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ABSTRACT 

Advances in machine learning algorithms and applications have significantly enhanced 

engineering inverse design capabilities. This work focuses on the machine learning-based inverse 

design of material microstructures with targeted linear and nonlinear mechanical properties. It 

involves developing and applying predictive and generative physics-informed neural networks for 

both 2D and 3D multiphase materials. 

 

The first investigation aims to develop a machine learning method for the inverse design of 2D 

multiphase materials, particularly porous materials. We first develop machine learning methods to 

understand the implicit relationship between a material's microstructure and its mechanical 

behavior. Specifically, we use ResNet-based models to predict the elastic modulus and stress-strain 

curves of linear and nonlinear porous materials from their microstructure images. To generate 

microstructures of porous materials with targeted mechanical behavior, we create variational 

autoencoder (VAE) based neural networks. These networks generate the microstructure of porous 

materials from a prescribed elastic modulus or stress-strain curve. In both property prediction and 

microstructure generation, the stress-strain curves are approximated using cubic polynomials and 

characterized by their coefficients. To explicitly enforce the mechanics of materials in the 

generative machine learning models, we devise and incorporate a new condition fusion layer into 

the traditional VAE architecture. Additionally, a pretrained regression model is introduced to 

constrain the decoder, ensuring the production of physically meaningful images. The results show 

that this machine learning approach is capable of ultra-fast prediction of material properties 

directly from microstructure images, as well as the inverse design of material microstructures to 

achieve desirable mechanical behaviors. 
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The second investigation focuses on the inverse design of 3D multiphase materials, specifically 

considering fiber-reinforced polymer composites (FRPC) as the model system. This research aims 

to develop physics-informed neural networks for inverse design of such a material system. 

Compared to 2D porous materials, 3D FRPC involve complex 3D microstructure geometries and 

require physically feasible topologies, making the inverse design significantly more challenging. 

To address these challenges, we develop a novel diffusion model for 3D fiber reconstruction and 

generation. This model includes a forward diffusion process that adds noise to the fiber distribution 

and a reverse process that denoises to generate desirable fiber distributions. The diffusion model 

is defined via a stochastic differential equation (SDE), and both the diffusion and reverse processes 

are modeled as solutions to this SDE. To ensure feasible topology for the generated fiber 

distributions, non-collision constraints are incorporated into the generative neural networks. The 

results demonstrate that these new models can generate high-quality 3D FRPC designs with 

tailored mechanical behaviors while ensuring compliance with physical constraints. 
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CHAPTER ONE 

INTRODUCTION AND MOTIVATION 

In recent years, machine learning methods have found more applications in engineering analysis 

and design [1-4]. One of such applications that have attracted much attention is the analysis and 

prediction of material properties, including the thermal, mechanical, electrical properties of metals, 

ceramics, polymers and composites [1, 3]. Among the material properties, mechanical properties 

such as stiffness and stress-strain behavior are particularly important for structural materials. 

Typically, mechanical properties are determined through experimental characterization which 

requires careful material sample preparation and expensive experimental equipment (e.g. Instron 

machine and strain gauges). Alternatively, the mechanical properties can be determined through 

physics based computational analysis. While computational analysis can be more efficient than 

experimental characterization, the construction and validation of high-fidelity models can still be 

time consuming. For example, as engineering materials’ mechanical properties largely depend on 

their microstructural configurations, the construction of high-fidelity computational models 

requires accurate digital representation of the actual microstructures, which is often through careful 

segmentation of scanned micro-CT images. This process is both expensive and time consuming, 

especially when the microstructure is complex and highly inhomogeneous. In addition, the 

computational cost of simulating nonlinear mechanical behavior using high-fidelity models with 

very large degrees of freedom (DOF) is typically high. Given the rapid advancement of machine 

learning methods, it has been envisioned that the material characterization process can be largely 

accelerated using machine learning methods if the relationship between material microstructure 

and mechanical properties can be learned [5]. Unfortunately, currently there is not much work in 
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the literature related to predicting mechanical properties of engineering materials using machine 

learning methods, due to, among other factors, the scarcity of experimental data. 

A more challenging problem is the design of engineering materials from given material property 

requirements. Methods for solving material design problems can be broadly categorized into direct 

and inverse design methods. The direct method of experimental or analytical screening is largely 

a trial-and-error process that can be extremely inefficient. The design space engineering materials 

is enormous as it includes different combinations of material components/phases, their 

arrangements, volume fractions, dimensions, and their morphology, which is all together referred 

to as the material microstructure. Due to the large number of design variables, even with large 

computational resources, a global strategy for exploring completely the design space of material 

microstructure is intractable. Inverse design starts with the desired performance and searches for 

an ideal material microstructure. In essence, any inverse design process is an optimization process. 

Once again, the large material design space makes the application of standard optimization 

methods, such as evolutionary structural optimization (ESO) [6] and the solid isotropic material 

with penalization (SIMP) [7] methods, difficult. Data-based inverse design approaches such as 

machine learning, however, do not seek an explicit description of the mapping between the 

material design space and the functional space. The mapping is constructed via machine learning 

and stored in neural networks.  Similarly, the search of the optimal solution is also implicitly done 

through the trained neural networks. There are three main approaches for solving inverse problems: 

variational autoencoders (VAEs) [8], reinforcement learning (RL) [9], and generative adversarial 

networks (GANs) [10]. In materials design, attempts have been made by using all the three 

approaches. While encouraging results were reported in molecular design [11], drug design [12], 

crystal physics [13, 14], thermoelectrics [15], structural topology optimization [16] etc., however, 
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to the best of authors’ knowledge, inverse design for mechanical properties, especially nonlinear 

stress-stain behavior has not yet been investigated using machine learning methods. 

 

1.1 Material Inverse Design 

In the realm of materials science, the intrinsic and distinctive qualities of composite materials lie 

in their heterogeneity and anisotropy, which afford them a complex array of physical and chemical 

properties. The multitude of material composition and structural possibilities results in an 

expansive material design space that has yet to be fully explored. This is particularly because the 

traditional direct method of addressing material design challenges is predominantly a trial-and-

error process that can be remarkably inefficient. Inverse design, as the term implies, reverses the 

conventional approach by beginning with the desired material properties and seeking the ideal 

composite material structure. Any inverse design process is an optimization endeavor where the 

input is the material properties, and the output is the composite material structure. It is important 

to note that composite properties do not necessarily correspond to a singular material structure but 

to a range of possible structures. Inverse design has (1) analytical/mathematical modeling 

combined with optimization, or (2) data-driven search methods to navigate the functional space. 

In the analytical approach, a forward mathematical model is explicitly defined, criteria for finding 

a solution are established, and a method for arriving at a solution is chosen. The optimization 

process leverages the mathematical model to explore the functional space. However, analytical 

models are generally limited to the simplest composite structures, such as orthotropic laminae. For 

more complex material structures, incorporating the effects of manufacturing processes makes 

constructing a comprehensive analytical model to describe the composite's functional behavior 

virtually unfeasible. Another framework for inverse material design falls under data-driven 
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approaches, which do not seek an explicit mapping between material structural space and 

functional space. Here, machine learning emerges as a promising technique due to its rapid 

advancements. 

On the manufacturing process design front, traditionally, composite manufacturing processes were 

developed with the aim of fulfilling economic and technical requirements. Optimizing these 

processes involved setting manufacturing parameters and then experimentally validating these 

parameters through extensive testing to develop a set of "B-basis Allowables" and predict failures. 

An equivalency test matrix would be completed for any changes in material constituents. Both 

processes depend heavily on existing domain knowledge, are costly, time-consuming, hinder 

agility, and pose significant barriers to exploring the design spaces and transitioning new 

composite materials and processes. Moreover, a key characteristic of composite material structures 

is that both the material and the structure are formed during the manufacturing process. Strictly 

speaking, classical fiber-reinforced composites are not merely materials; they are akin to micro-

scale structures produced by the interplay of material and manufacturing processes. The quality 

and properties of the final manufactured part are influenced significantly by the production method, 

sometimes as much as the constituent materials themselves. Thus, manufacturing plays a critical 

role in the development of products made from polymer composites. In current practices, material 

design and manufacturing process development are mostly conducted in isolation, preventing the 

exploration of synergistic effects that could arise from their integration. 

As mentioned, in the realm of material design, the prevailing methodology inverts the traditional 

paradigm by initiating the design process with predefined desirable material properties and 

subsequently seeking an optimal composite material architecture. This methodology is 

operationalized through three primary approaches: (1) Direct Screening: This approach entails 



5 
 

empirical experimentation with various material compositions and configurations, leveraging prior 

knowledge to test different combinations. Despite its straightforward application, this method is 

primarily characterized by a trial-and-error process, rendering it significantly inefficient due to its 

empirical nature. (2) Analytical/Mathematical Modeling and Optimization: Here, the design 

criteria and solution methodology are predetermined, facilitating the use of a mathematical model 

to navigate the functional space. This model serves to systematically explore possible solutions. 

However, this approach is inherently constrained to simplistic representations of composite 

architectures, limiting its applicability to more complex material systems. (3) Data-Driven Search 

Methods: These methods employ computational algorithms to traverse the functional space 

manifold without seeking an explicit representation of the relationship between material 

architecture and its functional properties. This approach is hindered by its inability to directly 

elucidate the underlying mapping between the architectural configuration of materials and their 

resultant functionalities.  

Given these limitations, the integration of machine learning techniques presents a promising path 

for surmounting these challenges. Specifically, machine learning can facilitate the discovery of an 

explicit mapping between material architectures and functional spaces, thereby enhancing the 

efficacy and efficiency of material design processes. 

 

1.2 Machine Learning and Inverse Design 

The idea of machines that can learn and adapt originated in the mid-20th century. A pioneering 

British computer scientist, Alan Turing [17], discussed the possibility of machines learning in 1950. 

This set the stage for the formal inception of AI and machine learning. The first practical 

applications of machine learning were developed during this time. Arthur Samuel [18] wrote a 
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checkers-playing program that learned from its experiences, effectively becoming more skilled the 

more it played. The program's ability to improve itself by learning from past games was a landmark 

achievement in machine learning. Innovations in network architectures and algorithms, along with 

the increasing power of computers, revived interest in machine learning. The development of the 

backpropagation algorithm in 1986 by David Rumelhart [19], which improved the training of 

neural networks. The last decades have seen explosive growth in machine learning, driven by vast 

improvements in hardware (like GPUs), big data availability, and further algorithmic 

advancements. Major breakthroughs include the success of deep learning, which has dramatically 

improved the performance of tasks like image recognition, natural language processing, and 

predictive analytics. Today, deep learning—a subset of machine learning involving deep neural 

networks—dominates the field. Innovations like convolutional neural networks (CNNs) [20] and 

recurrent neural networks (RNNs) [21] have enabled incredible advances in areas such as 

autonomous vehicles [22], speech recognition [23], and real-time translation [24].  

As the field of machine learning continues to evolve, it has become increasingly integral to various 

branches of engineering, particularly in the realm of material design. This area has witnessed a 

shift from traditional methodologies towards a more innovative, data-driven approach. In the 

conventional paradigm, the process typically began with the selection of composite material 

architectures based on existing knowledge and iterative testing to meet desired properties. 

However, machine learning inverts this paradigm by adopting a goal-oriented strategy where the 

starting point is the specification of desired material properties. This approach leverages advanced 

computational models to systematically explore the vast design space of potential composite 

materials. The input to these models consists of detailed descriptions of desired properties such as 

mechanical strength [25], thermal conductivity [26], electrical conductivity [27], corrosion 
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resistance [28], and other relevant physical [29] or chemical [30] characteristics. The output, 

generated through complex algorithms and data analysis techniques, is a set of optimal composite 

material architectures that are predicted to exhibit these specified properties. The underlying 

machine learning algorithms employ sophisticated techniques such as regression analysis, pattern 

recognition, and optimization algorithms to identify correlations and interactions between various 

material components and their configurations. This not only accelerates the process of material 

discovery but also enables the identification of novel materials with enhanced or previously 

unattainable properties. Furthermore, this data-based approach facilitates a more efficient 

exploration of the compositional and structural parameters that influence material performance. 

By harnessing the power of machine learning, engineers can predict the outcomes of material 

combinations and configurations without the need for extensive physical prototyping and inverse 

design, thereby reducing development costs and time to market.  

In essence, the integration of machine learning into material design signifies a transformative 

advancement in the engineering discipline. It empowers researchers and engineers to transcend 

traditional boundaries by enabling a predictive design framework. This framework not only 

streamlines the discovery of innovative materials but also paves the way for the development of 

material properties analysis and inverse design technologies that meet the increasingly complex 

demands of modern applications. 

 

1.3 Research Questions and Approach 

The ultimate objective of this project is to develop and apply physics-informed machine learning 

(ML) techniques for the inverse design of multi-phase materials, with a particular focus on 

achieving specific mechanical properties. This endeavor will transition from addressing four key 
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research questions representing the design challenges of two-dimensional (2D) materials to three-

dimensional (3D) materials in a sequential manner.  The research questions are: 

1. Can machine learning methods learn the implicit relationship between multiphase materials’ 

microstructures and their mechanical behavior? 

2. Can machine learning methods generate 2-D microstructures of multiphase materials based 

on targeted mechanical properties and nonlinear deformation behavior? 

3. Can machine learning methods generate 3-D geometry and topology of multiphase 

materials based on targeted mechanical behavior? 

4. How can physics and manufacturability requirements be incorporated into the machine 

learning models for improved prediction and generation? 

The completion of this project is structured around addressing these four research questions and 

progressively establishing the feasibility and effectiveness of ML models in facilitating inverse 

design processes. 

 

1.3.1 Establishing the Relationship between Material Microstructures and Mechanical 

Properties 

The first research question focuses on uncovering the implicit relationship between the 

microstructures of materials and their resultant behaviors. This step is crucial in understanding 

how the arrangement, size, and composition of microscopic features within a material influence 

its physical and mechanical properties, such as strength, ductility, hardness, and elasticity. This 

exploration is foundational for materials science, as it informs the development of new materials 

with tailored properties for specific applications, enhancing performance, durability, and 

efficiency in various engineering and technological contexts. 



9 
 

To addressing the first question of whether machine learning methods can discern the implicit 

relationship between a material's microstructures and its behavior, it is necessary to first specify a 

material whose behavior can be clearly defined. This initial step involves selecting a material with 

well-understood properties and behaviors in response to various conditions, thereby providing a 

solid foundation for exploring the capabilities of machine learning in identifying and learning these 

complex relationships.  

Given that material challenges can manifest in both two-dimensional (2D) and three-dimensional 

(3D) contexts, and that 2D microstructures tend to be simpler to understand, our focus narrows to 

2D configurations. Within this domain, various types of microstructures exist, including grain 

structures [31], layered structures [32], porous structures [33], and fiber-reinforced structures [34]. 

Among these, grain structures and fiber-reinforced structures present complexities that are more 

accurately represented and exhibit significant performance distinctions in 3D models. On the other 

hand, layered structures, while simpler in 2D formats, lack the complexity that necessitates 

advanced analytical methods, such as machine learning, due to their straightforward, 

uncomplicated nature. Consequently, porous materials are selected for the 2D approach due to 

their suitable balance of structural complexity and analytical tractability, making them an optimal 

candidate for employing machine learning techniques in the investigation of their properties and 

behaviors. 

It is evident that the field of materials science and mechanical engineering includes a wide 

spectrum of characteristics, which are essential for understanding and optimizing the behavior of 

materials under various conditions. While each of these properties plays a critical role in 

determining how materials respond to external stresses, environmental conditions, and long-term 

usage, the starting point for studying mechanical material properties is often elasticity. This is 
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because elasticity is a fundamental property that describes how materials deform and then return 

to their original shape when subjected to forces. This characteristic is crucial for understanding 

material behavior under various stress conditions, informing the design and selection of materials 

for engineering applications. Structural analysis, for example, relies heavily on understanding the 

elastic properties of materials to predict deflections, stresses, and strains. The elasticity concepts 

of elastic modulus and the stress-strain relationship are critical for more advanced topics such as 

plasticity [35], fracture mechanics [36], and fatigue [37]. In essence, elasticity is a cornerstone of 

materials science and mechanical engineering, providing the necessary tools and concepts to 

understand, utilize, and innovate with materials across a wide range of applications. Therefore, we 

choose to focus on elasticity as the topic, addressing it as the targeted material property to solve 

our research questions. 

To elucidate the relationship between elastic properties and material microstructure, we aim to 

adopt a general and accessible ML approach. Recognizing the wealth of existing methodologies 

and successful case studies in image recognition, along with the availability of potent analytical 

tools, we are motivated to leverage these advancements as a foundational basis for our research. 

Within the expansive landscape of technologies that deploy image recognition as a foundational 

machine learning technique, deep learning stands at the forefront, eclipsing other methods such as 

support vector machines (SVMs) [38], decision trees [39], random forests [40], K-nearest 

neighbors (KNN) [41], principal component analysis (PCA) [42], and linear discriminant analysis 

(LDA) [43]. Consequently, deep learning [44] has been selected as our primary methodology due 

to its superior performance and versatility across a broad spectrum of applications, including object 

detection [45], image segmentation [46], and video analysis [47]. Deep learning's dominance is 

further evidenced by its widespread implementation by leveraging specialized architectures such 
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as convolutional neural networks (CNNs) and recurrent neural networks (RNNs) to address 

complex challenges.  

In summary, to address Research Question 1, we develop a deep learning based predictive ML 

model to correlate the elastic material properties with material microstructures represented by 

images. Our testing demonstrates that this recognition capability can accurately predict the 

behavior of 2D-based materials. This advancement has the potential to be applied across a broad 

spectrum of mechanical materials, serving as preliminary groundwork for material inverse design. 

This approach not only enhances our understanding of material properties through image analysis 

but also lays the foundation for designing materials with desired mechanical characteristics from 

the outset. 

 

1.3.2. ML Models for Generating 2D Microstructures of Multi-Phase Materials  

The second research question aims to address a more complex issue regarding the design of 

materials' microstructures for targeted mechanical behavior. Building on the insights from 

Research Question 1, where we establish how the microstructures of materials lead to material 

properties, Research Question 2 seeks to explore the inverse path. Specifically, we aim to identify 

the implicit route from the material properties back to the microstructure of the material. In this 

context, our focus shifts towards determining how specific properties of porous materials can 

inform and guide the generation of their microstructures, thereby providing a comprehensive 

understanding of the bidirectional relationship between a material's microstructure and its 

properties. 

Inverse design methods in materials science and engineering involve a process where the desired 

outcomes or properties of a material or system are specified first, and then the necessary structure 

or configuration to achieve those properties is determined. This approach contrasts with the more 
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common forward design process, where materials or components are designed based on trial-and-

error or heuristic principles, and their properties are then tested and analyzed. Existing inverse 

design methods typically rely on a combination of computational modeling, optimization 

algorithms, and sometimes experimental validation to iteratively refine a design. Computational 

optimization based inverse design methods have been applied in various fields, including optical 

and photonic design [48], material science [49], and structural engineering [50]. However, these 

inverse design methods often face challenges due to the complexity of the design space, the 

computational cost of simulations, and the limitations of the models used.  

The emergence of machine learning and artificial intelligence techniques has begun to complement 

and, in some cases, revolutionize these traditional approaches by enabling more efficient 

exploration of design spaces and by offering predictive capabilities that were previously 

unattainable. The progression in ML based inverse design methods begins with image recognition 

techniques. Initially, this domain's development was somewhat constrained, with Generative 

Adversarial Networks (GANs) [51] and Variational Autoencoders (VAEs) [52] being the 

predominant methods for image generation. Over time, advancements in machine learning have 

broadened the spectrum of image generation methodologies to include various forms of GANs 

such as standard GANs [53], conditional GANs (cGANs) [54], StyleGANs [55], and CycleGANs 

[56], alongside VAEs, auto-regressive models [57], diffusion models [58], and transformer-based 

models [59]. These image-based recognition techniques have proven to be particularly effective 

for analyzing 2D microstructures. In the context of porous materials, where specific material 

properties such as elastic modulus and Young’s modulus are of interest, leveraging these advanced 

image generation and recognition methods facilitates the inverse design process. To address 

Research Question 2, we develop an approach that employs a sophisticated blend of computational 



13 
 

models to both analyze existing microstructural images and generate new microstructural 

configurations that align with targeted mechanical behaviors. By integrating generative modeling 

and image analysis, our ML model achieves a high degree of precision in material design, 

optimizing for specific properties like elasticity and structural integrity. The inverse design process 

involves using the proposed ML model to iteratively refine and generate microstructures that meet 

predetermined mechanical property criteria. This approach exemplifies the cutting-edge 

intersection of materials science and machine learning, offering a powerful toolkit for the design 

and discovery of new materials with tailored properties. 

By addressing this research question, we establish a link between image generation technologies 

and mechanical inverse design. Furthermore, this method can be extended to include inverse 

design for materials with 2D-like properties, which holds significant potential. This approach not 

only broadens the applicability of image generation in the context of material science but also 

enhances the utility of inverse design methods across both 2D and 3D material systems, offering 

valuable tools for material innovation and development. 

 

1.3.3 3D Microstructure Generation 

In addressing the first two research questions, attention is predominantly directed towards the 

development of machine learning models for 2D microstructure recognition and generation. 

However, this effort has a notable limitation: the application of 2D microstructure inverse design 

methodologies is often constrained when translated into practical scenarios. This limitation 

motivated us to transition from 2D analyses and generation to a 3D framework.  

In this effort, while our focus remains on dual-phase materials, from a practical engineering 

perspective, our model material system shifts to fiber-reinforced composite materials. This 

selection is driven by the unique mechanical properties and application potentials that fiber-
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reinforced composites offer, aligning with our objective to identify and analyze optimal 3D 

microstructural materials. For material properties, our focus remains on the elastic modulus and 

stress-strain behavior, of fiber composites.   

Designing 3D fiber composite structures presents a significantly more complex challenge 

compared to 2D microstructures. In 2D microstructure design, datasets can be augmented by 

utilizing randomly cut sections to ensure coverage of a wide range of possible scenarios. This 

approach allows for the effective use of image recognition and generation techniques to analyze 

and replicate the microstructures. However, the complexity of 3D fiber composites, characterized 

by their random orientation, varying diameters, positions, number of fibers, and rotation angles, 

cannot be directly captured or analyzed using conventional image-based methods. These attributes 

extend beyond the capabilities of standard 2D imaging, making it difficult to directly apply image 

recognition and generation models for 3D fiber composite design. Therefore, there is a need to 

develop alternative methods that can accommodate the multidimensional and variable nature of 

fiber composites, addressing the challenges posed by their 3D characteristics. 

We present an advanced 3D diffusion-based machine learning model designed for precise 3D 

prediction and generation tasks. This model specifically targets the accurate determination of fiber 

positions and orientations, which are critical for various applications. By leveraging the principles 

of diffusion, our approach ensures high fidelity in the spatial configuration and alignment of fibers. 

In addition to the core model, we have integrated an innovative collision-free methodology that 

addresses common physical simulation challenges in the generation process. This novel technique 

not only prevents fiber overlap and intersection but also enhances the stability and reliability of 

the generated structures. By incorporating these improvements, our model achieves superior 

physics-based performance, making it highly effective for practical implementations in fields such 
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as materials science, bioengineering, and computational design. The integration of these advanced 

features demonstrates our commitment to pushing the boundaries of machine learning in inverse 

design, providing a robust and efficient solution for complex 3D modeling tasks. 

Addressing this challenge opens the door to generating 3D structures, such as fibers, using machine 

learning techniques. Moreover, the approach is not limited to dual-phase materials; it can also be 

applied to materials with more phases, paving the way for the development of a comprehensive 

mechanical material inverse design system, thereby broadening the scope of materials inverse 

design through advanced ML models. 

 

1.3.4. Incorporation of Physics and Manufacturability Requirements into ML Models 

Incorporating physics and manufacturability requirements into machine learning models is crucial. 

Integrating physical laws into machine learning models helps ensure that predictions and solutions 

are physically plausible. This leads to more accurate and reliable outcomes, especially in complex 

systems where purely data-driven approaches might fail to capture underlying principles. Models 

that incorporate physics-based constraints are better at generalizing to new, unseen scenarios. This 

is because they are not solely reliant on the training data but also adhere to the fundamental laws 

governing the system. This can be particularly important in fields like fluid dynamics [60], material 

science [61], and climate modeling [62]. Physics-informed machine learning models often require 

less data to achieve high performance. By embedding known physical laws, these models can make 

better use of available data, reducing the need for large datasets that are often difficult and 

expensive to obtain. Incorporating prior knowledge about physics can guide the learning process, 

leading to faster convergence and reduced training times. This is because the model is already 

biased towards feasible solutions, minimizing the search space it needs to explore. Physics-

informed models are typically more interpretable because their predictions can be directly linked 
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to known physical laws and principles. By incorporating physics, models become more robust to 

uncertainties and variations in the data. This robustness is essential for real-world applications 

where conditions can change, and data may be noisy or incomplete. Inverse design problems, 

where the goal is to find a system configuration that meets specific performance criteria, benefit 

significantly from physics-informed machine learning. This approach can lead to innovative 

designs and optimized solutions that might not be achievable through traditional methods. Physics-

informed models can be more computationally efficient. By leveraging known physical laws, these 

models can avoid unnecessary computations and focus on feasible solutions, leading to cost 

savings in computational resources. Overall, incorporating physics and design requirements into 

machine learning models bridges the gap between data-driven methods and domain-specific 

knowledge, resulting in more robust, efficient, and reliable solutions that are essential for 

advancing both scientific research and practical applications. 

In the inverse design of 3D fiber composites, a significant challenge arises from the potential for 

fiber collisions, where individual fibers may intersect with each other. This intersection presents a 

critical physical issue in the design of fiber composites. Based on the hypothesis that incorporating 

physics-based knowledge into the ML model can effectively resolve fiber collisions, we redesign 

the classical diffusion models to make it suitable for generating 3D fiber reinforced composite 

materials.  

In addition, we further enhance our machine learning models so that the generated material designs 

are consistent with practical manufacturing methods. We will employ 3D printing technology to 

manufacture the ML-designed 3D fiber reinforced composite materials and then experimentally 

evaluate the elastic properties of the produced materials. To ensure practical applicability, our 

redesigned model will feature layered material configurations that are feasible for 3D printing. In 
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addition, we introduce a Voronoi-based strategy for generating fiber data sets that are close to the 

actual fiber distribution produced by the fuse deposition modeling (FDM) 3D printing process. 

This updated model will then be subjected to experimental testing to validate its effectiveness. 

In summary, we propose a systematic ML-based inverse material design approach beginning with 

problem definition, followed by the selection of the type of material system and microstructure, 

data preparation, ML model development, and culminating in the accomplishment of the inverse 

design objective. This structured framework aims to rigorously validate the potential of machine 

learning models for advancing the inverse design process of multi-phase materials by bridging the 

gap between desired mechanical properties and material microstructures. 

By completing this research, we establish a robust connection between machine learning and 

inverse design of 2D and 3D multiphase materials. Furthermore, we extend these methods to 

enforce physical principles and manufacturing requirements. This research not only bridges the 

gap between theoretical design and practical implementation but also paves the way for future 

innovations in the field of composite materials and their manufacturing processes. 

 

1.4 Manuscript Organization 

The remaining chapters of this manuscript are presented as follows. Chapter 2 presents a literature 

review. Chapter 3 illustrates the general framework of machine learning for inverse design and 

emphasizes the implementation of machine learning methodologies in inverse design processes. 

Chapter 4 describes the machine learning methods generate 2D microstructure based on targeted 

mechanical properties and nonlinear deformation behavior. Chapter 5 presents machine learning 

generate 3D geometry and topology of multiphase materials based on targeted mechanical 

behavior and implement physics and manufacturability requirements be incorporated into the 
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machine learning methods. In the literature review (Chapter 3), we start by examining the 

conventional approaches to mechanical material inverse design, highlighting the current traditional 

methods along with their advantages and drawbacks. Following this, the review explores the 

integration of machine learning into mechanical material inverse design, covering both its 

predictive and generative capacities. The benefits of applying machine learning in this field are 

then detailed, illustrating how these advanced computational techniques offer significant 

improvements over traditional methods in terms of accuracy, efficiency, and the ability to handle 

complex material behaviors and structures. 

Separate framework and implementation chapters are devoted to solving each research question. 

In the first chapter, we outline a machine learning-based methodology that delineates an implicit 

connection between material microstructures and their targeted properties. We detail the creation 

of a dataset composed of randomly generated 2D porous materials, including specifics on how this 

data was generated. Addressing the initial research question, we introduce novel machine learning 

models specifically developed to predict the targeted material properties from their microstructures. 

These models are meticulously dissected to explain their components, operational mechanisms, 

and how they process microstructural data to make predictions. Finally, we explore potential 

extensions of these models and discuss prospects. 

In the subsequent chapter, building upon the methods outlined in the previous chapter, we proceed 

to develop a generative machine learning model. This model is designed to create material 

microstructures that meet specific targeted material properties. We then provide a detailed 

breakdown of these models, shedding light on their operational intricacies and the innovative 

approaches they incorporate. The discussion also covers the novel aspects of our models, setting 
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them apart from existing methods. We outline the advantages of these new models, emphasizing 

their potential impact on the field.  

In the following chapter, we present a dataset centered around 3D fiber structures, detailing the 

methodology behind its creation and the characteristics of its distribution. This introduction sets 

the foundation for unveiling a specialized machine learning model designed for generating 3D 

fiber structures. The model is thoroughly examined, with a deep dive into its architecture, 

operational mechanics, and the principles that facilitate its functionality. Subsequently, we explore 

the benefits of this innovative model, highlighting how it advances the field of material science 

through its ability to accurately simulate and generate complex 3D fiber structures. The discussion 

culminates with considerations on the future implications of this model, including potential 

applications, anticipated enhancements, and its integration into practical work. And introduce an 

improved machine learning method to solve the fiber collision problem, shows how the physics 

and design requirements be incorporated in the machine learning models. This chapter aims to 

show the intersection of machine learning and material science, illustrating the transformative 

potential of these models in crafting the next generation of materials and facilitating 

groundbreaking research in the domain. 

For the future work chapter, we will integrate 3-D printing with our current methods, detailing a 

feasible approach to implementing new inverse design methods in practical applications. We will 

outline specific steps and considerations for this integration, ensuring optimal performance. 

Additionally, we will discuss potential challenges and solutions, providing a guide for practitioners. 

The chapter will conclude with an outlook on future work and prospects, highlighting key areas 

for further research and the long-term impact of these technologies on various practical industries. 
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CHAPTER TWO 

LITERATURE REVIEW 

2.1 Traditional Mechanical Material Inverse Design 

Inverse design in the context of mechanical materials entails defining desired outcomes or 

performance metrics, and thereafter deducing the material composition and architecture that would 

fulfill those objectives. Contrary to forward design, which derives properties from predetermined 

materials, inverse design initiates with an end goal, rendering it a potent methodology for 

pioneering material innovation. Traditionally, this procedure was predominantly dependent on 

empirical insights, iterative experimentation, and deterministic optimization techniques. The 

notion of inverse design in mechanical materials is historically established, originating across 

diverse engineering fields with the objective to surmount the constraints posed by forward design 

methodologies. In its early stages, these strategies were limited by the computational resources at 

hand, centering on rudimentary models and heuristic methods to investigate potential material 

configurations. 

In the realm of mechanical material inverse design, traditional methodologies primarily focused 

on optimization techniques and empirical modeling. Key tools for navigating the material design 

space included optimization algorithms like gradient-based methods [63], genetic algorithms [64], 

and simulated annealing [65]. These methods were augmented with empirical [66] and semi-

empirical [67] models, which were instrumental in forecasting material responses under a spectrum 

of conditions. 

Inverse design has found application across multiple domains within mechanical materials, 

including: (1) composite materials [68], where the focus is on devising composites with ideal fiber 

orientations and volume fractions to attain specific mechanical properties. (2) Metamaterials [69], 
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aimed at fabricating materials with custom microstructures to realize characteristics unattainable 

in natural substances, such as negative Poisson's ratio or customized thermal expansion 

coefficients. (3) Structural components [70], involving the creation of components with optimized 

geometries and materials to meet precise requirements for load bearing, vibration mitigation, or 

thermal management. 

Key challenges encountered in the traditional approach to mechanical material inverse design 

include computational complexity, characterized by the significant computational expense 

required for simulating and optimizing intricate material systems. Limited search space 

exploration, where conventional techniques may not thoroughly probe the extensive design 

landscape, thereby possibly overlooking optimal configurations. Dependency on material models, 

indicating that the precision of inverse design results is greatly reliant on the veracity of the 

employed empirical and semi-empirical models. 

 

2.2 Machine Learning for Material Design 

Initial efforts in applying ML to material design were concentrated on the straightforward 

prediction of properties using datasets of previously characterized materials. These early studies 

employed regression models [71] and decision trees to predict various properties, such as melting 

points [72], stability [73], and electronic configurations [74], demonstrating ML's capability to 

significantly influence material discovery and design. 

Subsequently, the field has witnessed rapid advancements with the adoption of more complex ML 

models, including as DL, GNNs, and generative models. Deep learning has revolutionized the 

processing of complex, hierarchical data prevalent in materials science. GNNs have gained 

popularity for their efficacy in modeling materials that can be depicted as graphs, like molecules 
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[75] and crystals [76]. Generative models have been utilized to design new molecules and materials 

by learning the distribution of existing materials and generating novel instances with desired 

characteristics. 

A pivotal development in this domain is the application of active learning and Bayesian 

optimization techniques, which iteratively refine models and experimental designs. These methods 

have optimized the exploration of extensive material spaces, efficiently pinpointing promising 

candidates for synthesis and testing. 

Machine learning's application extends across various materials science domains, including energy 

storage [77], catalysis [78], photovoltaics [79], and pharmaceuticals [80], showcasing its versatility 

in designing high-capacity battery materials [81], discovering efficient catalysts [82], developing 

new solar cell materials [83], and accelerating drug discovery [84]. 

Despite considerable advancements, challenges such as data scarcity, dataset quality, and the 

interpretability of ML models persist. The materials science field often grapples with the absence 

of large, high-quality datasets, hampering the efficacy of data-driven approaches. Furthermore, the 

opaque nature of certain ML models, especially deep neural networks, presents hurdles in 

comprehending and trusting their predictions. Future research will likely concentrate on crafting 

more interpretable ML models, fostering collaborations with computational chemistry and physics 

to generate data efficiently, and enhancing unsupervised and semi-supervised learning techniques 

to better utilize unlabeled data. Another promising avenue involves amalgamating simulation and 

experimental data to forge hybrid models that more accurately predict material properties and 

inform the design process. 

 

2.3 Machine Learning and Mechanical Material Inverse Design 
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This interdisciplinary approach aims to enhance the precision, efficiency, and innovation in 

designing materials with desired mechanical properties. The review will cover the evolution, key 

contributions, methodologies, applications, challenges, and prospects of integrating ML into 

mechanical material inverse design. 

The incorporation of machine learning into the inverse design of mechanical materials represents 

a significant paradigm shift. Traditional inverse design methods, while powerful, often face 

limitations in terms of computational efficiency and the ability to navigate complex, high-

dimensional design spaces. Machine learning, with its ability to learn from data and make 

predictions, offers a promising solution to these challenges, facilitating a more refined search for 

optimal material configurations. 

The integration of ML into this field has evolved rapidly in recent years, fueled by advancements 

in computational power, algorithmic development, and the availability of large datasets. Early 

contributions focused on leveraging regression models and neural networks to predict material 

properties from compositional and structural parameters. Recent advancements have seen the 

adoption of more sophisticated models, as we mentioned, CNNs have been developed for image 

recognition, while generative models such as GANs and VAEs are employed in generative tasks. 

Machine learning models, particularly supervised learning algorithms, have been extensively used 

to predict the properties of materials based on their composition and structure. These models can 

significantly reduce the need for exhaustive experimental or computational property evaluations. 

Generative models have been applied to generate new material designs. These approaches can 

explore the design space more effectively, proposing novel materials that fulfill specified 

performance criteria. Applied into topology and optimization of mechanical materials [85] by 

using reinforcement learning and VAEs. 
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Combining ML models with optimization algorithms and active learning strategies enables 

efficient navigation of the design space. This synergy focuses experimental and computational 

resources on the most promising areas, accelerating the discovery process. 

The integration of machine learning into the inverse design of mechanical materials offers a 

promising avenue for accelerating the discovery and optimization of novel materials. By enhancing 

traditional design methodologies with the predictive and generative capabilities of ML, researchers 

and engineers can tackle complex design challenges more efficiently and innovatively. As the field 

continues to evolve, interdisciplinary collaboration will be key to unlocking the full potential of 

this approach, leading to breakthroughs in material science and engineering. 

And machine learning based mechanical inverse design have challenges. (1) Complexity of 

mechanical systems, mechanical systems often involve intricate dynamics, non-linear behaviors, 

and multi-physics interactions can be challenging due to the high-dimensional and complex of the 

data. (2) Data availability and quality, machine learning models require large amounts of high-

quality data for training. In mechanical inverse design, obtaining sufficient and relevant data can 

be difficult, especially for complex applications. (3) Interpretable, understanding the features and 

representations that are meaningful for mechanical design can be important, but have difficult in 

machine learning based process. (4) Physical constraints and validity, mechanical designs must 

adhere to physical laws and constraints. Ensuring that machine learning models produce designs 

that are physically valid and feasible requires careful integration of domain knowledge into the 

learning process. (5) Transferability, machine learning models trained on specific datasets may 

struggle to generalize to new scenarios or transfer to different applications. This limits their 

adaptability and scalability in mechanical inverse design tasks. (6) Computational efficiency, 

design optimization often requires evaluating many design configurations. Machine learning 
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models used in inverse design must be computationally efficient to handle such evaluations within 

time challenge.  
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CHAPTER THREE 

ESTABLISHING THE RELATIONSHIP BETWEEN MATERIAL MICROSTRUCTURES 

AND MECHANICAL PROPERTIES 

3.1 Data Preparation 

The goal of material property prediction is to predict porous material’s mechanical properties using 

the materials’ microstructural images. Such images are routinely obtained by using micro-imaging 

techniques such as optical microscopy (OM) [86], scanning electron microscopy (SEM) [87], and 

Electron Backscatter Diffraction (EBSD) [88] etc. For microstructure generation, given the target 

material properties as the input, the objective is to generate microstructural configurations with 

which the porous material exhibits the required material properties. In both cases, it is sufficient 

to represent the 3-D microstructure of the porous materials by using multi-layer binary images 

similar to CT scans. Due to the lack of large scale scanned images necessary for the development 

of machine learning models, in this work, we generate a large set of computer images of porous 

materials with various porosity and microstructure morphology by cutting out pores from a solid 

material. In addition, without losing generality, we focus on 2-D microstructures in this study. The 

extension of the work to 3-D is straightforward. The development of the neural networks involves 

three major steps: generation of the input data, construction of the neural network architecture, and 

training and verification. In this section, the steps for constructing the neural networks to achieve 

the functions described above are presented as follows.  

 

3.1.1 Data Generation 

Three input data sets are necessary for neural network development and training. The first data set 

contains microstructure binary images of porous materials. Associated with each of the 
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microstructure images are the porosities of the materials which are stored as elements of the second 

data set. The third data set contains the mechanical properties such as elastic stiffness or stress-

strain curves. All the data sets are generated computationally as described below. 

 

3.1.2 Microstructure of Porous Material 

The microstructure data is generated by creating computer images in a representative domain. The 

initial domain is set to be a solid square domain. The domain is discretized into 100×100 square 

elements. The pores of the material are generated by cutting out blocks of elements at random 

locations of the domain. The elements that are cut out are considered as belonging to pore regions 

and remaining elements are solid materials. The elements of pore regions are assigned value “0”, 

and those occupied by the solid material are assigned value “1”. Thus the microstructure of the 

material is represented by the 100×100 binary image. To control the porosity, the volume fraction 

of the pores, i.e. the porosity, is calculated after each cut as 𝜑 = 𝑉𝑝/𝑉𝑏 where Vp is the volume of 

the pores and Vb is the volume of the solid domain. The cutting stops when the desired porosity is 

reached. To control the size of the pores as well as the feature size of the material microstructure, 

different sizes of the cutting block are used. In this work, the set of cutting block sizes used are 

2×2, 3×3, 4×4, 5×5, and 6×6. It should be noted that, to maintain the integrity of the domain and 

avoid material “breaking away”, a boundary region measured 5% of the length/width of the domain 

is kept intact in the cutting process. After the pore cutting process, the porosity of the material φ 

is recorded. Through the cutting process, two data sets, including a set of binary matrices 

representing the microstructures of the porous materials and the corresponding porosity set, are 

produced. Examples of the generated porous material domains are shown in Fig. 1. In the 

preparation of the microstructure image sets, we produce a uniform distribution of the porosity 
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from 1% to 60%. As shown in Fig. 1, when the porosity is larger than 60% pore regions become 

dominant, and the center part of the domain becomes mostly a large pore. In that case, the effect 

of microstructural morphology diminishes, and the mechanical properties of the material are 

mostly determined by the porosity. For this reason, we only focus on the porosities less than 60%. 

To ensure a uniform distribution, the range of the porosity under consideration is divided into 60 

equal-size bins, each contains the same number of microstructure samples. In addition, each bin 

of porosity contains the same number of microstructure images with each of the four cut sizes. In 

this work, a total of 120,000 of microstructure images are generated for the development of the 

neural networks (i.e. 2000 samples in each porosity bin), among which 80% of the images are used 

for training, 20% are used for testing.    

 

Figure 1 Computer generated porous material microstructures. 
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3.1.3 Elastic Moduli and Nonlinear Stress-Strain Curves 

Once the representative microstructure images are produced, the porous materials’ mechanical 

properties are obtained by using finite element analysis (FEA). In this work, we consider two 

different scenarios: linear and nonlinear porous materials subjected to linear small elastic 

deformation and nonlinear large elastic deformation, respectively. In the linear scenario, the 

constituent (or base) material is linear elastic and deformation is small. We focus on the tensile 

elastic modulus or Young’s modulus of the porous material. The elastic modulus Ep of the porous 

material is obtained as 𝐸𝑝 = 𝜎/𝜖, where  and  are the normal stress and strain, respectively. The 

finite element model setup is shown in Fig. 2 (a) where a unit thickness 2-D representative material 

is roller-supported at the left and bottom edges and a horizontal displacement is applied to the right 

edge. Note that the left and bottom sides of the representative material is fixed in x- and y-

directions, respectively. The top edge is kept free. The stress  is calculated as the reaction force 

on the left edge divided by the cross-section area of the material at the left edge. The normal strain 

 is obtained as the applied horizontal displacement divided by the original length of the material. 

To make the machine learning models independent from the constituent material, the elastic 

modulus of the solid constituent material (porosity=0) is scaled to 100. The obtained porous 

materials’ elastic modulus values are normalized against the solid material’s modulus, which is 

referred to as the normalized elastic modulus. For example, elastic modulus of 50 obtained from a 

given porous material means it is 50% of the solid constituent material’s modulus. The normalized 

Young’s modulus is also denoted as Ep for convenience. For the nonlinear case, the constituent 

material is assumed to be hyperelastic and subjected to large deformation (strain >100%).  While 

there are many hyperelastic material models, without losing generality, the five parameter 
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Mooney-Rivlin model [126] is employed in this study to describe the material behavior. The strain 

energy is given by 

𝑊 = 𝑐10(𝐼1 − 3) + 𝑐01(𝐼2 − 3) + 𝑐20(𝐼1 − 3)
2
+ 𝑐11(𝐼1 − 3)(𝐼2 − 3) + 𝑐02(𝐼2 − 3)

2
 (1)  

where 𝐼1, 𝐼2 are the first and second invariants of the deviatoric part of the right Cauchy-Green 

deformation tensor, respectively. In this work, a representative set of the five parameters is used 

for the constituent material: 𝑐10 = −1.4516, 𝑐01 = 1.8669, 𝑐20 = 1.5083, 𝑐11 = −4.3864, 𝑐02 =

3.8062, all in terms of unit stress. Note that, for generality the unit stress is simply defined as (unit 

force)/(unit length)2 to nondimensionalize the analysis. The actual units can be chosen depending 

on the specific materials. For the nonlinear large deformation case, the FEA is set up the same way 

as shown in Fig. 2(a). The target material property is the stress-strain curve obtained by calculating 

a set of average stresses at different strains. In this study, the maximum strain is set to be 120%, 

as depicted in Fig. 2(b). 

 

Figure 2 (a) Setup of tensile deformation FEA; (b) Large deformation of a hyperelastic porous 

material. 
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The FEA results show that, while the tensile stress-strain curves can be very different depending 

on the microstructure of the hyperelastic porous material, they can be closely approximated by 

using a cubic function as,  

𝜎 = 𝑏0 + 𝑏1𝜖 + 𝑏2𝜖
2 + 𝑏3𝜖

3 (2)  

where 𝜎 is the axial stress, 𝜖 is the strain, and b0, b1, b2, b3 are the coefficients. Note that, since 

the curves all go through the origin point, b0 is always zero. Therefore, each stress-strain curve is 

represented by a 3×1 vector containing the coefficients b1, b2 and b3. For implementation 

convenience, as discussed in Section 2.3, it is necessary to normalize the coefficients such that 

their values have a range spanning tens to hundreds of integers. Many normalization schemes can 

be used for this purpose. In this work, we implement a simple normalization scheme as follows. 

First, a normalized displacement is defined as 𝑢 = 𝑢/(𝑠𝐿), where u is the actual displacement, L is 

the length and height of the representative material, and s is a scaling factor for adjusting the value 

range of the normalized coefficients. In addition, a dimensionless normalized force 𝐹 is defined as 

𝐹 = 𝐹/𝐹0, where 𝐹0 is the unit force. Next, by using the stress and strain definitions, 𝜎 = 𝐹/(𝐿𝑡) and 

𝜀 = 𝑢/𝐿, Eq. (2) can be rewritten as 

𝐹 =
𝑏1𝐿𝑡𝑠

𝐹0
(𝑢) +

𝑏2 < 𝑠
2

𝐹0
(𝑢)2 +

𝑏3 < 𝑠
3

𝐹0
(𝑢)3 = 𝑎1𝑢 + 𝑎2𝑢

2
+ 𝑎3𝑢

3
(3)  

where is 𝐹 the normalized tensile force, t is the thickness of the material. Thus, the stress-strain 

function shown in Eq. (2) is transformed to the normalized force-displacement equation shown in 

Eq. (3) in which the dimensionless coefficients are 𝑎1 = 𝑏1𝐿𝑡𝑠/𝐹0, 𝑎2 = 𝑏2 < 𝑠
2/𝐹0, and 𝑎3 = 𝑏3 <

𝑠3/𝐹0. With this transformation, the new coefficients are dimensionless with a proper range for the 

machine learning model. For the porous material under consideration, s is set to be 0.4 and t is unit 

length for all the calculations. In summary, for each microstructure configuration and loading 
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condition, three data sets are generated and stored: (1) an L×L binary image representing the 

material microstructure, (2) the porosity, and (3) the material property of the material, which is the 

elastic modulus for the linear case and the coefficient vector for the nonlinear case. 

 

3.2 Neural Network for Prediction 

Among the existing neural networks suitable for image classification, convolution neural networks 

(CNN) are mostly formulated as a variant of feedforward neural networks [89]. Typically, a CNN 

turns an image into a layer with a filter or detector, along with pooling and normalization layers 

allowing for data simplification. They are suitable for image processing and recognition patterns 

in visual data [90, 91], and have been applied to material texture recognition [92]. ResNet is a deep 

residual learning framework that combines residual connection and inception architecture to 

overcome CNN’s accuracy degradation problem [93]. Since the problem under consideration is 

essentially an image recognition and characteristic prediction problem, ResNet based methods are 

suitable choices. In this study, for predicting the elastic modulus of the linear elastic porous 

material, a ResNet-18 neural network is constructed and trained. 

The plain network structure is based on VGG nets. The convolution layers typically have 3×3 

filters, in our model, we continuously take 3x3 as our filter size, the limited sized filters kind of 

consistently catch and focus the local details and relationships of microstructure. For the same 

output feature map, the layers have the same number of filters. If the size of the feature map is 

halved the number of filters is doubled to preserve the time complexity of each layer. Based on the 

above plain network, a shortcut connection is inserted which turns the network into its counterpart 

residual version as shown in Fig. 3. The identity shortcuts 𝐹(𝑥(𝑊) + 𝑥) can be directly used when 

the input and output are of the same dimensions. The attributes of VGG net and residual shortcuts 
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constitute the Resnet help the model remember and understand the local detailed of porous 

microstructure and not ignore the global attributes of the morphology. The material property of 

the material is global porous material properties based on the local details of the porous material 

structure, the model based on Resnet matches the goal we pursuit well.   

 

Figure 3 Basic ResNet architecture. 

 

Figure 4 ResNet-18 architecture for predicting Young’s modulus Ep . 

 

3.2.1 Neural Network for Elastic Modulus Prediction 

For Young’s modulus prediction, we follow the ResNet-18 architecture as shown in Fig. 4, which 

is composed of 18 layers of residual neural networks, including 5 layers of 64 filters convolution 

layers, 4 layers of 128 filters convolution layers, 4 layers of 256 convolution layers, 4 layers of 

512 convolution layers, 1 layer of average pooling, and 1 layer of regression. As discussed in 

Section 2.1, the microstructures of the porous material are generated by randomly cutting square 
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shaped pores in the solid domain using five different cutting sizes (2×2, 3×3, 4×4, 5×5, 6x6). For 

the ResNet-18 network’s training and testing (ratio = 80%/20%), a total of 120,000 microstructures 

are generated uniformly over the porosity range of 1% - 60%. It is found that for this porosity 

range, the normalized Young’s modulus varies from 12 to 100.  For Young’s modulus prediction, 

we use the smooth L1 loss function as it is less sensitive to outliers compared to the mean square 

error and, in some cases, can prevent exploding gradients. The loss function is given by 

𝑙𝑜𝑠𝑠(𝑥, 𝑦) =
1

𝑛
∑𝑧𝑖(𝑥𝑖, 𝑦𝑖)

𝑛

𝑖=1

 (4) 

and 

𝑧𝑖 = {
0.5(𝑥𝑖 − 𝑦𝑖)

2/𝛽,∧ 𝑖𝑓|𝑥𝑖 − 𝑦𝑖| < 𝛽
|𝑥𝑖 − 𝑦𝑖| − 𝛽/2,∧ 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (5) 

where β is set to be 1.0. In the regression step, the regression vector V is initialized as a 1-D vector 

containing the values of Young’s modulus ranging from 12 to 100. Therefore, the length of the 

regression vector is 89, representing the integer values in the range. The regression value is 

computed as V∙x, where x is the result from the last step of the ResNet-18 network. The regression 

layer is refined to output Young’s modulus from 12 to 100. It is treated as an extension of 

classification in regression mode, putting the different Young’s modulus into the appropriate 

integer bin.  

 

3.2.2 Neural Network for Nonlinear Stress-Strain Curve Prediction 

For the nonlinear case, the goal is to predict the stress-strain curve for a given microstructure of 

the hyperelastic porous material. Different from the linear material case where the output is one 

scalar material property (Young’s modulus Ep), the nonlinear stress-strain curve is represented by 

a cubic polynomial. The output curve is described by three nonzero coefficients of the polynomial. 
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In this case, with a modification of the regression step to accommodate the three scalar output 

quantities, the same ResNet-18 is used to predict the stress-strain curves. The network is shown in 

Fig. 5. The same microstructure image set is used for the nonlinear material case. After the stress-

strain curves are computed by using FEA, each microstructure image is associated with three 

coefficients characterizing the stress-strain curve. Once again, 80% of the microstructure data sets 

are used for training, and the rest for testing.  

 

 

Figure 5 ResNet-18 for predicting stress-strain curves. 

 

In the selection of the loss function, it is observed that, compared to the L1 loss function, ResNet-

18 achieves a better performance for predicting nonlinear stress-strain curves if more weight is 

given to the outliers. Therefore, we adopt the MSE loss function for the nonlinear case: 

𝑀𝑆𝐸(𝑥, 𝑦) =
1

𝑛
∑(𝑥𝑖 − 𝑦𝑖)

2

𝑛

𝑖=1

 (6) 

In the regression step, three regression vectors, V1, V2, V3, are set up using the integer values of 

the three stress-strain curve coefficients. From the polynomial fitting results, the ranges of the 

coefficients a1, a2, a3 are observed to be [5, 35], [-40, -5] and [0, 15], respectively, and the lengths 

of the three regression vectors are then 16, 36 and 31, respectively. The regression values are Vi∙x, 

i=1,2,3, and x is the result from the last step of the ResNet-18 network.  
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3.3 Results 

3.3.1 Elastic Modulus Prediction 

We first demonstrate the performance of the ResNet-18 network for Young’s modulus prediction. 

For the 120,000 microstructure samples generated and uniformly distributed in the porosity range 

of [1%, 60%], the variation of the normalized Young’s modulus as a function of the porosity is 

shown in Fig. 6. It is shown that the range of Young’s modulus is between 100 and 12. At the 

intermediate porosities, the elastic modulus of the porous materials with the same porosity exhibits 

large variations. The variation decreases when the porosity becomes smaller or larger. That is, the 

variation becomes quite small when the porosity is either very small (nearly a dense solid) or very 

large (nearly a hollow structure). This implies that the influence of porosity on the elastic modulus 

is more than that of the microstructure configuration (morphology of the pores) at small and large 

porosities. However, the influence of the microstructure becomes more significant at the 

intermediate porosities and reaches its peak at porosity around porosity = 18%. As shown in Fig. 

6, for the same porosity of 18%, depending on the morphology of the pores in the material, the 

elastic modulus can vary from 19 to 49. Figure 7 shows Young’s moduli of 24,000 random image 

samples predicted by using the ResNet-18 shown in Fig. 4 in comparison with the FEA results 

which are considered as the true values of Young’s modulus. The average MSE of the predictions 

is 0.00386. It is evident that the Young’s modulus variation due to the combination of the porosity 

and microstructure morphology is captured by the ML model. Note that the total training epochs 

is 250. 
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3.3.2 Nonlinear Stress-Strain Curve Prediction 

The variation and distribution of the three coefficients of the cubic stress-strain curves as functions 

of the porosity of the hyperelastic porous material are shown in Fig. 8. Similar to the elastic 

modulus, the stress-strain curve coefficients exhibit smaller variations at the two ends of the 

porosity axis, although their trends are different. The prediction results obtained from the ResNet-

18 network shown in Fig. 5 in comparison with the FEA results are shown in Fig. 9. While the 

results of the predicted coefficients are slightly less accurate compared to the Young’s modulus 

predictions, the resultant nonlinear stress-strain curves of the material match quite well with the 

FEA results. This is because the stress-strain curve is determined by the cubic polynomial as a 

whole and is less sensitive to the value of individual coefficients. Figure 12 shows an example 

with the binary microstructure image on the left and the stress-strain curve comparison on the right. 

The average MSEs of a1, a2 and a3 are 0.0222, 0.0176, 0.0208 respectively. The total training 

epochs for this case is 250. 

Figure 6 Elastic modulus variation as a function of 

porosity. 

Figure 7 Predicted vs. true Young’s 

modulus (24,000 samples). 
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(a)                                           (b)                                                  (c) 

Figure 8 Variation and distribution of the stress-strain curve coefficients as functions of porosity. 

From left to right: a1, a2 and a3. 

 

Figure 9 Predicted vs. true values of the coefficients of the cubic stress-strain curves (24,000 

samples). From left to right: a1, a2 and a3. 
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(a)                                                       (b) 

Figure 10 An example of predicted stress-strain curve for a given hyperelastic porous 

microstructure in comparison with the FEA result. Left: given porous microstructure. Right: 

stress-strain curve comparison. 

 

3.4 Discussion 

In this section, we propose a machine learning approach to predict Young’s modulus and stress-

strain curves for linear and nonlinear porous materials, respectively, and to generate porous 

microstructures based on given linear and nonlinear material properties. In our neural networks, 

the microstructure of the porous materials is represented using binary images. Pores are generated 

by randomly removing element blocks of different sizes from the material domain. For predicting 

material properties, we develop ResNet-18 neural networks to predict the normalized Young’s 

modulus of porous materials. These ResNet-18 networks are trained on 120,000 image samples, 

and optimal hyperparameters are determined. Our results demonstrate that the predictions of 

Young’s modulus are highly accurate, capturing the variations due to the combination of porosity 

and microstructure morphology effectively. 
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CHAPTER FOUR 

2D MICROSTRUCTURE GENERATION FOR LINEAR AND NONLINEAR TARGET 

MATERIAL PROPERTIES 

4.1 Generative Machine Learning Models 

4.1.1 Microstructure Generation Model for Given Elastic Modulus 

While the machine learning models discussed above enable a fast mechanical property evaluation 

of a given porous material based on its microstructure, in this section, we develop machine learning 

models that will enable efficient design of the microstructure to achieve given desirable 

mechanical properties. For such inverse design problems, generative neural networks are good 

candidates. As discussed in Section 1, there are three main frameworks for generative models: 

variational autoencoders (VAE), reinforcement learning (RL), and generative adversarial networks 

(GAN). The major challenge in microstructure generation through GAN is the mismatch between 

the generator’s continuous output and the actual binary image, making the adversarial training 

difficult to succeed. For RL, it is difficult to design and implement an appropriate reward function 

for the complex binary microstructures. Another challenge is maintaining consistency among the 

microstructures generated by the trained RL model. In comparison, VAE models encode the global 

distribution of the microstructures, making it more suitable to match the attributions of the 

microstructure data. For this reason, in this work we choose the framework of VAE for 

microstructure generation. 

VAEs simultaneously train a generative model 𝑝𝜃(𝑋, 𝑧) = 𝑝𝜃(𝑋 ∨ 𝑧)𝑝𝜃(𝑧)  for the input x using 

latent variable z, and an inference model 𝑞𝜙(𝑧|𝑋 by optimizing the evidence lower bound (ELBO). 

For microstructure generation based on a given elastic modulus (linear case), we construct a 

conditional VAE (cVAE) with the conditional distribution 𝑝(𝑋 ∨ 𝑧, 𝑦) , where X is the 
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microstructure image, y is the elastic modulus and z is a latent variable. We can use deep neural 

networks (parametrized by 𝜃) to approximate 𝑝(𝑋 ∨ 𝑧, 𝑦).  The ELBO for the conditional VAE can 

be written as: 

𝐿(𝜃, 𝜙; 𝑋, 𝑦)𝑉𝐴𝐸 = −𝐾𝐿 (𝑞𝜙(𝑧|𝑋) ∥ 𝑝𝜃(𝑧)) + 𝐸𝑞𝜙(𝑧|𝑋)[𝑙𝑜𝑔𝑝𝜃(𝑋 ∨ 𝑧, 𝑦)] (7)  

where the Kullback-Leibler divergence 𝐾𝐿(𝑞𝜙 ∥ 𝑝𝜃) is used to quantify the distance between two 

distributions. The encoder (parametrized by 𝜙)  is to encode the input x into a latent variable z, and 

the decoder (parametrized by 𝜃) is used to reconstruct the original input x using sample from the 

latent distribution and the corresponding elastic modulus y.  

There are two main challenges for the conditional generation of microstructure images. First, it is 

difficult to integrate the elastic modulus, which is a scalar, into the generator as a condition to 

control the generation of the corresponding microstructure.  Second, the Encoder-Decoder pair 

(from X to z, then y and z back to X’) tends to focus on local details at the pixel level to minimize 

the reconstruction loss and ignores the global semantic information and some key pixels, such as 

areas of high stress. For the binary microstructure images, it is necessary to construct an efficient 

model to capture the specific geometrical patterns and ensure the generated images have a 

reasonable physical meaning. In this work, we extend the cVAE model shown in Eq. (8) and 

construct a property-to-microstructure generation model to address the above challenges. First, we 

introduce a fusion layer to integrate conditional information y with the latent variable z. While this 

effectively alleviates the problem of condition integration, the resultant Young's modulus of the 

generated images does not match well with the given conditions. To achieve better conditional 

generation, we impose a stronger constraint (β > 1) on the latent variable z to limit the 

representation capacity of z [94]. When the latent variable z and the condition y are provided 

together to the decoder for image reconstruction, a higher β enforces z to be more concerned with 
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capturing the microstructural information, such as the size and distribution of the pores. Therefore, 

the encoder projects the image to the latent variable z that is largely independent from the scalar 

value of Young's modulus, which is more conducive to the conditional generation of the image. To 

address the second challenge, we introduce a pretrained regression model to form the decoder-

regression pair (from y and z to X’, then back to y’). Similar to the discriminator in GAN [95], the 

pretrained regression model constrains the decoder so that it generates more physically meaningful 

images. Meanwhile, the regression model also allows the decoder to generate images that better 

match the conditions. The new conditional generation model with the scalar Young’s modulus 

value as the condition is shown in Fig. 11. The objective function of our framework can be written 

as: 

𝐿(𝜃, 𝜙; 𝑋, 𝑦)𝑉𝐴𝐸 = 𝛽𝐾𝐿 (𝑞𝜙(𝑧|𝑋) ∥ 𝑝𝜃(𝑧)) − 𝐸𝑞𝜙(𝑧|𝑋)[𝑙𝑜𝑔𝑝𝜃(𝑋|𝑧, 𝑦)] + 𝛼𝐿𝑅 (8) 

where the regularization coefficients 𝛽  and 𝛼  are used to balance the weights of KL loss and 

regression loss 𝐿𝑅 . The framework is successfully applied to the generation of binary 

microstructure images with Young's modulus as the condition. As shown in Fig. 11, the encoder 

maps the input binary images X to the latent variables z. The fusion layer is used to integrate the 

information from the condition y and latent variable z.  The decoder decodes the output of fusion 

layer to binary microstructure images. Then the pretrained regression model predicts Young's 

modulus given the reconstructed image. During the model training, the pretrained regression 

model is frozen and kept the same.  
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Figure 11 Neural network architecture of the property-microstructure generation model. 

 

Once again, the dataset is split into training (80%) and testing (20%) datasets. Each sample is a 

1 × 100 × 100 binary image and is paired with a ground-truth elastic modulus. We implement the 

conditional property-microstructure generation model based on the Ladder VAE [96, 97], which 

allows interaction between the bottom-up and top-down layers and provides better log-likelihood 

lower bound compared to the conventional VAE. These two VAE models have the identical 

generative models, the main difference is in the inference models. Since the input image is binary, 

the Binary Cross Entropy is chosen for the reconstruction loss. We apply the L2 loss as the 

regression loss 𝐿𝑅 . We also employ the batch-normalization and dropout scheme (dropout 

probability: 0.2) which are important for training models with many stochastic layers. The 

coefficient 𝛽 is set to 3 to place a stronger constraint on the latent bottleneck. 𝛼 is set to 30,000 to 

balance the regression loss term. After training, we randomly sample each pixel from a uniform 

distribution to generate the binary image. Finally, a post-processing step is performed to remove 

the isolated material islands in the generated binary images by using the breadth-first search (BFS).  

In the microstructure generation model, the encoder and the decoder are composed of basic 

residual blocks shown in Table 1. To be specific, the encoder includes 5 ResidualBlock blocks and 
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the decoder includes 8 ResidualBlock blocks. The total number of trainable parameters is 

1,417,537. We use the Sigmoid activation function in the final output layer of the decoder. For the 

fusion layer, a trainable linear layer is used to map Young's modulus (scalar value) to the same 

dimension as the latent variable, which is similar to the word embedding layer. The difference is 

that word embedding uses indices to retrieve the corresponding embeddings. We obtain desirable 

results by directly summing the transformed Young's modulus and the latent variable. The 

regression model is the ResNet-18 shown in Fig. 4. To train the generative model, we choose the 

Adamax optimizer, and set the batch size to 64. The learning rate is set to 3e-4. The total training 

epochs is 500. 

Table 1 Modules and their parameters for each ResidualBlock 

Modules Parameter 

BatchNorm2d num_features=64, eps=1e-05, momentum=0.1, affine=True 

ELU (activa-

tion) 

alpha=1.0 

Conv2d in_channels=64, out_channels=64, kernel_size=(3,3), stride=(1,1), pad-

ding=(1,1) 

Dropout2d p=0.2, inplace=False 

BatchNorm2d num_features=64, eps=1e-05, momentum=0.1, affine=True 

ELU (activa-

tion) 

alpha=1.0 

Conv2d in_channels=64, out_channels=64, kernel_size=(3,3), stride=(1,1), pad-

ding=(1,1) 
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Dropout2d p=0.2, inplace=False 

 

4.1.2 Microstructure Generation Model for Given Stress-Strain Curves. 

In this section, we construct a machine learning model for generating microstructures of a 

hyperelastic porous material to exhibit a given stress-strain curve. Different from the linear porous 

material characterized by a single scalar Young’s modulus, the stress-strain curves of the 

hyperelastic porous materials can be described by using a cubic function with three coefficients, 

as discussed in Section 2.2. While the descriptor of mechanical deformation behavior is changed 

from a scalar to a vector, the microstructure generation considerations are the same as the 

generation for Young’s modulus. Therefore, the microstructure generation framework described in 

Section 2.4 is adopted for the nonlinear stress-strain relationship and the cVAE based model shown 

in Fig. 11 is extended to include the stress-strain curve coefficient vector as the condition in the 

fusion layer and the Resnet-18 shown in Fig. 5 as the pretrained regression model. The architecture 

of the extended model is shown in Fig. 12. The objective function becomes: 

𝐿(𝜃, 𝜙; 𝑋, 𝑎)𝑉𝐴𝐸 = 𝛽𝐾𝐿 (𝑞𝜙(𝑧|𝑋) ∥ 𝑝𝜃(𝑧)) − 𝐸𝑞𝜙(𝑧|𝑋)[𝑙𝑜𝑔𝑝𝜃(𝑋|𝑧, 𝑎)] + 𝛼𝐿𝑅 (9) 

where a=[𝑎1, 𝑎2, 𝑎3]
𝑇. In Eq. (9), the regression loss 𝐿𝑅 employs the relative absolute error between 

two vectors. It is observed that β=3 and α=100,000 give a better balance of the loss terms in the 

nonlinear deformation generation case. The encoder and decoder blocks, activation function, 

learning rate, batch size, and all the other parameters of the models are the same as the Young’s 

modulus based microstructure generation model. All the hyperparameters and training strategies 

are also the same as given in Section 2.4. 
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Figure 12 The microstructure generation model for generating hyperelastic material 

microstructures for given stress-strain curves. 

 

4.2 Results 

4.2.1 Microstructure Generation Based on Elastic Modulus 

To evaluate the performance of microstructure generation, we choose eight different Young's 

modulus conditions ranging from 15 to 80 and generate 128 samples for each condition to calculate 

mean and standard deviation of predicted Young's modulus. The results are shown in Table 2. 

Figure 18 shows examples of generated microstructures: each column contains eight different 

generated microstructures corresponding to the same Young’s modulus denoted at the top. The 

results demonstrate that the model is capable of producing microstructures that satisfy the 

mechanical property requirement and providing microstructural “designs” with considerable 

morphology variations.   

Table 2 Mean and standard deviation of predicted elastic modulus from 15 to 80 

Condi-

tion 

15 20 30 40 50 60 70 80 
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Mean 15.55 18.88 28.93 39.94 50.57 60.97 70.86 80.98 

Std Dev 1.13 1.43 1.75 1.48 1.41 1.31 1.18 1.05 

 

 

 

 

Figure 13 Examples of generated images for different Young's modulus conditions from 15 to 80. 

Each column is corresponding to the Young's modulus condition denoted at the top. 
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4.2.2 Microstructure Generation Based on Stress-Strain Curve. 

To evaluate the performance of conditional microstructure generation from stress-strain curves, 

we choose eight different sets of a1, a2 and a3 coefficients as input conditions and generate 128 

microstructures for each input condition. The mean and standard deviation of the stress-strain 

curve coefficients of the generated microstructures are then calculated. The results are shown in 

Table 3. Note that the first four conditions are manually chosen based on dataset patterns and the 

last four conditions are randomly chosen from testing dataset. Examples of the generated 

microstructures are shown in Fig. 19. From left to right, the figure’s columns are corresponding to 

the coefficient sets 1 to 8 in Table 3. It is shown that, for most of the coefficient results, the error 

in comparison with the original input conditions is less than 10%. Furthermore, the results show 

that resultant stress-strain curves match quite well with the input curves, as the stress-strain curves 

are determined by the three coefficients as a whole and less sensitive to the individual coefficients.  

The results demonstrate that the cVAE based microstructure generation model produces physically 

meaningful porous material microstructures to achieve prescribed nonlinear material deformation 

behavior. 

Table 3 Input and output of stress-strain curve coefficients of the generated microstructures. 

Set Coefficients  Mean ± Std Dev  

 a1 a2 a3 a1 a2 a3 

1 20.0 -18.0 5.0 19.6418 

±1.0653 

-16.7710 ± 

1.1119    

5.8215 ± 0.3727 

2 10.0   -7.0 2.5   8.0511 

±1.3590  

  -6.0975 ± 

1.0805   

2.2886 ± 0.3469 
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3   5.0   -4.5 1.5   4.8452 ± 

0.1915 

  -4.4102 ± 

0.2032 

1.6642 ± 0.0695 

4 12.0 -10.0 3.5 11.0227 ± 

1.0821 

  -9.2037 ± 

0.8950 

3.3253 ± 0.3020 

5   

7.3643 

  -6.5799 2.4055   7.0598 ± 

0.3363 

  -6.5115 ± 

0.3281   

2.3446 ± 0.1099   

6 26.891

3 

-24.9718 8.6733 29.2309 ± 

0.8360  

-27.3082 ± 

0.8990   

9.4483 ± 0.3066 

7 14.359

4 

-12.4054 4.4816 14.5218 ± 

1.3014 

-12.2906 ± 

1.1959    

4.4225 ± 0.4013 

8 10.560

9 

  -8.7976 3.2363   9.2894 ± 

0.8528 

  -8.0024 ± 

0.6880 

2.9180 ± 0.2376 
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Coefficient set 1           2              3              4              5              6              7             8      

 

Figure 14 Examples of generated microstructures for given stress-strain curve coefficients. The 

columns from left to right are corresponding to the eight stress-strain curve coefficient sets listed 

in Table 3. 
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Figure 15 Generated microstructures and their stress-strain curves. Left: an example of 

generated porous microstructures from stress-strain coefficient set 2 in Table 3. Right: stress-

strain curve of the generated microstructure in comparison with the input targe 

 

Figure 16 Generated microstructures and their stress-strain curves. Left: an example of 

generated porous microstructures from stress-strain coefficient set 5 in Table 3. Right: stress-

strain curve of the generated microstructure in comparison with the input targe 

 

4.3 Discussion 

For microstructure generation, the stress-strain curves of the nonlinear porous materials are 

approximated using cubic polynomials and characterized by three coefficients.  Microstructure 

generation models are developed based on conditional VAE. In the generative models, a condition 
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fusion layer, a stronger latent variable constraint (β = 3), and a pretrained regression model are 

incorporated into the traditional architecture of VAE to reduce error and ensure physically 

meaningful images. The results obtained show that the generative models are capable of producing 

microstructures that satisfy the mechanical property requirements and providing microstructural 

“designs” with considerable morphology variations.   
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CHAPTER FIVE 

INVERSE DESIGN OF 3D FIBER-REINFORCED POLYMER COMPOSITE MATERIALS 

 

In this chapter, we develop ML methods to design 3D microstructures of materials. Specifically, 

we develop a diffusion model designed for the inverse design of fiber-reinforced polymer 

composites (FRPCs) with a tailored nonlinear stress-strain response. In this section, we extend 

from solving 2D problems to addressing 3D problems. For this purpose, We also introduce a novel, 

collision-free fiber generation method utilizing machine learning techniques. 

  

5.1 3D Data Generation 

To train our diffusion model for inverse design, we generate a large-scale dataset of fiber-

reinforced composites covering 52 fiber configurations (number of fibers per unit volume 𝑛 in 

range from 10 to 50, fiber length 𝑙 ∈ {30,50} , fiber diameter 𝑑 ∈ {4,6,8,10} , and 

unidirectional/heterogenous fiber orientations) and obtain their stress-strain response curves 

through finite element analysis (FEA) using ANSYS. The FEA results show that the stress-strain 

curves could vary largely depending on the microstructure of the hyper-elastic fiber-reinforced 

polymer composites. Fig. 23 exhibits the ranges of the stress-strain curves of different fiber 

configurations. For each configuration, we generate 25,000 samples and build a dataset with 1.3 

million samples in total covering a wide range of stress-strain curves. This provides us an insight 

into the valid range of the stress-strain response of each fiber configuration. We take 24,000 

samples from each fiber configuration as the training data and keep the remaining 1,000 samples 

for testing purposes. 
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Given a fiber configuration, we generate samples by randomly placing fibers into the REV one by 

one with collision check to avoid fibers intersecting or overlapping with others. Collision-free 

placement is the prerequisite for FEA and also the physical constraint that must be met during 

inverse design. All fibers are modeled as homogeneous cylinders and considered as linear materials, 

while the polymer matrix is modeled as hyperelastic materials for large nonlinear elastic 

deformation. Each fiber cylinder is discretized as an octagonal prism to generate tetrahedral 

meshes for FEA with external parts outside the REV cut off along the six sides of the REV cube. 

Stress-strain responses are obtained through simulation by applying displacements of 10 mm, 20 

mm and 30 mm along the x-direction of the REV, which corresponds to 10%, 20% and 30% strains 

respectively. The stress-strain curve is fitted as a cubic function. 

𝜎(𝜂) = 𝑎1 + 𝑎2𝜂
2 + 𝑎3𝜂

3 (9) 

where 𝜎 is the nominal stress, 𝜂 is the strain, and 𝑎1, 𝑎2and 𝑎3are coefficients fitted based on the 

given simulated stress results 𝜎(10%), 𝜎(20%) and 𝜎(30%). 

Given a specific configuration of fiber length 𝑙 and diameter 𝑑 in the unit of 𝑚𝑚 and amount 𝑛, 

fibers with random positions {𝑝𝑖}
𝑖
  and orientations {𝑅𝑖}

𝑖
  are generated inside a cubic 

representative volume (REV) measuring 100 × 100 × 100 . Each fiber is modeled as a 

homogeneous cylinder. To replicate the experimental tensile test conditions, during the generation 

process, fibers must reside inside the cubic RVE without any collision between each other. Any 

part of the fiber extending beyond the RVE's boundaries is truncated by the RVE’s faces. 

In this work, we generated data of 52 combinations of fiber configurations: 

𝑛 ∈ [10,11,⋯ ,49,50], 𝑙 = 50, 𝑑 = 10𝑤𝑖𝑡ℎ 𝑣𝑎𝑟𝑖𝑜𝑢𝑠 𝑜𝑟𝑖𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛𝑠 

𝑛 = 30, 𝑙 = 30, 𝑑 ∈ [4,6,8,10]𝑤𝑖𝑡ℎ ℎ𝑒𝑡𝑒𝑟𝑜𝑔𝑒𝑛𝑒𝑜𝑢𝑠 𝑜𝑟𝑖𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛𝑠 

𝑛 = 30, 𝑙 = 50, 𝑑 ∈ [4,6,8,10]𝑤𝑖𝑡ℎ ℎ𝑒𝑡𝑒𝑟𝑜𝑔𝑒𝑛𝑒𝑜𝑢𝑠 𝑜𝑟𝑖𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛𝑠  

𝑛 = 30, 𝑙 = 50, 𝑑 ∈ [4,6,8,10] 𝑤𝑖𝑡ℎ 𝑢𝑛𝑖𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛𝑎𝑙 𝑜𝑟𝑖𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛𝑠 
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𝑛 = 30, 𝑙 = ∞, 𝑑 ∈ [4,6,8,10]𝑤𝑖𝑡ℎ 𝑢𝑛𝑖𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 𝑜𝑟𝑖𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛𝑠 

with volume fraction varying from around 1% to 25%. For the configurations with unidirectional 

orientations, a unified orientation is randomly sampled and applied to all fibers in one sample, 

while with heterogeneous orientations each fiber has its orientation sampled randomly and 

independently. For the scheme with 𝑙 = ∞ , fibers are considered long enough to completely 

penetrate the cubic REV. To do so, we set 𝑙 = 230 during data generation. For each configuration, 

we generated 26,000 samples, 25,000 of which are used as the training data and the remaining are 

kept for testing. Totally, we have 1.3 million samples for training. We refer to Algorithm 1 for the 

details of our fiber distribution generation approach, where we denote the center position of each 

fiber using 𝑝𝑖 and the orientation using the rotation representation 𝑅𝑖. Besides, we further assume 

that the default orientation of fibers with a zero rotation is the positive direction of z-axis, i.e. 

𝑧𝑟𝑒𝑓 ≔ [0,0,1]𝑇. 
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Upon completion of the composite microstructure generation, we employ Gmsh to construct a 

progressively refined tetrahedron mesh for each generated RVE. Specifically, the top and bottom 

faces of a fiber cylinder are discretized into identical octagons with 8 vertices for meshing. This 

leads to an octagonal prism representation of each fiber after discretization and meshing. This 

technique is exemplified with both the composite RVE, and its associated boundary conditions 

illustrated in Fig 22. This approach highlights the application of advanced meshing methods in the 

modeling of fiber-reinforced polymer composites for computing stress-strain curves. 

 

 

Figure 17 Demonstration of structural analysis on generated data. Left: meshing results by 

discretizing each fiber as an octagonal prism. Right: stress response obtained by simulation 

using finite element analysis. 

 

Once the meshes of 3D fiber-reinforced polymer composite RVEs are produced, the mechanical 

properties are obtained by using finite element analysis (FEA) with applied displacements of 

10𝑚𝑚, 20𝑚𝑚 and 30𝑚𝑚, which corresponds to 10%, 20% and 30% strains, respectively. In this 

work, we consider the fibers as linear materials and the matrix of composites as hyperelastic 
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materials for large elastic deformation. The polymer matrix material is described by the 3-

parameter Ogden hyperelastic model. The strain energy is given by. 

𝑊 =∑
𝜇𝑖
𝑎𝑖
(�̅�1
𝛼𝑖 + �̅�2

𝛼𝑖 + �̅�3
𝛼𝑖 − 3) +∑

1

𝐷𝑘

3

𝑘=1

3

𝑖=1

(𝐽 − 1)2𝑘 (10) 

where 𝜇𝑖  and 𝑎𝑖  are material constants in the unit of pressure and a dimensionless quantity 

respectively, 𝐷𝑘 indicates volume change with The initial bulk modulus 𝐾 =
2

𝐷1
, 𝜆1, 𝜆2 and 𝜆3are 

principal stretches in three directions of the strain tensor, and 𝐽 = (𝜆1𝜆2𝜆3)
1

2. Material properties 

used for simulation are listed in Table 4. Simulation is done on machines equipped with a 16-core 

E5-2665 CPU and 62GB memory. The time needed to generate and simulate one sample is around 

15 seconds to 1 minute mainly depending on the number of fibers. 

Table 4 Material properties used during simulation of finite element analysis. 

Fibers RVE (3-parameter Ogden Hyperelastic Model) 

Elastic Modulus (E) 1000MPa 𝑎1 2.74 𝜇1 9.19MPa 𝐷1 0.0000

1 

Poisson’s Ratio (ν) 0.3 𝑎2 -5.55 𝜇2 8.61MPa   

 𝑎3 1.31 𝜇3 6.92MPa   

 

We fit stress-strain curves using a cubic function with coefficients of 𝑎1, 𝑎2and 𝑎3 in Equation 9. 

Given 𝜎(10%), 𝜎(20%) and 𝜎(30%). obtained through simulation in the unit of MPa. 

The FEA results show that the stress-strain curves could vary largely depending on the 

microstructure of the hyperelastic fiber-reinforced polymer composites. Fig 23. exhibits the ranges 

of the stress-strain curves of different fiber configurations. 
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Figure 18 Ranges of the stress-strain curves of different fiber configurations 

 

5.2 3D Spatial Diffusion Model 

Our inverse design process takes a target stress-strain curve as input and generates the 

microstructures of fiber-reinforced composites that satisfy the stress-strain curve as output (Fig. 

24 a). We consider the inverse design process of fiber-reinforced composites as a conditional 

generative task of deciding the position and orientation of each fiber based on the combination of 

the given stress-strain curve (𝑠 ≔ [𝑎1, 𝑎2, 𝑎3] ∈ 𝑅
3) and the fiber configuration c (including the fiber 

diameter (𝑑 ∈ 𝑅1), length (𝑙 ∈ 𝑅1),) and fiber amount (n)), where d and l are unified for all fibers 

in a cubic representative volume element (RVE). While d and l are given as extra conditional input 

to the model network, the fiber amount condition n is taken into account implicitly, which is 

decided by the model input dimension. Each fiber i therefore has two attributes to be modeled: 

𝑝𝑖 ∈ 𝑅
3 is the position coordinate and 𝑅𝑖 ∈ 𝑆𝑂(2) is the orientation. The orientation 𝑅𝑖 is defined 
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in the 𝑆𝑂(2)  space, because the symmetry of the cylindric geometric model of fibers makes the 

rotation around the pole axis of each fiber itself inconsequential.  

 

Figure 19 (a) Overview of our proposed inverse design system of fiber-reinforced composites. 

During training, we take the diffusion process and add noise to fiber positions 𝑝0
𝑖  and 

orientations 𝑅0
𝑖  by randomly moving and rotating the fibers. A network is trained to predict the 

noise added to get 𝑝𝑡
𝑖 from 𝑝0

𝑖 . By utilizing the denoising neural network, during inverse design, 

we estimate 𝑝𝑡−1
𝑖 , 𝑅𝑡−1

𝑖  from 𝑝𝑡
𝑖, 𝑅𝑡

𝑖 step by step starting from a randomly drawn fiber spatial 

distribution of {𝑝𝑇
𝑖 , 𝑅𝑇

𝑖 }
𝑖
. The fiber configuration (amount 𝑛, length 𝑙 and diameter 𝑑) is chosen 

through an automatic matching mechanism that compares the input (expected) stress-strain 

curve and our collected dataset of the stress-strain response. We employ a stack of 32 
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transformer decoders as the backbone architecture for noise estimation, coupled with a graph 

attention network for fiber feature embedding. Additionally, a loss-based guidance is employed 

during the generation process to apply physical constraints on the generated fiber distributions 

and to ensure that the generated fiber distributions are free of collisions. (b) Demonstrations of 

the denoising process where arranged fiber distributions (𝑡 = 0) are achieved from randomly 

drawn distributions (𝑡 = 𝑇 where 𝑇 = 500 in our implementation) step by step given the 

expected stress-strain curves shown in the left plots. Top row: a distribution of unidirectional, 

long fibers penetrating the cubic representative volume element (RVE) with 𝑛 = 30 and 𝑑 = 10. 

Bottom row: a distribution of short fibers of 𝑛 = 20, 𝑙 = 50, 𝑑 = 4 with heterogeneous 

orientations. In the final step, all fibers are cut along the RVE cube to achieve the spatial 

distribution where fibers are all inside the RVE. 

 

We first find the proper fiber configurations for the expected stress-strain curve s by either 

matching the given stress-strain curve with our collected stress-strain response dataset if the given 

stress-strain curve is in the range of our dataset (see Methods) or guessing some fiber 

configurations if the given stress-strain curve is out of the range of our dataset. Then, we will feed 

the stress-strain curve and the chosen fiber configuration into our PC3D_Diffusion to generate the 

desired fiber-reinforced composite (Fig. 24 b). We perform conditional generation in a guidance-

free way [98], where the condition is applied as a condition input fed into the diffusion neural 

network. 

Given that the impact of one fiber on the overall stress-strain response is not only decided by the 

fiber’s position and orientation in the RVE but also by the interactions among multiple fibers, we 

employ a stack of 32 transformer decoders as the backbone coupled with a graph attention network 
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(GAT) [99] to synthesize the spatial representation of each fiber. Transformer architecture has been 

demonstrated as an effective way to capture the relations between multiple parallel inputs [100]. 

When feeding the transformer network, we enhance the spatial representation of each fiber not 

only by taking into account the position and orientation of the fiber itself but also the relative 

positions and orientations of all neighbor fibers. To do so, we model fibers in a RVE as nodes in a 

graph with directed edges. The neighbor fibers are synthesized through the graph attention 

mechanism of GAT with learnable edge weights. The spatial representation of each fiber is thus 

enhanced as 𝐺𝐴𝑇 (𝑝𝑖 , 𝑅𝑖, {𝑝𝑗 , 𝑅𝑗}
𝑗≠𝑖
). Projecting through a multilayer perceptron (MLP), the output 

of the neural network is the estimated noise added to {𝑝0
𝑖 , 𝑅0

𝑖 }  to get {𝑝𝑡
𝑖 , 𝑅𝑡

𝑖} . Another characteristic 

of the transformer architecture is the input permutation invariant. The transformer decoders weigh 

each parallel input through an attention mechanism by taking into account the features of each 

input which are unrelated to the input order. For language processing tasks, this characteristic 

requires additional positional embeddings added to each input language token (words, characters, 

or phrases) to reflect the positional relations between the input tokens. However, this characteristic 

indeed is consistent with our setup, where the input order of fibers should not impact the output. 

Therefore, in our implementation, we directly apply the transformer decoder architecture to the 

enhanced fiber spatial representations without positional embedding. 

As the state-of-the-art technique of generative artificial intelligence, the denoising diffusion 

models include a stochastic forward process and a reverse process. The forward process gradually 

adds noise through a Markov chain to convert a data point 𝑥0  (i.e. image) to a prior Gaussian 

distribution 𝑁(0, 𝐼) in T steps. There are two methods to add noise, one is variance-preserving [101] 

and the other is variance-exploding [102]. The reverse process takes a randomly drawn sample 

𝑥𝑡𝑁(0, 𝐼) as the initial value where 𝑡 = 𝑇, and iteratively denoise the result from 𝑥𝑡 to 𝑥𝑡−1 until the 
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result 𝑥0 is achieved. A neural network 𝜖𝜃 is employed to estimate the noise added to 𝑥0 given 𝑥𝑡. 

Through the estimated noise, we can further estimate the 𝑥0 based on given 𝑥𝑡, and then compute 

𝑞𝜃(𝑥𝑡−1 ∨ 𝑥𝑡) from 𝑞(𝑥𝑡−1 ∨ 𝑥𝑡, 𝑥0) by parameterizing 𝑥0 using the estimated noise. Here, we add 

noise to the fiber positions {𝑝𝑖}and orientations {𝑅𝑖} by randomly moving and rotating each fiber 

and performing denoising by rearranging the fiber distribution. Due to the different characteristics 

of position and orientation, we use different methods to add noise to them.  

In this section, we propose a 3d spatial diffusion model for the inverse design of fiber-reinforced 

composites. Specifically, given a certain fiber configuration (diameter, length, amount, and 

orientation consistency) and an expected stress-strain curve, our approach can generate the 

distribution of fibers, including fiber positions and orientations distributed in a cubic REV, 

conditionally to meet the given stress-strain curve. By introducing a guidance term during the 

generation process, our approach is guaranteed to generate collision-free results, where fibers 

comply with physical constraints and do not intersect with others. 

In this section, we first give a brief introduction to diffusion models, and then provide details of 

our implementation of the 3D spatial diffusion model including the training and loss-guided 

generation processes. 

Denoising diffusion models [103] have been widely used for generative modeling in various 

domains, such as images [104], 3D objects [105] and meshes [106], natural language [107], motion 

planning [108], proteins [109] and material science for porous material design [110]. When applied 

on generative tasks, diffusion models involve a forward noising process and a reverse denoising 

process. 
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In the literature of vanilla denoising diffusion probabilistic models (DDPMs), the forward process 

is the process where noise is added to the original data 𝑥0 ∼ 𝑞(𝑥) gradually based on a variance 

schedule {𝛽𝑡 ∈ (0,1)}𝑡=1
𝑇 : 

𝑞(𝑥𝑡|𝑥𝑡−1) = 𝒩(𝑥𝑡; √1 − β𝑡𝑥𝑡−1, β𝑡𝐼). (11) 

This process can be rewritten through a Markov chain: 

𝑞(𝑥𝑡|𝑥0) = 𝒩(𝑥𝑡; √α𝑡̅̅̅𝑥0, (1 − α𝑡̅̅̅)𝐼) (12) 

where 𝛼𝑡 = 1 − 𝛽𝑡 and 𝛼𝑡 = ∏ 𝛼𝑖
𝑡
𝑖=1 . A noising data sample 𝑥𝑡 can be obtained via 

𝑥𝑡 = √α𝑡̅̅̅𝑥0 +√1 − α𝑡̅̅̅ϵ𝑡 (13) 

where 𝜖𝑡 ∼ 𝑁(0, 𝐼) is the added noise. 

In the reverse process, based on the variational lower bound, we can replace 𝑥0 with 𝑥𝑡 and the 

noise 𝜖𝑡, and thus have: 

𝑞(𝑥𝑡−1|𝑥𝑡, 𝑥0) = 𝒩(𝑥𝑡−1; μ̃(𝑥𝑡, 𝑥0), β𝑡�̃�) (14) 

where 𝛽𝑡~ = (1 − 𝛼𝑡−1)𝛽𝑡/(1 − 𝛼𝑡) and 

μ̃(xt, x0) =
√�̅�𝑡−1𝛽𝑡
1 − �̅�𝑡

𝑥0 +
√𝛼𝑡(1 − �̅�𝑡−1)

1 − �̅�𝑡
𝑥𝑡 =

1

√α̅t
(xt −

βt

√1 − α̅t
ϵt)  (15) 

We refer to the literature for the inference of the above equation. 

Typically, 𝛽𝑡  increases with 𝑡  and reaches near 1  when 𝑡 = 𝑇 . Approximately, we will have 

𝑞(𝑥𝑇) ∼ 𝑁(0, 𝐼). Therefore, during generation, we can initially draw 𝑥𝑇 from a normal distribution 

randomly and utilize Equation 14 to iteratively estimate 𝑥𝑡−1 based on 𝑥𝑡 by employing a neural 

network to predict the noise 𝜖𝑡 given 𝑥𝑡 and 𝑡. The neural network 𝜖𝜃 for noise estimation can be 

trained by minimizing. 

ℒ = 𝐸 [||ϵ𝑡 − ϵθ(𝑥𝑡, 𝑡)||
2
] (16) 

where 𝑥𝑡 is sampled by the diffusion process defined by Equation 13. 
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The vanilla DDPM is designed for image generation, where 𝑥 ∈ 𝑅𝑛 is the collection of all pixel 

values. It can be extended directly for other kinds of scalar features, e.g. position or displacement 

from the origin. However, some kinds of features, e.g. rotation, cannot support meaningful scaling 

operations. In contrast to variance preserving form of DDPM, in the work of Noise 

Conditional Score Networks (NCSNs) [111], the author proposed another noising method called 

variance exploding: 

𝑥𝑡 = 𝑥0 + σ𝑡ϵ𝑡 (17) 

where 𝜎𝑡 is a scheduled variance similar to 𝛽𝑡. Rather than performing scaling on 𝑥0, this method 

uses noise to cover the original data. However, when 𝑡 → 𝑇, it requires 𝜎𝑡 to be large enough to 

eliminate the bias brought by 𝑥0.  

In [112], the author proved that DDPM and NCSN are equivalent and can be unified in the 

formation of stochastic differential equations. By projecting 𝑡  into the range of [0,1]  as a 

continuous, differentiable variable, the reverse process then can be solved through score-based 

generative modeling. 

d𝑥𝑡 ∼ 𝒩(𝑓(𝑥𝑡, 𝑡)d𝑡 + 𝑔(𝑡)
2∇ log 𝑝𝑡 (𝑥𝑡), 𝑔(𝑡)

2d𝑡𝐼) (18) 

where 𝛻𝑙𝑜𝑔𝑝𝑡(𝑥𝑡) is the score (log-likelihood) of 𝑥𝑡, 𝑓(𝑥𝑡 , 𝑡) = 𝛽𝑡𝑥𝑡/2 for DDPM and 0 for NCSN, 

and 𝑔(𝑡)2 = 𝛽𝑡  for DDPM and d𝜎𝑡
2/d𝑡  for NCSN. After getting the value of d𝑥𝑡 , 𝑥𝑡−1  can be 

obtained by 𝑥𝑡 − d𝑥𝑡. 

In Fiber Diffusion, we employ both Equations 14 and 18 in our reverse process for the generation 

of fiber positions and orientations respectively. Specially, by putting a negative sign to the mean 

value in Equation 18, we can obtain 𝑥𝑡 using an addition operation. In such a way, we can extend 

the equation to rotation operations achieved through matrix or quaternion multiplication. The 
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“wrappable” nature of rotation angles decides that we do not need a very large value of 𝜎𝑡 to make 

𝑥𝑡 close to pure random variables when 𝑡 → 𝑇. 

In our implementation, the fiber diameter (𝑑 ∈ 𝑅1), length (𝑙 ∈ 𝑅1) and amount (𝑛) are specified 

externally through an automatic matching mechanism given the desired stress-strain curve, 

where 𝑑 and 𝑙 are unified for all fibers in a cubic REV. Our model generates fiber distribution by 

providing the positions and orientation of each fiber to meet the given stress-strain curve (𝑠 ≔

[𝑎1, 𝑎2, 𝑎3] ∈ 𝑅
3). We consider the fiber distribution generation as a conditional generation task 

where the condition is defined as 𝑐 = [𝑑, 𝑙, 𝑠] ∈ 𝑅5. The condition 𝑛 is taken into account implicitly, 

which is decided by the model input dimension. Each fiber 𝑖 therefore has two attributes to be 

modeled: 𝑝𝑖 ∈ 𝑅3 is the position coordinate and 𝑅𝑖 ∈ 𝑆𝑂(2) is the orientation. 

The orientation 𝑅𝑖 is defined in the 𝑆𝑂(2) space because the symmetry of the cylindric geometric 

model of fibers makes the rotation around the pole axis of each fiber itself ineffective. 

Following previous literature [113], we perform conditional generation in a guidance-free way, 

where the condition 𝑐 is applied as a condition input fed into the noise estimation neural network. 

 

5.2.1 Diffusion on Fiber Positions: 

For the position property of fibers, we add Gaussian noise in a variance-preserving form [114]: 

𝑞(𝑝𝑡
𝑖|𝑝𝑡−1

𝑖 ) = 𝑁(𝑝𝑡
𝑖; √1 − 𝛽𝑡𝑝𝑡−1

𝑖 , 𝛽𝑡𝐼) (19)  

given the variance schedule {𝛽𝑡 ∈ (0,1)}𝑡=1
𝑇  where 𝛽𝑡 increases with t. Through the Markov chain, 

we have 

𝑞(𝑝𝑡
𝑖|𝑝0

𝑖 ) = 𝑁 (𝑝𝑡
𝑖; √𝛼𝑡𝑝0

𝑖 , (1 − 𝛼𝑡)𝐼) (20)  

where 𝛼 = ∏ 𝛼𝜏𝜏≤𝑡 ,  and   𝛼𝜏 = 1 − 𝛽𝜏 . As t increases to T, 1 − 𝛼𝑡 also increases and reaches near 

1 when t = T. Correspondingly, √𝛼𝑡 decreases while t increases and reaches near 0 when t = T.  
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This setup leads to  𝑞(𝑝𝑇
𝑖 ) ∼ 𝑁(0, 𝐼), where the bias of 𝑝0

𝑖  is roughly scaled down to zero and the 

variance is preserved with the noise ϵ. During the reverse process for generation, given 𝑝𝜖𝑡
𝑖 as the 

noise added to 𝑝0
𝑖    we can draw 𝑝𝑡−1

𝑖   from 𝑞(𝑝𝑡−1
𝑖 ∨ 𝑝𝑡

𝑖)   by replacing 𝑝0
𝑖   with 𝑝0

𝑖 = (𝑝𝑡
𝑖 −

√1 − 𝛼𝑡𝑝𝜖𝑡
𝑖 ) /√𝛼𝑡 in 𝑞(𝑝𝑡−1

𝑖 ∨ 𝑝𝑡
𝑖 , 𝑝0

𝑖 ). Following DDPM, we will train the position diffusion using 

the loss function: 

𝐿𝑝 = 𝐸 [
1

𝑛
∑‖𝑝𝜖𝑡

𝑖 − 𝜖𝑝 (𝑝𝑡
𝑖 , 𝑅𝑡

𝑖 , {𝑝𝑡
𝑖 , 𝑅𝑡

𝑖}
𝑗≠𝑖
, 𝑐, 𝑡|𝜃)‖

2

𝑖

] (21) 

where 𝑝𝑡
2 = √𝛼𝑡𝑝

𝑖 +√1 − 𝛼𝑡𝑝𝜖𝑡
𝑖 , 𝑝𝜖𝑡

𝑖 ∼ 𝑁(0, 𝐼) ∈ 𝑅3 and the original data p is normalized such that 

the cubic RVE measuring 100 mm×100 mm×100 mm is projected to the range of [−1, 1] along all 

three dimensions. 

 

5.2.2 Diffusion on Fiber Orientations 

The variance preserved form uses a scaling operation to eliminate the bias brought by the ground-

truth value (e.g.  𝑝0
𝑖   in Eq. 21) and perform manipulation in the range of standard Gaussian 

distributions. However, it does not work well for properties that cannot support scaling operations. 

Therefore, for orientation, we adopt a variance exploding form [115] to apply rotation noise. Given 

the symmetry when defining the fiber position using the center of the cylinder, the valid rotation 

range is [−π/2, π/2] for each rotation dimension. We approximate Gaussian-like sampling for 

rotation based on isotropic Gaussian distribution in SO space [116]. The isotropic Gaussian 

parameterizes a rotation in an axis-angle form, where the axis u is sampled uniformly and rotation 

angle ω has a probabilistic density function defined in a discrete form: 

𝑓𝐼𝐺𝑆𝑂(𝜔 ∨ 𝜎
2) =

1−𝑐𝑜𝑠𝜔

𝜋
∑ (2𝑙 + 1)𝐿
𝑙=0 𝑒𝑥𝑝(−𝑙(𝑙 + 1)𝜎2)

𝑠𝑖𝑛((𝑙+1/2)𝜔)

𝑠𝑖𝑛(𝜔/2)
(22)  



68 
 

where 𝜔 ∈ [0, 𝜋]  and 𝜎2  is the variance. We pick 𝐿 = 50,000  in our implementation and pre-

compute 𝑓𝐼𝐺𝑆𝑂(𝜔|𝜎𝑡
2) for 5000 values with 𝜔 distributed uniformly in [0, 𝜋]. We further scale 𝜔 by 

1/2 after the computation of probabilistic density. As such, the distribution of the rotation angle 𝜔 

is still Gaussian-like but in the range of [0, 𝜋/2] after scaling. We further scale ω by 1/2 after the 

computation of probabilistic density. As such, the distribution of the rotation angle ω is still 

Gaussian-like but in the range of [0, π/2] after scaling. The direction of the rotation angle is decided 

by the rotation axis and we thus can always assume ω ≥ 0. For each fiber i, a rotation noise 𝑅𝜖𝑡
𝑖 is 

obtained through the rotation axis 𝑢𝑡
𝑖 = 𝑢~𝑡

𝑖 /‖𝑢~𝑡
𝑖‖, where 𝑢~𝑡

𝑖 ∼ 𝑁(0, 𝐼) ∈ 𝑅2, and rotation angle 𝜔𝑡
𝑖 ∼

𝐼𝐺𝑆𝑂(𝜎𝑡
2).  The rotation with added noise is defined as  

𝑅𝑡
𝑖 = 𝑅0

𝑖 (𝑅𝜖𝑡
𝑖 )

𝑇
(23) 

The vanilla variance exploding form takes 𝑥𝑡 ∼ 𝑁(𝑥𝑡; 𝑥0, 𝜎𝑡
2𝐼). It requires 𝜎𝑡 to be quite large in 

order to suppress the bias brought by 𝑥0. Due to the “wrappable” nature of rotation angles, however, 

when we apply the formula for rotations by replacing the add operation with rotation multiplication, 

the bias of 𝑅0
𝑖  can be eliminated as long as the cumulative distribution function of 𝐼𝐺𝑆𝑂(𝜎𝑡

2) is 

approximately linear in the range of [0, 2π]. We adopt a quadratic schedule with 𝜎𝑡 ∈ (0.05,5). This 

results in a near-linear cumulative distribution function of 𝐼𝐺𝑆𝑂(52) given 𝜎𝑡 = 5 when t = T. We 

train the neural network to predict the noise rotation in the form of exponential mapping: 

𝐿𝑅 = 𝐸 [
1

𝑛
∑‖𝜔𝑡

𝑖𝑢𝑡
𝑖 − 𝜖𝑅 (𝑝𝑡

𝑖 , 𝑑𝑡
𝑖 , {𝑝

𝑡
𝑖 , 𝑑𝑡

𝑖}
𝑗≠𝑖
, 𝑐, 𝑡 ∨ 𝜃)‖

2

𝑖

] (24) 

where 𝑑𝑖 = 𝑅𝑖𝑧𝑟𝑒𝑓  and 𝑑𝑗 = 𝑅𝑗𝑧𝑟𝑒𝑓  are the directional vectors given the reference unit vector  

𝑧𝑟𝑒𝑓 = [0,0,1]
𝑇. Given 𝜔𝑡

�̂�𝑢𝑡
�̂� = 𝜖𝑅 (𝑅𝑡

𝑖 ,\\{𝑅𝑡
𝑗
\\}

𝑗≠𝑖
, 𝑐, 𝑡|𝜃) is the predicted rotation noise from 𝑅𝑡

𝑖 to 𝑅𝑖 

and based on Equation 18, we estimate the noise from 𝑅𝑡
𝑖 to 𝑅𝑡−1

𝑖  through sampling 

ω
ϵ𝑡→𝑡−1𝑢ϵ𝑡→𝑡−1

𝑖
𝑖 ∼ 𝒩(−𝑢𝑡

�̂�𝑔(𝑡̅)2d𝑡̅∇ log 𝑓𝐼𝐺𝑆𝑂 (ω𝑡
�̂� |σ�̅�

2), 𝑔(𝑡)̅2d𝑡�̅�) (25) 
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where 𝑡 = 𝑡/𝑇 ∈ (0,1]. We use a discrete, integral representation of 𝑡 ∈ [1, 𝑇] following DDPM, and 

thus have d𝑡 = 1/𝑇. Here, we put a negative symbol as the sign of the mean value in Equation 25 

such that we can avoid minus operation and obtain 𝑅𝑡−1
𝑖  by stacking rotations: 

𝑅𝑡−1
𝑖 = 𝑅𝑡

𝑖𝑅ϵ𝑡→𝑡−1
𝑖 (26) 

where 𝑅𝜖𝑡→𝑡−1
𝑖   is obtained from the exponential map of 𝑒𝑥𝑝(𝜔𝑡

�̂�𝑢𝑡
�̂�)  directly through the noise 

estimation neural network if 𝑡 = 1 or 𝑒𝑥𝑝 (𝜔
𝜖𝑡→𝑡−1𝑢𝜖𝑡→𝑡−1

𝑖
𝑖 ) using Equation 25 otherwise. 

We use a quadratic variance schedule of 𝜎𝑡 defined in the range of (𝜎0, 𝜎1]: 

σ�̅� = σ0 + 𝑡̅𝑏0 + 𝑡2̅(σ1 − σ0 − 𝑏0) (27) 

Based on the notation in [150] for NCSN in variance exploding form, we have 

𝑔(𝑡̅)2 =
dσ�̅�

2

d𝑡̅
= 2σ𝑡(𝑏0 + 2𝑡̅(σ1 − σ0 − 𝑏0)) (28) 

 

5.2.3 Reverse Process for Composite Generation 

The reverse process starts with t = T. By drawing the position and orientation from Gaussian 

distributions as the initial fiber distribution {𝑝𝑇
𝑖 , 𝑅𝑇

𝑖 }
𝑖=1

𝑛
, inverse design is done through the reverse 

process where {𝑝𝑇
𝑖 , 𝑅𝑇

𝑖 }
𝑖
  is denoised into  {𝑝0

𝑖 , 𝑅0
𝑖 }
𝑖
  one step by step by replacing 

{𝑝0
𝑖 , 𝑅0

𝑖 }
𝑖
with{𝑝𝑇

𝑖 , 𝑅𝑇
𝑖 }
𝑖
 and the estimated noise. In this process, the fiber configuration (length l and 

diameter d) and the coefficients of the given polynomial stress-strain curve are fed into the noise 

estimation network as the condition input, while the number of fibers in the RVE n is reflected 

implicitly by the number of input features |i| given that the transformer architecture has the same 

output dimensions with the input. Fig. 1b shows the reverse process for fiber distribution 

generation. We employ the vanilla denoising diffusion probabilistic model to denoise the position 

property of fibers. The reverse process of fiber position is done iteratively by 
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{
 
 

 
 𝑝𝑡−1

𝑖 = 𝜖𝑝 (𝑝𝑡
𝑖 , 𝑅𝑡

𝑖 , {𝑝𝑡
𝑖 , 𝑅𝑡

𝑖}
𝑗≠𝑖
, 𝑐, 𝑡 ∨ 𝜃)𝑓𝑜𝑟𝑡 = 1

𝑝𝑡−1
𝑖 ∼ 𝑁(

1

√𝛼𝑡
(𝑝𝑡

𝑖 −
𝛽𝑡

√1 − 𝛼𝑡
𝜖𝑝 (𝑝𝑡

𝑖 , 𝑅𝑡
𝑖 , {𝑝𝑡

𝑖 , 𝑅𝑡
𝑖}
𝑗≠𝑖
, 𝑐, 𝑡 ∨ 𝜃)) , 𝛽~𝑡𝐼)𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(29) 

where 𝑡 ∈ [1, 𝑇] and 𝑝𝑇
𝑖 ∼ 𝑁(0, 𝐼) is sampled randomly. We employ a quadratic variance schedule 

in the range of [𝛽1, 𝛽𝑇]:𝛽𝑡 = (
𝑇−(𝑡−1)

𝑇
√𝛽1 +

𝑡

𝑇
√𝛽𝑇)

2
 . For the reverse of fiber orientation, we have 

𝑅𝑡−1
𝑖 = 𝑅𝑡

𝑖𝑅𝜖𝑡→𝑡−1
𝑖 (30) 

We use a score-based approach to perform the reverse process of generation and obtain the noise 

rotation 𝑅𝜖𝑡→𝑡−1
𝑖  through the exponential map representation 𝜔𝜖𝑡→𝑡−1

𝑖 𝑢𝜖𝑡→𝑡−1
𝑖  by 

{
𝜔𝜖𝑡→𝑡−1
𝑖 𝑢𝜖𝑡→𝑡−1

𝑖 = �̂�𝑡
𝑖𝑢𝑡
𝑖 ∧ 𝑓𝑜𝑟𝑡 = 1

𝜔𝜖𝑡→𝑡−1
𝑖 𝑢𝜖𝑡→𝑡−1

𝑖 ∼ 𝑁 (−𝑢𝑡
𝑖𝑔(𝑡)

2
d𝑡𝛻𝑙𝑜𝑔𝑓𝐼𝐺𝑆𝑂(�̂�𝑡

𝑖 ∨ 𝜎
𝑡
2), 𝑔(𝑡)

2
d𝑡𝐼) 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(31)  

where �̂�𝑡
𝑖𝑢𝑡
𝑖 = 𝜖𝑝𝑖 ({𝑝𝑡

𝑖 , 𝑅𝑡
𝑖}
𝑖
∨ 𝜃) is the estimated noise Ri ϵt written in the exponential map with the 

magnitude of �̂�𝑡
𝑖  and the direction vector 𝑢𝑡

𝑖 , t = t/T is the normalized time step, and 𝑓𝐼𝐺𝑆𝑂(∙∨ 𝜎
2) is 

the probabilistic density function of the distribution 𝐼𝐺𝑆𝑂(𝜎𝑡
2) . We adopt a quadratic variance 

schedule: 𝜎𝑡 = 𝜎0 + 𝑡𝑏0 + 𝑡
2(𝜎1 − 𝜎0 − 𝑏0) , where the variance 𝜎𝑡 = 𝜎1 when t = T, and thus the 

derivative of  𝜎
𝑡
2 with respect to 𝑔(𝑡)

2
=

d𝜎
𝑡
2

d𝑡
= 2𝜎𝑡 (𝑏0 + 2𝑡(𝜎1 − 𝜎0 − 𝑏0)) . 

 

5.2.4 Model Architecture 

Our network for noise estimation is composed of two modules: the fiber representation module 

employs a graph attention network to embed each fiber while taking into account the spatial 

relationship between the fiber and its neighbors; the backbone of our network is a decoder-only 

transformer architecture taking the embedded representation of fibers as input and outputting the 

prediction of noise added to fiber positions and orientations. 
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To enhance the spatial representation of fibers within a REV, we perform representation learning 

for each fiber taking into account the local states of neighbor fibers.  For simplicity, we ignore the 

subscript 𝑡 here. Then, the 𝑗-th fiber's state observed by the 𝑖-th fiber locally is defined as 

nj|i ≔ [𝒑𝑗|𝑖 , ||𝒑𝒋|𝒊|| , cos(𝒅𝒋, 𝒅𝒊)] (32) 

where 𝑗 ≠ 𝑖 , 𝑝𝑗∨𝑖=(𝑅
𝑖)
𝑇
(𝑝𝑗−𝑝𝑖)∈𝑅3  is the relative position of the 𝑗 -th fiber in the 𝑖 -th fiber's local 

system, 𝑝𝑗∨𝑖  is the Euclidean distance between fiber 𝑗  and 𝑖 , 𝑐𝑜𝑠(𝑑𝑗, 𝑑𝑖) = (𝑑𝑗)
𝑇
𝑑𝑖  is the angle 

between two fibers' orientation directions given the directional vectors 𝑑𝑖 = 𝑅𝑖𝑧𝑟𝑒𝑓  and 𝑑𝑗 =

𝑅𝑗𝑧𝑟𝑒𝑓. This leads to 𝑛𝑗∨𝑖∈𝑅
5
 as the neighbor feature of each fiber 𝑗 related to fiber 𝑖. 

We employ a graph attention network (GAT) [117] to synthesize neighbors. To do so, we regard 

each fiber as a node in a directional graph linked with edges having weights 𝑒𝑗∨𝑖. The neighbor 

states then can be synthesized by weights: 

𝑤𝑗|𝑖 =
𝑒𝑥𝑝(𝑒𝑗|𝑖)

∑ 𝑒𝑥𝑝(𝑒𝑘|𝑖)𝑘≠1

(33) 

Following [117], we obtain the edge weights through an attention mechanism using the cosine 

similarity between the self-state of the fiber 𝑖, i.e. 𝑝𝑖 and 𝑅𝑖, and the local neighbor state 𝑛𝑗∨𝑖: 

𝑒𝑗|𝑖 = 𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈 (fq(p
i, di) ∙ fk(n

𝑗|𝑖)) (34) 

where the negative slope of 𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈 is 0.2. The synthesized neighbor state is obtained by 

∑𝑤𝑗|𝑖𝑓𝑣(𝐩
𝐣,𝐝𝐣)

𝑗

(35) 

where 𝑓𝑞, 𝑓𝑘 and 𝑓𝑣 are three embedding neural networks. The corresponding attention mechanism 

can be written as 

𝐧𝐢 = ATTN(𝐪, 𝐤, 𝐯) = SOFTMAX(fq(p
i, di)fk ({n

𝑗|𝑖}
j
)
T

∙ fv ({p
j, dj}

j
)) (36) 
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where [𝑝𝑖 , 𝑑𝑖], {𝑛𝑗∨𝑖}
𝑗
 and {𝑝𝑗 , 𝑑𝑗}

𝑗
 correspond to the query, key and value vectors, respectively, in 

the vanilla attention mechanism [118]. The 𝑖-th fiber's spatial representation is denoted by 

𝐬𝐢 ≔ [𝐩𝐢, 𝐝𝐢, 𝐧𝐢] (37) 

The backbone architecture of our noise estimation neural network 𝜖𝜃  is a transformer [118]. 

Instead of the encoder-decoder architecture [157] in the vanilla transformer, we employ a decoder-

only architecture. Such a structure has been widely used in large language models [119-122] and 

been demonstrated as an effective architecture to capture the complex relationship between 

multiple inputs (word tokens in language). 

In large language models, the neural network is employed to predict the token for the next words 

recurrently.  In our implementation, we utilize the decoder-only architecture to perform noise 

estimation given multiple inputs (the fiber representations 𝑠𝑖) parallelly at the same time, while the 

condition 𝑐, including fiber diameter 𝑑 and length 𝑙, and the time step 𝑡 are fed into the network as 

the memory input. Since the transformer architecture adopts attention mechanisms and provides 

an output having the same dimension as the input, we do not need to explicitly indicate the fiber 

amount 𝑛 in the condition vector 𝑐𝑡. 

Another advantage of transformer architecture is that it is an architecture invariant to the order of 

input. When applying to natural language processing tasks, the transformer gets the word order 

information through positional encodings added to each input word token. However, our task is 

input permutation invariant. Namely, the input order of fibers should not impact the output of the 

network for each fiber. This characteristic is naturally supported by the transformer architecture 

without using positional encoding. Instead, we apply the position encoding technique to encode 

the time step variable 𝑡. Following the previous notation 𝑡 = 𝑡/𝑇, we define the embedded time 

step 𝑡 through sinusoidal positional encoding: 
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𝑃𝐸(𝑡) = [sin 𝑡̅ , cos 𝑡̅]. (38) 

This leads to a condition vector 𝑐 ≔ [𝑑, 𝑙] and a timestep vector 𝑡 ≔ [𝑠𝑖𝑛𝑡, 𝑐𝑜𝑠𝑡]. 

Each output of the transformer is finally passed through a shared two-layer neural network to get 

the predicted noise [𝑝𝜖𝑡
𝑖 , 𝜔

𝜖𝑡𝑢𝜖𝑡
𝑖

𝑖 ] ∈ 𝑅5  for each input 𝑠𝑖  conditioned on \\{𝑠𝑗\\}
𝑗≠𝑖

  and 𝑐 . The 

architecture hyperparameters of the backbone transformer are listed in Table 5. 

Table 5 Architecture of the backbone transformer 

Number of attention 

heads 

16 Number of stacked 

decoders 

32 

Input dimension 512 Nonlinear activator ReLU 

Latent dimension of 

feedforward network 

2048 Total parameters 150M 

 

5.2.5 Training Protocol  

Our noise estimation network is trained using the loss functions defined in Equations 21 and 24. 

To balance the two loss terms adaptively during training, following previous literature of multi-

objective learning [123], we introduce two additional learnable variables 𝑤𝑝  and 𝑤𝑅  as the 

coefficients to automatically adjust the learning weights of two terms related to position and 

rotation noise respectively. The final loss function is: 

ℒ =
1

𝑤𝐩𝟐
ℒ𝓹 +

1

𝑤𝐑𝟐
ℒ𝓡 + 2 log𝑤𝐩𝑤𝐑 (39) 

Our condition vector 𝑐  does not include the configuration of unidirectional orientation or not. 

Therefore, we train two models to handle the configuration with and without unidirectional 

orientations respectively. 
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We list the hyperparameters that we used during model training and diffusion process in Table 6. 

For the rotation noise variance 𝜎𝑡, when 𝜎1 = 5, the probability density function 𝑓𝐼𝐺𝑆𝑂 will lead to 

a linearly increasing cumulative distribution function, and results in a distribution where the angle 

𝜔 is distributed almost uniformly within the range of [0, 𝜋]. Because of the cyclical nature of angles 

in the range of [−𝜋, 𝜋], variance exploding form represented in Equation of diffusion process then 

will not lead to any basis caused by the ground truth original value. Therefore, in the reverse 

process, we can draw 𝑅𝑇
𝑖  directly from [0, 𝜋] uniformly as the initial value for data generation. 

Table 6 Hyperparameters 

Model training Diffusion process 

Learning 

rate 

0.0003 T 500 𝜎0 0.05 𝜀 0.002 

Optimizer Adam W 

[124] 

𝛽1 0.0001 𝜎1 5 𝛼 0.001 

Batch 

size 

256 𝛽𝑇 0.02 𝑏0 1   

 

All our models are trained distributed on 4 machines, each of which is equipped with 2×A100 

Nvidia GPUs. The whole training consuming all the training data takes around 1 week. 

5.3 Physics Design in Collision Free 

In actual composite materials, fibers do not penetrate or intersect with each other. Intersection of 

the fibers is referred to as “collision” in this work. Although the vanilla 3D spatial diffusion model 

can generate visually good results, its reverse process is performed by random sampling and it is 
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difficult to directly obtain a collision-free fiber distribution through the reverse process, 

particularly in scenarios where fibers are meant to be densely distributed or when they are 

distributed less densely overall but nearly uniformly. (Fig. 26). Even with only 10 fibers (d=10, 

l=50, random orientation) in the RVE, there are less than 10% of generated composites are 

collision-free (Fig. 26). For heterogeneous fiber orientations, the percentage of collision-free 

generation is lower than 4% for (n=30, d=10, l=50) and 0.2% for (n=30, d=10, l=∞) (Fig. 26). On 

the other hand, we observed that the total number of collisions between fibers are typically small 

in the results generated by the vanilla 3D spatial diffusion model. This implies that we can correct 

the generated fiber distributions to achieve collision-free results by a small number of 

modifications to the generated fiber positions and/or orientations. 

Here, we introduce a guidance loss term during the reverse processing to apply physical constraints 

and enforce collision-free generation. We use a differentiable constraint loss function measuring 

the distance between each pair of fibers with a boundary constraint: 

𝐿cons ({𝑝𝑡
𝑖 , 𝑅𝑡

𝑖}
𝑖
) =

1

𝑛
∑ 𝑚𝑎𝑥𝑖𝑗 {0,1 −

𝐷𝐼𝑆𝑇(𝑆𝐻𝑅𝐼𝑁𝐾(𝑝𝑡
𝑖),𝑅𝑡

𝑖;𝑆𝐻𝑅𝐼𝑁𝐾(𝑝𝑡
𝑗
),𝑅𝑡

𝑗
)

𝑑+𝜀
} (42)  

where d is the diameter of fibers, ε is the minimal gap allowed between two fibers, 𝐷𝐼𝑆𝑇(∙;∙) is a 

differentiable distance function and 𝑆𝐻𝑅𝐼𝑁𝐾(∙)  function shrinks fiber length to ensure the 

boundary constraints. 𝐿cons = 0 when there is no collision, i.e. 𝐷𝐼𝑆𝑇(𝑝𝑡
𝑖 , 𝑅𝑡

𝑖 ; 𝑝𝑡
𝑗
, 𝑅𝑡

𝑗
) ≥ 𝑑 + 𝜀  for all 

fiber pairs. Rather than maximizing the loglikelihood, at each step t during the reverse process, we 

minimize the loss guidance term by 

{𝑝
𝑡
𝑖 , 𝑅𝑡

𝑖}
𝑖
← {𝑝

𝑡
𝑖 , 𝑅𝑡

𝑖}
𝑖
− 𝛼𝛻{𝑝𝑡

𝑖 ,𝑅𝑡
𝑖}
𝑖
𝐿cons ({𝑝𝑡

𝑖 , 𝑅𝑡
𝑖}
𝑖
) (43) 

Applying 𝐿cons to update fiber positions and orientations is a process of gradient descent, however, 

without needing any learning. In our implementation of the reverse process for data generation, 
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we update {𝑝𝑡
𝑖 , 𝑅𝑡

𝑖} once at each time step t and keep performing updates until 𝐿cons ({𝑝𝑡
𝑖 , 𝑅𝑡

𝑖}
𝑖
) = 0 

at the last step. Since the vanilla 3D spatial diffusion model can directly provide results where 

fibers would not largely intersect or go through other fibers, typically we can achieve collision-

free results within 10 iterations, while the whole reverse process takes around 8 seconds given 𝑇 =

500 in our implementation. 

Theoretically, when generating unidirectional fiber distributions, we can add an extra loss 

guidance term measuring the orientation divergence of fibers. However, during experiments, we 

find that the 3D spatial diffusion model is able to directly provide unified orientations with very 

small errors (see the quantitative evaluation section). Therefore, for fiber configurations with 

unidirectional orientations, we perform updating only on fiber positions {𝑝𝑡
𝑖}
𝑖
. 

By applying the loss guidance during generation, our approach can generate collision-free results 

even in very dense scenarios. From the examples shown in Fig 26 and Fig 32, is observed that the 

overall distributions of fibers with and without the loss guidance are almost identical. The 

introduction of loss guidance only slightly changes the positions and/or orientations of collided 

fibers without significant modification to the overall distributions of fibers. Although the guided 

loss is applied at each step during generation without considering the change in the stress-strain 

response when modifying the fiber positions and orientations, the stress-strain response is still 

guaranteed by the following generation steps. At the last step of generation, the guided loss is 

applied iteratively without further revision. It is observed that the generated results are already 

near collision-free, as we achieve completely collision-free results with less than 10 iterations 

during our testing. The high-quality results obtained demonstrate the effectiveness of our approach 

of applying physical constraints through guided loss.  
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In Fig. 34a, we visually compare the results generated with and without the guided loss. As can be 

seen, by slightly moving the fibers without the change overall fiber distribution largely, the guided 

loss effectively avoid the collision between fibers. To show the necessity of using the guided loss, 

in Fig. 34b, we show the collision rate when no guided loss is employed during generation. The 

collision rate increases as the volume fraction of fibers increases. In the challenge cases where 

fibers are distributed densely, e.g. 𝑛 = 30 ∨ 50, 𝑙 = 50, 𝑑 = 10, the collision-free rates are about 

zero. This result highlights the necessity of using the proposed guidance loss to perform physically 

constrained fiber distribution generation.   

 

 

Figure 20 (a) Comparison of generated results with (right) and without (left) using the proposed 

loss guidance. (b) Collision-free rate when no loss guidance is employed. The proposed loss 

guidance can effectively ensure that physical constraints can be applied during the process of 
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generation and help generate collision-free fiber distributions by slightly modifying the position 

and/or orientation of the fibers. 

 

Due to the uncertainty of artificial neural networks, it is impossible for the neural network to 

precisely predict noise without any errors. Plus, the reverse process is performed by random 

sampling, it is difficult to directly get a collision-free fiber distribution through the reverse process 

when fibers are supposed to be distributed densely. On the other hand, our neural network, which 

will be detailed in Section 5.2, is able to provide high-quality results, where the collisions between 

fibers, though existing, are very small. This implies that we can correct the generated fiber 

distributions to achieve collision-free results by slightly modifying the generated fiber positions 

and/or orientations. 

Inspired by the previous literature employing a classifier to perform conditional generation [125, 

126]. we introduce a guidance loss term during the reverse processing to apply physical constraints 

and perform collision-free generation. Similarly to the score-based generation modeling 

introduced above, the previous literature employs the gradients of log-likelihood to guide 

generation during the reverse process, i.e. replacing Equation 44. with 

𝑞(𝑥𝑡−1|𝑥𝑡, 𝑥0) = 𝒩(𝑥𝑡−1; μ̃(𝑥𝑡, 𝑥0) + 𝑠∇𝑥𝑡 log 𝑝 (𝑦|𝑥𝑡), β𝑡�̃�) (44) 

where 𝑝(𝑦|𝑥𝑡) is a classifier model and 𝑠 is a scalar coefficient. This approach guides the reverse 

process to generate 𝑥𝑡−1 which has a higher likelihood 𝑝(𝑦|𝑥𝑡). In our implementation, we do not 

use any learnable classifier here. Instead, we perform collision-free guidance through a 

differentiable constraint loss function measuring the distance between each pair of fibers with a 

boundary constraint: 
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ℒ𝒸ℴ𝓃𝓈({𝑝𝑡
𝑖 , 𝑅𝑡

𝑖}𝑖) =
1

𝑛
∑𝑚𝑎𝑥{ 0,1 −

𝐷𝐼𝑆𝑇(𝑆𝐻𝑅𝐼𝑁𝐾(𝒑𝒕
𝒊), 𝑹𝒕

𝒊; 𝑆𝐻𝑅𝐼𝑁𝐾(𝒑𝒕
𝒋
), 𝑹𝒕

𝒋
)

𝑑 + 𝜀
𝑖𝑗

} (45) 

where 𝑑 is the diameter of fibers, 𝜀 is the minimal gap allowed between two fibers, 𝐷𝑖𝑠𝑡(∙;∙) is a 

differentiable distance function and 𝑆ℎ𝑟𝑖𝑛𝑘(∙) function shrinks fiber length to ensure the boundary 

constraints. 𝐿𝑐𝑜𝑛𝑠 = 0 when there is no collision, i.e. 𝐷𝑖𝑠𝑡(𝑝𝑡
𝑖 , 𝑅𝑡

𝑖 ; 𝑝𝑡
𝑗
, 𝑅𝑡

𝑗
) ≥ 𝑑 + 𝜀 for all fiber pairs. 

Rather than maximizing the log-likelihood, at each step 𝑡 during the reverse process, we minimize 

the loss guidance term by 

{𝑝𝑡
𝑖 , 𝑅𝑡

𝑖}𝑖 ← {𝑝𝑡
𝑖 , 𝑅𝑡

𝑖}𝑖 − α∇{𝑝𝑡𝑖 ,𝑅𝑡𝑖}𝑖
ℒ𝒸ℴ𝓃𝓈({𝑝𝑡

𝑖 , 𝑅𝑡
𝑖}𝑖). (46) 

We refer to Algorithm 1 for the differentiable implementation of the functions 𝐷𝑖𝑠𝑡 and 𝑆ℎ𝑟𝑖𝑛𝑘. 

Applying Equation 46 to update fiber positions and orientations is a process of gradient descent, 

however, without needing any learning. In our implementation of the reverse process for data 

generation, we update {𝑝𝑡
𝑖 , 𝑅𝑡

𝑖}
𝑖
  once at each time step 𝑡  and keep performing update until 

𝐿𝑐𝑜𝑛𝑠({𝑝𝑡
𝑖 , 𝑅𝑡

𝑖}
𝑖) = 0 at the last step. Since our neural network can directly provide results where 

fibers would not largely intersect or go through other fibers, typically we can achieve collision-

free results within 10 iterations, while the whole reverse process takes around 8 seconds given 𝑇 =

500 in our implementation. 

Theoretically, when generating results where fibers have unidirectional orientations, we can add 

an extra loss guidance term measuring the orientation divergence of fibers. However, during 

experiments, we find that our neural network is able to directly provide unified orientations with 

very small errors. 

Therefore, for fiber configurations with unidirectional orientations, we perform updating only on 

fiber positions {𝑝𝑡
𝑖}
𝑖
. 
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5.4 Results 

In this section, we provide a detailed analysis quantitatively and qualitatively to evaluate the 

performance of our 3d spatial diffusion model for the inverse design of fiber-reinforced composites. 

We also perform a sensitive analysis of the proposed model architecture.  

 

Figure 21 Network architectures 𝜖𝜃 for noise estimation. Left: graph attention network to 

enhance the spatial representation of each fiber 𝑖 by introducing the states of neighbor fibers 

{𝑝𝑡
𝑗
, 𝑑𝑡

𝑗
}
𝑗
 through their local spatial states {𝑛𝑗∨𝑖}

𝑗
 relative to the fiber 𝑖. Right: transformer 

decoders used to predict added noise given the condition state 𝑐𝑡 and fiber representations 𝑠𝑡
𝑖. 
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The synthesized fiber state 𝑠𝑡
𝑖 is projected to the space of 𝑅512 through a multilayer perception 

(yellow), and the final output of the decoders is converted to the prediction [𝑝𝜖𝑡
𝑖 , 𝜔𝜖𝑡

𝑖𝑢𝜖𝑡
𝑖^
] ∈ 𝑅5 

corresponding to each input fiber state 𝑠𝑡
𝑖 through an additional multilayer perception (cyan). 
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Figure 22 Generated fiber distribution schemes using different candidate fiber configurations 

given the same input stress-strain curve. The four fiber configurations with divergent lengths, 

a

b

c

d

F ig. 2 G enerated fiber distribution schem es using di↵erent candidate fiber configurations given the
sam e input stress-strain curve.T he four fiber configurations w ith divergent lengths,diam eters,orien-
tation constraints and,thereby,di↵erent resulting volum e fractions are picked through our autom atic
m atching m echanism .For each candidate fiber configuration, w e generate six distinct schem es.A long
each schem e,w e show the volum e fractions (V ) after cutting o↵ externalfiber parts outside the cubic
R V E . O ur system can find proper fiber configurations and generate various fiber distributions w ith
stress-strain curves close to the given one.

9
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diameters, orientation constraints and, thereby, different resulting volume fractions are picked 

through our automatic matching mechanism. For each candidate fiber configuration, we 

generate six distinct schemes. Along each scheme, we show the volume fractions (𝑉) after cutting 

off external fiber parts outside the cubic RVE. Our system can find proper fiber configurations 

and generate various fiber distributions with stress-strain curves close to the given one. 
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Figure 23 Generated short fiber distribution schemes with different numbers of fibers (n = 10, 

15, 20, 25). All fibers distributed partially outside the cubic RVE are cut off along each side of 

the RVE. Volume fractions (V) are computed after cut-off. 
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Figure 24 Generated short fiber distribution schemes with different numbers of fibers (n = 35, 

40, 45, 50) 
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Figure 25 Generated unidirectional, short fiber distribution schemes given n = 30, l = 50 with 

different fiber diameters. 
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Figure 26 Generated unidirectional, short fiber distribution schemes given n = 30, l = 50 with 

different fiber diameters. 
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Figure 27 Generated unidirectional, long fiber distribution schemes with different fiber 

diameters. 
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Figure 28 Comparison between the generated results without applying the loss guidance during 

generation (left) and those using the loss guidance to ensure the physical constraints (right). 

 

We first demonstrate our model’s capability to generate fiber-reinforced composites for stress-

strain curves and configurations within the range of our training dataset. We randomly generate 

stress-strain curves within the range of our training dataset, as shown in Fig. 18, without them 

being present in the training set.  For a given stress-strain curve, our system provides multiple 

candidate fiber configurations (Fig. 18). The stochastic nature of the reverse process of data 

generation using diffusion models makes it very easy for our approach to generate multiple results 

simultaneously. Here, for each candidate fiber configuration (n, l, d, fiber orientations), we 

generate six distinct material designs with volume fractions varying from 10% to 18%. We verify 

the generated results by FEA. All generated results of the five fiber configurations have stress-

strain responses very close to the input curve. More examples of generation are shown in Fig. 22-

27. It is shown that our method can generate high-quality results with diverse fiber configurations 

and volume fractions (from 1.70% to 19.56%), all producing stress-strain curves that closely match 

the input data. In cases of unidirectional fibers, the variation in fiber orientation is less than 1 

degree in each of the generated composite materials. Moreover, the generated results are consistent 

with the underlying mechanics of composite materials. For short fibers with heterogeneous 

orientations, given the same fiber length and diameters, our model generates more fibers, leading 

to an increased volume fraction, in response to an increase in the required composite stiffness (i.e., 

the slope of the input stress-strain curve), as shown in Fig. 22-25. In cases of unidirectional fibers, 

our model increases the number of fibers along the loading direction to produce a stiffer stress-



91 
 

strain curve (Fig. 26-27). Such behavior demonstrates that the physical principles of the composite 

mechanics have been learned and understood by our model.  

Next, we evaluate our method quantitatively using the testing dataset. We take the coefficients of 

the fitted stress-strain curves of the samples in the test set as the condition input to generate fiber 

distributions and verify the generated results against the high-fidelity FEA results. First, we 

measure the upper-bound performance of our methods. We select the best-of-10 generated results 

for each testing sample based on the relative error area 𝑒𝐴 (Method). As shown in Table 7, the 

average mean-absolute-errors (MAEs) between expected curve coefficients (𝑎1, 𝑎2 and 𝑎3) and the 

ones of generated results (𝑎1, 𝑎2 and 𝑎3) are all less than 0.5%, and their 𝑒𝐴 are less than 0.2%. For 

composites with unidirectional fibers, the fiber orientation divergence has a standard deviation less 

than 0.08°.  

We further evaluate the average performance of 10 generated composites. For generated 

composites with heterogeneous orientations, the average MAEs are all less than 1% and  𝑒𝐴 are 

less than 0.45%. The generated composites with unidirectional fibers have higher MAEs (≤2.42%) 

and 𝑒𝐴 (≤0.96%). The maximal error of 2.42% occurs at 𝑎3for the configuration of n = 30, l = ∞, d 

= 10 with unidirectional fiber orientations. The orientation divergence of composites with 

unidirectional fibers only has a standard deviation of less than 0.31°. We can, thereby, simply 

regard that fibers all have the same orientations in the generated results. Note that the impact of 

the error of the 3rd order coefficient 𝑎3 is much smaller than that of the 1st-order coefficient 𝑎1. 

As shown in the Table 7 and 8, 𝑒𝐴 is identical with 𝑒𝑎1 for almost all configurations, which means 

that the error between the generated and the expected stress-strain curves mostly comes from the 

error of 𝑒𝑎1. Overall, the small value of 𝑒𝐴 indicates that our model is able to consistently provide 

composite designs with stress-strain curves that closely match the expected ones.  
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Table 7 Quantitative evaluation using the best of 10 generated results for each testing sample. 

Results are reported as relative MAEs in the format of mean ± std. deviation. For configurations 

with unidirectional orientations, fiber orientation divergence 𝑒𝑜𝑟𝑖 is reported through the 

standard deviation in the unit of degrees. 

 

T ab le 1 Q uantitative evaluation using the best of 10 generated results for each testing sam ple.
R esults are reported as relative M A E s. For configurations w ith unidirectional orientations, fiber
orientation divergence eori is reported through the standard deviation in the unit of degrees.

ea 1 [% ] ea 2 [% ] ea 3 [% ] eA [% ]
H eterogeneous O rientations

n = 10,l= 50,d = 10 0.04 ±0.08 0.05 ±0.24 0.07 ±0.41 0.04 ±0.08
n = 15,l= 50,d = 10 0.03 ±0.04 0.04 ±0.05 0.05 ±0.07 0.03 ±0.04
n = 20,l= 50,d = 10 0.06 ±0.06 0.15 ±0.20 0.19 ±0.27 0.06 ±0.06
n = 25,l= 50,d = 10 0.05 ±0.07 0.06 ±0.06 0.06 ±0.07 0.05 ±0.07
n = 30,l= 50,d = 10 0.05 ±0.09 0.06 ±0.09 0.12 ±0.27 0.06 ±0.09
n = 35,l= 50,d = 10 0.05 ±0.06 0.09 ±0.15 0.19 ±0.48 0.05 ±0.07
n = 40,l= 50,d = 10 0.09 ±0.11 0.11 ±0.32 0.24 ±0.62 0.09 ±0.11
n = 45,l= 50,d = 10 0.07 ±0.07 0.17 ±0.37 0.47 ±0.28 0.07 ±0.08
n = 50,l= 50,d = 10 0.05 ±0.05 0.07 ±0.07 0.14 ±0.16 0.05 ±0.05
n = 30,l= 50,d = 8 0.03 ±0.04 0.04 ±0.05 0.07 ±0.17 0.03 ±0.04
n = 30,l= 50,d = 6 0.04 ±0.05 0.10 ±0.26 0.19 ±0.67 0.04 ±0.05
n = 30,l= 50,d = 4 0.09 ±0.09 0.04 ±0.04 0.02 ±0.04 0.09 ±0.09
n = 30,l= 30,d = 10 0.02 ±0.02 0.03 ±0.03 0.03 ±0.02 0.02 ±0.02
n = 30,l= 30,d = 8 0.04 ±0.03 0.06 ±0.08 0.07 ±0.08 0.03 ±0.03
n = 30,l= 30,d = 6 0.02 ±0.02 0.05 ±0.06 0.07 ±0.08 0.02 ±0.02
n = 30,l= 30,d = 4 0.04 ±0.04 0.02 ±0.03 0.03 ±0.12 0.04 ±0.04

U nidirectional O rientations eori [◦ ]
n = 30,l= 50,d = 10 0.06 ±0.06 0.13 ±0.11 0.20 ±0.58 0.06 ±0.06 0.02
n = 30,l= 50,d = 8 0.05 ±0.06 0.07 ±0.07 0.09 ±0.09 0.05 ±0.06 0.03
n = 30,l= 50,d = 6 0.04 ±0.06 0.11 ±0.48 0.17 ±0.60 0.04 ±0.06 0.02
n = 30,l= 50,d = 4 0.16 ±0.31 0.40 ±0.34 0.40 ±0.27 0.16 ±0.31 0.07
n = 30,l= 1 ,d = 10 0.16 ±0.16 0.31 ±0.33 0.36 ±0.38 0.16 ±0.16 0.04
n = 30,l= 1 ,d = 8 0.09 ±0.09 0.16 ±0.19 0.33 ±0.17 0.09 ±0.09 0.04
n = 30,l= 1 ,d = 6 0.12 ±0.23 0.20 ±0.33 0.32 ±0.37 0.11 ±0.22 0.04
n = 30,l= 1 ,d = 4 0.16 ±0.38 0.11 ±0.32 0.27 ±0.52 0.16 ±0.38 0.04

a b

F ig. 3 C om parison ofgenerated results w ith (right) and w ithout (left) using the proposed loss guid-
ance. T he proposed loss guidance can e↵ectively ensure that physical constraints can be applied
during the process of generation and help generate collision-free fiber distributions by slightly m odi-
fying the position and/or orientation of the fibers.

area betw een the tw o curves:

eA =

R 0.3

0.1

P 3
i= 1 ai⌘

i −
P 3

i= 1 âi⌘
i d⌘

R 0.3

0.1

P 3
i= 1 ai⌘

id⌘
(7)

given that the valid range of the strain ⌘is [0.1,0.3]. T he sm aller eA is, the closer
the expected and generated curves are. In practice, after generating m ultiple fiber
distributions, w e can easily find out the best after running verification using F E A .
T herefore,here w e m easure the upper bound perform ance ofour approach,using the
bestof10 generated resultsforeach testing sam ple,and lista partofthe testing results

10
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Table 8 Quantitative evaluation averaged over 10 generated results for each testing sample. 

Results are reported as relative MAEs. For configurations with unidirectional orientations, fiber 

orientation divergence 𝑒𝑜𝑟𝑖 is reported through the standard deviation in the unit of degrees. 

5.4.1 Quantitative Evaluation 

To perform evaluation quantitatively, we run our model to generate results using the fitted strain-

stress curve coefficients from the test sets as the conditional input. Given that we have 1000 testing 

samples for each fiber configuration, there are 52,000 samples in the test set. 

With the stochastic nature of diffusion models, our approach can easily generate a batch of random 

results. To evaluate the performance of our approach more comprehensively, for each testing 

sample, we run our model to generate 10 results for evaluation.  



94 
 

All the generated fiber distributions are meshed using Gmsh and simulated by FEA, as we 

described in Data generation. We compare the given, expected curve coefficients (𝑎1, 𝑎2 and 𝑎3) 

to the ones obtained by simulation on the generated results ( 𝑎1̂, 𝑎2̂ and 𝑎3̂ ) through relative mean 

absolute error (MAE): 

𝑒𝑎𝑖 = |
𝑎𝑖 − 𝑎�̂�
𝑎𝑖

| × 100% (47) 

where 𝑖 = 1,2, and 3  given the stress-strain curve in the form of Equation 9. Additionally, to 

compare the expected, input curve and the generated curve more intuitively, we compute the 

relative error area between the two curves: 

𝑒𝐴 =
∫ |(𝑎1η + 𝑎2η

2 + 𝑎3η
3) − (𝑎1̂η + 𝑎2̂η

2 + 𝑎3̂η
3)|dη

0.3

0.1

∫ (𝑎1η + 𝑎2η2 + 𝑎3η3)dη
0.3

0.1

(48) 

given the valid range of 𝜂  is [0.1,0.3] . The smaller 𝑒𝐴  is, the closer the expected and generated 

curves are. 

In the main text, we already evaluate our approach using the best of 10 metric. Here, in Table 8, 

we show the evaluation results averaged over the 10 results generated for each testing sample. As 

can be seen in the table, our model can provide high-quality results with most errors less than 1%. 

Only the configurations with unidirectional orientations have errors bigger than 1%. This may be 

caused by the larger valid stress-strain response range when fibers have unified orientations, as 

shown Figure 26. The maximal error is only 2.42%, occurring at 𝑎3 for the configuration of 𝑛 =

30, 𝑙 = ∞, 𝑑 = 10  with unidirectional orientations. Given that the valid range of strain in our 

implementation is [0.1,0.3] , the influence caused by the error of the 3rd order coefficient 𝑎3  is 

much smaller than that of the 1st order coefficient 𝑎1. This can be demonstrated by the error area 

𝑒𝐴. As shown in the table, 𝑒𝐴 is identical with 𝑒𝑎1 for almost all configurations, which means that 

the error areas between the generated and the expected stress-strain curves mostly come from the 
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error of 𝑒𝑎1. The small value of 𝑒𝐴, whose mean value is less than 1% in all configurations, also 

indicates that our model is always able to provide results having the stress-strain curves close to 

the expected ones. 

Note that we rely on our loss guidance term to adjust the fiber position and orientation and obtain 

collision-free fiber distributions. However, for the configuration of fibers with unidirectional 

orientations, we only update the fiber positions through the guidance loss; the orientations are 

gotten directly through the reverse process based on the predicted rotation noise. To evaluate our 

model performance to generate fibers with unidirectional orientations, we introduce 𝑒ori to measure 

the standard deviation of the orientation error of fibers in the unit of degrees. As we can see, our 

unidirectional model can provide results with very small standard deviations of the orientation 

divergence less than 0.33∘. We can, thereby, simply regard that fibers all have the same orientations 

in the generated results. 

 

5.4.2 Qualitative Evaluation 

In the main text, we show the result of our approach to generate multiple distribution schemes 

using distinct fiber configurations given the same stress-strain curve as input. To further exhibit 

our approach's ability to generate various results given different fiber configurations, in Fig 22 to 

25, we perform evaluations using randomly generated stress-strain curves as the input to generate 

results. All stress-strain curves are randomly picked within the valid range as shown in Fig 18 but 

do not exist in the training set. For each stress-strain curve input with a candidate fiber 

configuration, we generate six fiber distribution schemes by random sampling (cf. Equations 31 

and 25) with the initial position 𝑝𝑇
𝑖 ∼ 𝑁(0, 𝐼) ∈ 𝑅3 and the initial orientation obtained through the 

directional vector 𝑑𝑇
𝑖 ∼ 𝑁(0, 𝐼) ∈ 𝑅3  where 𝑇 = 500  in our implementation. Along with each 
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generated scheme, we also show the volume fractions counting only the effective fiber volume 

inside the REV.  

Figs 23 and 24 show the results of generated composites reinforced with short fibers but different 

numbers of fibers. Fig 25 shows the results of various fiber length and diameter combinations 

given the same number of fibers. In particular, Fig 26 exhibits the results of short fiber reinforced 

composites with unidirectional orientations, and Fig 27 exhibits the results using long fibers. As 

can be seen, our approach is capable of generating high-quality fiber distributions, the stress-strain 

properties of which are very close to the expected (input) one in all the tested cases, 

with volume fraction varying from 1.70% to 19.56%. For unidirectional cases, our model can 

generate results with orientation errors of less than 1 degree. The random nature of the generation 

process enables our approach to easily generate multiple candidate schemes simultaneously. 

For short fibers with heterogeneous orientations, the generated results indicate an evident 

correlation between the stress-strain properties and the volume fractions for the composites 

reinforced by short fibers with heterogeneous orientations. Illustrated in Fig 23 and 24, an increase 

in the number of fibers corresponds to heightened composite stiffness given the same fiber length 

and diameters. Fig 25 further indicates the divergence of the stress-strain curves when the fiber 

length and diameter change, which results in distinct volume fractions. From the results of 

unidirectional cases, we can see that an increase in the number of fibers along the x-direction 

correlates with a stiffer stress-strain curve. This behavior is attributed to the fact that when force 

is applied along the x-direction, fibers oriented in the same direction exhibit increased stiffness. 

Additionally, larger diameter fibers exhibit a stiffer stress-strain curve. The prevalence of fibers 

along the x-direction contributes to the composite stress-strain curve resembling that of a linear 

material. 
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In Fig 28, we provide additional results to highlight the subtle difference with and without using 

the proposed loss guidance during generation. Our loss guidance can effectively help generate 

collision-free results by applying physical constraints during the reverse (generation) process of 

the diffusion model. 

As stated in the main text, our system employs an automatic matching mechanism to select 

candidate fiber configurations given an expected stress-strain curve. 

This mechanism ensures that our system can always generate results using reasonable fiber 

configurations, and users can further pick the schemes from the candidates according to their 

preferences. In Fig 29, we show two failing cases, where we skip the automatic matching 

mechanism, and force the model to generate results using unmatched fiber configurations where 

the input stress-strain curves fall outside the valid range that the specific fiber configuration can 

support. As we can see, when given using unmatched fiber configurations, the system fails with 

most fibers being distributed outside the REV and overlapping with others. Though the loss 

guidance can help ensure the physical constraints, the large error in the generated results obviously 

cannot be made up only by the guided loss. The proposed automatic matching mechanism is critical 

to ensure generation using proper fiber configurations matched with the given stress-strain curve. 

 

Figure 29 Failure cases where the model is asked to generate fiber distributions with an 

expected stress-strain curve outside the valid range. The blue range indicates the valid range of 
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the stress- strain curves given the target fiber configuration n = 30, l = 50, d = 10. The two 

marked lines are the input curves fed to the model. The two small plots show the generated 

results. 

 

5.4.3 Sensitivity Evaluation 

We use the configuration of 𝑛 = 30, 𝑙 = 50, 𝑑 = 10 for the study of sensitive analysis. 

We focus on the analysis of three key points concerning (1) the transformer architecture, (2) the 

usage of fiber spatial representation learning through GAT, and (3) the need for loss guidance to 

generate collision-free fiber distributions. Identically with the quantitative evaluation in 

quantitative evaluation, for each testing sample, we generate 10 results and use the average 

performance to evaluate the models. 

Table 9 Sensitive analysis of different transformer architectures and the analysis using and not 

using GAT for fiber spatial representation learning. All results are studied using the 

configuration of n = 30, l = 50, d = 10 and reported using relative MAEs averaged over 10 

generated results for each testing sample. 

Heads Layers GAT 𝑒𝑎1[%] 𝑒𝑎2[%] 𝑒𝑎3[%] 𝑒𝑎4[%] 

1 8 √ 0.13 0.18 0.27 0.13 

1 16 √ 0.10 0.13 0.21 0.10 

4 16 √ 0.09 0.12 0.19 0.09 

8 16 √ 0.09 0.10 0.18 0.09 

8 32 √ 0.07 0.07 0.14 0.07 

16 32 √ 0.05 0.06 0.12 0.06 

16 32 − 0.08 0.08 0.16 0.08 
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Table 9 lists the performance of our models with different transformer architectures (number of 

attention heads and number of decoder layers) and also the performance of the model without 

using GAT for fiber spatial representation learning. For the latter one, we simply pass each fiber 

state [𝑝𝑖, 𝑅𝑖] ∈ 𝑅5  through a shared network with two fully connected layers to get a 512-

dimension vector as the embedding of each fiber fed into the transformer network. As shown in 

the table, the model performance increases consistently as the model scale, i.e. the number of 

attention heads and the number of decoders layers, increases. Though the GAT module has a 

similar size (number of parameters) to the shared embedding neural network, it can provide an 

overall improvement of around 25%, where 𝑒𝐴 improves to 0.06% from 0.08%, compared to the 

case without using GAT. 

 

Figure 30 collision-free rate when generating fiber distributions without using the proposed loss 

guidance. 

 

We also studied the success rate of generating collision-free fiber distributions with and without 

using the guided loss. All the results are achieved on the test set where we generate 10 results for 

each testing sample. Because the guided loss can ensure to obtain collision-free results, 
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here we only show the collision-free rate when generating fiber distributions without using the 

proposed loss guidance. As we can see from Fig. 30, generating through the vanilla reverse process 

of the diffusion model without loss guidance can only achieve collision-free results lower than 9% 

in all the studied cases. The collision-free rate will decrease while the volume fraction increases. 

In the challenge cases where fibers are distributed densely, e.g. 𝑛 = 30, 𝑙 = ∞ with unidirectional 

orientation, the collision-free rates are about zero. This result highlights the necessity of using the 

proposed guidance loss to perform physically constrained fiber distribution generation. 

 

5.5 Generation using Out-of-the-Range Conditions 

To further evaluate the generalization capability of the PC3D_Diffusion model, we examine its 

performance on stress-strain curves and configurations out of the range of the training datasets. 

First, as shown in Fig. 18, we consider configurations that are outside of the training data for a 

stress-strain curve that falls within the range of the training dataset but is not present in the training 

set. As shown in Fig. 31a-31d, composites with configuration combination out of the training data 

are generated. It is shown that the four generated fiber configurations all give stress-strain response 

curves that are very close to the expected response.  

Next, we consider a more challenging task where both the configuration and stress-strain curves 

fall outside the range of our training data. We select a stress-strain curve that is below the envelope 

of stress-strain curves for heterogeneous fiber orientations, and another one below the envelope of 

stress-strain curves for unidirectional fibers. For both stress-strain curves, we select the 

configuration n=30, l=30, and d=2 (d is out of range of the training data). As shown in Fig. 31e-

31f, the composites generated by the PC3D_Diffusion model can produce stress-strain response 

curves that closely match the expected curves that have not been seen in the training data. These 
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examples show the generalization capability of our model. It is important to note that this 

generalization capability allows for the discovery of new composite material designs with superior 

material responses that have not been seen before. 

 

 

Figure 31 Examples of generated results using fiber configurations out of the training set. (a) - 

(c): Results generated using fiber configurations respectively with fiber amount (𝑛), length (𝑙) 

F ig. 3 O ut of scope.

In F ig.4,w e highlight the subtle di↵erence w ith and w ithout using the proposed
loss guidance during generation.T he collision betw een fibers is hard to avoid w ithout
our guidance loss as long as tw o fibers are put nearly even in the case w here fibers are
distributed not so densely overall.e.g.F ig.4a.B y applying the loss guidance during
generation,our approach can generate collision-free results even in very dense scenar-
ios.From the exam ples show n in F ig.1 and 4,w e can see that the overalldistributions
offibers w ith and w ithout using the proposed loss guidance are alm ost identical.T he
introduction of loss guidance only slightly changes the positions and/or orientations
ofcollided fibers w ithout significant m odification to the overalldistributions offibers.
T hough the guided loss itself is applied at each step during generation w ithout con-
sidering the change in the stress-strain response w hen m odifying the fiber positions

11
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and diameter (𝑑) not appearing in the training set. (e) - (f): Results generated with the target 

stress-strain curve out of the range covered by the collected database with heterogeneous and 

unidirectional orientation constraints respectively. This leads to the results where the needed 

fiber configuration with 𝑙 = 25 and 𝑑 = 2 falls out of the training set.  

 

5.6 Discussion 

We have examined how transformer architecture and fiber representation impact the performance 

of our model. We use the configuration of n = 30, l = 50, d = 10 for the study. For each testing 

sample, we generate 10 results and use the average performance to evaluate the models. As shown 

in Table 9, the model performance increases consistently as the model scale, i.e. the number of 

attention heads and the number of decoders layers, increases. To evaluate the performance of the 

model without using GAT for fiber spatial representation learning, we simply pass each fiber state 

[𝑝𝑖 , 𝑅𝑖 ∈ 𝑅5 through a shared network with two fully connected layers to get a 512-dimension 

vector as the embedding of each fiber fed into the transformer network. The models with or without 

GAT have a similar size (number of parameters). However, the GAT can reduce the average errors 

𝑒𝑎1, 𝑒𝑎2, 𝑒𝑎3and 𝑒𝐴 from 0.08, 0.08, 0.16, 0.08 to 0.05, 0.06, 0.12, 0.06, respectively.  

Designing fiber-reinforced composites in 3D is a challenge for traditional optimization methods 

due to the large design space of material microstructure. It becomes even more difficult when 

requesting that the material design satisfies the entire nonlinear stress-strain curve. In this work, 

we regard the inverse design problem of fiber-reinforced composites as a generative task to decide 

the distribution of fiber positions and orientations. Our 3D diffusion model considers different 

characteristics of position and orientation properties and is particularly suitable for 3D fiber-
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reinforced composites under a non-linear mechanical deformation setting. The 3D diffusion model 

offers the following benefits: 

• By collecting 1.3 million samples for training, our data-driven model can accurately 

capture and reproduce the entire non-linear stress-strain response under large deformation, 

which is difficult, if not impossible, to achieve with traditional optimization methods.  

• While the composite microstructure configuration for a given stress-strain response is 

inherently not unique, the stochastic nature of the diffusion model allows us to easily 

generate a variety of valid composite designs, which offers composite engineers multiple 

options to consider, along with other factors like manufacturability and cost. In comparison, 

traditional optimization methods typically stop searching when one design is found.  

• As demonstrated by the results, the generalization capability of the 3D diffusion model 

enables generation of composite designs to previously unseen stress-strain curves, which 

facilitates discovery of new composite materials exhibiting unprecedented properties.  

• The current study is designed to generate fiber reinforced polymer composites for given 

stress-strain curves. Our approach is generally applicable for any spatial generation task. It 

can be easily expanded to other types of composites such as particulate, flake or laminar 

composites, and to target other material properties such as viscoelastic, damage, and/or 

fatigue properties, albeit with additional training data, probably a larger network, and more 

training time.   

• The designs generated by the vanilla 3D spatial diffusion model have only a low percentage 

that is collision-free since there is no mechanism in the vanilla 3D diffusion model to 

enforce physical constraints. To guarantee the generation of physically allowed fiber 

distributions, we propose distance-guided generation to avoid collision between fibers. 
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This loss guidance approach can be further extended by introducing other differentiable 

losses to apply additional physical constraints, e.g., fiber packing density limits imposed 

by manufacturing processes. 

Although our model shows high-quality results in generating fiber distribution in 3D space, it has 

its limitations: 

• The generated results are not always realizable due to the difficulty to precisely control 

individual fiber’s position and orientation in manufacturing process. As the direction for 

further research, we are exploring approaches to take into account manufacturability in 

generating fiber distributions. Experimental validations will be carried out for the 

generated “manufacturing-aware” composite designs. 

• For an arbitrarily given stress-strain curve, there may not be a corresponding composite 

design solution. In this case, the current model would generate designs that best 

approximate the target curve. However, it is desirable to determine a priori the feasibility 

of an input stress-strain curve to ensure the existence of a material design solution. To this 

end, an auxiliary machine learning model may be necessary to help decide what is a feasible 

stress-strain curve. 

In addition to these limitations, it should be noted that the training data used by the 3D diffusion 

model is produced by the deterministic finite element analysis (FEA) model. In practice, composite 

materials often display small variability in properties due to variations in the matrix properties, the 

size and geometry of the fibers, as well as the conditions under which they are manufactured. To 

capture such uncertainties, it is necessary to employ a probabilistic approach (e.g. stochastic FEA 

models) to generate training data, which is beyond the scope of this work.   
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CHAPTER SIX 

CONCLUSIONS 

This dissertation aims to provide valuable insights into inverse design across various domains 

through the application of machine learning techniques. Inverse design, a method that starts with 

the desired outcome and works backward to determine the necessary input parameters, is 

significantly enhanced by machine learning. This approach allows for the development of high-

performing design solutions by leveraging advanced models capable of handling complex data and 

predicting optimal structures. 

The first research question addresses the relationship between materials' microstructures and their 

behaviors. By utilizing data generated from porous materials and advanced ResNet (Residual 

Networks) models, this study aims to establish a clear understanding of how different 

microstructures influence material behaviors. ResNet models, known for their deep learning 

capabilities, are particularly effective in capturing intricate patterns and relationships within the 

data. This part of the research focuses on mapping these patterns to predict the mechanical 

properties of materials based on their microstructural characteristics. 

The second research question focuses on generating 2-D microstructures of multiphase materials 

based on targeted mechanical behaviors. This involves using the data and insights gained from the 

first research question. By employing Variational Autoencoder (VAE) models, the study 

successfully generates 2D microstructures that meet specific mechanical criteria. VAEs, with their 

ability to learn and generate new data points, are ideal for creating diverse and functional 

microstructures tailored to desired properties. This approach not only facilitates the design of new 

materials but also optimizes existing ones for improved performance. 
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The third research question explores the generation of 3D geometry and topology of multiphase 

materials based on targeted mechanical behaviors. This involves using data generated from 3D 

fiber composite materials and advanced Denoising Diffusion Probabilistic Models (DDPM). 

DDPMs are powerful generative models that excel in creating complex, high-dimensional data 

structures. In this context, they are used to develop detailed 3D geometries that meet specific 

mechanical performance criteria. This part of the research highlights the transition from 2D to 3D 

modeling, demonstrating the scalability and applicability of machine learning techniques in 

designing advanced materials. 

The fourth research question examines the integration of physics and design requirements into 

machine learning models. Incorporating physics into machine learning models ensures that the 

generated designs are not only theoretically optimal but also practically feasible. By using an 

improved DDPM model, the study achieves collision-free fiber generation, addressing a common 

issue in the design of composite materials. Furthermore, this research question explores the 

combination of machine learning-generated designs with practical 3D printing techniques. This 

integration enhances the real-world applicability of the designs, ensuring that they can be 

manufactured efficiently and effectively. Additionally, outline future research work and the 

anticipated developments in this field. 

Overall, this dissertation presents a comprehensive framework for utilizing machine learning in 

the inverse design of materials. By addressing key challenges and leveraging advanced models, it 

offers a pathway to designing materials with tailored properties, optimized performance, and 

practical applicability in various engineering domains. 
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CHAPTER SEVEN 

FUTURE WORK: INCORPORATING MANUFACTURING REQUIREMENTS INTO ML 

MODELS 

7.1 Manufacturing Requirements 

In our recent material manufacturing design, we encountered a significant issue with the fibers 

generated in previous sections. These fibers exhibited an excessively high density, causing them 

impossible in manufacturing. This high fiber density created substantial challenges during the 3D 

printing process, ultimately preventing the successful completion of the manufacturing process. 

This issue not only impeded the production efficiency but also compromised the quality of the 

final product. 

To address this critical problem, we are implementing a new fiber generation process based on the 

Voronoi diagram [127]. The Voronoi-based method offers a sophisticated approach to controlling 

the spatial distribution and density of the fibers. Voronoi diagrams partition space into regions 

based on the distance to a specific set of points, which allows for a more even and controlled 

distribution of fibers. By leveraging the properties of Voronoi diagrams, we can create a more 

uniform and manageable fiber structure that is conducive to 3D printing. This approach involves 

generating a set of seed points within the desired material volume and using the Voronoi algorithm 

to define the boundaries of the regions around each seed point. The fibers are then distributed 

according to these regions, ensuring that they do not clump together and maintain an appropriate 

density. This not only resolves the issue of fiber sticking but also enhances the overall mechanical 

properties and performance of the manufactured materials. 

Furthermore, the Voronoi-based fiber generation process allows for greater customization and 

optimization of the fiber properties. By adjusting the parameters of the Voronoi diagram, such as 
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the number and placement of seed points, we can tailor the fiber distribution to meet specific 

requirements for different applications. This level of control and precision ensures that the final 

products are not only manufacturable but also exhibit the desired characteristics and performance. 

By transitioning to this advanced fiber generation technique, we aim to significantly improve the 

practicality and efficiency of our manufacturing process. This change will enable us to produce 

high-quality materials that meet stringent standards and specifications, ultimately enhancing the 

reliability and performance of our products. 

We aim to ensure that the fibers are positioned randomly and distributed evenly among the sections. 

To achieve this, we will use a Voronoi diagram-based method for distributing fiber positions in 

each layer. This method allows for a controlled yet random spatial arrangement of fibers, ensuring 

uniform distribution which enhances the structural properties of the material. 

During the physical manufacturing process, we encountered a significant issue related to bending. 

When the layers of fiber composites are not symmetrical, the product tends to bend and deform, 

altering its shape during the manufacturing process. This deformation negatively impacts the 

structural integrity and functionality of the final product. 

To address this critical issue, we have decided to design the fiber composites to form a symmetric 

cubic structure, as illustrated in Figure 32. By ensuring symmetry in the composite layers, we can 

mitigate the bending problem. The symmetric arrangement of fibers balances the internal stresses 

and strains, preventing the product from bending and maintaining its intended shape throughout 

the manufacturing process. The implementation of the Voronoi diagram-based method for fiber 

distribution, combined with the symmetrical cubic design, offers several advantages: The random 

yet uniform distribution of fibers prevents clumping and ensures a consistent density, improving 

the overall strength and durability of the material. Symmetrical layers balance internal forces, 
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reducing the risk of bending and deformation during manufacturing. A more predictable and stable 

material behavior leads to fewer production issues and higher-quality final products. The Voronoi 

diagram-based method allows for precise control over fiber placement, enabling customization to 

meet specific performance requirements. 

To achieve the desired fiber distribution, we will generate a set of seed points within each layer of 

the material. The Voronoi algorithm will then be used to define the boundaries around these seed 

points, creating regions that dictate where the fibers will be placed. This approach ensures that the 

fibers are evenly distributed, reducing the likelihood of high-density areas that could cause 

manufacturing issues. Additionally, the symmetric cubic design will involve carefully arranging 

the fibers in a manner that mirrors across the central axis of the composite. This symmetry ensures 

that any forces acting on the material are evenly distributed, preventing the development of stress 

concentrations that could lead to bending. By adopting these advanced techniques, we aim to 

significantly improve the practicality and reliability of our manufacturing process. The resulting 

materials will not only meet stringent quality standards but also exhibit superior performance 

characteristics, ensuring their suitability for a wide range of applications. This approach 

underscores our commitment to innovation and excellence in material manufacturing. 

In summary, the combination of a Voronoi diagram-based fiber distribution method and a 

symmetric cubic design will enable us to produce high-quality, structurally sound materials. This 

strategy addresses the challenges of fiber density and bending, ensuring that our manufacturing 

process yields products that maintain their shape and integrity throughout production and into their 

final application. 
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Figure 32 Left, the Voronoi diagram section of each layer, right, the figure of fiber composites 

during manufacturing of layer 10, 12, 14. 

To enhance the microstructure of fiber composites using Voronoi diagrams, we employed Gmsh 

to generate a detailed mesh diagram. As depicted in Figure 33, this illustration showcases the 

representative volume element (RVE) of the composite material. The RVE provides a 

comprehensive view of the microstructural arrangement, enabling an in-depth analysis of the 

material properties. Additionally, the figure includes a zoomed-in section highlighting the intricate 

details and distribution of fibers within the composite. This meticulous representation aids in 

understanding the interaction between fibers and the matrix, ultimately contributing to optimizing 

the composite's mechanical performance. 

 



111 
 

 

Figure 33 Left: Representative volume element of 14 layers Right: Zoom in details of fiber 

representative volume element. 

 

7.2 Future Work 

The next steps of the future work are as follows: 

Step 1: data generation 

Generate the datasets as previously described. This involves creating a comprehensive and diverse 

set of data points, approximately 1 million in total, to ensure the machine learning models have 

sufficient information to learn from. These datasets will capture various aspects of the material 

properties and microstructures, providing a robust foundation for model training. 

Step 2: machine learning model development  

Develop an efficient and suitable machine learning model tailored to our specific requirements. 

This step involves selecting the appropriate algorithms and techniques that can effectively handle 

the complexity of our data. The model should be designed to achieve high accuracy in predicting 

and optimizing material properties based on the generated microstructures. 
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Step 3: model training 

Train the developed machine learning model using the generated dataset. This process includes 

multiple iterations of training, validation, and tuning to refine the model's performance. The aim 

is to achieve a mature and robust model that can accurately predict the desired material properties. 

This step may also involve techniques such as cross-validation, hyperparameter tuning, and 

performance evaluation metrics to ensure the model's reliability and accuracy. 

Step 4: microstructure generation and validation 

Utilize the trained machine learning model to generate material microstructures that meet the 

targeted material properties. This involves running simulations and optimizations to produce 

microstructures that align with the desired specifications. The generated microstructures will then 

undergo rigorous validation to ensure they meet the necessary performance criteria. This validation 

process includes comparing the predicted properties with experimental or known values to confirm 

the model's accuracy. 

Step 5: 3D printing and final validation 

Employ 3D printing technology to fabricate the product with the designed material microstructure. 

This step involves translating the digital microstructure designs into physical prototypes using 

advanced 3D printing techniques. Once the product is fabricated, it will undergo thorough testing 

and validation to ensure its accuracy in terms of material properties and performance. The final 

validation ensures that the 3D printed product meets all the targeted specifications and performs 

as expected in real-world applications.  
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