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ABSTRACT 

The Architecture, Engineering, and Construction (AEC) sector, characterized by its 

complex tasks, often faces challenges in adopting cutting-edge technologies, a trend that can 

significantly hinder productivity improvements compared to other industries. This dissertation 

explores the emerging integration of Artificial Intelligence (AI) and Augmented Reality (AR) 

within the AEC domain, investigating how effectively this can be implemented to potentially 

revolutionize industry practices. AI could be used in the AEC domain for advanced analytical 

and decision-making processes, while AR could be used for training, visualization, and remote 

collaboration. 

In scenarios where construction site workers require expert guidance, these 

technologies could be helpful. AR, for instance, enables remote experts to offer real-time 

assistance, while AI can provide data-driven recommendations through AR interfaces, 

analyzing on-site challenges to suggest practical solutions. This integration of AI and AR 

harnesses the strengths of both technologies, potentially transforming the AEC landscape. 

However, this technological integration is not without its challenges, particularly concerning 

trust in AI, an important factor for the successful implementation of AI across domains. 

The initial study of this dissertation investigates the effect of task complexity and AI 

recommender system reliability on trust, performance, and workload. Utilizing a Partially 

Observable Markov Decision Process (POMDP) model, the evolution of trust during 

interactions with recommender AI was modeled. The experimental study identified that the 

task complexity did not significantly impact trust in AI. Instead, the reliability of the AI agent 

emerged as a crucial determinant, with higher reliability correlating with increased trust. The 

trust trajectory predicted by the POMDP model aligned closely with experimental findings 

under most conditions, offering valuable insights for AI system designers for AR modules 

while completing construction tasks. 



 

iii 

The second study investigated the effect of transparency and explainability on trust in 

the recommender AI. Specifically, it investigated the effects of varying levels of explanation 

and transparency on trust, performance, and workload while completing a construction task 

with the help of AR technology. The study identified that the overall change in trust after 

introducing a combination of transparency and explainability increased regardless of the 

reliability of the AI but with the cost of the time taken to complete the task. This combination 

of transparency and explainability was provided along with all the recommendations 

throughout the task. This led to the idea of the final study, which is to investigate the effect of 

providing the combination of transparency and explainability in a non-continuous way, 

especially in AR modules, to avoid visual clutter of information.  

The third study investigated the effect of providing a combination of AI transparency 

and explainability along with the recommendation in an adaptive manner to maintain 

appropriate trust, compared to providing them continuously. The study identified that there was 

no significant reduction in trust level when transparency and explainability were provided 

when AI’s confidence was low and when provided during the first, middle and last steps of the 

task compared to providing them continuously with an advantage of time taken to complete the 

task while providing them intermittently.  

This research attempts to offer a detailed exploration of the factors influencing trust in 

AI, particularly when interfaced with AR technology while completing a construction task. The 

findings are expected to guide the development of more effective, trust-enhancing AI tools, 

paving the way for their broader acceptance and implementation in complex construction 

environments. 
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CHAPTER ONE 

INTRODUCTION 

The Architecture, Engineering, and Construction (AEC) domain is a complex and 

challenging industry involving many complex and critical tasks ranging from structural design 

to scheduling to system installation, and errors within it can lead to significant delays and 

impacts. The AEC industry, traditionally seen as slow to adopt the latest technologies (Takim 

et al., 2013), has begun to incorporate some of the newer technologies to enhance efficiency 

and safety. For example, AEC projects are associated with a large amount of data such as 

multiple plans, elevations, and estimates, that are challenging to manage. With the introduction 

of building information modeling (BIM), this information could be managed digitally and can 

be visualized in 3D format when required and is one of the most promising changes that the 

AEC industry has adopted recently (Alizadehsalehi et al., 2020). There is a decline in 

productivity because of the delays in the adoption of the latest technologies, compared to the 

other sectors (Akanmu et al., 2021). 

Some of these challenges could potentially be addressed to an extent by incorporating 

technologies such as artificial intelligence (AI), drones, virtual reality (VR) and augmented 

reality (AR). For example, one of the factors that contributed to the decline in productivity is 

inefficient on-site execution of construction activities, such as incomplete design and lack of 

clear scope (Cisterna et al., 2018). For instance, there could be cognitively demanding 

situations where a worker needs to either install a pipe layout for a heat pump or replace an 

existing one, all without having access to a design plan. This task is challenging, especially if 

the worker is not an expert. The challenges include making errors such as placing the pipe 

fittings in the wrong order or not using a necessary component in the layout, such as a Y-

strainer or a regulating valve. Such problems in similar scenarios could potentially be addressed 

if the expert is onsite. But most of the time, experts must travel from a different location, which 
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is both time-consuming and cost prohibitive. To mitigate this issue, remote support could be 

offered to the local operator using audio or video calls; however, this approach is not always 

effective due to the limitations of these technologies in adequately conveying the problem and 

its solution. To circumvent this issue, a remote expert could provide remote assistance using 

AR technology, which is more effective than traditional phone assistance for remote 

collaboration (Havard et al., 2015). Even further, by using AI technology, a well-trained AI 

agent could potentially provide recommendations to complete the task, reducing the need to 

have a remote expert helping the local worker. 

AI can be defined as the field of engineering and science that focuses on the application 

and theory of developing systems that display traits like human intelligence (Tecuci, 2012). AI 

has been used in different industries to assist with the decision-making process, such as 

healthcare, for detecting cancer by analyzing radiology images (Capobianco, 2022), 

manufacturing for the detection of quality defects in the final product (Arinez et al., 2020), and 

aviation for air traffic management (Degas et al., 2022). AI could also be advantageous in the 

AEC industry for assisting processes such as construction planning and scheduling, risk 

management, quality control, predictive maintenance, and construction safety (Rafsanjani & 

Nabizadeh, 2023).  

Another technology that AEC adopted recently is AR, which is used in the design, 

construction, and operation stages of construction (Chen & Xue, 2022). AR technology 

overlaps the computer-generated virtual information on the user’s view of the real world 

(Azuma, 1997). AR could potentially benefit users by reducing the cognitive load by displaying 

the required information while completing a physical task. AR technology can be achieved 

using handheld devices (HHD), such as phones and tablets, or using head-mounted displays 

(HMD), or spatial augmented reality (SAR), which is attained using projectors. AEC could 

benefit from AR in terms of implementation of BIM to support decision-making tasks 
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(Golparvar-Fard et al., 2011), communication between stakeholders (Noghabaei et al., 2020), 

real-time visualization for structural health monitoring (Sadhu et al., 2023), collaboration for 

remote assistance (Chantziaras et al., 2021), and much more. 

AEC is a domain where productivity and reducing errors are of utmost importance since 

one of the main objectives of high-quality projects is to deliver them on time and within budget. 

By incorporating AI and AR, the benefits of both technologies could be harnessed and could 

be used to improve error detection, enhanced visualization, safety improvements, and to assist 

with decision-making. AI-assisted AR in industrial applications has huge potential, such as to 

increase productivity and minimize errors (Devagiri et al., 2022). For instance, AI can analyze 

the environment and provide recommendations on the task at hand based on the data that the 

system is trained in. While completing a task, the user could use an AR technology such as an 

HMD, HHD, or SAR, on which the AI can provide visual and textual recommendations for 

assistance. The AI could use the camera associated with the AR technology to learn about the 

environment and provide the necessary recommendations. This could reduce the use of 

manpower by avoiding the need for an expert to travel to the site or provide remote assistance 

to the worker on-site, contributing to solving the issue of skilled manpower shortage crisis that 

the industry has been going through recently (Kim et al., 2020).  

AI integrated with AR can be used for simulating the construction process, visualizing 

building designs and training construction workers (Rafsanjani & Nabizadeh, 2023). Bowman 

et al. (2022) presented a proof-of-concept prototype of a similar system where intelligent AR 

technology supports construction workers at the site for steel assembly tasks by detecting, 

understanding and reasoning about the context of use and presenting only necessary 

information on AR display while providing step by step instructions. AI can also be used to 

identify potential safety hazards by monitoring workers’ onsite movements and behavior 
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(Rafsanjani & Nabizadeh, 2023) and provide real-time recommendations to the workers on the 

AR platform to increase safety at construction sites.  

As the demand for sustainable and smart infrastructure grows, the AEC industry's 

reliance on new technologies will only intensify, highlighting the need for continuous 

innovation and adaptation. Further research on integrating emerging technologies is necessary 

within the AEC industry to harness their full potential to enhance efficiency and safety. 

Problem Statement 

The fusion of AR and AI presents a novel paradigm in human-computer interaction, 

offering a more immersive and intelligent user experience. While AR provides a connection 

between the digital and physical worlds, AI enhances this connection with adaptive learning, 

predictive analytics, and real-time decision-making. However, this interaction also amplifies 

the challenges associated with each technology. To effectively design an integrated system that 

combines AR and AI, it is crucial to address individual challenges such as enhancing human 

interaction, training data for AI, and tackling industry-specific problems like, collaboration 

issues, and knowledge transfer in the AEC industry (Rebolledo et al., 2023; Wang et al., 2020). 

One example would be a study by Livingston et al. (2005) mentioning that the text layout and 

legibility on the AR platform significantly impact the users' performance, potentially hindering 

their ability to complete tasks efficiently. These aspects should be studied to better understand 

how performance and workload are affected when integrating these technologies. 

In the case of AI, issues caused by system failures have emerged with the advancement 

and adoption of AI systems and applications. These errors have led to trust issues when using 

AI to predict and safely use the system (Um et al., 2022). Solberg et al., (2022) defined trust in 

AI as “the willingness of a person to be vulnerable to the actions of an AI decision aid, based 

on the expectation that it will perform a decision-making task important to the trustor.” The 

adoption of AI in AEC is delayed by the lack of trust in the technology (Emaminejad et al., 
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2021). Regardless of the application domain, while implementing technology for assistance, 

the user should have appropriate trust in the system for effective use of the technology (Bach 

et al., 2022). Trust affects the decision-making capability of humans (Park et al., 2008), and it 

directly affects their willingness to follow or reject the suggestions given by the AI (Freedy et 

al., 2007). For the implementation of the AI to be effective, the users should have the 

appropriate amount of reliance on AI rather than under- or over-reliance. The reason for under- 

or over-reliance on AI is inappropriate trust in the system (Lee & See, 2004). This inappropriate 

reliance will lead to misuse or disuse of the technology (Parasuraman & Riley, 1997). Even 

though AI can perform equally or even better than humans at many tasks, it is important to 

design the AI appropriately so that it is helpful to the users as intended. Poor design of the AI 

system could detrimentally impact the decision-making process (Lakkaraju & Bastani, 2020) 

and affect the user’s trust in AI (Beauxis-Aussalet et al., 2021). For these reasons, to consider 

factors that affect trust while using AI technology is important since the design could affect the 

performance of the task.  

Understanding the challenges associated with integrating AI and AR technologies is 

essential since finding solutions for these challenges and improving factors such as workload 

and appropriate trust in AI could lead to a better user experience and task performance. In prior 

studies, it has been demonstrated that providing transparency and explainability of AI 

recommendations can enhance user trust (Panganiban et al., 2020; N. Wang et al., 2016). 

Transparency of an AI system provides real-time status of what the system is currently doing 

(Andrada et al., 2023), whereas explainability provides an explanation or reason for the actions 

or recommendations provided by the AI (Arrieta et al., 2020). The explainability aspect aims 

to make the actions of the AI agent clear and understandable for the users, thereby improving 

trust in the system.  
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Accordingly, the overarching goal of this dissertation is to characterize human 

performance in AEC procedural tasks while integrating AI and AR technologies. This research 

aims to formulate design principles that optimize the utilization of these technologies, with a 

focus on enhancing explainability and transparency to maintain trust.  

Trust Framework 

Trust in AI is affected by different factors when human interacts with it. There are 

different frameworks associated with trust while interacting with automation. Recently, Kaplan 

et al. (2023) developed a model for trust in AI after conducting a meta-analysis of studies that 

investigated trust in AI. This trust model offers a detailed understanding of the factors 

influencing trust in AI. As shown in Figure 1, these factors were categorized into human-

related, AI-related, and contextual antecedents of trust in AI.  

Figure 1:  

Trust in AI Model (Kaplan et al., 2023) 

 

 

Human-related factors play a crucial role in determining trust in AI. The analysis 

showed that human-related variables, such as abilities and characteristics, significantly 

predicted trust levels. For instance, an operator's competency, understanding of the AI system, 

and expertise were positive predictors of trust. Personality traits and gender were also 

significant factors, such that lonely operators were less likely to trust AI, whereas innovative 

individuals were more likely to trust AI and males tended to trust AI more than females. 
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The AI-related factors, such as performance and attributes of AI systems themselves, 

are also important in shaping trust. AI's performance, especially its reliability, emerged as a 

significant predictor. The more reliable and higher performing an AI was, the higher the trust 

it gained. Additionally, AI's personality, anthropomorphic features, behavior, reputation and 

transparency positively influenced trust levels. For example, AI systems that were more 

human-like or focused on teamwork were trusted more, while those that appeared misleading 

were trusted less. 

The context in which AI operates also affects trust. Variables, such as communication 

patterns and the length of the relationship between humans and AI, were significant predictors. 

Communication significantly predicts trust, where shared verbal speech is preferred over text 

communication, and trust is further enhanced when there's similarity between the speech 

patterns of humans and AI systems. Similarly, as the duration of the operator's interaction with 

the AI extended, their trust in the system correspondingly increased. Risk emerged as a crucial 

factor, with riskier situations diminishing trust. This is particularly relevant in high-stakes 

environments, such as aviation or self-driving cars, where humans and AI share potential risks. 

Implementation of AI can be achieved in many ways depending on the use of it. One 

way of implementing AI technology is using it as a recommender system that assists users in 

completing tasks by analyzing project-specific data and offering tailored suggestions that 

enhance decision-making and operational efficiency. A recommender system is a tool designed 

to assist users in filtering through a vast array of options to find those most relevant to their 

needs (Ravi et al., 2022). For example, in complex construction activities, AI-enabled 

recommender systems can guide workers through installation processes, providing real-time, 

context-aware recommendations that aim to reduce errors and improve task performance. The 

effectiveness of such systems depends on the quality of their training data and their reliability 

in providing correct suggestions. As the AEC industry continues to evolve, integrating AI 
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recommender systems could lead to improved decision-making by augmenting human 

expertise with AI-driven insights. In this dissertation, AI is implemented as a recommender 

system that assists workers in completing a construction task. 

Trust is conceptualized through three distinct but interconnected layers: dispositional, 

situational, and learned trust (Hoff & Bashir, 2015). Dispositional trust is an individual's 

inherent tendency to trust, influenced by stable factors such as culture, age, gender, and 

personality traits. Situational trust varies with context, shaped by external factors like system 

complexity, task difficulty, and environmental risks, as well as internal factors including the 

operator's self-confidence, expertise, and mood. Learned trust evolves from an individual's 

accumulated experiences with specific automated systems, adjusting as they gain familiarity 

and observe system performance over time. In this dissertation, the concept of trust in AI 

predominantly pertains to situational trust, as the experimental studies presented herein are 

methodically designed to provide specific contexts with varying task characteristics and AI 

attributes. This approach aligns with the situational trust framework, wherein trust in AI is 

influenced by external factors, such as the complexity of the task, the reliability of AI, as well 

as internal factors related to the operator’s interactions within the given environment. 

This dissertation investigates multiple aspects of trust in AI to help design better human 

interaction while using AR glasses integrated with AI for completing a procedural task. The 

meta-analysis by Kaplan et al. (2023) indicates the importance of contextual antecedents in 

shaping trust, pertinent to the dissertation's exploration of AI within AR environments. By 

examining how the complexity of the task, reliability, transparency, explainability, and 

adaptive explanations of AI agents affect user trust in a procedural task context, the research 

directly addresses situational trust as influenced by AI attributes and human-AI interaction 

dynamics. AEC is a domain with multiple complex tasks, and to effectively implement the 

recommender system in the AEC domain, the complexity of the task should be studied in terms 
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of trust in AI. The tasks associated with the AEC domain come with a lot of uncertainties, and 

if not trained with all these uncertainties, there could be instances where AI makes errors. This 

might lead to time and recourse loss and even disasters. So, it is important to learn how humans 

interact with such systems, understand how users' trust in the AI agent varies, and how to 

maintain appropriate trust.  

Research Objectives 

The primary objective of this dissertation is to investigate the factors that should be 

considered while designing recommender systems for completing procedural tasks with the 

help of AR technology. More specifically, this dissertation explores the following research 

topics: 

1. Understanding how AR technology is used in the AEC domain for remote 

collaboration. 

a. To understand the facilitators and barriers to using AR for remote collaboration 

in the AEC domain. 

b. To understand the different technologies and devices used for remote 

collaboration using AR in the AEC domain. 

2. Understanding the effect of the reliability of the recommender AI and complexity of 

the task on trust in AI. 

3. Investigating the effectiveness of transparency and explainability of recommender AI 

on trust in AI. 

4. Evaluate the effectiveness of adaptive explanations in maintaining appropriate trust in 

AI.  

Research Questions 

The research questions are listed below: 
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While completing a procedural task with the help of a recommender AI and AR 

technology, 

1. How and where is AR technology used in the AEC industry for remote collaboration? 

2. How does trust vary with the varying reliability of recommender AI agents and the 

complexity of the task while completing a procedural task with the help of AR 

technology? 

3. How is trust in AI affected by the presence of explainability and transparency while 

completing a procedural task with the help of AR technology? 

4. When are providing explanations on the AR module beneficial to maintaining trust in 

AI while completing a procedural task? 

To investigate these research questions, as an initial step, a systematic review was 

conducted on how AR technology is used in the AEC industry and its associated challenges. 

AEC has started to take advantage of the benefits of AR by adopting it for remote collaboration  

(Ammari et al., 2019). Using AR could overcome the limitations of the current technologies 

used for remote collaboration to an extent. It could also help real-time communication and 

spatial mapping (Chantziaras et al., 2021). This review identified a gap in the literature that 

specifically investigates the use of AR for remote collaboration in the AEC industry. To address 

this gap, a literature review was conducted to learn about the devices used, domains of 

application, facilitators, and barriers associated with using AR for remote collaboration in the 

AEC industry.  

The integration of AI with AR technologies could potentially enable the delivery of 

expertise comparable to that of traditional remote assistance utilizing the AR platform. Trust 

in AI is a major aspect that needs to be investigated while implementing it, regardless of the 

domain. A POMDP model was developed to understand trust development while AI assists 

humans in making decisions when completing a procedural task. An experimental study was 
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conducted to understand the effect of task complexity and reliability of the AI agent on the 

trust in AI and to validate the model. The main effect of complexity on trust was not significant, 

whereas reliability had a significant effect on trust. The second study investigated the effect of 

transparency and explainability of AI on trust and found that trust in AI increases when a 

combination of transparency and explanations are provided continuously, along with 

recommendations with the cost of time taken to complete the task. The final study investigated 

when it is worth providing a combination of transparency and explanations to maintain 

appropriate trust in AI and found that providing them at the first, middle, and last steps 

maintains appropriate trust compared to providing them continuously. Additionally, if the 

combination of transparency and explanation is provided only when the AI’s confidence is low 

or at the first, middle and the last step, instead of continuously, not only the trust in AI is 

maintained but also the time taken to complete the task is decreased. This dissertation attempts 

to offer a novel contribution to the literature, guiding designers in developing AI systems that 

can be seamlessly integrated with AR technologies to effectively complete procedural tasks.

  

Dissertation Organization 

This dissertation is organized as follows: Chapter 2 details a systematic review of the 

literature on the application of AR technologies for remote collaboration in the AEC industry. 

Chapter 3 evaluates the effect of varying reliability of the AI agent and the complexity of the 

task on trust in AI. Chapter 4 evaluates the effect of transparency and explainability on trust in 

AI. Chapter 5 investigates different strategies to understand when is providing explanations 

more beneficial in maintaining appropriate trust.  
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CHAPTER TWO 

HUMAN FACTORS CONSIDERATIONS ON THE USE OF AUGMENTED REALITY 

TECHNOLOGY FOR REMOTE COLLABORATIVE WORK IN THE ARCHITECTURE, 

ENGINEERING, AND CONSTRUCTION INDUSTRY: A SYSTEMATIC REVIEW 

Introduction 

The complexities associated with the AEC industry and its increased demand for access 

to information, especially for evaluation, communication, and collaboration purposes (Rankohi 

& Waugh, 2013), necessitate adopting and integrating appropriate technologies to enhance 

human performance and safety. Because of the complex nature of the AEC industry, the teams 

need to collaborate for information exchange at different stages of a project, as project 

performance has been found to increase with effective collaboration among stakeholders during 

the planning, design, and construction stages of a project (Kapogiannis, 2013). For example, 

computer-supported collaborative work (CSCW), which is becoming prevalent, uses 

computers as a medium for human collaboration, with such technologies as BIM improving 

collaboration among various project stakeholders in the construction industry (Barlish & 

Sullivan, 2012; Demian & Walters, 2014). Using such collaborative technologies contributes 

to improved scheduling, communication, relationships among partners, project and information 

management, as well as transparency of project information, among others (Nikas et al., 2007).   

One of this industry’s most recently adopted technologies is AR defined as a system 

that combines real and virtual objects in real-time in three dimensions. Using AR, virtual 

objects are augmented into the real world, bringing the real and virtual worlds together 

(Bronack, 2011; Klopfer & Squire, 2008). AR is part of the Reality-Virtuality continuum, 

consisting of the real environment, augmented reality, augmented virtuality, and the virtual 

environment (Milgram et al., 1995).  

AR can be achieved using a variety of device types, including HMD like Microsoft 

HoloLens, HHD like smartphones or tablets, and SAR, which uses a projector and a camera. 
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AR sees increasing application across a wide range of areas, from technical industries like 

education, manufacturing, maintenance, AEC, healthcare, military, aerospace, and engineering 

to more general industries like tourism, shopping, advertising, and entertainment (Ammari et 

al., 2019; Azuma, 1997; Zenati-Henda et al., 2014). Specific to the AEC industry, AR 

technology can be used for multiple purposes, including visualization, communication, 

information modeling, evaluation, progress monitoring, training, and safety inspection, 

whereas, in industrial construction, it can be used for different stages of a project from 

strategizing through execution to inspection (Rankohi & Waugh, 2013; Shin & Dunston, 2008). 

Other key benefits of using AR technologies include improving communication among the 

parties involved, increasing project understanding, accelerating decision-making, improving 

scheduling and budget management, providing real-time visualization, enhancing 

collaboration, improving safety, and enhancing the implementation of BIM (Danker & Jones, 

2014). 

AR technology is used for collaborative work in various industries for applications such 

as education and training, product design and development, and aircraft maintenance (Martín-

Gutiérrez et al., 2015; Shen et al., 2010; Utzig et al., 2019; Zhong et al., 2002). Studies have 

found that AR can improve performance time and mental effort in a collaborative design task 

(Alem & Li, 2011) and facilitate communication and discussion of engineering processes 

(Dong et al., 2013). In addition, using AR for collaboration provides virtuality, referring to 

interaction with computer-generated content, augmentation, referring to adding these 

computer-generated content to the user’s view in the real world, cooperation, referring to 

interaction between multiple people, independence, referring to controlling the augmented 

content individually, and individuality, referring to having personalized experience with the 

augmented content based on the user’s preference (Schmalstieg et al., 2002).  
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There are two types of collaboration using AR technology: face-to-face and remote 

(Lukosch et al., 2015).  In face-to-face collaboration, two or more users in the same room can 

see the same content on a tabletop using AR technology, whereas, in remote collaboration, 

users at different locations collaborate using AR technology to complete work or engage in 

discussions. This review will concentrate on the use of AR technology for remote collaboration. 

The construction industry could benefit from the increased use of AR technology and 

its capability to support remote collaboration between multiple people from multiple locations. 

This review attempts to understand how and where this technology is used in the AEC industry 

and learn the barriers associated with it. The specific objectives of the study were to 1) 

understand how and where AR technology is used in the AEC industry for remote 

collaboration, 2) identify the different technologies and devices used in this process, 3) 

understand the facilitators and barriers of using AR for remote collaboration, and 4) identify 

gaps in the literature and propose future research.   

Method 

To understand the application of AR technology in remote collaborative work in the 

AEC industry, a systematic literature review was conducted. Preferred reporting items for 

systematic reviews and a meta-analysis (PRISMA) format were followed to report the findings 

from this literature review (Page et al., 2021). The inclusion and exclusion criteria were 

selected based on the scope of the review, which was using AR for remote collaboration in 

AEC. Keywords were identified from previous research and were searched in selected 

databases and journals. The first author then reviewed these articles to remove duplicates and 

completed the title and abstract screening, followed by the full-text screening based on the 

inclusion and exclusion criteria.  

 

 



 

15 

Eligibility criteria 

The inclusion criteria for this review were that the study should investigate AR 

technology being used for remote collaboration in the AEC industry, and it should have been 

published in peer-reviewed publications or conference proceedings in English. Review articles, 

posters, and patented technologies were excluded from this study.  

Search strategy  

Articles published in English were searched in the following databases/journals: 

Institute of Electrical and Electronics Engineers (IEEE) Explore, The American Society of Civil 

Engineers (ASCE) Library, Automation in Construction, Applied Ergonomics, Computer-

Aided Civil and Infrastructure Engineering, Advanced Engineering Informatics, and 

Visualization in Engineering in July 2020 using  combinations of the following keywords using 

boolean operators (AND/OR); “augmented reality,” “mixed reality,” “remote,” “distant,” 

“distributed,” “assistance,” “communication,” “collaboration,” “collaborative work,” 

“computer-supported collaborative work,” “construction,” “engineering,” architecture,” and 

“AEC.”  

Selection Process 

This search resulted in a total of 695 articles; after checking for duplicates, 228 articles 

were removed, resulting in a total of 467 articles. The titles and abstracts were screened based 

on the inclusion and exclusion criteria, resulting in 48 articles being selected for the next round 

of screening. A full-text review by the researcher based on the inclusion and exclusion criteria 

resulted in a total of 12 papers for further review. During the full-text review, the studies that 

explored the use of AR for remote collaboration for tasks that could be applied to the AEC, 

such as general tasks and maintenance tasks, were not excluded. Figure 2 shows this literature 

selection process, and Table 1 shows the distribution of papers selected from corresponding 

journals. 
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Figure 2:  

PRISMA Flow Diagram Detailing the Selection Process 
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Table 1: 

Distribution of Articles from the Database/Journal Search 

Database/Journal Total number of 
articles in the initial 

search 

The final number 
of articles selected 

IEEE Explore 166 8 

ASCE Library 128 1 

Automation in Construction 275 1 

Applied Ergonomics 17 0 

Computer-Aided Civil and 
Infrastructure Engineering 

5 0 

Advanced Engineering 
Informatics 

92 1 

Visualization In Engineering 12 1 

 

Data extraction and synthesis 

The 12 articles selected for data extraction and thoroughly reviewed are reported in 

Table 2. Based on the objectives of the study, various themes were identified in the 12 papers 

and are reported in the results section. The main data items that we investigated in these articles 

are the area of application of AR technology, the type of hardware used, and the facilitators 

and barriers to using AR for remote collaboration. To understand the impact of the technology 

on remote collaboration, the dependent variables primarily used were performance and 

workload. The majority of studies measured performance using either the time taken to 

complete the task, the number of errors made, or both. Mental workload is generally measured 

using NASA TLX and is measured to quantify the cognitive cost to complete a task for 

predicting performance (Cain, 2007).  
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Table 2: 

Summary of Articles 

Article 
 

Domain Technology/equipment used Task Variables Objectives Findings 

Lee et al., (2020) 
 
 
 

Search and 
assembly 

Microsoft Hololens mounted 
with Ricoh Theta S 360 
camera for local workers and 
HTC Vive for the remote 
expert 

Locate tans (flat 
polygons) and 
assemble them in 
collaboration 

IV: 1) View sharing technique: 
2D video, 360 video, and 3D 
model augmented with 2D video 
2) Task roles: independent task, 
divided task 
DV: Search time, assembly time, 
workload, social presence 

To compare the 
three view-sharing 
techniques for the 
remote expert that 
supports the local 
workers with AR 
glasses 

The task completion time was significantly 
less for the 3D model condition than that of the 
other two conditions for the independent task 
scenario, whereas the 2D condition had more 
completion time compared to the other two 
conditions in the divided task. The workload 
was less for 3D condition, whereas usability, 
social preference, and preference were more 
for the 3D condition for both the scenarios 

Zenati-Henda et al., 
(2014)  
 

Industrial 
maintenance 

Vizur wrap 920 AR HMD and 
MSI Windpad 110 W Tablet 
for the local worker and 
interactive table connected to 
a desktop for remote expert 

1) Replace the 
printer cartridge 
2) Check and add 
engine oil in a car 

IV: The mode of collaboration: 
HMD vs. Tablet 
DV: Ease of use, usability, 
usefulness, task completion time, 
evaluate the usefulness and the 
usability of the proposed system 

To observe how 
the users used the 
new system and to 
study its usability 
and usefulness 

The users were satisfied with the system, 
especially with the HMD, since it was 
handsfree, but HMD provided less flexibility 
for application control 

Wang & Dunston, 
(2009) 
 

Design error 
detection support 
in the construction 
industry 

AR based face-to-face system, 
and AR based virtual space 
system using ARvision HMD 
for both parties- ARvision 

Collaboratively 
find the errors of a 
pipe layout 

IV: Mode of collaboration: AR 
vs. paper (face to face) and AR 
vs. Navis Work Roamer 
DV: Performance time 

To test the 
capabilities of the 
AR system by 
comparing the 
performance time 

AR based face-to-face system reduced 
performance time by 64%, and AR-based 
virtual space system reduced the performance 
time by 67% compared to the prevalent 
methods 

Aschenbrenner et 
al., (2018) 
 

Industrial Robot 
repair 

For the local user, Epson 
Moverio BT200 with an 
android control device for AR 
HMD, Panasonic PT-VZ575N 
projector with PointGrey 
Black-fly camera for the 
projector condition, and ASUS 
MEMO ME302C Tablet for 
the tablet condition and a 
laptop for the remote expert 

Exchange of a 
controller in a 
switch cabinet of 
an industrial robot 

IV: Mode of collaborations: 
tablet-based AR (video, 
screenshot, and tracking), optical 
see-through AR, phone, and 
projections-based AR 
DV: Task duration, workload, 
and situational awareness 

To measure the 
effectiveness of the 
different modes of 
collaboration for a 
collaborative 
industrial repair 
task 

Significantly less task duration was found for 
the projector condition compared to the phone 
condition 

https://paperpile.com/c/KOao1X/hBIx
https://paperpile.com/c/KOao1X/hBIx
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Article 
 

Domain Technology/equipment used Task Variables Objectives Findings 

Wang et al., (2019) 
 

Assembly training 
in the 
manufacturing 
industry 

Projector and Camera for SAR 
at the local site and HTC Vive 
and Leap Motion for VR at the 
expert side 

Assemble a vise IV: Mode of interaction at the 
remote expert side- Controller-
based and Gesture-based 
DV: Performance time and 
System Usability Scale (SUS) 

To compare the 
performance of 
gesture-based and 
controller-based 
conditions and to 
identify user’s 
preference 

No significant differences between the 
performance times for the two conditions were 
found. Participants preferred the gesture-based 
condition compared to the controller-based 
one. 

Obermair et al., 
(2020) 
 

Industrial 
maintenance 
support 

Smartphone for the local 
worker and laptop for the 
remote expert- models not 
mentioned 

Change a part of an 
industrial PC 

IV: Mode of support 
DV: Average completion time 
and error percentage 

To determine the 
benefits of AR 
remote support in 
maintenance by 
comparing the 
completion time 
and error 
percentage with 
support using paper 
instructions. 

For the AR remote support, the number of 
errors was 75% less compared to the paper-
based support. The total duration of the tasks 
was similar for both conditions but 
significantly different for the type 
identification task. 

Olorunfemi et al., 
(2018) 
 

Risk 
communication 
and hazard 
identification in the 
construction 
industry 

Microsoft HoloLens for the 
local user and a computer 
tablet for the expert 

Communicate a 
risk scenario 
between the expert 
and local worker 

IV: Model of communication: 
AR, phone call, walking up to 
people and talk, video 
conferencing, and emails 
DV: Communication accuracy 

Evaluate the 
accuracy of using 
AR technology 
communicating 
safety risks at 
construction sites 

AR technology had more accuracy of risk 
communication compared to the other methods 

Le Chenechal et al., 
(2016) 

Industrial 
maintenance 

Oculus Rift with two stereo 
cameras for both the parties 

Physical bimanual 
selection task by 
simultaneously 
touching two 
targets 

IV: 1) Mode of communication: 
AR system and desktop screen-
based system 
2) Complexity of the task 
DV: Task completion time 

Evaluate the 
effectiveness and 
user preference of 
the AR system 

The AR system provides a faster completion 
time compared to the desktop screen based 
system on the complex task. The cognitive 
load on the AR system is less compared to the 
traditional approach. Participants preferred the 
AR system except for the visual comfort. 

Ammari et al., 
(2019) 
 

Facilities 
management 
support 

Android tablet (Samsung 
Galaxy Tab S2) with FLIR 
ONE thermal camera for the 
local worker and Oculus Rift 
for the remote expert 

Replace a 
thermostat attached 
to a wall 

IV: 1) Mode of view (Immersive 
Augmented Virtuality and AR 
module) 
2) collaborated/non-collaborated 
DV: Task completion time, 
number of errors, Usability, and 

1) Usability testing 
and time and error 
analysis 
2) accuracy of 
remote marking 
and sketching 

The number of errors and time to identify 
marked tasks were less when collaborating 
compared to the non-collaborative mode. 
System effectiveness was found to be 90.2%. 
Participants suggested using AR glasses 
instead of tablets for the AR module 
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Article 
 

Domain Technology/equipment used Task Variables Objectives Findings 

accuracy of remote marking and 
sketching 

3) System 
effectiveness 

Fernández del Amo 
et al., (2020) 
 

Aircraft 
maintenance 
support 

Microsoft Hololens for the 
local worker and desktop for 
remote expert 

Visual inspection 
of an aircraft’s fuel 
hatch 

IV: Mode of collaboration: AR 
and non-AR 
DV: Task completion time, 
errors 

To evaluate the 
proposed 
effectiveness of the 
proposed 
communication 
framework for AR 
remote 
communication 

The average time to communicate was reduced 
by 56% when compared to the traditional 
phone call and email communication. No 
significant difference in the number of errors 
for the different conditions. 

Wang & Dunston, 
2013) 
 

Remote support in 
the construction 
industry 

ARvision HMD for both local 
worker and remote expert 

Find errors in a 3D 
CAD model of 
ductwork 

IV: Mode of collaboration: 
Navisworks Roamer and HMD 
DV: Attitude towards the 
effectiveness of AR system, the 
user experience of AR system, 
and usability issues, task 
completion time 

Evaluate the 
effectiveness and 
user experience of 
the AR system 

Task completion time was much less for the 
AR system. Level of immersion, sense of 
location and orientation, and suitability of 
making decisions and performing tasks on 
design models was significantly better for the 
AR system 

Sasikumar et al., 
2019) 
 

Not mentioned Magic Leap One for the local 
user and Vive Pro VR HMD 
with Leap Motion hand 
gesture sensor 

The local user has 
to pick up and 
place the lego 
block at a location 
specified by the 
remote expert. 

IV: Natural cues: User-centric 
and Device-centric 
DV: Task completion time, 
social presence 

To understand the 
use of natural 
communication 
cues by comparing 
a controller and 
annotation-based 
cues in a 
collaborative task. 

No difference in task completion time or 
workload was identified between the two AR 
conditions. Above average copresence was 
noticed, and the remote users have less 
physical workload compared to the local users. 

Note: IV- Independent variable; DV- Dependent variable 
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Results 

Based on the first three objectives of this study, the results were classified into the four 

categories of the application of AR for remote collaboration, the technology and hardware used 

for both remote experts and local users, the facilitators of using AR for remote collaboration, and 

the barriers associated with using AR for remote collaboration. Of the 12 studies reviewed, one of 

each was conducted in the United States, New Zealand, South Korea, Austria, Canada, France, or 

Algeria, and five included researchers who collaborated from multiple countries. These 12 papers 

reviewed include qualitative, quantitative, and usability studies, with all 12 articles conducting 

quantitative research as an experimental study or as a pilot study for their technology developed; 

3 of them contained qualitative studies, and 5 of them had usability studies of a technology or a 

system. 11 studies used performance as a metric in investigating the effectiveness of AR for remote 

collaboration. Table 3 shows the different dependent variables used in the reviewed studies.  
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Table 3:  

Dependent Variables 

 
Authors 

Dependent variables 

Performance 
Workload Usability Situational 

awareness 
Social 

presence 
Communication 

accuracy Time Errors 
Lee et al., (2020) 
 •  •   •  

Zenati-Henda et 
al., (2014) 
 

•   •    

Wang & Dunston, 
(2009) 
 

•       

Aschenbrenner et 
al., (2018) 
 

•  •  •   

Wang et al., 
(2019) 
 

•   •    

Obermair et al., 
(2020) 
 

• •      

Olorunfemi et al., 
(2018) 
 

      • 

Le Chenechal et 
al., (2016) 
 

•       

Ammari et al., 
(2019) 
 

• •  •    

Fernández del 
Amo et al., (2020) 
 

• •  •    

Wang & Dunston, 
(2013) 
 

•   •    

Sasikumar et al., 
(2019) 
 

•  •   •  

 

Application of AR for remote collaboration 

The papers reviewed here provide insights into the application of collaborative AR support 

for various areas within the AEC domain, ranging from design review to facilities management 

support, with maintenance being the most frequently identified area (50% of the studies). Other 
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applications involved training (17% of the studies), design review (17% of the studies), assembly 

(8% of the studies), and risk communication (8% of the studies).  

Lee et al. (2020) explored search and assembly tasks where multiple users at the local site 

were supported by a remote expert using AR technology, the only study identified in this review 

connecting multiple local users with a single remote expert, and Le Chenechal et al., (2016) 

explored the concept of virtual arms, specifically Vishnu, at a physical site for use in industrial 

maintenance, procedure learning, and sports training. Olorunfemi et al. (2018) investigated AR 

technology for use in the construction industry for risk communication and hazard identification. 

The experts from a remote location collaborated with a user concerning a hazard happening in 

real-time on the site, thus avoiding a safety visit that would interrupt the workflow. Similarly, AR 

was also used to maintain industrial personal computers (PCs) with the expert guiding the customer 

to fix the issue remotely (Obermair et al., 2020). Wang et al. (2019) applied an AR platform in the 

manufacturing training industry to virtually train an operator using VR on the expert side and AR 

as Spatial Augmented Reality on the local worker side. The expert guided the worker by moving 

the virtual models using hand gestures or VR controllers, with these real-time motions of the 

models being projected to the local worker using a projector. Wang & Dunston (2009) tested the 

capabilities of an AR system in their design review by detecting the design errors of a pipe layout 

using a team of two participants, one local and one remote, who collaborated to identify the errors 

associated with the pipe layout design. These researchers conducted a second study on the user 

perception and impacts of using mixed reality for remote design review (Wang & Dunston, 2013). 

Table 4 shows the list of application areas of AR for remote collaboration identified from the 

reviewed papers.  



 

24 

 

Table 4:  

Application Areas of AR for Remote Collaboration 

Authors Maintenance Training Design Review Assembly Risk 
Communication 

Lee et al., (2020) 
    •  

Zenati-Henda et 
al., (2014) 
 

•     

Wang & Dunston, 
(2009) 
 

  •   

Aschenbrenner et 
al., (2018) 
 

•     

Wang et al., 
(2019) 
 

 •    

Obermair et al., 
(2020) 
 

•     

Olorunfemi et al., 
(2018) 
 

    • 

Le Chenechal et 
al., (2016) 
 

•     

Ammari et al., 
(2019) 
 

•     

Fernández del 
Amo et al., (2020) 
 

•     

Wang & Dunston, 
(2013) 
 

  •   

Sasikumar et al., 
(2019) 
 

 •    

 

Hardware and technology used 

The 12 studies reviewed here used various AR technologies and hardware for remote 

collaboration. All the studies reviewed used some kind of AR device at the local user side, which 

includes HMD, HHD, and SAR. The HMD used included AR HMD, like Microsoft HoloLens and 

MagicLeap, and VR HMD, like Oculus Rift, with stereo cameras, while the HHD included 

smartphones and tablets with a camera and SAR included using a projector along with a camera. 
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The hardware types used for the remote expert included HMDs, desktops/laptops/tablets, and 

interactive tables. The HMD for the remote expert included the Oculus Rift and the HTC Vive, 

and the interactive table was connected to a desktop. Of the studies reviewed here, nine used HMD, 

four HHD, and two SAR for the local user, while seven studies used HMD, four 

desktops/laptops/tablets, and one an interactive table for the remote expert. Five studies used HMD 

for both remote and local users, and one did not use any kind of HMD for either user. Table 5 

shows the hardware types used by the studies for both the local and remote users.  

As Table 5 shows, the majority of the studies used HMD for the local user, with AR HMD 

being the most frequently used: Microsoft HoloLens was used in 25% of the studies (Fernández 

del Amo et al., 2020; G. Lee et al., 2020; Olorunfemi et al., 2018), ARvision in 17% of the studies 

(Wang & Dunston, 2009, 2013); and each MagicLeap, Epson Moverio BT200, and Vizur Wrap 

920 in 8% of the studies (Aschenbrenner et al., 2018; Sasikumar et al., 2019; Zenati-Henda et al., 

2014).  Oculus Rift, a VR HMD, along with two stereo cameras, was used in 8% of the studies on 

the local user side for the AR condition (Le Chenechal et al., 2016). Similar to the local user, the 

device type most frequently used for the remote expert was also HMD but most often VR HMD: 

HTC Vive was used in 17% of the studies (Lee et al., 2020; Wang et al., 2019); Oculus Rift in 

17% of the studies (Ammari et al., 2019; Le Chenechal et al., 2016);  and each ARvision and Vivie 

Pro in 8% of the studies (Sasikumar et al., 2019; Wang & Dunston, 2013). 
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Table 5:  

Hardware Types Used by the Local User and Remote User 

 
Authors 

Local User Remote User 

HMD HHD SAR HMD Desktop/laptop/tablet Interactive table 

Lee et al., (2020) 
 

•   •   

Zenati-Henda et al., 
(2014) 
 

• •    • 

Wang & Dunston, 
(2009) 
 

•   •   

Aschenbrenner et al., 
(2018) 
 

• • •  •  

Wang et al., (2019) 
 

  • •   

Obermair et al., (2020) 
 

 •   •  

Olorunfemi et al., 
(2018) 
 

•    •  

Le Chenechal et al., 
(2016) 
 

•   •   

Ammari et al., (2019) 
 

 •  •   

Fernández del Amo et 
al., 2020) 
 

•    •  

Wang & Dunston, 
(2013) 
 

•   •   

Sasikumar et al., (2019) 
 

•   •   

Note: HMD- Head Mounted Device; HHD- Handheld Device; SAR- Spatial Augmented Reality 

 Microsoft HoloLens was used in a safety hazard communication study to view and interact 

with the holographic collaborative environment created from the user's field view (Olorunfemi et 

al., 2018). Hand and finger gestures and the user's gaze were used to control what they saw. These 
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users communicated with the remote team members using Skype through the HoloLens, where 

both parties could annotate spatially and textually in the virtual world. Wang & Dunston (2009) 

used ARvision stereoscopic HMD connected to a color video camera to compare the performance 

time of collaborative error identification using AR systems to that of the current methods. One of 

the AR systems they used was an AR-based virtual space system in which two participants 

collaborated on a task from two locations.  Lee et al. (2020) compared three view-sharing 

techniques—2D Video, 360 Video, and 3D Model—for use in situations where multiple local 

workers are supervised by a remote expert using the HTC Vive VR HMD to see the local workers. 

The first condition involved using videos directly linked to the local worker’s live streaming using 

the camera of Microsoft HoloLens, while the second condition had live panoramic video captured 

from the 360-degree camera mounted on the HoloLens. The third condition used a reconstructed 

3D workspace that the expert can virtually walk through and give directions to the local user. 

However, since it is difficult to reconstruct the dynamic scene accurately in real-time, they used a 

pre-reconstructed static workspace environment and displayed the dynamic scene captured using 

the camera of Microsoft HoloLens. In all three conditions, the expert has the freedom to switch 

between the views of the local workers.  

The second most used AR device type by local users for collaboration was HHD. As seen 

in Table 5, four studies used HHD for communication between local users and remote experts; of 

these four, three used tablets, and one used a smartphone as an AR device. More specifically,  

Ammari et al., (2019) used Samsung Tab S2 as the HHD, while Zenati-Henda et al., (2014) used 

an MSI Windpad 110 W Tablet, and Aschenbrenner et al., (2018) an ASUS MEMO ME302C 

Tablet. 
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 SAR, the third device type, was used in only two of the 12 studies reviewed 

(Aschenbrenner et al., 2018; P. Wang et al., 2019). SAR uses a projector to augment information 

from the real world to help the remote expert share it with the local user in conjunction with a 

camera that transfers the data from the local site to the remote expert. The remote expert uses the 

projector to point to or annotate the real world on the local side to express his ideas. For the SAR 

condition, Aschenbrenner et al., (2018) used a Panasonic PT-VZ575N projector along with a 

PoitnGrey Black-fly camera for their research, while Wang et al., (2019)  used SAR for 

augmenting the real-time motions of the 3D CAD models manipulated by experts at a remote 

location using VR. They used a camera to display the local situation in real-time to the expert, who 

then guided the worker using the 3D CAD models in VR. The real-time movements of the CAD 

models were projected to the local worker using a projector. 

The hardware was combined with various software/technologies in these 12 studies. Hand 

gesture-based AR was used in three studies by the remote expert to communicate with local users 

(Le Chenechal et al., 2016; Sasikumar et al., 2019; Zenati-Henda et al., 2014) while in the study 

conducted by Wang et al., (2019), the remote experts used hand gestures to manipulate virtual 

CAD replicas while wearing VR HMDs during communication with the local user. Five studies 

indicated that they used the Unity game engine to develop the prototype for the research (Ammari 

et al., 2019; G. Lee et al., 2020; Obermair et al., 2020; Sasikumar et al., 2019; P. Wang et al., 

2019). Obermair et al., (2020) used it to create visualization tasks and AR Foundation for 

annotation anchoring and environment tracking while audio/video communication with the remote 

expert was achieved using web real-time communication (WebRCT). They used smartphones as 

AR devices, and since smartphone cameras are not equipped with depth cameras for tracking, the 

simultaneous localization and mapping (SLAM) algorithm, which is based on the 2D information 
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of the camera image, was used. Two other studies also mentioned using SLAM for their future 

research to improve the reconstruction of the live environment (Le Chenechal et al., 2016; G. Lee 

et al., 2020). For example, Le Chenechal et al., (2016) mentioned that in the future, they would 

consider replacing optical tracking using stereo cameras with SLAM for image-based tracking 

during 3D reconstruction. In their study, AR technology was used to augment the virtual arms of 

the remote expert to assist the local worker in completing a task. An Inverse Kinematics algorithm 

was used for the elbows and hands of the virtual arm while the shoulders were fixed with respect 

to the local worker. The system dynamically reconstructed the real environment in 3D based on 

KinectTM so that the occlusion of the real objects by the virtual ones could be avoided.  This also 

helped to increase the ease of presence and depth perception using the virtual shadows. An 

interaction technique based on a virtual hand metaphor was used to manipulate these virtual 

objects, and the researchers used the GoGo arms navigation technique, which allows users to reach 

and manipulate objects that are beyond their physical arm's reach to reach the virtual objects in 

immersive environments. The OptiTrackTMV 120: Trio IR tracking system was used to track the 

agent’s head (6 degrees of freedom) and real objects.  

Facilitators of AR for remote collaboration 

The impact of using AR for remote collaboration was measured using performance and 

workload for most of the studies, performance being quantified using task completion time (11 

studies) and the number of errors made during the task (three studies) and workload using NASA 

task load index (NASA-TLX) survey tool (three studies). Out of the 11 studies that measured the 

time task time, only six studies directly compared some kind of AR versus other modes for 

collaboration. All six studies found a significant decrease in the task completion time when some 

kind of AR was used compared to their counterparts. Of the three studies that measured the number 
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of errors, two found fewer errors when AR technology was used for collaboration, and one study 

did not find any significant difference. Out of this, one study that compared the number of errors 

while using paper-based instructions with AR-based remote support found that paper-based 

support led to more errors in completing remote maintenance. Another study that used AR for 

remote collaboration found that using interactive virtual collaboration (IVC), which includes using 

enhanced visualization support using arrows and sensory data, found fewer errors than not using 

IVC while completing a facilities management task. Out of the three studies that measured 

workload, one study that compared AR with other modes of communication found that the 

workload of the user decreased when AR technology was used for collaboration. The other two 

studies did not compare AR with other modes; instead, one compared visual communication cues 

in AR and found that user-centric cues (sharing view frustum from the local user and controller 

annotation from the remote user) reduced the workload compared to the device-centric one 

(sharing eye gaze from the local user and natural hand gesture from the remote user)da. The second 

study compared view-sharing techniques in AR and found that when 3D model techniques were 

used, the workload was less compared to the 2D video and 360 video conditions.  

One study compared HMD, tablet, and projector for achieving AR, finding that using 

projector-based AR resulted in a shorter task completion time than the other two (Aschenbrenner 

et al., 2018). Le Chenechal et al., (2016) found that using a virtual arm for guidance (Vishnu) 

resulted in a shorter task completion time compared to remote sketch support for a complex task. 

Further, they also found that this system provided an easier mapping process between the guided 

instruction and the physical task interaction space than the remote sketch support for both simple 

and complex tasks. Wang & Dunston, (2009) found that the performance time when using AR 

systems to identify errors in a pipe layout design is significantly less than the current methods used 
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for collaboration. They compared an AR-based face-to-face system (table-top AR system) to paper 

drawing and an AR-based virtual space system to NavisWork Roamer for collaborative error 

identification. For both AR systems, the time taken to identify the design errors was less than that 

of the paper drawing or the NavisWorks Roamer. The AR-based face-to-face system reduced the 

performance time for error detection by 64%, whereas the AR-based virtual space system reduced 

the performance time by 67%.  

Zenati-Henda et al., (2014) found that AR collaboration using hand gestures in conjunction 

with HMD provides additional flexibility as hands are free, but the application control was 

difficult. Sasikumar et al., (2019) introduced a wearable AR remote collaboration system, the 

Wearable Remote Fusion, finding that this system not only reduced the workload of the 

participants but also, by sharing augmented natural cues, gave the participants a strong feeling of 

co-presence. Olorunfemi et al., (2018) found that using AR technology on construction job sites 

increased the accuracy of risk communication compared to such traditional communication 

methods as phone calls, emails, face-to-face, and video conferencing, in addition to finding a 

strong correlation between the accuracy of risk communication and the first three methods of 

communication, and a weak relation for the fourth.  

 Obermair et al., (2020) found that for an industrial maintenance process of an industrial 

PC, AR-based remote support reduced the number of errors, and the users were able to complete 

the complex tasks faster than paper-based instructions. The findings of a study conducted by Wang 

et al., (2019) supported the potential for training workers in the manufacturing industry using an 

AR remote collaborative platform in conjunction with 3D CAD models. The advantage of SAR/ 

VR technology is that it permits the local workers to see the virtual cues without wearing any AR 

devices. The study conducted by Lee et al., (2020) involving multiple local users wearing AR 



 

32 

headsets supervised by a remote expert wearing a VR HMD evaluated the view-sharing 

techniques. They found that the 3D model augmented with 2D video was productive and functional 

and reduced effort as well as was preferred. They further provided guidelines for implementing 

view-sharing techniques for pragmatic use. Ammari et al., (2019) proposed an innovative BIM 

based approach to support a large-scale facilities field task. The AR framework for facilities 

management they developed includes a field AR module and an office immersive augmented 

virtuality module.  Field task efficiency is improved by minimizing the data entry time and the 

errors using interactive virtual collaboration compared to the non-collaborative mode. In addition, 

the ability to remotely mark a building element in an AR environment successfully was beneficial 

for visually interacting and communicating with a remote co-worker.   

Barriers associated with AR for remote collaboration 

Since AR technology is still a fairly recent development, there are various challenges 

associated with using it. Zenati-Henda et al., (2014) investigated remote AR collaboration using 

hand gestures and found that using HMD provides less flexibility for application control. To 

address this issue, they plan to use a hand gesture recognition technology that allows better 

interaction between the worker and the expert while using the HMD. According to a later study 

conducted by Le Chenechal et al., (2016) that used virtual arms to assist agents at a remote location, 

this approach is helpful only if the agent is close to the expert’s virtual location. Once the distance 

increases, the expert cannot control the virtual targets using the virtual arms. To address this 

problem, these researchers used color codes from red to green based on the distance between the 

two users. They also found that wearing the see-through HMD is less comfortable compared to the 

screen-based setting since the perception of the real world is slightly altered, meaning a learning 

process is needed to be comfortable. 
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 Other challenges mentioned in this study include collocation, inverse kinematics, 

perception of remote collaborators, and gesture coordination. Le Chenechal et al., (2016)  proposed 

using stereo cameras for 3D reconstruction and replacing the optical tracking system with image-

based tracking SLAM and/or a 3D model.  Several studies also mentioned that challenges such as 

the lack of experience using AR devices might affect the validity of the results (Le Chenechal et 

al., 2016; Olorunfemi et al., 2018) and Obermair et al., (2020) found that for simple tasks in the 

industrial PC repair process, paper-based instruction is more efficient than AR-based remote 

support. In addition, according to the research conducted by Ammari et al., (2019),  mobility 

support is lacking in the latest AR headsets, and they support only visual or vocal command input 

functionality, a challenge when using AR module functionality to interact with the AR contents. 

They also found that augmenting BIM elements while working on critical tasks may cause 

confusion and could impact the workers’ safety.  

A pilot study by Lee et al., (2020)  found that the participants reported three challenges in 

the view-sharing techniques that they subsequently modified. First, in the 2D video-sharing 

technique, the large screen size was an issue as it was difficult to perceive and understand the 

image at a glance. To address this issue, they disabled the full-screen mode. In the 360-video 

sharing technique, an issue of image distortion caused by the video projection on the sphere makes 

it difficult to identify the distant object; by adding zoom-in and zoom-out functions, they could 

resolve this problem. Third, in the 3D model sharing technique, participants commented that the 

pre-constructed 3D model did not show the changes completed on the real project site. In addition, 

participants also complained about the visibility of the billboard, saying that it was only visible 

when their view direction was close to the avatar and that it was difficult to switch between avatars. 

This issue made it difficult for one-to-many collaboration scenarios, the primary focus of the 
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research. To address this, the researchers added a function facilitating the ability to switch between 

the video billboard and the video projector. 

Discussion  

This section focuses on discussing the data that was analyzed from the 12 studies that were 

identified. The discussion is divided into four sections: 1) Human aspects, which talks about the 

human factors aspects of using AR for remote collaboration, 2) Technology interventions, which 

discusses the technology used in the identified studies, 3) Collaborative work, which discusses the 

collaborative aspects while using AR for remote collaboration, and 4) A framework for remote 

collaboration using AR technology which incorporates the human, technology and environmental 

aspects. 

Human Aspects 

 AR has been found to improve a person’s ability to perform their tasks by reducing 

time and the number of errors. With AR remote support, complex maintenance tasks are addressed 

efficiently without an expert traveling to the location, which is both cost- and time-intensive. The 

use of AR for this purpose is more efficient, usable, flexible, and less demanding for the operator, 

in addition to completing the task with less workload. Further, the use of AR has reduced the 

average time to communicate between the workers on the job site, which is important since 

communication is critical in any construction project.   

100% of the reviewed studies comparing the task time between AR technology and other 

modes found that the task completion time was shorter for the AR condition. For example,  

Aschenbrenner et al. (2018) found that the task completion time was significantly less when SAR 

technology was used compared to the collaboration over the phone. This shows the effectiveness 

of SAR in improving performance while collaborating to complete a task. The AR facilitates 
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communication in an effective manner without any confusion since the remote user can point to a 

particular component effectively compared to a phone call. Also, the video, while using an HMD, 

provides a subjective camera angle, which helps the remote expert to understand the problem at 

hand in an improved manner and can provide instructions in a clearer manner.  

Three studies measured the number of errors for performance, and 66% of them reported 

that the errors were fewer when AR technology was used. This is because of the mistake the users 

made while using the other modes to complete the task. For example, the study conducted by 

Obermair et al., (2020) found that the users made errors while replacing a heat pipe using the 

paper-based instructions since half of the users opened the wrong page for instruction, while the 

other half removed the wrong components. This mistake did not happen when the AR module was 

used mostly since the expert could see what the user was doing and was guided accordingly. This 

shows the effectiveness of AR for remote collaboration to reduce the number of errors while 

completing a task. More research needs to be done to understand the effect of AR technology in 

reducing the number of errors since one study did not find any significant difference.  

Out of the 12 studies reviewed, only one study compared the workload of AR technology 

with other modes of collaboration and found that the workload was less when AR was used 

(Aschenbrenner et al., 2018). Specifically, the SAR condition had the least workload compared to 

the other modes of collaboration compared. This could be because all the other modes of 

collaboration had to interact with some kind of device, such as an HMD or tablet, whereas in the 

SAR condition, once the device is set up, the user doesn’t have to interact with it. Moreover, it has 

the advantage of visual cues compared to the phone condition. 

The research included in this review validates that AR-based technology is sustainable in 

the working environment. This technology is evolving and creating more opportunities to increase 
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the productivity of construction workers; however, there is a potential for improvement in the area 

of ergonomic factors and arrangement. Although AR has found several applications in the 

construction industry, few studies focused on evaluating the human factors aspects during the 

interaction with the AR system, emphasizing the need for more research on how to increase the 

movement and efficiency of the user while using this technology. 

Technology Intervention 

The construction industry is experiencing transformative benefits from integrating AR 

technologies, ranging from safety training to risk mitigation and enhanced productivity. The 

deployment of AR applications necessitates the integration with sophisticated hardware. So, 

researchers are increasingly focusing on smart devices such as AR headsets (HoloLens, Meta 

Quest2, Magic Leap) and smart glasses for their advanced automation applications. 

The importance of AR for remote collaboration in the AEC industry is evident from the 

reviewed studies, which highlight the adaptability and versatility of AR in addressing unique 

challenges. For instance, the Microsoft HoloLens has been effectively employed for safety hazard 

communication, enabling users to interact with a holographic collaborative environment 

seamlessly, as highlighted by Olorunfemi et al., (2018). The use of AR is significant for the growth 

of the construction industry, and as Hala et al., (2020) suggest, more research is needed for the 

holistic integration of AR in the AEC industry.  

The commonly used remote collaboration technologies primarily offer basic audio and 

video communication.  However, integrating these with AR can create an immersive environment, 

fostering a sense of co-presence with experts. Hand gestures, while providing a real-time 

collaboration system through AR, have their limitations, necessitating further research to enhance 
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their controllability and introduce additional features. This is evident in the studies by Le 

Chenechal et al., (2016) and Sasikumar et al., (2019). 

SAR is effective for remote maintenance tasks due to its spatial awareness and shared 

experience capabilities, as seen in the works of  Aschenbrenner et al., (2018) and Wang et al., 

(2019). SAR's practicality and precision across industries make it invaluable in error prevention 

and detection. Its ability to overlay AR content directly onto real-world objects without the need 

for wearable devices offers a hands-free experience, especially beneficial for tasks like assembly. 

While AR glasses, such as HoloLens, are recommended for hands-free operations and have shown 

accuracy in construction risk communication, they come with their set of challenges. Mobility and 

input functionality issues can hinder their adoption in work environments. Data entry tasks, which 

are more straightforward on traditional desktop setups, become cumbersome on AR devices. Also, 

cluttered visuals on AR glasses can overshadow real-world information, compromising situational 

awareness. Properly curating the information displayed on AR modules is essential to maintain 

clarity and effectiveness. As the industry moves towards a hands-free operational model, 

innovative methods for projecting AR content onto surroundings will be crucial. 

Another important consideration when using AR in construction involves the integration of 

artificial intelligence (AI) agents to assist the workers as they complete various tasks. AI could be 

used in construction, for example, for visual inspection (defect detection using BIM) and visual 

site exploration and to compare as-planned vs. as-built project status (Abioye et al., 2021). While 

there are several applications of AR supported by AI in manufacturing applications (Sahu et al., 

2021), more research is needed to understand how workload, performance, and situational 

awareness of the workers are affected when using these technologies together.  
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In conclusion, the adoption and integration of AR in the construction industry are both 

promising and challenging. While the benefits are manifold, addressing the associated challenges 

will be significant for effective implementation of AR in the sector. 

Collaborative work 

In the domain of collaborative work, a multitude of factors come into play. Patel et al., 

(2012) outlined these into seven principal categories: context, support, tasks, interaction processes, 

teams, individuals, and overarching considerations. This discussion explores the factors within 

these categories that are pertinent to the studies that were reviewed.  

Contextual Factors. This includes culture and environment, with the former referring to 

the type of profession and the latter to the physical space where individuals work.  The majority 

of the studies reviewed here were conducted with an expert working remotely with a non-expert 

to complete a particular task. For example, Ammari et al., (2019) investigated the effectiveness of 

using the AR module at the local site to receive help from an expert at a remote location to replace 

a thermostat attached to a wall.   

Supportive Elements. This involves the tools required for collaboration, training, and 

knowledge management. Tools refer to the technologies provided for collaboration; here, the use 

of AR for remote collaboration has been found to be more effective compared to other mediums. 

The AR was achieved using devices such as Microsoft HoloLens, (G. Lee et al., 2020), Magic 

Leap One (Sasikumar et al., 2019), and tablets (Ammari et al., 2019). However, for the 

collaboration to be effective, providing training on the newer technologies and tools for the parties 

involved is important. If they are new to the system, there will be complications in the beginning, 

but they should resolve over time. The parties involved should also have access to the knowledge 

database of the system they are using.  
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Task-Related Considerations. This involves the type, structure, and demand of the task. 

Task type may affect performance since the mental demand required will be different for the 

various team members. This review identified the following tasks: search and assembly, industrial 

maintenance, error detection, repair tasks, assembly training, risk communication, and hazard 

identification, among others, all of which have benefitted from using AR technology for remote 

collaboration. The structure of the task is also important in collaboration. Some of the tasks 

identified from this review were simple, while others were complex. For example, Obermair et al., 

(2020) found that simple tasks did not benefit from the AR technology compared to traditional 

paper-based support. This might be attributed to the unnecessary use of technology for a 

straightforward task, which could, in fact, be easily accomplished using conventional methods. 

This area should need further study focusing on the various tasks in different domains of 

application. The demand that the task requires from the individuals is also an essential contribution 

to effective collaboration.  

Interaction Processes. This refers to how individuals collaborate to complete a particular 

task and includes learning, coordination, communication, and decision-making. Learning occurs 

through training or while completing a task multiple times. It is especially effective through 

collaboration, especially when an expert helps a novice complete a task; while the worker is 

learning from the expert, the expert is also learning something with every new scenario. 

Coordination is important when working as a team to achieve shared goals. To emphasize the 

importance of this factor, Lee et al., (2020) explored using remote collaboration to connect one 

expert with two local users. Similarly, communication between parties is another determining 

factor for effective collaboration, as the lack of proper communication can lead to errors and low 

team performance. Through proper communication, knowledge is transferred, and shared 
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awareness is maintained (Patel et al., 2012). In AR, there are different methods to communicate 

than just using audio and video. For example, Sasikumar et al., (2019) investigated the impact of 

employing user-centric and device-centric cues on enhancing communication using AR, with the 

ultimate goal of enhancing interaction between two users situated in different locations. This 

review found that AR is an effective mode of communication when using remote collaboration to 

complete various tasks in the AEC domain, as effective communication and collaboration result 

in better decision-making.  

Team Dynamics. This includes subfactors such as roles, relationships, and shared 

awareness, among others. In this review focused on remote collaboration using AR, most of the 

studies included an agent helping a remote worker complete a task, with the roles of each being 

clearly defined.  The relationship between these members of a team is important for team 

performance and effective collaboration. Shared awareness of the issue faced by the worker at the 

location is important for remote assistance because if it is not correct, the solution or help provided 

by the remote worker will be ineffective and time-consuming. More research in understanding 

shared situational awareness or team situational awareness will help in designing effective AR 

systems.  

Individual performance. This is the most measured metric that we found from the 

reviewed papers in this study. The individual performance contributes highly to the effective 

completion of a task. In a remote assistance task, the individuals at both ends possess different 

skills to complete the task, especially in a construction setting. The expert guiding the worker 

should possess the experience required to understand the problem at hand and the skill set to solve 

it. Similarly, the worker should possess the skill to execute the instructions provided by the expert 

to complete the task. The majority of the studies in this review focused on the performance of the 
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local user. Future work could investigate the performance of the remote expert and team 

performance while collaborating over the AR module to complete a task. 

Overarching factors. There are other overarching factors that contribute to collaborative 

work performance, for example, trust, experience, goals, constraints, and incentives, among others.  

Trust is an important factor since, for successful remote collaboration, the worker must trust the 

remote expert to follow their directions. However, none of the 12 papers analyzed in this review 

investigated the trust of either local users or remote experts, which is important because it is a 

critical element for effective teamwork.  With the advancement in technology, AI agents are now 

assisting workers to complete various tasks, and research focused on trust in AI agents while 

completing a procedural task would provide valuable information about trust for human teams 

integrated with such agents.   

Framework for remote collaboration using AR technology 

The information flow in remote collaboration between a local user and a remote expert is 

a cyclical process, as shown in Figure 3. It begins with the local user who uses an AR module to 

collect visual and audio data, which he transmits over a server to the remote user. The remote user, 

who receives the data on a computer, processes it and then gives instructions, which are received 

by the local user on the AR module. If the local user agrees with the suggestions, those actions are 

executed and sent to the remote user over the server.  This process continues until the problem is 

fixed or the intentions are satisfied. 
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Figure 3:  

Remote Collaboration Process Flow 

 

Figure 4 shows the proposed framework for remote collaboration using AR technology, 

which is impacted by human-, technology-, and environment-related factors. Human-related 

factors include situation awareness (SA), trust, workload, and task performance, among others. 

Effective collaboration requires effective team performance, achieved through effective 

communication, a sense of awareness, a sense of co-presence, team situational awareness, and 

shared mental models, among other factors. 
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Figure 4:  

Proposed Framework for Remote Collaboration using AR 

 

 

At the local location, SA is required for the user to understand the problem at hand and 

execute the directions provided by the remote expert correctly. The local user’s trust in the remote 

expert also affects the remote collaboration as this factor is needed between the collaborators for 

an effective exchange of information and execution. Task performance and the workload of local 

users are other factors that need to be considered for effective collaboration: an increase in 

workload could affect the performance of the user in completing the task as well as his decision-

making capabilities.  

For the remote user, SA is an important aspect of collaboration, especially in understanding 

the problem faced by the local user at a different location. The remote user should have enough 

expertise to give instructions for or to suggest solutions to the problems faced by the local user. In 
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addition, the remote user should have empathy for the user to understand the situation at the local 

location. This can lead to effective decision-making and, thus, effective collaboration.  

Technology-related factors influencing effective remote collaboration include input and 

output devices, internet connectivity, and such communication aspects as visual cues, haptic 

feedback, and annotations, among others.  Input devices include microphones and cameras, while 

output devices include HMDs, HHDs, SAR, desktops, and speakers. These factors affect the 

human-related factors, in turn affecting the effectiveness of the collaboration between the parties 

involved. 

Environmental-related factors that contribute to effective collaboration include task 

complexity, task type, and the users’ familiarity with the task. Other aspects include multi-tasking 

requirements for the task at hand and the physical environment, such as lighting and noise level.  

The systematic review conducted identified several gaps in the literature and avenues for 

future research in the context of AR-integrated work environments within the AEC industry. These 

gaps include the need for more robust user training programs to facilitate seamless AR adoption, 

research focused on enhancing shared situational awareness, understanding the development of 

trust between the local and remote users, addressing integration challenges into existing 

workflows, and addressing privacy and security concerns. Also, with the evolving AI technology, 

the potential of AI as a recommender system to support AR users, potentially reducing their 

reliance on remote experts, demands thorough investigation. Addressing these gaps can contribute 

to its successful implementation in the AEC industry, ultimately fostering improved productivity 

and safety.  
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Conclusion 

This systematic review has analyzed the application of AR for remote collaboration with a 

focus on the impact of the device or technologies used on the user's performance. AR technology 

is very versatile, and as a result, it is increasingly being used in the construction industry for a 

variety of applications, ranging from safety training collaboration to an efficient working 

environment and many more. This review identified several important considerations concerning 

the different devices to apply for implementing AR, in addition to finding that its use resulted in a 

significant reduction in the time needed to complete the task, the number of errors, and the 

workload. Further, accuracy, risk, and communication among the participants were remarkably 

improved. However, the use of HMD for the application of AR was not flexible nor comfortable 

as the perception of the real world was altered, and hand gesture coordination was challenging. 

Further research is required to address the mobility challenges of the AR operating devices, and 

more advanced study explicitly exploring the techniques for sharing the data using AR operating 

devices remotely is important for increasing the efficiency and productivity of the AEC industry.    

After investigating studies on collaborative AR support in the AEC domain, it's evident 

that there is limited research specifically focusing on the remote expert and the trust between the 

remote user and the local user. In this era of technological advancement, integrating AI into the 

AR landscape has emerged as a promising avenue for assisting workers by providing 

recommendations. This integration can potentially reduce the local user's reliance on remote 

experts when faced with uncertainties during task execution. However, successfully incorporating 

AI into any technological framework necessitates thorough investigation, considering the complex 

factors that could influence its effectiveness. Accordingly, the first study reported in Chapter 3 
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aims to investigate the effect of the reliability of the AI agent and the complexity of the task on 

the trust the humans have in the recommender system. 
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CHAPTER THREE 

UNDERSTANDING TRUST IN ARTIFICIAL INTELLIGENCE AGENTS WHILE 

COMPLETING A PROCEDURAL TASK 

Introduction 

The fourth industrial revolution is increasing the importance of AI. This digitalization era 

refers to the period in which we increasingly rely on digital technologies to connect the physical 

and virtual worlds, which includes using AI systems and AR/VR technologies to create a more 

active and seamless connection between these two technologies  (Zhang et al., 2022).  Industries 

are undergoing a significant transformation as they move toward digitalization, such as through 

the integration of AI in manufacturing for predictive maintenance, the use of AR for improving 

precision and efficiency in engineering design processes, and the application of VR for training 

and simulations in various sectors. AI is a rapidly evolving field that can potentially transform 

various industries and aspects of our daily lives. Healthcare, finance, transportation, 

manufacturing, and construction are some of the key sectors where AI has significantly impacted 

industries by improving efficiency, safety, collaboration, and training. Using computer systems, 

AI simulates many aspects of the human intellect, including learning, reasoning, and self-

correction. As a result, machines can analyze massive amounts of data to identify patterns and base 

decisions based on that data (Gillath et al., 2021). 

AR technology is another innovation that has significantly impacted various industries and 

has many applications. AR technology enhances the user’s perception by overlaying computer-

generated information, such as pictures, text, and 3D models, onto the real world. AR application 

covers the fields of entertainment, maintenance, manufacturing, healthcare, and construction 

(Hincapie et al., 2011). AR is used to create immersive gaming experiences and interactive media 

content. On the other hand, this technology provides technicians with real-time information and 
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guidance for maintenance tasks improving the accuracy and efficiency of assembly line operations 

and quality control. AR is used for project planning and design, safety training, and on-site 

construction management in the AEC industry. AR technology provides architects, engineers, and 

construction workers with a visual representation of the building design, allowing them to identify 

and solve potential problems before construction begins. Overall, AR technology has the potential 

to revolutionize various industries by providing new perspectives and improving the accuracy and 

efficiency of complex operations (Hincapie et al., 2011). 

The rapid development of digital technologies has had a significant impact on the AEC 

industry, leading to improved efficiency and productivity. However, adopting these new 

technologies can be challenging, as the construction industry is complex, and projects often 

involve multiple stakeholders, each with unique requirements and needs. Incorporating new 

technologies in the construction process requires a high level of professional knowledge and 

expertise, and incorporating AI in the construction industry changes how a construction project 

performs (K. Wang et al., 2022). AI can automate several operations and increase the efficiency 

of the building process. AR, on the other hand, benefits the AEC industry in the areas of 

visualization, information retrieval, and interaction. It can help architects and designers to create 

more immersive and interactive visualization in the early phase of the design. It can help to reduce 

the risk and improve communication between the project stakeholders. AR is also used in the AEC 

domain for remote collaboration between two users, for example, an expert from a remote location 

providing recommendations to a user to complete a task (Bhanu et al., 2022). AR can also be used 

for information retrieval, allowing workers on construction sites to access important information 

quickly and easily. For example, with AR glasses, workers can view detailed plans and schematics 

while working on a building without carrying physical copies of documents. This can improve 
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efficiency and reduce errors, resulting in cost and time savings in the design and construction 

process.  

Though AR has improved construction efficiency, it has been challenging to adopt AR 

technology in the AEC industry (Devagiri et al., 2022). For example, some workers experience 

discomfort using HMDs on construction sites, prompting ongoing hardware-based research to 

address these limitations. Incorporating AI systems into the AR framework has its advantages, and 

their integration is becoming increasingly prevalent due to the rapid advancement in these 

technologies. For example, by combining AI algorithms with AR sensors and cameras, it is 

possible to automatically detect defects, deviations from design specifications, and other issues in 

real time, allowing for faster and more accurate inspections and quality control. However, issues 

caused by unexpected operations and AI system failures have occurred with the continual increase 

in the development and use of AI systems and applications. These errors have led to trust issues 

when using AI to predict and safely use services (Um et al., 2022). Trust can be extended not only 

to human beings but also to artificial intelligence systems, such as chatbots or virtual assistants. 

As more and more AI systems become a part of our daily lives, it is essential to consider how we 

can trust them to behave in safe, reliable, and ethical ways. This requires designing AI systems 

with transparency, accountability, and explainability in mind so that users can understand how the 

system works and why it makes certain decisions. A lack of trust in AI systems can lead to 

underutilizing the technology. 

Measuring and managing trust and foreseeing the potential risk associated with AI is 

essential for increasing transparency and accountability. However, controlling and assessing the 

dependability of AI systems and algorithms is highly difficult for a variety of reasons (Gasser & 

Almeida, 2017). Measuring the reliability of AI can be challenging, especially as the level of 
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machine intelligence increases. One of the reasons for this difficulty is that machine learning 

algorithms can exhibit different behaviors depending on the data they are trained on, even if the 

underlying objective function remains the same (Glikson & Woolley, 2020).  

However, one of the criteria used to decide whether to believe an agent is their reliability: 

‘In judging that someone is reliable we look to their past performance; in placing trust in them we 

commit ourselves to relying on their future performance’ (O’Neill, 2002). Lee & See (2004) found 

that reliability is an important determinant of trust in automation. Their study showed that users 

are more likely to trust and use an automated system if it consistently performs its tasks accurately 

and reliably. This finding is echoed in the work of Hoff & Bashir (2015), who found that perceived 

reliability significantly influences trust in AI systems. AI agents are tools or systems that can 

enhance human capabilities and help solve complex problems. Although trust may be developed, 

conferred, or rejected based on reliability and experience, this is not the only or defining feature 

of trust. While prior performance is a basis for reliability, it is not the only factor when deciding 

whether to trust someone. The responsibility burden falls on those responsible for creating, 

implementing, and employing reliable AI (Ryan, 2020).  

Trust is a dynamic process that can change over time depending on several factors rather 

than a static or fixed concept. How much trust a person is willing to place in another person or an 

AI system can be influenced by a person's disposition, experiences in the past, and personal biases. 

The trustworthiness of an AI system may also depend on its capacity to carry out the task at hand 

and provide the promised outcomes. It is important to understand that trust is a complicated and 

multifaceted idea that various factors, including the complexity of the task, can influence.  

The construction industry is a complex domain that includes several procedural tasks. 

Procedural tasks involve completing a series of actions by interacting with the physical 
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environment to achieve selected objectives (Henderson & Feiner, 2011). These tasks range from 

simple to highly complex, often requiring specialized expertise to assist the workforce in their 

execution, depending upon the nature of the task and the experience of the individual worker. 

Advancements in digital technologies, such as BIM, AI, and AR, have significantly enhanced the 

efficiency with which these procedural tasks are performed. For example, AR has been shown to 

help complete an assembly task significantly faster and with fewer errors (Henderson & Feiner, 

2011).  

As mentioned earlier, AR technology is used for remote collaboration to assist in 

completing a task for a user at a site by an expert from a remote location without needing to travel. 

Integrating a well-trained recommender AI agent into the AR technology could eliminate the need 

for a human expert to assist in completing a task. The recommender AI could only be beneficial if 

it can provide recommendations at or above the level of the expert it replaces. There is a gap in the 

literature that investigates the effects of the reliability of the recommender AI and the complexity 

of the task while completing a procedural task while using the AR technology embedded with the 

recommender AI. This study tries to fill this gap and aims to explore how the reliability of a 

recommender AI agent and the complexity of the task impacted overall trust, trust development, 

user performance, and workload while completing a procedural task with the help of AR and AI 

technologies. Specifically, the study focused on a procedural construction task and evaluated how 

trust levels changed when the recommender AI agent's reliability varied across different 

conditions. The results from this research have a significant potential to inform the design and 

implementation of recommender AI systems on an AR technology for completing a procedural 

task.    
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Research Questions: 

1. How does trust vary for the varying reliability of recommender AI and the complexity 

of tasks while completing a procedural task with the help of augmented reality 

technology? 

2. How is performance affected when the reliability of the recommender AI and the 

complexity of tasks varies while completing a procedural task with the help of 

augmented reality technology? 

3. Does the workload increase with a decrease in the reliability of the recommender AI? 

Hypotheses: 

1. The trust in AI increases with an increase in the reliability of the recommender AI. 

2. The task performance could be higher while interacting with a high reliable 

recommender AI.  

3. The workload increases with a decrease in the reliability of the recommender AI. 

Partially observable Markov Decision Process (POMDP) Model for Trust in AI 

In this section, we modeled human trust as a Markov model. A Markov model is a 

mathematical model that has been used to represent the state of a system that changes over time 

(Grassmann, 1983). In the Markov model, the probability of transitioning from one state to another 

does not depend on previous states but solely on the current state. The state represents the condition 

that the system can be in at a given point in time. Markov models can be used for predicting the 

dynamics of human trust in AI agents as the trust changes over time during the interaction with 

the AI agent. POMDP is one type of Markov model used for decision-making problems where the 

state of the system is partially observable. Human trust during the interaction with AI systems is 

uncertain and dynamic, which is influenced by different factors such as reliability of the AI, the 
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context, the user’s previous experiences etc. POMDP model could handle situations where the 

state of the system, which in this case is the trust users have in AI, is not fully observable and 

evolves probabilistically over time (Chen et al., 2018). POMDP models have been previously used 

in the literature to model trust during human-robot interaction (Chen et al., 2018; Tilloo et al., 

2022; Williams et al., 2023). In this study, we model the human trust during the interaction of the 

user with a recommender system. In POMDP, the system does not know what the human trust 

level is at any time step, and the state level is changed based on the feedback it gets.  

In this experiment, the recommender AI gave recommendations for the next component. 

The humans can either follow the agent's recommendations or, if they believe the 

recommendations to be incorrect, they have two options: one, to proceed with the pipe fitting that 

they think is correct based on their knowledge and experience, and two, to refer to the map of the 

pipe layout to determine the correct pipe fitting. The AI agent will get feedback on the trust that 

the humans have in them based on the actions that the humans take. If the humans follow the 

recommendations given by the agent, the AI thinks that the humans trust the agent. In contrast, if 

the humans don’t follow the recommendations provided by the agent, the AI understands that the 

trust in them has decreased. The trust level of humans is updated based on the correctness of the 

recommendations given by the agent.  

A mathematical framework is developed to model the decision-making based on POMDP 

(Kaelbling et al., 1998). In this context, the POMDP is defined by the tuple (S, A, Ω, T, R, γ, b1). 

S is the set of states and represents all possible values of human’s trust in the AI agent, and the 

human’s trust as perceived by the AI agent. A is the set of agent’s actions, which is recommending 

the correct component or a wrong one. Ω is the set of observations the agent can make about the 

environment and the human's actions and help the agent infer the current state of the environment 
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and the human's trust level. T is the transition function and defines the probability of transitioning 

from one state to another given a particular action and is influenced by the agent’s actions and the 

human's reactions. R is the reward function and specifies the reward for each action taken at a 

given state. γ is the discount factor considered for the future rewards, and b1 is the shape parameters 

of the initial trust probability distribution. In a finite-horizon POMDP, the goal is to optimize the 

expected reward. In order to optimize the model, we first need to describe the value function and 

action function, crucial tools for analyzing a POMDP. The value function is the optimal expected 

cumulative reward starting from state 𝑠𝑠𝑘𝑘 at time 𝑘𝑘 and is represented as 𝑉𝑉𝑘𝑘(𝑠𝑠𝑘𝑘).  

𝑉𝑉𝑘𝑘(𝑠𝑠𝑘𝑘) = max
𝑎𝑎𝑘𝑘
𝑟𝑟∈𝐴𝐴

{𝑅𝑅(𝑠𝑠𝑘𝑘,𝑎𝑎𝑘𝑘𝑟𝑟) + 𝛾𝛾� 𝑇𝑇(𝑠𝑠𝑘𝑘+1 = 𝑠𝑠′|𝑠𝑠𝑘𝑘,𝑎𝑎𝑘𝑘𝑟𝑟)𝑉𝑉𝑘𝑘+1(𝑠𝑠𝑘𝑘+1)}
𝑠𝑠′∈𝑆𝑆

(1) 

The action function is the action taken to achieve 𝑉𝑉𝑘𝑘(𝑠𝑠𝑘𝑘) starting from state 𝑠𝑠𝑘𝑘 at time 𝑘𝑘 

and is represented as 𝐴𝐴𝑘𝑘′ (𝑠𝑠𝑘𝑘). 

𝐴𝐴𝑘𝑘′ (𝑠𝑠𝑘𝑘) = argmax
𝑎𝑎𝑘𝑘
𝑟𝑟∈𝐴𝐴

{𝑅𝑅(𝑠𝑠𝑘𝑘,𝑎𝑎𝑘𝑘𝑟𝑟) + 𝛾𝛾� 𝑇𝑇(𝑠𝑠𝑘𝑘+1 = 𝑠𝑠′|𝑠𝑠𝑘𝑘,𝑎𝑎𝑘𝑘𝑟𝑟)𝑉𝑉𝑘𝑘+1(𝑠𝑠𝑘𝑘+1)}
𝑠𝑠′∈𝑆𝑆

(2) 

Action Space and State Space 

The action space is 𝐴𝐴 =  {0, 1}, which is a set of all possible actions of the agent. The 

values of 𝑎𝑎𝑘𝑘𝑟𝑟  could be 1 and 0 that implies that the agent’s recommendations are correct and 

incorrect respectively. Let their respective probabilities be 𝑑𝑑𝑘𝑘 and 1 −  𝑑𝑑𝑘𝑘. The state space is 𝑆𝑆 =

[0,1] which is the set of all possible trust values perceived by the agent. The state space consists 

of trust at any point in time. The state of human trust perceived by the AI agent is represented as: 

𝑠𝑠𝑘𝑘 = 𝛼𝛼𝑘𝑘
𝛼𝛼𝑘𝑘+𝛽𝛽𝑘𝑘

(3) 

Trust Dynamics Model 

An important component of this model is the trust dynamics. Trust, before each interaction, 

is assumed to be a Beta distribution and can be represented as: 
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𝑡𝑡𝑘𝑘 ∼ 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(α𝑘𝑘,β𝑘𝑘) (4) 

The shape parameters 𝛼𝛼𝑘𝑘 and β𝑘𝑘 are updated based on the agent's performance and its 

observations of the human's actions. The belief at time 𝑘𝑘, which characterizes the trust 𝑡𝑡𝑘𝑘, is 

represented as 𝑏𝑏𝑘𝑘 = (𝛼𝛼𝑘𝑘,𝛽𝛽𝑘𝑘). The belief is updated based on the actions of the humans and the AI 

agent’s recommendation. This can be represented as 𝑝𝑝𝑘𝑘 where its value could be 1 if the human 

accepts the recommendation or 0 if the human doesn’t follow the recommendation the agent 

provided. Let 𝑤𝑤𝑓𝑓 and 𝑤𝑤𝑠𝑠 be the experience gains due to the human’s performance. The trust 

dynamics could be formulated as: 

(𝛼𝛼𝑘𝑘+1,𝛽𝛽𝑘𝑘+1) = �
(𝛼𝛼𝑘𝑘 + 𝑤𝑤𝑠𝑠,𝛽𝛽𝑘𝑘), 𝑖𝑖𝑖𝑖 𝑝𝑝𝑘𝑘 = 1
(𝛼𝛼𝑘𝑘,𝛽𝛽𝑘𝑘 + 𝑤𝑤𝑓𝑓), 𝑖𝑖𝑖𝑖 𝑝𝑝𝑘𝑘 = 0

(5) 

We denote the state of the system as 𝑠𝑠𝑘𝑘 at any step 𝑘𝑘. The human’s trust, 𝑡𝑡𝑘𝑘ℎ is represented 

as the state space 𝑠𝑠𝑘𝑘ℎ, which is updated based on the agent’s performance in recommending the 

correct recommendations, and the human’s belief as 𝑏𝑏𝑘𝑘ℎ = (𝛼𝛼𝑘𝑘ℎ,𝛽𝛽𝑘𝑘ℎ). We assume that agent 

perceives the same amount of trust humans have in them, i.e., 𝑠𝑠1ℎ = 𝑠𝑠1. The update rule for the 

human is the same as (5). The state remains the same if the human receives no feedback about the 

agent’s performance.      

State Transitions 

The state transitions happen based on the robot’s observation of the human’s action and 

the agent’s performance. 

Trust-behavior Model 

We define a trust behavior model to explain this transition probability that relates the trust 

to human action. We define a Bernoulli random variable, 𝑧𝑧𝑘𝑘, whose value is 1 when the user 
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follows the recommendation by the AI agent, and 0 when they don’t. We assume the probability 

of 𝑧𝑧𝑘𝑘 =  1 as 𝜓𝜓(𝑠𝑠𝑠𝑠). Thus, the trust-behavior model can be shown as follows: 

𝜋𝜋(𝑧𝑧𝑘𝑘 | 𝑠𝑠𝑘𝑘)  = �𝜓𝜓
(𝑠𝑠𝑘𝑘),                 𝑖𝑖𝑖𝑖𝑧𝑧𝑘𝑘 = 1

1 − 𝜓𝜓(𝑠𝑠𝑘𝑘), 𝑖𝑖𝑖𝑖𝑧𝑧𝑘𝑘 = 0  

This implies that when the trust is high, the user is more likely to follow the agent’s 

recommendations whereas when the trust is low, the user is less likely to follow the 

recommendations. When the trust is low, the user has two option to complete the task, either by 

clicking the map button to see the layout or by using their own knowledge to make a decision. 

Transition Probabilities 

The transition function depends on the interaction between the agent and represents the 

change of state of the agent. The state of the agent changes when the trust increases or decreases 

based on the feedback. Based on the values of 𝑎𝑎𝑘𝑘𝑟𝑟 , the transition function can be written as: 

𝕋𝕋(𝑠𝑠𝑘𝑘+1|𝑠𝑠𝑘𝑘) =

⎩
⎪
⎨

⎪
⎧�
𝜓𝜓(𝑠𝑠𝑘𝑘),                  𝑖𝑖𝑖𝑖 𝑠𝑠{𝑘𝑘+1) > 𝑠𝑠_𝑘𝑘
1 − 𝜓𝜓(𝑠𝑠𝑘𝑘), 𝑖𝑖𝑖𝑖 𝑠𝑠{𝑘𝑘+1) < 𝑠𝑠_𝑘𝑘 , 𝑖𝑖𝑖𝑖 𝑎𝑎𝑘𝑘𝑟𝑟 = 1

�
0,                          𝑖𝑖𝑖𝑖  𝑠𝑠{𝑘𝑘+1) > 𝑠𝑠_𝑘𝑘
1,                          𝑖𝑖𝑖𝑖 𝑠𝑠{𝑘𝑘+1) < 𝑠𝑠_𝑘𝑘 , 𝑖𝑖𝑖𝑖 𝑎𝑎𝑘𝑘𝑟𝑟 = 0

 

Reward Function 

The reward function specifies the reward associated with each transition. It depends on the 

human action to accept or reject the recommendation, or if the recommendation is rejected, the 

human decision to use the map or their previous knowledge. This model uses a negative reward 

process, which is the time taken and construction damage. A reward is associated with each time 

step, depending on the action the human takes. In this model, a value iteration method is used 

where the model is run for many iterations until the policy where the total reward cannot be 

increased. The ultimate objective of the model is to identify the policy that yields the highest 

cumulative reward. 
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Human’s Action 

In the proposed model, the set of potential human actions at a given time 𝑘𝑘 is represented 

by 𝑎𝑎𝑘𝑘ℎ and is defined as 𝐴𝐴 = {0,1}. Here, an action 𝑎𝑎𝑘𝑘ℎ = 1 signifies the human's selection of the 

correct component, while 𝑎𝑎𝑘𝑘ℎ = 0 indicates the opposite. This decision-making policy is assumed 

to be influenced by the human's perceived confidence in the agent’s performance. 

For each time step 𝑘𝑘, the term 𝑑𝑑𝑘𝑘� represents the human's estimation of the agent's likelihood 

of success, denoted as 𝑑𝑑𝑘𝑘. Depending on this estimate, the human might either accept to the agent’s 

recommendation (i.e.,𝑧𝑧𝑘𝑘 = 1) or reject it (i.e., 𝑧𝑧𝑘𝑘 = 0). When the human diverges from the agent’s 

recommendation, they might consult a guide map or rely on personal judgment knowledge to make 

the decision. This decision is modeled by a Bernoulli random variable 𝑚𝑚𝑘𝑘, where 𝑚𝑚𝑘𝑘 = 1 indicates 

using the guide map and 𝑚𝑚𝑘𝑘 = 0 suggests otherwise. It's posited that 𝑚𝑚𝑘𝑘 = 1 with a probability 

𝑔𝑔𝑘𝑘. When the guide map is consulted (𝑚𝑚𝑘𝑘 = 1), the human invariably selects the correct 

component. Conversely, without the guide map (𝑚𝑚𝑘𝑘 = 0), the correct component is chosen with a 

probability 𝑑𝑑𝑘𝑘�. The subsequent section defines the probabilistic framework governing human 

actions in this scenario. 

𝜋𝜋𝑑𝑑(𝑎𝑎𝑘𝑘ℎ|𝑧𝑧𝑘𝑘 = 0,𝑚𝑚𝑘𝑘 = 1, 𝑎𝑎𝑘𝑘𝑟𝑟 ,𝑑𝑑𝑘𝑘�) = �
1,          𝑖𝑖𝑖𝑖 𝑎𝑎𝑘𝑘ℎ = 1 
0, 𝑖𝑖𝑖𝑖 𝑎𝑎𝑘𝑘ℎ = 0

𝜋𝜋𝑑𝑑(𝑎𝑎𝑘𝑘ℎ|𝑧𝑧𝑘𝑘 = 0,𝑚𝑚𝑘𝑘 = 0, 𝑎𝑎𝑘𝑘𝑟𝑟 ,𝑑𝑑𝑘𝑘�) = �
𝑑𝑑𝑘𝑘� ,                  𝑖𝑖𝑖𝑖 𝑎𝑎𝑘𝑘ℎ = 1 
1 − 𝑑𝑑𝑘𝑘� , 𝑖𝑖𝑖𝑖 𝑎𝑎𝑘𝑘ℎ = 0

𝜋𝜋𝑑𝑑(𝑎𝑎𝑘𝑘ℎ|𝑧𝑧𝑘𝑘 = 1,𝑚𝑚𝑘𝑘 = 0,𝑎𝑎𝑘𝑘𝑟𝑟 = 1,𝑑𝑑𝑘𝑘�) = �
1, 𝑖𝑖𝑖𝑖 𝑎𝑎𝑘𝑘ℎ = 1 
0, 𝑖𝑖𝑖𝑖 𝑎𝑎𝑘𝑘ℎ = 0

𝜋𝜋𝑑𝑑(𝑎𝑎𝑘𝑘ℎ|𝑧𝑧𝑘𝑘 = 1,𝑚𝑚𝑘𝑘 = 0,𝑎𝑎𝑘𝑘𝑟𝑟 = 0,𝑑𝑑𝑘𝑘�) = �
0, 𝑖𝑖𝑖𝑖 𝑎𝑎𝑘𝑘ℎ = 1 
1, 𝑖𝑖𝑖𝑖 𝑎𝑎𝑘𝑘ℎ = 0

 

When 𝑧𝑧𝑘𝑘 = 1, we have 𝑎𝑎ℎ𝑘𝑘 = 𝑎𝑎𝑘𝑘𝑟𝑟 , whereas 𝑧𝑧𝑘𝑘 = 0 does not necessarily mean 𝑎𝑎𝑘𝑘ℎ ≠ 𝑎𝑎𝑘𝑘𝑟𝑟 . 

Also, the case 𝑧𝑧𝑘𝑘 = 1 with 𝑚𝑚𝑘𝑘 = 1 is impossible.  

Immediate rewards 
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The aim of the model is to complete the task without any construction damage and to 

complete it in the least amount of time. A rational reward function for this purpose can be a 

weighted sum of the construction damage loss 𝛿𝛿𝑐𝑐 (a wrong component damages the pipe layout) 

and the time cost 𝛿𝛿𝑡𝑡 at step 𝑘𝑘. The immediate reward is defined as 

𝑅𝑅(𝑠𝑠𝑘𝑘,𝑎𝑎𝑘𝑘𝑟𝑟) = � � �−𝜔𝜔𝑐𝑐𝑓𝑓𝑐𝑐�𝑎𝑎𝑘𝑘ℎ� − 𝜔𝜔𝑡𝑡𝑓𝑓𝑡𝑡(𝑧𝑧𝑘𝑘,𝑚𝑚𝑘𝑘)�
(𝑧𝑧𝑘𝑘,𝑚𝑚𝑘𝑘

ℙ(𝑎𝑎𝑘𝑘ℎ, 𝑧𝑧𝑘𝑘,𝑚𝑚𝑘𝑘|𝑎𝑎𝑘𝑘𝑟𝑟 , 𝑠𝑠𝑘𝑘,𝑑𝑑𝑘𝑘� ,𝑔𝑔𝑘𝑘
𝑎𝑎𝑘𝑘
ℎ

(6)
 

where,     𝑓𝑓𝑐𝑐(𝑎𝑎𝑘𝑘ℎ = 𝛿𝛿𝑐𝑐1 1�𝑎𝑎𝑘𝑘ℎ = 1� + 𝛿𝛿𝑐𝑐0 1�𝑎𝑎𝑘𝑘ℎ = 0� 

and       𝑓𝑓𝑡𝑡(𝑧𝑧𝑘𝑘,𝑚𝑚𝑘𝑘) = 𝛿𝛿𝑡𝑡
1,0 1{𝑧𝑧𝑘𝑘 = 1} + 𝛿𝛿𝑡𝑡

0,0 1{𝑧𝑧𝑘𝑘 = 0,𝑚𝑚𝑘𝑘 = 0} + 𝛿𝛿𝑡𝑡
0,0 1{𝑧𝑧𝑘𝑘 = 0,𝑚𝑚𝑘𝑘 = 1} 

The reward probabilities ℙ�𝑎𝑎𝑘𝑘ℎ, 𝑧𝑧𝑘𝑘,𝑚𝑚𝑘𝑘�𝑎𝑎𝑘𝑘𝑟𝑟 , 𝑠𝑠𝑘𝑘,𝑑𝑑𝑘𝑘� ,𝑔𝑔𝑘𝑘� are shown in Table 6 which are 

obtained as 𝜋𝜋𝑑𝑑�𝑎𝑎𝑘𝑘ℎ�𝑧𝑧𝑘𝑘,𝑚𝑚𝑘𝑘.𝑎𝑎𝑘𝑘𝑟𝑟 ,𝑑𝑑𝑘𝑘��𝜋𝜋(𝑧𝑧𝑘𝑘|𝑠𝑠𝑘𝑘)ℙ(𝑚𝑚𝑘𝑘|𝑔𝑔𝑘𝑘). Also sample values for 

𝛿𝛿𝑐𝑐1, 𝛿𝛿𝑐𝑐0, 𝛿𝛿𝑡𝑡
1,0,𝛿𝛿𝑡𝑡

0,1, 𝛿𝛿𝑡𝑡
0,0 are (0, 400, 110, 100, 90). In this combination, when the correct component 

is selected, there is no construction damage, and the reward is zero units, whereas if the humans 

select the incorrect component, construction damage loss is 400 units. When the user follows the 

agent’s recommendation, there is a minimum time loss of 90 units, whereas if the user uses a map, 

the loss is 110 units, and if the user uses their knowledge to complete the task, the time loss is 100.  

Table 6:  

Reward Probabilities 

Follow agent’s 

recommendation 

Use map Human’s 

action 

Agent’s action 

𝑎𝑎𝑘𝑘𝑟𝑟 = 1 𝑎𝑎𝑘𝑘𝑟𝑟 = 0 

𝑧𝑧𝑘𝑘 = 1 𝑚𝑚𝑘𝑘 = 0 𝑎𝑎𝑘𝑘ℎ = 1 𝜓𝜓(𝑠𝑠𝑘𝑘) 0 

𝑎𝑎𝑘𝑘ℎ = 0 0 𝜓𝜓(𝑠𝑠𝑘𝑘) 

𝑧𝑧𝑘𝑘 = 0 𝑚𝑚𝑘𝑘 = 1 𝑎𝑎𝑘𝑘ℎ = 1 [1 − 𝜓𝜓(𝑠𝑠𝑘𝑘)]𝑔𝑔𝑘𝑘 [1 − 𝜓𝜓(𝑠𝑠𝑘𝑘)]𝑔𝑔𝑘𝑘 

𝑎𝑎𝑘𝑘ℎ = 0 0 0 

𝑚𝑚𝑘𝑘 = 0 𝑎𝑎𝑘𝑘ℎ = 1 [1 − 𝜓𝜓(𝑠𝑠𝑘𝑘)](1 − 𝑔𝑔𝑘𝑘)𝑑𝑑𝑘𝑘� [1 − 𝜓𝜓(𝑠𝑠𝑘𝑘)](1 − 𝑔𝑔𝑘𝑘)𝑑𝑑𝑘𝑘� 

𝑎𝑎𝑘𝑘ℎ = 0 [1 − 𝜓𝜓(𝑠𝑠𝑘𝑘)](1 − 𝑔𝑔𝑘𝑘)(1 − 𝑑𝑑𝑘𝑘)�  [1 − 𝜓𝜓(𝑠𝑠𝑘𝑘)](1 − 𝑔𝑔𝑘𝑘)(1 − 𝑑𝑑𝑘𝑘)�  
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The pseudo-code of the algorithm can be found below: 

Algorithm 1 Value iteration method to solve the POMDP model 
Input: POMDP with states 𝑆𝑆, actions 𝐴𝐴(𝑠𝑠), transition model 𝑃𝑃(𝑠𝑠′|𝑠𝑠,𝑎𝑎), rewards 𝑅𝑅(𝑠𝑠)), 

discount γ, initial belief 𝑏𝑏0, initial state 𝑠𝑠0 
Output: Optimal policy 𝜋𝜋∗, Reward = 0 
Initialize 𝜋𝜋∗ = {} 
for 𝑗𝑗 = 1, . . . ,𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠  do 
 Find the best possible action 𝐴𝐴(𝑠𝑠𝑗𝑗) and maximum value 𝑉𝑉(𝑠𝑠𝑗𝑗) at step 𝑗𝑗 as per (2) 

and (1), respectively 
 Generate human decisions, i.e. accepting or rejecting the recommendation, using 

guide map or not and human action based on own knowledge 
 Get reward 𝑅𝑅𝑗𝑗  at step 𝑗𝑗 based on the agent’ recommendation and human decisions 
 Reward = Reward + 𝑅𝑅𝑗𝑗 
 Update agent’s perceived trust and human’s actual trust state level as per the belief 

update rule in (4) 
 Add the new state, i.e., 𝑆𝑆{𝑗𝑗=1} to 𝜋𝜋∗ 
end for 

 

Method 

Participants 

This study was approved by Clemson University’s Institutional Review Board (IRB). We 

recruited 36 participants (21 male, 15 female) aged between 36 and 21 (M = 24.69, SD = 4.31) for 

this study who were students enrolled in undergraduate or graduate degrees in civil engineering, 

architecture, and construction science and management. They were recruited through email, word 

of mouth, and by announcing in the classes. Every participant went through four different 

conditions, but the order of the conditions was randomly assigned using a Latin Square design. 

Once they completed the study, they were remunerated with 3% of their overall grade towards the 

total grade or $10 for their time. Their participation was voluntary, and they were told they could 

discontinue the experiment anytime. Table 7 shows more about the demographic information.  
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Table 7: 

 Demographic Information 

Variable (N = 36) N % 

Gender   

Female 15 41.7 

Male 21 58.3 

Race   

African American 1 2.8 

Hispanic/Latino 2 5.6 

Asian 10 27.8 

Caucasian/White 23 63.9 

Degree Pursuing   

Graduate 12 33.3 

Undergraduate 24 66.7 
 

Apparatus and Materials 

The experiment was conducted with the help of a simulation that was developed using the 

Unity game engine. The software simulated the interaction involving participants completing a 

pipe fitting task using augmented reality glasses. However, they did not actually wear an AR 

headset; instead, the interaction was replicated on a desktop computer as shown in Figure 5. This 

simulation was run on a Dell desktop computer with an Intel(R) Xeon(R) CPU E5-1620 v4 

processor, a Quadro FX 5800 GPU, and an ultrawide LG monitor with a screen size of 38 inches. 

There was a pre-test questionnaire, a trust level questionnaire, a workload measurement, and an 

overall trust questionnaire. The pre-test and the overall trust questionnaire were administered using 

Qualtrics survey software. The trust level questionnaire was a 7-point Likert scale to measure trust 

in AI at a given time and was administered within the simulation. The overall trust questionnaire 
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and workload assessment were administered after every condition using a validated self-reported 

12-item set of Likert scales and the National Aeronautics and Space Administration-Task Load 

Index (NASA-TLX), respectively (Hart & Staveland, 1988; Jian et al., 2000). Figure 5 shows the 

experimental setup for this study. 

Figure 5: 

Experimental Setup 

 

Procedure 

The participants were provided with the study material that consisted of the type of pipe 

fittings used in the study, what those components were used for, and the symbols of the 

components in a layout plan. Once they arrived for the study, they were seated and provided with 

the informed consent form to sign. Subsequently, they were asked to complete a pre-test 

questionnaire administered on Qualtrics on the computer. The pre-test consisted of a demographic 

questionnaire and trust questions to learn about the participants’ baseline trust in technology 

(Schneider et al., 2017). After completing the pre-test questionnaire, participants were directed to 
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view a training video. The video content reinforced the participants' understanding of heat pumps, 

including their constituent components, types of pipe fittings, and relevant plan symbols required 

to execute the task.  

Furthermore, the video provided instructions on navigating the simulation, locating 

specific components, and how to install different components in the simulation. Then, they were 

asked to complete a short quiz that tested their knowledge of the symbols used for each component. 

This ensured that the participants were knowledgeable enough to read the layout plan provided. If 

the participants did not score at least 90% on the quiz, they were asked to watch the training video 

again until they met this criterion.  

In the next step, the simulation was presented. The simulation was divided into two 

sessions: a training session and the actual task session. In the training session, the participants were 

asked to complete the task using a simple plan that involved only one heat pump along with two 

pipes and two different pipe fittings. In this session, there was no AI agent to assist them. This 

session was only intended to familiarize the participants with the simulation and the controls. Once 

they had completed the training session, they were taken to the actual task, where they were 

provided with a simple or complex task with an AI agent with low or high reliability, depending 

on the condition they were assigned to. The conditions were assigned to the participants based on 

a randomized Latin square design. The layout plan was provided to the participants before 

beginning the task. While completing the task, they could view the plan by clicking the “view 

map” button. The participants were asked to minimize the use of the plan and use the map only 

when they faced difficulties and were uncertain about how to proceed. This ensured their 

engagement with the recommender system rather than looking at the plan and completing the task. 

The simulation paused at every third step, and they were asked to rate their trust in the 



 

63 

recommender system on a seven-point Likert scale. After each condition, they were asked to 

complete the NASA-TLX questionnaire, followed by the overall trust questionnaire. Once the 

participants finished the overall trust questionnaire for the fourth condition, they were asked to 

rank the four recommender systems based on their preference. This was followed by a knowledge 

quiz similar to the one they had taken in the initial part of the study. The entire experiment was 

carried out in a single session that lasted about 50-60 minutes. Figure 6 shows the flowchart of 

how the experiment was conducted. 

Figure 6:  

Flowchart of the Experimental Steps 
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Design 

This study was conducted in a controlled space and used a 2*2 within-subjects design with 

each participant experiencing all four conditions. 

Independent Variables. 

Reliability of the AI Agent. This variable was studied at two levels: low and high. 50% of 

the AI agent’s recommendations were correct for the low reliable condition, whereas, for the high 

reliable condition, 100% were correct. In both conditions, the participant was free to accept the 

agent's recommendation or move ahead with selecting components they thought were correct.  

Complexity of the Task. This variable was also studied at two levels: simple and complex 

tasks. In the simple task, the participants were asked to complete a pipe layout that involved one 

heat pump and its associated fittings. For the complex task, four heat pumps of different capacities 

were provided, and they were asked to complete the layout connecting these heat pumps. This 

involved more pipe fittings and pipes in different directions, which made the task more complex 

compared to the simple one.  

Dependent Variables. 

Overall Trust. Trust is an essential factor to be considered when it comes to AI since it 

affects user acceptance, human-AI collaboration, and in decision-making (Hancock et al., 2011; 

Hoffman et al., 2018; Lee & See, 2004). This study used the most commonly used self-reported 

12-item Likert scale to measure the trust in automation (Jian et al., 2000). This scale helps to 

understand the system characteristics that could influence the perception of the operators’ trust. 

After each condition, the trust questionnaire was administered on Qualtrics to learn about the 

participant’s subjective trust in the AI agent for that condition. After completing the questionnaire 

for the final condition, participants were asked an additional question: to rank the four AI agents 
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in the order they would prefer to use them for completing a procedural task. This was done to 

understand which condition the participants favored most when using the AI agent. 

Trust evolution. To investigate the evolution of trust during the interaction between a user 

and the recommender AI, a 7-point Likert scale question was utilized to measure the degree of 

trust at different stages of the interaction. The question was administered at regular intervals (every 

three steps) throughout the completion of the task in all four experimental conditions to capture 

changes in trust over time.  

Task performance. This study evaluated task performance using completion time and the 

number of errors. The data were collected directly from the simulation since the time to complete 

the task and errors were tracked. The purpose of measuring these metrics was to investigate the 

effect of changing task complexity and AI agent reliability on task performance when assisted by 

an AI agent. If the participant selected a wrong pipe fitting or correct pipe fitting with a wrong size 

was counted as an error. The results of these measurements were used to determine if 

improvements in task performance were observed. The time required to complete a task in real-

life settings may differ from that recorded in simulations. However, since all participants in this 

study were subjected to the same simulation, any differences in completion time can be used for 

performance comparison across varying conditions.  

Workload. The varying reliability of the AI agent and the complexity of the task could 

affect the operator’s workload while completing the procedural task. After every condition, the 

workload assessment was administered using the National Aeronautics and Space Administration-

Task Load Index (NASA-TLX)(Hart & Staveland, 1988). 

Scenarios and Tasks. Heating ventilation and air conditioning (HVAC) installation is a 

common task in AEC, as it is an important component of building design and construction. The 
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task selected for this study was the pipe fittings task associated with heat pumps in an HVAC 

installation. The task was designed in consultation with a subject matter expert and involved the 

completion of a pipe layout that included both the supply line and return line for a heat pump.  

A heat pump is a device that uses electricity to transfer heat from a cooler place to a warmer 

place using a refrigerant. For this study, we selected a water source heat pump that uses water as 

the refrigerant to transfer heat from the indoor space to the cooling tower outside. A supply line 

provides cold water from the cooling tower to the heat pump, whereas a return line takes heat from 

the heat pump to the cooling tower. 

The participants were provided with the plan of the pipe layout for each scenario. There 

were two different layouts: one for the simple task and another for the complex task. The simple 

task consisted of only one heat pump and the associated fittings, whereas the complex task 

contained four heat pumps of different capacities and associated fittings.  

The task was completed on a computer with the help of an application that simulated a 

building where the HVAC installation was to be performed. The application simulated the 

environment such that the participant used AI-integrated AR technology while completing the task. 

The participants were asked to complete the pipe layout by deciding on the next component in 

relation to the current position and selecting the component from a library of fittings. An AI agent 

recommended the next fitting by visually showing it in a light green color and presenting its name 

and size. The participant was free to decide whether to install the fitting recommended by the AI 

agent or reject it and proceed with a different fitting.  

Once the participant decided on the fitting, he could click on the fitting from the library of 

components, which will install the fitting at that location. This moves the point of view of the 

simulation to the following location where the component is required. This continued till the entire 
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layout for that condition was completed. If, at any point in time, the participant was stuck and did 

not know how to move forward; they could click on the “use map” button on the left bottom part 

of the screen. This will open the layout plan, and they could determine which component goes at 

that point. 

Figure 7 shows a screenshot from the simulation. The participants can select the component 

with a particular size from the library of pipe fittings available on the right side of the screen. The 

screenshot also shows how the recommender system offered suggestions. Here, AI recommended 

a pipe fitting which is a strainer of one inch. The recommendation is visually shown in light green 

color and by providing the name and the size of the fitting. On the bottom left of the screen, there 

is a “use map” button that shows the layout plan.  

Figure 7: 

Screenshot of the Simulation 

 

 

Analysis. Data analysis was conducted with the help of statistical analysis software IBM 

SPSS Statistics for Windows, version 26.0.                           
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Results 

Overall Trust 

A two-way repeated measures ANOVA was run to determine the effect of the reliability of 

the AI agent and the complexity of the task on the overall trust in the AI agent. The two-way 

interaction between the complexity of the task and the reliability of the AI agent was not 

statistically significant for trust in AI, F (1,34) = 1.98, p = 0.17, partial η2 = 0.06. However, the 

main effect of reliability was statistically significant, F (1,34) = 492.20, p < 0.001, partial η2 = 

0.94, while the main effect of complexity was not significant, F(1,34) = 0.17, p = 0.69, partial η2 

= 0.01. Subsequently, pairwise comparisons were conducted to examine the statistically significant 

main effect of reliability. Participants trusted the high reliable AI agent more than the low reliable 

one, with a mean difference of 3.92, 95% CI [3.56, 4.28], p < 0.001. Figure 8 shows the effect of 

the reliability of the AI agent on trust.  

Figure 8:  

Overall Trust for Two Levels of Reliability 
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Trust Development 

Figures 9, and 10 were prepared to learn more about how trust was developed while 

completing the task. It was found that for the simple and complex tasks with high reliable agents, 

the participants started at a lower trust level and reached a consistent level in a few steps. The trend 

for the low reliable agent in simple and complex conditions was to stay at the trust level where 

they started. It was also found that for simple and complex tasks with a high reliable agent, the 

most number of people trusted the agent, with a rating of 7 in the early steps, whereas for simple 

and complex tasks with a low reliable AI agent, most of the participants started with a rating of 

1,2, or 3 but the majority of the finished the task with either a rating of 1 or 2. A dependent t-test 

was conducted to understand if there was significant difference between the trust levels at the first 

step and the last step for each condition. For the simple task in the low reliable condition, it was 

found that there was a significant decrease in the trust level between the first step and the last step 

from 3.00 ± 1.80 to 2.08 ± 1.18 (p = 0.007); a decrease of 0.92 ± 1.90. For the simple task in the 

high reliable condition, it was found that there was a significant increase in the trust level between 

the first step and the last step from 6.03 ± 1.30 to 6.67 ± 0.68 (p = 0.007); an increase of 0.64 ± 

1.33. In the case of complex task for the low reliable condition, it was found that there was there 

was no statistical difference between the trust levels of first and the last steps whereas for the high 

reliable condition, it was found that there was a significant increase in the trust level between the 

first step and the last step from 6.30 ± 1.30 to 6.89 ± 0.32 (p < 0.001); an increase of 0.69 ± 1.27. 
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Figure 9:  

Trust Development of Simple Task 

 
 

Figure 10:  

Trust Development of Complex Task 
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Workload 

A two-way repeated measures ANOVA was run to determine the effect of the complexity 

of the task and the reliability of the AI agent on the users' workload. There was no statistically 

significant interaction between the complexity of the task and the reliability of the AI agent, F(1, 

35) = 1.73, p = 0.20, partial η2 =0.05. However, the main effect of the reliability was statistically 

significant, F(1,35) = 69.85, p < 0.001, partial η2 = 0.67, as was the main effect of the complexity, 

F(1,35) = 14.21, p = 0.001, partial η2 = 0.29. Subsequently, pairwise comparisons were conducted 

to examine the statistically significant main effect of reliability and complexity. Participants 

perceived a higher workload when the AI agent exhibited low reliability than high reliability, with 

a mean difference of 20.78, 95% CI [15.73, 25.83], p < 0.001. Additionally, participants perceived 

the workload was higher in the high complexity condition than in the low, with a mean difference 

of 7.41, 95% CI [3.42, 11.40], p < 0.001.  

Figure 11:  

Workload for Two Levels of Reliability and Complexity 

            

Performance 

Task Completion Time. A two-way repeated measures ANOVA was conducted to 

determine the effect of the complexity of the task and the reliability of the AI agent on the time 
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taken to complete the task. The two-way interaction between the complexity of the task and the 

reliability of the AI agent was statistically significant for the time taken to complete the task, 

F(1,34) = 8.93, p = 0.005, partial η2 = 0.21. Therefore, simple main effects were run. The total 

time taken to complete was statistically significantly different in the high reliable condition 

(334.46 ± 64.16 seconds) compared to the low reliable condition (483.78 ± 129.59 seconds) in the 

complex task, F(1,34) = 42.73, p <0.001, partial η2 = 0.56, a mean difference of 149.32 (95% CI, 

102.90 to 195.75) seconds. The total time taken was also significantly different in the high reliable 

condition (119.16 ± 30.88 seconds) compared to the low reliable condition (174.44 ± 74.87 

seconds) in the simple task, F(1,34) = 16.98, p < 0.001, partial η2 = 0.33, a mean difference of 

55.27 (95% CI, 28.01 to 82.53) seconds. 

Figure 12:  

Time Taken to Complete the Task 

 

Number of Errors. A negative binomial regression analysis was conducted to examine 

the effects of the complexity of the tasks and the reliability of the AI agents on the number of 
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errors made. The traditional Poisson regression was not applied because the error data was over-

dispersed since the variance exceeded the mean. The results showed that the reliability of the AI 

agent had a significant effect on the number of errors made, such that participants who interacted 

with the low reliable agents had significantly higher error rates compared to those who interacted 

with high reliable agents (B = -1.73, SE = 0.18, 95% CI [-2.09, -1.38], Wald χ² = 90.57, df = 1. p 

< 0.001). The results also showed that the complexity of the task had a significant effect on the 

number of errors made, such that the participants made more errors in the complex task than in the 

simple task (B = 0.71, SE = 0.17, 95% CI [0.37, 1.05], Wald χ² = 16.66, df = 1. p < 0.001).  

Preference of agents 

A Friedman’s test was conducted to analyze the ranked data for the preference of agents. 

There was a statistically significant difference in the ranking of agents which recommended the 

pipe fittings, χ2(3) = 88.70, p < 0.001. Post hoc analysis with Wilcoxon signed-rank tests was 

conducted with a Bonferroni correction, resulting in a significance level set at p < 0.008 by dividing 

the significance level 0.05 by the number of comparisons, which is 6. Median inter quartile range 

ranking for the high reliable agent in the complex condition, high reliable agent in the simple 

condition, low reliable agent in the simple condition, and low reliable agent in the complex 

conditions were 1 (1 to 1), 2 (2 to 2), 3 (3 to 4), and 4 (3 to 4), respectively. There was a statistically 

significant difference in ranking where the participants preferred the simple condition with the 

high reliable agent over the complex condition with the low reliable agent (Z = -5.40, p < 0.001), 

the simple condition with the high reliable agent over the simple condition with a low reliable 

agent (Z = -5.37, p < 0.001), the complex condition with the high reliable agent over the simple 

condition with the high reliable agent (Z = -3.36, p = 0.001), the complex condition with the high 

reliable agent over the complex condition with the low reliable agent (Z = -5.36, p < 0.001), and 
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the complex condition with the high reliable agent over the simple condition with the low reliable 

agent (Z = -5.36, p < 0.001). However, there was no significant difference in ranking between 

preferring the simple condition with a low reliable agent vs. the complex conditions with a low 

reliable agent (Z = -1.76, p = 0.078).  

Trust in AI evolution using the POMDP model 

This section presents the results obtained from the proposed POMDP model for 10 

iterations. These iterations converge the trust values and show the standard error for each step. In 

this work, the POMDP model was developed to model human trust while the AI assists the human 

in completing the pipe fitting task by providing recommendations. The human trust development 

was analyzed in scenarios with both low reliable and high reliable agents for simple and complex 

tasks. The trust dynamics were observed over 10 iterations, and the results are depicted in Figures 

13 and 14 for the simple task and Figures 15 and 16 for the complex task. The trust development 

was measured using the state space 𝑆𝑆 = [0,1], which is the probability that represents all possible 

values of human's trust in the agent. The results were then compared to the experimental study to 

validate the model's effectiveness in simulating human trust during the interaction. 

The initial trust level is affected by the shape parameters of the initial trust probability 

distribution. In the low reliable condition, the agents recommended the wrong components 

frequently, and this caused the trust level to decrease. As the steps progressed, the trust level 

dropped significantly due to the agent’s frequent incorrect recommendations, leading to increased 

construction damages and increased time costs. Thus, a gradual decline of trust over time was 

noticed, aligning with the trust development trend reported by the participants during the 

experimental study. This similarity in trends validates the effectiveness of the model for 

representing human’s trust when interacting with a reliable agent. The trust dynamics model, 
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which is governed by the beta distribution, affected the actions of humans as they were less likely 

to follow the agent’s recommendation as trust declined. This is because the recommender AI’s 

belief of human’s trust at each time step was updated based on the feedback that it received, which 

is human’s action. Similarly, the human’s trust was updated based on the performance of the 

recommender system.  

 

 

Figure 13:  

Trust Development for Simple Task with Low Reliable Agent- POMDP Model (Top) and 
Experimental Study (Bottom) 
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For the high reliable condition in the simple task, the AI agent provided the correct 

recommendation for all the steps. The consistent performance of the agent resulted in impacting 

the human’s trust positively. The trust dynamics model, in this case, strengthened the positive trust 

trend due to positive experience gains. The increasing trend in trust for high reliable agents aligns 

well with the experimental study, demonstrating the model's validity in representing human trust 

development in scenarios with high reliable agents. The trust-behavior model reflected this trend, 

with humans becoming more inclined to follow the agent's recommendations as trust grew, leading 

to minimized. The trust-behavior model reflected this trend, with humans becoming more inclined 

to follow the agent's recommendations as trust grew, leading to minimized construction damages 

and time costs. 
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Figure 14: 

Trust Development for Simple Task with High Reliable Agent- POMDP Model (Top) and 
Experimental Study (Bottom) 
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In the complex task, for the low reliable condition, the initial trust level, as in the simpler 

task, was influenced by the shape parameters of the initial trust probability distribution. However, 

trust development exhibited a different trend in this scenario. While the agent frequently 

recommended incorrect components, the trust level did not consistently decline, as observed in the 

simpler task. Instead, after approximately half of the interaction steps, the trust level seemed to 

stabilize. This stabilization, however, had a few fluctuations that are associated with the 

complexity of the task. These fluctuations in trust levels align closely with the experimental results, 

further validating the model's capability to represent human trust dynamics in complex scenarios.  

The trust dynamics model, governed by the beta distribution, played an important role in these 

fluctuations.  

 
 

Figure 15:  

Trust Development for Complex Task with Low Reliable Agent- POMDP Model (Top) and 
Experimental Study (Bottom) 
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In the high reliable condition, the AI agent provided correct recommendations throughout 

the task. This consistent performance had an evident impact on trust development. The initial 

stages of the interaction saw a rapid increase in trust levels, reflecting the agent's reliability. 

However, as the interactions progressed, particularly after reaching approximately half of the steps, 

the trust increase rate began to stabilize or even reduce. This could be because the trust increased 

to almost the highest level. This stabilization in trust levels aligns with the findings from the 

experimental study. 
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Figure 16:  

Trust Development for Complex Task with High Reliable Agent- POMDP Model (Top) and 
Experimental Study (Bottom) 
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Comparing the POMDP model and the experimental study suggests that the POMDP 

model can be used to represent the impact of the reliability of the recommender AI and the 

complexity of the tasks on human trust. The trust dynamics model, incorporating the beta 

distribution and the trust-behavior model relating human's actions to trust, played a crucial role in 

achieving results consistent with the experimental study. Considering construction damage loss 

and time cost, the immediate rewards effectively influenced human actions, reflecting realistic 

human behavior in response to the agent's performance. 

Discussion 

Trust in AI agents is an important factor affecting the user relying on the technology to 

complete the task. This study examined the effect of the AI agent's reliability and the task's 

complexity while completing a procedural task with the help of augmented reality technology. The 

results from the two-way repeated measures ANOVA suggest that for trusting the 

recommendations, the reliability of the AI agent is a more important factor than the task's 

complexity while designing systems that utilize AI systems and AR technology.  There was no 

significant effect on trust due to the complexity of the task, whereas the reliability of the AI agent 

had a substantial influence on the perceived trust. This finding is consistent with the previous 

research, which has shown that reliability is an important system property that affects trust in 

automation (Parasuraman & Manzey, 2010). Participants trusted the high reliable condition more 

than the low reliable condition, which supports hypothesis 1 and is consistent with the findings 

from the previous research that found that the more errors the automation made, the lower the trust 

they had in automation for a route planning task (de Vries et al., 2003). This shows the importance 

of designing AI systems with high reliability for completing procedural tasks for the users to trust 

the AI agent. This study reinforces the concept that the relationship between AI agent reliability 
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and operator trust, previously established in different domains, is also pertinent to scenarios where 

operators are engaged in procedural tasks supported by a recommender system within the 

framework of augmented reality technology. Future research could investigate ways to maintain 

appropriate trust using interventions such as explainability, which provides explanations for the 

recommendations or actions, and transparency, which shows the real-time status of what the 

system is doing, for varying AI reliability and complexity of the procedural tasks with the help of 

an augmented reality technology.  

The complexity of the task did not have a significant main effect on trust. This shows that 

for the procedural task selected for this study, trust was not impacted by the complexity of the task 

alone. It means that the users might not trust the AI agent while completing a complex task since 

it could lead to many more complex errors if a mistake is made. Or in other words, for the user to 

use the AI to complete a complex task, they should have a good reason to have high trust in the AI 

(Al, 2023). But, from the results, it seems that the participants lost trust in a similar manner 

between the simple and complex tasks when the AI agent made errors. Future research could 

explore different task types to learn the effect of task complexity on perceived trust. There was no 

significant interaction between the reliability of the AI agent and the complexity of the task, which 

implies that the different levels of task complexity did not moderate the effect of the reliability of 

the AI agent on trust. Trust in AI was primarily determined by the reliability of the AI agent, 

regardless of whether the task was simple or complex. This lack of significant difference in trust 

between the complexity of the task and the lack of significant interaction could be specific to the 

task selected, and future research could look more into other domains for procedural tasks to 

confirm these findings.  
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The trust evolution while completing the task was investigated using a t-test between the 

trust levels at the first and the last step of each condition. The first trust questionnaire was asked 

after completing three steps of the task. This way, the participants had a chance to experience the 

reliability of the AI agent before the first questionnaire. For the simple and complex tasks with a 

high reliable agent, they started at a lower trust level than when they finished the whole task. From 

the t-test, we found a significant increase in trust level between the first and the last steps for both 

simple and complex tasks with high reliable agents. This shows the positive trend in trust as they 

interact with the recommender AI and the importance of high reliability on the trust not only for 

building it but also for maintaining the high trust level. The rapid development of trust in these 

scenarios, as seen in Figures 9 and 10, reflects the users' quick adaptation and growing confidence 

in the agent's capabilities. For the low reliable agents, in the simple condition, the t-test found that 

there was a significant decrease in trust levels between the first and the last steps. The participants 

started at a low trust level and ended at much lower levels of trust. This indicates that the 

participant had limited trust in the AI agent from the beginning, and their trust continued to 

diminish as they interacted with the agent over time. The decreasing trend of the trust rating could 

be because of the loss of confidence as they interacted more with the agent, suggesting that the 

trust was negatively impacted. This also shows that the users had minimal tolerance for errors 

when the recommender AI assisted the users with simple tasks. For the complex task with low 

reliable agents, there was no significant difference in trust level between the first and the last steps. 

This could be because since the participants knew they were in a complex condition, they started 

by not trusting the agent for a complex task and looking for a good reason to increase their trust. 

But, after interacting with the agent, the trust remained at the same level as there were errors in the 

recommendations provided. 
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The perceived workload while completing the procedural task was measured using the 

NASA-TLX survey. The results indicate that there was no significant interaction between the 

complexity of the task and the reliability of the AI agent. This means that these factors had an 

independent effect on the perceived workload for the context of this study. But there were 

significant main effects on workload by both the factors. The workload was higher for the complex 

task compared to the simple task, a result supporting previous research findings that complex task 

conditions resulted in a higher overall subjective workload (De Visser & Parasuraman, 2011). This 

result confirms that the tasks selected as simple and complex were of different complexity levels, 

as expected. The complex task could impose a higher cognitive load since it requires higher 

attention, information processing, and mental resource allocation, resulting in a higher perceived 

workload.  

The two levels of reliability of the AI agent had a significant main effect on the perceived 

workload. This means that the reliability of AI agents can significantly affect users' workload while 

using AR technology to complete a procedural task. While the reliability of the AI agent was low, 

the perceived workload was high, supporting hypothesis three. This finding aligns with previous 

research that found that while interacting with a low-reliable agent, the users’ cognitive load was 

higher (Daronnat et al., 2020). While the reliability of the AI agent was low, the participants had 

to find the solutions themselves rather than relying on the AI agent, which could have increased 

their cognitive load and decreased trust. They had to decide on the next component based on their 

working or long-term memory or could have clicked on the view map button to see the layout 

when stuck. Thus, they might not have relied on the AI agent for recommendations, increasing 

their perceived workload.  
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To evaluate the participants' performance while completing the tasks in different 

conditions, the total time taken to complete the task was measured. The two-way repeated 

measures ANOVA results suggest a significant difference in performance between the simple and 

complex conditions and between conditions with low and high reliable agents supporting 

hypothesis two. There was a significant difference in the time taken between the simple and 

complex conditions since the complex task had more steps and pipe fittings than the simple task. 

The interaction was also significant, indicating that the effect of the reliability of the AI agent on 

time taken depended on the complexity of the task. The difference in time taken to complete the 

task between the low and high reliable agents were more for the complex task indicating the 

importance of high reliable agents for complex task or tasks with higher cognitive workload. This 

decrease in time could be because the low reliable AI agent imposed a higher cognitive workload 

on the operator, and the higher workload deteriorates human performance (Xie & Salvendy, 2010). 

Complex tasks require more cognitive workload and decision-making capabilities. When the AI 

agent is reliable, they trust the recommendations and rely more on the agent, which could reduce 

their workload, leading to higher performance. However, for the low reliable agent, the participants 

did not trust the recommendations. They had to figure out the solutions themselves, leading to a 

higher workload and thus increasing the time taken to complete the task. This finding of higher 

task time completion for low reliable agents aligns with previous research that compared three 

levels of reliability and found that, as reliability increases, the task time decreases (Chavaillaz et 

al., 2016).  

The participant's performance in completing the task was also measured using the number 

of errors they made while completing the task. A negative binomial regression analysis was 

conducted to gain some insights into the relationship between the complexity of the task and the 
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reliability of the AI agent on the number of errors made. Consistent with our hypothesis two, the 

number of errors was significantly affected by the reliability of the recommender system. 

Specifically, the participants who interacted with the low reliable AI agent had significantly higher 

error rates compared to those who interacted with a high reliable agent. This aligns with previous 

research that found that as the reliability of the AI agents decreases, the participants make more 

errors while completing a visual search task (Shah & Bliss, 2017). While Shah & Bliss, (2017) 

focused on visual search tasks, the underlying principle of their findings—that decreased reliability 

in AI agents correlates with increased user errors—may extend to procedural tasks, as both require 

the careful execution of steps influenced by the agent's guidance, suggesting a potentially 

generalizable impact of AI reliability on task performance across different domains. This shows 

the importance of having high reliable recommender system to improve performance and reduce 

errors while completing procedural tasks. Additionally, the complexity of the task had a significant 

influence on the number of errors made while completing the task. While in the complex task, the 

participants made more errors than in the simple task. This could be because as the complexity of 

the task increases, the workload increases, resulting in low performance (Xie & Salvendy, 2010).  

After completing all four conditions, the participants were asked to rank the AI agents that 

assisted them in completing the task. Our primary finding indicates a significant statistical 

differentiation in the ranking of agents considering the AI agent's reliability and the task's 

complexity. As expected, the participants preferred the high reliable agents for both simple and 

complex tasks. This is because the high reliable agent provided more correct recommendations 

compared to the low reliable agent and was more trustworthy. One important finding is that the 

participant preferred the high reliable agent for the complex task over the simple one. This shows 

the importance of high reliable agents for more complex tasks that require higher cognitive effort, 
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especially when completing a procedural task. This shows that the participants had higher trust in 

the highly reliable agent and might have relied more on the agent. The participants might have 

trusted the high reliable agent in the simple task as well, but it was more important in the complex 

task since it might have reduced the extra workload the participants had in the complex condition. 

Another important finding is that the participants had no significant preference difference in 

selection between a simple and a complex task with a low reliable agent. This is an important 

insight as it indicates that when the reliability of the AI agent is low, the complexity of the task 

does not influence user preference. This again shows the importance of the reliability of the AI 

agent while providing recommendations for completing a procedural task.  

The results from the POMDP model provide a good understanding of human trust 

development in the AI during the interaction, and it aligns closely with the trust development 

results from the experimental study. This validates the model and shows the effectiveness of the 

model in simulating real-world interactions. The model highlights the importance of reliability in 

establishing and maintaining trust in agents. It implies that prioritizing high reliability and the 

ability to make accurate recommendations is essential in an AI agent’s design. The understanding 

gained from the trust dynamics can guide the creation of adaptive AI agents. Such systems, with 

the ability to change their behavior in response to changing trust levels, can promote smoother and 

more productive interactions in the fields of AEC, healthcare, and manufacturing. The model’s 

focus on immediate rewards and the subsequent influence of trust on decision-making highlights 

the necessity to formulate strategies that can reduce potential damages and improve time efficiency 

while completing a procedural task with the assistance of AI agents. 

The model comes with its own limitations as assumptions were made during its 

development, such as the initial trust probability distribution and the trust behavior model. The 
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model also needs to be validated for other contexts and domains in order to generalize it. Future 

studies could investigate other factors that affect trust, such as environmental factors or other 

human or AI-related factors, for example, the self-confidence of the operator and the explainability 

and transparency aspects of the recommender system.  

Conclusion 

A POMDP model was developed to simulate human’s trust in AI while completing a 

procedural task with the help of recommendations from the agent. An experimental study was 

conducted that investigated the impact of task complexity and AI agent reliability on trust, 

performance, workload, and user preferences in completing procedural tasks using AR technology. 

The trust development simulated from the model and that from the experimental study were 

compared to understand the effectiveness of the model. The findings offer valuable insights that 

can inform the design and implementation of AI systems and AR technology for procedural task 

completion. 

The results highlight that the reliability of the AI agent significantly influences trust, with 

participants exhibiting higher trust in highly reliable AI agents compared to low reliable ones. Task 

complexity, conversely, does not independently affect trust, suggesting that reliability plays a more 

important role in determining users' trust levels. Analysis of trust development throughout the task 

completion process revealed interesting patterns. Participants using highly reliable AI agents 

experienced a gradual increase in trust, reaching a consistent level by the task's end. In contrast, 

those using low reliable AI agents maintained low levels of trust throughout the task. These 

findings highlight the importance of reliability in trust development in AI agents. 

Workload analysis demonstrated that both task complexity and AI agent reliability 

significantly impact perceived workload. Complex tasks resulted in a higher perceived workload 
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due to increased cognitive demands, while low reliable AI agents imposed a greater cognitive 

workload on participants. Designing AI systems with high reliability is crucial for reducing users' 

cognitive load and enhancing performance. 

Both task complexity and AI agent reliability influenced performance measures, including 

task completion time and the number of errors. Complex tasks took more time to complete, and 

participants using low reliable AI agents also took more time to complete the task. Similarly, errors 

were higher in complex tasks and when interacting with low reliable AI agents. These findings 

highlight the detrimental effects of low reliability on task efficiency and emphasize the importance 

of AI agent reliability in minimizing errors. User preferences consistently favored high reliable AI 

agents, indicating their effectiveness in handling higher cognitive demands. Participants preferred 

high reliable agents for both simple and complex tasks, underscoring the significance of reliability 

in user acceptance and satisfaction. 

The POMDP model results of the human’s trust development was compared to the 

experimental results of trust development and found that both trust development trends were 

similar. This shows the effectiveness of the model in simulating human’s trust while completing 

the procedural task with the assistance of an AI agent.  

Overall, this study provides insights into the impact of task complexity and AI agent 

reliability on trust, performance, workload, and user preferences during procedural task 

completion with the assistance of AI agents and AR technology. These insights can guide the 

design and implementation of AI systems and AR technology, aiming to maximize user trust, 

enhance task performance, and reduce workload. Future research could explore additional factors 

and task types to further refine the understanding of the relationship between task complexity, AI 
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agent reliability, and trust in the context of procedural task completion with the help of AR and AI 

technologies.  

After investigating the effect of reliability and complexity of task on humans’ trust in the 

recommender AI while completing a procedural task with the assistance of AR technology, it is 

evident that the reliability of the recommender AI is an important aspect to consider in such 

scenarios. Understanding the factors that could help maintain appropriate trust while interacting 

with recommender AI in such scenarios is important. Accordingly, the second study reported in 

Chapter 4 aims to investigate the effects of explainability and transparency on human’s perceived 

trust levels when interacting with recommender AIs with varying reliability.  
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CHAPTER FOUR 

INVESTIGATING THE EFFECTS OF ARTIFICIAL INTELLIGENT AGENTS’ 

TRANSPARENCY AND EXPLAINABILITY ON USERS’ TRUST FOR COMPLETING A 

PROCEDURAL TASK  

Introduction 

With the adoption of Construction 4.0, the AEC sector has seen significant transformations 

through technological advancements that reshape decision-making processes, enhance operational 

efficiency and pave the way for innovative construction methodologies (Shafei et al., 2022). Given 

the complexity of the AEC domain and the benefits of AI, such as efficiency and reduced errors, 

AI has huge potential if implemented correctly. AI can automate complex tasks, assist in decision-

making, and improve productivity and efficiency in the AEC domain. Many complex problems in 

the AEC domain have been solved efficiently by AI, such as pavement crack detection, seismic 

safety evaluation, damage to concrete structures under complex constraints etc. (Lagaros & 

Plevris, 2022).  

Integrating AI with AR technology could benefit in many ways. For example, while 

completing a physical task, AR can reduce the cognitive load of the users by displaying the 

required information without affecting the user’s focus (Sahu et al., 2021).  The combination of 

AR and AI technologies could assist humans considering the benefits of both technologies, which 

have already been practiced in domains such as manufacturing and healthcare (Chen et al., 2019; 

Sahu et al., 2021). For example, an AR- and AI-assisted surgical navigation system was developed 

and tested for accuracy and feasibility (Siemionow et al., 2020). The AEC domain could also 

benefit from this combination in addressing the challenges caused by the tasks in complex and 

dynamic contexts.  One example could be the use of these two technologies to enhance the safety 
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of highway workers by providing them with notifications based on real-time danger predictions 

(Sabeti et al., 2021). 

Trust the users have in the AI system affects the adoption and acceptance of the AI 

technology (Asan et al., 2020; Chin et al., 2024). Trust in AI is a complex multidimensional 

construct that is affected by various factors, including AI reliability, explainability, and 

transparency of the system (Bedué & Fritzsche, 2022; Hoff & Bashir, 2015; Ryan, 2020; 

Schraagen et al., 2021). Perceived reliability is an important aspect in understanding the issues 

associated with human performance due to its relationship with the trust users have in AI. As the 

perceived reliability increases, the trust should also increase as the users have confidence in AI. 

However, the calibration of trust is not always perfect, and this results in over-trust and mistrust 

of the AI, which can lead to inefficiency. Over-trusting the AI can lead to complacency or 

automation bias whereas mistrust can lead to underutilization of the system. Trust can be 

characterized as dispositional trust, situational trust and learned trust and this study focused on 

characterizing situational trust while users interact with a recommender system (Hoff & Bashir, 

2015). 

AI technology is driven by machine learning models that could be powerful and complex 

(Adadi & Berrada, 2018). These complex models are less transparent and difficult for users to 

understand. These are called ‘black box’ models since they are not transparent (Kok et al., 2023), 

where the internal processes and the rationale behind the decisions are not accessible to the users. 

This lack of transparency of the black box models might lead to deception for the users, and 

increasing the transparency could increase the users' trust in AI as they can better understand AI’s 

actions and comprehend the decisions made (Kaplan et al., 2023). There is a growing emphasis on 

developing transparent and explainable AI (XAI) to solve the trust issues of black box models. 
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The concept of XAI is to provide transparency of the models and explanations of the decisions of 

the black-box models (Ali et al., 2023).  

Transparency and explainability are important factors that could improve the trust a user 

has in the AI agent. Transparency of an AI system provides real-time status of what the system is 

currently doing (Arrieta et al., 2020), whereas explainability provides an explanation or reason for 

the actions or recommendations provided by the AI (Dosilovic et al., 2018). The explainability 

aspect aims to make the actions of the AI agent clear and understandable for the users, thereby 

improving trust in the system. The concept of levels of explanation in AI, as explained by Mueller 

et al., (2021), categorizes explanation types based on the complexity of the explanations that are 

provided for the recommendations.  This ranking suggests that higher levels typically offer more 

relevant information for user understanding. These are eight levels of explanation that range from 

providing no explanation to providing a detailed explanation of the diagnoses of failures, as shown 

in Table 8. At a basic level, the AI presents basic features such as heat maps and decision boxes, 

which show visually the factors that influenced AI to make the decisions, whereas, at an advanced 

level, they could show instances of successful decisions or the details of the mechanisms behind 

how AI made the decisions. Furthermore, the higher levels could show the reasoning process of 

the AI’s decision by presenting instances of failures to showcase the system’s limitations and by 

providing comparisons to help users understand the important factors of the decision-making 

process. At the highest level, AI could provide detailed diagnoses of failures so that the users can 

understand the reasons behind the mistake.  
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Table 8:  

Levels of Explanation Scorecard (Mueller et al., 2021) 

1 Null No explanation 

2 Features Heat maps, bounding boxes, and linguistic features 

3 Successes Presents instances of AI generating recommendations 

4 Mechanisms Global description of how the AI works 

5 AI Reasoning Details of how AI is making decisions 

6 Failures Presets instances of failure 

7 Comparisons Provides comparisons for users to understand the process 

8 Diagnoses of failures Provides descriptions of AI failures 

 

Explanations can be provided in different ways, such as textual, visual, audio, or haptic 

modalities. Textual explanations are often more intuitive and easier for end-users to understand, 

as they provide clear, natural language descriptions of a model's reasoning, making them accessible 

to users without technical expertise. It could potentially articulate complex model behaviors in an 

understandable way (Holzinger et al., 2022). Similarly, providing visual explanations could 

provide an intuitive understanding of the model along with improving trust in AI. The visual 

explanations can highlight the key aspects of the environment that helped AI to provide a 

recommendation. Using a hybrid model of visual and textual explanations could potentially 

leverage from the benefits of both methods. Previous research has shown that using a hybrid model 

of explanation improved the user’s trust, understanding, and satisfaction. For example, Alam & 

Mueller, (2021) found that the use of a combination of visual and textual explanation were more 

effective in terms of trust and satisfaction than just using visual explanations for a medical 

diagnostic system. Another study investigating the influence of user expertise on understanding 

different methods of explanations (visual, textual and a combination of visual and textual 

explanations) found that using visual and textual explanations in a hybrid form resulted in a higher 
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understanding of the explanations, especially for lay users (Szymanski et al., 2021). In this study, 

we have provided explanations and transparency in a hybrid model of visual and textual 

explanations to make it easier for the users to understand the reason behind the AI’s 

recommendation.    

There is a research gap in the literature that investigates the effect of explainability and 

transparency of the AI’s recommendation while using AR technology to complete a procedural 

task. This study aims to fill this research gap by conducting an experimental study that investigates 

the effect of explainability and transparency of the AI agent’s recommendations on users’ 

perceived trust in the recommender AI agent while using AR technology to complete a pipe-fitting 

task. The task selected is one of the most common tasks in the AEC industry, which is completing 

a pipe fitting task for an HVAC system. One of the primary challenges in HVAC pipe fitting tasks 

is the complexity of selecting the appropriate components and of the correct size from a vast array 

of options, leading to time-consuming decision-making, potential errors, and inefficiencies in 

system installation and maintenance. These issues could potentially be addressed to an extent with 

the help of the recommender system that provides recommendations for the HVAC system 

installation. If an AI is trained well with the previous dataset on how the workers select the 

components and their size depending on the problem at hand, it could recommend the next 

component for similar scenarios in the future. The primary objective of this study is to identify 

factors that could improve the users’ situational trust in the AI agent while completing the 

procedural task. Other variables investigated in the study include the task performance, the 

workload, and the users’ preference for the AI agent after the users went through all the conditions. 

The findings from this research will be useful for designing AI agents in the future while using 

AR to complete a procedural task.  
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Research questions: 

1. How do transparency and explainability in an AI agent influence users' trust in the AI 

while completing a procedural task? 

2. How does the user’s trust in recommender AI vary when integrated with transparency 

and explainability features, across both low and high levels of AI reliability?  

3. How does the presence of transparency and explainability in an AI agent affect 

performance while completing a procedural task? 

4. How does the user’s perceived workload vary when they interact with recommender 

AIs with different features of transparency and explainability? 

5. How does the preference for the recommender AI change when integrated with 

transparency and explainability features? 

Hypotheses: 

1. It is hypothesized that users will exhibit higher trust in AI agents that possess both 

transparency and explainability compared to agents with neither or only one of these 

features. 

2. It is hypothesized that trust will be greater in AI agents with high reliability as opposed 

to those with low reliability. 

3. The presence of transparency and explainability in AI agents, in combination with their 

reliability level, is anticipated to affect not only users' trust in AI but also their task 

performance. It is expected that users will require more time to complete the tasks when 

either transparency or explanation, or both, are presented. 

4. It is hypothesized that the perceived workload will be lower when interacting with the 

recommender AI having both transparency and explainability features integrated.  
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5. It is hypothesized that the participants prefer the recommender AIs that provide either 

transparency, explainability or both over the one that provides only recommendations. 

Method 

Participants 

 The study was approved by Clemson University’s Institutional Review Board 

(IRB2023-0356). 36 participants (19 males and 9 females), aged between 20 and 32 (M = 25, SD 

= 3.13) were recruited using fliers, emails, word of mouth, and by announcing in classes. The 

participants were civil engineering, architecture, construction science and management, industrial 

engineering and mechanical engineering students. Upon completion of the study, they were 

renumerated with either $10 or 1% of the course credit for the participating class for their time.  

Table 9:  

Participant Demographics 

Variable (N = 28) N % 
Gender   
Female 9 32.1 
Male 19 67.9 
Race   
American Indian or 
Alaska Native 

1 3.6 

Hispanic/Latino 2 7.1 
African American 3 10.7 
Caucasian/White  7 25 
Asian 15 53.6 
Degree Pursuing   
Undergraduate 9 32.1 
Graduate 19 67.9 
Specialization   
Electrical Engineering 1 3.6 
Industrial Engineering 6 21.4 
Civil Engineering 9 32.1 
Mechanical Engineering 12 42.9 
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Experimental Setup 

The experiment was conducted on a computer using a simulation developed for the study 

using Unity 3D. Each participant completed pipe fitting tasks in a simulated environment. The 

simulation emulates a user wearing augmented reality glasses while installing the pipe fittings, 

through which an AI assistant recommended the next component and the transparency and the 

explainability factors of the recommendation based on the condition. This simulation was run on 

a Dell desktop computer with an Intel(R) Xeon(R) CPU E5-1620 v4 processor, a Quadro FX 5800 

GPU, and an ultrawide LG monitor with a screen size of 38 inches. The participants went through 

a pre-test questionnaire, a trust development questionnaire (within the simulation), a workload 

measurement and overall trust questionnaires. The pre-test (Appendix A), and the overall trust 

questionnaire (Appendix C) were administered using Qualtrics survey software. The trust 

development questionnaire was a 7-point Likert scale to measure trust in AI at a given time and 

was administered within the simulation. The overall trust questionnaire was administered before 

the update and after completing the task in every condition using a self-reported 8-item set of 5-

point Likert scales (Hoffman et al., 2018) and the workload assessment tool (Appendix D) was 

administered after every condition using the National Aeronautics and Space Administration-Task 

Load Index (NASA-TLX) (Hart & Staveland, 1988). Figure 17 shows the experimental setup. 
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Figure 17: 

Experimental Setup 

 

Stimuli Development. The task selected for the experiment is a pipe fitting task associated 

with an HVAC unit. A subject matter expert in the domain of HVAC was consulted to develop the 

stimuli and to understand the mental model of the HVAC installer while completing the task. 

Detailed sessions were conducted to understand the factors that a worker considers before deciding 

on what the next component should be while completing the task. These factors included the 

thought process or the mental process that the installers follow to select a particular component at 

a particular location. In the absence of a predefined plan, the installers usually refer to the previous 

two components they completed and look at the final component or heat pump that they are 

connecting to the pipe. These factors were used to develop the scenarios and the explainability 

aspect of the AI.   

In this experiment, since the study investigated the effective implementation of the 

recommender AI while using AR technology to complete a procedural task, we try not to over-
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clutter the visual space with the explanations. Instead, the study used the levels of explanation that 

the associated task and scenario warrants. A combination of levels 2, 4, 5, and 7 (features, 

mechanisms, AI reasoning, and comparisons) provides a detailed understanding of how the AI 

system provides recommendations. Providing basic features like the bounding boxes helps 

participants gain an initial understanding of the AI’s analysis. Providing a global description and 

comparison, along with the reasoning behind why a particular recommendation was provided, will 

help them understand AI’s thoughts much more deeply. Figures 18, 19, 20, and 21 show 

screenshots of different levels of AI features where the AI agent provides the recommendation. 

The participants were able to select the pipe fitting from the library of fittings on the right side. 

They were also free to remove the previous component if they had made a mistake by clicking the 

remove previous component button. In Figure 18, the AI provides only the recommendations, 

whereas Figure 19 shows the AI recommendation along with the transparency, and Figure 20 

shows the AI recommendation along with the explainability. For the condition with both 

transparency and explainability, the transparency screen is followed by the explainability one, as 

shown in Figure 21.   

Table 10:  

Sample of Transparency and Explanation Provided in the Simulation 

Feature Details (Sample) 
Transparency • Looking for the previous two components 

• Looking for the type of heat pump getting connected to 
• Searching for previous data with similar situations 

Explanation • Recommendation: 3” coupling 
• 90% of the time the plumbers used a 3” coupling within the following 3 

steps of 3” coupling and 3” pipe to continue the pipeline 
• Since the pipes should be connected to 9,000 BHU pump, this 

component should be 3” 
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Figure 16:  

AI with Transparency 

 

Figure 18: 

AI with no Transparency or Explanation 
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Figure 17:  

AI with Explanation 

           

Figure 18:  

AI with both Transparency and Explanation 

     

Procedure 

The participants were provided with study material and a training video prior to coming 

for the study, which included the concepts of the type of pipe fittings, their use, and the symbols 

used in the layout. The study material also involved the important components associated with the 

heat pump, such as the regulator valve, y strainer, etc., and the location/order where they usually 

occur. The video also contained instructions on navigating the simulation and how to complete the 

task. Once they were present for the study, they had the consent form to sign. Then they were 

asked to complete a pre-test questionnaire on Qualtrics, which included the demographic 

questionnaire. After completing the questionnaire, they were provided with the training video one 

more time that reinforced the content of the study material. Once they completed watching the 
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video, they were asked to take a short quiz to ensure they were familiar with the concepts. If the 

participant did not score at least 80%, they were asked to watch the training video until they scored 

80% on the quiz. Only 7% (2 out of 28) of participants did not score 80% on the quiz, which was 

attained by both the participants the next time they took the quiz after watching the training video 

one more time.  

The next step was to open the simulation and was taken to the training session, where the 

participants were able to complete a simple pipe fitting task based on a plan, similar to the one in 

the Study 1. This ensured they were familiar with the simulation before starting the study session. 

Once the training was completed, the participant was taken to the study session of the simulation, 

and a reliability condition was selected based on the group to which the participant was assigned, 

which was randomized. They clicked the continue button to start the task. Initially, they were 

provided with an AI agent with 60% reliability with just the recommendations, without any 

explanation or transparency, regardless of their assigned condition. Trust development questions 

appeared every two steps which were presented on a 7-point Likert scale to understand their 

perceived trust level at that point in time during the interaction. There was a total of ten steps 

before the update and ten after.  

Once they completed half of the task, they were notified of a system update and forced to 

click the update button. They were asked to complete an overall trust questionnaire just before the 

update using an 8-questionnaire survey on a 5-point Likert scale, administered on Qualtrics. Once 

the update was done, they had either a 60% or 90% reliable agent based on their assigned group. 

They were also provided with one of the four conditions of presenting the 

explanations/transparency based on the balanced Latin square design. Once they completed the 

task, they were asked to complete another overall trust questionnaire and the workload 
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questionnaire using the NASA-TLX instrument. Then, they continued to the next condition and 

followed similar steps for the next three tasks. After the final task, the overall trust questionnaire 

had a preference questionnaire to select which AI agent they preferred. Before ending the study, 

they took the knowledge test the same as the one they took in the initial stages of the study. Figure 

23 shows the flowchart of the procedure. 

Figure 19:  

Procedure Flowchart 
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Study Design 

The study was a 2*4 mixed-subject design in which the participants were separated into 

two groups. Each participant in both groups experienced four different conditions. The tasks 

involved installing pipe fittings for an HVAC system. The participants were given a situation 

where the layout was half complete, and they had to complete the rest. They used pipes and 

different pipe fittings to connect the existing pipe structure to the heat pump. There were four 

different layouts (similar in difficulty level) for the four conditions to avoid the learning effect, 

which was randomized for the four conditions using a balanced Latin square. The participants were 

provided with a pre-test questionnaire, two overall trust questionnaires before the update and at 

the end of the four tasks, a trust development questionnaire at every two steps, workload 

measurement, and a preference questionnaire where they provided their preferred AI agent that 

they would like to work with. The pre-test, overall trust questionnaires and the preference 

questionnaire were administered using Qualtrics, whereas the trust development questionnaire was 

administered within the computer simulation. The trust development question was asked at every 

two steps of the task, whereas the overall trust questionnaires were asked at two different points 

during the task, one before the update and one after they completed the task.  

Independent Variables. The independent variables were the reliability of the AI agent 

with two levels (60% and 90%) and the AI features with four levels (no transparency and 

explainability, transparency, explainability, and both transparency and explainability).  

The reliability of the AI agent was manipulated as a between-subject variable, whereas the 

presence of explainability/transparency was manipulated as a within-subject variable. The 

reliability of the AI agents was based on the percentage of correct recommendations provided. For 

the low reliable AI, the reliability was set to 60% which means out of the total number of 
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recommendations, 40% of the recommendations were incorrect. For the high reliable AI, the 

reliability was set to 90%, where only 10% of the recommendations were incorrect.  

The first level of AI features variable did not provide transparency or explanations along 

with the recommendation. The transparency condition provided additional information on what 

the process AI is going through before providing the recommendations, whereas the explainability 

condition provided the justification for why a particular recommendation was provided. The final 

level was a combination of transparency and explainability features where the AI process was 

followed by the justification of the explanation. 

Dependent Variables. The dependent variables measured are overall trust, trust evolution, 

task performance, and workload.  

Trust. In this study, the trust the users have in the recommender AI was measured as a self-

reported score. It was measured in two ways: One, using a trust development survey by 

administering a 7-point Likert scale that was asked every two steps, and second, the overall trust 

was measured using an 8-item questionnaire on a 5-point Likert scale. To measure trust in AI, 

different trust scales have been previously used in the literature (Cahour & Forzy, 2009; Jian et 

al., 2000; Merritt, 2011). Measurement scales for trust in XAI typically include assessments of 

both trust and reliance on the system's recommendations. These scales need to be sensitive to 

capturing both positive and negative aspects of trust and should consider the users' experiences 

and perceptions over time to gauge the appropriate level of trust and reliance on XAI systems 

(Hoffman et al., 2018). Some of the scales previously used are context-specific and cannot be 

generalized for every domain. In the context of XAI, Hoffman et al., (2018) recommended using 

a trust scale with 8 items of a 5-point Likert scale ranging from “I strongly agree” to “I disagree 
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strongly,” which was administered in this study. This overall trust questionnaire was administered 

two times in one task, one before the update and one after completing the task.  

Task Performance. The performance was measured using the total time taken by the users 

to complete the task, measured in seconds, and also by the total number of errors made by the 

participants while completing the task. The purpose of measuring the performance was to 

investigate the effect of the different AI factors on task performance while completing the 

procedural task while completing it with the help of a recommender AI.  

Workload. The workload was to investigate the effect of the AI features introduced, on the 

users’ workload while completing the procedural task with the help of the recommender AI. This 

was measured once for every condition after they completed the task using the NASA-TLX 

instrument (Hart & Staveland, 1988). 

Preference. After completing all the tasks, a preference questionnaire was asked to 

understand the preferred AI agent they would like to work with.  

Data Analysis 

Data analysis was conducted with the help of statistical analysis software IBM SPSS 

Statistics for Windows. For the overall trust, workload, and time taken, two-way mixed measures 

ANOVA was used, whereas negative binomial regression was used to analyze the number of 

errors. A Friedman’s test, followed by Wilcoxon signed-rank tests, were used to analyze the 

preference data. 

Results 

Overall trust 

The overall trust data was collected using a trust scale with 8 items of a 5-point Likert scale 

questionnaire (Hoffman et al., 2018), which was administered two times, one before the update 
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and another after completing the task. The value collected from this survey shows the trust the 

users had in the recommender AI they were working with to complete the task. A higher value 

means higher trust in the AI, and a lower value means low trust.  

A two-way mixed measures ANOVA was run to examine the influence of the reliability of 

the AI agent and the AI features (Recommendation, transparency, Explainability, Explainability 

Transparency combined) on the overall trust in the AI agent. The two-way interaction between the 

AI features and the reliability of the AI agent was not statistically significant, F (3,78) = 0.70, p = 

0.57, partial η2 =0.03 (as shown in Figure 23), indicating that the impact of the AI features on 

overall trust did not differ significantly between high and low reliability levels of the AI agent. 

However, the main effect of AI features was statistically significant, F (3,78) = 7.29, p < 0.001, 

partial η2 = 0.22 (as shown in Figure 24). The pairwise comparisons revealed significant 

differences: the baseline condition, which was recommendation alone, was perceived as 

significantly less trustworthy than the AI with transparency (mean difference = -0.47, 95% CI [-

0.83, -0.11], p = 0.005), explanation (mean difference = -0.46, 95% CI [-0.76, -0.16], p = 0.001), 

and with both transparency and explanation  (mean difference = -0.40, 95% CI [-0.76, -0.05], p = 

0.018).  The main effect of reliability was statistically significant as well F (1,26) = 22.76, p < 

0.001, partial η2 = 0.47 (as shown in Figure 25). Participants trusted the high reliability AI agent 

more than the low reliability one, with a mean difference of 1.02, 95% CI [0.580, 1.459], p < 0.001. 
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Figure 20: 

Effect of AI Features and Reliability on Trust 

 
Figure 21:  

Main Effect of AI Features on Trust 
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Figure 22:  

Main Effect of Reliability on Trust 

 
 
Performance 

Task Completion Time 

The total time to complete the task was measured within the simulation. This measures the 

total time taken by the participants to complete each task. The higher values of time taken mean 

they took longer to complete the task and vice versa.  

A two-way mixed ANOVA was conducted to determine the effect of AI features and the 

reliability of the AI agent on the time taken to complete the task. The interaction between the AI 

features and the reliability of the AI agent was not statistically significant, F (3,78) = 0.76, p = 

0.519, partial η2 =0.03 (as shown in Figure 26), indicating that the impact of the AI features on 

completion time did not differ significantly between high and low reliability levels of the AI agent.  

The main effect analysis shows that the total time taken to complete the task was 

statistically significantly different between the different levels of AI features F (3, 78) = 39.28, p 
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< .001, partial η2 = 0.60 (as shown in Figure 27). The pairwise comparisons show that the time 

taken to complete the task was significantly shorter in the recommendation condition compared to 

the transparency condition (mean difference = -59.58 seconds, 95% CI[-69.10, -50.06], p <0.001), 

explainability condition (mean difference = -21.93 seconds, 95% CI[-30.88, -12.98], p <0.001), 

and with both explainability and transparency condition (mean difference = -67.10 seconds, 95% 

CI[-76.32, -57.88], p <0.001). The main effect of the AI agent's reliability on time taken was not 

statistically significant, F(1, 26) = 1.86, p = 0.184, partial η2 =0.07 (as shown in Figure 28), 

indicating no significant difference in overall completion times between the high and low 

reliability conditions. 

Figure 23:  

Effect of AI Features and Reliability on Time Taken 
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Figure 24:  

Main Effect of AI Features on Time Taken 

 
Figure 25:  

Main Effect of Reliability on Time Taken 
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Number of Errors 

The number of errors refers to the number of times a user made a mistake while completing 

the task. This error could be the wrong selection of the size of the component or the component 

itself. This was collected from the simulation where the final numbers were produced after 

completion of the experimental study.  

A negative binomial regression analysis was conducted to examine the effects of the 

reliability of the AI agents and the AI features (recommendation, explainability, transparency, and 

explainability combined with transparency) on the number of errors made. The negative binomial, 

instead of the traditional Poisson regression, was used since the variance exceeded the mean 

resulting in over-dispersion. The analysis revealed that the reliability of the AI agent did not have 

a significant effect on the number of errors made, with participants interacting with low reliable 

agents showing no statistically significant difference in error rates compared to those interacting 

with high reliable agents (B = -0.00, SE = 0.33, 95% CI [-0.66, 0.65], Wald χ² = 0.00, df = 1, p = 

.99). Similarly, the different levels of AI features also did not yield a significant difference in the 

number of errors made, as indicated by the overall test for AI features effects (Wald χ² = 1.48, df 

= 3, p = .686). 

Task Completion 

This refers to whether the participant completed the task correctly or not. If a mistake was 

made, it was considered not completed. A binomial logistic regression was performed to ascertain 

the effects of the reliability of the AI agent, AI features, and the number of errors on the likelihood 

of participants completing the task. The logistic regression model was statistically significant, χ2(5) 

= 72.94, p < 0.001. The model explained 90.4% (Nagelkerke R2) of the variance in task completion 
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and correctly classified 97.3% of cases. The number of errors showed a negative association with 

task completion, but this was not statistically significant (p = 0.992), indicating no reliable effect 

of errors on task completion under the model tested. There was also no significant effect of the 

reliability of the AI agent or AI features on the likelihood of task completion. 

Hits 

Another way to measure performance is to evaluate operator responses to AI 

recommendations by utilizing Signal Detection Theory (SDT), focusing on the operators' ability 

to correctly identify correct recommendations (hits) and accurately reject incorrect ones (correct 

rejections). These two metrics; hits and correct rejections, serve as fundamental indicators of the 

AI's effectiveness in supporting decision-making and the operators' proficiency in utilizing AI 

assistance. Since the overall accuracy can be effectively measure using hits and correct rejections, 

the false alarms and misses were not considered for the analysis. Hits reflect the instances where 

operators correctly recognized and accepted correct AI recommendations, indicating effective 

decision-making in alignment with the AI. Conversely, correct rejections represent scenarios 

where operators correctly identified and disregarded incorrect recommendations, showcasing their 

ability to critically evaluate AI’s recommendation. A Generalized Linear Mixed Model (GLMM) 

with a negative binomial distribution was conducted to explore the effects of the AI agent's 

reliability and AI features (recommendation, transparency, explainability, and explainability 

combined with transparency) on the number of times participants accepted a correct 

recommendation from the AI agent. The negative binomial was used instead of the Poisson 

regression since the data was over-dispersed with the variance exceeding the mean. The analysis 

of fixed effects revealed a significant effect of the model, F (4, 107) = 259.63, p < 0.001, indicating 

that the predictors, as a set, significantly predicted the number of hits. Within the model, reliability 
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emerged as a significant predictor F (1, 107) = 1034.92, p < 0.001, whereas AI features did not 

significantly predict the number of hits F (3, 107) = 1.20, p = 0.313. The number of hits for the 

high reliable condition was 1.51 (95% CI, 1.47 to 1.55) times the number of hits in the low reliable 

condition, a statistically significant result, p < 0.001.  

Figure 26:  

Mean Hits for Different Reliability 
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Figure 27:  

Mean Hits for Different AI Features 

 
Correct Rejection 

A GLMM with a negative binomial distribution was conducted to explore the effects of the 

AI agent's reliability and AI features (recommendation, transparency, explainability, and 

explainability combined with transparency) on the number of times participants correctly rejected 

an incorrect recommendation from the AI agent. The negative binomial was used instead of the 

traditional Poisson regression due to over-dispersion of the data since the variance exceeded the 

mean. The analysis of fixed effects revealed a significant effect of the model, F (4, 107) = 365.00, 

p < 0.001, indicating that the predictors, as a set, significantly predicted the number of correct 

rejections. Within the model, reliability emerged as a significant predictor, F (1,107) = 1459.77, p 

< 0.001, whereas AI features did not significantly predict the number of correct rejections, F 

(3,107) = 0.07, p = 0.974. For the high reliable condition, the number of correct rejections was 

0.24 (95% CI, 0.23 to 0.26) times the number of correct rejections in the low reliable condition, a 

statistically significant result, p < 0.001. 
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Figure 28: 

Mean Correct Rejections for Different Reliability 

 
 

Figure 29:  

Mean Correct Rejections for Different AI Features 
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Workload 

The workload was measured using a NASA-TLX survey that was administered after 

completion of each task. The total workload is measured as a sum of different scales which are 

mental demand, physical demand, temporal demand, performance, effort, and frustration level. A 

higher value of total workload shows that the user’s workload was higher.  

Two-way mixed measures ANOVAs were conducted to determine the effect of the AI 

features (recommendation, transparency, explainability, explainability transparency combined) 

and the reliability of the AI agent on different subscales of workload. There was no statistically 

significant interaction between the different levels of AI features and the reliability of the AI agent 

for any of the sub-scales and the total workload. There was also no statistically significant main 

effect of AI features on different sub-scales and total workload. There was also no statistically 

significant main effect of the reliability on different sub-scales and total workload except for the 

sub-scale, temporal demand, F (1,26) = 7.99, p = 0.009, partial η2 = 0.24. A pairwise comparison 

revealed that participants perceived higher temporal demand in the high reliable condition 

compared to the low reliable condition, with a mean difference of 4.26, 95% CI [1.16, 7.35], p = 

0.009. 
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Figure 30:  

Effect of AI Features on Workload 
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Figure 31:  

Effect of Reliability on Workload 

 

Preference 

A Friedman’s test was conducted to analyze the ranked data for the preference of agents. 

There was a statistically significant difference in the ranking of agents which recommended the 

pipe fittings, χ2(3) = 19.84, p < 0.001. Post hoc analysis with Wilcoxon signed-rank tests was 

conducted with a Bonferroni correction. The median interquartile range for the recommendation, 

transparency, explainability and the combined condition were 4 (3 to 4), 3 (2 to 3), 2 (2 to 3) and 

1 (1 to 2.75), respectively. A ranking of 1 indicates the highest preference, while 4 indicates the 

lowest. There was a statistically significant difference in the ranking, where participants preferred 

the transparency condition over the recommendation condition (Z = -2.81, p = 0.005), the 

explainability condition over the recommendation condition (Z = -2.99, p = 0.03), and the 

explainability and transparency combined condition over the recommendation condition (Z = -

3.13, p = 0.002).  However, there was no significant difference in ranking between the 
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explainability and transparency condition (Z = -0.45, p = 0.65), the explainability transparency 

combined condition and transparency condition (Z = -1.67, p = 0.096), the explainability 

transparency combined condition and explainability condition (Z = -1.75, p = 0.08). 

Discussion 

Situational trust that the users have in AI is affected by external and internal factors during 

the user’s interaction with the system (Hoff & Bashir, 2015). External factors refer to the factors 

such as the type of automation, the complexity of the automation, task difficulty etc. whereas the 

internal factors refer to the user factors such as self-confidence, expertise in the task, attentional 

capacity etc. These factors collectively affect the relationship between trust and the reliance that 

the user has on the AI.  

The interaction between AI reliability levels and the AI features did not yield a statistically 

significant difference in trust following the AI update. This outcome indicates that the effect of AI 

features on trust in AI does not differ significantly between low and high reliable conditions. In 

other words, the presence or absence of transparency or explainability did not affect how the users 

trusted high and low reliable AI. This could be specific to this task and could be explored further 

for more complex tasks in the future to understand if there could be any difference in the effects 

of different complexities of tasks in AEC. 

Consistent with the results from the first study and existing literature (Hoff & Bashir, 2015; 

Kaplan et al., 2023; Lee & See, 2004) and aligning with the second hypothesis, the main effects 

indicate that the higher reliability in AI agents significantly enhances users' trust. The relationship 

between the trust the user has in the system and their reliance on the system is affected by different 

internal and external factors. One such factor that affects the strength of the relationship is the 

user’s ability to compare automated performance to manual. In this experiment, the task was such 
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that the users could identify when the AI provided a wrong recommendation resulting in clearly 

understanding the performance of AI. When the reliability of the recommender AI was high, and 

since the users understood the performance of the system, the users might have relied more on the 

recommendation provided by the AI thus increasing their trust in AI. This result underscores the 

foundational role of reliability in trust formation and suggests that ensuring high reliability in AI 

systems is crucial for their acceptance and effective use in complex domains like the AEC sector.  

The analysis of within-subject effects revealed significant differences between the 

recommendation condition and transparency alone, explanation alone and both transparency and 

explanation combined conditions, with the recommender condition yielding lower trust, aligning 

with a part of the first hypothesis. The users trusted the AIs that provided information to the user 

on how or why a recommendation was provided compared to not providing them. This reinforces 

the important role of transparency and explanation in AI systems in maintaining appropriate trust, 

aligning with previous literature that suggests that transparency and explanation improve the trust 

the users have on AI (Alufaisan et al., 2021; Arrieta et al., 2020; Panganiban et al., 2020). The 

increase in trust when transparency and explanation were provided with the recommendation could 

be because the users could understand the AI process well and the justifications provided were 

able to convince the user to accept a particular recommendation. The visual-textual information or 

distractors provided are known to increase the trust the users have in AI (Phillips & Madhavan, 

2011). The effect of these distractors depends on the level of interaction they have with the user 

such that, if the interaction is high the users might trust the AI more and conversely, the trust could 

decrease or could have no effect. In this study, the transparency and explanation were provided in 

such a way that the users had to interact with both features to move to the next step (to select the 

component).  This higher level of interaction could be one of the reasons for increased trust in the 
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three conditions with transparency or explanation or both compared to the condition with no 

transparency or explanation. Future research could further explore this aspect by investigating the 

effect of different ways of providing explanations and their interactions, such as adaptive 

explanations where transparency and explanations are provided only when the user needs them, 

on trust for completing a similar task in the AEC domain. Since AEC deals with tasks of different 

complexities, future research could also investigate different complexities of the task, such as low 

vs high, while incorporating the adaptive explanation aspect of AI to understand its effect on trust. 

For task completion time, there was no significant interaction between the different 

transparency/explanation conditions and the agents’ reliability suggesting that the efficiency of 

task completion is similar for the different transparency/explanation conditions across the two 

levels of reliability. As expected, the task completion time was lower in the recommendation 

condition, where no transparency or explanations were present compared to the other three 

conditions, supporting hypothesis three. The reason for this could be mainly because the 

participants had to read through the explanations and the transparency aspects of the AI in the 

other three conditions, whereas, in the recommendation condition, they can select the component 

right after viewing the recommendation provided by the AI. The participants might have taken 

more processing time on the transparency and explainability aspects when these elements were 

present. Also, prior research has shown that response time can increase as more information is 

displayed to the user since their information processing demand increases (Helldin, 2014; Zuk & 

Carpendale, 2007). Further research is required to investigate effective ways to implement 

transparency and explanations without increasing the task completion time. Specifically, they 

could investigate the effects of providing transparency and explanation along with the 

recommendation in an adaptive manner. This way, users get required information when they need 
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it and not continuously, without affecting their trust in AI. By reducing the number of times the 

transparency and explanation is provided, it can be hypothesized that the total time to complete 

the task could go down significantly.  

The findings from the negative binomial regression analysis focusing on the impact of 

reliability and AI features on the number of errors made found that both the reliability and AI 

features did not significantly influence the number of errors. This result diverges from Study 1 and 

previous research that investigated the effect of the reliability of automation aid on human 

performance while completing a visual search task  (Shah & Bliss, 2017), which showed that the 

number of errors varies based on the reliability of the AI, such that as the reliability decreases, the 

number of errors increases. The number of errors did not vary between the four different levels of 

AI features as well. This could be because the particular task used in this study was not sufficiently 

sensitive to the variation in AI reliability or the task used was simple enough to show potential 

differences in error rates. In addition to that, the analysis that investigated the likelihood of 

completion of the task found that it was independent of the reliability of the AI agent, the AI 

features and the number of errors made. This further affirms that the simplicity of the task might 

have led to such a result.  

There was no significant interaction between the reliability and AI features in relation to 

multiple components of the workload construct suggesting a uniformity in perceived workload 

across the four levels of AI features and two levels of reliability of the recommender AI. The 

absence of a statistically significant effect of different levels of AI features on the total workload 

and the different subscales of workload suggests that providing transparency and explanation did 

not add any workload to the user while completing the task. This result aligns with previous 

research that shows workload did not increase as a function of transparency (Mercado et al., 2016). 
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This could be because of the way the transparency and explanation were provided in this 

experiment, which was good enough not to increase the participant's workload while completing 

the procedural task. This finding is important because, the additional visual and textual 

components that were presented on the screen did not increase the workload of the users, but it 

increased the trust the users have in the AI. In the case of reliability variable, it influenced the 

temporal demand such that the users felt high temporal demand when they interacted with the high 

reliable AI compared to the low reliable AI. This could be due to the fact that the higher reliable 

AI made the users rely more on the AI thus increasing the reliance that could have slowed down 

the user’s decision-making process. This slowing down might have added a sense of temporal 

demand. 

Incorporating SDT to analyze operators' responses to AI recommendations, this study 

identified the AI agent's reliability as an essential factor in enhancing decision-making accuracy, 

reflected through significant effects on hits and correct rejections. Despite varying AI features 

(recommendation, transparency, explainability, and their integration), the recommender AI’s 

reliability, rather than the specific nature of the information presented, predominantly influenced 

operators' ability to accurately accept correct recommendations and reject incorrect ones. This 

observation suggests that the role of transparency and explainability in AI systems, which is 

important for building user trust, may not directly affect users' decision accuracy in distinguishing 

whether AI recommendations are correct or not, echoing the results from a previous study that 

investigated the effect of transparency (Loft et al., 2023). This could be explored further to 

understand how different levels of transparency and recommendation could have an impact on 

decision accuracy, and it could also look at the different difficulty levels of tasks. For different 

levels of reliability, the number of times the participants accepted the correct recommendation 
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provided by the AI agent was statistically higher in the high reliable condition as compared to the 

low reliable condition. This is because the number of correct recommendations provided by the 

AI was higher in the high reliable condition compared to the low reliable one. The high reliable 

AI had a reliability of 90% whereas the low reliable AI was set to 60%. From Figure 29, it can be 

seen that the high reliable AI had a mean hit of nine out of ten recommendations, whereas the low 

reliable one had six hits out of ten recommendations. This shows that the user’s perceived 

reliability of the AI was in line with the actual reliability of the AI. This is also evident from Figure 

31, where the mean correct rejection of high reliable AI was one, whereas, for low reliable AI, it 

was four. This shows that the users had appropriate trust in AI since the perceived reliability 

matched the actual reliability of the system.   

After completing the final task, the participants were asked to rank the AI agents that 

assisted them in completing the task. The study findings from Friedman’s test indicate that the 

participants preferred the conditions with transparency, explanation or both with transparency and 

explanation along with the recommendation over the ones with just the recommendation, 

supporting hypothesis five. This could be due to the fact that the participants could understand the 

process that AI goes through and the reason for a particular recommendation, and they trusted 

them, as discussed earlier. The post hoc analysis showed that even though most of the participants 

ranked the agent with both transparency and explanation, there was no statistical difference in 

preference between the condition with explanation, transparency and the condition with both 

transparency and explanation. This aligns with the overall trust results that showed that the 

recommendation condition had lower trust compared to all three other conditions of AI features. 

The users trusted the AI agent in a similar fashion when transparency or explanation or both of 
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them wer provided, but the trust was low for the recommendation condition. This might have been 

reflected in their preference for AI agents as well.  

Conclusion 

This study explored the effects of the reliability of AI agents and its transparency and 

explainability on users' trust, workload, and performance while completing a procedural task. The 

study used a 2*4 mixed-subject experimental design, to understand the dynamics between AI 

reliability, transparency, and explainability, revealing interesting insights into their collective 

impact on user trust and performance. 

The findings from this study suggest the importance of integrating transparency and 

explainability into recommender AI systems, illustrating how such features could potentially 

enhance users' trust. This is an important finding, as trust serves as an important aspect of user 

reliance on AI for decision-making support. However, this integration comes with a complex trade-

off: while users prefer AI agents that offer transparency and explanations, preferring these over 

just recommendations, this preference is accompanied by an increase in task completion time. 

Interestingly, this increase does not correlate with increased workload, suggesting that the added 

time may be due to the users engaging more deeply with the information provided rather than 

experiencing it as an increased cognitive load.  

This relationship between enhanced trust and increased task completion time, without the 

addition of workload, highlights the necessity for a strategic approach to the implementation of 

transparency and explainability within AI systems. It indicates toward investigating when to 

provide these features to ensure that the appropriate trust is maintained without compromising 

efficiency. The next study investigates this research question to understand when it is beneficial to 

provide transparency and explanation to maintain appropriate trust. 
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This study contributes significantly to the literature on effective human-AI collaboration, 

identifying the essential role of transparency and explainability in building trust while 

acknowledging the practical challenges associated with these features. The findings could serve as 

a basis for designers and researchers to explore ways to implement transparency and explanation 

with the recommender AI to maintain appropriate trust.  
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CHAPTER FIVE 

EVALUATING THE EFFECT OF ADAPTIVE EXPLANATIONS AND TRANSPARENCY 

ON MAINTAINING TRUST IN ARTIFICIAL INTELLIGENT AGENTS 

Introduction 

Human’s trust in AI is important in effectively implementing the technology (Asan et al., 

2020). Trust in AI is a complex concept that significantly influences user acceptance, reliance, and 

adoption of AI technologies (Bach et al., 2022; Lee & See, 2004; Lockey et al., 2021). Trust can 

be conceptualized as dispositional, situational, and learned trust (Hoff & Bashir, 2015). Situational 

trust is affected by various internal factors such as the operator’s expertise, and self-confidence 

and external factors such as system complexity, task difficulty and environmental risks. Previous 

research has shown the importance of adding transparency and explanation aspects of AI to 

improve trust (Papenmeier et al., 2022). The explanations justify the underlying mechanisms, 

rationales, and decision processes of AI, enabling users to comprehend the actions and outputs of 

AI models. With the advancements in machine learning, AI systems are becoming increasingly 

complex, and it becomes difficult to explain (Laato et al., 2021). These are black box models that 

are opaque to the end user about how the AI makes recommendations or decisions, and it affects 

human trust in AI and, in turn, results in the disuse or misuse of the technology (Pynadath et al., 

2018; von Eschenbach, 2021). To tackle this issue, explainable AI (XAI) has been a prime research 

topic to avoid the opaqueness of the black box models while maintaining their performance (Meske 

et al., 2022). The role of explanations in AI, a crucial component of XAI, has been instrumental in 

enhancing user understanding, trust in AI, and effective management of AI systems (Zeng et al., 

2018).  

However, explanations are a cognitive knowledge transfer process between humans and 

XAI systems (Miller, 2019). Previous research indicates that unnecessary explanations can cause 
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cognitive overload and a subsequent decline in performance (Herm, 2023; Szymanski et al., 2021). 

This may make it more difficult for the user to process and understand the information being 

presented as explanations. Also, the user’s reliance on the AI recommendation might be affected 

when unnecessary explanations are provided, and this might lead to a false sense of trust in the 

system and potentially negative outcomes, especially when the recommendations are incorrect 

(Jakubik et al., 2022).  

Sometimes providing explanations continuously with every AI recommendation may not 

be necessary and can cause potential disadvantages, especially in time-sensitive tasks or while 

providing explanations/transparency on the AR glasses, since it might disconnect the user from 

the real world more than required. A previous study found that most participants did not require 

explanations when the recommendations matched the user's expectations (Riveiro & Thill, 2022). 

When the recommendation from the AI aligns with that of the user, the explanation becomes a 

piece of redundant information that could increase the task completion time and the cognitive load 

to perceive and comprehend the explanation. They could ignore explanations that are not 

necessary, but that will take up a part of the user's attention. Further, providing explanations for 

recommendations that do not require them might increase the system's computational resources, 

resulting in decreased system performance and making the real-time decision-making process 

difficult. However, providing an explanation at the right time is also important as it might 

overburden the user when the explanation is provided when it is not needed, and it will be 

important to provide explanations when the AI is making mistakes since that is when the users will 

stop relying on the AI (Alam & Mueller, 2021). Thus, developing a system that could adapt to the 

situations and provide explanations, rather than providing at every decision point, would be helpful 

for the user to complete the task more efficiently. 
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Adaptive XAI that provides explanations for the recommendations only when the user 

needs it aligns with the concept of personalized XAI. Personalized XAI considers the user's domain 

knowledge, trust propensity, and persistence in providing explanations (Millecamp et al., 2019). 

By adapting explanations to the user's needs, AI systems can enhance user understanding and trust 

without overwhelming them with unnecessary information. Previous studies have mainly 

examined the “what” part of XAI where they investigated the effects of visual and textual 

explanations (Alam & Mueller, 2021; Szymanski et al., 2021). However, there is a gap in the 

literature that investigates the “when” part of providing explanations and transparency along with 

the recommendations. This study tries to fill this gap by investigating the “when” aspect of 

providing explanations and transparency. This study investigates the concept of adaptive 

explanations and transparency, focusing on providing them depending on their necessity. 

Research questions: 

1. Does providing explanations in an adaptive manner, instead of continuously, decrease 

the trust in AI? 

2. How is the performance affected when the explanations are provided in an adaptive 

manner? 

3. How is the workload affected when the explanations are provided in an adaptive 

manner instead of continuously?  

4. How does the preference of the recommender AI vary when the transparency and 

explanations are provided continuously versus in an adaptive manner? 

Hypotheses: 

1. Providing transparency and explanations in an adaptive manner will not reduce the trust 

the users have in the recommender AI compared to providing it continuously. 
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2. When the explanations are provided continuously compared to the other conditions, the 

task time will be high, whereas the number of errors will not see any significant 

difference between conditions. 

3. When the explanations are provided in an adaptive manner, the workload will not 

increase compared to providing them continuously.  

4. It is hypothesized that the preference for the AI with adaptive explanations will be more 

than that for the one with continuous explanations. 

Method 

Participants 

The study was approved by Clemson University’s Institutional Review Board (IRB2023-

0356). The participants were recruited using fliers, emails, word of mouth, and by announcing in 

classes. The participants were civil engineering, architecture, construction science and 

management, industrial engineering, and mechanical engineering students. A total of 30 

participants (24 male and 6 female), aged between 22 and 48 (M = 28, SD = 5.8), were recruited 

for the study. Upon completion of the study, they were renumerated with either $15 or 3% of the 

course credit for the participating class for their time.   
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Table 11:  

Participant Demographics 

Variable (N = 28) N % 
Gender   
Female 6 20 
Male 24 80 
Race   
Prefer not to answer 1 3.3 
Caucasian/White  9 30 
Asian 20 66.7 
Degree Pursuing   
Undergraduate 6 20 
Graduate 24 80 
Specialization   
Mechanical Engineering 1 3.3 
Electrical Engineering 3 10 
Architecture 3 10 
Civil Engineering 5 16.7 
Industrial Engineering 9 30 
Construction Science and 
Management 9 30 

 

Experimental Setup 

The experimental setup was similar to that of the study 2. A computer simulation that 

emulated a user wearing augmented reality glasses while completing a pipe fitting task was 

developed for the experiment. This was conducted on a Dell desktop computer with an Intel(R) 

Xeon(R) CPU E5-1620 v4 processor, a Quadro FX 5800 GPU, and an ultrawide LG monitor with 

a screen size of 38 inches, where an AI agent recommended the next steps to complete the task. 

The task was the same as that used in the previous experiment, where the participants had to 

complete a half-complete pipe layout associated with a heat pump. The explanations/transparency 

were provided along with recommendations for all the steps or a few of them based on the 

condition they were assigned to. The pre-test questionnaire (Appendix A) and the overall trust 
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questionnaire (Appendix C) were administered using the Qualtrics survey software, whereas the 

trust development questionnaire was provided within the simulation after every two steps. The 

workload assessment tool (Appendix D) was administered after every task using the National 

Aeronautics and Space Administration-Task Load Index (NASA-TLX) (Hart & Staveland, 1988). 

The experimental setup can be seen in Figure 35.  

Figure 32:  

Experimental Setup 

 

 The task selected for the experiment is the same as study 2, which is completing a pipe 

layout associated with an HVAC unit. This was developed after consultation with subject matter 

experts. The levels of explanations used in this study were a combination of levels 2, 4, 5, and 7 

(features, mechanisms, AI reasoning, and comparisons) similar to the previous study. The three 

conditions that the participants went through were one which provided transparency and 

explanations for all the recommendations provided by the AI, one where transparency and 

explanations were provided only when AI’s confidence was less and the final condition where 

transparency and explanations were provided at the first, middle and the last step. Figure 36 shows 
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the transparency and explanations, and Table 12 provides a sample of transparency and 

explanation provided.  

Figure 33:  

Transparency and Explanations 

     

Table 12:  

Sample of Transparency and Explanation Provided in the Simulation 

Feature Details (Sample) 
Transparency • Looking for the previous two components 

• Looking for the type of heat pump getting connected to 
• Searching for previous data with similar situations 

Explanation • Recommendation: 3” coupling 
• 90% of the time the plumbers used a 3” coupling within the following 3 

steps of 3” coupling and 3” pipe to continue the pipeline 
• Since the pipes should be connected to 9,000 BHU pump, this 

component should be 3” 
 

Procedure 

The task for this experiment was to complete an incomplete pipe layout associated with a 

heat pump. The participants were briefed before each task about the task they were about to 

complete. They were asked to use the library of components in the simulation to complete the 

layout. The AI provided the recommendations, along with explanations, either continuously or 

only when needed, based on the condition they were assigned to. 

To ensure the participants were familiar with the pipe fitting task and associated 

components, they were provided with study material a day before the experiment. The study 
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material comprised the basic use of different components associated with the heat pump that was 

used for the task. Once they arrived for the study, after signing the consent form, they were asked 

to watch a training video that helped them understand the different uses of pipe fittings and 

instructions on how to complete the task in the simulation. This video also reinforced the study 

material contents. After that, they were asked to complete a short quiz to ensure they understood 

the associated components of the heat pump and the pipe fitting task they were about to complete. 

To move forward with the study, they had to score at least 80% on the quiz; upon failing, they 

watched the video until they got the required score. Only 7% (2 out of 30) of participants had to 

retake the quiz to get an 80% score on the quiz.  

Once the researcher ensured that the participants had enough knowledge to complete the 

task, they received a pre-test questionnaire that included the demographic questionnaire and their 

baseline trust in AI. Once they completed this step, they were provided with a training session in 

the simulation to familiarize themselves with how to complete the task in the simulation. Once that 

was done, they were provided with the task to complete, where AI provided recommendations for 

the next component to select. In the simulation, they received the 7-point Likert scale trust 

development questionnaire every two steps. In the middle of the task, they received an update. 

Before the update, every participant in every task received an AI with low reliability that provided 

only the recommendations. After the update, they were randomly assigned to the condition of 

explanation provision. Before they interacted with the updated AI, they received a trust 

questionnaire to collect the overall trust in AI (Hoffman et al., 2018). After each task, they were 

asked to complete the overall trust questionnaire again and the NASA-TLX survey. After the final 

task, the overall trust questionnaire included an additional provision to provide a preference 
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ranking of the AI agents they worked with. After that, they were asked to retake the quiz that was 

taken initially one more time. Figure 37 shows the flowchart of the procedure. 

Figure 34:  

Procedure Flowchart 
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Study Design 

The study is a 2*3 mixed-subject study, where the participants were randomly assigned to 

one of the conditions of reliability. All the participants went through the three conditions of 

provisions of explainability and transparency and were randomized using a balanced Latin square 

design. There were three different layouts for the three tasks to reduce the learning effects, but 

they were of similar difficulty in order to reduce the variability between the conditions.  

Independent Variables. The independent variables were the reliability of the AI agent 

varied in two levels: low and high, and explanation/transparency provision (further mentioned as 

explanation provision) with three levels: continuous, when the agent’s confidence is low (60% 

confidence), and at the first, middle, and last steps (further mentioned as a spaced condition). The 

explanation provision was randomized as a within-subject variable in three levels. In the first level, 

transparency and explanations were provided along with all the recommendations after the update. 

In the second level, transparency and explanations were provided only when AI’s confidence was 

low for a particular recommendation. This provided information helps the users to make an 

informed decision while the confidence of AI for that recommendation is low (incorrect 

recommendation). In the third level, transparency and explanations were provided in the first, 

middle and final steps. By providing transparency and explanations at the first step ensures that 

the users understand the process and justification for a recommendation provided by the AI. After 

a few interactions, this is further reinforced by providing this information in the middle and the 

final steps of the task.   

The reliability of the AI agent was manipulated as a between-subject variable with two 

levels: low reliable AI and high reliable AI. The low reliable AI had a reliability of 60%, which 

means that only 60% of the recommendations provided by the AI were correct. The high reliable 
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AI had a reliability of 90%. The incorrect recommendations were randomized to achieve the 

required reliability.  

Dependent Variables. The dependent variables measured were overall trust, trust 

evolution, task performance and workload.  

Trust. The trust evolution was measured using a 7-point Likert scale that is provided every 

two steps during the task. The overall trust was measured using an 8-questionnaire survey on a 5-

point Likert scale (Hoffman et al., 2018).  

Task Performance. The performance of the users while completing the task was measured 

using two metrics: total time taken to complete the task and the number of errors made while 

completing the task. Both these metrics were measured within the simulation.  

Workload. The workload was measured using the NASA-TLX survey (Hart & Staveland, 

1988) and was administered at the end of each task.  

Preference. After completing the three tasks, the participants were asked to complete a 

ranking survey to select their preference for the AI agent they worked with while completing the 

task.  

Data Analysis 

Data obtained from the experimental study was analyzed using the statistical analysis 

software IBM SPSS Statistics for Windows. For the overall trust, workload and the time taken, 

two-way mixed measures ANOVA was used, whereas negative binomial regression was used to 

analyze the number of errors. A Friedman’s test was used to analyze the preference data. 
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Results 

Overall Trust 

The overall trust data was collected using a survey of 8 items with a 5-point Likert scale 

(Hoffman et al., 2018), which was administered two times, one before the update and one after 

completing the task. This was a self-reported trust rating, which reflects the trust the user had in 

the recommender AI while completing the task. The higher the value of trust, the more they trust 

the AI compared to the one with a lower value.  

A two-way mixed measures ANOVA was conducted to examine the influence of the AI 

agent's reliability and the explanation provision on the trust in the AI following an update. The 

interaction between the explanation provision and the AI agent's reliability was not statistically 

significant, F (2, 56) = 1.04, p = 0.362, partial η2 = 0.04 (as shown in Figure 38) indicating that 

the effect of the explanation provisions on trust post-update did not significantly vary between 

high and low reliability levels of the AI agent. The main effect of the explanation provision on 

trust was also not significant, F (2, 56) = 1.01, p = 0.373, partial η2 = 0.04 (as shown in Figure 40). 

However, the main effect of reliability on trust was significant, F (1, 28) = 18.43, p < 0.001, partial 

η2 = 0.40 (as shown in Figure 39). Subsequently, pairwise comparisons were conducted to examine 

the statistically significant main effect of reliability. This indicated that the trust in AI post-update 

was significantly higher in the high reliable than in the low reliability condition, with a mean 

difference of 0.88, 95% CI [0.46,1.31].  



 

141 

Figure 35:  

Effect of Explanation Provisions on Trust 

 

Figure 36:  

Main Effect of Reliability on Trust 
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Figure 37:  

Main Effect of Explanation Provision on Trust 

 
 

Performance 

Task Completion Time 

The total time taken to complete the task was measured within the simulation. The higher 

value represents that they took more time to complete the task. A two-way mixed measures 

ANOVA was conducted to determine the effect of the explanation provision and the reliability of 

the AI agent on the time taken to complete the task. The interaction between the explanation 

provision and the reliability of the AI agent was not statistically significant, F (2,56) = 0.68, p = 

0.511, partial η2 = 0.02 (as shown in Figure 41), indicating that the impact of the explanation 

provision on completion time did not differ significantly between high and low reliable AIs. The 

total time taken to complete the task was statistically significantly different between the different 

conditions of explanation provisions F (2, 56) = 4.57, p = 0.014, partial η2 = 0.14 (as shown in 

Figure 42). The pairwise comparison reveals that the time taken to complete the task was 
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significantly high when the transparency and explanation were provided continuously, compared 

to when they were provided when AI’s confidence was low, with a mean difference of 15.76 

seconds, 95% CI [-14.63, 50.51], p = 0.028. Similarly, the time taken was significantly high when 

the transparency and explanation were provided continuously compared to when they were 

provided in a spaced manner, with a mean difference of 18.15 seconds, 95% CI [-20.78, 63.05], p 

= 0.049. The main effect of the AI agent's reliability on time taken was not statistically significant, 

F (1, 28) = 0.83, p = 0.370, partial η2 = 0.03 (as shown in Figure 43), indicating no significant 

difference in overall completion times between the high and low reliable conditions. 

Figure 38:  

Effect of Explanation Provision and Reliability on Time Taken 
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Figure 39:  

Main Effect of Explanation Provision on Time Taken 

 
Figure 40:  

Main Effect of Reliability on Time Taken 
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Number of Errors 

The number of times the participants made a mistake while selecting the pipe fittings was 

counted as an error. The total number of errors was recorded within the simulation. A negative 

binomial regression analysis was conducted to examine the effects of the reliability of the AI 

agents and the explanation provision on the number of errors made. The traditional Poisson 

regression was not applied since the data was over dispersed with the variance exceeding the mean. 

The analysis revealed that the reliability of the AI agent did not have a significant effect on the 

number of errors made, with participants interacting with low reliable agents showing no 

statistically significant difference in error rates compared to those interacting with high reliable 

agents (B = -0.81, SE = 0.56, 95% CI [-1.70, 0.09], Wald χ² = 3.14, df = 1, p = .076). Similarly, 

the explanation provision also did not have any significant difference in the number of errors made 

(Wald χ² = 3.46, df = 2, p = 0.177). 

Task Completion 

Task completion refers to whether a participant completed the pipe layout without making 

any mistakes. If a mistake was made, it was considered incomplete. A binomial logistic regression 

was performed to investigate the effect of explanation provision, reliability of AI agent and the 

number of errors on the likelihood of participants completing the task. The logistic regression 

model was statistically significant χ2(4) = 27.95, p < 0.001. The model explained 76.5% 

(Nagelkerke R2) of the variance in task completion and correctly classified 97.8% of cases. The 

number of errors showed a negative association with task completion but was not statistically 

significant (p = 0.996), indicating no significant effect of the number of errors made on task 

completion. The explanation provision and the reliability of the AI agent also showed no 

significant effect on task completion.  
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Hits 

Hits refers to the instances where users correctly recognized and accepted a correct 

recommendation provided by the recommender AI. A Generalized Linear Mixed Model (GLMM) 

with a Poisson distribution was conducted to explore the effects of the AI agent's reliability and 

explanation provision on the number of times participants accepted a correct recommendation 

from the AI agent. The analysis of fixed effects revealed a significant effect of the model, F (3, 

86) = 18.88, p < 0.001, indicating that the predictors, as a set, significantly predicted the number 

of hits. Within the model, reliability emerged as a significant predictor F (1, 86) = 56.52, p < 

0.001(as shown in Figure 44), whereas the explanation provision did not significantly predict the 

number of hits F (2, 86) = 0.06, p = 0.941 (as shown in Figure 45). The expected number of hits 

for the low reliable condition was 0.65 (95% CI [0.54, 0.79]) times the number of hits in the high 

reliable condition, a statistically significant result, p < 0.001.  

Figure 41:  

Mean Hits for Reliability 
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Figure 42:  

Mean Hits for Explanation Provision 

 

Correct Rejection 

Correct rejection refers to the instances where the users correctly rejected the wrong 

recommendation provided by the AI and selected the correct pipe fitting for a particular location 

in the task. A GLMM with a Poisson distribution was conducted to explore the effects of the AI 

agent's reliability and explanation provision on the number of times participants correctly rejected 

an incorrect recommendation from the AI agent. The analysis of fixed effects revealed a significant 

effect of the model, F (3, 86) = 16.81, p < 0.001, indicating that the predictors, as a set, significantly 

predicted the number of correct rejections. Within the model, reliability emerged as a significant 

predictor, F (1, 86) = 50.44, p < 0.001 (as shown in Figure 46), whereas the explanation provision 

did not significantly predict the number of correct rejections, F (2, 86) = 0.00, p = 0.998 (as shown 

in Figure 47). For the low reliable condition, the number of correct rejections was 3.90 (95% CI 
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[2.66, 5.70]) times the number of correct rejections in the high reliable condition, a statistically 

significant result, p < 0.001. 

Figure 43:  

Mean Correct Rejections for Reliability 

 

Figure 44:  

Mean Correct Rejection for Explanation Provision 
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Workload 

The workload was measured using the NASA-TLX survey after completion of each task. 

A two-way mixed measures ANOVA was conducted to determine the effect of the reliability of 

the AI agent and explanation provision on the different factors that contribute to users' workload, 

which includes mental demand, physical demand, temporal demand, performance, effort, and 

frustration level. There was no statistically significant interaction between the reliability of the AI 

agent and the explanation provisions, for any of these factors and for the total workload. The 

explanation provisions had no statistically significant effect on different sub-scales of workload 

except for the performance, F (2, 56) = 3.62, p = 0.033, partial η2 = 0.11 and temporal demand 

sub-scales, F (2, 56) = 4.75, p = 0.012, partial η2 = 0.15 (as shown in Figure 48). A pairwise 

comparison revealed that there was a significant difference in performance subscale between 

spaced and the low confident condition, such that the participants perceived that they performed 

poorer when the transparency and explanation were provided in a spaced manner compared to 

when provided when AI’s confidence was low, with a mean difference of 3.54, 95% CI [0.24, 

6.85], p = 0.036. Similarly, the temporal demand was high for the low confidence condition 

compared to the spaced condition, with a mean difference of 2.56, 95% CI [0.38, 4.73], p = 0.017. 

there was no statistically significant main effect of reliability on different sub-scales and total 

workload (as shown in Figure 49). 
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Figure 45: 

Effect of Explanation Provision on Workload 

 

Figure 46:  

Effect of Reliability on Workload 
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Preference 

After the final task, the participants were asked to rank the AI agent they interacted with if 

they had a chance to work together again. Lower rank corresponds to higher preference. A 

Friedman's test was conducted to analyze the ranked data for the preference of agents across 

different levels of explanation provision. The analysis did not reveal a statistically significant 

difference in the ranking of agents, χ²(2) = 0.07, p = 0.967. The mean ranks for the continuous, 

when AI confidence was low, and spaced conditions were 2.03, 2.00, and 1.97, respectively, 

indicating very similar preferences among the participants for these conditions. The results suggest 

that participants did not prefer one way of providing transparency/explanation over another.  

Discussion 

To understand the effect of the independent variables on the overall trust, a two-way mixed 

ANOVA was conducted. The lack of a significant interaction effect between AI reliability and 

explanation provision strategy suggests that the impact of different explanation provisions on trust 

is consistent across different reliabilities of AI. Also, the significant main effect of reliability on 

trust in AI shows the importance of the reliability of the AI agent in maintaining appropriate trust, 

a result similar to the previous two experimental studies identified. This shows that even in the 

context of adaptive explanations, the reliability of AI plays an important role in trust in AI.  

Supporting hypothesis one, the results reveal that there was no difference in trust between 

the three conditions of explanation provisions. This shows that, compared to providing 

transparency and explanations continuously, which enhances trust compared to not providing them 

(as found in study 2), the two provisions of transparency and explanation do not decrease trust. 

This means that even though the number of times the transparency and explanations provided 

decreased, the trust in AI did not decrease. This could be because it was given to the user at the 
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right time when they needed it to maintain trust. The dynamics of situational trust are highly 

influenced by contextual factors; in this case, the AI provides the transparency and explanations 

only when the user needs it, which is similar to providing them continuously. This is an important 

finding that needs to be discussed further.  

From the situational trust literature, it is understood that the cognitive process of the users 

to weigh the trustworthiness of the system during the interaction can be altered by the ways by 

which the tasks are presented (Hoff & Bashir, 2015). Similarly, the organizational setting affects 

the trust the user has in the AI in such a way that the trusting behavior is affected by when the 

recommendations are presented (Madhavan & Wiegmann, 2005). In this experiment, the two ways 

that we presented the transparency and explanation were effective in making the users trust the 

recommender AI in line with when the information was provided continuously. Situational trust is 

influenced by different internal and external factors such as the user’s self-confidence, task 

expertise, type of automation, the complexity of automation etc. (Hoff & Bashir, 2015). The two 

additional provisions of presenting the information in this experiment might have helped the users 

maintain the appropriate trust due to the complexity of the task and the operators' decision freedom. 

These provision’s environment might have also helped the users to assess automation performance 

relative to the manual performance. 

One of the provisions of presenting transparency and explanation was providing them only 

when the recommender AI’s confidence was low. This means the additional information on how 

and why the AI provided a particular recommendation, was presented only when the AI was unsure 

about its recommendation. The non-reduction in trust in AI during this condition, compared to 

providing the them continuously, shows that the need for transparency and explanation to maintain 

appropriate trust is not just continuous, but also can be achieved by providing them when the AI’s 
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confidence is low. This could be because the user analyzed the situation further and made the 

decision when they saw the AI was not confident about the recommendation. The users could have 

been more considerate of the recommender AI when they were provided with transparency and 

explanation even though the AI was unsure about the recommendation. Also, the users might have 

appreciated the recommender AI for being transparent about the fact that it is unsure about the 

recommendation provided. This thought is supported by the findings from a previous study that 

looked into the effect of providing an explanation when a decision aid made errors in a military 

context, which found that, this provision prevents distrust (Dzindolet et al., 2003). This approach 

also aligns with the concept that users value explanations more when they contribute directly to 

understanding AI's decision-making process in uncertain situations, fostering a deeper trust in the 

system's capabilities (Kizilcec, 2016). This needs to be researched further to investigate effective 

ways of representing AI’s confidence in providing recommendations that could maintain the 

appropriate trust level in AI.  

Another way of providing explanation and transparency that was studied in this experiment 

was providing them with the first, middle and last steps. This method of provision also did not 

reduce the trust level of the users that they had in the recommender AI. Providing transparency 

and explanation about AI’s decision to provide a particular recommendation in the initial step 

might have helped the users understand the process that the AI goes through and the rationale of 

AI for providing a particular recommendation. After the first step, interacting with the AI that 

provides just the recommendation might change the understanding of the underlying process and 

the rationale of providing a recommendation, which could have been corrected by providing 

transparency and explanation in the middle of the task and the final step of the task. The trust did 

not decrease compared to providing the transparency and explanation continuously, which shows 



 

154 

that reinforcing users with the process and rationale of providing recommendations by the AI in 

the initial, middle, and last steps could maintain appropriate trust in a similar manner when they 

were provided continuously. This approach might also help users develop a mental model of how 

AI makes decisions, which is an important aspect of maintaining trust. This result aligns with the 

previous literature that found that the AI explanation is not always desirable (Jiang et al., 2022). 

This needs to be investigated further for tasks that are longer and more complex since the task in 

this experiment did not involve a large number of steps. Similarly, the provision of providing an 

explanation could be explored further to see the impact of trust, such as providing users the 

freedom to activate the required information when they need it. 

The total time taken to complete the tasks was measured to evaluate the participants' 

performance while completing the tasks in different explanation provisions. Supporting hypothesis 

two, participants required significantly more time to complete the task when the AI provided 

continuous explanation and transparency compared to when explanations were given when the 

AI’s confidence was low or at spaced intervals. These findings suggest that although continuous 

explanation and transparency may improve comprehension and confidence in AI 

recommendations, it may also result in information overload, where the constant presentation of 

data delays the ability to make quick decisions and complete tasks. Participants might have to 

spend additional time processing the information provided by the AI agent, which adversely affects 

their speed of task completion (Helldin, 2014; Zuk & Carpendale, 2007).  On the other hand, the 

low confidence and the spaced conditions provide a more optimal balance between providing 

necessary guidance and maintaining task efficiency. This allows participants to receive important 

information at decision points where uncertainty is likely highest, supporting faster and potentially 

more accurate decision-making without the constant cognitive load of processing information.  
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The findings from the negative binomial regression analysis focusing on the effect of 

reliability and explanation provision on the number of errors made found that both the reliability 

and the explanation provision did not significantly influence the number of errors, supporting 

hypothesis two. This result of the reliability variable is similar to study 2, which did not find a 

significant difference between the two reliable conditions. Similarly, the number of errors did not 

vary between the three conditions of explanation provision. This is an important finding since there 

was no decrease in the number of errors even when the number of times the transparency and 

explanation were provided. This could be because, for this particular task, the possibility of making 

errors was mainly when the AI’s confidence was low. Providing transparency and explanation at 

the point where the AI was unsure might have made the participant think more about the situation 

rather than blindly believing the AI, thereby making the correct decision. Similarly, the condition 

where the transparency and explanation was provided in the initial step, middle step and final step, 

might have helped the participants to make a mental model of how AI comes up with the 

recommendations and could have made the right decision. The important takeaway from this is 

that providing explanations and transparency non-continuously does not increase error rates. 

However, this needs to be explored further since the experiment used in the study could be simple 

enough to make many mistakes. Different complexities of tasks should be studied before 

generalizing this result. Also, future research could investigate the effects of providing 

explanations and transparency at the decision points which are more prone to errors.  

The perceived workload while completing the procedural task was measured using NASA-

TLX survey. Supporting hypothesis three, the results indicate no significant interaction between 

the reliability of AI and the explanation provisions in relation to multiple components of the 

workload suggesting a uniformity in perceived workload across the three levels of explanation 
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provision and the two levels of reliability of the recommender AI. The temporal demand subscale 

revealed that it was higher when the transparency and explanation was provided when the 

recommender AI’s confidence was low compared to providing them in a spaced manner. This 

could be because when the users realized that the AI’s confidence was low, they had to adjust their 

mental model of the AI’s recommendations, which necessitated maintaining a higher level of 

alertness, potentially leading to an increased temporal demand. Whereas for the spaced condition, 

even though the explanation provided the confidence information, they might have mostly received 

it when the AI’s confidence level was higher. However, the perceived performance was higher for 

the low confidence condition compared to the spaced condition. This could be because, in the low 

confidence condition, since they knew that AI’s confidence was low and subsequently the 

recommendation could be wrong, the users might have spent more mental resources to make sure 

the component they selected was correct, leading to an increased perceived performance compared 

to the spaced condition. 

The results of the analysis of the number of hits and correct rejections were consistent with 

study 2, such that the low reliable condition had fewer hits and more correct rejections compared 

to the high reliable condition. This is because the number of correct recommendations provided 

by the AI was lower for the low reliable condition compared to the high reliable one. From Figures 

44 and 46, it can be seen that the mean hits were around 6 and 9 for the low reliable and high 

reliable conditions, whereas the correct rejection was around 4 and 1 for the low and high reliable 

conditions, respectively. This shows that the users perceived reliability of the AI was in line with 

the actual reliability of the AI since there were 6 and 9 correct recommendations and 4 and 1 wrong 

recommendations for the low and high reliable conditions respectively. This shows that the users 

had appropriate trust in AI and highlights the importance of calibrating human trust to an 
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appropriate level, which is necessary for the reliability of the AI that they are interacting with; if 

not, that will lead to disuse and misuse of the AI system, respectively (Parasuraman & Manzey, 

2010). 

The ranking of the AI agents after completing the task did not find any significant 

difference between the three conditions of explanation provision showing that the users ranked the 

spaced condition and the low confident condition similar to that of providing them continuously. 

This result aligns with the overall trust result where there was no significant difference between 

the three levels of explanation provision. The users trusted the three recommender AIs in a similar 

manner, and thus, there was no significant difference in the ranking of these different recommender 

AIs.  

Conclusion 

This study explored the effects of the reliability of the AI agents and the provision of 

explainability and transparency of the AI’s recommendation on users’ trust in AI, performance 

and workload while completing a procedural task. The study used a 2*3 mixed-subject 

experimental design, to understand these effects.   

The findings from this study revealed that providing transparency and explanation in a 

continuous manner is not necessary to maintain appropriate trust. Providing them at the right time 

the user needs is an important aspect of transparency and explanation. Specifically, when AI’s 

confidence is low, intermittently reminding the user about how the AI makes decisions provides 

the users enough confidence to trust in the AI as similar as they trust when the transparency and 

explanation is provided continuously. In addition to that, the main advantage is that they don’t 

have to spend as much time as they spend when transparency and explanations are provided 

continuously to complete the task. This study also shows that, while the AI provides transparency 
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and explanation only when needed, users can complete tasks faster without an increase in total 

workload and the number of errors while maintaining the trust they have in the recommender AI, 

similar to when that is provided continuously.  

This study comes with a few limitations that need to be considered before generalizing the 

result. The task selected was a pipe fitting task and was simulated as a user completing the task 

while wearing an AR glass where the AI provided recommendations on the AR module. This could 

be validated by conducting experiments with other procedural tasks and using an AR glass instead 

of a computer simulation. Also, the task selected was a smaller one, and the difficulty level of the 

task was not too high, as seen from the number of errors found in the study data. This warrants 

investigation of more complex tasks to see if there is any variation in the findings of this study on 

the effect of trust, performance, and workload due to the transparency and explanation provision.  

The findings from this experimental study will help the designers of the AI systems to 

decide on when exactly to provide the explanation and transparency while considering factors such 

as the reliability of the AI, trust the humans have in the AI, the performance and workload the 

users have while using the AI.  
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CHAPTER 6 

CONCLUSION 

The overarching goal of this dissertation was to characterize human performance and trust 

in AI while completing procedural tasks in the AEC domain with the help of AI and AR 

technologies. This research aimed to formulate design principles that improve the interaction of 

humans with these technologies, focusing on explainability and transparency to maintain 

appropriate trust in AI. The objectives included investigating how AR technology is used in the 

AEC domain for remote collaboration, understanding the effect of AI agent reliability and task 

complexity on trust in AI, evaluating the impact of transparency and explainability on trust, and 

assessing the effectiveness of adaptive explanations in maintaining appropriate trust in AI. 

The systematic literature review was conducted to learn about the application of AR for 

remote collaboration in the AEC industry, identifying the different devices being used, the 

important applications, considerations, and limitations of using AR technologies for remote 

collaboration. The development of a POMDP model to simulate trust in AI, followed by an 

experimental study to validate it provided valuable insights into trust dynamics during procedural 

task completion. The findings from the first experimental study showed that even though the 

complexity of the task did not affect the trust the users have in AI, the AI agent reliability 

significantly influences trust, workload, and performance, highlighting the importance of 

designing highly reliable AI systems to reduce cognitive load and to improve the efficiency of the 

task being completed. 

The final two experimental studies revealed the important role of transparency and 

explainability and the importance of providing them at the right time in building trust in AI. The 

second experimental study showed that while users preferred AI agents that provided transparency 

and explanations, with an increase in trust compared to not providing them, these features 
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increased task completion time without adding to the perceived workload. This indicates that the 

users had spent more time engaging with the AI and the transparency and explanation provided, 

which might have enhanced their trust in the AI. The final experimental study found that providing 

transparency and explanation at the right time, particularly when AI confidence is low and during 

the first middle and last steps, can maintain appropriate trust in AI without significantly increasing 

task completion time, errors, and workload. This shows that to maintain appropriate trust, 

transparency and explanations need not be provided at every step. Instead, providing them 

strategically at the points where the user might use them in an adaptive manner improved the 

performance without affecting trust.   

The findings of this dissertation have significant practical implications for designers of AI 

systems and stakeholders in the AEC industry. The research highlights the importance of 

integrating transparency and explainability features along with the recommendations to build and 

maintain appropriate trust in AI. This is important for ensuring that users are using the AI 

technology as it is intended, rather than misusing and disusing, which can enhance overall task 

performance and efficiency. Additionally, the results suggest that designing AI systems to provide 

transparency and explanations in an adaptive way or only when necessary, can maintain 

appropriate trust without increasing the cognitive load on users. This could be helpful to maintain 

appropriate trust especially when the AI provides incorrect recommendations in between. 

Providing transparency and explanations could help understand the user why AI provided wrong 

recommendations and could make informed decisions.  

The application of the integration of AR and AI in the AEC industry is not limited to the 

plumbing task used in the experiment but could be extended to activities such as site inspection, 

safety inspection, measurement and layout, quality control, resource management, training etc. 
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Scenarios where the user takes more time to figure out a problem could be handled with the 

advantage of time and cost if the recommender AI is well trained with the previous data of similar 

problems and is presented to the user in an effective manner. The data associated with each 

activities needs to be collected extensively to train the AI model to implement the recommender 

system with higher reliability. While implementing such systems in the AEC industry, it is 

important to make sure the privacy of the users is protected. This could be done by providing users 

the freedom to control the amount of data collected or by collecting only the absolutely necessary 

data. Also, the data collected could be anonymized and encrypted. The safety while using these 

technologies in the construction site is another important aspect. While wearing the AR devise, the 

users could be distracted and might get overloaded with information leading to decreased situation 

awareness. The awareness of the real world could also be affected by the vision being obstructed 

due to a lot of information presented on the AR glasses and could lead to safety incidents. This 

could be avoided my making sure the interface is not overloaded with information and is designed 

in a user-friendly manner with the freedom of toggling the information on and off.  

This dissertation acknowledges several limitations that should be considered before 

generalizing the findings. The experimental tasks were completed on a computer simulation that 

emulated a user wearing an AR glass while completing a pipe fitting task, which may not fully 

capture the complexity and variability of tasks in the AEC domain. Future research could validate 

these findings with different tasks in the AEC industry and could use actual AR glasses instead of 

simulations. Additionally, the tasks used in the experiments were relatively simple, which may 

have influenced the observed trust dynamics and performance outcomes. Future research could 

look into applications of these techniques to maintain appropriate trust on tasks with higher 

complexities to see the effect on performance, workload and trust in AI. Further, different ways of 
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providing adaptive explanations could be studied to understand if they can help maintain 

appropriate trust. This could include providing explanation and transparency when the user stops 

following the recommendation provided by the AI or could consider providing them when the 

subtask is very confusing or at a very important decision point where most users make mistakes.  

In conclusion, this dissertation provides an understanding of the factors influencing trust 

in AI when integrated with AR for procedural tasks in the AEC industry. The insights gained from 

this research can guide the design and implementation of AI systems in the AEC industry to 

maintain appropriate trust in AI, enhance task performance, and reduce workload, ultimately 

contributing to more efficient and effective use of these emerging technologies. 
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APPENDICES 

Appendix A 

Adapted Propensity to Trust in Technology 

(Schneider et al., 2017) 

Instruction: For the below-listed items, please read each statement carefully. Using multiple choice 

answers from strongly agree to strongly disagree, select the answer that most accurately describes 

your feelings. An automated agent can be anything from spell check on Word to Siri or Alexa.  

Q1 Generally, I trust automated agents. 

o Strongly agree  (1)  
o Somewhat agree  (2)  
o Neither agree nor disagree  (3)  
o Somewhat disagree  (4)  
o Strongly disagree  (5)  

Q2 Automated agents help me solve many problems. 

o Strongly agree  (1)  
o Somewhat agree  (2)  
o Neither agree nor disagree  (3)  
o Somewhat disagree  (4)  
o Strongly disagree  (5)  

Q3 I think it’s a good idea to rely on automated agents for help. 

o Strongly agree  (1)  
o Somewhat agree  (2)  
o Neither agree nor disagree  (3)  
o Somewhat disagree  (4)  
o Strongly disagree  (5)  

Q4 I don’t trust the information I get from automated agents. 

o Strongly DISAGREE  (1)  
o Somewhat DISAGREE  (2)  
o Neither agree nor disagree  (3)  
o Somewhat AGREE  (4)  
o Strongly AGREE  (5)  
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Q5 Automated agents are reliable. 

o Strongly agree  (1)  
o Somewhat agree  (2)  
o Neither agree nor disagree  (3)  
o Somewhat disagree  (4)  
o Strongly disagree  (5)  

Q6 I rely on automated agents. 

o Strongly agree  (1)  
o Somewhat agree  (2)  
o Neither agree nor disagree  (3)  
o Somewhat disagree  (4)  
o Strongly disagree  (5) 
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Appendix B 

Trust in Automated Systems 

(Jian et al., 2000) 

Instructions: Below is a list of statements for evaluating trust between people and automation.  

There are several scales for you to rate intensity of your feeling of trust, or your impression of 

the system while operating a machine.  Please select the option which best describes your feeling 

or your impression using the 7-point scale ranging from 1 (not at all) to 7 (extremely).     

1. The system is deceptive. 

       

1 2 3 4 5 6 7 

 
2. The system behaves in an underhanded manner. 

       

1 2 3 4 5 6 7 

 
3. I am suspicious of the system's intent, action, and outputs. 

       

1 2 3 4 5 6 7 

 
4. I am wary of the system. 

       

1 2 3 4 5 6 7 

 
5. The system's actions will have a harmful or injurious outcome. 

       

1 2 3 4 5 6 7 

 
6. I am confident in the system. 
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1 2 3 4 5 6 7 

 
7. The system provides security. 

       

1 2 3 4 5 6 7 

 
8. The system has integrity. 

       

1 2 3 4 5 6 7 

 
9. The system is dependable. 

       

1 2 3 4 5 6 7 

 
10. The system is reliable. 

       

1 2 3 4 5 6 7 

 
11. I can trust the system. 

       

1 2 3 4 5 6 7 

 
12. I am familiar with the system. 

       

1 2 3 4 5 6 7 
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Appendix C 

Trust scale for XAI 

(Hoffman et al., 2018) 

1. I am confident in the recommender AI. I feel that it works well. 
 

5 4 3 2 1 
I agree strongly I agree somewhat I’m neutral about 

it 
I disagree 
somewhat 

I disagree 
strongly 

 
 

2. The outputs of the recommender AI are very predictable. 
 

5 4 3 2 1 
I agree strongly I agree somewhat I’m neutral about 

it 
I disagree 
somewhat 

I disagree 
strongly 

 
 

3. The tool is very reliable. I can count on it to be correct all the time. 
 

5 4 3 2 1 
I agree strongly I agree somewhat I’m neutral about 

it 
I disagree 
somewhat 

I disagree 
strongly 

 
 

4. I feel safe that when I rely on the recommender AI I will get the right answers. 
 

5 4 3 2 1 
I agree strongly I agree somewhat I’m neutral about 

it 
I disagree 
somewhat 

I disagree 
strongly 

 
 

5. The recommender AI is efficient in that it works very quickly. 
 

5 4 3 2 1 
I agree strongly I agree somewhat I’m neutral about 

it 
I disagree 
somewhat 

I disagree 
strongly 
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6. I am wary of the recommender AI.  
 

5 4 3 2 1 
I agree strongly I agree somewhat I’m neutral about 

it 
I disagree 
somewhat 

I disagree 
strongly 

 
 

7. The recommender AI can perform the task better than a novice human user.  
 

5 4 3 2 1 
I agree strongly I agree somewhat I’m neutral about 

it 
I disagree 
somewhat 

I disagree 
strongly 

 
 

8. I like using the system for decision making. 
 

5 4 3 2 1 
I agree strongly I agree somewhat I’m neutral about 

it 
I disagree 
somewhat 

I disagree 
strongly 
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Appendix D 

NASA Task Load Index  

(Hart & Staveland, 1988) 

Task Questionnaire – Part 1 

Click on each scale at the point that best indicates your experience of the task 

Mental Demand How mentally demanding was the task? 

          
                    
Low         High 

 
Physical Demand How physically demanding was the task? 

          
                    
Low         High 

 
Temporal Demand How hurried or rushed was the pace of the task?        

          
                    
Low         High 

 
Performance        How successful were you in accomplishing  

                              what you were asked to do?    

          
                    
Good         Poor 

 
Effort    How hard did you have to work to accomplish 

                                your level of performance? 

          
                    
Low         High 
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Frustration  How insecure, discouraged, irritated, stressed  
                                      and annoyed were you?
  

          
                    
Low         High 

 

Task Questionnaire – Part 2 

On each of the following 15 screens, click on the scale title that represents the more important 
contributor to workload for the task. 

Click on the factor that represents the more important contribution to workload for the task. 

Frustration or Mental Demand 
 
Click on the factor that represents the more important contribution to workload for the task. 

Temporal Demand or Frustration 
 
Click on the factor that represents the more important contribution to workload for the task. 

Effort or Performance 
 
Click on the factor that represents the more important contribution to workload for the task. 

Temporal Demand or Mental demand 
 
Click on the factor that represents the more important contribution to workload for the task. 

Temporal Demand or Effort 
 
Click on the factor that represents the more important contribution to workload for the task. 

Mental or Physical Demand 
 
Click on the factor that represents the more important contribution to workload for the task. 

Effort or Physical Demand 
 
Click on the factor that represents the more important contribution to workload for the task. 

Mental Demand or Effort 
 
Click on the factor that represents the more important contribution to workload for the task. 
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Physical Demand or Frustration 
 
Click on the factor that represents the more important contribution to workload for the task. 

Performance or Frustration 
 
Click on the factor that represents the more important contribution to workload for the task. 

Physical Demand or Performance 
 
Click on the factor that represents the more important contribution to workload for the task. 

Performance or Temporal Demand 
 
Click on the factor that represents the more important contribution to workload for the task. 

Performance or Mental Demand 
 
Click on the factor that represents the more important contribution to workload for the task. 

Physical Demand or Temporal Demand 
 
Click on the factor that represents the more important contribution to workload for the task. 

Frustration  or Effort 
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