], gen , pop_id , stateG=G)

print(f"Gen {gen}. Failed districting {pop_id} (underpopulated

district).")

if failed_plan == False:

break # breaks from ’while True ’ loop because a valid plan was

produced

if revert ==True: ip.randomness =0 #Reverts the randomness setting back

to 0 if it was changed

return cl_graph

def wilson(rng , graph):

’’’Returns a uniform spanning tree on G’’’

walk = loopErasedWalk(rng , graph)

currentNodes = [n for n in walk]

uniformTree = nx.Graph ()

for i in range(len(walk) - 1):

uniformTree.add_edge(walk[i], walk[i + 1])

treeNodes = set(uniformTree.nodes)

neededNodes = set(graph.nodes) - treeNodes

while neededNodes:

v = rng.choice(sorted(list(neededNodes))) # sort for code

repeatability

walk = loopErasedWalk(rng , graph , v1 = [v], v2 = currentNodes)

currentNodes += walk

for i in range(len(walk) - 1):

uniformTree.add_edge(walk[i], walk[i + 1])

treeNodes = set(uniformTree.nodes)

neededNodes = set(graph.nodes) - treeNodes

pass

nx.set_node_attributes(uniformTree , dict(graph.nodes (" POPULATION ")),

"POPULATION ")

nx.set_node_attributes(uniformTree , dict(graph.nodes ("area")), "area")

nx.set_node_attributes(uniformTree , dict(graph.nodes (" PresBlue ")),

"PresBlue ")

nx.set_node_attributes(uniformTree , dict(graph.nodes (" PresRed ")),

"PresRed ")

nx.set_edge_attributes(uniformTree , dict(graph.edges (" shared_perim ")),

"shared_perim ")

nx.set_edge_attributes(uniformTree , dict(graph.edges (" Dist_Boundary ")),

"Dist_Boundary ")

return uniformTree

189

def loopErasedWalk(rng , graph , v1 = None , v2 = None):

’’’Returns a loop -erased random walk between components v1 & v2’’’

if v1 is None:

v1 = [rng.choice(sorted(list(graph.nodes)))]

if v2 is None:

v2 = [rng.choice(sorted(list(graph.nodes)))]

v = rng.choice(sorted(v1))

walk = [v]

while v not in v2:

v = rng.choice(sorted(list(graph.neighbors(v))))

if v in walk:

walk = walk [0: walk.index(v)]

walk.append(v)

return walk

def find_edge_cut(rng , tree , tol):

’’’Input a tree graph and a percent tolerance. The function will remove

a

random edge that splits the tree into two pieces such that each piece

has population within that percent tolerance. The variable ’tol ’ should

be a positive real

number in (0,100].’’’

if tol > 100 or tol <= 0 or (isinstance(tol , float) == False and

isinstance(tol , int) == False):

raise ValueError ("tol must be a float or integer variable in the

range (0 ,100].")

if nx.is_tree(tree) == False:

raise ValueError ("The input graph must be a tree .")

tree_edge_list = list(tree.edges)

rng.shuffle(tree_edge_list) #Randomly shuffles the edges of T

e = None

num_edges = len(tree_edge_list)

for i in range(num_edges):

e = tree_edge_list[i] #Edge to delete

tree.remove_edge (*e)

subgraphs = nx.connected_components(tree)

subgraphs_lst = list(subgraphs)

subgraphs_lst [0] = sorted(subgraphs_lst [0])

subgraphs_lst [1] = sorted(subgraphs_lst [1])

dist_pop1 = sum(value for key , value in

nx.get_node_attributes(tree , "POPULATION ").items () if key in

subgraphs_lst [0]) #Finds population sum for first district

dist_pop2 = sum(value for key , value in

nx.get_node_attributes(tree , "POPULATION ").items () if key in

subgraphs_lst [1]) #Finds population sum for second district

total_pop = dist_pop1 + dist_pop2

avg_pop = total_pop / 2

if abs(dist_pop1 -avg_pop) > 0.01* tol*avg_pop or

abs(dist_pop2 -avg_pop) > 0.01* tol*avg_pop: #If both proposed

districts are outside the prescribed tolerance

190

tree.add_edge (*e) #Adds the edge back to the tree if it didn ’t

meet the tolerance

else: #This is what we want: both proposed districts within the

prescribed tolerance

if i == 0:

#print(f"Population requirement was met. Removing edge {e}.

Required {i+1} iteration .")

pass

else:

#print(f"Population requirement was met. Removing edge {e}.

Required {i+1} iterations .")

pass

return subgraphs_lst

if i == num_edges - 1:

#print(f"No subgraphs with appropriate criteria requirements

were found. Required {i+1} iterations .")

return [] #Returns empty subgraphs list if no appropriate

subgraphs were found.

def generate_centers(rng , cl_graph , pop_id , ip , gen):

""" Determines which clusters we should center the districts around """

if ip.randomness == 2: #completely random centers

used_centers = rng.sample(list(cl_graph[gen][pop_id].nodes),

ip.num_districts)

elif ip.randomness == 1: #centers chosen that are far apart

num_sets_centers = 5

centers = [None]* num_sets_centers

summed_center_length = [0 for _ in range(num_sets_centers)]

for j in range(num_sets_centers): #Randomly selects n clusters

which will form the base of our districts

centers[j] = rng.sample(list(cl_graph[gen][pop_id]. nodes),

ip.num_districts)

for c_idx , c in enumerate(centers[j]):

for d_idx , d in enumerate(centers[j]):

#We find the summed graph distance between all centers

if c_idx < d_idx: summed_center_length[j] +=

nx.shortest_path_length(cl_graph[gen][pop_id],

source=c, target=d)

used_centers_idx =

summed_center_length.index(max(summed_center_length)) #Finds

the index for the centers set with most dispersion

used_centers = centers[used_centers_idx]

elif ip.randomness == 0: #deterministic centers chosen by highest

population that are far enough apart

pop_dict = dict(cl_graph[gen][pop_id].nodes (" POPULATION "))

sorted_pop_dict = dict(sorted(pop_dict.items(), key=lambda item:

item[1], reverse=True))

cl_list = list(sorted_pop_dict.keys())

used_centers = []

aspl = nx.average_shortest_path_length(cl_graph[gen][pop_id])

min_distance = aspl *0.8 #minimum mutual distance that the nodes

must be separated by

k=0

191

while len(used_centers) < ip.num_districts: #Will select the

[ip.num_districts] centers that are highest populated *and* at

least a certain distance apart from each other

if len(used_centers) == 0: used_centers.append(cl_list[k])

elif k<len(cl_list) -1: #If the candidate center is sufficiently

far from all current centers , add it to the list

k+=1

#if min([nx.shortest_path_length(cl_graph[gen][pop_id],

source=cl_list[k], target=cent) for cent in

used_centers]) > diameter/math.sqrt(ip.num_districts):

if min([nx.shortest_path_length(cl_graph[gen][pop_id],

source=cl_list[k], target=cent) for cent in

used_centers]) > min_distance:

used_centers.append(cl_list[k])

elif k == len(cl_list) -1: #We have explored all clusters and

cannot find centers that are sufficiently far apart

min_distance = min_distance *0.8

print(f"reducing minimum distance requirement. New min dist

= {min_distance }")

used_centers = []

k=0

#Starts a dictionary that records nbrlengths for each district

nbrlengths = {} #nbrlengths[dist][nbr] = length_with_dist

for dist , c in enumerate(used_centers):

nbrlengths[dist] = {}

for nbr in cl_graph[gen][pop_id]. neighbors(c):

if cl_graph[gen][pop_id].nodes[nbr][’districting ’] == -1:

nbrlengths[dist][nbr] =

cl_graph[gen][pop_id].edges [(c,nbr)][’shared_perim ’]

if ip.randomness <= 1: nbrlengths[dist] =

dict(sorted(nbrlengths[dist].items (), key=lambda x:x[1],

reverse=True))

return used_centers , nbrlengths

def checkmetrics(dg , ip):

""" Checks whether the metrics of distgraph are within acceptable

parameters """

if ip.metrics[’dpop ’]:

if dg.pop_dev_sum > ip.ub["dpop "]: #Acceptable pop_dev allows an

average district to be 40% off from ideal

return False , ’dpop ’, dg.pop_dev_sum

if ip.metrics[’comp ’]:

#if dg.shifted_pp_comp > 0.8888: #Acceptable average compactness is

less than 0.8888

if dg.shifted_pp_comp > ip.ub["comp "]:

return False , ’comp ’, dg.shifted_pp_comp

if ip.metrics[’eg ’]:

if dg.eg > ip.ub["eg"]: #Acceptable efficiency gaps are 3*8% (>8%

is considered problematic by Stephanopoulos and McGhee)

return False , ’eg’, dg.eg

if ip.metrics[’mm ’]:

if dg.mm > ip.ub["mm"]: #Acceptable median -mean calculations allow

<= 0.05

return False , ’mm’, dg.mm

192

if ip.metrics[’cs ’]:

if dg.cs > ip.ub["cs"]: #Acceptable county -split count is 50 or

fewer

return False , ’cs’, dg. cs

if ip.metrics[’egu ’]:

if dg.egu > ip.ub["egu "]: #Acceptable excess gu count is 500 or

fewer

return False , ’egu ’, dg.egu

#If we ’ve made it this far , then all metrics are okay.

return True , ":)", math.pi

def dominates(solution1 , solution2):

""" Check if solution1 dominates solution2. ’solution1 ’ and ’solution2 ’

are graphs """

s1_mlist = solution1.metrics

s2_mlist = solution2.metrics

doms = all(s1 <= s2 for s1, s2 in zip(s1_mlist , s2_mlist)) and any(s1 <

s2 for s1, s2 in zip(s1_mlist , s2_mlist))

return doms

def nondominated_sorting(dist_graph_list):

""" Perform nondominated sorting on a dg_list of solutions ."""

Initialize ranks , dominated solutions , and dominated -by count

dgl = dist_graph_list #An alias

ranks = [0] * len(dgl)

dominated_solutions = [[] for _ in range(len(dgl))]

dominated_by_count = [0] * len(dgl)

Determine dominated solutions and count dominated -by for each solution

for i, dg1 in enumerate(dgl):

for j, dg2 in enumerate(dgl):

if i < j:

if dominates(dg1 , dg2):

dg1 dominates dg2

dominated_solutions[i]. append(j)

dominated_by_count[j] += 1

elif dominates(dg2 , dg1):

dg2 dominates dg1

dominated_by_count[i] += 1

dominated_solutions[j]. append(i)

if dominated_by_count[i] == 0:

No solutions dominate solution1 , it belongs to the first rank

ranks[i] = 1

Assign solutions to different fronts based on dominance relationships

front = 1

while any(rank == front for rank in ranks):

next_front = []

for i, rank in enumerate(ranks):

if rank == front:

for j in dominated_solutions[i]:

dominated_by_count[j] -= 1

if dominated_by_count[j] == 0:

193

No solutions dominate solution j, it belongs to

the next front

ranks[j] = front + 1

next_front.append(j)

front += 1

Create the fronts based on the ranks

fronts_idx = [[] for _ in range(front -1)] #records the index of the

plan in the given front

fronts = [[] for _ in range(front -1)] #records the fronts themselves

for i, rank in enumerate(ranks):

fronts_idx[rank - 1]. append(i)

fronts[rank - 1]. append(dgl[i])

if isinstance(dgl[i], nx.classes.graph.Graph) == False: raise

ValueError ("dgl[i] must be a graph")

return fronts_idx , fronts

def nondominated_sorting2(dist_graph_list):

""" Sorts the entries of dist_graph_list into fronts """

dgl = dist_graph_list #An alias

dominated_solns = [] #This will contain the dominated plans.

nondom = [] #This will contain the nondominated plans.

nondom_idxs = [] #This will contain the indices of the nondominated

plans.

rank=0 #This will denote the front the plan is assigned to

fronts = [] #List of lists. Each entry will be the list of plans in

that front

fronts_idxs = [] #List of lists. Each entry will the list of plan

indices in that front

plan_ids = {}

for i,dg in enumerate(dgl): plan_ids[dg] = i #This dictionary assigns

each dist_graph dg to an index i

#Loop for first front

for dg1 in dgl:

for dg2 in dgl:

if dominates(dg2 , dg1): #dg2 dominates dg1

dominated_solns.append(dg1)

break #no more calculations in second ’for ’ loop are needed

since we ’ve determined that dg1 is dominated

nondom = list(set(dgl) - set(dominated_solns))

fronts.append(nondom)

for dg in nondom: nondom_idxs.append(plan_ids[dg])

fronts_idxs.append(nondom_idxs)

#Loop for every subsequent front

while dominated_solns != []:

rank += 1 #helpful for debugging

temp_domsols = []

nondom_idxs = [] #This needs to reset every loop

for dg1 in dominated_solns:

for dg2 in dominated_solns:

if dominates(dg2 , dg1): #dg2 dominates dg1

temp_domsols.append(dg1)

break

194

nondom = list(set(dominated_solns) - set(temp_domsols))

fronts.append(nondom)

for dg in nondom: nondom_idxs.append(plan_ids[dg])

fronts_idxs.append(nondom_idxs)

dominated_solns = temp_domsols #makes a (shallow) copy

del temp_domsols #Deletes the temporary variable

return fronts_idxs , fronts

def crowding_distance(front , front_pop_id , num_to_keep , min_pop_id):

""" Finds the crowding distance for each solution in a given front and

returns the least crowded solutions up to the num_to_keep """

cd = {} # Crowding distance

for idx , _ in enumerate(front):

cd[idx] = 0

num_metrics = len(front [0]. metrics)

for i in range(num_metrics): # ’i’ represents the metric index

soln_list = sorted ([(idx , soln.metrics[i]) for idx , soln in

enumerate(front)], key=lambda x: x[1]) # sorts metric list by

metric value

maxval - minval finds range for the metric

range_metric = soln_list [-1][1] - soln_list [0][1]

’j’ will be used to identify spot in list

for j, soln in enumerate(soln_list):

idx = soln [0] # ’idx ’ represents the index of the solution

if j == 0 or j == len(soln_list) -1:

cd[idx] += float(’inf ’)

else:

try:

cd[idx] += (soln_list[j+1][1] - soln_list[j -1][1]) /

range_metric

except ZeroDivisionError:

cd[idx] += (soln_list[j+1][1] - soln_list[j -1][1]) / 1

sorted_idxs = sorted ([(idx , val) for idx , val in cd.items ()],

key=lambda x: x[1], reverse=True)

sorted_front = [front[i[0]] for i in sorted_idxs]

sorted_pop_ids = [front_pop_id[i[0]] for i in sorted_idxs]

return sorted_pop_ids , sorted_front [0: num_to_keep] # Keeps the best

’num_to_keep ’ graphs

def assign_next_gen(G, ip , gen , front , front_pop_id , cl_graph_front ,

dist_graph , cl_graph , min_pop_id):

""" Assigns the GUs of G to the proper clusterings and districts in the

provided generation """

for idx , dg in enumerate(front): #dg = dist_graph

pop_id = min_pop_id + idx

if ip.metrics[’dpop ’]: G.pop_dev[gen][pop_id] = dg.pop_dev_sum

if ip.metrics[’comp ’]: G.comp[gen][pop_id] = dg.shifted_pp_comp

if ip.metrics[’eg ’]: G.eg[gen][pop_id] = dg.eg

if ip.metrics[’mm ’]: G.mm[gen][pop_id] = dg.mm

if ip.metrics[’cs ’]: G.cs[gen][pop_id] = dg.cs

if ip.metrics[’egu ’]: G.egu[gen][pop_id] = dg.egu

dist_graph[gen][pop_id] = dg

cl_graph[gen][pop_id] = cl_graph_front[idx]

195

ip.max_cl_num [(gen , pop_id)] = ip.max_cl_num [(gen -1,

front_pop_id[idx])]

node_count = 0

for dist in dg.nodes:

for cl in dg.nodes[dist][’clgu ’]:

for gu in dg.nodes[dist][’clgu ’][cl]:

G.nodes[gu][’gen ’][gen][pop_id] = (cl , dist)

node_count +=1

if node_count != ip.num_GUs:

raise ValueError(f"We should have {ip.num_GUs} GUs")

def plot_plans(G, county_lines , min_idx=0, max_idx=None):

""" Plots all maps between min_idx and max_idx """

high_contrast_colors = [’blue ’, ’green ’, ’yellow ’, ’magenta ’, ’cyan ’,

’orange ’, ’purple ’]

cmap = mcolors.ListedColormap(high_contrast_colors)

if max_idx == None:

i=min_idx

planx = ’plan ’ + f’{i}’

while planx in G.data:

fig , ax = plt.subplots(figsize =(10 ,10))

G.data.plot(column=planx , ax=ax , legend=True , cmap=cmap)

county_lines.data.boundary.plot(ax=ax, color ="black ")

ax.set_title(f"Plan {i}")

fig.show()

i += 1

planx = ’plan ’ + f’{i}’

else:

for i in range(min_idx , max_idx):

planx = ’plan ’ + f’{i}’

fig , ax = plt.subplots(figsize =(10 ,10))

G.data.plot(column=planx , ax=ax , legend=True , cmap=cmap)

county_lines.data.boundary.plot(ax=ax,color ="black ")

ax.set_title(f"Plan {i}")

fig.show()

def plot_plan(G, county_lines , idx):

""" Plots one plan with county lines """

high_contrast_colors = [’blue ’, ’green ’, ’yellow ’, ’magenta ’, ’cyan ’,

’orange ’, ’purple ’]

cmap = mcolors.ListedColormap(high_contrast_colors)

planx = ’plan ’ + f’{idx}’

fig , ax = plt.subplots(figsize =(10 ,10))

G.data.plot(column=planx , ax=ax , legend=True , cmap=cmap)

county_lines.data.boundary.plot(ax=ax, color ="black ")

fig.show()

def plot_front(fronts , ip):

""" Plots all fronts. Requires exactly two metrics """

if len(fronts [0][0]. metrics) != 2: raise ValueError ("Can only plot

exactly 2 metrics ")

color_list = [’b’, ’r’, ’g’, ’c’, ’m’, ’y’, ’k’]

num_fronts = len(fronts)

xvals = [None] * num_fronts

196

yvals = [None] * num_fronts

for idx , front in enumerate(fronts):

xvals[idx] = [p.metrics [0] for p in front]

yvals[idx] = [p.metrics [1] for p in front]

plt.plot(xvals[idx], yvals[idx], color=color_list[idx%7],

marker=’o’, linestyle=’none ’, label=f’front {idx}’)

metric_names = [k for k in ip.metrics.keys() if ip.metrics[k] == True]

plt.xlabel(metric_names [0])

plt.ylabel(metric_names [1])

plt.title(" Fronts ")

plt.legend ()

plt.show()

def plot_hvolume(hvolume):

""" Plots the hypervolume as a line chart.

hvolume: list of hypervolume values by generation ."""

Create a figure and a set of subplots

fig , ax = plt.subplots(nrows=1, ncols =1)

Plot on the first subplot

ax.plot(hvolume)

Add a title to the subplot

ax.set_title (" Hypervolume by Generation ")

Add labels to the axes

ax.set_xlabel (" Generation ")

ax.set_ylabel (" Hypervolume ")

Set x-axis ticks to be integers

ax.set_xticks(range(len(hvolume)))

Display the chart

fig.show()

def radar_plot(last_gen , ip , idx):

""" Creates a radar plot for the metrics in the given plan (defined by

idx)"""

theta = [ip.long_met_names[met] for met in list(ip.metrics.keys()) if

ip.metrics[met]== True]

max_met_list = list(last_gen.max())[2:] #Excludes the Generation and

pop_id cols

upd_idx = idx + 2*ip.num_generations*ip.pop_size

met_list = list(last_gen.loc[upd_idx])[2:]

dict_for_radar = {}

dict_for_radar[’theta ’] = theta

dict_for_radar[’r’] = [met_list[i]/ max_met_list[i] for i in

range(len(met_list))]

df_for_radar = pd.DataFrame(dict_for_radar)

fig = px.line_polar(df_for_radar , r=’r’, theta=’theta ’,

line_close=True , range_r =[0 ,1])

fig.update_traces(fill=’toself ’)

fig.show()

197

def check_district_contiguity(G, ip , gen , cl_graph , min_pop_id =0,

max_pop_id=None):

""" Checks that the plan will be have a contiguous districting """

if max_pop_id == None: max_pop_id = 2*ip.pop_size

for pop_id in range(min_pop_id , max_pop_id):

for dist in range(ip.num_districts):

nodes_in_dist = node_list_by_district(G, gen , pop_id , dist)

subgraph = nx.induced_subgraph(G, nodes_in_dist)

if nx.is_connected(subgraph) == False:

raise RuntimeError ("All districts should be contiguous ")

print(f"Gen {gen}, pop_id {pop_id }. All districts are contiguous ")

def check_cluster_contiguity(G, ip , gen , cl_graph , min_pop_id =0,

max_pop_id=None):

""" Checks that the plan will be have a contiguous clustering """

if max_pop_id == None: max_pop_id = 2*ip.pop_size

for pop_id in range(min_pop_id , max_pop_id):

for cl in range(ip.max_cl_num [(gen , pop_id)]):

nodes_in_cl = node_list_by_cluster(G, gen , pop_id , cl)

subgraph = nx.induced_subgraph(G, nodes_in_cl)

if nx.is_connected(subgraph) == False:

raise RuntimeError ("All clusters should be contiguous ")

print(f"Gen {gen}, pop_id {pop_id }. All clusters are contiguous ")

def hypervolume(ip , gen_col2 , front_col , metlist):

""" Calculates the hypervolume columns of values given a graph G

metlist [0] will contain all scaled pop_dev values; metlist [1] might

contain all scaled

compactness values """

front0 = [[] for _ in range(ip.num_generations +1)]

#front0 = np.empty(shape=(0, ip.num_generations))

volume = []

ref = [1.1 for _ in range(len(metlist))]

for row in range(len(metlist [0])):

gen = gen_col2[row]

if front_col[row] == 0: #If the entry is in rank 0

front0[gen]. append ([metlist[i][row] for i in

range(len(metlist))])

#front0[gen] = [metlist[i][row] for i in range(len(metlist))]

for gen in range(len(front0)):

front0[gen] = np.array(front0[gen])

#front0arr = np.array(front0)

minval = [[] for _ in range(len(metlist))] #minval[gen][metric] = number

for gen in range(ip.num_generations +1):

#hypvol = hv.HyperVolume(ref)

#volume.append(hypvol.compute(front0[gen]))

ind = HV(ref_point=ref)

volume.append(ind(front0[gen]))

return volume

198

def main(*args):

timetxt = datetime.datetime.now().strftime ("_%m%d%y_%H%M%S_%f")

rng = random.Random(args [1]) #seeds random

if isinstance(args[0], str) == True:

file_name = args [0]

ip = input_c.Load_from_file(file_name)

elif args [0] == None:

print("No input file provided. Running with default parameters ")

ip = input_c(

json_file ="./ SC_Precincts_2_FeaturesToJSO.geojson",

ps=50, # population size

mp=0.05, # mutation probability

nd=7, # number of districts

ng=3, # number of generations

met={ # metrics

"dpop": True , # population

"comp": True , # compactness

"eg": True , # efficiency gap

"mm": False , # median -mean

"cs": True , # county splits

"egu": True # excess geographic units

},

cf="./ SC_Counties_20_FeaturesToJSO.geojson",

lmn={ # long metric names

"dpop": "Pop Dev", # population

"comp": "Compactness", # compactness

"eg": "Eff Gap", # efficiency gap

"mm": "Med Mean", # median -mean

"cs": "County Splits", # county splits

"egu": "Excess GUs" # excess geographic units

},

rnd=1 #Randomness; 0: deterministic , 1: some randomness , 2:

total randomness

)

ip.rand_seed = args [1]

ip.ub = {} # Upper bounds for the various metrics

ip.ub["dpop"] = None # Initialize this in the next step

ip.ub["comp"] = 0.90909 #Corresponds to invPP of 10

ip.ub["eg"] = 0.24

ip.ub["mm"] = 0.05

ip.ub["cs"] = 50

ip.ub["egu"] = 500

gen = 0

start = time.time()

199

Initialize Graph

stateG = initialize_graph(ip)

ip.ub["dpop"] = ip.num_districts*target_pop(stateG , ip)*0.4

print(" Initialized graph")

cp0 = time.time()

Create attribute graph (for counties)

countygraph = create_attr_graph(stateG , ip, attr=" county_num ")

print(" Finished county graph")

ip.num_counties = countygraph.number_of_nodes ()

cp1 = time.time()

Create shortest paths dictionary

try:

with open(’sp.pkl ’, ’rb ’) as fp: shortest_paths = pickle.load(fp)

except FileNotFoundError: # If we haven ’t done this before

shortest_paths = nx.shortest_path(stateG)

with open(’sp.pkl ’, ’wb ’) as fp: pickle.dump(shortest_paths , fp)

print(" Created sp dictionary ")

cp2 = time.time()

Create shortest path lengths dictionary

try:

with open(’spl.pkl ’, ’rb ’) as fp: spl = pickle.load(fp)

except FileNotFoundError: # If we haven ’t done this before

spl = np.zeros([len(shortest_paths), len(shortest_paths)],

dtype=int) # Shortest path lengths

for i in range(len(shortest_paths)):

for j in range(len(shortest_paths)):

spl[i][j] = len(shortest_paths[i][j])

with open(’spl.pkl ’, ’wb ’) as fp: pickle.dump(spl , fp)

print(" Created spl dictionary ")

cp3 = time.time()

Initialize clusterings

for i in range(ip.pop_size):

initialize_clustering(random , stateG , ip, i)

print(" Initialized clusterings ")

cp4 = time.time()

Create cluster graphs

#Create empty dist_graph and cl_graph array. dist_graph[gen][pop_id]

gives the correct graph

dist_graph = [[None for _ in range(ip.pop_size *2)] for _ in

range(ip.num_generations +1)]

cl_graph = [[None for _ in range(ip.pop_size *2)] for _ in

range(ip.num_generations +1)]

for pop_id in range(ip.pop_size):

200

cl_graph[gen][pop_id] = create_attr_graph(stateG , ip,

gen_id_cldi =(gen , pop_id , 0))

cl_graph[gen][pop_id].mut=False #Indicates no mutation has been

applied

print(" Created initial cluster graphs ")

cp5 = time.time()

Initialize Time variables

time_cut_line = 0

time_crossover = 0

time_mutation = 0

time_cluster_g = 0

time_gen_plans = 0

time_nondom_sort = 0

time_crowd_dist = 0

Initialize front_col2 (This contains the rank for each map)

front_col2 = [None]*(ip.num_generations +1)*ip.pop_size *2

Population modifier

ip.alpha = (1.3/2) ** (1/ip.num_generations) #Population modifier --

will provide an upper bound on district population

while gen < ip.num_generations:

cp5_ = time.time()

Create cut lines

graph_halves = [None]*ip.pop_size

for i in range(ip.pop_size):

graph_halves[i] = create_cut_line(random , stateG ,

shortest_paths , spl)

cp6 = time.time()

time_cut_line += cp6 -cp5_

Crossover

for i in range(ip.pop_size):

[p0, p1] = rng.sample(cl_graph[gen][0:ip.pop_size], 2) #Selects

two random cluster graphs from generation ’gen ’

childid = i + ip.pop_size

crossover(stateG , ip , p0 , p1 , graph_halves[i], gen , childid)

cp7 = time.time()

time_crossover += cp7 -cp6

Mutation

muts = round(ip.mutation_probability*ip.pop_size) # Number of

mutations to perform

if muts == 0: muts = 1 #Round up to 1 if pop size is too small

ids = list(range(ip.pop_size , 2*ip.pop_size -1)) #Can only mutate

child graphs

map_ids_to_mut = rng.choices(ids , k=muts)

201

#print(map_ids_to_mut)

for child_id in map_ids_to_mut:

mutation(random , stateG , ip, gen , child_id)

cp8 = time.time()

time_mutation += cp8 -cp7

Create children cluster graphs

for pop_id in range(ip.pop_size , 2*ip.pop_size):

cl_graph[gen][pop_id] = create_attr_graph(stateG , ip,

gen_id_cldi =(gen , pop_id , 0))

cl_graph[gen][pop_id].mut = False

for map_id in map_ids_to_mut:

cl_graph[gen][map_id].mut = True #Indicates that these were

mutated using ’merge ’ and ’singleton ’ and will be mutated

using recom

cp9 = time.time()

time_cluster_g += cp9 -cp8

Generate Plans

num_plans_to_make = 2*ip.pop_size if gen==0 else ip.pop_size

for i in range(num_plans_to_make):

if gen ==0: pop_id = i

else: pop_id = i+ip.pop_size

viableplan = False

fpc = 0 #failed plan count

while viableplan == False: #viable plan will be True when the

metrics are within acceptable parameters

if fpc > 20: cl_graph[gen][pop_id].mut = False

if fpc > 50: # If 50 iterations were insufficient to find a

viable plan , copy the previous one.

cl_graph[gen][pop_id] =

copy.deepcopy(cl_graph[gen][pop_id -1])

dist_graph[gen][pop_id] =

copy.deepcopy(dist_graph[gen][pop_id -1])

viableplan , failedmet , metval =

checkmetrics(dist_graph[gen][pop_id], ip)

if viableplan == False: raise RuntimeError (" viableplan

shouldn ’t be false after copying previous plan .")

print(f"Gen {gen}. Failed to create plan {pop_id} 50

times. Copying plan {pop_id -1}.")

break #Breaks from ’while viableplan == False:’ loop

if fpc > 0 and ip.randomness == 0: #temporarily changes the

randomness setting to create a map

ip.randomness = 1

cl_graph = generate_plan(random , stateG , ip, gen ,

cl_graph , pop_id)

ip.randomness = 0

else:

cl_graph = generate_plan(random , stateG , ip, gen ,

cl_graph , pop_id)

dist_graph[gen][pop_id] =

create_attr_graph(cl_graph[gen][pop_id], ip,

202

attr=’districting ’)

if cl_graph[gen][pop_id].mut: #Mutates graph by

recombination of two districts

while True:

d1 = rng.randint(0,ip.num_districts -1)

d2 = rng.choice(

list(dist_graph[gen][pop_id]. neighbors(d1)))

d1_pop =

dist_graph[gen][pop_id].nodes[d1][" POPULATION "]

d2_pop =

dist_graph[gen][pop_id].nodes[d2][" POPULATION "]

if np.sign(

d1_pop -ip.ideal_pop)*np.sign(d2_pop -ip.ideal_pop)

<= 0: break #breaks only if dists are on

opposite sides of the population balance line

#print(d1 , d2)

cl_nodes_to_recom =

list(dist_graph[gen][pop_id].nodes[d1][’clgu ’]) +

list(dist_graph[gen][pop_id].nodes[d2][’clgu ’])

subg = nx.induced_subgraph(cl_graph[gen][pop_id],

cl_nodes_to_recom)

tree = wilson(random , subg)

recom_dists = find_edge_cut(random , tree , 5) # 5%

tolerance

for idx , dist in enumerate(recom_dists):

if idx ==0: d = d1

elif idx ==1: d = d2

else: raise ValueError (" Should only be two

districts after recom")

for cl in dist:

cl_graph[gen][pop_id].nodes[cl][’districting ’]

= d #assigns clusters to new districts in

cl_graph

for gu in

cl_graph[gen][pop_id].nodes[cl][’GUs ’]:

stateG.nodes[gu][’gen ’][gen][pop_id][1] = d

#assigns GUs to districts in base graph

dist_graph[gen][pop_id] =

create_attr_graph(cl_graph[gen][pop_id], ip,

attr=’districting ’) #Recreates the dist_graph

viableplan , failedmet , metval =

checkmetrics(dist_graph[gen][pop_id], ip)

if viableplan == False:

print(f"Gen {gen}. Failed districting {pop_id} (metric

too large: {failedmet }={ metval }).")

fpc += 1

clear_clustering(cl_graph[gen][pop_id], gen , pop_id ,

stateG=stateG)

else:

print(f"Gen {gen}. Made it through districting

{pop_id }.")

Record the metrics

if ip.metrics[’dpop ’]: stateG.pop_dev[gen][pop_id] =

dist_graph[gen][pop_id]. pop_dev_sum

203

if ip.metrics[’comp ’]: stateG.comp[gen][pop_id] =

dist_graph[gen][pop_id]. shifted_pp_comp

if ip.metrics[’eg ’]: stateG.eg[gen][pop_id] =

dist_graph[gen][pop_id].eg

if ip.metrics[’mm ’]: stateG.mm[gen][pop_id] =

dist_graph[gen][pop_id].mm

if ip.metrics[’cs ’]: stateG.cs[gen][pop_id] =

dist_graph[gen][pop_id].cs

if ip.metrics[’egu ’]: stateG.egu[gen][pop_id] =

dist_graph[gen][pop_id].egu

stateG.metrics[gen][pop_id] = dist_graph[gen][pop_id]. metrics

cp10 = time.time()

time_gen_plans += cp10 -cp9

Nondominated sorting

fronts_pop_id , fronts = nondominated_sorting2(dist_graph[gen])

cl_graph_fronts = [[cl_graph[gen][i] for i in lst] for lst in

fronts_pop_id]

cp11 = time.time()

time_nondom_sort += cp11 -cp10

for rank , f in enumerate(fronts_pop_id):

for pop_id in f:

front_col2[gen*ip.pop_size *2 + pop_id] = rank #Assigns the

rank (i.e. the front number) that each plan falls in

Crowding Distance and Assigning next generation

front_lengths = [len(f) for f in fronts_pop_id]

stateG.front0_sizes.append(front_lengths [0])

cum_lengths = [sum(front_lengths [:i+1]) for i in

range(len(front_lengths))]

if gen < ip.num_generations -1:

for idx , l in enumerate(cum_lengths):

if idx == 0: min_pop_id =0

else: min_pop_id=cum_lengths[idx -1]

if l <= ip.pop_size:

assign_next_gen(stateG , ip , gen+1, fronts[idx],

fronts_pop_id[idx], cl_graph_fronts[idx],

dist_graph , cl_graph , min_pop_id)

elif l > ip.pop_size:

num_to_keep = front_lengths[idx] - cum_lengths[idx] +

ip.pop_size

pf_pop_ids , partial_front =

crowding_distance(fronts[idx], fronts_pop_id[idx],

num_to_keep , min_pop_id)

assign_next_gen(stateG , ip , gen+1, partial_front ,

pf_pop_ids , cl_graph_fronts[idx], dist_graph ,

cl_graph , min_pop_id)

break #Don ’t assign any more to the next gen

204

else: #If we are on the last generation , only assign the Pareto

front

assign_next_gen(stateG , ip, gen+1, fronts [0], fronts_pop_id [0],

cl_graph_fronts [0], dist_graph , cl_graph , min_pop_id =0)

cp12 = time.time()

time_crowd_dist += cp12 -cp11

Check Plan Contiguity

check_cluster_contiguity(stateG , ip , gen , cl_graph , min_pop_id =0)

check_district_contiguity(stateG , ip , gen , cl_graph)

Advance the generation

gen += 1

Delete previous cl_graphs and dist_graphs

for i in range(len(cl_graph[gen -1])): cl_graph[gen -1][i] = None

for i in range(len(dist_graph[gen -1])): dist_graph[gen -1][i] = None

ip.front0_sizes = stateG.front0_sizes

Times

print(f"time for initialize_graph = {cp0 -start :.2f}")

print(f"time for create_attr_graph = {cp1 -cp0:.2f}")

print(f"time for shortest_paths = {cp2 -cp1:.2f}")

print(f"time for shortest path lengths = {cp3 -cp2:.2f}")

print(f"time for initialize_clustering = {cp4 -cp3:.2f}")

print(f"time for create cluster graphs = {cp5 -cp4:.2f}")

print(f"time for create_cut_line = {time_cut_line :.2f}")

print(f"time for crossover = {time_crossover :.2f}")

print(f"time for mutation = {time_mutation :.2f}")

print(f"time for create children cluster graphs = {time_cluster_g :.2f}")

print(f"time for generate_plans = {time_gen_plans :.2f}")

print(f"time for nondominated_sorting = {time_nondom_sort :.2f}")

print(f"time for crowding_distance = {time_crowd_dist :.2f}")

end = time.time()

ip.runtime = end -start

#---

df0: Starting data

input_data = [list(ip.__dict__.values ())]

input_columns = list(ip.__dict__.keys())

df0 = pd.DataFrame(input_data , columns=input_columns)

#---

df1: Assigning Precincts

cols1 = [’Generation ’, ’pop_id ’, ’node ’, ’cluster ’, ’district ’]

205

non = stateG.number_of_nodes ()

ps = ip.pop_size

ng = ip.num_generations

f0s = stateG.front0_sizes [-1]

if ng <= 4:

range_rows = range(non*ps*2*ng + non*f0s)

range_gen = range(ng+1)

range_ps = range(ps*2)

num_to_del = -(2*ps-f0s)*non

else: #If the number of generations is too large , only record last front

range_rows = range(non*ps*2*ng ,

non*ps*2*ng+min(front_lengths [0],ps)*non)

range_gen = range(ng , ng+1)

range_ps = range(min(front_lengths [0],ps))

num_to_del = None

gen_col = [math.floor(i/(non*ps*2)) for i in range_rows]

id_col = [math.floor(i/non) % (2*ps) for i in range_rows]

node_col = [(i%non)+1 for i in range_rows]

cluster_col = [stateG.nodes[n][’gen ’][gen][pop_id][0] for gen in

range_gen for pop_id in range_ps for n in stateG.nodes]

district_col = [stateG.nodes[n][’gen ’][gen][pop_id][1] for gen in

range_gen for pop_id in range_ps for n in stateG.nodes]

cluster_col = cluster_col [: num_to_del]

district_col = district_col [: num_to_del]

--

df2: For recording the metrics of each plan

cols2 = [’Generation ’, ’pop_id ’, ’rank ’] + [ip.long_met_names[met] for

met in ip.metrics if ip.metrics[met] == True]

num_rows2 = (ng)*ps*2 + stateG.front0_sizes [-1]

gen_col2 = [math.floor(i/(2*ps)) for i in range(num_rows2)]

id_col2 = [i % (2*ps) for i in range(num_rows2)]

for idx in range(stateG.front0_sizes [-1]):

front_col2[gen*ps*2 + idx] = 0 #Assigns the last generation rank 0

(because they necessarily must be)

if ip.metrics[’dpop ’]: pop_col = [stateG.pop_dev[gen][pop_id] for gen

in range(ng+1) for pop_id in range(ps*2)]

if ip.metrics[’comp ’]: comp_col = [stateG.comp[gen][pop_id] for gen in

range(ng+1) for pop_id in range(ps*2)]

if ip.metrics[’eg ’]: eg_col = [stateG.eg[gen][pop_id] for gen in

range(ng+1) for pop_id in range(ps*2)]

if ip.metrics[’mm ’]: mm_col = [stateG.mm[gen][pop_id] for gen in

range(ng+1) for pop_id in range(ps*2)]

if ip.metrics[’cs ’]: cs_col = [stateG.cs[gen][pop_id] for gen in

range(ng+1) for pop_id in range(ps*2)]

if ip.metrics[’egu ’]: egu_col = [stateG.egu[gen][pop_id] for gen in

range(ng+1) for pop_id in range(ps*2)]

#num_to_del2 = 2*ps - max(stateG.front0_sizes [-1], ps)

num_to_del2 = 2*ps - stateG.front0_sizes [-1]

if ip.metrics[’dpop ’]: pop_col = pop_col[:- num_to_del2]

206

if ip.metrics[’comp ’]: comp_col = comp_col[:- num_to_del2]

if ip.metrics[’eg ’]: eg_col = eg_col[:- num_to_del2]

if ip.metrics[’mm ’]: mm_col = mm_col[:- num_to_del2]

if ip.metrics[’cs ’]: cs_col = cs_col[:- num_to_del2]

if ip.metrics[’egu ’]: egu_col = egu_col[:- num_to_del2]

front_col2 = front_col2 [:- num_to_del2]

metlist = []

if ip.metrics[’dpop ’]: metlist.append ([x/ip.ub["dpop"] for x in

pop_col])

if ip.metrics[’comp ’]: metlist.append ([x/ip.ub["comp"] for x in

comp_col])

if ip.metrics[’eg ’]: metlist.append ([x/ip.ub["eg"] for x in eg_col])

if ip.metrics[’mm ’]: metlist.append ([x/ip.ub["mm"] for x in mm_col])

if ip.metrics[’cs ’]: metlist.append ([x/ip.ub["cs"] for x in cs_col])

if ip.metrics[’egu ’]: metlist.append ([x/ip.ub["egu"] for x in egu_col])

hvolume = hypervolume(ip , gen_col2 , front_col2 , metlist)

num_to_del3 = -(ps - min(stateG.front0_sizes [-1], ps))

if num_to_del3 == 0: num_to_del3 = None

gen_col2 = gen_col2 [: num_to_del3]

id_col2 = id_col2 [: num_to_del3]

df1_dict = {} #Contains GU assignments

df1_dict[’Generation ’] = gen_col

df1_dict[’pop_id ’] = id_col

df1_dict[’node ’] = node_col

df1_dict[’cluster ’] = cluster_col

df1_dict[’district ’] = district_col

df2_dict = {} #Contains metrics

df2_dict[’Generation ’] = gen_col2

df2_dict[’pop_id ’] = id_col2

df2_dict[’rank ’] = front_col2

if ip.metrics[’dpop ’]: df2_dict[’Pop Dev ’] = pop_col

if ip.metrics[’comp ’]: df2_dict[’Compactness ’] = comp_col

if ip.metrics[’eg ’]: df2_dict[’Eff Gap ’] = eg_col

if ip.metrics[’mm ’]: df2_dict[’Med Mean ’] = mm_col

if ip.metrics[’cs ’]: df2_dict[’County Splits ’] = cs_col

if ip.metrics[’egu ’]: df2_dict[’Excess GUs ’] = egu_col

--

df3: Generational data

hvstring = [met for met in list(ip.metrics.keys()) if ip.metrics[met]]

hvstring.insert(0, ’hypervolume ’)

hvstring = ’ ’.join(hvstring)

cols3 = [hvstring]

df3_dict = {} #Contains generational measures

df3_dict[hvstring] = hvolume

df1 = pd.DataFrame(data=df1_dict , columns=cols1 , dtype=np.int16)

df2 = pd.DataFrame(data=df2_dict , columns=cols2)

df3 = pd.DataFrame(data=df3_dict , columns=cols3)

207

met_string = ’’

for met in ip.metrics:

if ip.metrics[met]== True: met_string += ’O’

else: met_string += ’X’

excel_doc_name = "NSGA2_SC_" + met_string + timetxt + ".xlsx"

excel_writer = pd.ExcelWriter(excel_doc_name , engine=’xlsxwriter ’)

df0.to_excel(excel_writer , sheet_name=’Input Data ’)

df1.to_excel(excel_writer , sheet_name=’GU Assignment ’)

df2.to_excel(excel_writer , sheet_name=’Metrics ’)

df3.to_excel(excel_writer , sheet_name=’Generational Data ’)

excel_writer.save()

#--

#Graphing

last_front = [None] * min(front_lengths [0], ps)

last_gen = df2[df2.Generation == ip.num_generations]

try:

with open(’county_boundaries.pkl ’, ’rb ’) as fp: county_boundaries =

pickle.load(fp)

except FileNotFoundError:

county_boundaries = Graph.from_file(

ip.county_file ,

adjacency ="rook",

reproject ="True",

ignore_errors ="True"

)

with open(’county_boundaries.pkl ’, ’wb ’) as fp:

pickle.dump(county_boundaries , fp)

for i in range(len(last_front)):

last_front[i] = df1[(df1[’Generation ’] == ng) & (df1[’pop_id ’] ==

i)][[’node ’,’district ’]]

stateG.data = stateG.data.merge(right=last_front[i],

left_on=’OBJECTID ’, right_on=’node ’, validate =’1:1’)

stateG.data = stateG.data.drop(’node ’, axis =1)

stateG.data = stateG.data.rename(columns={’district ’: f’plan{i}’})

if len(fronts [0][0]. metrics) == 2:

plot_front(fronts , ip)

plot_plans(stateG , county_boundaries)

plot_hvolume(hvolume)

print(" finished ")

if __name__ == "__main__ ":

rseed = secrets.randbelow(sys.maxsize)

#rseed = 5563341542067326064

random.seed(rseed)

print(" random seed is", rseed)

if len(sys.argv) == 1:

208

main(’NSGA2_input3.txt ’, rseed) #Use file name if reading from file

elif len(sys.argv) == 2:

input_file = sys.argv [1]

main(input_file , rseed)

209

Appendix E VNSGA-II Codes

#Vanneschi ’s Algorithm , as implemented by Blake Splitter

import secrets

import random

import sys

import pickle

from gerrychain import Graph

import numpy as np

import networkx as nx

import math

import datetime

import time

import matplotlib.pyplot as plt

from pymoo.indicators.hv import HV

import pandas as pd

import copy

import matplotlib.colors as mcolors

class input_c: #short for ’input class ’

def __init__(self , json_file , ps , mp , nd , ng , met , cf , lmn , rnd , rad):

self.json_file = json_file #Input file for the graph

self.pop_size = ps #Population size

self.mutation_probability = mp #Mutaiton probability

self.num_districts = nd #Number of districts

self.num_generations = ng #Number of generations

self.metrics = met #Metrics dictionary. Contains either True or

False for each metric

self.county_file = cf #File countaining counties

self.long_met_names = lmn #Long metric names

self.randomness = rnd #Randomness level

self.radius = rad #Radius for contiguity checks. Higher values are

more thorough.

def __repr__(self):

met_string = ’’

for met in self.metrics:

if self.metrics[met]== True: met_string += ’O’

else: met_string += ’X’

return f"<INPUT: pop_size = {self.pop_size}, num_gens =

{self.num_generations}, mets = [{ met_string }]>"

@classmethod

def Load_from_file(cls , file_name):

""" Reads the input from a file """

with open(file_name) as f:

lines = f.readlines ()

json_file = lines [0]. strip()

pop_size = int(lines [1])

mut_prob = float(lines [2])

num_districts = int(lines [3])

num_generations = int(lines [4])

metrics = {"dpop": eval(lines [5]. strip().lower().capitalize ()),

"comp": eval(lines [6]. strip().lower().capitalize ()),

210

"eg": eval(lines [7]. strip().lower().capitalize ()),

"mm": eval(lines [8]. strip().lower().capitalize ()),

"cs": eval(lines [9]. strip().lower().capitalize ()),

"egu": eval(lines [10]. strip().lower().capitalize ())

}

county_file = lines [11][0: -1]

met_long_names = {"dpop": lines [12]. strip (),

"comp": lines [13]. strip(),

"eg": lines [14]. strip(),

"mm": lines [15]. strip(),

"cs": lines [16]. strip(),

"egu": lines [17]. strip(),

}

randomness = int(lines [18])

radius = float(lines [19])

return cls(

json_file=json_file ,

ps=pop_size ,

mp=mut_prob ,

nd=num_districts ,

ng=num_generations ,

met=metrics ,

cf=county_file ,

lmn=met_long_names ,

rnd=randomness ,

rad=radius

)

def total_pop(G, ip):

""" Calculates the total population of the graph """

try:

return ip.total_pop

except AttributeError:

ip.total_pop = sum(dict(G.nodes (" POPULATION ")).values ())

return ip.total_pop

def target_pop(G, ip):

""" Calculates the target population for each district """

try:

return ip.ideal_pop

except AttributeError: # In the event that ideal_pop has not yet been

calculated

ip.total_pop = sum(dict(G.nodes (" POPULATION ")).values ())

ip.ideal_pop = ip.total_pop/ip.num_districts

return ip.ideal_pop

def make_nbr_graphs(G, radius =3):

""" Makes neighbor graphs for every node at a distance of ’radius ’ away.

G: Base graph.

radius : Include all neighbors of distance <= radius from n. Default 3"""

if radius == float(’inf ’): return None #No point in doing this

calculation if radius = infinity.

nbr_graphs = {}

211

for n in G:

nbr_graphs[n] = nx.ego_graph(G, n, radius=radius) #All

neighborhoods of radius 3 for each node

#print(f"created nbr_graphs [{n}]")

return nbr_graphs

def initialize_graph(ip):

""" Builds a graph based on a json file supplied by the user """

try:

with open(’stateG.pkl ’, ’rb ’) as fp: G = pickle.load(fp)

except FileNotFoundError:

cols_to_add = [’OBJECTID ’, ’ID’, ’VTD ’, ’COUNTY ’, ’STATE ’, ’NAME ’,

’POPULATION ’,

’CountyName ’, ’Reg_Voters ’, ’PresBlue ’, ’PresRed ’,

’PresOther ’,

’SenBlue ’, ’SenRed ’, ’SenOther ’, ’Cong2011 ’, ’Sen2011 ’,

’House2011 ’,

’Cong2021 ’, ’Sen2021 ’, ’House2021 ’, ’geometry ’]

try:

G = Graph.from_file(

ip.json_file ,

adjacency ="rook",

cols_to_add=cols_to_add ,

reproject ="True",

ignore_errors ="True"

)

except KeyError:

G = Graph.from_file(

ip.json_file ,

adjacency ="rook",

cols_to_add=None , # Will add all columns

reproject ="True",

ignore_errors ="True"

)

#Initialize front [0] sizes

G.front0_sizes = []

#Save stateG if it hasn ’t been saved before

with open(’stateG.pkl ’, ’wb ’) as fp: pickle.dump(G, fp)

#Initialize the metric keepers

if ip.metrics[’dpop ’] == True:

G.pop_dev = np.zeros((ip.num_generations +1, 2*ip.pop_size))

if ip.metrics[’comp ’] == True:

G.comp = np.zeros((ip.num_generations +1, 2*ip.pop_size))

if ip.metrics[’eg ’] == True:

G.eg = np.zeros((ip.num_generations +1, 2*ip.pop_size))

if ip.metrics[’mm ’] == True:

G.mm = np.zeros((ip.num_generations +1, 2*ip.pop_size))

if ip.metrics[’cs ’] == True:

G.cs = np.zeros((ip.num_generations +1, 2*ip.pop_size))

if ip.metrics[’egu ’] == True:

G.egu = np.zeros((ip.num_generations +1, 2*ip.pop_size))

212

G.metrics = np.zeros((ip.num_generations +1, 2*ip.pop_size ,

sum(ip.metrics.values ())))

ip.num_GUs = G.number_of_nodes ()

county_list = set()

for n in G.nodes:

G.nodes[n][’district ’] = np.full(shape=(ip.num_generations +1,

ip.pop_size *2), fill_value =-1)

1 represents that each entry of G.nodes[n][’gen ’][g][pop_id] will

return a district value

county_list.add(G.nodes[n][’COUNTY ’])

county_list = sorted(county_list)

Long county name to short county name. e.g. longc2shortc [’45003 ’] = 1

longc2shortc = {}

for idx , c in enumerate(county_list):

longc2shortc[c] = idx

for n in G.nodes:

G.nodes[n][’county_num ’] = longc2shortc[G.nodes[n][’COUNTY ’]]

if G.nodes[n][’boundary_perim ’] < 0: G.nodes[n][’bounary_perim ’] = 0

#print(f"G.nodes[{n}][’ boundary_perim ’] =

{G.nodes[n][’boundary_perim ’]}")

return G

def create_attr_graph(G, ip , attr=None , gen_id=None):

""" Creates a graph that merges all nodes of a certain attribute (attr)

together

’G’ is NOT amended in this function

G: Graph

ip: input

attr: (optional , can ’t be entered with ’gen_id ’) Attribute to group by

gen_id: (optional , can ’t be entered with ’attr ’) If grouping a

districting plan , use the tuple (generation , districting pop_id)"""

if attr == None and gen_id == None:

raise ValueError (" Either ’attr ’ or ’gen_id ’ must be defined ")

if attr != None and gen_id != None:

raise ValueError (" Either ’attr ’ or ’gen_id ’ must be defined , but

not both")

gen = None

pop_id = None

if gen_id != None:

gen = gen_id [0]

pop_id = gen_id [1]

cg = nx.Graph () #cg = contracted graph

node2supernode = {}

node_attr_list = [

’area ’,

’POPULATION ’,

’Reg_Voters ’,

’PresBlue ’,

’PresRed ’,

’PresOther ’,

’SenBlue ’,

’SenRed ’,

213

’SenOther ’,

]

Removes all edges from graph G where one end has different attribute

(attr) values than the other end

#boundary_edges = []

for e in G.edges():

n0 = e[0]

n1 = e[1]

if attr != None: # we are separating by attribute

sn0 = G.nodes[n0][attr]

sn1 = G.nodes[n1][attr]

elif gen_id != None: #we are separating by districting

sn0 = G.nodes[n0][’district ’][gen][pop_id]

sn1 = G.nodes[n1][’district ’][gen][pop_id]

else: raise ValueError (" Either attr or gen_id should be defined ")

node2supernode[n0] = sn0

node2supernode[n1] = sn1

if sn0 != sn1: #i.e, this edge represents a boundary for the

attribute

#boundary_edges += [e]

try: supernode2node[sn0]. append(n0)

except KeyError: supernode2node[sn0] = [n0]

try: supernode2node[sn1]. append(n1)

except KeyError: supernode2node[sn1] = [n1]

cg.add_node(sn0)

cg.add_node(sn1)

cg.add_edge(sn0 , sn1)

#Adds shared perimeter to total perimeter attribute for nodes

try: cg.nodes[sn0][’total_perim ’] += G.edges[(n0 ,

n1)][’shared_perim ’]

except KeyError: cg.nodes[sn0][’total_perim ’] = G.edges [(n0,

n1)][’shared_perim ’]

try: cg.nodes[sn1][’total_perim ’] += G.edges[(n0 ,

n1)][’shared_perim ’]

except KeyError: cg.nodes[sn1][’total_perim ’] = G.edges [(n0,

n1)][’shared_perim ’]

#Add edge attributes to cg *only* if it was a boundary edge

try: cg[sn0][sn1][’shared_perim ’] += G.edges[(n0 ,

n1)][’shared_perim ’]

except KeyError: cg.edges [(sn0 , sn1)][’shared_perim ’] =

G.edges[(n0 , n1)][’shared_perim ’]

Creates a list of all edges that created this supernode edge

try: cg[sn0][sn1][’ contributing_edges ’] += [e]

except KeyError: cg[sn0][sn1][’contributing_edges ’] = [e]

for sn in cg.nodes():

cg.nodes[sn][’boundary_perim ’] = 0 ### Maybe a more elegant fix

later?

214

cg.nodes[sn][’GUs ’] = []

for n in G.nodes():

sn = node2supernode[n]

cg.nodes[sn][’GUs ’]. append(n)

#Initialize and populate the attributes

for nattr in node_attr_list:

if nattr in cg.nodes[sn]: cg.nodes[sn][nattr] +=

G.nodes[n][nattr]

else: cg.nodes[sn][nattr] = G.nodes[n][nattr]

#For boundary_perim

try:

cg.nodes[sn][’boundary_perim ’] += G.nodes[n][’boundary_perim ’]

cg.nodes[sn][’total_perim ’] += G.nodes[n][’boundary_perim ’]

except KeyError: #If supernode isn ’t on a state boundary

cg.nodes[sn][’boundary_perim ’] += 0

cg.nodes[sn][’total_perim ’] += 0

Names the county if the attribute is ’COUNTY ’ (done more times

than necessary , but that ’s ok)

if attr == ’COUNTY ’ or attr == ’county_num ’:

cg.nodes[sn][’CountyName ’] = G.nodes[n][’CountyName ’]

If we are creating the district plan , calculate the metrics

if gen_id != None:

cg.total_pop = total_pop(G, ip)

cg.ideal_pop = target_pop(G, ip)

cg.CDI_matrix = np.zeros ((ip.num_districts , ip.num_counties),

dtype=np.int16)

for d in cg.nodes: #’d’ represents a district

cg.nodes[d][’pp_compactness ’] = 4 * math.pi *

cg.nodes[d][’area ’] / (cg.nodes[d][’total_perim ’] ** 2)

cg.nodes[d][’ shifted_pp_compactness ’] = 1 -

cg.nodes[d][’pp_compactness ’]

cg.nodes[d][’total_Pvotes ’] = cg.nodes[d][’PresBlue ’] +

cg.nodes[d][’PresRed ’] + cg.nodes[d][’PresOther ’]

cg.nodes[d][’total_Svotes ’] = cg.nodes[d][’SenBlue ’] +

cg.nodes[d][’SenRed ’] + cg.nodes[d][’SenOther ’]

cg.nodes[d][’blue_Pshare ’] = cg.nodes[d][’PresBlue ’] /

cg.nodes[d][’total_Pvotes ’] if

cg.nodes[d][’total_Pvotes ’]>0 else 0

cg.nodes[d][’red_Pshare ’] = cg.nodes[d][’PresRed ’] /

cg.nodes[d][’total_Pvotes ’] if

cg.nodes[d][’total_Pvotes ’]>0 else 0

cg.nodes[d][’other_Pshare ’] = cg.nodes[d][’PresOther ’] /

cg.nodes[d][’total_Pvotes ’] if

cg.nodes[d][’total_Pvotes ’]>0 else 0

cg.nodes[d][’blue_Sshare ’] = cg.nodes[d][’SenBlue ’] /

cg.nodes[d][’total_Svotes ’] if

215

cg.nodes[d][’total_Svotes ’]>0 else 0

cg.nodes[d][’red_Sshare ’] = cg.nodes[d][’SenRed ’] /

cg.nodes[d][’total_Svotes ’] if

cg.nodes[d][’total_Svotes ’]>0 else 0

cg.nodes[d][’other_Sshare ’] = cg.nodes[d][’SenOther ’] /

cg.nodes[d][’total_Svotes ’] if

cg.nodes[d][’total_Svotes ’]>0 else 0

cg.nodes[d][’win_threshold_P ’] =

math.ceil(cg.nodes[d][’total_Pvotes ’]/2 + 0.5)

cg.nodes[d][’win_threshold_S ’] =

math.ceil(cg.nodes[d][’total_Svotes ’]/2 + 0.5)

cg.nodes[d][’Rwasted_votes_P ’] = cg.nodes[d][’PresRed ’] -

cg.nodes[d][’win_threshold_P ’] if cg.nodes[d][’PresRed ’] >

cg.nodes[d][’PresBlue ’] else cg.nodes[d][’PresRed ’]

cg.nodes[d][’Bwasted_votes_P ’] = cg.nodes[d][’PresBlue ’] -

cg.nodes[d][’win_threshold_P ’] if cg.nodes[d][’PresRed ’] <=

cg.nodes[d][’PresBlue ’] else cg.nodes[d][’PresBlue ’]

for gu in cg.nodes[d][’GUs ’]:

county = G.nodes[gu][’county_num ’]

cg.CDI_matrix[d][county] += 1

cg.pop_dev_sum = round(sum(abs(p-cg.ideal_pop) for p in

dict(cg.nodes (" POPULATION ")).values ()))

cg.pop_dev_max = round(max(abs(p-cg.ideal_pop) for p in

dict(cg.nodes (" POPULATION ")).values ()))

cg.exc_county_splits = np.count_nonzero(cg.CDI_matrix) -

max(ip.num_counties , ip.num_districts)

cg.exc_gus = sum(np.sum(cg.CDI_matrix , axis =0) -

np.max(cg.CDI_matrix , axis =0))

cg.cs = cg.exc_county_splits

cg.egu = cg.exc_gus

cg.pp_comp = round(sum([cg.nodes[d][’pp_compactness ’] for d in

cg.nodes]) / cg.number_of_nodes (), 3)

cg.shifted_pp_comp = 1-cg.pp_comp

bsP_list = [cg.nodes[d][’blue_Pshare ’] for d in cg.nodes] # bsP =

blue share for president

bsP_list = sorted(bsP_list)

if ip.num_districts % 2 == 0: # even

bsP_median = (bsP_list[int(ip.num_districts /2)] +

bsP_list[ip.num_districts /2 -1])/2

else: # odd

bsP_median = bsP_list[int(ip.num_districts /2 -0.5)]

bsP_mean = sum(bsP_list)/ip.num_districts

cg.mm = abs(bsP_median - bsP_mean) # median -mean

bwv_P = sum([cg.nodes[d][’Bwasted_votes_P ’] for d in cg.nodes])

rwv_P = sum([cg.nodes[d][’Rwasted_votes_P ’] for d in cg.nodes])

cg.total_Pvotes = sum([cg.nodes[d][’total_Pvotes ’] for d in

cg.nodes])

cg.eg = abs((bwv_P - rwv_P)/cg.total_Pvotes) # absolute efficiency

gap

cg.all_metrics = [cg.pop_dev_sum , cg.shifted_pp_comp , cg.eg, cg.mm,

cg.cs , cg.egu]

cg.metric_keys = [’dpop ’, ’comp ’, ’eg’, ’mm’, ’cs’, ’egu ’]

cg.metrics = [m for idx , m in enumerate(cg.all_metrics) if

ip.metrics[cg.metric_keys[idx]] == True]

216

#Place these metrics in G as well

if ip.metrics[’dpop ’]: G.pop_dev[gen][pop_id] = cg.pop_dev_sum

if ip.metrics[’comp ’]: G.comp[gen][pop_id] = cg.shifted_pp_comp

if ip.metrics[’eg ’]: G.eg[gen][pop_id] = cg.eg

if ip.metrics[’mm ’]: G.mm[gen][pop_id] = cg.mm

if ip.metrics[’cs ’]: G.cs[gen][pop_id] = cg.cs

if ip.metrics[’egu ’]: G.egu[gen][pop_id] = cg.egu

G.metrics[gen][pop_id] = cg.metrics

return cg

def generate_plan(rng , G, ip , gen , pop_id , randomness =1):

""" Generates a districting plan based on the

G: base graph

ip: input

gen: current generation

pop_id: the population ID

randomness: (optional; default 1) the randomness level. 0:

deterministic , 1: semi -random , 2: fully random """

failed_plan = True

while failed_plan == True: #Perpertual loop that will occur until a

viable plan is created

used_centers , nbrlengths = generate_centers(rng , G, ip, gen ,

pop_id , randomness)

dist2node = {} # A dictionary that details which nodes are in a

district (dist2node[dist] = [list of nodes])

for d in range(ip.num_districts): dist2node[d] = []

maxsize = {} # A dictionary containing the maximum size (in nodes)

of each district

currsize = {} # A dictionary containing the current size (in nodes)

of each district

unassigned_nodes = list(G.nodes)

viable_dists = list(range(ip.num_districts))

distpops = [0]*ip.num_districts

for dist_num , center in enumerate(used_centers):

maxsize[dist_num] = float(’inf ’) # The districts should not be

constrained by number of nodes

currsize[dist_num] = 1

distpops[dist_num] += G.nodes[center][’POPULATION ’]

#dist_nbrs[dist_num] = set(G.neighbors(center))

unassigned_nodes.remove(center)

dist2node[dist_num]. append(center)

G.nodes[center][’district ’][gen][pop_id] = dist_num

GUs_in_center = G.nodes[center][’GUs ’]

for gu in GUs_in_center:

Assigns a distict number to the GU in the underlying

graph

G.nodes[gu][’gen ’][gen][pop_id][1] = dist_num

cl_graph[gen][pop_id]. nodes[center][’districting ’] = dist_num

failed_plan = False

while unassigned_nodes != []:

if viable_dists == []: #If no districts can be grown and/or

they are over 2* ideal_pop

217

failed_plan = True

print(f"Gen {gen}. Failed districting {pop_id} (no viable

districts).")

clear_plan(G, gen , pop_id)

break #Breaks from ’while unassigned_nodes != []’ loop;

Restarts the ’while failed_plan ==False ’ loop

if randomness ==0: #deterministic district choices. Picks least

populated viable district

dist = -1

distpops_copy = distpops.copy()

while dist not in viable_dists:

if dist != -1:

distpops_copy[dist] = np.inf

dist = distpops_copy.index(min(distpops_copy))

elif randomness ==1: #pseudo -random district choices

pop_weights = [total_pop(G, ip)-distpops[i] for i in

range(len(viable_dists))]

mdw = min(pop_weights)

pop_weights = [pop_weights[i] - mdw+1 for i in

range(len(pop_weights))]

dist = rng.choices(viable_dists , weights=pop_weights ,

k=1)[0]

elif randomness ==2: #random district choices

dist = rng.choice(viable_dists)

if nbrlengths[dist] == {}: #Can occur if previous removal of GU

from another district impacts this district

viable_dists.remove(dist)

continue

currsize , maxsize , unassigned_nodes , dist2node , added_node ,

nbrlengths = grow_district(rng , G, dist , gen , pop_id ,

currsize , maxsize , unassigned_nodes , dist2node , nbrlengths)

if currsize[dist] == maxsize[dist]:

This occurs if dist cannot add any more GUs because all

surrounding GUs are assigned

viable_dists.remove(dist)

if added_node != None:

distpops[dist] += G.nodes[added_node][’POPULATION ’]

If a district has exceeded twice the ideal population ,

stop adding GUs to it

if distpops[dist] > target_pop(G,ip)*2:

try: viable_dists.remove(dist)

except ValueError: pass #May have already removed dist

from viable_dists in currsize == maxsize check

if any(distpops[i] < 0.15* target_pop(G, ip) for i in

range(ip.num_districts)) and failed_plan == False: #’and ’

present so we clear plan only once

failed_plan = True

clear_plan(G, gen , pop_id)

print(f"Gen {gen}. Failed districting {pop_id} (underpopulated

district).")

218

if failed_plan == False:

print(f"Gen {gen}. Created plan {pop_id }.")

break # breaks from ’while True ’ loop because a valid plan was

produced

def generate_centers(rng , G, ip , gen , pop_id , randomness =1,

num_sets_centers =5):

""" Determines which GUs we should center the districts around

G: graph of GUs

randomness: the randomness level for choosing the centers

(0= deterministic; 1=semi -random; 2= completely random)

num_sets_centers: The number of sets of centers that will be chosen if

randomness level 1 is used

"""

if randomness == 2: #completely random centers

used_centers = rng.sample(list(G.nodes), ip.num_districts)

elif randomness == 1: #centers chosen that are far apart

centers = [None]* num_sets_centers

summed_center_length = [0 for _ in range(num_sets_centers)]

for j in range(num_sets_centers): #Randomly selects n GUs which

will form the base of our districts

centers[j] = rng.sample(list(G.nodes), ip.num_districts)

for c_idx , c in enumerate(centers[j]):

for d_idx , d in enumerate(centers[j]):

#We find the summed graph distance between all centers

if c_idx < d_idx: summed_center_length[j] +=

nx.shortest_path_length(G, source=c, target=d)

used_centers_idx =

summed_center_length.index(max(summed_center_length)) #Finds

the index for the centers set with most dispersion

used_centers = centers[used_centers_idx]

elif randomness == 0: #deterministic centers chosen by highest

population that are far enough apart

pop_dict = dict(G.nodes (" POPULATION "))

sorted_pop_dict = dict(sorted(pop_dict.items(), key=lambda item:

item[1], reverse=True))

cl_list = list(sorted_pop_dict.keys())

used_centers = []

aspl = nx.average_shortest_path_length(G)

min_distance = aspl *0.8 #minimum mutual distance that the nodes

must be separated by

k=0

while len(used_centers) < ip.num_districts: #Will select the

[ip.num_districts] centers that are highest populated *and* at

least a certain distance apart from each other

if len(used_centers) == 0: used_centers.append(cl_list[k])

elif k<len(cl_list) -1: #If the candidate center is sufficiently

far from all current centers , add it to the list

k+=1

#if min([nx.shortest_path_length(cl_graph[gen][pop_id],

source=cl_list[k], target=cent) for cent in

used_centers]) > diameter/math.sqrt(ip.num_districts):

219

if min([nx.shortest_path_length(G, source=cl_list[k],

target=cent) for cent in used_centers]) > min_distance:

used_centers.append(cl_list[k])

elif k == len(cl_list) -1: #We have explored all GUs and cannot

find centers that are sufficiently far apart

min_distance = min_distance *0.8

print(f"reducing minimum distance requirement. New min dist

= {min_distance }")

used_centers = []

k=0

#Starts a dictionary that records nbrlengths for each district

nbrlengths = {} #nbrlengths[dist][nbr] = length_with_dist

for dist , c in enumerate(used_centers):

nbrlengths[dist] = {}

for nbr in G.neighbors(c):

if G.nodes[nbr][’district ’][gen][pop_id] == -1:

nbrlengths[dist][nbr] = G.edges[(c,nbr)][’shared_perim ’]

if randomness <= 1: nbrlengths[dist] =

dict(sorted(nbrlengths[dist].items (), key=lambda x:x[1],

reverse=True))

return used_centers , nbrlengths

def grow_district(rng , G, dist , gen , pop_id , currsize , maxsize ,

unassigned_nodes , dist2node , nbrlengths):

""" Grows the group district that ’node ’ is in by one GU unless it can ’t

G: Graph

dist: the district to grow

gen: The generation we ’re on

pop_id: The pop_id of the plan under consideration

currsize: a dictionary containing the current size (in nodes) of each

group

maxsize: a dictionary containing the the maximum size (in nodes) of

each group

unassigned_nodes: A list of nodes that have not yet been assigned a

group

dist2node: A dictionary detailing all the nodes in each district.

dist2node[dist] = [list of nodes]

nbrlengths: A dictionary detailing the boundary length with the

district. nbrlengths[dist][node] = length """

if dist == -1: raise ValueError ("dist should be nonnegative ")

nbrs = list(nbrlengths[dist].keys())

nbrs = weighted_shuffle(rng , nbrs ,

weights=list(nbrlengths[dist]. values ())) #neighboring nodes for dist

i=-1 #for cycling for nbrs indices

while True: # We break once a nbr is found or all nbrs are exhausted

if len(nbrs) == 0: break

i += 1

nbr = nbrs[i]

nbr_distnum = G.nodes[nbr][’district ’][gen][pop_id]

220

if nbr_distnum == -1: # If the nbr has not been assigned a

district already

G.nodes[nbr][’district ’][gen][pop_id] = dist #assigns nbr to

dist

dist2node[dist] += [nbr]

unassigned_nodes.remove(nbr)

currsize[dist] += 1

nbrlengths = update_nbrlengths(G, nbrlengths , gen , pop_id , nbr ,

dist)

if nbrlengths != None and nbrlengths[dist] == {}: maxsize[dist]

= currsize[dist]

return currsize , maxsize , unassigned_nodes , dist2node , nbr ,

nbrlengths

else: # If the nbr has been assigned

if i == len(nbrs) -1:

break

If we made it this far , it ’s because we checked all neighbors and

can ’t append any to the current group

maxsize[dist] = currsize[dist] # Adjusts the maxsize of this group so

we don ’t iterate through its neighbors again

return currsize , maxsize , unassigned_nodes , dist2node , None , nbrlengths

def weighted_shuffle(rng , items , weights , rvs=True):

""" Given a list of items and weights for each one , we return a list of

those shuffled items where higher weights are more probable """

order = sorted(range(len(items)), key=lambda i: rng.random () ** (1.0 /

weights[i]), reverse=rvs)

return [items[i] for i in order]

def update_nbrlengths(G, nbrlengths , gen , pop_id , newnbr , dist):

""" Updates the nbrlengths dictionary after newnbr was added to

district """

del nbrlengths[dist][newnbr] #Since newnbr is in dist now , dist doesn ’t

neighbor newnbr

for nn in G.neighbors(newnbr):

if G.nodes[nn][’district ’][gen][pop_id] == -1:

try:

nbrlengths[dist][nn] += G.edges[(nn ,

newnbr)][’shared_perim ’]

except KeyError:

nbrlengths[dist][nn] = G.edges[(nn , newnbr)][’shared_perim ’]

elif G.nodes[nn][’district ’][gen][pop_id] != dist:

nndist = G.nodes[nn][’district ’][gen][pop_id]

try: del nbrlengths[nndist][newnbr] #Occurs if nn is already

assigned a district

except KeyError: pass

nbrlengths[dist] = dict(sorted(nbrlengths[dist]. items(), key=lambda

x:x[1], reverse=True))

return nbrlengths

def clear_plan(G, gen , pop_id):

""" Clears the districting plan in generation gen and with id pop_id """

221

for node in G.nodes:

G.nodes[node][’district ’][gen][pop_id] = -1

def tournament_selection(rng , ip , dist_graph , gen , tourn_size):

""" Determines a parent for crossover from the list of parent candidates

p_list

rng: random number generator for code repeatability

ip: input

dist_graph: the array of district graphs. dist_graph[gen][pop_id] =

<Graph with d nodes >

gen: current generation

tourn_size: number of individuals to compare.

p_list: a list of parent candidates. Each candidate is a district

graph """

f_id , fronts = nondominated_sorting(dist_graph[gen][0:ip.pop_size])

Establish the median for each front

median_index = [None]*len(fronts)

triplets = [None]*len(fronts)

ranks = {}

med_dist = {}

for i, front in enumerate(fronts):

Create a list of tuples (graph_id , pop_dev_sum)

graph_id_pairs = [(graph_id , dg.pop_dev_sum) for graph_id , dg in

zip(f_id[i], fronts[i])]

Sort the list of tuples based on the pop_dev_sum

sorted_graph_id_pairs = sorted(graph_id_pairs , key=lambda x: x[1])

median_index[i] = (len(front) -1)/2

triplets[i] = [(graph_id , pop_dev_sum , abs(index -

median_index[i])) for index , (graph_id , pop_dev_sum) in

enumerate(sorted_graph_id_pairs)]

#Establish dictionary for rank and distance from median entry in its

front

for rank , l in enumerate(triplets):

for trip in l:

graph_id = trip [0]

ranks[graph_id] = rank

med_dist[graph_id] = trip [2]

Pick random parent candidates

p_candidates_idxs = rng.sample(range(ip.pop_size), tourn_size)

min_rank = min([ranks[p] for p in p_candidates_idxs])

best_parents_idx = [p for p in p_candidates_idxs if ranks[p] ==

min_rank]

best_parents = []

for i, rank in enumerate(f_id):

for j, dg_idx in enumerate(rank):

if dg_idx in best_parents_idx:

best_parents.append(fronts[i][j])

222

if len(best_parents_idx) == 1: # If one plan dominates all others

return best_parents_idx [0]

else:

min_med_dist = min([med_dist[p] for p in best_parents_idx])

for i, p in enumerate(best_parents_idx):

if med_dist[p] == min_med_dist:

return best_parents_idx[i]

p_candidates = [dist_graph[gen][idx] for idx in p_candidates_idxs]

p_id , p_fronts = nondominated_sorting(p_candidates)

if len(p_id [0]) == 1: # If one plan dominates all others

return p_fronts [0][0] # Return best plan

else: #If front 0 has multiple plans

for idx in p_id [0]:

def crossover(rng , G, ip , gen , nbr_graphs , pop_id , p1 , p2 , c,

single_child=True):

""" Performs the crossover step of NSGA -II , creating two children

rng: random number generator for code repeatability

G: Graph

ip: input

gen: current generation

nbr_graphs: the k-layer neighbor graph dictionary for all nodes.

nbr_graphs[n] = [list of nodes k away from n]

pop_id_idx: index of the loop

p1: population ID for parent 1

p2: population ID for parent 2

c: crossover point. Should be an integer <= G.num_of_nodes

single_child: denotes whether we should make a single child instead of

2"""

if not single_child:

#Copy parent to s1

s1_idx = 2* pop_id_idx + ip.pop_size

s2_idx = 2* pop_id_idx + ip.pop_size + 1

for n in G.nodes: #copies p1 and p2 to s1 and s2

try: G.nodes[n][’district ’][gen][s1_idx] =

G.nodes[n][’district ’][gen][p1]

except IndexError: pass

try: G.nodes[n][’district ’][gen][s2_idx] =

G.nodes[n][’district ’][gen][p2]

except IndexError: pass

for n in G.nodes:

d1 = G.nodes[n][’district ’][gen][p1] #n’s district in p1

d2 = G.nodes[n][’district ’][gen][p2] #n’s district in p2

if d1 == -1: raise ValueError ("d1 shouldn ’t be -1.")

elif d2 == -1: raise ValueError ("d2 shouldn ’t be -1.")

n_nbrs = G.neighbors(n)

if n<=c: #then see if

stateG.nodes[n][’district ’][gen][s1_idx] can become d2

if d1 == d2:

continue #if districts are the same , no change can be

made

223

n_p1_nbrs_dists = [G.nodes[nbr][’district ’][gen][p1] for

nbr in n_nbrs]

if d2 not in n_p1_nbrs_dists:

continue #if d2 is not present in the nbrs of n in

p1, then no swap can be made

#If we make it this far , then districts are not the same ,

and making the flip is plausible

flip_status = flip(G, ip , n, d2 , gen , s1_idx , nbr_graphs ,

ip.radius)

#nbrhd = nx.subgraph(nbr_graphs[n], [x for x in

nbr_graphs[n].nodes () if G.nodes[x][’district ’][gen][s1_idx] == d1

and x!=n])

#if not nx.is_connected(nbrhd):

if flip_status == False:

continue #if making the flip disconnects the graph

#If we make it this far , then the flip should be performed

#G.nodes[n][’district ’][gen][s1_idx] = d2

if n>c and s2_idx <2*ip.pop_size: #then see if

stateG.nodes[n][’district ’][gen][s2_idx] can become d1

if d2 == d1:

continue #if districts are the same , no change can be

made

n_p2_nbrs_dists = [G.nodes[nbr][’district ’][gen][p2] for

nbr in n_nbrs]

if d1 not in n_p2_nbrs_dists:

continue #if d1 is not present in the nbrs of n in

p2, then no swap can be made

#If we make it this far , then districts are not the same ,

and making the flip is plausible

flip_status = flip(G, ip , n, d1 , gen , s2_idx , nbr_graphs ,

ip.radius)

#nbrhd = nx.subgraph(nbr_graphs[n], [x for x in

nbr_graphs[n].nodes () if G.nodes[x][’district ’][gen][s2_idx] == d2

and x!=n])

#nbrhd = nx.subgraph(G, [x for x in G.nodes() if

G.nodes[x][’district ’][gen][s2_idx] == d2 and x!=n])

#if not nx.is_connected(nbrhd):

if flip_status == False:

continue #if making the flip disconnects the graph

#If we make it this far , then the flip should be performed

#G.nodes[n][’district ’][gen][s2_idx] = d1

if s2_idx < 2*ip.pop_size:

print(f"Gen {gen}. Bred child plans {s1_idx} and {s2_idx }.")

else:

print(f"Gen {gen}. Bred child plan {s1_idx }.")

if single_child ==True:

#Copy parent to s

#sidx = pop_id_idx + ip.pop_size

p = rng.choice ([p1 ,p2]) #randomly choose either p1 or p2 to be the

base parent

for n in G.nodes: #copies either p1 or p2 to s

G.nodes[n][’district ’][gen][pop_id] =

G.nodes[n][’district ’][gen][p]

for n in G.nodes:

224

d1 = G.nodes[n][’district ’][gen][p1] #n’s district in p1

d2 = G.nodes[n][’district ’][gen][p2] #n’s district in p2

if d1 == -1: raise ValueError ("d1 shouldn ’t be -1.")

if d2 == -1: raise ValueError ("d2 shouldn ’t be -1.")

if n<=c and p==p1: #then see if

stateG.nodes[n][’district ’][gen][sidx] can become d2

if d1 == d2:

continue #if districts are the same , no change can be

made

n_nbrs_dists = [G.nodes[nbr][’district ’][gen][pop_id] for

nbr in G.neighbors(n)]

if d2 not in n_nbrs_dists:

continue #if d2 is not present in the nbrs of n in p1,

then no swap can be made

#If we make it this far , then districts are not the same ,

and making the flip is plausible

flip_status = flip(G, ip, n, d2, gen , pop_id , nbr_graphs ,

ip.radius)

#nbrhd = nx.subgraph(nbr_graphs[n], [x for x in

nbr_graphs[n].nodes() if

G.nodes[x][’district ’][gen][sidx] == d1 and x!=n])

#if not nx.is_connected(nbrhd):

if flip_status == False:

continue #if making the flip disconnects the graph

#If we make it this far , then the flip should be performed

#G.nodes[n][’district ’][gen][sidx] = d2

if n>c and p==p2: #then see if

stateG.nodes[n][’district ’][gen][sidx] can become d1

if d2 == d1:

continue #if districts are the same , no change can be

made

n_nbrs_dists = [G.nodes[nbr][’district ’][gen][pop_id] for

nbr in G.neighbors(n)]

if d1 not in n_nbrs_dists:

continue #if d1 is not present in the nbrs of n in p2,

then no swap can be made

#If we make it this far , then districts are not the same ,

and making the flip is plausible

flip_status = flip(G, ip, n, d1, gen , pop_id , nbr_graphs ,

ip.radius)

#nbrhd = nx.subgraph(nbr_graphs[n], [x for x in

nbr_graphs[n].nodes() if

G.nodes[x][’district ’][gen][sidx] == d2 and x!=n])

#if not nx.is_connected(nbrhd):

if flip_status == False:

continue #if making the flip disconnects the graph

#If we make it this far , then the flip should be performed

#G.nodes[n][’district ’][gen][sidx] = d1

#print(f"Gen {gen}. Bred child plan {pop_id }.")

else: raise RuntimeError (" single_child must be True; ’False ’ is defunct

right now.")

def mutation(rng , G, ip , gen , pop_id , nbr_graphs):

225

""" Mutates the graph G based on the input mutation probability

rng: random number generator for code repeatability

G: Graph

ip: input

gen: generation

pop_id: the population ID

nbr_graphs: the k-layer neighbor graph dictionary for all nodes.

nbr_graphs[n] = [list of nodes k away from n]"""

for n in G.nodes:

r = rng.random () #Generates a number between 0 and 1

if r <= ip.mutation_probability: #If True , mutate

nbrs = G.neighbors(n)

nbr_dists = [G.nodes[nbr][’district ’][gen][pop_id] for nbr in

nbrs]

n_dist = G.nodes[n][’district ’][gen][pop_id]

if list(set(nbr_dists)) == [n_dist]: continue #If all neighbors

of n are in the same district , no flip can be made

else: #If n is on a district boundary

nbr_dist = n_dist #temp

while nbr_dist == n_dist: nbr_dist =

rng.choice(list(set(nbr_dists))) #Ensures a dist

selection other than n_dist

nbrhd = nx.subgraph(nbr_graphs[n], [x for x in

nbr_graphs[n].nodes() if

G.nodes[x][’district ’][gen][pop_id] == n_dist and x!=n])

if not nx.is_connected(nbrhd): continue #if making the flip

disconnects the graph

#If we make it this far , then make the mutation flip

G.nodes[n][’district ’][gen][pop_id] = nbr_dist

def flip(G, ip , n, dist , gen , pop_id , nbr_graphs , radius = float(’inf ’),

dist_graph=None , structure=None):

""" Performs a flip where we move GU ’n’ to distrist ’dist ’. This checks

that contiguity will be maintained.

G: Base graph

ip: input

n: Node to be flipped

dist: district that n will be moved into

gen: current generation

pop_id: the population ID for the flip

nbr_graphs: the k-layer neighbor graph dictionary for all nodes.

nbr_graphs[n] = [list of nodes k away from n]

radius: The level of contiguity to check. Can be float(’inf ’) or any

positive integer.

If float(’inf ’), then we collect all GUs in current district and

see if removing n creates discontiguity.

If a positive integer ’k’ is used , we only check GUs in the current

district that are at most k away from n, and see if removing n

creates discontiguity.

dist_graph: array of district graphs

structure: (optional , default None). If we want to only consider flips

that improve population , structure =1.

If we only want to consider flips that improve compactness ,

structure =2.

"""

226

n_dist = G.nodes[n][’district ’][gen][pop_id]

if n_dist == dist: raise ValueError(f"Cannot flip node {n} to district

{dist} because node {n} is already in district {dist }")

if dist not in [G.nodes[nbr][’district ’][gen][pop_id] for nbr in

G.neighbors(n)]:

raise ValueError(f"Cannot flip node {n} to district {dist} because

district {dist} does not border node {n}")

structure_satisfied = (structure ==None) or \

(structure ==1 and

pop_improves(G,dist_graph ,n,dist ,gen ,pop_id))

or \

(structure ==2 and

comp_improves(G,dist_graph ,n,dist ,gen ,pop_id))

if structure_satisfied == False:

return False

if radius == float(’inf ’): #Check full contiguity

nbrhd = nx.subgraph(G, [x for x in G.nodes() if

G.nodes[x][’district ’][gen][pop_id] == n_dist and x!=n])

else: #Check k-layer contiguity

nbrhd = nx.subgraph(nbr_graphs[n], [x for x in

nbr_graphs[n]. nodes() if G.nodes[x][’district ’][gen][pop_id] ==

n_dist and x!=n])

if set([G.nodes[nbr][’district ’][gen][pop_id] for nbr in

G.neighbors(n)]) == {dist}:

return False #This indicates that this district would disappear

if nx.is_connected(nbrhd) and structure_satisfied:

G.nodes[n][’district ’][gen][pop_id] = dist #perform the flip

if dist_graph !=None: dist_graph[gen][pop_id] = upd_dg(G, ip,

dist_graph , gen , pop_id , n, n_dist , dist)

return True #signifies flip was successful

else: #flip would create discontiguity

return False #signifies flip was unsuccessful

def upd_dg(G, ip , dist_graph , gen , pop_id , n, l_dist , e_dist):

""" Updates the dist_graph[gen][pop_id] metrics.

G: underlying GU graph

ip: input

dist_graph: array of district graphs. dist_graph[gen][pop_id] = <Graph

with d nodes >

gen: generation

pop_id: population ID

n: node that was moved

l_dist: the district that the node n is leaving

e_dist: the district that the node n is entering """

cg = dist_graph[gen][pop_id]

d_list = [l_dist , e_dist]

cg.nodes[e_dist][’GUs ’]. append(n)

cg.nodes[l_dist][’GUs ’]. remove(n)

227

for nbr in G.neighbors(n): #Cycles through neighboring nodes to adjust

boundary status , perimeter , and district neighbors

nbr_dist = G.nodes[nbr][’district ’][gen][pop_id]

if nbr_dist == e_dist:

#G[n][nbr][" Dist_Boundary "] = 0

cg.nodes[e_dist][" total_perim "] -= G[n][nbr][" shared_perim "]

#This is now ’interior ’ perimeter

cg.nodes[l_dist][" total_perim "] -= G[n][nbr][" shared_perim "]

#Neither n nor nbr is in l_dist

if (l_dist , nbr_dist) in cg.edges:

try:

cg[l_dist][nbr_dist][’contributing_edges ’]. remove ((n,nbr))

except ValueError:

cg[l_dist][nbr_dist][’contributing_edges ’]. remove ((nbr ,n))

cg[l_dist][nbr_dist][’shared_perim ’] -=

G[n][nbr][" shared_perim "]

if cg[l_dist][nbr_dist][’contributing_edges ’] == []: #if

districts l_dist and e_dist are no longer adjacent

cg.remove_edge(e_dist , l_dist)

else: raise RuntimeError(f"It should be true that district

{l_dist} neighbors {e_dist }.")

elif nbr_dist == l_dist: #If nbr is part of the l_dist

#G[n][nbr][" Dist_Boundary "] = 1

cg.nodes[e_dist][" total_perim "] += G[n][nbr][" shared_perim "]

cg.nodes[l_dist][" total_perim "] += G[n][nbr][" shared_perim "]

if (e_dist , nbr_dist) in cg.edges:

cg[e_dist][nbr_dist][’contributing_edges ’]. append ((n,nbr))

cg[e_dist][nbr_dist][’shared_perim ’] +=

G[n][nbr][" shared_perim "]

else: #If this creates a new district boundary

cg.add_edge(e_dist , nbr_dist)

cg[e_dist][nbr_dist][’contributing_edges ’] = [(n,nbr)]

cg[e_dist][nbr_dist][’shared_perim ’] =

G[n][nbr][" shared_perim "]

else: #Neighboring district is not e_dist or l_dist

#G[n][nbr][" Dist_Boundary "] = 1

cg.nodes[e_dist][" total_perim "] += G[n][nbr][" shared_perim "]

cg.nodes[l_dist][" total_perim "] -= G[n][nbr][" shared_perim "]

if (l_dist , nbr_dist) in cg.edges:

try:

cg[l_dist][nbr_dist][’contributing_edges ’]. remove ((n,nbr))

except ValueError:

cg[l_dist][nbr_dist][’contributing_edges ’]. remove ((nbr ,n))

cg[l_dist][nbr_dist][’shared_perim ’] -=

G[n][nbr][" shared_perim "]

if cg[l_dist][nbr_dist][’contributing_edges ’] == []: #if

districts l_dist and nbr_dist are no longer adjacent

cg.remove_edge(l_dist , nbr_dist)

228

else: raise RuntimeError(f"It should be true that district

{l_dist} neighbored {nbr_dist }.")

if (e_dist , nbr_dist) in cg.edges:

cg[e_dist][nbr_dist][’contributing_edges ’]. append ((n,nbr))

cg[e_dist][nbr_dist][’shared_perim ’] +=

G[n][nbr][" shared_perim "]

else: #If this creates a new district boundary

cg.add_edge(e_dist , nbr_dist)

cg[e_dist][nbr_dist][’contributing_edges ’] = [(n,nbr)]

cg[e_dist][nbr_dist][’shared_perim ’] =

G[n][nbr][" shared_perim "]

if cg.nodes[l_dist][" total_perim "] < 0: raise RuntimeError (" perimeter

cannot be negative ")

if cg.nodes[e_dist][" total_perim "] < 0: raise RuntimeError (" perimeter

cannot be negative ")

cg.nodes[e_dist][’boundary_perim ’] += G.nodes[n][’boundary_perim ’]

cg.nodes[l_dist][’boundary_perim ’] -= G.nodes[n][’boundary_perim ’]

cg.nodes[e_dist][’Reg_Voters ’] += G.nodes[n][’Reg_Voters ’]

cg.nodes[l_dist][’Reg_Voters ’] -= G.nodes[n][’Reg_Voters ’]

cg.nodes[e_dist][" POPULATION "] += G.nodes[n][" POPULATION "] #Adds

population to the cg.nodes population entry corresponding to dist

cg.nodes[l_dist][" POPULATION "] -= G.nodes[n][" POPULATION "] #Subtracts

population from the cg.nodes population entry corresponding to

l_dist

cg.nodes[e_dist][" area"] += G.nodes[n][" area"] #Adds area to the

cg.nodes area entry corresponding to dist

cg.nodes[l_dist][" area"] -= G.nodes[n][" area"] #Subtracts area from

the cg.nodes area entry corresponding to l_dist

cg.nodes[e_dist][" PresRed "] += G.nodes[n][" PresRed "] #Adds red votes

to the cg.nodes red votes entry corresponding to dist

cg.nodes[l_dist][" PresRed "] -= G.nodes[n][" PresRed "] #Subtracts red

votes from the cg.nodes red votes entry corresponding to l_dist

cg.nodes[e_dist][" PresBlue "] += G.nodes[n][" PresBlue "] #Adds blue

votes to the cg.nodes blue votes entry corresponding to dist

cg.nodes[l_dist][" PresBlue "] -= G.nodes[n][" PresBlue "] #Subtracts blue

votes from the cg.nodes blue votes entry corresponding to l_dist

cg.nodes[e_dist][" PresOther "] += G.nodes[n][" PresOther "] #Adds blue

votes to the cg.nodes blue votes entry corresponding to dist

cg.nodes[l_dist][" PresOther "] -= G.nodes[n][" PresOther "] #Subtracts

blue votes from the cg.nodes blue votes entry corresponding to

l_dist

cg.CDI_matrix[l_dist] = np.zeros ((1, ip.num_counties), dtype=np.int16)

#resets the CDI matrix in row l_dist

cg.CDI_matrix[e_dist] = np.zeros ((1, ip.num_counties), dtype=np.int16)

#resets the CDI matrix in row d_list [1]

229

for d in d_list: #’d’ represents a district

cg.nodes[d][’pp_compactness ’] = 4 * math.pi * cg.nodes[d][’area ’] /

(cg.nodes[d][’total_perim ’] ** 2)

cg.nodes[d][’ shifted_pp_compactness ’] = 1 -

cg.nodes[d][’pp_compactness ’]

cg.nodes[d][’total_Pvotes ’] = cg.nodes[d][’PresBlue ’] +

cg.nodes[d][’PresRed ’] + cg.nodes[d][’PresOther ’]

cg.nodes[d][’total_Svotes ’] = cg.nodes[d][’SenBlue ’] +

cg.nodes[d][’SenRed ’] + cg.nodes[d][’SenOther ’]

cg.nodes[d][’blue_Pshare ’] = cg.nodes[d][’PresBlue ’] /

cg.nodes[d][’total_Pvotes ’] if cg.nodes[d][’total_Pvotes ’]>0

else 0

cg.nodes[d][’red_Pshare ’] = cg.nodes[d][’PresRed ’] /

cg.nodes[d][’total_Pvotes ’] if cg.nodes[d][’total_Pvotes ’]>0

else 0

cg.nodes[d][’other_Pshare ’] = cg.nodes[d][’PresOther ’] /

cg.nodes[d][’total_Pvotes ’] if cg.nodes[d][’total_Pvotes ’]>0

else 0

cg.nodes[d][’blue_Sshare ’] = cg.nodes[d][’SenBlue ’] /

cg.nodes[d][’total_Svotes ’] if cg.nodes[d][’total_Svotes ’]>0

else 0

cg.nodes[d][’red_Sshare ’] = cg.nodes[d][’SenRed ’] /

cg.nodes[d][’total_Svotes ’] if cg.nodes[d][’total_Svotes ’]>0

else 0

cg.nodes[d][’other_Sshare ’] = cg.nodes[d][’SenOther ’] /

cg.nodes[d][’total_Svotes ’] if cg.nodes[d][’total_Svotes ’]>0

else 0

cg.nodes[d][’win_threshold_P ’] =

math.ceil(cg.nodes[d][’total_Pvotes ’]/2 + 0.5)

cg.nodes[d][’win_threshold_S ’] =

math.ceil(cg.nodes[d][’total_Svotes ’]/2 + 0.5)

cg.nodes[d][’Rwasted_votes_P ’] = cg.nodes[d][’PresRed ’] -

cg.nodes[d][’win_threshold_P ’] if cg.nodes[d][’PresRed ’] >

cg.nodes[d][’PresBlue ’] else cg.nodes[d][’PresRed ’]

cg.nodes[d][’Bwasted_votes_P ’] = cg.nodes[d][’PresBlue ’] -

cg.nodes[d][’win_threshold_P ’] if cg.nodes[d][’PresRed ’] <=

cg.nodes[d][’PresBlue ’] else cg.nodes[d][’PresBlue ’]

for gu in cg.nodes[d][’GUs ’]:

county = G.nodes[gu][’county_num ’]

cg.CDI_matrix[d][county] += 1

cg.pop_dev_sum = round(sum(abs(p-cg.ideal_pop) for p in

dict(cg.nodes (" POPULATION ")).values ()))

cg.pop_dev_max = round(max(abs(p-cg.ideal_pop) for p in

dict(cg.nodes (" POPULATION ")).values ()))

cg.exc_county_splits = np.count_nonzero(cg.CDI_matrix) -

max(ip.num_counties , ip.num_districts)

cg.exc_gus = sum(np.sum(cg.CDI_matrix , axis =0) - np.max(cg.CDI_matrix ,

axis =0))

cg.cs = cg.exc_county_splits

cg.egu = cg.exc_gus

cg.pp_comp = round(sum([cg.nodes[d][’pp_compactness ’] for d in

cg.nodes]) / cg.number_of_nodes (), 3)

cg.shifted_pp_comp = 1-cg.pp_comp

230

bsP_list = [cg.nodes[d][’blue_Pshare ’] for d in cg.nodes] # bsP = blue

share for president

bsP_list = sorted(bsP_list)

if ip.num_districts % 2 == 0: # even

bsP_median = (bsP_list[int(ip.num_districts /2)] +

bsP_list[ip.num_districts /2 -1])/2

else: # odd

bsP_median = bsP_list[int(ip.num_districts /2 -0.5)]

bsP_mean = sum(bsP_list)/ip.num_districts

cg.mm = abs(bsP_median - bsP_mean) # median -mean

bwv_P = sum([cg.nodes[d][’Bwasted_votes_P ’] for d in cg.nodes])

rwv_P = sum([cg.nodes[d][’Rwasted_votes_P ’] for d in cg.nodes])

cg.total_Pvotes = sum([cg.nodes[d][’total_Pvotes ’] for d in cg.nodes])

cg.eg = abs((bwv_P - rwv_P)/cg.total_Pvotes) # absolute efficiency gap

cg.all_metrics = [cg.pop_dev_sum , cg.shifted_pp_comp , cg.eg, cg.mm,

cg.cs , cg.egu]

cg.metric_keys = [’dpop ’, ’comp ’, ’eg’, ’mm’, ’cs’, ’egu ’]

cg.metrics = [m for idx , m in enumerate(cg.all_metrics) if

ip.metrics[cg.metric_keys[idx]] == True]

#Place these metrics in G as well

if ip.metrics[’dpop ’]: G.pop_dev[gen][pop_id] = cg.pop_dev_sum

if ip.metrics[’comp ’]: G.comp[gen][pop_id] = cg.shifted_pp_comp

if ip.metrics[’eg ’]: G.eg[gen][pop_id] = cg.eg

if ip.metrics[’mm ’]: G.mm[gen][pop_id] = cg.mm

if ip.metrics[’cs ’]: G.cs[gen][pop_id] = cg.cs

if ip.metrics[’egu ’]: G.egu[gen][pop_id] = cg.egu

G.metrics[gen][pop_id] = cg.metrics

return cg

def pop_improves(G, dist_graph , n, dist , gen , pop_id):

""" Determines whether population deviation improves if node n is moved

into district ’dist ’.

G: underlying GU graph

dg: the district graph. dg = dist_graph[gen][pop_id] = <Graph with d

nodes >

n: node that is being moved

dist: district that n is being moved to

gen: current generation

pop_id: population ID"""

n_dist = G.nodes[n][’district ’][gen][pop_id]

ideal_pop = dist_graph[gen][pop_id]. ideal_pop

if dist_graph[gen][pop_id].nodes[n_dist][" POPULATION "] > ideal_pop and

dist_graph[gen][pop_id].nodes[dist][" POPULATION "] < ideal_pop:

return True

else:

return False

def comp_improves(G, dist_graph , n, dist , gen , pop_id):

""" Determines whether compactness improves if node n is moved into

district ’dist ’.

G: underlying GU graph

dg: the district graph. dg = dist_graph[gen][pop_id] = <Graph with d

nodes >

231

n: node that is being moved

dist: district that n is being moved to

gen: current generation

pop_id: population ID"""

n_dist = G.nodes[n][’district ’][gen][pop_id]

A1old = dist_graph[gen][pop_id]. nodes[n_dist][’area ’] #area for

district ’n_dist ’ before the flip

A2old = dist_graph[gen][pop_id]. nodes[dist][’area ’] #area for district

’dist ’ before the flip

r1old = dist_graph[gen][pop_id]. nodes[n_dist][’total_perim ’] #perimeter

for district ’n_dist ’ before the flip

r2old = dist_graph[gen][pop_id]. nodes[dist][’total_perim ’] #perimeter

for district ’dist ’ before the flip

A1new = A1old

A2new = A2old

r1new = r1old

r2new = r2old

A1new -= G.nodes[n][’area ’] #area for district ’n_dist ’ after the flip

A2new += G.nodes[n][’area ’] #area for district ’dist ’ after the flip

for nbr in G.neighbors(n): #Cycles through neighboring nodes to adjust

boundary status , perimeter , and district neighbors

nbr_dist = G.nodes[nbr][’district ’][gen][pop_id]

if nbr_dist == dist:

#G[n][nbr][" Dist_Boundary "] = 0

r1new -= G[n][nbr][" shared_perim "] #This is now ’interior ’

perimeter

r2new -= G[n][nbr][" shared_perim "] #Neither n nor nbr is in

n_dist

elif nbr_dist == n_dist: #If nbr is part of the n_dist

#G[n][nbr][" Dist_Boundary "] = 1

r1new += G[n][nbr][" shared_perim "]

r2new += G[n][nbr][" shared_perim "]

else: #Neighboring district is not dist or n_dist

#G[n][nbr][" Dist_Boundary "] = 1

r2new += G[n][nbr][" shared_perim "]

r1new -= G[n][nbr][" shared_perim "]

if A1new /(r1new **2) + A2new /(r2new **2) > A1old /(r1old **2) +

A2old/(r2old **2): #This signifies that compactness improves

return True

else: #This signifies that compactness worsens or stays the same

return False

def vns(rng , G, ip , gen , pop_id , nbr_graphs , dist_graph):

""" Variable Neighborhood Search. Does a small perturbation on the graph

for improvement.

rng: random number generator for code repeatability

G: base graph

232

ip: input

gen: current generation

pop_id: population ID

nbr_graphs: the k-layer neighbor graph dictionary for all nodes.

nbr_graphs[n] = [list of nodes k away from n]

dist_graph: the array of district graphs. dist_graph[gen][pop_id] =

<Graph with d nodes >

structure: integer , 1 through 4. Each one does a different type of

perturbation.

1: Flip for population improvement

2: Flip for compactness improvement

3: Swap for population improvement

4: Swap for compactness improvement """

for structure in [1,2]:

while True: #goes until a successful flip is made

while True: #Chooses two neighboring districts with populations

on opposite sides of the ideal population line

d1 = rng.randint(0,ip.num_districts -1)

d2 = rng.choice(list(dist_graph[gen][pop_id]. neighbors(d1)))

d1_pop = dist_graph[gen][pop_id].nodes[d1][" POPULATION "]

d2_pop = dist_graph[gen][pop_id].nodes[d2][" POPULATION "]

if

np.sign(d1_pop -ip.ideal_pop)*np.sign(d2_pop -ip.ideal_pop)

<= 0:

while d1_pop < d2_pop: #WLOG , make d1 the district with

more population

temp = d1

d1=d2

d2=temp

temp_pop = d1_pop

d1_pop = d2_pop

d2_pop = temp_pop

break #breaks only if dists are on opposite sides of

the population balance line

#Chooses a random edge that makes up the d1 -d2 border

(n,nbr) = rng.choice(dist_graph[gen][pop_id]

.edges[(d1 ,d2)][’ contributing_edges ’])

if n not in dist_graph[gen][pop_id].nodes[d1][" GUs "]: #Sets n

as the node in d1

temp_node = n

n = nbr

nbr = temp_node

rng.shuffle(dist_graph[gen][pop_id]. nodes[d1][’GUs ’])

n_list_d1 = dist_graph[gen][pop_id]. nodes[d1][’GUs ’]

break_flag=False

for n in n_list_d1: #Choose two neighboring GUs on the d1 -d2

border

for nbr in G.neighbors(n):

nbr_dist = G.nodes[nbr][’district ’][gen][pop_id]

if nbr_dist == d2:

break_flag=True

break

if break_flag == True: break

233

flip_status = flip(G, ip, n, d2, gen , pop_id , nbr_graphs ,

ip.radius , dist_graph , structure)

if flip_status == True: break #otherwise , we restart the search

for a new flip

G, dist_graph = hill_climbing(rng , G, ip, gen , pop_id , nbr_graphs ,

dist_graph , structure)

return G, dist_graph

n = rng.choice(G.nodes)

n_dist = G.nodes[n][’district ’][gen][pop_id]

nbr_dists = set([G.nodes[nbr][’district ’][gen][pop_id] for

nbr in G.neighbors(n)])

nbr_dists = nbr_dists - {n_dist}

if len(nbr_dists) > 0: #n is on a district border

new_dist = rng.choice(list(nbr_dists))

flip(G, ip, n, new_dist , gen , pop_id , nbr_graphs , ip.radius)

Need to fix this. check for whether flip will improve

population

def checkmetrics(dg , ip):

""" Checks whether the metrics of distgraph are within acceptable

parameters """

if ip.metrics[’dpop ’]:

if dg.pop_dev_sum > ip.ub["dpop "]: #Acceptable pop_dev allows an

average district to be 40% off from ideal

return False , ’dpop ’, dg.pop_dev_sum

if ip.metrics[’comp ’]:

#if dg.shifted_pp_comp > 0.8888: #Acceptable average compactness is

less than 0.8888

if dg.shifted_pp_comp > ip.ub["comp "]:

return False , ’comp ’, dg.shifted_pp_comp

if ip.metrics[’eg ’]:

if dg.eg > ip.ub["eg"]: #Acceptable efficiency gaps are 3*8% (>8%

is considered problematic by Stephanopoulos and McGhee)

return False , ’eg’, dg.eg

if ip.metrics[’mm ’]:

if dg.mm > ip.ub["mm"]: #Acceptable median -mean calculations allow

<= 0.05

return False , ’mm’, dg.mm

if ip.metrics[’cs ’]:

if dg.cs > ip.ub["cs"]: #Acceptable county -split count is 50 or

fewer

return False , ’cs’, dg. cs

if ip.metrics[’egu ’]:

if dg.egu > ip.ub["egu "]: #Acceptable excess gu count is 500 or

fewer

return False , ’egu ’, dg.egu

#If we ’ve made it this far , then all metrics are okay.

return True , ":)", math.pi

def hill_climbing(rng , G, ip , gen , pop_id , nbr_graphs , dist_graph ,

structure):

""" Searches all nodes to see if any flips will improve the map.

rng: random number generator for code repeatability

G: base graph

234

ip: input

gen: current generation

pop_id: population ID of current plan

nbr_graphs: the k-layer neighbor graph dictionary for all nodes.

nbr_graphs[n] = [list of nodes k away from n]

dist_graph: the array of district graphs. dist_graph[gen][pop_id] =

<Graph with d nodes >"""

#1. Make a flip

#2. Create new dist_graph for the flip

#3. See if new plan dominates old plan. If so , accept the flip.

#4. Repeat until all nodes are checked , or until a certain fraction of

nodes are checked

hill_climbing_count = 1 #temp

hc_cycles = 0 #hill climbing cycles. The number of times hill climbing

was performed

G2 = copy.deepcopy(G) #copy of G to make edits to

curr_dg = copy.deepcopy(dist_graph[gen][pop_id])

curr_dist_graph = copy.deepcopy(dist_graph)

while hill_climbing_count >0: #Only continues as long as we ’re making

progress

if hc_cycles >= 10: break #breaks if hill climbing is taking too

long

hc_cycles += 1

hill_climbing_count = 0

for n in G2.nodes:

n_dist = G2.nodes[n][’district ’][gen][pop_id]

nbr = check_if_on_dist_boundary(rng , G2 , gen , pop_id , n)

if nbr != None: #if n is on a district boundary

nbr_dist = G2.nodes[nbr][’district ’][gen][pop_id]

curr_metrics = curr_dist_graph[gen][pop_id]. metrics

flip_status = flip(G2, ip, n, nbr_dist , gen , pop_id ,

nbr_graphs , ip.radius , curr_dist_graph , structure)

if flip_status == True: #if the flip succeeded

candidate_metrics = curr_dist_graph[gen][pop_id]. metrics

if dominates_metrics(candidate_metrics , curr_metrics ,

structure):

hill_climbing_count += 1

else:

G2.nodes[n][’district ’][gen][pop_id] = n_dist

#flips back if not dominant

upd_dg(G2, ip, curr_dist_graph , gen , pop_id , n,

nbr_dist , n_dist)

#fs2 = flip(G2 , ip , n, n_dist , gen , pop_id ,

nbr_graphs , float(’inf ’), curr_dist_graph)

#flips back if not dominant

#if fs2 == False: raise RuntimeError ("fs2 shouldn ’t

be False. We are flipping *back *")

if dominates(curr_dist_graph[gen][pop_id], dist_graph[gen][pop_id]):

dist_graph[gen][pop_id] = curr_dist_graph[gen][pop_id]

G = G2

print(f"Gen {gen}. pop_id ={ pop_id }. Finished hill climbing using

structure {structure }. Completed {hc_cycles} hill climbing

cycles. ")

else:

235

print(f"Gen {gen}. pop_id ={ pop_id }. Finished hill climbing using

structure {structure }. No improvement after completing

{hc_cycles} hill climbing cycles .")

return G, dist_graph

def check_if_on_dist_boundary(rng , G, gen , pop_id , n, d2=None):

""" Checks if a node is on a district boundary. Returns nbr if it is.

Returns None if it not on a district boundary.

G: base graph

gen: current generation

pop_id: population ID of current plan

n: node to check

d2: (optional) the specific district that we want to see if n borders """

n_dist = G.nodes[n][’district ’][gen][pop_id]

if d2 == n_dist: raise ValueError(f"d2 ({d2}) cannot be equal to n_dist

({ n_dist }).")

nbrs = list(G.neighbors(n))

rng.shuffle(nbrs)

for nbr in nbrs:

nbr_dist = G.nodes[nbr][’district ’][gen][pop_id]

if d2 == None and nbr_dist != n_dist:

return nbr

elif d2 != None and nbr_dist == d2:

return nbr

#else we continue until a proper nbr is found

#If we made it this far , then no nbr is is a different district

return None

def nondominated_sorting(dist_graph_list):

""" Sorts the entries of dist_graph_list into fronts

dist_graph_list = list of district graphs """

dgl = dist_graph_list #An alias

dominated_solns = [] #This will contain the dominated plans.

nondom = [] #This will contain the nondominated plans.

nondom_idxs = [] #This will contain the indices of the nondominated

plans.

rank=0 #This will denote the front the plan is assigned to

fronts = [] #List of lists. Each entry will be the list of plans in

that front

fronts_idxs = [] #List of lists. Each entry will the list of plan

indices in that front

plan_ids = {}

for i,dg in enumerate(dgl): plan_ids[dg] = i #This dictionary assigns

each dist_graph dg to an index i

#Loop for first front

for dg1 in dgl:

for dg2 in dgl:

if dominates(dg2 , dg1): #dg2 dominates dg1

dominated_solns.append(dg1)

break #no more calculations in second ’for ’ loop are needed

since we ’ve determined that dg1 is dominated

236

nondom = list(set(dgl) - set(dominated_solns))

fronts.append(nondom)

for dg in nondom: nondom_idxs.append(plan_ids[dg])

fronts_idxs.append(nondom_idxs)

#Loop for every subsequent front

while dominated_solns != []:

rank += 1 #helpful for debugging

temp_domsols = []

nondom_idxs = [] #This needs to reset every loop

for dg1 in dominated_solns:

for dg2 in dominated_solns:

if dominates(dg2 , dg1): #dg2 dominates dg1

temp_domsols.append(dg1)

break

nondom = list(set(dominated_solns) - set(temp_domsols))

fronts.append(nondom)

for dg in nondom: nondom_idxs.append(plan_ids[dg])

fronts_idxs.append(nondom_idxs)

dominated_solns = temp_domsols #makes a (shallow) copy

del temp_domsols #Deletes the temporary variable

return fronts_idxs , fronts

def dominates(solution1 , solution2):

""" Check if solution1 dominates solution2. ’solution1 ’ and ’solution2 ’

are graphs """

s1_mlist = solution1.metrics

s2_mlist = solution2.metrics

doms = all(s1 <= s2 for s1, s2 in zip(s1_mlist , s2_mlist)) and any(s1 <

s2 for s1, s2 in zip(s1_mlist , s2_mlist))

return doms

def dominates_metrics(solution1 , solution2 , structure=None):

""" Check if solution1 dominates solution2. ’solution1 ’ and ’solution2 ’

are lists of metric values """

if structure == None:

doms = all(s1 <= s2 for s1, s2 in zip(solution1 , solution2)) and

any(s1 < s2 for s1 , s2 in zip(solution1 , solution2))

elif structure == 1:

doms = solution1 [0] < solution2 [0]

elif structure == 2:

doms = solution1 [1] < solution2 [1]

return doms

def assign_next_gen(G, ip , gen , front , dist_graph , min_pop_id):

""" Assigns the best <ip.pop_size > plans to the next generation

G: Graph

ip: input

gen: the *next* generation to be assigned

front: the list of plans in a particular rank

dist_graph: the array of district graphs. dist_graph[gen][pop_id] =

<networkx graph >

min_pop_id: the smallest pop_id that will be assigned in this iteration

of the function """

for idx , dg in enumerate(front): #dg = dist_graph

237

pop_id = min_pop_id + idx

if ip.metrics[’dpop ’]: G.pop_dev[gen][pop_id] = dg.pop_dev_sum

if ip.metrics[’comp ’]: G.comp[gen][pop_id] = dg.shifted_pp_comp

if ip.metrics[’eg ’]: G.eg[gen][pop_id] = dg.eg

if ip.metrics[’mm ’]: G.mm[gen][pop_id] = dg.mm

if ip.metrics[’cs ’]: G.cs[gen][pop_id] = dg.cs

if ip.metrics[’egu ’]: G.egu[gen][pop_id] = dg.egu

G.metrics[gen][pop_id] = dg.metrics

dist_graph[gen][pop_id] = dg

node_count = 0

for dist in dg.nodes:

for gu in dg.nodes[dist][’GUs ’]:

G.nodes[gu][’district ’][gen][pop_id] = dist

node_count +=1

if node_count != ip.num_GUs:

raise ValueError(f"We should have {ip.num_GUs} GUs")

def crowding_distance(front , num_to_keep):

""" Finds the crowding distance for each solution in a given front and

returns the least crowded solutions up to the num_to_keep

front: the list of plans that we will calculate the crowding distance

for """

cd = {} # Crowding distance

for idx , _ in enumerate(front):

cd[idx] = 0

num_metrics = len(front [0]. metrics) #determines the number of metrics

we used

for i in range(num_metrics): # ’i’ represents the metric index

soln_list = sorted ([(idx , soln.metrics[i]) for idx , soln in

enumerate(front)], key=lambda x: x[1]) # sorts metric list by

metric value

maxval - minval finds range for the metric

range_metric = soln_list [-1][1] - soln_list [0][1]

’j’ will be used to identify spot in list

for j, soln in enumerate(soln_list):

idx = soln [0] # ’idx ’ represents the index of the solution

if j == 0 or j == len(soln_list) -1:

cd[idx] += float(’inf ’)

else:

try:

cd[idx] += (soln_list[j+1][1] - soln_list[j -1][1]) /

range_metric

except ZeroDivisionError:

cd[idx] += (soln_list[j+1][1] - soln_list[j -1][1]) / 1

sorted_idxs = sorted ([(idx , val) for idx , val in cd.items ()],

key=lambda x: x[1], reverse=True)

sorted_front = [front[i[0]] for i in sorted_idxs]

#sorted_pop_ids = [front_pop_id[i[0]] for i in sorted_idxs]

#return sorted_pop_ids , sorted_front [0: num_to_keep] # Keeps the best

’num_to_keep ’ graphs

return sorted_front [0: num_to_keep] # Keeps the best ’num_to_keep ’

graphs

238

def plot_plans(G, ip , county_lines , gen , min_idx=0, max_idx=None):

""" Plots all maps between min_idx and max_idx

G: base graph

ip: input

county_lines: Graph that will be used to plot the county lines

gen: the generation to plot. Defaults to last generation (i.e., gen=-1)

min_idx: the smallest pop_id to plot. Defaults to first plan (i.e.,

min_idx =0)

max_idx: the largest pop_id to plot. Defaults to None. Code will

automatically plot all plans in generation gen in this case. """

high_contrast_colors = [’blue ’, ’green ’, ’yellow ’, ’magenta ’, ’cyan ’,

’orange ’, ’purple ’]

cmap = mcolors.ListedColormap(high_contrast_colors)

for pop_id in range (2*ip.pop_size):

if G.nodes [0][’ district ’][gen][pop_id] != -1:

G.data[f’plan{pop_id}’] = [G.nodes[n][’district ’][gen][pop_id]

for n in G.nodes()]

if max_idx == None:

i=min_idx

planx = ’plan ’ + f’{i}’

while planx in G.data:

fig , ax = plt.subplots ()

G.data.plot(column=planx , ax=ax , legend=True , cmap=cmap)

county_lines.data.boundary.plot(ax=ax, color ="black ")

ax.set_title(f"Plan {i}")

fig.show()

i += 1

planx = ’plan ’ + f’{i}’

else:

for i in range(min_idx , max_idx):

planx = ’plan ’ + f’{i}’

fig , ax = plt.subplots ()

G.data.plot(column=planx , ax=ax , legend=True , cmap=cmap)

county_lines.data.boundary.plot(ax=ax,color ="black ")

ax.set_title(f"Plan {i}")

fig.show()

def hypervolume(ip , gen_col2 , front_col , metlist):

""" Calculates the hypervolume columns of values given a graph G

metlist [0] will contain all scaled pop_dev values; metlist [1] might

contain all scaled

compactness values

ip: input

gen_col2: if all plans are placed in a line , this would be the

generation value for each plan

front_col: contains the ranks for each plan

metlist: contains the list of metric values for each plan """

front0 = [[] for _ in range(ip.num_generations +1)]

#front0 = np.empty(shape=(0, ip.num_generations))

volume = []

ref = [1.1 for _ in range(len(metlist))]

for row in range(len(metlist [0])):

gen = gen_col2[row]

if front_col[row] == 0: #If the entry is in rank 0

239

front0[gen]. append ([metlist[i][row] for i in

range(len(metlist))])

#front0[gen] = [metlist[i][row] for i in range(len(metlist))]

for gen in range(len(front0)):

front0[gen] = np.array(front0[gen])

#front0arr = np.array(front0)

minval = [[] for _ in range(len(metlist))] #minval[gen][metric] = number

for gen in range(ip.num_generations +1):

#hypvol = hv.HyperVolume(ref)

#volume.append(hypvol.compute(front0[gen]))

ind = HV(ref_point=ref)

volume.append(ind(front0[gen]))

return volume

def plot_hvolume(hvolume):

""" Plots the hypervolume as a line chart.

hvolume: list of hypervolume values by generation ."""

Create a figure and a set of subplots

fig , ax = plt.subplots(nrows=1, ncols =1)

Plot on the first subplot

ax.plot(hvolume)

Add a title to the subplot

ax.set_title (" Hypervolume by Generation ")

Add labels to the axes

ax.set_xlabel (" Generation ")

ax.set_ylabel (" Hypervolume ")

Set x-axis ticks to be integers

ax.set_xticks(range(len(hvolume)))

Display the chart

fig.show()

def main(*args):

--

#Main algorithm

timetxt = datetime.datetime.now().strftime ("_%m%d%y_%H%M%S_%f")

rng = random.Random(args [1]) #seeds ’random ’

if isinstance(args[0], str) == True:

file_name = args [0]

ip = input_c.Load_from_file(file_name)

elif args [0] == None:

print("No input file provided. Running with default parameters ")

ip = input_c(

json_file ="./ SC_Precincts_2_FeaturesToJSO.geojson",

ps=50, # population size

240

mp=0.05, # mutation probability

nd=7, # number of districts

ng=3, # number of generations

met={ # metrics

"dpop": True , # population

"comp": True , # compactness

"eg": True , # efficiency gap

"mm": False , # median -mean

"cs": True , # county splits

"egu": True # excess geographic units

},

cf="./ SC_Counties_20_FeaturesToJSO.geojson",

lmn={ # long metric names

"dpop": "Pop Dev", # population

"comp": "Compactness", # compactness

"eg": "Eff Gap", # efficiency gap

"mm": "Med Mean", # median -mean

"cs": "County Splits", # county splits

"egu": "Excess GUs" # excess geographic units

},

rnd=1,

rad=3

)

ip.rand_seed = args [1]

ip.ub = {} # Upper bounds for the various metrics

ip.ub["dpop"] = None # Initialize this in the next step

ip.ub["comp"] = 0.9 #Corresponds to invPP of ?? (not 10 anymore)

ip.ub["eg"] = 0.24

ip.ub["mm"] = 0.05

ip.ub["cs"] = 50

ip.ub["egu"] = 500

print(f"Objectives are {[met for met in ip.metrics.keys() if

ip.metrics[met] == True]}")

gen = 0

start = time.time()

--

Initialize Graph

stateG = initialize_graph(ip)

dist_graph = [[None for _ in range(ip.pop_size *2)] for _ in

range(ip.num_generations +1)]

ip.ub["dpop"] = ip.num_districts*target_pop(stateG , ip)*0.4

nbr_graphs = make_nbr_graphs(stateG , ip.radius)

print(" Initialized graph")

cp0 = time.time()

--

Create attribute graph (for counties)

countygraph = create_attr_graph(stateG , ip, attr=" county_num ")

print(" Finished county graph")

ip.num_counties = countygraph.number_of_nodes ()

cp1 = time.time()

--

241

Create shortest paths dictionary

try:

with open(’sp.pkl ’, ’rb ’) as fp: shortest_paths = pickle.load(fp)

except FileNotFoundError: # If we haven ’t done this before

shortest_paths = nx.shortest_path(stateG)

with open(’sp.pkl ’, ’wb ’) as fp: pickle.dump(shortest_paths , fp)

print(" Created sp dictionary ")

cp2 = time.time()

--

Create shortest path lengths dictionary

try:

with open(’spl.pkl ’, ’rb ’) as fp: spl = pickle.load(fp)

except FileNotFoundError: # If we haven ’t done this before

spl = np.zeros([len(shortest_paths), len(shortest_paths)],

dtype=int) # Shortest path lengths

for i in range(len(shortest_paths)):

for j in range(len(shortest_paths)):

spl[i][j] = len(shortest_paths[i][j])

with open(’spl.pkl ’, ’wb ’) as fp: pickle.dump(spl , fp)

print(" Created spl dictionary ")

cp3 = time.time()

--

Initialize front_col2 (This contains the rank for each map)

front_col2 = [None]*(ip.num_generations +1)*ip.pop_size *2

--

Initialize first <ip.pop_size > plans

for pop_id in range(ip.pop_size):

generate_plan(rng , stateG , ip , 0, pop_id , randomness=ip.randomness)

dist_graph[gen][pop_id] = create_attr_graph(stateG , ip ,

gen_id =(gen , pop_id))

cp4 = time.time()

--

Initialize Time variables

time_initialize_graphs = cp0 -start

time_create_attr_graphs = cp1 -cp0

time_shortest_paths = cp2 -cp1

time_spl = cp3 - cp2

time_initialize_plans = cp4 -cp3

time_crossover = 0

time_mutation = 0

time_copying = 0

time_dist_graphs = 0

time_vns = 0

time_nondom_sort = 0

time_crowd_dist = 0

--

Determine how much of population is found with crossover , mutation ,

and copying

242

num_crossover = round (0.6*ip.pop_size)

num_mutation = round (0.3*ip.pop_size)

num_copy = ip.pop_size - num_crossover - num_mutation

--

Main loop

while gen < ip.num_generations:

--

#Crossover

##for pop_id_idx in range(round(ip.pop_size /2+0.01)): #Halved bc

2 children created , +0.01 to get correct rounding

for pop_id_idx in range(ip.pop_size):

#Choose crossover point

c = rng.randint(0,stateG.number_of_nodes () -1)

#Choose 2 random parents

p1 = rng.randint(0, ip.pop_size -1)

p2 = p1 #temp

while p2 == p1: p2 = rng.randint(0, ip.pop_size -1)

crossover(random , stateG , ip , gen , nbr_graphs , pop_id_idx ,

p1, p2, c, single_child=True) #will create a child

cp5 = time.time()

time_crossover += cp5 -cp4_

--

Mutation

for pop_id in range(ip.pop_size , 2*ip.pop_size):

mutation(random , stateG , ip , gen , pop_id , nbr_graphs)

cp6 = time.time()

time_mutation += cp6 -cp5

for pop_id in range(ip.pop_size , 2*ip.pop_size):

objs_satisfactory = False #Flag for whether all objectives fall

under UBs

while objs_satisfactory == False:

#Crossover

if pop_id in range(ip.pop_size , ip.pop_size+num_crossover):

cp4_ = time.time()

c = rng.randint(0,stateG.number_of_nodes () -1)

#Choose 2 parents through tournament selection

p1 = tournament_selection(random , ip, dist_graph , gen ,

3)

p2 = p1 #temp

while p2 == p1: p2 = tournament_selection(random , ip ,

dist_graph , gen , 3)

crossover(random , stateG , ip , gen , nbr_graphs , pop_id ,

p1 , p2 , c, single_child=True)

#print(f"Gen {gen}. Crossover for plan {pop_id }.")

cp5_0 = time.time()

last_cp = cp5_0

time_crossover += cp5_0 -cp4_

243

#Mutation

elif pop_id in range(ip.pop_size+num_crossover ,

ip.pop_size+num_crossover+num_mutation):

cp4_ = time.time()

p = tournament_selection(random , ip , dist_graph , gen ,

3) #parent to copy from

dist_graph[gen][pop_id] =

copy.deepcopy(dist_graph[gen][p])

for n in stateG.nodes:

stateG.nodes[n][’district ’][gen][pop_id] =

stateG.nodes[n][’district ’][gen][p]

mutation(random , stateG , ip, gen , pop_id , nbr_graphs)

#print(f"Gen {gen}. Mutation for plan {pop_id }.")

cp5_1 = time.time()

last_cp = cp5_1

time_mutation += cp5_1 -cp4_

#Copying

else:

cp4_ = time.time()

p = tournament_selection(random , ip , dist_graph , gen ,

3) #parent to copy from

dist_graph[gen][pop_id] =

copy.deepcopy(dist_graph[gen][p])

for n in stateG.nodes:

stateG.nodes[n][’district ’][gen][pop_id] =

stateG.nodes[n][’district ’][gen][p]

#print(f"Gen {gen}. Copied for plan {pop_id }.")

cp5_2 = time.time()

last_cp = cp5_2

time_copying += cp5_2 -cp4_

#Make District Graph

dist_graph[gen][pop_id] = create_attr_graph(stateG , ip ,

gen_id =(gen , pop_id))

objs_satisfactory , failedmet , metval =

checkmetrics(dist_graph[gen][pop_id], ip)

if objs_satisfactory == False: print(f"Gen {gen}. Failed

districting {pop_id} (metric too large:

{failedmet }={ metval }).")

else: print(f"Gen {gen}. Successfully created districting

{pop_id }.")

cp6 = time.time()

time_dist_graphs += cp6 - last_cp

--

Create District Graphs

#if gen ==0: dg_to_make = range (2*ip.pop_size)

#else: dg_to_make = range(ip.pop_size , 2*ip.pop_size)

dg_to_make = range(ip.pop_size , 2*ip.pop_size)

for pop_id in dg_to_make:

244

dist_graph[gen][pop_id] = create_attr_graph(stateG , ip ,

gen_id =(gen , pop_id))

cp6_1 = time.time()

time_dist_graphs += cp6_1 - cp6_0

--

Variable Neighborhood Search (and Hill Climbing)

num_plans_to_vns = min(round (0.2*ip.pop_size), 5)

pop_ids_to_vns = rng.sample(range(ip.pop_size , 2*ip.pop_size),

num_plans_to_vns)

for pop_id in pop_ids_to_vns:

stateG , dist_graph = vns(random , stateG , ip , gen , pop_id ,

nbr_graphs , dist_graph)

cp6_2 = time.time()

time_vns += cp6_2 - cp6

--

Nondominated Sorting

fronts_pop_id , fronts = nondominated_sorting(dist_graph[gen])

cp7 = time.time()

time_nondom_sort += cp7 -cp6_2

for rank , f in enumerate(fronts_pop_id):

for pop_id in f:

front_col2[gen*ip.pop_size *2 + pop_id] = rank #Assigns the

rank (i.e. the front number) that each plan falls in

dist_graph[gen][pop_id].rank = rank

--

Crowding Distance and Assigning Next Generation

front_lengths = [len(f) for f in fronts_pop_id]

stateG.front0_sizes.append(front_lengths [0])

cum_lengths = [sum(front_lengths [:i+1]) for i in

range(len(front_lengths))]

if gen < ip.num_generations -1:

for idx , l in enumerate(cum_lengths):

if idx == 0: min_pop_id =0

else: min_pop_id=cum_lengths[idx -1]

if l <= ip.pop_size: #If we can fit this entire front in

the next generation

assign_next_gen(stateG , ip , gen+1, fronts[idx],

dist_graph , min_pop_id)

elif l > ip.pop_size: #If this front is too big to all fit

in the next generation

num_to_keep = front_lengths[idx] - cum_lengths[idx] +

ip.pop_size

partial_front = crowding_distance(fronts[idx],

num_to_keep)

assign_next_gen(stateG , ip , gen+1, partial_front ,

dist_graph , min_pop_id)

break #Don ’t assign any more to the next gen

else: #If we are on the last generation , only assign the Pareto

front

245

assign_next_gen(stateG , ip, gen+1, fronts [0], dist_graph ,

min_pop_id =0)

cp8 = time.time()

time_crowd_dist += cp8 -cp7

#Advance the generation

gen += 1

curr_time = time.time()

if curr_time -start > 255600:

break #breaks if we hit 71-hour time limit

ip.front0_sizes = stateG.front0_sizes

end = time.time()

ip.runtime = end -start

--

Times

print(f"time for initialize_graph = {time_initialize_graphs :.2f}")

print(f"time for create_attr_graph = {time_create_attr_graphs :.2f}")

print(f"time for shortest_paths = {time_shortest_paths :.2f}")

print(f"time for shortest path lengths = {time_spl :.2f}")

print(f"time for initialize_plans = {time_initialize_plans :.2f}")

print(f"time for crossover = {time_crossover :.2f}")

print(f"time for mutation = {time_mutation :.2f}")

print(f"time for dist_graphs = {time_dist_graphs :.2f}")

print(f"time for vns = {time_vns :.2f}")

print(f"time for nondominated_sorting = {time_nondom_sort :.2f}")

print(f"time for crowding_distance = {time_crowd_dist :.2f}")

print(f"total time = {end -start :.2f}")

#---

df0: Starting data

input_data = [list(ip.__dict__.values ())]

input_columns = list(ip.__dict__.keys())

df0 = pd.DataFrame(input_data , columns=input_columns)

#---

df1: Assigning Precincts

cols1 = [’Generation ’, ’pop_id ’, ’node ’, ’district ’]

non = stateG.number_of_nodes ()

ps = ip.pop_size

ng = ip.num_generations

f0s = stateG.front0_sizes [-1]

if ng <= 4:

range_rows = range(non*ps*2*ng + non*f0s)

range_gen = range(ng+1)

range_ps = range(ps*2)

num_to_del = -(2*ps-f0s)*non

else: #If the number of generations is too large , only record last front

range_rows = range(non*ps*2*ng ,

non*ps*2*ng+min(front_lengths [0],ps)*non)

range_gen = range(ng , ng+1)

246

range_ps = range(min(front_lengths [0],ps))

num_to_del = None

gen_col = [math.floor(i/(non*ps*2)) for i in range_rows]

id_col = [math.floor(i/non) % (2*ps) for i in range_rows]

node_col = [(i%non)+1 for i in range_rows]

district_col = [stateG.nodes[n][’district ’][gen][pop_id] for gen in

range_gen for pop_id in range_ps for n in stateG.nodes]

district_col = district_col [: num_to_del]

--

df2: For recording the metrics of each plan

cols2 = [’Generation ’, ’pop_id ’, ’rank ’] + [ip.long_met_names[met] for

met in ip.metrics if ip.metrics[met] == True]

num_rows2 = (ng)*ps*2 + stateG.front0_sizes [-1]

gen_col2 = [math.floor(i/(2*ps)) for i in range(num_rows2)]

id_col2 = [i % (2*ps) for i in range(num_rows2)]

for idx in range(stateG.front0_sizes [-1]):

front_col2[gen*ps*2 + idx] = 0 #Assigns the last generation rank 0

(because they necessarily must be)

if ip.metrics[’dpop ’]: pop_col = [stateG.pop_dev[gen][pop_id] for gen

in range(ng+1) for pop_id in range(ps*2)]

if ip.metrics[’comp ’]: comp_col = [stateG.comp[gen][pop_id] for gen in

range(ng+1) for pop_id in range(ps*2)]

if ip.metrics[’eg ’]: eg_col = [stateG.eg[gen][pop_id] for gen in

range(ng+1) for pop_id in range(ps*2)]

if ip.metrics[’mm ’]: mm_col = [stateG.mm[gen][pop_id] for gen in

range(ng+1) for pop_id in range(ps*2)]

if ip.metrics[’cs ’]: cs_col = [stateG.cs[gen][pop_id] for gen in

range(ng+1) for pop_id in range(ps*2)]

if ip.metrics[’egu ’]: egu_col = [stateG.egu[gen][pop_id] for gen in

range(ng+1) for pop_id in range(ps*2)]

#num_to_del2 = 2*ps - max(stateG.front0_sizes [-1], ps)

num_to_del2 = 2*ps - stateG.front0_sizes [-1]

if ip.metrics[’dpop ’]: pop_col = pop_col[:- num_to_del2]

if ip.metrics[’comp ’]: comp_col = comp_col[:- num_to_del2]

if ip.metrics[’eg ’]: eg_col = eg_col[:- num_to_del2]

if ip.metrics[’mm ’]: mm_col = mm_col[:- num_to_del2]

if ip.metrics[’cs ’]: cs_col = cs_col[:- num_to_del2]

if ip.metrics[’egu ’]: egu_col = egu_col[:- num_to_del2]

front_col2 = front_col2 [:- num_to_del2]

metlist = []

if ip.metrics[’dpop ’]: metlist.append ([x/ip.ub["dpop"] for x in

pop_col])

if ip.metrics[’comp ’]: metlist.append ([x/ip.ub["comp"] for x in

comp_col])

if ip.metrics[’eg ’]: metlist.append ([x/ip.ub["eg"] for x in eg_col])

if ip.metrics[’mm ’]: metlist.append ([x/ip.ub["mm"] for x in mm_col])

if ip.metrics[’cs ’]: metlist.append ([x/ip.ub["cs"] for x in cs_col])

if ip.metrics[’egu ’]: metlist.append ([x/ip.ub["egu"] for x in egu_col])

247

hvolume = hypervolume(ip , gen_col2 , front_col2 , metlist)

num_to_del3 = -(ps - min(stateG.front0_sizes [-1], ps))

if num_to_del3 == 0: num_to_del3 = None

gen_col2 = gen_col2 [: num_to_del3]

id_col2 = id_col2 [: num_to_del3]

df1_dict = {} #Contains GU assignments

df1_dict[’Generation ’] = gen_col

df1_dict[’pop_id ’] = id_col

df1_dict[’node ’] = node_col

df1_dict[’district ’] = district_col

df2_dict = {} #Contains metrics

df2_dict[’Generation ’] = gen_col2

df2_dict[’pop_id ’] = id_col2

df2_dict[’rank ’] = front_col2

if ip.metrics[’dpop ’]: df2_dict[’Pop Dev ’] = pop_col

if ip.metrics[’comp ’]: df2_dict[’Compactness ’] = comp_col

if ip.metrics[’eg ’]: df2_dict[’Eff Gap ’] = eg_col

if ip.metrics[’mm ’]: df2_dict[’Med Mean ’] = mm_col

if ip.metrics[’cs ’]: df2_dict[’County Splits ’] = cs_col

if ip.metrics[’egu ’]: df2_dict[’Excess GUs ’] = egu_col

--

df3: Generational data

hvstring = [met for met in list(ip.metrics.keys()) if ip.metrics[met]]

hvstring.insert(0, ’hypervolume ’)

hvstring = ’ ’.join(hvstring)

cols3 = [hvstring]

df3_dict = {} #Contains generational measures

df3_dict[hvstring] = hvolume

df1 = pd.DataFrame(data=df1_dict , columns=cols1 , dtype=np.int16)

df2 = pd.DataFrame(data=df2_dict , columns=cols2)

df3 = pd.DataFrame(data=df3_dict , columns=cols3)

met_string = ’’

for met in ip.metrics:

if ip.metrics[met]== True: met_string += ’O’

else: met_string += ’X’

excel_doc_name = "Van_" + met_string + timetxt + ".xlsx"

excel_writer = pd.ExcelWriter(excel_doc_name , engine=’xlsxwriter ’)

df0.to_excel(excel_writer , sheet_name=’Input Data ’)

df1.to_excel(excel_writer , sheet_name=’GU Assignment ’)

df2.to_excel(excel_writer , sheet_name=’Metrics ’)

df3.to_excel(excel_writer , sheet_name=’Generational Data ’)

excel_writer.save()

--

Graphing

248

try:

with open(’county_boundaries.pkl ’, ’rb ’) as fp: county_boundaries =

pickle.load(fp)

except FileNotFoundError:

county_boundaries = Graph.from_file(

ip.county_file ,

adjacency ="rook",

reproject ="True",

ignore_errors ="True"

)

with open(’county_boundaries.pkl ’, ’wb ’) as fp:

pickle.dump(county_boundaries , fp)

plot_plans(stateG , ip , county_boundaries , gen)

plot_hvolume(hvolume)

print(" finished ")

if __name__ == "__main__ ":

rseed = secrets.randbelow(sys.maxsize)

#rseed = 1193283797044648948

random.seed(rseed)

print(" random seed is", rseed)

if len(sys.argv) == 1:

main(’NSGA2_input3.txt ’, rseed) #Use file name if reading from file

elif len(sys.argv) == 2:

input_file = sys.argv [1]

main(input_file , rseed)

249

Bibliography

[1] David Abramson, Mohan Krishnamoorthy, Henry Dang, et al. Simulated annealing cooling
schedules for the school timetabling problem. Asia Pacific Journal of Operational Research,
16:1–22, 1999.

[2] Baker v. Carr. 369 U.S. 186 (1962).

[3] Pietro Belotti, Austin Buchanan, and Soraya Ezazipour. Political districting to optimize the
polsby-popper compactness score. Draft manuscript, 2023.

[4] John R Birge. Redistricting to maximize the preservation of political boundaries. Social Science
Research, 12(3):205–214, 1983.

[5] Michelle H Browdy. Simulated annealing: an improved computer model for political redistrict-
ing. Yale Law & Policy Review, 8(1):163–179, 1990.

[6] Steven J. D’Amico, Shoou-Jiun Wang, Rajan Batta, and Christopher M. Rump. A simulated
annealing approach to police district design. Computers & Operations Research, 29(6):667–684,
2002.

[7] Kalyanmoy Deb, Amrit Pratap, Sameer Agarwal, and TAMT Meyarivan. A fast and elitist
multiobjective genetic algorithm: Nsga-ii. IEEE transactions on evolutionary computation,
6(2):182–197, 2002.

[8] Kalyanmoy Deb, Karthik Sindhya, and Jussi Hakanen. Multi-objective optimization. In Deci-
sion sciences, pages 161–200. CRC Press, 2016.

[9] Daryl DeFord, Moon Duchin, and Justin Solomon. Recombination: A family of markov chains
for redistricting. arXiv preprint arXiv:1911.05725, 2019.

[10] Matthew Dube and Jesse Clark. Beyond the circle: Measuring district compactness using graph
theory. In Northeast Political Science Association Conference, 2016.

[11] Moon Duchin. Outlier analysis for pennsylvania congressional redistricting. LWV vs. Common-
wealth of Pennsylvania Docket No. 159 MM 2017, 2018.

[12] Bernard Grofman and Jonathan Cervas. Recent approaches to the definition and measurement
of compactness. Available at SSRN 3919249, 2021.

[13] Wes Gurnee and David B Shmoys. Fairmandering: A column generation heuristic for fairness-
optimized political districting. In SIAM Conference on Applied and Computational Discrete
Algorithms (ACDA21), pages 88–99. SIAM, 2021.

[14] Sidney Wayne Hess, JB Weaver, HJ Siegfeldt, JN Whelan, and PA Zitlau. Nonpartisan political
redistricting by computer. Operations Research, 13(6):998–1006, 1965.

250

[15] Hisao Ishibuchi, Ryo Imada, Yu Setoguchi, and Yusuke Nojima. How to specify a reference
point in hypervolume calculation for fair performance comparison. Evolutionary computation,
26(3):411–440, 2018.

[16] Aaron R Kaufman, Gary King, and Mayya Komisarchik. How to measure legislative district
compactness if you only know it when you see it. American Journal of Political Science,
65(3):533–550, 2021.

[17] Myung Jin Kim. Multiobjective spanning tree based optimization model to political redistrict-
ing. Spatial Information Research, 26(3):317–325, 2018.

[18] Scott Kirkpatrick, C. Daniel Gelatt, and Mario P. Vecchi. Optimization by simulated annealing.
science, 220(4598):671–680, 1983.

[19] Harry A Levin and Sorelle A Friedler. Automated congressional redistricting. Journal of
Experimental Algorithmics (JEA), 24:1–24, 2019.

[20] Yan Y Liu, Wendy K Tam Cho, and Shaowen Wang. Pear: a massively parallel evolution-
ary computation approach for political redistricting optimization and analysis. Swarm and
Evolutionary Computation, 30:78–92, 2016.

[21] Michael D McDonald and Robin E Best. Unfair partisan gerrymanders in politics and law: A
diagnostic applied to six cases. Election Law Journal, 14(4):312–330, 2015.

[22] National Institute of Standards and Technology. D-Optimal Designs.
https://www.itl.nist.gov/div898/handbook/pri/section5/pri521.htm.

[23] Richard G Niemi, Bernard Grofman, Carl Carlucci, and Thomas Hofeller. Measuring compact-
ness and the role of a compactness standard in a test for partisan and racial gerrymandering.
The Journal of Politics, 52(4):1155–1181, 1990.

[24] Yaghout Nourani and Bjarne Andresen. A comparison of simulated annealing cooling strategies.
Journal of Physics A: Mathematical and General, 31(41):8373, 1998.

[25] Antonio GN Novaes, JE Souza de Cursi, Arinei CL da Silva, and João C Souza. Solving contin-
uous location–districting problems with voronoi diagrams. Computers & operations research,
36(1):40–59, 2009.

[26] Daniel D Polsby and Robert D Popper. The third criterion: Compactness as a procedural
safeguard against partisan gerrymandering. Yale L. & Pol’y Rev., 9:301, 1991.

[27] Reynolds v. Sims. 377 U.S. 533 (1964).

[28] Federica Ricca and Bruno Simeone. Local search algorithms for political districting. European
Journal of Operational Research, 189(3):1409–1426, 2008.

[29] EA Rincón-Garćıa, MA Gutiérrez-Andrade, SG De-los Cobos-Silva, P Lara-Velázquez, AS Pon-
sich, and RA Mora-Gutiérrez. A multiobjective algorithm for redistricting. Journal of applied
research and technology, 11(3):324–330, 2013.

[30] Maral Shahmizad and Austin Buchanan. Political districting to minimize county splits. Avail-
able on Optimization-Online, 2023.

[31] Takeshi Shirabe. Districting modeling with exact contiguity constraints. Environment and
Planning B: Planning and Design, 36(6):1053–1066, 2009.

251

[32] Nicholas O Stephanopoulos and Eric M McGhee. Partisan gerrymandering and the efficiency
gap. The University of Chicago Law Review, pages 831–900, 2015.

[33] Lukas Svec, Sam Burden, and Aaron Dilley. Applying voronoi diagrams to the redistricting
problem. The UMAP journal, 28(3):313–329, 2007.

[34] Dmitri I. Svergun. Restoring low resolution structure of biological macromolecules from solution
scattering using simulated annealing. Biophysical journal, 76(6):2879–2886, 1999.

[35] Rahul Swamy, Douglas M King, and Sheldon H Jacobson. Multiobjective optimization for
politically fair districting: A scalable multilevel approach. Operations Research, 2022.

[36] Leonardo Vanneschi, Roberto Henriques, and Mauro Castelli. Multi-objective genetic algo-
rithm with variable neighbourhood search for the electoral redistricting problem. Swarm and
Evolutionary Computation, 36:37–51, 2017.

[37] William Vickrey. On the prevention of gerrymandering. Political Science Quarterly, 76(1):105–
110, 1961.

[38] Samuel S-H Wang. Three practical tests for gerrymandering: Application to maryland and
wisconsin. Election Law Journal, 15(4):367–384, 2016.

[39] Wesberry v. Sanders. 376 U.S. 1 (1964).

[40] David Bruce Wilson. Generating random spanning trees more quickly than the cover time.
In Proceedings of the twenty-eighth annual ACM symposium on Theory of computing, pages
296–303, 1996.

252

	Optimization Strategies for Political Redistricting
	Recommended Citation

	Title Page
	Abstract
	Dedication
	Acknowledgments
	List of Tables
	List of Figures
	Introduction
	Objectives Used
	Dissertation Outline

	Literature Review
	Mixed-Integer Programming Approach
	Formulations
	Methods
	Results
	Conclusion

	Optimizing Compactness Using Simulated Annealing
	Introduction and Overview
	Our Simulated Annealing Algorithm
	Experimental Design
	Results
	Conclusions

	MOSA2: Multiobjective Simulated Annealing 2
	Multiobjective Optimization
	The Algorithm
	Experimental Design
	MOSA2 Results

	NSGA-II for Political Redistricting
	Introduction
	Methods
	Results
	Conclusion and Future Work

	Conclusions
	Appendices
	MIP Codes
	Simulated Annealing Codes
	MOSA2 Codes
	NSGA-II Codes
	VNSGA-II Codes

	Bibliography

