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Abstract

As the generalization of frames in the Euclidean space Rn, a probabilistic frame is a probabil-

ity measure on Rn that has a finite second moment and whose support spans Rn. The p-Wasserstein

distance with p ≥ 1 from optimal transport is often used to compare probabilistic frames. It is

particularly useful to compare frames of various cardinalities in the context of probabilistic frames.

We show that the 2-Wasserstein distance appears naturally in the fundamental objects of frame

theory and draws consequences leading to a geometric viewpoint of probabilistic frames.

We convert the classic lower bound estimates of 2-Wasserstein distance [Gelbrich, 1990,

Cuesta-Albertos et al., 1996] from covariance operators to frame operators. As a consequence, we

show that the sets of probabilistic frames with given frame operators are all homeomorphic, and

the homeomorphism is an optimal transport map given by push-forward with a unique symmetric

positive definite map that depends only on the two given frame operators. As an application, we

generalize several recent results in probabilistic frames, such as finding the closest frame of a certain

kind and showing the connectedness of the set of probabilistic frames with any given frame operator.

Furthermore, we consider the perturbation of probabilistic frames by generalizing the Paley–

Wiener theorem to probabilistic frames. The Paley–Wiener Theorem is a classical result about the

stability of a basis in a Banach space, claiming that if a sequence is close to a basis, then this

sequence is also a basis. Similar results are extended to frames in Hilbert spaces. In this work, we

generalize the Paley–Wiener theorem to probabilistic frames and claim that if a probability measure

is close to a probabilistic frame in some sense, this probability measure is also a probabilistic frame.

In the end, we discuss some open problems about probabilistic frames. We first mention

the minimization problem of probabilistic p-frames in the p-Wasserstein metric. Then we introduce

probabilistic frames on the unit sphere Sn−1. We show the existence of the closest probabilistic

Parseval frame on Sn−1 and give a lower bound estimate about the minimizing distance.
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Notation

H: a separable Hilbert space.

Rn: the n-dimensional Euclidean space.

Sn−1: the unit sphere in the n-dimensional Euclidean space.

Id: the n× n identity matrix in Rn.

f t: the transpose of a column vector f in Rn.

P(Rn): the set of Borel probability measures on Rn.

Mp(µ): the p-moments of probability measure µ where p ∈ [1,∞).

Pp(Rn): the set of Borel probability measures on Rn with finite p-moments where p ∈ [1,∞).

supp(µ): the support of probability measure µ.

f#µ: the pushforward of µ by a measurable map f .

A#µ: the pushforward of µ by the linear map given by the matrix A.

Γ(µ, ν): the set of transport couplings with marginals µ and ν.

Wp(µ, ν): p-Wasserstein distance between µ ∈ Pp(Rn) and ν ∈ Pp(Rn) where p ∈ [1,∞).

Sµ: the frame operator of µ.

∥Sµ∥2: the 2-matrix norm of Sµ.

µ⊗ ν: the product measure of µ and ν.

TP(Rn)/T(Rn): the set of Parseval/tight probabilistic frames in Rn.

πx⊥ : the projection on the subspace orthogonal to the (unit) vector x.

Sn+: the set of real n× n positive semi-definite symmetric matrices.

Sn++: the set of real n× n positive definite symmetric matrices.

P++: the set of probabilistic frames on Rn.

tr(A): the trace of matrix A.

Cc(Rn): the set of continuous functions on Rn with compact support.
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Chapter 1

Introduction and Background

1.1 Introduction to Frame Theory

In the study of vector spaces, one of the most important concepts is that of a basis, which

provides us with an expansion of all vectors in terms of "elementary building blocks" and hereby

helps us by reducing many questions concerning general vectors to similar questions concerning only

the basis elements [Christensen, 2016]. However, being a basis is conditional: linear dependence

between the elements is not allowed, and sometimes, we even require orthogonality with respect to

an inner product. This makes looking for bases satisfying other conditions challenging, and thus we

need a more flexible tool. Frames are such tools, which were first introduced by Duffin and Schaeffer

in the context of nonharmonic analysis [Duffin and Schaeffer, 1952].

Definition 1.1.1 (Frame in Hilbert Space). A sequence {fi}∞i=1 in a separable Hilbert space H is

said to be a frame for H if there exist 0 < A ≤ B < ∞ such that for any f ∈ H,

A∥f∥2 ≤
∞∑
i=1

| ⟨f , fi⟩ |2 ≤ B∥f∥2,

where ∥ ·∥ is the norm induced by the inner product in H. A and B are called lower and upper frame

bounds. Furthermore, {fi}∞i=1 is called a tight frame if A = B and Parseval if A = B = 1.

In the finite n-dimensional Euclidean space Rn, the infinite summation in the frame condition

becomes finite summation. That is to say, a collection of points {yi}Ni=1 where N ≥ n are said to

1



be a (finite) frame in Rn if there exist 0 < A ≤ B < ∞ such that for any x ∈ Rn,

A∥x∥2 ≤
N∑
i=1

| ⟨x,yi⟩ |2 ≤ B∥x∥2.

Intuitively, one could think about a frame as a basis for adding more elements, but linear

independence between elements is not required. A frame for an inner product space also allows

each vector to be written as a linear combination of the frame elements, which provides a way to

reconstruct signals. In signal processing terminology, a basis could only provide a unique signal

representation, while a frame provides a redundant, stable, and robust way of representing a signal.

If some data are missing in the signal transmission process, the signal cannot be reconstructed

using a basis. However, the missing signal could be reconstructed using a frame due to the linear

dependence of frame elements.

Frames have many applications in pure and applied mathematics, such as the Kadison-

Singer problem [Casazza, 2013] and directional statistics [Ehler and Galanis, 2011]. Due to the

redundancy and robustness, frames are effective tools in signal processing, and have been applied

in time-frequency analysis [Gröchenig, 2001], wavelet analysis [Daubechies, 1992], coding theory

[Strohmer and Heath Jr, 2003], sampling theory [Eldar, 2003], wireless communication [Strohmer,

2001], image process [Kutyniok and Labate, 2012], compressed sensing [Naidu and Murthy, 2020], the

design and analysis of filter banks [Fickus et al., 2013], and, more generally, in applied mathematics,

computer science, and engineering. For a complete treatment of frame theory, see [Casazza, 2000,

Casazza, 2001,Han, 2007,Casazza and Kutyniok, 2012,Casazza and Lynch, 2016,Christensen, 2016]

for more information.

Let {fi}∞i=1 be a frame for H with bounds 0 < A ≤ B < ∞. One of the important tools for

studying frames is operator theory. There are four operators related to the frame {fi}∞i=1: analysis

operator, synthesis operator, Gram operator, and frame operator S : H → H which is given by

S : H → H, S(f) =

∞∑
i=1

⟨f , fi⟩ fi, ∀ f ∈ H.

The frame operator S : H → H plays an essential role in this work. Indeed, the frame

operator S : H → H associated with a frame is bounded linear and invertible. In Rn, the frame

2



operator corresponds to a symmetric positive definite matrix, i.e.,

S =

N∑
i=1

fif
t
i ∈ Sn++

where f ti is the transpose of fi. Let Id be the n × n identity matrix in Rn. By using the frame

operator, we have the following characterization about finite frames in Rn.

Lemma 1.1.2 (Characterization of Finite Frames). (1) {fi}Ni=1 is a frame for Rn ⇔ the frame

operator S is positive definite ⇔ span{f1, · · · , fN} = Rn.

(2) {fi}Ni=1 is a tight frame with bound A > 0 ⇔ S = A Id.

(3) {fi}Ni=1 is a Parseval frame ⇔ S = Id.

There are two ways to reconstruct the signal using frames in signal processing. One way is

to employ tight frames. If {fi}∞i=1 is a tight frame for the separable Hilbert space H with the frame

bound 0 < A < ∞, then for any f ∈ H, we have the following reconstruction formula

f =
1

A

∞∑
i=1

⟨f , fi⟩ fi.

The other way to reconstruct the signal is through dual frames.

Definition 1.1.3 (Dual Frames). Suppose {fi}∞i=1 is a frame for the Hilbert space H with bounds

0 < A ≤ B < ∞. A frame {gi}∞i=1 for H is said to be a dual frame of {fi}∞i=1 if for any f ∈ H,

f =

∞∑
i=1

⟨f ,gi⟩ fi =
∞∑
i=1

⟨f , fi⟩gi.

An example of dual frames for {fi}∞i=1 is {S−1fi}∞i=1 with bounds 0 < 1
B ≤ 1

A < ∞, which

is known as the canonical dual frame.

1.2 Background on Optimal Transport

This section introduces optimal transport and Wasserstein distance, which is used to quan-

tify the distance and similarities between two probability measures [Figalli and Glaudo, 2021]. Fur-

thermore, 2−Wasserstein distance is useful to quantify the distance between two finite frames with

different cardinalities in the sense of probabilistic frame.

3



Before talking about optimal transport, we need the following notations and definitions. Let

P(Rn) be the set of Borel probability measures on Rn and for p ∈ [1,∞), let Pp(Rn) be the set of

Borel probability measures on Rn with finite p-moments Mp(µ) , i.e.,

Pp(Rn) = {µ ∈ P(Rn) : Mp(µ) =

∫
Rn

∥x∥pdµ(x) < +∞}.

Definition 1.2.1 (Support of Probability Measure). Let Br(x) be the open ball centered at the

vector x with radius r > 0. The support of µ ∈ P(Rn) is defined by

supp(µ) =
{
x ∈ Rn : for any r > 0, µ(Br(x)) > 0

}
.

Definition 1.2.2 (Pushforward). Let M,N > 0 and µ ∈ P(RM ). The pushforward of µ by a

measurable map f : RM → RN is a probability measure in RN , which is denoted by f#µ and

f#µ(E) := (µ ◦ f−1)(E) = µ
(
f−1(E)

)
for any Borel set E ⊂ RN .

If f : RM → RN is a linear map given by the matrix A, then we use A#µ to denote f#µ. Further-

more, we have the change-of-variable formula:

∫
RN

g(y)d(f#µ)(y) =

∫
RM

g(f(x))dµ(x),

where g is measurable such that g ∈ L1(RN , f#µ) and g ◦ f ∈ L1(RM , µ).

Now, let us switch to optimal transport. In 1781, Gaspard Monge proposed the concept

of optimal transport from one practical situation: if one transports soil to construct fortifications,

what is the cheapest way to move the soil? Let µ and ν be two probability measures on Rn. This

scenario leads to the well-known Monge optimal transportation problem

inf
T#µ=ν

∫
Rn

c(x, T (x)) dµ(x),

where T : Rn → Rn is a map and c(x, T (x)) is the cost of transporting unit mass from x to T (x).

Such map T is called a transport map. Since T is a map, the mass at x can only be transported to

one destination, meaning Monge’s formulation does not allow mass splitting.

4



In the 1940s, Leonid Kantorovich revisited Monge’s problem by relaxing Monge’s formula-

tion to allow mass splitting.

inf
γ∈Γ(µ,ν)

∫
Rn×Rn

c(x,y) dγ(x,y),

where c(x,y) is the cost of transporting unit mass from x to y, and Γ(µ, ν) is the set of transport

couplings with marginals µ and ν, which is given by

Γ(µ, ν) =
{
γ ∈ P(Rn × Rn) : πx#γ = µ, πy#γ = ν

}
,

and πx and πy are the projections on the corresponding coordinate, i.e., for any (x,y) ∈ Rn × Rn,

πx(x,y) = x, πy(x,y) = y.

When the cost function c(x,y) = ∥x− y∥p where p ∈ [1,∞), the metric side of Kantorovich

formulation makes it able to quantify the distance between probability measures µ ∈ Pp(Rn) and

ν ∈ Pp(Rn) via p-Wasserstein distance, which is defined as below

Wp(µ, ν) =

(
inf

γ∈Γ(µ,ν)

∫
Rn×Rn

∥x− y∥p dγ(x,y)

) 1
p

(1.2.1)

As we mentioned in the later section, (probabilistic) frames for Rn could be seen as prob-

ability measures with finite second moments whose support span Rn. Therefore, we could use

2-Wasserstein metric W2(µ, ν) to quantify the distance between two (probabilistic) frames µ and ν.

In this work, we also need the gluing lemma, a standard tool in optimal transport to "glue"

two transport couplings together. Similarly, let πx, πy, πxy, πyz be projections on the corresponding

coordinates, i.e., for any (x,y, z) ∈ Rn × Rn × Rn,

πx(x,y, z) = x, πy(x,y, z) = y, πxy(x,y, z) = (x,y), πyz(x,y, z) = (y, z).

Lemma 1.2.3 (Gluing Lemma, [Figalli and Glaudo, 2021, pp.59]). Let µ1, µ2, µ3 ∈ P2(Rn). Suppose

γ12 ∈ Γ(µ1, µ2) and γ23 ∈ Γ(µ2, µ3) such that πy#γ
12 = πx#γ

23 = µ2. Then there exists γ123 ∈

P(Rn × Rn × Rn) such that πxy#γ
123 = γ12 and πyz#γ

123 = γ23.

5



1.3 Preliminaries to Probabilistic Frames

Recall that if {yi}Ni=1 is a frame in Rn with bounds 0 < A ≤ B < ∞, then for any x ∈ Rn,

A∥x∥2 ≤
N∑
i=1

| ⟨x,yi⟩ |2 ≤ B∥x∥2.

By taking µf =
N∑
i=1

1
N δyi

∈ P(Rn), the definition of frame is equivalent to

A

N
∥x∥2 ≤

∫
Rn

| ⟨x,y⟩ |2dµf (y) ≤
B

N
∥x∥2, for any x ∈ Rn.

This allows us to consider finite frames as discrete probabilistic measures on Rn. Inspired by this

insight, M. Ehler extended the above to a general probabilistic measure [Ehler, 2012], and we have

the following definitions for probabilistic frames.

Definition 1.3.1 (Probabilistic Frame, [Ehler and Okoudjou, 2013]). µ ∈ P(Rn) is said to be a

probabilistic frame for Rn if there exist 0 < A ≤ B < ∞ such that for any x ∈ Rn,

A∥x∥2 ≤
∫
Rn

| ⟨x,y⟩ |2dµ(y) ≤ B∥x∥2.

µ is said to be a tight probabilistic frame if A = B and Parseval if A = B = 1. Moreover, µ is said

to be a Bessel probability measure if only the upper bound holds.

By Cauchy-Schwartz inequality, it is easy to show that if µ ∈ P2(Rn), then µ is a Bessel

probability measure with upper bound M2(µ). We could also define the frame operator for proba-

bilistic frames, which is symmetric and positive definite.

Definition 1.3.2 (Frame Operator). Let µ be a probabilistic frame for Rn. The frame operator Sµ

for µ is defined by

Sµ :=

∫
Rn

yytdµ(y).

Then we have the following characterization for probabilistic frames.

Proposition 1.3.3 (Characterization of Probabilistic Frames, Theorem 12.1 in [Ehler and Okoud-

jou, 2013], Proposition 3.1 in [Maslouhi and Loukili, 2019]). Let µ ∈ P(Rn). Then we have

(1) µ is a probabilistic frame ⇔ Sµ is positive definite ⇔ µ ∈ P2(Rn) and span{supp(µ)} = Rn.

6



(2) µ is a tight probabilistic frame with bound A > 0 ⇔ Sµ = A Id.

(3) µ is a Parseval probabilistic frame ⇔ Sµ = Id.

Note that if µ is tight with bound A > 0, then for any f ∈ Rn, we have the following

reconstruction formula

f =
1

A

∫
Rn

⟨f ,x⟩x dµ(x).

And if µ ∈ P(Rn) is a probabilistic frame with bounds 0 < A ≤ B < ∞, then Sµ ∈ Sn
++. Let ∥Sµ∥2

denote the 2-matrix norm of Sµ. Since Sµ is symmetric, then ∥Sµ∥2 is the largest eigenvalue of Sµ.

Since each eigenvalue of Sµ is within A and B, then

A ≤ ∥Sµ∥2 ≤ B,
1

B
≤ ∥S−1

µ ∥2 ≤ 1

A
, and

1√
B

≤ ∥S−1/2
µ ∥2 ≤ 1√

A
.

Similarly, one could define the probabilistic dual frames for a given probabilistic frame µ.

Definition 1.3.4 (Transport Duals, Definition 3.1, Theorem 3.6 and 3.7 in [Wickman, 2014]). Let

µ be a probabilistic frame for Rn. The set of transport duals for µ is defined as

Dµ :=
{
ν ∈ P2(Rn) : ∃ γ ∈ Γ(µ, ν) s.t.

∫
Rn×Rn

xytdγ(x, y) = Id
}
.

Furthermore, Dµ is not empty and a closed subset of P2(Rn) in the weak topology.

Proposition 1.3.5 ( Proposition 3.2 in [Wickman, 2014]). Let µ be a probabilistic frame for Rn

and take ν ∈ Dµ. Then ν is also a probabilistic frame.

Therefore, the following is well-defined.

Definition 1.3.6 (Probabilistic Dual Frame). Let µ be a probabilistic frame for Rn. ν ∈ P2(Rn) is

called a probabilistic dual frame of µ with respect to γ ∈ Γ(µ, ν) if

∫
Rn×Rn

xytdγ(x, y) = Id

Remark 1.3.1. Let µ be a probabilistic frame for Rn with bounds 0 < A ≤ B < ∞. S−1
µ #

µ is said

to be the canonical probabilistic dual frame of µ with bounds 0 < 1
B ≤ 1

A < ∞, since ν := S−1
µ #

µ is

the transport dual of µ with respect to γ := (Id× S−1
µ )

#
µ ∈ Γ(µ, ν).
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Suppose µ is a probabilistic frame for Rn. There are two canonical probabilistic frames

related to µ: the canonical probabilistic Parseval frame S
−1/2
µ #µ and the canonical probabilistic

dual frame S−1
µ #

µ. Therefore, we have the following two reconstruction formulas. For any f ∈ Rn,

f =

∫
Rn

〈
f ,S−1/2

µ x
〉
S−1/2
µ x dµ(x) =

∫
Rn

〈
S−1/2
µ f ,x

〉
S−1/2
µ x dµ(x), (1.3.1)

f =

∫
Rn

〈
f ,S−1

µ x
〉
x dµ(x) =

∫
Rn

〈
S−1
µ f ,x

〉
x dµ(x). (1.3.2)

After Ehler’s starting work on probabilistic frames, M. Ehler and K.A. Okoudjou further

expanded their work [Ehler and Okoudjou, 2012] and gave an overview of probabilistic frames [Ehler

and Okoudjou, 2013]. They listed several open problems in probabilistic frames and rephrased

the hyperplane conjecture in convex bodies proposed by Bourgain [Bourgain, 1986]. Under the

guidance of K.A. Okoudjou, C.G. Wickman further studied some problems in frame theory by an

optimal transport approach in her dissertation [Wickman, 2014]. Wickman uses Otto’s calculus to

construct gradient flows for the probabilistic p-frame potential and gives a more general definition of

the concepts of duality, analysis, and synthesis in frame theory [Wickman, 2014,Lau and Okoudjou,

2015,Wickman and Okoudjou, 2017,Wickman and Okoudjou, 2023]. Some equalities and inequalities

about probabilistic frames were also shown [Li et al., 2016].

Furthermore, M. Maslouhi and S. Loukili established a 1-1 correspondence between tight

probabilistic frames and positive operator-valued measures [Maslouhi and Loukili, 2019] and an-

swered an open problem in [Ehler and Okoudjou, 2013]. Distance minimizing problem over a given

class of probabilistic frames in the Wasserstein metric is an open and active topic. In [Cheng,

2018, Cheng and Okoudjou, 2019], the authors showed that the canonical probabilistic Parseval

frame is the unique closest probabilistic Parseval frame to a given probabilistic frame: let µ be a

probabilistic frame in Rn and TP(Rn) the set of Parseval probabilistic frames in Rn, then the the

following minimizing problem

IP(µ,Rn) := inf
ν∈TP(Rn)

W2(µ, ν)

admits an unique optimizer given by µ∗ = S
− 1

2
µ #µ. By using different techniques, M. Maslouhi

and S. Loukili not only showed the same result about the closest Parseval frame but also showed

that there exists a unique closest probabilistic tight frame [Maslouhi and Loukili, 2019,Loukili and

Maslouhi, 2020]: let T(Rn) be the set of tight probabilistic frames in Rn, then the minimizing

8



problem

I(µ,Rn) := inf
ν∈T(Rn)

W2(µ, ν)

admits a unique solution given by µ∗ = (λSµ)
− 1

2
#µ with λ−1/2 =

tr(S1/2
µ )

n .

For a complete introduction to probabilistic frames, we refer to [Ehler and Okoudjou, 2013,

Wickman, 2014] for more details.

1.4 Summary of Main Results

It is well-known that the canonical Parseval frame is the closest Parseval frame to a given

frame [Bodmann and Casazza, 2010,Casazza and Kutyniok, 2007] and the canonical Probabilistic

Parseval frame is the unique closest Parseval probabilistic frame to a given probabilistic frame under

the 2-Wassertein metric [Cheng and Okoudjou, 2019,Loukili and Maslouhi, 2020]. This work extends

the above result into a more general setting.

Recall that Sn++ is the set of n× n real positive definite symmetric matrices. For T ∈ Sn++,

let PT be the set of probabilistic frames with frame operator T. We first show that P++, the space

of probabilistic frames, and PT are homotopy equivalent and pathwise connected. Then for µ ∈ PS,

we show that the following problem

W2(µ,PT) := inf
ν∈PT

W2(µ, ν).

admits a unique optimizer ν := A(S,T)#µ where A(S,T) := S−1/2(S1/2TS1/2)1/2S−1/2.

As an application, the above enables us to study unit-norm probabilistic tight frames. A

probabilistic frame µ is unit-norm if M2(µ) :=
∫
Rn ∥x∥2dµ(x) = 1. It is clear that µ is a unit-

norm probabilistic tight frame if and only if Sµ = 1
nId. Therefore, given a probabilistic frame µ

with frame operator Sµ, the closest unit-norm probabilistic tight frame to µ in the W2 topology

is A(Sµ,
1
nId)#µ = (nSµ)

− 1
2
#µ, which answers an open problem (Problem 12.1 (b)) in [Ehler and

Okoudjou, 2013]. Furthermore, we claim that P1
n Id, the set of unit-norm probabilistic tight frames,

is pathwise connected, which is similar to the Larson’s frame homotopy problem proposed in an

REU program at 2002 and later proved by [Cahill et al., 2017]: the set of finite unit-norm tight

frames is pathwise connected.

Perturbation analysis is a classic topic in the frame theory. In this work, we show that the
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set of probabilistic p–frames is open with respect to the Wp topology. Furthermore, we show that

for a given probabilistic frame µ with the lower frame bound A and ν ∈ P2(Rd), if

λ :=

∫
Rn×Rn

∥x− y∥2dγ(x,y) < A,

where γ ∈ Γ(µ, ν). Then ν is a probabilistic frame with bounds

(
√
A−

√
λ)2 and M2(ν).

In particular, if W 2
2 (µ, ν) < A, then ν is a probabilistic frame with bounds

(
√
A−W2(µ, ν))

2 and M2(ν).

Finally, we generalize the Paley–Wiener Theorem for probabilistic frames, which claims that

if a probability measure is close to a probabilistic frame in some sense, then this probability measure

is also a probabilistic frame. That is to say, if µ is a probabilistic frame for Rn with bounds 0 <

A ≤ B < ∞ and ν ∈ P2(Rn). If there exist constants λ1, λ2, δ ≥ 0 such that max (λ1 +
δ√
A
, λ2) < 1

and for all w ∈ Cc(Rn),

∥∥∥ ∫
Rn

w(x)xdµ(x)−
∫
Rn

w(y)ydν(y)
∥∥∥

≤ λ1

∥∥∥∫
Rn

w(x)xdµ(x)
∥∥∥+ λ2

∥∥∥∫
Rn

w(y)ydν(y)
∥∥∥+ δ∥w∥L2(µ)

where Cc(Rn) be the set of continuous functions on Rn with compact support. Then ν is a proba-

bilistic frame for Rn with bounds

A2(1− (λ1 +
δ√
A
))2

(1 + λ2)2M2(ν)
and M2(ν).
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Chapter 2

Probabilistic Frames and Wasserstein

Distances

2.1 Introduction

In recent work [Ehler and Okoudjou, 2013,Loukili and Maslouhi, 2020,Maslouhi and Loukili,

2019,Wickman and Okoudjou, 2023], probabilistic frames, a subset of Borel probability measures on

Rn that generalize, but also contain actual frames, have been considered. Probabilistic frames are

Borel probability measures in Rn with finite second moments whose support, interpreted as a set of

vectors, contains a basis of Rn. Recall that we denote the set of Borel probability measures on Rn

by P(Rn) and by Pp(Rn) those with finite p-th moments where p ≥ 1, i.e. µ ∈ Pp(Rn) if µ ∈ P(Rn)

and Mp(µ) :=
∫
Rn ∥x∥p dµ(x) < ∞.

Definition 2.1.1. µ ∈ Pp(Rn) is called probabilistic p-frame if there exist 0 < A ≤ B such that for

any x ∈ Rn,

A∥x∥p ≤
∫
Rn

| ⟨x,y⟩ |p dµ(y) ≤ B∥x∥p.

Furthermore, µ is called tight (frame) if A = B, and µ is called Parseval (frame) if A = B = 1.

The set Pp(Rn) is equipped with the p-Wasserstein metric Wp(·, ·) and becomes a metric

space. Convergence µn → µ in the p-Wasserstein metric is equivalent to weak-∗ convergence together

with convergence of p-th moments
∫
Rn ∥x∥pdµn →

∫
Rn ∥x∥pdµ. For more background see [Figalli
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and Glaudo, 2021,Villani, 2003,Villani et al., 2009]. Starting with a simple observation:

Proposition 2.1.2. Suppose µ ∈ Pp(Rn). For any unit-vector x and any p ≥ 1

W p
p (µ, (πx⊥)#µ) =

∫
Rn

|⟨x,v⟩|pdµ(v),

where πx⊥ denotes the orthogonal projection to the plane x⊥ of vectors perpendicular to x.

Since the "basis containment" condition for frames means that a probabilistic p-frame has

positive p-Wasserstein distance to all linear subspaces we see:

Proposition 2.1.3. µ ∈ Pp(Rn) is a probabilistic p-frame, if and only if Wp(µ, (πx⊥)#µ) > 0 for

all unit vectors x.

We call a probabilistic 2-frame simply probabilistic frame. If µ ∈ P2(Rn) the linear operator

⟨x,Sµy⟩ :=
∫
Rn⟨x,v⟩⟨y,v⟩ dµ(v) declared for x,y ∈ Rn. After the choice of a basis we see that

Sµ =
∫
Rn vvt dµ is a symmetric positive semi-definite matrix and for any unit vector x ∈ Sn−1,

W 2
2 (µ, (πx⊥)#µ) = xt

∫
Rn

vvt dµ(v) x = xt Sµ x. (2.1.1)

Hence, Sµ is positive definite if and only if µ is a (probabilistic) frame and, in this case, is known as

the frame operator of µ. Identity 2.1.1 gives a geometric interpretation of the frame property. More

precisely, since any positive semi-definite Sµ has a root S
1/2
µ the ellipsoid Eµ := {S1/2

µ x : ∥x∥ =

1} ⊂ Rn is a hyperellipsoid exactly if Sµ is definite, that is, if µ is a probabilistic frame. We call

the ellipsoid Eµ the Wasserstein ellipsoid of µ. It provides the 2-Wasserstein distance of a given

(probabilistic) frame to the nearest non-frame in any given spacial direction. In an (orthogonal)

eigenbasis {ei} for Sµ (not necessarily definite) points on Eµ solve the equation

∑
{i: W2(µ,(πe⊥

i
)#µ) ̸=0}

x2
i

W 2
2 (µ, (πe⊥

i
)#µ)

= 1.

With respect to that eigenbasis the values {W2(µ, (πe⊥
i
)#µ)}ni=1 are the eigenvalues of S1/2

µ . Because

the Wasserstein ellipsoid is defined through Wasserstein distances, it is neither the Legendre- nor

the Binet-ellipsoid; see [V.D. and Pajor, 1989] and the literature therein. Let Sn+ be the set of

non-negative definite symmetric n× n matrices and Sn++ ⊂ Sn+ those that are positive definite. For
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given T ∈ Sn++ let W2(µ,PT) := infν∈PT
W2(µ, ν). Based on theorems of [Cuesta-Albertos et al.,

1996] and [Gelbrich, 1990,Olkin and Pukelsheim, 1982] adapted to frames we show

Theorem 2.1.4. For any given S,A ∈ Sn++ push-forward with A defines a homeomorphism A# :

PS → PASA so that

W 2
2 (µ,A#µ) = W 2

2 (µ,PASA) = tr S(Id−A)2 (2.1.2)

for all µ ∈ PS and W2(µ, ν) > W2(µ,A#µ) for any ν ∈ PASA so that ν ̸= A#µ.

One may be interested in the Wasserstein distance between frames with given frame operators, say

S,T ∈ Sn++. In this case one applies the Theorem to the unique A ∈ Sn++ that solves T = ASA

(see Proposition 2.4.1) given by

A = A(S,T) := S−1/2(S1/2TS1/2)1/2S−1/2.

Since W2(µ,PT) is the same for all µ ∈ PS we may define dW (S,T) := W2(µ,PT) for one and any

µ ∈ PS.

Proposition 2.1.5. Given S,T ∈ Sn+. Then dW (S,T) := W2(PS,PT) is a metric on Sn+. More

precisely, we have

dW (S,T) = tr(S+T− (S1/2TS1/2)1/2 − (T1/2ST1/2)1/2)

= tr (S(Id−A(S,T)) +T(Id−A(T,S))).

(2.1.3)

Up to roots of entries, this metric compares to the metrics induced by the operator norm ∥ · ∥op and

the Frobenius norm ∥ · ∥F as follows.

∥S1/2 −T1/2∥op ≤ W2(PS,PT) = dW (S,T) ≤ ∥S1/2 −T1/2∥F . (2.1.4)

In particular, the topology generated by dW is equivalent to the standard norm topologies on Sn+.

The importance of this proposition is that it shows the continuity of the "frame map"

S : P2(Rn) → Sn+ given by S(µ) = Sµ, for an alternative proof see [Wickman and Okoudjou, 2023].

The closely related metric d(S,T) :=
√

dW (S2,T2) defined for symmetric matrices S,T ∈ Sn is by

estimate 2.1.4 equivalent to norm induced metrics on Rn, however it is not induced by a norm as

shown in [Cuesta-Albertos et al., 1996].
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Corollary 2.1.6. The set of probabilistic p-frames is open in the p-Wasserstein topology on Pp(Rn).

We give the proof for general p later. However, it is easy to see for p = 2. Just compose

the (continuous) frame map S with the determinant map det : Sn+ → R≥0, to get a continuous map

det ◦S : P2 → R≥0. Then the set of frames {µ ∈ P2(Rn) : det ◦S(µ) > 0} is open.

That means that the frame map S : P2(Rn) → Sn+ defines a foliation over the set Sn+ of

n× n positive semi-definite symmetric matrices with real entries. Restricted to frames, this gives a

foliation over Sn++, the set of positive definite symmetric matrices. Theorem 2.1.4 implies that the

fibers PS ⊂ P2(Rn), i.e. the measures in P2(Rn) with frame operator S, can be identified.

2.2 Applications of the Main Results

Here is an application of Theorem 2.1.4. Given a frame operator, say T, consider the ray

R+T := {λT : λ ∈ R+} through T. Let W 2
2 (µ,R+T) := infλ∈R+

W 2
2 (µ,PλT).

Corollary 2.2.1. Let µ be a probabilistic frame, then

W 2
2 (µ,R+T) = W 2

2 (µ, (λ
1/2
minA(Sµ,T))#µ) where λ

1/2
min =

tr (S1/2
µ TS1/2

µ )1/2

tr T .

In particular, the closest tight frame to a given frame is obtained by putting T = Id, see

also [Loukili and Maslouhi, 2020].

Proof. From theorem 2.1.4 we know that the probabilistic frame with given frame operator λT

closest to µ is given by (λ1/2A(Sµ,T))#µ. To determine the optimal λ, using Identity 2.1.2, so that:

W 2
2 (µ, (λ

1/2A(Sµ,T))#µ) = tr Sµ + λ · tr T− 2
√
λ · tr (S1/2

µ TS1/2
µ )1/2

is differentiable in λ, with minimum as stated.

Let us denote the set of probabilistic frames in P2(Rn) by P++, so that

P++ = (det ◦S)−1(0,∞) = S−1Sn++.

We can reformulate Theorem 2.1.4 as follows.

Theorem 2.2.2. Push forward with A ∈ Sn++ lifts the congruence action CS(A) := ASAt of the

multiplicative group (Sn++, ·) on Sn++ to the foliation S : P++ → Sn++. More precisely, push forward
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with A is a group action on P++ so that CA ◦S = S ◦A#. The lifted action is faithful, continuous,

and distance minimizing with respect to W2. More precisely, if A ∈ Sn++ then for every µ ∈ P++

W 2
2 (µ,A#µ) = W 2

2 (PSµ
,PASµA) = tr Sµ(Id−A)2 (2.2.1)

Moreover push-forward with the interpolation maps IA(t) := (1 − t)Id + tA defines 2-Wasserstein

constant speed geodesic curves ((IA(t))#µ)t∈[0,1] in (P++,W2).

The proofs are formal consequences of Theorem 2.1.4, instead of presenting those we show

the Sn++ action in a commutative diagram:

Sn++ ×P++ P++

Sn++ × Sn++ Sn++

Id×S S

(A, µ) A#µ

(A,Sµ) ASµA
t

The last statement about interpolation geodesics is standard; see, for example, [Figalli and Glaudo,

2021] section 3.1.1.

Noticing that push-forward with t 7→ IA(Sµ,T)(t) defines a homotopy between P++ and the

fiber PT that is the identity on PT now gives:

Proposition 2.2.3. For any S ∈ Sn++ the set theoretical inclusion i : PS ↪→ P++ is a deformation

retraction with respect to the retraction map r : P++ → PS given by r(µ) = A(Sµ,S)#µ. In

particular the spaces P++ and PS are homotopy equivalent.

Proof. We note that all maps stated in the proposition are well-defined and continuous on Wasser-

stein space (P++,W2). This is because push-forward with a continuous function is continuous. Now

if µ ∈ PS, then r(µ) = A(S,S)#µ = (Id)#µ = µ, so that r ◦ i = IdPS
. All we need to show is that

i ◦ r = r is homotopic to the identity map on P++. Such a homotopy is given by

H(t, µ) = (IA(Sµ,S)(t))#µ

for (t, µ) ∈ [0, 1]×P++.

Theorem 2.2.4. The space PS is pathwise connected for any S ∈ Sn++.

Proof. By the previous statement, it suffices to show P++ is path-connected.
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To do this, we first show that a 2-Wasserstein open ball of a given probabilistic frame

ν ∈ P++ is connected if it is small enough. Indeed since ν ∈ P++ and P++ is open, there is a δ > 0

such that the open ball Bδ(ν) := {η ∈ P2(Rn) : W2(η, ν) < δ} is contained in P++. If µ ∈ Bδ(ν)

given an optimal coupling γ ∈ Γ(ν, µ), there is a unit speed geodesic (µt)t∈[0,1] in P2(Rn) that

never leaves Bδ(ν) because it decreases distance. More precisely, the optimal coupling γ ∈ Γ(µ, ν)

induces a geodesic curve µ(t) connecting µ and ν as follows. Let πt(x, y) := (1 − t)x + ty, so that

π0(x, y) = x and π1(x, y) = y, then put µt := (πt)#γ (for t ∈ [0, 1]), so that µ0 = (π0)#γ = µ and

µ1 := (π1)#γB = ν. An optimal coupling between any two points of the geodesic curve is given by

γB(s, t) := (πs, πt)#γB . Use this coupling to show that the curve (µt) is a unit speed geodesic that

linearly decreases distance to ν in t, in fact W2(µt, ν) = (1 − t)W2(µ, ν) for t ∈ [0, 1]. This shows

Bδ(ν) itself is connected.

Now we show that there is a curve within the set of probabilistic frames that starts at a

specific measure and ends in Bδ(ν). First, the specific measure, say µr corresponds to the equally

distributed mass in an open ball Dr of a radius r, so that µr(Dr) = 1. Note that this measure is

absolutely continuous with respect to the Lebesgue measure. Denote the absolutely continuous mea-

sures in P2(Rn) by P2,ac(Rn). Now every probability measure can be approximated by a probability

that is a finite combination of delta measures in W2. Those in turn can be approximated in W2 by

an absolutely continuous measure that is the union of "thickenings" of the delta measures by masses

equally supported on small open balls centered at the support of the given delta distribution. Taking

the supporting sets small enough, we can make sure such measure, say µδ, lies in Bδ(ν). Since µδ

and µr are both in P2,ac the minimal coupling γ between the two is a given by a transport map.

Moreover, see Villani [Villani et al., 2009] Proposition 5.9 (iii), the canonical geodesic curve between

two absolutely continuous measures consists of absolutely continuous measures, hence frames. This

is because absolutely continuous measures are not supported in a linear subspace, since the Lebesgue

measure of a linear subspace is zero. So by Proposition 2.1.3, an absolutely continuous measure must

be a probabilistic frame.

That implies, there is a path within the set of frames from any given probabilistic frame ν

to the frame µr. This is what we wanted to show.
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2.3 Wasserstein Openness of the Set of Probabilistic p-Frames.

In order to show a general openness result we return to general p-frames in this section. We

start with the proof of Proposition 2.1.2 from the introduction.

Proof of Proposition 2.1.2. First, note that by Cauchy-Schwarz, the integral on the right is well-

defined for all µ ∈ Pp(Rn). Now, for any unit vector x ∈ Sn−1

|⟨x,v⟩|p = distp(v,x⊥) = inf
y∈x⊥

|y − v|p = |πx⊥(v)− v|p. (2.3.1)

By definition

W p
p (µ, (πx⊥)#µ) = inf

γ∈Γ(µ,(π
x⊥ )#µ)

∫
R2n

|v − y|p dγ(v,y),

but that minimum is taken on when pushing forward the mass with the orthogonal projection onto

x⊥, since that way every point moves minimal distance to the target, hence

W p
p (µ, (πx⊥)#µ) =

∫
Rn

|v − y|p d(Id × πx⊥)#µ =

∫
Rn

|v − πx⊥(v)|p dµ(v).

Hence

W p
p (µ, (πx⊥)#µ) =

∫
Rn

|⟨x,v⟩|p dµ(v).

We note that a stronger minimization property is true. Since supp((πx⊥)#µ) ⊂ x⊥ we have

inf
{γ∈Γ(µ,ν): supp(ν)⊂x⊥}

∫
R2n

|v − y|p dγ(v,y) ≤ W p
p (µ, (πx⊥)#µ).

Since on the other hand for each point v the orthogonal projection πx⊥(v) minimizes the distance

to x⊥ it is obvious that the push-forward of µ with πx⊥ minimizes among all measures supported

in x⊥, hence we see

inf
{γ∈Γ(µ,ν): supp(ν)⊂x⊥}

∫
R2n

|v − y|p dγ(v,y) = W p
p (µ, (πx⊥)#µ).

The proposition would also follow from an extended version of Theorem 2.1.4 that includes

the limiting case of semi-definite symmetric operators. This is true, but we do not prove it here.
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Proof of Proposition 2.1.3. Suppose µ ∈ Pp(Rn) is a probabilistic p-frame with bounds 0 < A ≤ B,

then for any unit vector x, ∫
Rn

| ⟨x,y⟩ |p dµ(y) ≥ A > 0.

Recall by Proposition 2.1.2 we have W p
p (µ, (πx⊥)#µ) =

∫
Rn |⟨x,y⟩|pdµ(y), so that for any unit vector

x, Wp(µ, (πx⊥)#µ) ≥ A1/p > 0.

Conversely, in the proof of Proposition 2.3.2, we show that Wp(µ, (πx⊥)#µ) depends con-

tinuously x. Since Sn−1 is compact Wp(µ, (πx⊥)#µ) takes on its minimum at some point, say

xmin ∈ Sn−1. Then for any x ∈ Sn−1,

0 < W p
p (µ, (πx⊥

min
)#µ) ≤ W p

p (µ, (πx⊥)#µ) =

∫
Rn

|⟨x,y⟩|pdµ(y).

Therefore, for any x ∈ Rn,

W p
p (µ, (πx⊥

min
)#µ)∥x∥p ≤

∫
Rn

|⟨x,y⟩|pdµ(y) ≤ Mp(µ)∥x∥p,

where the last inequality comes from the Cauchy-Schwarz inequality. That is to say, µ is a p-frame

with bounds W p
p (µ, (πx⊥

min
)#µ) and Mp(µ).

Then we have another equivalence of p-frames in the following corollary.

Corollary 2.3.1. µ ∈ Pp(Rn) is a probabilistic p-frame, if and only if span{supp(µ)} = Rn.

Proof. Note that span{supp(µ)} = Rn is equivalent to Wp(µ, (πx⊥)#µ) > 0 for all unit vectors

x ∈ Sn−1. Then by Proposition 2.1.3, we complete the proof.

Proposition 2.3.2 (Openness of the Set of Probabilistic p-Frames). The set of probabilistic p-frames

is open in the Wp topology.

Proof. Suppose µ ∈ Pp(Rn). Then the minimal cost to transport µ to a probability on a given 1-

codimensional subspace, say x⊥, is attained by pushing forward µ to x⊥ via the orthogonal projection

πx⊥ : Rn → x⊥. This is clear, since for any p ≥ 1, the transport distance for any point in Rn in the

support of µ to x⊥ is minimal under the projection. Hence

Wp(µ, (πx⊥)#µ) = inf
ν∈Pp(Rn)

supp ν⊂x⊥

Wp(µ, ν)
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represents the p-Wasserstein distance of µ to the set of measures supported in x⊥. If µ is a proba-

bilistic p-frame (with constants 0 < A ≤ B < ∞), it cannot be supported in the hyperplane x⊥, since

then we would have the contradiction 0 < A ≤
∫
Rn |⟨x,v⟩|p dµ(v) = 0. Hence Wp(µ, (πx⊥)#µ) > 0.

Now for a fixed probabilistic p-frame, say µ, the p-Wasserstein distance to x⊥ depends continuously

on the subspace x⊥, that is on x, in the topology induced by the p-Wasserstein metric. This is

relatively straightforward to see. Firstly, given two vectors x,y, the triangle inequality implies

|Wp(µ, (πx⊥)#µ)−Wp(µ, (πy⊥)#µ)| ≤ Wp((πx⊥)#µ, (πy⊥)#µ)

To estimate the Wasserstein distance on the right, consider the push-forward D#µ of µ under the

diagonal map D(x) = (x, x) ∈ R2n. Then pushing this measure forward with πx⊥ × πy⊥ results in

a coupling between (πx⊥)#µ and (πy⊥)#µ. Hence we have an estimate

W p
p ((πx⊥)#µ, (πy⊥)#µ) ≤

∫
Rn

∥πx⊥(z)− πy⊥(z)∥p dµ(z)

To simplify write πx⊥(z) = z− ⟨z,x⟩x

∫
Rn

∥πx⊥(z)− πy⊥(z)∥p dµ =

∫
Rn

∥⟨z,x⟩x− ⟨z,y⟩y∥p dµ.

Now put y = x+ ŷ to get ⟨z,y⟩y = ⟨z,x+ ŷ⟩(x+ ŷ) = ⟨z,x⟩x+ ⟨z, ŷ⟩x+ ⟨z,x+ ŷ⟩ŷ. Hence

∫
Rn

∥⟨z,x⟩x− ⟨z,y⟩y∥p dµ =

∫
Rn

∥⟨z, ŷ⟩x+ ⟨z,x+ ŷ⟩ŷ∥p dµ

Use Minkowski’s inequality followed by Cauchy-Schwarz while recalling that ∥x∥ = 1

≤ 2p−1

∫
Rn

(∥⟨z, ŷ⟩x∥p + ∥⟨z,x+ ŷ⟩ŷ∥p)dµ ≤ 2p−1∥ŷ∥p(1 + ∥x+ ŷ∥p)
∫
Rn

∥z∥p dµ.

Since y = x+ ŷ is a unit vector, we obtain

W p
p ((πx⊥)#µ, (πy⊥)#µ) ≤ 2p∥ŷ∥p

∫
Rn

∥z∥p dµ = 2pMp(µ)∥y − x∥p,

which is the continuity of the p-Wasserstein distance for projections. To conclude the argument

we note that the space of 1-codimensional subspaces in Rn, identified with RPn−1 (via x⊥ ↔ x)
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is compact. Compactness implies that the continuous function x 7→ Wp(µ, (πx⊥)#µ) takes on its

minimum at some point, say xmin. We already noticed that Wp(µ, (πx⊥)#µ) > 0 for any subspace

x⊥ of codimesion 1, hence

0 < c := Wp(µ, (πx⊥
min

)#µ) ≤ Wp(µ, (πx⊥)#µ)

for all x ∈ Sn−1. Then if ν ∈ Pp(Rn) is so that Wp(µ, ν) < Wp(µ, (πx⊥
min

)#µ) ≤ Wp(µ, (πx⊥)#µ),

we must have supp(ν) ̸⊂ x⊥ for any unit vector x. Then Wp(ν, (πx⊥)#ν) > 0 for any unit vector

x and hence ν is a p-frame. In particular for a given p-frame µ the set {ν ∈ Pp(Rn) : Wp(µ, ν) <

Wp(µ, (πx⊥
min

)#µ)} is an open ball of p-frames centered at the p-frame µ in the p-Wasserstein topol-

ogy.

For p ̸= 2 the Wasserstein distances Wp(µ, (πx⊥)#µ) may be difficult to determine, on the

other hand there are some conversions:

Corollary 2.3.3. For any unit-vector x ∈ Sn−1 and any p ≥ 1 we have

Wp(µ, (πx⊥)#µ) = Wp((πx)#µ, δ0) (2.3.2)

and

W 2
2 (µ, δ0) = W 2

2 (µ, (πx)#µ) +W 2
2 ((πx)#µ, δ0).

Proof. All one needs to notice is |⟨x,v⟩|p = |πxv|p = distp(πxv, 0), together with |⟨x,v⟩|p = |πx⊥v−

v|p from 2.3.1 gives:

W p
p ((πx)#µ, δ0) =

∫
R

distp(v, 0) d(πx)#µ(v) =

∫
Rn

distp(πxv, 0) dµ(v) =

=

∫
Rn

|v − πx⊥(v)|p dµ(v) = W p
p (µ, (πx⊥)#µ).

(2.3.3)

The second statement is the Theorem of Pythagoras.

If specifically a unit vector x in Proposition 2.1.2 is an eigenvector of Sµ, then the corre-

sponding eigenvalue is given by W 2
2 (µ, (πx⊥)#µ).

Expanding a vector x = (x1, ..., xn) in an eigen-basis {e1, ..., en} of Sµ we get
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Corollary 2.3.4. If x = (x1, ..., xn) is a unit vector in eigen-coordinates then

W 2
2 (µ, (πx⊥)#µ) =

n∑
i=1

x2
i ·W 2

2 (µ, (πe⊥
i
)#µ).

In particular if Sµ is positive definite, then the vectors x
W2(µ,(πx⊥ )#µ) where x is a unit vector lie on

the ellipsoid
n∑

i=1

x2
i ·W 2

2 (µ, (πe⊥
i
)#µ) = 1.

2.4 Wasserstein Distances for Frames: from Standard Esti-

mates to Uniqueness

The theorems proved in this section are adapted and refined carry-overs of [Gelbrich, 1990]

and particularly [Cuesta-Albertos et al., 1996] where instead of frame operators covariance operators

are considered. There is little difference in the key arguments. However, our perspective is frame

theoretic. One advantage is that the criterion for equality of the lower estimate for the Wasserstein

distance in 2.1.4 is more direct and easier. This is because a frame operator is positive definite,

while the covariance operator generally is not. In particular, we can avoid involving centered mea-

sures. This difference will become clear at the end of this section after building the background and

statements.

In what follows, we need frame operator transforms under (linear) push-forwards. This is

shown in several papers for example [Loukili and Maslouhi, 2020], we add the argument for the

reader’s convenience. Let T be a linear transformation of Rn, and µ be a probabilistic frame, then

the frame operator of T#µ is given by

⟨x,ST#µx⟩ =
∫
⟨x,y⟩2 dT#µ(y) =

∫
⟨x,Ty⟩2 dµ(y) =∫

⟨Ttx,y⟩2 dµ(y) = ⟨Ttx,SµT
tx⟩ = ⟨x,TSµT

tx⟩.
(2.4.1)

Since this identity holds for all x ∈ Rn we have ST#µ = T · Sµ · Tt. Obviously ST#µ is positive

semi-definite and symmetric, since Sµ is symmetric and positive definite. If T is invertible then

ST#µ is as well.

Proposition 2.4.1. For any fixed S ∈ Sn++ the congruence map fS : Sn+ → Sn+ given by fS(M) :=
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MSM, is bijective and its inverse is given by f−1
S (T) = A(S,T). In particular A−1(T,S) =

A(S,T).

Proof. Note that the image of fS is always a symmetric positive semi-definite matrix. For given

T ∈ Sn+ let us solve fS(M) = T, i.e. solve MSM = T for M. Since S ∈ Sn++ we can rewrite the

previous equation as

S1/2TS1/2 = S1/2MSMS1/2 = S1/2MS1/2S1/2MS1/2 = (S1/2MS1/2)2.

Since S1/2TS1/2 ∈ Sn+ taking its root and solving for M gives

M = S−1/2(S1/2TS1/2)1/2S−1/2 ∈ Sn+.

That the map is bijective follows from fS ◦ f−1
S (T) = fS(A(S,T)) = T and f−1

S ◦ fS(M) =

A(S,MSM) = M. The last identity follows directly from S1/2MSMS1/2 = (S1/2MS1/2)2.

For the last statement one easily verifies that fS(A−1(T,S)) = T, because fS is a bijection

the claim follows.

Given two probabilistic frames µ, ν with frame operators Sµ and Sν let us write Aµ,ν :=

A(Sµ,Sν). Recall, the center of mass or mean of a measure µ is the vector mµ =
∫
Rn v dµ(v). Then

the centered measure of µ is given by µ(A) := µ(A+mµ) for any Borel set A. Recall the covariance

matrix of µ is given by Σµ = Sµ. Note that this is generally an abuse of language because Σµ is

not necessarily invertible, i.e. Sµ is not necessarily definite. In particular, a centered probabilistic

frame is not necessarily a probabilistic frame and in this case S
−1/2
µ , respectively Σ

−1/2
µ , will be the

Moore-Penrose inverse. If Πµ is the (matrix version of the) orthogonal projection onto Im Sµ, then

the Moore-Penrose inverse has the property Πµ = SµS
−1
µ = S−1

µ Sµ, see [Gelbrich, 1990]. With that

in mind we have

Aµ,ν = A(Σµ,Σν) = Σ−1/2
µ (Σ1/2

µ ΣνΣ
1/2
µ )1/2Σ−1/2

µ .

These matrices have somewhat surprising properties that may not seem obvious at first glance. We

would like to mention that the first part of the formula is shown for a special case in [Loukili and

Maslouhi, 2020].

Lemma 2.4.2. Let µ, ν ∈ P2(Rn), not necessarily frames, then:
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1. If S ∈ Sn+ then Aµ,S#µ = ΠµSΠµ, and if µ is a frame then Aµ,S#µ = S.

2. If ν = (Aµ,ν)#µ, then (Πµ)#ν = (Aµ,ν)#µ.

Proof. For the first statement, since S
1/2
µ SSµSS

1/2
µ = (S

1/2
µ SS

1/2
µ )2, by symmetry of S1/2

µ and the

fact that Im Sµ = Im S
1/2
µ , we have

Aµ,S#µ = S−1/2
µ (S1/2

µ SSµSS
1/2
µ )1/2S−1/2

µ = S−1/2
µ S1/2

µ SS1/2
µ S−1/2

µ = ΠµSΠµ.

If µ is a frame, then Sµ ∈ Sn++, hence Πµ = Id.

For the second identity recall that (Aµ,ν)#µ = (Aµ,ν)#µ. Using (Πµ)#µ = µ and the

previous formula we get

(Aµ,ν)#µ = (A
µ,(Aµ,ν)#µ

)#µ = (ΠµAµ,νΠµ)#µ

=(Πµ)#(Aµ,ν)#(Πµ)#µ = (Πµ)#(Aµ,ν)#µ = (Πµ)#(Aµ,ν)#µ.

Statement 2 of the Lemma is expected from properties that will become clearer below. In

fact, part 2 verifies that the equality condition, ν = (Aµ,ν)#µ, for the respective inequalities in

propositions 2.4.3 and 2.4.6 implies the one for the centered measures, (Πµ)#ν = (Aµ,ν)#µ, as used

in the inequalities of [Gelbrich, 1990] and [Cuesta-Albertos et al., 1996].

Proposition 2.4.3. Suppose µ, ν ∈ P2(Rn). For any unit vector x we have

W 2
2 ((πx)#µ, (πx)#ν) ≥ (W2(µ, (πx⊥)#µ)−W2(ν, (πx⊥)#ν))

2
, (2.4.2)

and if {e1, ..., en} is an orthonormal basis then

W 2
2 (µ, ν) ≥

n∑
i=1

(W2(µ, (πei⊥)#µ)−W2(ν, (πei⊥)#ν))
2
. (2.4.3)

Furthermore, equality holds if ν = T#µ where T is given by a symmetric, positive semi-definite

matrix with eigenbasis {ei} of T.
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Proof. Abbreviating Γ := Γ(µ, ν) one has

W 2
2 (µ, ν) = inf

γ∈Γ

∫
Rn×Rn

∥x− y∥2 dγ = inf
γ∈Γ

n∑
i=1

∫
Rn×Rn

|xi − yi|2 dγ

= inf
γ∈Γ

n∑
i=1

∫
R×R

|x− y|2 d(πei × πei)#γ ≥
n∑

i=1

W 2
2 ((πei)#µ, (πei)#ν)

(2.4.4)

Now if γi ∈ Γ((πei)#µ, (πei)#ν) minimizes W 2
2 ((πei)#µ, (πei)#ν) then by the reverse triangle in-

equality (in L2):

W 2
2 ((πei)#µ, (πei)#ν) =

∫
R×R

|x− y|2 dγi

≥

((∫
R
|x|2 d(πei)#µ

)1/2

−
(∫

R
|y|2 d(πei)#ν

)1/2
)2

=

((∫
Rn

⟨x, ei⟩2 dµ

)1/2

−
(∫

Rn

⟨y, ei⟩2 dν

)1/2
)2

=(W2(µ, (πei⊥)#µ)−W2(ν, (πei⊥)#ν))
2
,

(2.4.5)

one obtains

W 2
2 (µ, ν) ≥

n∑
i=1

(W2(µ, (πei⊥)#µ)−W2(ν, (πei⊥)#ν))
2
.

Equation 2.4.2 is obtained by replacing ei with x in the above proof.

Writing square terms out in inequality 2.4.5 and using the marginals of γi equality amounts

to have equality in the following inequality:

∫
R×R

xy dγi ≤
(∫

R
x2 d(πei)#µ

)1/2(∫
R
y2 d(πei)#ν

)1/2

Like for the Cauchy-Schwarz inequality, this inequality is an equality if y = λix for some λi ≥ 0

and the marginal distributions agree (almost everywhere). In this case γi is supported on a graph

of a line and hence a push-forward γi = (Id × λiId)#(πei
)#µ where Id is the identity map on R.

If this is the case inequality 2.4.4 is also an equality for ν = T#µ where T is linear maximizing

the Cauchy-Schwarz inequalities in the respective eigendirections, i.e., the push forward is by the

map given by a positive semi-definite symmetric matrix with eigenvalues λi ≥ 0 in direction {ei}. If
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directions with λi = 0 appear we have a projection. More specifically,

W 2
2 (µ,T#µ) =

∫
Rn

∥x−Tx∥2 dµ(x) =

∫
Rn

∥
n∑

i=1

⟨x, ei⟩(ei −Tei)∥2 dµ(x)

=

n∑
i=1

∫
Rn

|⟨x, ei⟩(1− λi)|2 dµ(x) =

n∑
i=1

∫
R×R

|x− y|2 dγi

=

n∑
i=1

W 2
2 ((πei)#µ, (πei)#ν) =

n∑
i=1

(W2(µ, (πei⊥)#µ)−W2(ν, (πei⊥)#ν))
2
.

With Proposition 2.4.3, we can show the continuity of the frame map (see also [Wickman

and Okoudjou, 2023]).

Corollary 2.4.4. The frame map S : P2 → Sn+ is continuous with respect to the Wasserstein

topology, and hence weak-∗ topology, on P2(Rn). More precisely ∥S1/2
µ − S

1/2
ν ∥op ≤ W2(µ, ν) with

respect to the operator norm ∥ · ∥op. In particular ∥S1/2 −T1/2∥op ≤ W2(PS,PT) = dW (S,T).

Proof. Take µ, ν ∈ P2 with frame operators Sµ and Sν respectively. Let {ei} an orthogonal basis

in which (the symmetric matrix) S
1/2
µ − S

1/2
ν is diagonal. Then supy∈Sn−1 |yt(S

1/2
µ − S

1/2
ν )y| =

|xt(S
1/2
µ − S

1/2
ν )x| for some unit vector x =

∑n
i=1 xiei, so that particularly |xi| ≤ 1. Now

∥S1/2
µ − S1/2

ν ∥2 = sup
∥y∥=1

|yt(S1/2
µ − S1/2

ν )y|2

≤
n∑

i=1

x4
i

n∑
i=1

(eti(S
1/2
µ − S1/2

ν )ei)
2 ≤

n∑
i=1

(⟨ei,S1/2
µ ei⟩ − ⟨ei,S1/2

ν ei⟩)2

=

n∑
i=1

(W2(µ, (πei
⊥)#µ)−W2(ν, (πei

⊥)#ν))
2 ≤ W 2

2 (µ, ν)

The first inequality uses Cauchy-Schwarz and the last step is estimate 2.4.3. We see f(µ) :=

S
1/2
µ is continuous, so that f2 is continuous too. The last statement follows from the definition of

W2(PS,PT) = d(S,T) in the introduction. That shows the claim.

Given a probability µ the p-th (central) moment Mp(µ) is given by
∫
Rn ∥x∥p dµ(x). Right

from the definitions, one easily confirms the well-known formula

M2(µ) =

n∑
i=1

W 2
2 (µ, (πe⊥

i
)#µ) = tr Sµ (2.4.6)
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for any orthogonal-basis {ei} of Rn. Indeed

tr Sµ =

n∑
i=1

⟨ei,Sµei⟩ =
n∑

i=1

∫
Rn

⟨ei,v⟩2dµ =

∫
Rn

∥v∥2dµ(v) = M2(µ).

Specifying a particular symmetric positive definite map in the previous proposition gives Gelbrich’s

estimate, see [Gelbrich, 1990]. Here we have Gelbrichs estimate again for frame operators instead of

covariance operators. Again the proof is formally the same as the proof of Theorem 2.1 in [Cuesta-

Albertos et al., 1996].

Corollary 2.4.5 (Gelbrich’s bound for frame operators [Gelbrich, 1990]). Let µ, ν ∈ P++ with

respective frame operators Sµ and Sν , then

W 2
2 (µ, ν) ≥ tr(Sµ + Sν − 2(S1/2

µ SνS
1/2
µ )1/2) = tr Sµ(Id−Aµ,ν)

2. (2.4.7)

Equality holds if ν = A(Sµ,Sν)#µ.

Proof. Given inequality 2.4.3 of proposition 2.4.3 the statement will follow from the formula

tr (S1/2
µ SνS

1/2
µ )1/2 =

n∑
i=1

⟨ei,Sνei⟩1/2⟨ei,Sµei⟩1/2.

for some orthogonal basis {ei} of Rn. Note, that the right hand side of the stated identity im-

mediately follows from the right hand side of 2.4.3 using W2(µ, (πei⊥)#µ) = ⟨ei,Sνei⟩1/2 and the

respective formula for ν. From proposition 2.4.1 we recall Aµ,ν = A(Sµ,Sν) symmetric positive

definite, so that Sν = Aµ,νSµAµ,ν . Let {ei} be an eigen-basis for Aµ,ν with corresponding set of

(positive) eigenvalues {λi}, then:

⟨ei,Sνei⟩ = ⟨ei, (Aµ,ν SµAµ,ν)ei⟩ = ⟨Aµ,νei,SµAµ,νei⟩ = λ2
i ⟨ei,Sµei⟩.

Taking roots on both sides and using Aµ,ν = S
−1/2
µ (S

1/2
µ SνS

1/2
µ )1/2S

−1/2
µ from Proposition 2.4.1,

formal properties of the trace give the sought identity:

tr (S1/2
µ SνS

1/2
µ )1/2 = tr (S1/2

µ Aµ,νS
1/2
µ ) = tr (SµAµ,ν) =

=

n∑
i=1

λi⟨ei,Sµei⟩ =
n∑

i=1

⟨ei,Sνei⟩1/2⟨ei,Sµei⟩1/2.
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Putting things together we obtain the stated estimate

W 2
2 (µ, ν) ≥ tr(Sµ + Sν − 2(S1/2

µ SνS
1/2
µ )1/2) =

n∑
i=1

(1− λi)
2⟨ei,Sµei⟩

=

n∑
i=1

⟨ei, (Id−Aµ,ν)Sµ(Id−Aµ,ν)ei⟩ = tr Sµ(Id−Aµ,ν)
2.

Then by proposition 2.4.3 we have equality, if ν = A(Sµ,Sν)#µ.

We use this optimization result below to compare traces of certain matrices.

Proposition 2.4.6. Let S,T ∈ Sn
++ be frame operators. Then for every µ ∈ PS the push-forward

A(S,T)#µ is the unique frame with frame operator T, so that W2(µ,A(S,T)#µ) = W2(µ,PT).

Proof. By Theorem 2.1.4, we know that for any given S,A ∈ Sn++ and µ ∈ PS,

W 2
2 (µ,A#µ) = W 2

2 (µ,PASA) = tr S(Id−A)2

Now we apply the above theorem to A ∈ Sn++ that solves T = ASA given by

A = A(S,T) := S−1/2(S1/2TS1/2)1/2S−1/2.

We now extend an argument that was presented for the special case of T = Id by [Loukili and

Maslouhi, 2020] to show the uniqueness. Consider the push forward A(S,T)#µ and assume ν with

frame operator T minimizes the 2-Wasserstein distance to µ. Then, if γ is a coupling between ν

and µ so that W2(µ, ν) = W2(µ,PT), its push forward by Id×A(S,T) is a coupling between ν and

A(S,T)#µ with respective frame operator

S(Id×A(S,T))#γ =

Id 0

0 A(S,T)


 T T ·A(T,S)

(T ·A(T,S))t S


Id 0

0 A(S,T)


=

 T T ·A(T,S) ·A(S,T)

(T ·A(T,S) ·A(S,T))t A(S,T) · S ·A(S,T)

 =

T T

T T


so that

W 2
2 (A(S,T)#µ, ν) ≤ tr(T+T− 2T) = 0.
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Hence A(S,T)#µ = ν.

Proof of Theorem 2.1.4. Push-forward with a continuous map is continuous, and in particular, if

the push-forward is by a linear A ∈ Sn++, then push-forward with A−1 ∈ Sn++ provides a continuous

inverse. Hence the push-forward A# : PS → PASA defines a homeomorphism.

The equation for the Wasserstein distance follows from Corollary 2.4.5. The particular

shape of that formula for push-forwards with A ∈ Sn++ follows from the first identity in Lemma

2.4.2, i.e., Aµ,A#µ = A. Finally, the push-forward with A ∈ Sn++ is the unique minimizer as shown

in Proposition 2.4.6, again using the first statement of Lemma 2.4.2 to adapt to the situation stated

in the Theorem. Therefore, W2(µ, ν) > W2(µ,A#µ) for any ν ∈ PASA so that ν ̸= A#µ.

We now derive the matrix optimizing problem of Olkin and Pukelsheim [Olkin and Pukelsheim,

1982] which we need afterwards in two instances. Given two probabilistic frames µ with frame op-

erator S and ν with frame operator T respectively, then

W 2
2 (µ, ν) = inf

γ

∫
R2n

∥x− y∥2dγ(x,y)

=

∫
Rn

∥x∥2 dµ+

∫
Rn

∥y∥2 dν − 2 sup
γ

∫
R2n

⟨x,y⟩ dγ(x,y)

The frame operator of any γ ∈ Γ(µ, ν) is Sγ =
∫
R2n(x,y)·(x,y)t dγ(x,y), that converted into matrix

form is

Sγ =

 S Ψ

Ψt T

 , where Ψ =

∫
R2n

x · yt dγ(x,y).

Note, that

trΨ = tr

∫
R2n

x · yt dγ(x,y) =

∫
R2n

⟨x,y⟩ dγ(x,y),

so that the previous equation for the Wasserstein distance implies for any coupling γ ∈ Γ(µ, ν):

W 2
2 (µ,PT) ≤ tr(S+T− 2Ψ).

The following matrix optimization problem is to determine the above matrix among the set of semi-

definite matrices with fixed diagonal entries S and T, so that tr Ψ is maximal. An optimal matrix

is given by the frame matrix of a push forward and turns the estimate for the Wasserstein distance
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into an equality. The solution of the matrix problem is going back to Olkin and Pukelsheim [Olkin

and Pukelsheim, 1982], see also Gelbrich [Gelbrich, 1990].

Proposition 2.4.7. Given S,T ∈ P++, then the Ψ in

Sγ =

 S Ψ

Ψt T

 ∈ S2n+

so that tr Ψ is maximal is given by Ψ = SA(S,T).

Proof. From the discussion before the proposition, it is clear that any Ψ, so that

W 2
2 (µ,PT) = tr(S+T− 2Ψ)

provides a semi-definite matrix of the form stated in the proposition with a maximaltr Ψ. From

Proposition 2.4.6, we have seen that A(S,T)#µ is the unique frame with frame operator T so that

W2(µ,PT) = W2(µ,A(S,T)#µ), where the push forward of µ by Id×A(S,T) provides an optimal

coupling between any µ with frame operator S and A(S,T)#µ with frame operator T. Calculating

the frame operator of the push forward translates into

Sγ =

 Id

A(S,T)

S

[
Id A(S,T)

]
=

 S SA(S,T)

(SA(S,T))t T

 ,

so that indeed

W 2
2 (µ,A(S,T)#µ) = tr(S+T− 2SA(S,T)) = tr(S+T− 2(S1/2TS1/2)1/2).

We are now in a position to show Proposition 2.1.5.

Proof of Proposition 2.1.5. Recall that Ψ so that tr Ψ is maximal under the condition

 S Ψ

Ψt T

 ∈ S2n+
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is given by Ψ = S1/2(S1/2TS1/2)1/2S−1/2 with maximal value tr(S1/2TS1/2)1/2, alternatively see

[Gelbrich, 1990], or [Olkin and Pukelsheim, 1982]. For the matrix Ψ = S1/2T1/2 the identity

ΨT−1Ψt = S holds, hence S−ΨT−1Ψt ≥ 0. By Lemma 1 in [Olkin and Pukelsheim, 1982]

 S S1/2T1/2

(S1/2T1/2)t T

 ∈ S2n+ .

Hence by the main result in [Olkin and Pukelsheim, 1982], or our own results above, we must have

have tr S1/2T1/2 ≤ tr (S1/2TS1/2)1/2 and hence from the proof of Proposition 2.4.6, we conclude

W 2
2 (PS,PT) = tr(S+T− 2(S1/2TS1/2)1/2)

≤ tr(S+T− 2(S1/2T1/2)) = tr(S1/2 −T1/2)2 = ∥S1/2 −T1/2∥2F .

We add the arguments to show that dW is a metric on Sn+, but treat the case Sn++ first. Clearly

W2(PT,PS) ≥ 0 and equality happens if and only if T = S. Symmetry is clear as well since W2 is

a metric. For the triangle inequality let P ∈ Sn++ and consider µ ∈ Pp(Rn), then

W2(PT,PS) ≤ W2(A(P,T)#µ,A(P,S)#µ)

≤ W2(A(P,T)#µ, µ) +W2(µ,A(P,S)#µ)

= W2(PT,PP) +W2(PP,PS).

Regarding the equivalences of topologies, note that all norms on a finite dimensional vector space

are equivalent. Now consider the metrics dop(S,T) := ∥S1/2−T1/2∥op, dF (S,T) := ∥S1/2−T1/2∥F

respectively together with the lower estimate from Corollary 2.4.4 to finish the estimate.

As for the symmetric representation of the metric note that transporting from measures

with frame operator T to S instead of the other way round leads to an optimal matrix 2.4 so

that Ψ = T−1/2(T1/2ST1/2)1/2T−1/2 and the entries of T and S are exchanged. Clearly, from

Proposition 2.4.6

tr(T+ S− 2(T1/2ST1/2)1/2) = W 2
2 (PS,PT) = tr(S+T− 2(S1/2TS1/2)1/2).
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In particular tr (T1/2ST1/2)1/2 = tr (S1/2TS1/2)1/2 so that

dW (S,T) = tr(S+T− (S1/2TS1/2)1/2 − (T1/2ST1/2)1/2).

Finally using tr (T1/2ST1/2)1/2 = tr (TA(T,S)) and tr (S1/2TS1/2)1/2 = tr (SA(S,T)) we may

rewrite this as

dW (S,T) = tr (S(Id−A(S,T)) +T(Id−A(T,S))).

The distance dW extends from Sn++ to Sn+ for continuity reasons. Indeed since the function

(S,T) 7→ tr(S+T− 2(S1/2TS1/2)1/2)

is well-defined and continuous on Sn+ × Sn+ and Sn+ is the closure of Sn++ the metric properties hold

on Sn+.

2.5 Connection to Covariance and Centered Measures.

Recall the center of mass or mean of µ is the vector mµ =
∫
Rn v dµ(v). We obtain the

centered measure µ(A) := µ(A+mµ) = (τmµ
)#µ, where τv(x) := x− v. For any unit vector x put

mx := ⟨mµ,x⟩. Note, that if µ ∈ P2(Rn), then µ is a frame if and only if supp µ is not contained

in any hyperplane. For if supp µ would be contained in a hyperplane, then supp µ is contained in a

linear subspace. We add some identities as below.

For linear T we have mT#µ = T(mµ) since

mT#µ =

∫
v dT#µ =

∫
Tv dµ = T

∫
v dµ = T(mµ).

Again for linear T and any measure µ we have

T#(τv)#µ = (τT−1v)#T#µ.
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Indeed, if A ⊂ R is Borel, we have

T#(τv)#µ(A) = µ(T−1(A+ v)) = (τT−1v)#µ(T
−1A) = (τT−1v)#T#µ(A).

The frame operator of µ is the (co)variance operator of µ, as above denoted by Σµ. Because

of

⟨x,Sµx⟩ =
∫
⟨x,y⟩2 dµ(y +mµ) =

∫
⟨x,y −mµ⟩2 dµ(y) =∫

⟨x,y⟩2 dµ(y)− 2⟨x,mµ⟩
∫

⟨x,y⟩ dµ(y) + ⟨x,mµ⟩2

=

∫
⟨x,y⟩2 dµ(y)− ⟨x,mµ⟩2 = ⟨x, (Sµ −mµm

t
µ)x⟩,

(2.5.1)

we have Sµ = Sµ − mµm
t
µ. Note that the vectors mµ and matrices mµm

t
µ, Σµ depend continu-

ously on µ. That follows from the next proposition for mµ. Then continuity of mµm
t
µ is an easy

consequence so that Σµ = Sµ −mµm
t
µ is also continuous.

Proposition 2.5.1.

W 2
2 (µ, ν) + ∥mµ −mν∥2 = W 2

2 (µ, ν).

Proof. Suppose γ ∈ Γ(µ, ν) is a minimizing coupling, i.e. so that W 2
2 (µ, ν) =

∫
Rn×Rn ∥x − y∥2 dγ,

then with γ := τmµ
× τmν

)#γ ∈ Γ(µ, ν) we have

W 2
2 (µ, ν) =

∫
Rn×Rn

∥x− y∥2 dγ =

∫
Rn×Rn

∥x−mµ − (y −mν)∥2 dγ =∫
Rn×Rn

∥x− y∥2 dγ − ∥mµ −mν∥2 ≥ W 2
2 (µ, ν)− ∥mµ −mν∥2.

The last identity follows from writing

∥x− y − (mµ −mν)∥2 = ⟨x− y − (mµ −mν), x− y − (mµ −mν)⟩,

then using linearity followed by definition of means mµ and mν . To finish, run the same argument

backward, starting with a minimizing coupling γ ∈ Γ(µ, ν).

Using this, the following result of [Cuesta-Albertos et al., 1996] follows directly from in-

equality 2.4.3 applied to the centered measures

32



Corollary 2.5.2. If {e1, ..., en} is an orthonormal basis then

W 2
2 (µ, ν) ≥ ∥mµ −mν∥2 +

n∑
i=1

(W2(µ, (πei
⊥)#µ)−W2(ν, (πei

⊥)#ν))
2
. (2.5.2)

Moreover, equality holds in case (Πµ)#ν = T#µ where T is a symmetric, positive definite linear

map with respect to an eigenbasis {ei} of T.

The projection matrix Πµ appears since centered probabilistic frames are not necessary

probabilistic frames. It is interesting to compare the two estimates, centered and not centered, and

the respective conditions for equality. In fact, if equality holds for the direct estimate, then the

target frame is a push-forward ν = (Aµ,ν)#µ that depends only on two frame operators, i.e. Sµ

and the target frame operator Sν . In this case by the second identity of Lemma 2.4.2 we have

(Πµ)#ν = (Aµ,ν)#µ. Hence we automatically get the identity for the Wasserstein distance between

the respective centered measures. The opposite direction does not hold, for the reason that the

push-forward maps are positive definite:

Example. Let x ∈ R\{0}, then consider µ = δx and ν = δ−x. Then µ = δ0 = ν but there is no

λ > 0, so that λ#µ = ν. For the same reason, absolutely continuous measures such as the equal

distribution µ on [a, 3a] with a > 0 so that mµ = 2a. Now put ν = (τ2mµ
)#µ, in other words

ν(A) = µ(A+ 4a) for a Borel set A ⊂ R, cannot be moved to one other by positive scaling.

Given two frames µ and ν the condition (Πµ)#ν = (Aµ,ν)#µ does not guarantee a sym-

metric positive definite linear map that pushes µ to ν. Indeed, if the projection Πµ is not trivial

and does not act as the identity on ν, i.e. if supp ν ⊈ Im Σµ then such a push-forward cannot be

found since it would have to contain a projection part which then makes the liner map singular.
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Chapter 3

Probabilistic Frame Perturbations

The Paley–Wiener Theorem is a classical result about the stability of a basis in a Banach

space, claiming that if a sequence is close to a basis, then this sequence is a basis. Similar results are

extended to frames in Hilbert spaces. As the extension of finite frames in Rn, probabilistic frames

are probability measures on Rn with finite second moments and the support of which span Rn. This

section generalizes the Paley–Wiener theorem to the probabilistic frame setting. We claim that if a

probability measure is close to a probabilistic frame in some sense, this probability measure is also

a frame. See [Chen, 2023] for more details.

3.1 The Paley–Wiener Theorem for Frames

First proposed by Paley and Wiener in [Paley and Wiener, 1934], the Paley–Wiener theorem

is a classical result about the stability of a basis in a Hilbert space, which claims that if a sequence

is close to an orthonormal basis in a Hilbert space, this sequence also forms a basis. Later, Boas

noticed that Paley and Wiener’s proof still holds in a Banach space [Boas Jr, 1940]:

Theorem 3.1.1 (Theorem 1 in [Boas Jr, 1940], Theorem 10 in [Young, 2001]). Let {xi}∞i=1 be a

basis for a Banach space X with norm ∥ · ∥. Suppose {yi}∞i=1 is a sequence in X such that

∥∥∥ n∑
i=1

ci(xi − yi)
∥∥∥ ≤ λ

∥∥∥ n∑
i=1

cixi

∥∥∥
for some constant 0 ≤ λ < 1 and all choices of scalars c1, . . . , cn (n = 1, 2, 3, . . . ). Then {yi}∞i=1 is
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a basis for the Banach space X and equivalent to {xi}∞i=1
1.

Since then, many variations of this stability theorem have been generalized, such as the

perturbation theory of basis in a Banach space [Singer, 1970, p. 84-109] and entire functions of

exponential type [Young, 2001, p. 85]. Christensen first generalized the Paley–Wiener Theorem to

study the stability of frames in Hilbert spaces by the following theorem [Christensen, 1995b]:

Theorem 3.1.2 (Theorem 1 in [Christensen, 1995b]). Let {fi}∞i=1 be a frame for a Hilbert space H

with bounds 0 < A ≤ B < ∞ and {gi}∞i=1 a sequence in H. If there exist constants λ, δ ≥ 0 such

that λ+ δ√
A
< 1 and ∥∥∥ n∑

i=1

ci(fi − gi)
∥∥∥ ≤ λ

∥∥∥ n∑
i=1

cifi

∥∥∥+ δ
[ n∑

i=1

|ci|2
]1/2

for all scalars c1, . . . , cn(n = 1, 2, 3, . . . ). Then {gi}∞i=1 is a frame for H with bounds

A
(
1− (λ+

δ√
A
)
)2

and B
(
1 + λ+

δ√
B

)2
.

Later, Casazza and Christensen improved Theorem 3.1.2 by adding one more term related

to the sequence {gi}∞i=1 on the right-hand side of the inequality [Cazassa and Christensen, 1997]:

Theorem 3.1.3 (Theorem 2 in [Cazassa and Christensen, 1997]). Let {fi}∞i=1 be a frame for a

Hilbert space H with bounds 0 < A ≤ B < ∞. Let {gi}∞i=1 be a sequence in H and assume that

there exist constants λ1, λ2, δ ≥ 0 such that max (λ1 +
δ√
A
, λ2) < 1 and

∥∥∥ n∑
i=1

ci(fi − gi)
∥∥∥ ≤ λ1

∥∥∥ n∑
i=1

cifi

∥∥∥+ λ2

∥∥∥ n∑
i=1

cigi

∥∥∥+ δ
[ n∑

i=1

|ci|2
]1/2

for all scalars c1, . . . , cn(n = 1, 2, 3, . . . ). Then {gi}∞i=1 is a frame for H with bounds

A
(
1−

λ1 + λ2 +
δ√
A

1 + λ2

)2
and B

(
1 +

λ1 + λ2 +
δ√
B

1− λ2

)2
.

From then on, Paley-Wiener type theorems have been studied for many other topics re-

lated to frames, such as Banach frames [Christensen and Heil, 1997], frames containing Riesz ba-

sis [Casazza and Christensen, 1998], frame sequence [Christensen et al., 2000], sequences with re-

construction properties in a Banach space [Casazza and Christensen, 2008], von Neumann–Schatten
1Equivalence of basis {xi}∞i=1 and {yi}∞i=1 for the Banach space X means that there exists a bounded and invertible

operator T on X such that Txi = yi, for any i.
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dual frames [Arefijamaal and Sadeghi, 2016], operator represented frames [Christensen and Hasan-

nasab, 2017], g–frames [Sun, 2007], continuous frames on quaternionic Hilbert spaces [Khokulan

and Thirulogasanthar, 2019], approximately dual frames [Javanshiri et al., 2022], frames for metric

spaces [Krishna and Johnson, 2022], Hilbert–Schmidt frames and sequences [Poria, 2017,Zhang and

Li, 2022]. Especially [Chen et al., 2014] introduced dual frames in the perturbation condition, which

differs from previous conditions to preserve Hilbert frames:

Theorem 3.1.4 (Theorem 2.1 in [Chen et al., 2014]). Let {fi}∞i=1 be a frame for the Hilbert space

H with bounds 0 < A ≤ B < ∞ and {hi}∞i=1 a dual frame of {fi}∞i=1 with upper frame bound

0 < D < ∞. Suppose {gi}∞i=1 is a sequence in H such that

α :=

∞∑
i=1

∥fi − gi∥2 < ∞, β :=

∞∑
i=1

∥fi − gi∥∥hi∥ < 1.

Then {gi}∞i=1 is a frame in H with bounds (1−β)2

D and B(1 +
√

α
B ).

This section extends the frame perturbation theory to probabilistic frames for Rn. The

primary tool we use is the invertible linear operator theory on Banach spaces, which is introduced

in Section 3.2. In Section 3.3, we generalize the Paley-Wiener theorem of frames to probabilistic

frames by replacing the sum and l2 sequences with integration and continuous functions with compact

support. In Section 3.4, we give a sufficient perturbation condition by including the probabilistic

dual frames, which generalizes Theorem 3.1.4. Especially we consider the particular case of the

canonical probabilistic dual frame. In the end, we give an example of the stability of finite frames

in Rn by applying the results we obtain.

3.2 Invertibility of Linear Operators on Banach Spaces

This section introduces the invertibility of linear operators on Banach spaces. We refer

to [Cazassa and Christensen, 1997] for more details. It is well-known that a bound linear operator

U on a Banach space X is invertible if ∥I − U∥ < 1 and

∥U−1∥ ≤ 1

1− ∥I − U∥
,
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where I is identity operator in X. Casazza and Christensen generalized the above result to the

following lemma.

Lemma 3.2.1 (Lemma 1 in [Cazassa and Christensen, 1997]). Let X, Y be Banach spaces and

U : X → X a linear operator on X. If there exist λ1, λ2 ∈ [0, 1) such that for any x ∈ X,

∥Ux− x∥ ≤ λ1∥x∥+ λ2∥Ux∥.

Then U is bounded invertible, and for any x ∈ X,

1− λ1

1 + λ2
∥x∥ ≤ ∥Ux∥ ≤ 1 + λ1

1− λ2
∥x∥, 1− λ2

1 + λ1
∥x∥ ≤ ∥U−1x∥ ≤ 1 + λ2

1− λ1
∥x∥.

Corollary 3.2.2 (Remark of Corollary 1 in [Cazassa and Christensen, 1997]). Suppose X and Y

are Banach spaces. Let U : X → Y be a bounded linear operator, X0 a dense subspace of X, and

V : X → Y a linear mapping. If for any x ∈ X0,

∥Ux− V x∥ ≤ λ1∥Ux∥+ λ2∥V x∥+ δ∥x∥,

where λ1, λ2, δ ∈ [0, 1). Then V has a unique extension to a bounded linear operator (of the same

norm) from X to Y, and the extension still satisfies the inequality.

3.3 The Paley-Wiener Theorem for Probabilistic Frames

In this section, we generalize the Paley-Wiener theorem to probabilistic frames by employing

Casazza and Christensen’s criteria for the invertibility of linear operators. Recall that if ν ∈ P2(Rn),

ν is a Bessel probability measure with bound M2(ν) :=
∫
Rn ∥y∥2dν(y). Let Cc(Rn) be the set of

continuous functions on Rn with compact support. Then we have the main perturbation theorem

about probabilistic frames in the following that generalizes Theorem 3.1.3.

Theorem 3.3.1. Let µ be a probabilistic frame for Rn with bounds 0 < A ≤ B < ∞ and ν ∈ P2(Rn).
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If there exist constants λ1, λ2, δ ≥ 0 such that max (λ1 +
δ√
A
, λ2) < 1 and for all w ∈ Cc(Rn),

∥∥∥∫
Rn

w(x)xdµ(x)−
∫
Rn

w(y)ydν(y)
∥∥∥

≤ λ1

∥∥∥ ∫
Rn

w(x)xdµ(x)
∥∥∥+ λ2

∥∥∥∫
Rn

w(y)ydν(y)
∥∥∥+ δ∥w∥L2(µ).

Then ν is a probabilistic frame for Rn with bounds
A2(1−(λ1+

δ√
A
))2

(1+λ2)2M2(ν)
and M2(ν).

Proof. Since ν ∈ P2(Rn), then ν is Bessel with bound M2(ν). Now let us get the lower frame bound.

Define U : L2(µ) → Rn and T : L2(µ) → Rn in the following way

U(w) :=

∫
Rn

w(x)xdµ(x), T (w) :=

∫
Rn

w(y)ydν(y),

where w ∈ Cc(Rn). Clearly U is bounded linear and ∥U∥2 ≤ M2(µ). Furthermore, T is well-defined.

Since Cc(Rn) is dense in L2(µ), then by the theorem condition and Corollary 3.2.2, we know that

T could be extended uniquely to a bounded linear operator that is still denoted by T , and for any

w ∈ L2(µ), ∥∥∥U(w)− T (w)
∥∥∥ ≤ λ1

∥∥∥U(w)
∥∥∥+ λ2

∥∥∥T (w)∥∥∥+ δ∥w∥L2(µ). (3.3.1)

Therefore, for any w ∈ L2(µ),

∥T (w)∥ ≤ ∥U(w)∥+ ∥U(w)− T (w)∥ ≤
(
(λ1 + 1)

∥∥U∥+ δ
)
∥w∥L2(µ) + λ2∥T (w)∥.

Thus T is well-defined(bounded) and ∥T∥ ≤ (λ1+1)∥U∥+δ
1−λ2

< +∞. Define U+ : Rn → L2(µ) by

(U+x)(·) := (U∗(UU∗)−1x)(·) = (U∗(S−1
µ x))(·) =

〈
S−1
µ x, ·

〉
∈ L2(µ).

where U∗ is the adjoint operator of U , UU∗ = Sµ. Then

∥U+x∥2L2(µ) =

∫
Rn

〈
S−1
µ x,y

〉2
dµ(y) =

∫
Rn

〈
x,S−1

µ y
〉2

dµ(y)

=

∫
Rn

⟨x,y⟩2 d(S−1
µ #

µ)(y) ≤ 1

A
∥x∥2.

where the last inequality follows from S−1
µ #

µ being the probabilistic (dual) frame with bounds 1
B
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and 1
A . For every x ∈ Rn, replacing w in Equation (3.3.1) with U+x leads to

∥∥∥x− T (U+x)
∥∥∥ ≤ λ1∥x∥+ λ2∥T (U+x)

∥∥∥+ δ∥U+x∥L2(µ)

≤ (λ1 +
δ√
A
)∥x∥+ λ2∥T (U+x)

∥∥∥.
Since max(λ1 +

δ√
A
, λ2) < 1, by Lemma 3.2.1, we know that TU+ is invertible, and

∥(TU+)−1∥ ≤ 1 + λ2

1− (λ1 +
δ√
A
)
.

Note that any x ∈ Rn could be written as

x = TU+(TU+)−1x =

∫
Rn

〈
S−1
µ (TU+)−1x,y

〉
ydν(y).

Therefore,

∥x∥4 = ⟨x,x⟩2 =
∣∣∣ ∫

Rn

〈
S−1
µ (TU+)−1x,y

〉
⟨x,y⟩ dν(y)

∣∣∣2
≤
∫
Rn

〈
S−1
µ (TU+)−1x,y

〉2
dν(y)

∫
Rn

⟨x,y⟩2 dν(y)

≤ ∥S−1
µ ∥22 ∥(TU+)−1∥2 ∥x∥2

∫
Rn

∥y∥2dν(y)
∫
Rn

⟨x,y⟩2 dν(y)

≤ M2(ν)

A2

( 1 + λ2

1− (λ1 +
δ√
A
)

)2
∥x∥2

∫
Rn

⟨x,y⟩2 dν(y),

where the first inequality comes from the Cauchy–Schwarz inequality in L2(ν) and ∥S−1
µ ∥2 is the

2-matrix norm of S−1
µ with ∥S−1

µ ∥2 ≤ 1
A . Thus for any x ∈ Rn,

A2(1− (λ1 +
δ√
A
))2

(1 + λ2)2M2(ν)
∥x∥2 ≤

∫
Rn

⟨x,y⟩2 dν(y) ≤ M2(ν) ∥x∥2.

That is to say, ν is a probabilistic frame for Rn with bounds
A2(1−(λ1+

δ√
A
))2

(1+λ2)2M2(ν)
and M2(ν).

As a particular case in Theorem 3.3.1, λ1 = λ and λ2 = 0 give rise to the following propo-

sition, which is a generalization of Theorem 3.1.2.

Proposition 3.3.2. Let µ be a probabilistic frame for Rn with bounds 0 < A ≤ B < ∞ and
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ν ∈ P2(Rn). Suppose there exist constants λ, δ ≥ 0 such that λ+ δ√
A
< 1 and for all w ∈ Cc(Rn)

∥∥∥∫
Rn

w(x)xdµ(x)−
∫
Rn

w(y)ydν(y)
∥∥∥ ≤ λ

∥∥∥ ∫
Rn

w(x)xdµ(x)
∥∥∥+ δ∥w∥L2(µ).

Then ν is a probabilistic frame for Rn with bounds
A2(1−(λ+ δ√

A
))2

M2(ν)
and M2(ν).

Remark 3.3.1. Since δ√
A
≤

√
Bδ
A , then the condition max (λ1 +

δ√
A
, λ2) < 1 in Theorem 3.3.1 and

λ+ δ√
A
< 1 in Proposition 3.3.2 could be replaced by max (λ1 +

√
Bδ
A , λ2) < 1 and λ+

√
Bδ
A < 1, and

the lower frame bounds for ν are A2(1−(λ1+
√

Bδ
A ))2

(1+λ2)2M2(ν)
and A2(1−(λ+

√
Bδ
A ))2

M2(ν)
respectively. This is due to

another way to get ∥U+x∥L2(µ) by the fact that µ is a probabilistic frame with bounds A and B:

∥U+x∥2L2(µ) =

∫
Rn

〈
S−1
µ x,y

〉2
dµ(y) ≤ B∥S−1

µ x∥2 ≤ B∥S−1
µ ∥22∥x∥2 ≤ B

A2
∥x∥2.

The following lemma is inspired by a particular case λ = 0, δ =
√
R in Proposition 3.3.2

but just formulated in the "adjoint" form of the "synthesis" operator of sighed measure "µ − ν."

However, an easier way to prove it is to apply the definition of probabilistic frames.

Lemma 3.3.3 (Sweetie’s Lemma). Let µ be a probabilistic frame for Rn with bounds 0 < A ≤ B < ∞

and ν ∈ P(Rn). Suppose there exists a constant R where 0 < R < A, such that for any x ∈ Rn,

∣∣∣ ∫
Rn

⟨x,y⟩2 dµ(y)−
∫
Rn

⟨x, z⟩2 dν(z)
∣∣∣ ≤ R∥x∥2.

Then ν is a probabilistic frame for Rn with bounds A−R and B +R.

Proof. From the lemma condition, we know that for any x ∈ Rn,

∫
Rn

⟨x,y⟩2 dµ(y)−R∥x∥2 ≤
∫
Rn

⟨x, z⟩2 dν(z) ≤
∫
Rn

⟨x,y⟩2 dµ(y) +R∥x∥2.

Since µ is a probabilistic frame for Rn with bounds A and B, then for any x ∈ Rn,

(A−R)∥x∥2 ≤
∫
Rn

⟨x, z⟩2 dν(z) ≤ (B +R)∥x∥2.

That is to say, ν is a probabilistic frame for Rn with bounds A−R and B +R.
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Remark 3.3.2. Lemma 3.3.3 could be improved to any coupling γ ∈ Γ(µ, ν). If for any x ∈ Rn,

∣∣∣ ∫
Rn×Rn

⟨x,y⟩2 − ⟨x, z⟩2 dγ(y, z)
∣∣∣ ≤ R∥x∥2,

then ν is a probabilistic frame for Rn with bounds A−R and B+R. This is due to γ ∈ Γ(µ, ν) and

∣∣∣ ∫
Rn

⟨x,y⟩2 dµ(y)−
∫
Rn

⟨x, z⟩2 dν(z)
∣∣∣ = ∣∣∣ ∫

Rn×Rn

⟨x,y⟩2 − ⟨x, z⟩2 dγ(y, z)
∣∣∣.

Remark 3.3.3. The test function in Lemma 3.3.3 could be improved to continuous functions C(Rn).

If

sup
w∈C(Rn)

∣∣∣ ∫
Rn

w(y)dµ(y)−
∫
Rn

w(y)dν(y)
∣∣∣ ≤ R,

then v is a probabilistic frame for Rn with bounds A − R and B + R. The proof is clear by taking

the test functions to be wx(y) =
〈

x
∥x∥ ,y

〉2
where x is nonzero.

3.4 Perturbations Including Probabilistic Dual Frames

In this section, we generalize Theorem 3.1.4 to the probabilistic frames setting: we give

a sufficient perturbation condition where the probabilistic dual frames are used in the following

theorem without the quadratic close condition α < +∞.

Theorem 3.4.1. Suppose µ is a probabilistic frame for Rn and ν is a probabilistic dual frame

of µ with respect to γ12 ∈ Γ(µ, ν). Let η ∈ P2(Rn) and γ23 ∈ Γ(ν, η). Then there exists π̃ ∈

P(Rn × Rn × Rn) with marginals γ12 and γ23, and if

σ :=

∫
Rn×Rn×Rn

∥x− z∥∥y∥dπ̃(x,y, z) < 1,

then η is a probabilistic frame for Rn with bounds (1−σ)2

M2(ν)
and M2(η). And if the upper frame bound

for ν is D > 0, then the frame bounds for η are (1−σ)2

D and M2(η).

Proof. By Lemma 1.2.3(Gluing Lemma), there exists π̃ ∈ P(Rn × Rn × Rn) such that πxy#π̃ =

γ12, πyz#π̃ = γ23 where πxy and πyz are projections to (x,y) and (y, z) coordinates. Since η ∈

P2(Rn), then η is Bessel with bound M2(η). Next let us show the lower frame bound. Define a
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linear operator L : Rn → Rn by

L(f) =

∫
Rn×Rn

⟨f ,y⟩ z dγ23(y, z), for any f ∈ Rn.

Since ν is the probabilistic dual frame of µ with respect to γ12 ∈ Γ(µ, ν), then

f =

∫
Rn×Rn

⟨f ,y⟩x dγ12(x,y), for any f ∈ Rn.

Therefore,

∥f − L(f)∥ =
∥∥∥∫

Rn×Rn

⟨f ,y⟩x dγ12(x,y)−
∫
Rn×Rn

⟨f ,y⟩ z dγ23(y, z)
∥∥∥

=
∥∥∥∫

Rn×Rn×Rn

⟨f ,y⟩ (x− z) dπ̃(x,y, z)
∥∥∥ ≤ σ∥f∥ < ∥f∥.

Thus L : Rn → Rn is invertible and ∥L−1∥ ≤ 1
1−σ . Note that for any f ∈ Rn,

f = LL−1(f) =

∫
Rn×Rn

〈
L−1f ,y

〉
z dγ23(y, z).

Therefore,

∥f∥4 = ⟨f , f⟩2 =
∣∣∣ ∫

Rn×Rn

〈
L−1f ,y

〉
⟨f , z⟩ dγ23(y, z)

∣∣∣2
≤
∫
Rn×Rn

〈
L−1f ,y

〉2
dγ23(y, z)

∫
Rn×Rn

⟨f , z⟩2 dγ23(y, z)

=

∫
Rn

〈
L−1f ,y

〉2
dν(y)

∫
Rn

⟨f , z⟩2 dη(z) ≤ M2(ν)

(1− σ)2
∥f∥2

∫
Rn

⟨f , z⟩2 dη(z),

where the first inequality is due to Cauchy Schwarz inequality in L2(γ23) and the third equality

comes from γ23 ∈ Γ(ν, η). Thus for any f ∈ Rn,

(1− σ)2

M2(ν)
∥f∥2 ≤

∫
Rn

⟨f , z⟩2 dη(z) ≤ M2(η) ∥f∥2.

Therefore, η is a probabilistic frame for Rn with bounds (1−σ)2

M2(ν)
and M2(η). If the upper frame

bound for the probabilistic dual frame ν is 0 < D < ∞, then

∥f∥4 ≤
∫
Rn

〈
L−1f ,y

〉2
dν(y)

∫
Rn

⟨f , z⟩2 dη(z) ≤ D∥f∥2

(1− σ)2

∫
Rn

⟨f , z⟩2 dη(z).
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In this case, the frame bounds for η are (1−σ)2

D and M2(η).

If the probabilistic dual frame of µ is given by the canonical probabilistic dual frame S−1
µ #

µ,

we have the following corollary.

Corollary 3.4.2. Let µ be a probabilistic frame for Rn with bounds 0 < A ≤ B < ∞, and η ∈

P2(Rn). If

σ̂ :=

∫
Rn×Rn

∥S−1
µ x∥∥x− z∥dµ(x)dη(z) < 1 (3.4.1)

then η is a probabilistic frame for Rn with bounds A(1− σ̂)2 and M2(η).

Proof. Note that S−1
µ #

µ is the canonical probabilistic dual frame of µ with respect to γ12 :=

(Id× S−1
µ )

#
µ ∈ Γ(µ,S−1

µ #
µ). Let γ23 be the product measure γ23 := S−1

µ #
µ ⊗ η ∈ Γ(S−1

µ #
µ, η).

Then by the disintegration theorem and Lemma 1.2.3(Gluing Lemma), the transport coupling with

marginals γ12 and γ23 is given by π̃ := γ12 ⊗ η ∈ P(Rn × Rn × Rn). Thus

σ̂ :=

∫
Rn×Rn

∥x− z∥∥S−1
µ x∥dµ(x)dη(z) =

∫
Rn×Rn×Rn

∥x− z∥∥y∥dπ̃(x,y, z).

Since σ̂ < 1 and the upper frame bound for the dual frame S−1
µ #

µ is 1
A , then by Theorem 3.4.1, η

is a probabilistic frame for Rn with bounds A(1− σ̂)2 and M2(η).

Remark 3.4.1. Since ∥S−1
µ x∥ ≤ ∥S−1

µ ∥2∥x∥ ≤ 1
A∥x∥, if

ϵ̂ :=

∫
Rn×Rn

∥x∥ ∥x− z∥dµ(x)dη(z) < A, (3.4.2)

then σ̂ ≤ ϵ̂
A < 1 and thus η is a probabilistic frame for Rn with bounds A(1− σ̂)2 and M2(η)

Indeed, Corollary 3.4.2 and Remark 3.4.1 could be generalized to any γ ∈ Γ(µ, η).

Proposition 3.4.3. Let µ be a probabilistic frame for Rn with bounds 0 < A ≤ B < ∞ and

η ∈ P2(Rn). Let γ ∈ Γ(µ, η) be any coupling with marginal µ and η. Suppose

ϵ :=

∫
Rn×Rn

∥x∥ ∥x− z∥dγ(x, z) < A,
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then η is a probabilistic frame for Rn with bounds (A−ϵ)2

B and M2(η). And if

χ :=

∫
Rn×Rn

∥S−1
µ x∥ ∥x− z∥dγ(x, z) < 1,

then η is a probabilistic frame for Rn with bounds A2(1−χ)2

B and M2(η).

Proof. Since η ∈ P2(Rn), η is Bessel with bound M2(η). Since S−1
µ #

µ is the canonical probabilistic

dual frame of µ with respect to (Id× S−1
µ )

#
µ ∈ Γ(µ,S−1

µ #
µ), then

f =

∫
Rn

〈
f ,S−1

µ x
〉
x dµ(x) =

∫
Rn

〈
S−1
µ f ,x

〉
x dµ(x), for any f ∈ Rn.

Define a linear operator L : Rn → Rn by

L(f) =

∫
Rn×Rn

〈
S−1
µ f ,x

〉
z dγ(x, z), for any f ∈ Rn.

Therefore,

∥f − L(f)∥ =
∥∥∥∫

Rn×Rn

〈
S−1
µ f ,x

〉
x dµ(x)−

∫
Rn×Rn

〈
S−1
µ f ,x

〉
z dγ(x, z)

∥∥∥
=
∥∥∥∫

Rn×Rn

〈
S−1
µ f ,x

〉
(x− z) dγ(x, z)

∥∥∥ ≤ ϵ ∥S−1
µ ∥2 ∥f∥ ≤ ϵ

A
∥f∥.

Thus L : Rn → Rn is invertible and ∥L−1∥ ≤ 1
1−ϵ/A . Then for any f ∈ Rn,

f = LL−1(f) =

∫
Rn×Rn

〈
S−1
µ L−1f ,x

〉
z dγ(x, z).

Therefore,

∥f∥4 = ⟨f , f⟩2 =
∣∣∣ ∫

Rn×Rn

〈
S−1
µ L−1f ,x

〉
⟨f , z⟩ dγ(x, z)

∣∣∣2
≤
∫
Rn×Rn

〈
S−1
µ L−1f ,x

〉2
dγ(x, z)

∫
Rn×Rn

⟨f , z⟩2 dγ(x, z)

=

∫
Rn

〈
S−1
µ L−1f ,x

〉2
dµ(x)

∫
Rn

⟨f , z⟩2 dη(z)

≤ B∥S−1
µ ∥22 ∥L−1∥2 ∥f∥2

∫
Rn

⟨f , z⟩2 dη(z) ≤ B∥f∥2

A2(1− ϵ
A )2

∫
Rn

⟨f , z⟩2 dη(z),

where the first inequality is due to Cauchy-Schwarz inequality in L2(γ) and the second inequality
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comes from µ being a probabilistic frame with upper frame bound B. Thus for any f ∈ Rn,

A2(1− ϵ
A )2

B
∥f∥2 ≤

∫
Rn

⟨f , z⟩2 dη(z) ≤ ∥f∥2M2(η).

Therefore, η is a probabilistic frame for Rn with bounds (A−ϵ)2

B and M2(η). Furthermore, if

χ :=

∫
Rn×Rn

∥x− z∥∥S−1
µ x∥dγ(x, z) < 1,

then

∥f − L(f)∥ =
∥∥∥∫

Rn×Rn

〈
f ,S−1

µ x
〉
(x− z) dγ(x, z)

∥∥∥ ≤ χ ∥f∥.

Therefore, ∥I − L∥ ≤ χ < 1 implies L is invertible and ∥L−1∥ ≤ 1
1−χ . Similar proof shows that η is

a probabilistic frame for Rn with bounds A2(1−χ)2

B and M2(η).

Remark 3.4.2. (A−ϵ)2

B is smaller than A2(1−χ)2

B since ∥S−1
µ x∥ ≤ 1

A∥x∥.

The key step in the proof of Proposition 3.4.3 is to use the canonical probabilistic dual frame

to give a constructive formula for f . Another way to construct f is to use the canonical Parseval

probabilistic frame S
−1/2
µ #µ, i.e., for any f ∈ Rn,

f =

∫
Rn

〈
f ,S−1/2

µ x
〉
S−1/2
µ x dµ(x) =

∫
Rn

〈
S−1/2
µ f ,x

〉
S−1/2
µ x dµ(x).

According to this reconstruction formula, we get the last proposition in this section. Since it is

similar to the previous proposition, we omit some details in the proof.

Proposition 3.4.4. Let µ be a probabilistic frame for Rn with bounds 0 < A ≤ B < ∞ and

η ∈ P2(Rn). Let γ ∈ Γ(µ, η) be any coupling with marginal µ and η. Suppose

τ :=

∫
Rn×Rn

∥x∥∥S−1/2
µ x− z∥dγ(x, z) <

√
A,

then η is a probabilistic frame for Rn with bounds (
√
A−τ)2

B and M2(η).

Proof. Clearly η is Bessel with bound M2(η). Since S
−1/2
µ #µ is a probabilistic Parseval frame, then

f =

∫
Rn

〈
S−1/2
µ f ,x

〉
S−1/2
µ x dµ(x), for any f ∈ Rn.
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Define a linear operator L : Rn → Rn by

L(f) =

∫
Rn×Rn

〈
S−1/2
µ f ,x

〉
z dγ(x, z), for any f ∈ Rn.

Therefore,

∥f − L(f)∥ ≤
∫
Rn×Rn

∥x∥∥S−1/2
µ x− z∥dγ(x, z) ∥S−1/2

µ f∥ ≤ τ√
A
∥f∥.

Thus L : Rn → Rn is invertible and ∥L−1∥ ≤ 1
1− τ√

A

. Then for any f ∈ Rn,

f = LL−1(f) =

∫
Rn×Rn

〈
S−1/2
µ L−1f ,x

〉
z dγ(x, z).

Therefore,

∥f∥4 = ⟨f , f⟩2 =
∣∣∣ ∫

Rn×Rn

〈
S−1/2
µ L−1f ,x

〉
⟨f , z⟩ dγ(x, z)

∣∣∣2
≤
∫
Rn

〈
S−1/2
µ L−1f ,x

〉2
dµ(x)

∫
Rn

⟨f , z⟩2 dη(z) ≤ B∥f∥2

A(1− τ√
A
)2

∫
Rn

⟨f , z⟩2 dη(z).

Thus for any f ∈ Rn,

A(1− τ√
A
)2

B
∥f∥2 ≤

∫
Rn

⟨f , z⟩2 dη(z) ≤ M2(η) ∥f∥2.

Therefore, η is a probabilistic frame for Rn with bounds (
√
A−τ)2

B and M2(η).

The following example applies Proposition 3.4.3 and Proposition 3.4.4 to the case of finite

frames for Rn by taking µ = 1
N

N∑
i=1

δfi , ν = 1
M

M∑
j=1

δgj
, and γ = µ⊗ ν ∈ Γ(µ, ν).

Example 3.4.1. Let M,N ≥ n, and {fi}Ni=1 a frame for Rn with bounds 0 < A ≤ B < ∞ and

frame operator S =
N∑
i=1

fif
T
i . If {gj}Mj=1 is a sequence in Rn such that

ϵ :=
1

MN

N∑
i=1

M∑
j=1

∥fi∥∥fi − gj∥ <
A

N
,
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then {gj}Mj=1 is a frame with bounds M(A/N−ϵ)2

B/N and
M∑
j=1

∥gi∥2; If {gj}Mj=1 is such that

χ :=
1

MN

N∑
i=1

M∑
j=1

∥S−1fi∥ ∥fi − gj∥ < 1,

then {gj}Mj=1 is a frame with bounds MA2(1−χ)2

BN and
M∑
j=1

∥gi∥2; If {gj}Mj=1 is such that

τ :=
1

MN

N∑
i=1

M∑
j=1

∥fi∥∥S−1/2fi − gj∥ <

√
A

N
,

then {gj}Mj=1 is a frame for Rn with bounds M(
√

A/N−τ)2

B/N and
M∑
j=1

∥gi∥2.

3.5 Quadratic Closeness of Probabilistic Frames

Recall that from Corollary 2.1.6, we show that the set of probabilistic frames is open in the

2-Wasserstein metric. In this section, we further show that one could obtain the frame bounds. It is

well-known that if {fi} is a frame for Hilbert space H with bounds A and B, and {gi} is a sequence

such that

K :=

∞∑
i=1

∥fi − gi∥2 < A,

then {gi} is a frame for H with bounds (
√
A −

√
K)2 and (

√
B +

√
K)2 [Christensen, 1995a]. We

get a similar result for probabilistic frames.

Proposition 3.5.1. Let µ be a probabilistic frame with bounds A and B and ν ∈ P(Rn). Let

γ ∈ Γ(µ, ν) be any coupling with marginal µ and ν. Suppose

λ :=

∫
Rn×Rn

∥x− y∥2dγ(x,y) < A.

Then ν is a probabilistic frame with bounds (
√
A−

√
λ)2 and M2(ν).

Proof. Since

λ =

∫
Rn

∥x∥2dµ(x) +
∫
Rn

∥y∥2dν(y)− 2

∫
Rn×Rn

⟨x,x⟩ dγ(x,y) < A < +∞.
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Then M2(ν) =
∫
Rn ∥y∥2dν(y) < +∞. Therefore, ν ∈ P2(Rn) and ν is Bessel with bound M2(ν).

Next, let us show the lower frame bound. Note that S−1
µ #

µ is the probabilistic dual frame with

bounds 1
B and 1

A . Then for any f ∈ Rn,

f =

∫
Rn

〈
f ,S−1

µ x
〉
xdµ(x) =

∫
Rn×Rn

〈
f ,S−1

µ x
〉
xdγ(x,y).

For any f ∈ Rn, define a linear operator L : Rn → Rn by

L(f) =

∫
Rn×Rn

〈
f ,S−1

µ x
〉
ydγ(x,y).

Therefore,

∥f − L(f)∥2 =
∥∥∥∫

Rn×Rn

〈
f ,S−1

µ x
〉
(x− y) dγ(x,y)

∥∥∥2
≤
(∫

Rn×Rn

|
〈
f ,S−1

µ x
〉
| ∥x− y∥ dγ(x,y)

)2
≤
∫
Rn

|
〈
f ,S−1

µ x
〉
|2dµ(x)

∫
Rn×Rn

∥x− y∥2dγ(x,y) ≤ λ

A
∥f∥2,

where the first two inequalities are due to triangle inequality and Cauchy Schwarz inequality, and

the last inequality follows from the fact that S−1
µ #

µ is a probabilistic frame with upper bound 1
A .

Thus L : Rn → Rn is invertible and

∥L−1∥ ≤ 1

1−
√

λ
A

.

Then for any f ∈ Rn,

f = LL−1(f) =

∫
Rn×Rn

〈
L−1f ,S−1

µ x
〉
ydγ(x,y).

Therefore,

∥f∥4 = ⟨f , f⟩2 =
∣∣∣ ∫

Rn×Rn

〈
L−1f ,S−1

µ x
〉
⟨f ,y⟩ dγ(x,y)

∣∣∣2
≤
∫
Rn

〈
L−1f ,S−1

µ x
〉2

dµ(x)

∫
Rn

⟨f ,y⟩2 dν(y)

≤ ∥L−1f∥2

A

∫
Rn

⟨f ,y⟩2 dν(y)

≤ ∥f∥2

A(1−
√

λ
A )2

∫
Rn

⟨f ,y⟩2 dν(y),
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where the first inequality is because of the Cauchy-Schwarz inequality and the second one follows

from S−1
µ #

µ being a probabilistic frame with upper bound 1
A . Thus for any f ∈ Rn,

A(1−
√

λ

A
)2∥f∥2 ≤

∫
Rn

⟨f ,y⟩2 dν(y) ≤ M2(ν)∥f∥2.

Therefore, ν is a probabilistic frame for Rn with bounds (
√
A−

√
λ)2 and M2(ν).

If ν ∈ P2(Rn) and γ ∈ Γ(µ, ν) is the optimal coupling with respect to W2(µ, ν), we have the

following corollary which ends this section.

Corollary 3.5.2. Let µ be a probabilistic frame with bounds bounds A and B and ν ∈ P2(Rn).

Suppose

W2(µ, ν) <
√
A,

then ν is a probabilistic frame with bounds (
√
A−W2(µ, ν))

2 and M2(ν).

Proof. Take γ ∈ Γ(µ, ν) as the optimal transport coupling in Proposition 3.5.1.
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Chapter 4

Discussion

By the following two theorems, it is well-known that the closest Parseval frame to a given

frame in Rn is the canonical Parseval frame, and the closest Parseval probabilistic frame to a given

probabilistic frame for Rn is also the canonical probabilistic Parseval frame. It is natural to consider

this minimization problem for probabilistic p-frames in the p–Wasserstein topology where p ≥ 1. In

addition, restricting probabilistic frames to the unit sphere Sn−1 is also an interesting topic.

Theorem 4.0.1 ( [Casazza and Kutyniok, 2007]). If f = {fi}Ni=1 is a frame for Rn, then the

minimizing problem

min
{
d(f ,g) =

N∑
i=1

∥fi − gi∥2 : g = {gi}Ni=1 ⊂ Rn, g is Parseval
}

admits a unique solution given by f∗ = {S−1/2fi}Ni=1 where S is defined by

S(x) =

N∑
i=1

⟨x, fi⟩ fi, x ∈ Rn

Theorem 4.0.2 ( [Cheng and Okoudjou, 2019,Loukili and Maslouhi, 2020]). Let µ be a probabilistic

frame for Rn, then IP(µ,Rn) := inf
ν∈TP(Rn)

W2(µ, ν) admits an unique optimizer µ∗ = S
− 1

2
µ #µ, and

IP(µ,Rn) = W2(µ, µ
∗) =

√
tr (S

1
2
µ − Id)2,

where TP(Rn) be the set of Parseval probabilistic frames in Rn.
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4.1 Minimization of Probabilistic p-Frames in Wp

Recall that µ ∈ Pp(Rn) is called probabilistic p-frame if there exist 0 < A ≤ B such that

for any x ∈ Rn,

A∥x∥p ≤
∫
Rn

| ⟨x,y⟩ |p dµ(y) ≤ B∥x∥p.

Furthermore, µ is called a tight frame if A = B, and Parseval if A = B = 1.

One natural question is finding the closest probabilistic Parseval p-frame to a given proba-

bilistic p-frame in the p-Wasserstein topology where p ≥ 1.

Problem 4.1.1. Let µ be a probabilistic p-frame for Rn where p ≥ 1. Then consider the following

minimization problem

inf
ν∈T

p
P
(Rn)

Wp(µ, ν),

where T
p
P (Rn) is the set of Parseval probabilistic p-frames for Rn.

4.2 Minimization of Probabilistic Frames on the Unit Sphere

When designing frames, people like to sample points from the unit sphere Sn−1 to get

unit-norm frames, which leads to the following definition about probabilistic frame on Sn−1.

Definition 4.2.1 ( [Ehler, 2012]). µ ∈ P(Sn−1) is a probabilistic frame on Sn−1 if there exist

constants 0 < A ≤ B < ∞ such that for any x ∈ Rn,

A∥x∥2 ≤
∫
Sn−1

| ⟨x,y⟩ |2dµ(y) ≤ B∥x∥2.

µ is said to be a tight probabilistic frame if A = B, and Parseval if A = B = 1.

For a given probabilistic frame µ on Sn−1, the following minimization problem about finding

the closest probabilistic Parseval frame on Sn−1 is still open:

IP(µ,Sn−1) := inf
ν∈TP(Sn−1)

W2(µ, ν),

where TP(Sd−1) is the set of probabilistic Parseval frames on Sn−1. The difficulty is due to the

absence of linear structures on the unit sphere Sd−1. It is clear that the optimizer for IP(µ,Sn−1)

exists since TP(Sn−1) is weakly compact by the following lemma and corollary.
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Lemma 4.2.2. TP(Sn−1) is convex and weakly compact.

Proof. It is clear that TP(Sn−1) is convex. Since P(Sn−1) is compact in the weak topology, it suffices

to show that TP(Sn−1) is weakly closed. Let {νn}∞n=1 ⊂ TP(Sn−1) be a sequence such that {νn}∞n=1

converges weakly to ν ∈ P(Sn−1). Since the (i, j)–th entry of the frame operator Sνn is δij , then

∫
Sn−1

yiyjdν(y) = lim
n→∞

∫
Sn−1

yiyjdνn(y) = δij .

Therefore, Sν = Id and thus ν is a probabilistic Parseval frame on Sn−1, which implies TP(Sn−1) is

weakly closed and thus weakly compact.

Corollary 4.2.3. IP(µ,Sn−1) admits an optimizer in TP(Sn−1).

It is interesting to find the optimizer for IP(µ,Sn−1). Note that the canonical probabilistic

Parseval frame S
− 1

2
µ #µ may not be supported on the unit sphere. Therefore, S− 1

2
µ #µ may not be

an optimizer. On the other hand, since TP(Sn−1) ⊂ TP(Rn), then IP(µ,Rn) is a lower bound of

IP(µ,Sn−1).

Corollary 4.2.4. IP(µ,Sn−1) ≥ IP(µ,Rn) = W2(µ,S
− 1

2
µ #µ) =

√
tr (S

1
2
µ − Id)2.
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