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Abstract

Several measures of vulnerability of a graph look at how easy it is to disrupt

the network by removing/disabling vertices. As graph-theoretical parameters, they

treat all vertices alike: each vertex is equally important. For example, the integrity

parameter considers the number of vertices removed and the maximum number of ver-

tices in a component that remains. We consider the generalization of these measures

of vulnerability to weighted vertices in order to better model real-world applications.

In particular, we investigate bounds on the weighted versions of connectivity and in-

tegrity, when polynomial algorithms for computation exist, and other characteristics

of the generalized measures.
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Chapter 1

Introduction

There are many ways one can quantify the “goodness” of a graph as a network.

In this thesis we focus on the case of node failure and the worse case thereof. The

associated parameters are sometimes called measures of vulnerability. That is, the

vulnerability of a graph is a measurement of how the removal or disabling of a subset

of vertices disrupts the graph. Multiple measures of vulnerability exist and are each

applicable for different kinds of situations. Some of the most common measures of

vulnerability are the connectivity, integrity, and toughness. In 1988, Goddard [7] in-

vestigated the integrity and toughness in general and how they relate to vulnerability.

The connectivity is a very natural measure of the vulnerability of a graph and

lends itself nicely to a basic intuition of how resilient a graph is to disruption. Using

this as a measure of vulnerability is also convenient, as there are many known results

about connectivity. This includes helpful bounds such as the following.

Proposition 1.1. The connectivity of a graph is at most the minimum degree of the

graph.

However, oftentimes the connectivity of a graph can be over-sensitive to local

weaknesses while the rest of the graph may still be intact, though disconnected. For
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example, the star and the graph obtained by adding a leaf to the complete graph

both have connectivity 1. However, they differ greatly in the damage done to the

overall network by the removal of a cut-vertex [3]. This leads us to investigate other

measures that may give a better grasp of the overall disruption that disconnection

causes. In this thesis we focus on integrity and toughness.

The integrity of a graph can be thought of as how resistant a graph is to

fragmentation, and attempts to provide a measure of how disconnected the graph

becomes. Integrity was introduced by Barefoot, Entringer, and Swart in 1987 [3]

specifically as a measure of vulnerability and then investigated in more depth in 1988

by Goddard [7].

Definition 1.1. For any graph G, the integrity of G, denoted I(G), is defined as

I(G) := min
S⊂V (G)

{
|S|+m(G− S)

}
,

where m(G) is the maximum cardinality of a component of G.

Integrity has several very nice properties including that the removal of a single

vertex can only lower it by at most 1 [7]. Also, it is at least the chromatic number of

the graph. Goddard outlines more formulas for computation, bounds, and theorems

regarding integrity in [7]. For a survey, see [1]. There are several drawbacks to

integrity as well, a major one of which is that, while there are some formulas for

specific classes of graphs such as paths, in general it is NP-complete to calculate [7].

The toughness of a graph was introduced in 1973 by Chvátal [5] as a graphical

parameter related to work with Hamiltonicity rather than directly as a measure of

vulnerability. Toughness also provides a measure of a graph’s resilience to fracture,

but takes into account the number of fragments left instead of the size of fragments

as in integrity.
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Definition 1.2. For any graph G, the toughness of G, denoted by τ(G), is defined

as

τ(G) := min
S∈J(G)

{ |S|
k(G− S)

}
,

where J(G) := {S ⊂ V (G) : S is a cut set or G−S is trivial} and k(G) is the number

of components of G.

Much of the work on toughness has been about thresholds for the existence

of particular subgraphs, especially a Hamilton cycle. However, there has also been

work on bounds and complexity. It too is NP-hard to calculate in general [7]. For a

survey, see [4].

1.1 Our Contribution

In the previously mentioned measures of vulnerability, all vertices in a graph

are considered equally important. In many real-world applications, this assumption

is inaccurate as some vertices many be more important or harder to disable than

others. To better model these situations, we generalize several of the vulnerability

parameters to weighted graphs.

We first review some background definitions and theorems in Section 2. Then

we discuss weighted integrity in Section 3 and fully weighted toughness in Section 4.

Lastly we discuss other ideas and future work in Section 5.
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Chapter 2

Graph Theory Background

2.1 Basic Definitions

We will use the following definitions and notation throughout this paper. Note

that we only deal with undirected simple graphs throughout. We use the following

notation for standard classes of graphs.

• Kn - the complete graph of order n

• Kr,s - the complete bipartite graph with partite sets of order r and s

• Pn - the path on n vertices

• Cn - the cycle on n vertices

We also use the following definitions for standard graph parameters.

Definition 2.1. The degree of a vertex v is the number of its neighbors. The

maximum vertex degree is denoted as ∆ and the minimum vertex degree as δ.

Definition 2.2. A nonempty graph G is connected if every pair of vertices are

connected via a path, otherwise it is disconnected.
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Definition 2.3. A set of vertices S is a cut-set of the graphG ifG−S is disconnected.

Definition 2.4. The connectivity of a graph G, denoted κ(G), is the minimum

cardinality of S such that G− S is disconnected or reduced to a single vertex.

Definition 2.5. A set of vertices S is independent if they are pairwise non-adjacent.

Definition 2.6. The independence number of a graph G, denoted α(G), is the

maximum cardinality of an independent set.

Definition 2.7. A subset of vertices C is a vertex cover of G if every edge of G is

incident to some vertex of C.

Definition 2.8. The covering number of G, denoted β(G), is the minimum cardi-

nality of a vertex cover of G.

Definition 2.9. A proper (vertex) k-coloring of a graph G is defined as a vertex

coloring from a set of k colors such that no two adjacent vertices share a common

color. That is, a proper k-coloring of G is a mapping c : V → {1, 2, . . . , k} such that:

∀e = {u, v} ∈ E : c(u) ̸= c(v).

Definition 2.10. The chromatic number of G, denoted χ(G), is the minimum

number of colors in a proper coloring of G.

2.2 Background on Integrity

Various results about ordinary integrity are known, including formulas for

calculating the integrity of specific classes of graphs. In 1987, Barefoot, Entringer,

and Swart [2, 3] proved the following about specific graphs.

Theorem 1. The integrity of:

5



1. the complete graph Kn is n

2. the edgeless graph is 1

3. the star K1,n is 2

4. the path Pn is ⌈2
√
n+ 1⌉ − 2

5. the cycle Cn is ⌈2
√
n⌉ − 1

6. the complete bipartite graph Kr,s is 1 + min{r, s}

7. any complete multipartite graph of order n and largest partite set of order r is

n− r + 1.

In 1990, Goddard and Swart [6] gave an alternative formulation of integrity

along with a characterization of some vertices that achieve the minimum presented.

Theorem 2. The integrity of a nontrivial graph G is,

I(G) = min
v∈V

{m(G), 1 + min I(G− v)}.

If G is connected, then this can be restated as

I(G) = 1 + min
v∈V

I(G− v).

Theorem 3. If a graph G, has a vertex v for which deg(v) ≥ I(G− v), then I(G) =

1 + I(G− v).

We also have the following two theorems that relate the integrity of a graph

to other interesting parameters. The first gives bounds on integrity that are sharp

and the second shows cases when equality holds [1].
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Theorem 4. For any graph G of order n,

1. I(G) ≤ β(G) + 1

2. I(G) ≥ δ(G) + 1

3. I(G) ≥ min
t

max{dt, t− 1} where the degrees of G are d1 ≥ d2 ≥ · · · ≥ dn

4. I(G) ≥ χ(G)

5. I(G) ≥ (n− κ(G))/α(G) + κ(G)

6. I(G) ≥ 2
√
τn− τ , if G is not complete, where τ is the toughness.

Recall that 2K2 is the graph of two disjoint copies of K2.

Theorem 5. For any graph G, the integrity is

1. I(G) = κ(G) + 1 if and only if κ(G) = β(G)

2. I(G) = β(G) + 1 if and only if G does not contain 2K2 as an induced subgraph

3. I(G) = δ(G) + 1 if and only if G ∼= rKn or G ∼= rKn + F for some graph F

satisfying δ(F ) ≥ |G| − (2r − 1)n− 1.

2.3 Background on Toughness

As mentioned before, toughness was originally defined to help determine a con-

dition for when a graph is Hamiltonian. Thus, we have many theorems relating these

two properties. We also have various theorems relating toughness to the existence of

factors in a graph. More can be read about these relationships in [4].

As with integrity, determining the toughness of a general graph is NP-hard

and even determining if a graph is 1-tough, meaning that the toughness is at least

7



1, is NP-hard. Recall that a cubic graph is one in which every vertex has degree 3.

Determining the toughness of cbuic graphs is still NP-hard; however, we do have an

upper bound on the toughness in terms of its independence number [4].

Theorem 6. Let G be a noncomplete cubic graph on n vertices with independence

number α. Then

τ(G) ≤ min

{
2n− 3α

n− α
,

2α

4α− n

}
.

In 1997, Goddard [8] considered the toughness of a specific type of cubic graph.

A cycle permutation graph is obtained from two disjoint cycles of the same length by

adding a matching between the cycles. The following are bounds on the toughness of

these graphs based on their order [8].

Theorem 7. Let G be a cycle permutation graph on 2m vertices. Then

τ(G)


≤ 4/3 m ≡ 0, 1 mod 4

< 4/3 m ≡ 2 mod 4

≤ 4/3 + 4/(9m− 3) m ≡ 3 mod 4.

We also have lower bounds on the toughness of a general connected graph

in terms of its connectivity and genus [4]. Recall that the genus of a graph is the

minimum genus of an orientable surface on which the graph can be drawn without

edges crossing.

Theorem 8. Let G be a connected graph with connectivity κ and genus γ. Then

1. τ >
κ

2
− 1 if γ = 0

2. τ ≥ κ(κ− 2)

2(κ− 2 + 2γ)
if γ ≥ 1.

8



The next theorem gives sufficient conditions to find a 1-tough spanning sub-

graph of a given graph [4].

Theorem 9. Let G be a graph on n ≥ 4 vertices with τ(G) > 1. Then there exists a

spanning subgraph H of G with τ(H) = 1.

Recently, Matthews and Sumner [10] showed that the toughness is exactly half

the connectivity if the graph is claw-free.

9



Chapter 3

Weighted Integrity

The weighted integrity was introduced by Ray et al. in 2006 [13]. They defined

the problem and showed results about its complexity, discussed later in Section 3.2.

We take a different viewpoint, and instead, investigate bounds on the value of the

weighted integrity as well as other properties. We consider graphs with weightings

on the vertices where the weight of each vertex is nonnegative and the overall weight

of the graph is positive.

Definition 3.1. Let G be a graph with weighting w. The weighted integrity of

G, denoted Iw(G), is

Iw(G) := min
S⊆V (G)

{
w(S) +mw(G− S)

}
,

where mw(X) denotes the weight of the component of X that has largest weight and

w(X) denotes the sum of the weights of vertices in X.

For example, C4 with an associated weighting w and its weighted integrity is

shown below in figure 3.1.

10
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Figure 3.1: Iw(G) = 3.5

In this section, we discuss some exact formulas for computing the weighted

integrity of special classes of graphs, some we discuss bounds for the weighted integrity

of a general graph, and finally, we state some interesting properties of the weighted

integrity.

3.1 Fundamental Bounds

In order to compare integrity and weighted integrity fairly, we define a nor-

malized weighting as one where the total weight of the vertices sums to the order

of the graph. Notice this also means that when all weights are 1, we recover the

ordinary integrity of the graph exactly. Also note that we can normalize any given

weighting of a graph.

We first investigate the weighted integrity of the two most extreme cases: when

G is edgeless, and when G is complete.

Proposition 3.1. For a normalized weighting w of a graph G, Iw(G) ≥ 1. Further,

Iw(G) = 1 if and only if G is edgeless and every vertex has weight 1.

Proof. Suppose first that G is edgeless with every vertex having weight 1. Then

11



clearly Iw(G) = 1, because we can remove no vertices and all components will have

weight 1.

Now suppose that Iw(G) = 1. Notice if the weight of any vertex is greater

than 1, then either S has weight more than 1, or there will be a component of G− S

of weight greater than 1, and thus Iw(G) > 1. So all vertices must have weight 1. But

then if any two vertices are connected, either w(S) ≥ 1 and mw(G − S) ≥ 1, or we

have a component of weight greater than 1. So then G is edgeless. ■

Proposition 3.2. For any normalized weighting w, Iw(Kn) = n.

Proof. Notice first that for any subset S of vertices removed, the remaining graph will

still be connected (or vertexless) and thus the weight of the remaining component of

largest weight is exactly n− w(S). So then Iw(G) = w(S) + n− w(S) = n. ■

If G is not complete, then we may assume S is a cut set. Because otherwise,

G − S is connected and thus mw(G − S) = w(G − S), so that the sum would be n

and thus not minimized. We now consider the complete bipartite graph.

Proposition 3.3. Let Kr,s be the complete bipartite graph with weighting w and let

x1, . . . , xr represent the weights of the vertices in the first partite set and y1, . . . , ys

the weights of the vertices in the second partite set. Then

Iw(Kr,s) = min

{( r∑
i=1

xi

)
+ max

1≤j≤s
{yj} ,

( s∑
j=1

yj

)
+ max

1≤i≤r
{xi}

}
.

Proof. We know that the set removed to achieve the weighted integrity must be a cut

set of the graph. So one must remove all vertices from one of the two partite sets.

Upon removing all the vertices in one set, the remaining component of largest weight

will just be the vertex of largest weight from the other partite set. So the weighted

integrity is the minimum of the two values obtained from removing each set. That

gives the desired result. ■
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For the above graphs we have given formulas for their weighted integrity given

a normalized weighting. However, in general this is not the case because the weighted

integrity problem reduces to the integrity problem when all the weights are 1 and

finding the integrity of a graph is an NP-complete problem [7]. So, we seek instead a

bound on the maximum possible value the weighted integrity of a graph.

Proposition 3.4. For all graphs G of order n with normalized weighting w, Iw(G) ≤

n. Furthermore, there exists a normalized weighting w of G such that Iw(G) = n.

Proof. Notice that trivially Iw(G) ≤ n since the sum of all the weights equals n.

To achieve this bound, simply give one vertex u weight n and all others weight

0. Either the vertex u contributes to w(S) or to mw(G−S); and then Iw(G) = n. ■

In the previous result we established the maximum possible weighted integrity

of a graph. We now determine the minimum weighted integrity. Before we can discuss

what the minimum possible value is, we need a lemma.

Lemma 3.5. For normalized weightings, the minimal possible weighted integrity of a

noncomplete graph G occurs when the removed set S has weight 0 and the rest of the

weight is distributed equally amongst the remaining components.

Proof. Suppose Iw(G) is minimized over all normalized weightings w of G with S the

set of vertices so that 0 < w(S) = x. Then Iw(G) = w(S)+mw(G−S). Notice that if

we rearrange the weighting w such that w(S) = 0 while reallocating weights equally

to each vertex in V − S, then the component of maximum weight of G− S now has

weight less than x more than in the original weighting. Thus, Iw′(G) < Iw(G), a

contradiction of the choice of w.

For any removed set S, the components that remain should have weight evenly

spread across them; so the weighted integrity will be minimized when each component

has the same weight of n/k(G− S). ■

13



We now investigate the minimum possible weighted integrity a general graph

may have.

Proposition 3.6. For a graph G of order n, independence number α, and normalized

weighting w, n/α ≤ Iw(G). Furthermore, there exists a normalized weighting w such

that Iw(G) = n/α.

Proof. By Lemma 3.5, we need only consider

Iw(G) = min
S⊆V (G)

{
w(S) +

n− w(S)

k(G− S)

}
= min

S⊆V (G)

{
n

k(G− S)

}
,

where k(G− S) is the number of components remaining after removing S.

The quantity is clearly minimized when the number of components in G−S is

maximized. But we know that the maximum number of components that can occur

when vertices are removed is equal to α. Thus k(G− S) ≤ α and so
n

α
≤ Iw(G).

To show the tightness of this bound, let C be a minimum vertex cover of G

and let every vertex of C have weight 0. Recall now that the size of a minimum

vertex cover is equal to n− α. So there are exactly n− (n− α) = α isolated vertices

left in G − C. If we weight each of the vertices in G − C with weight n/α, then

Iw(G) = n/α. ■

Proposition 3.6 gives the general lower bound for a graph G, from which we

deduce the following corollaries.

Corollary 3.7. For a normalized weighting w, the weighted integrity of a connected

graph G of order n is at least n/(n− 1).

Proof. Since a connected graph has independence number at most n− 1, the bound

follows from Proposition 3.6. ■

14



Corollary 3.8. For a graph G of order n, Iw(G) = n/(n − 1) if and only if G =

K1,n−1, where the vertex of degree n−1 has weight 0 and all other vertices have weight

n/(n− 1).

Proof. Suppose first that G = K1,n−1, where the vertex of degree n− 1 has weight 0

and all other vertices have weight n/(n− 1). Then clearly Iw(G) = n/(n− 1).

Now suppose that Iw(G) = n/(n− 1). By Lemma 3.5, we know the removed

set has weight 0 and the remaining components have weighting n/(n − 1). But that

means that when we remove one vertex we have n − 1 components left, which can

only occur when G = K1,n−1. ■

Corollary 3.9. The weighted integrity of a k-connected graph of order n is at least

n/(n− k).

Proof. Notice that the minimum size of a cut set of any k-connected graph is at least

k by definition. So then it follows from Lemma 3.5 that the weighted integrity must

be at least n/(n− k). ■

Corollary 3.10. The weighted integrity of the complete bipartite graph Kr,s, where

r < s and r + s = n, is at least

n

n− r
=

n

s
.

Proof. Notice that α = s and apply Proposition 3.6. ■

We now show that for a general graph G it is possible for Iw(G) to take on all

real values between the bounds proved in Propositions 3.6 and 3.4.

Proposition 3.11. For any graph G, there exists a normalized weighting wx of G

such that Iwx(G) = x,
n

α
≤ x ≤ n.

15



Proof. Consider the weighting wx of G where some minimum vertex cover C is given

total weight 0, one of the vertices of G − C is given weight x, and all remaining

vertices of G − C are given weight (n − x)/(α − 1). Note that the total weight is

x+ (α− 1)(n− x)/(α− 1) = n.

By removing C, we get

Iwx(G) = max

{
x,

n− x

α− 1

}

Now by rearranging, we see that x ≥ (n − x)/(α − 1) whenever x ≥ n/α

whence Iwx(G) = x. ■

3.2 Further Results

In this section, we explore some other interesting properties of the weighted

integrity. Recall that for ordinary integrity, the chromatic number of G is a lower

bound for I(G). However, a simple counterexample shows that this is not the case for

weighted integrity. For example, the path graph P3 has chromatic number of 2, but

by giving the two endpoints weight 3/2 and the middle vertex weight 0, the weighted

integrity would be Iw(G) = 3/2 < 2 = χ(G).

v13/2 v2

0

v3 3/2

The following proposition considers a graph constructed by taking each vertex

of a graph G and duplicating it such that the new vertex has the same neighbor-

hood as the original vertex, is connected to the original vertex, and has the same

weight as the original vertex. We call this graph the 2-duplicative graph of G and

16



denote it as G2. In general, we replace each vertex with a k-clique in the same man-

ner and give every vertex the same weight as the original vertex. We call this the

k-duplicative graph of G and denote it as Gk.

An example is shown below in Figure 3.2:

9/8

3/4

1/8

9/8

9/8

3/4

3/4

1/8

1/8

Figure 3.2: K3 and K2
3

Proposition 3.12. If G is a graph of order n with normalized weighting w, then

Iw(G
2) = 2Iw(G).

Proof. We first prove that if S is a set of vertices of G such that Iw(G) = w(S) +

mw(G−S), then S2 is a subset of vertices of G2 such that Iw(G
2) = w(S2)+mw(G

2−

S2). Let S be such a subset and for ease of notation, say that the component of largest

weight in G− S is M . First notice that for any subset K of vertices of G, since the

neighbor set of K2 is the same as that of K and all weights are duplicated in the

construction, we know that w(K2) = 2w(K). Since w(M) ≥ w(K) for all other

subsets K of vertices of G, then 2w(M) ≥ 2w(K). Thus M2 is the component of

largest weight in G2 − S2 and w(M2) = 2w(M).

Now notice that since Iw(G) = w(S) + w(M) is minimum, then 2Iw(G) =

2w(S) + 2w(M) = w(S2) + w(M2) is also minimum and hence Iw(G
2) = w(S2) +

w(M2) = 2Iw(G). ■

This leads to an easy generalization.
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Corollary 3.13. If G is a graph of order n with normalized weighting w, then

Iw(G
k) = kIw(G).

Proof. Same as in the k = 2 case, but replace everything with k and it holds. ■

In Proposition 3.12, notice that the statement does not hold if the newly

duplicated vertices are not connected, as it could be the case that a single vertex is

the component of largest remaining weight and then in the duplicated version the

component of largest remaining weight would still have the same weight instead of

having double the weight of the original largest weighted remaining component. Thus

in this case, if we denote the 2-duplicative graph without the new vertices connected

as G2′ , we can only conclude that Iw(G
2′) ≤ 2Iw(G).

As mentioned before, finding the weighted integrity in general is NP-complete.

However, in 2006, Ray et al. introduced a polynomial-time algorithm for interval

graphs [13]. We investigate the specific case of paths here. Define the parameter

Dw
m(G) as the minimum weight that must be removed so that each component of G

has weight at most m.

Then the weighted integrity equals

Iw(G) = min
m∈R+

m+Dw
m(G).

Lemma 3.14. For a weighted path P there is a polynomial-time algorithm to compute

Dm(P ) for any value of m.

Proof. We use dynamic programming. Number the vertices of the path from 1 to n,

and let wi denote the weight of vertex i. Let P [i, j] denote the subpath consisting of

vertices i through j. For 1 ≤ j ≤ n, let D(m, j) := Dm(P [j, n]). We need to find

D(m, 1). Then if P [j, n] has total weight at most m, one has D(m, j) = 0. Otherwise
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one has the recurrence

D(m, j) = min
k

wk−1 +D(m, k)

where the minimum is over all k > j such that P [j, k− 2] has weight at most m. ■

Next, we claim that there is a polynomial number of possibilities for the weight

of a maximum component in the weighted path. Since there are at most n(n + 1)/2

possible components, namely the P [i, j], we can conclude the following.

Proposition 3.15. For a weighted path, there is a polynomial-time algorithm to

compute the weighted integrity.

Also, for a cycle, one can remove each vertex in turn and find the weighted

integrity of the resultant path using the above algorithm.

Proposition 3.16. For the weighted cycle there is a polynomial-time algorithm to

compute the weighted integrity.

On the other hand, Ray and Deogun showed that finding the weighted integrity

of a tree is NP-complete [12].

While our focus is very much on the worst-case adversarial assignments of

weights, the question of what happens with random weights might be of interest. For

example, we implemented the path algorithm and executed it on paths with a random

normalized weighting. (That is, one originally obtained from a Dirichlet distribution

and then normalized). It is unclear what the asymptotics are for Iw(Pn) with random

w; the data suggests it is O(
√
n). In contrast, the ordinary integrity grows like 2

√
n.

A plot of this is shown in Figure 3.3.
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Figure 3.3: Asymptotic Bound of Weighted Integrity of a Path
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Chapter 4

Fully Weighted Toughness

Recently, both Katona, Kovács, and Varga [9] and Shi and Wei [14] defined the

weighted toughness. They introduced a nonnegative weighting w on the vertex set,

and replaced |S| by w(S) which, as in Section 3, denotes the sum of the weights of the

vertices in S. In this section, we propose an alternative way to generalize toughness

to weighted graphs. In the spirit of measures of vulnerability, we consider not just

the weights of the vertices removed but also the weights of those that remain. Our

motivation is that, if one has for example the graph 2K2 where two of the vertices

have weight 100 and two have weight 1, it seems reasonable to view the situation with

the two vertices of weight 100 in separate components as more “disconnected” than

the situation with the two vertices of weight 100 in the same component.

Therefore, it makse sense to replace the numerator of the original definition of

toughness with w(S) rather than |S|. Next, we turn our attention to the denominator.

For a graph H where the vertices have weighting w, define

kw(H) to be the sum, over the components of H, of the maximum weight

of a vertex in each component.

Note that if all weights are 1, this definition reverts to the original one of k(H). This
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leads to the following definition.

Definition 4.1. The fully weighted toughness of a graph G with weighting w is

defined to be

τw(G) = min

{
w(S)

kw(G− S)

}
,

where the minimum is taken over all S ⊆ V (G) such that S is a cut-set of G, or G−S

has one vertex. A set achieving the minimum is called a tough set.

For example, C4 with an associated weighting w and its fully weighted tough-

ness is shown in Figure 4.1.

v12

v21/2

v3 1

v4 1/2

Figure 4.1: The fully weighted toughness of C4 and the weighting shown is τw(G) =

3/2

5/2
=

3

5

Note that due to the form of the tough ratio, one can scale all weights by the

same positive factor and the fully weighted toughness does not change. Furthermore,

one can restrict the sets S that need to be considered. As defined for example in

[13], a cut-set is strong if G−S ′ has fewer components than G−S for all S ′ strictly

contained in S. Also, a dominating vertex u is one such that every vertex of V − u is

adjacent to u.
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Lemma 4.1. In the definition of fully weighted toughness, for cut-sets S, one may

restrict to those that are strong; and for S where G−S is a single vertex v, one may

restrict to v being a dominating vertex.

Proof. If cut-set S has a subset S ′ where G−S ′ has the same number of components

as G−S, then w(S ′) ≤ w(S) and kw(G−S ′) ≥ kw(G−S). If G−S is a single vertex

v and there exists a vertex x not adjacent to v, then S ′ = S − {x} is a cut-set with

w(S ′) ≤ w(S) and kw(G − S ′) ≥ kw(G − S). In each case, the ratio for S ′ would be

at most the ratio for S. ■

It should be noted that allowing a set S whose removal leaves a single vertex

affects the fully weighted toughness of more than just the complete graph. Consider

for example the path P3 on 3 vertices. If only cut-sets are allowed, one can place

any positive weight on the middle vertex and zero on the end-vertices and get infinite

fully weighted toughness. But if one allows the set S to be the two end-vertices, then

it is straight-forward to show (see Proposition 4.6) that the fully weighted toughness

of P3 is at most 1, which coincides with the fact that the ordinary toughness of a

bipartite graph is at most 1.

The fully weighted toughness problem is in general NP-hard, since having all

weights 1 reduces to the ordinary toughness.

In the first section, we discuss first some formulas for calculating the fully

weighted toughness of special classes of graphs and bounds on the fully weighted

toughness in general. We then turn our focus to the maximization of the fully weighted

toughness of graphs of specific classes of graphs and investigate when the maximum

fully weighted toughness is equal to the ordinary toughness.
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4.1 Some Bounds and Examples

We start with the calculation of the fully weighted toughness of complete

multipartite graphs.

Lemma 4.2. Let G be a complete r-partite graph with partite sets X1, . . . , Xr. If w

is a weighting with total weight W , then

τw(G) =
W

max
1≤i≤r

w(Xi)
− 1 .

Proof. By Lemma 4.1, the only sets S that need to be considered are each the union

of all but one partite set. If S = V (G)−Xi, then w(S) = W −w(Xi) while kw(S) =

w(Xi); thus τw(G) ≤ W/w(Xi)−1. This ratio is minimized when w(Xi) is maximized.

■

Corollary 4.3. For the complete graph Kn and weighting w, τw(Kn) =
n− wk

wk

,

where wk is the maximum weight of any single vertex.

Proof. Apply Lemma 4.2 and find a common denominator and we get the desired

result. ■

Corollary 4.4. For any graph G of order n with weighting w, 0 ≤ τw(G) ≤ n− 1.

Proof. We know that for any graph G with n vertices, τw(G) ≤ tw(Kn). Also, the

maximum weighted vertex in any graph, wk ≥ 1. So then by Proposition 4.3 τw(G) ≤
n− 1

1
= n− 1.

We also see that weighting any cut set with weights 0 leads to tw(G) = 0. ■

We use averaging for several bounds. In particular, we need the elementary

property of the mediant.
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Lemma 4.5. If ai’s are nonnegative reals and bi positive reals, then the mediant

M = (
∑

ai)/(
∑

bi) of the fractions ai/bi is at least the minimum value of ai/bi and

at most the maximum value of ai/bi. Furthermore, if the minimum and maximum

fractions are not equal, then M lies strictly between the two.

Our first bound involves the chromatic number.

Proposition 4.6. If graph G has chromatic number r, then τw(G) ≤ r − 1 for any

weighting w.

Proof. Consider a weighting w of G with total weightW . Let A1, . . . , Ar be a (proper)

coloring of G. Consider removing the set V (G) − Ai from the weighted G. The

resultant graph has no edges, and hence τw(G) ≤ (W − w(Ai))/w(Ai). Taking the

mediant of these r ratios, we have

τw(G) ≤
∑r

i=1W − w(Ai)∑r
i=1 w(Ai)

=
rW −W

W
= r − 1.

This gives the desired bound. ■

As noted in Lemma 4.2, the bound of Proposition 4.6 is achievable by any

complete r-partite graph if one puts equal total weight on each partite set. In partic-

ular, this example shows that the fully weighted toughness of a graph is not bounded

above by n/α− 1 (where n denotes the order and α the independence number), as it

is for ordinary toughness. For example, the complete graph minus an edge, Kn − e,

can have fully weighted toughness n− 2.

For a tree T , Pippert [11] observed that the ordinary toughness is determined

by the maximum degree, namely τ(T ) = 1/∆(T ). The same is not true for fully

weighted toughness, but we observe next that one may at least assume that the set

S is a singleton.
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We will need the following concepts. Given a tree T and a set S of vertices,

we define the S-portion of T to be the subgraph induced by the vertices of S and

all vertices on paths between vertices of S. This is a subtree of T . Further, we define

a vertex x of S to be S-extremal, or simply extremal, if it is an end-vertex in the

S-portion; in other word, there exists a bridge that separates x from S − {x}.

Proposition 4.7. The fully weighted toughness of a tree T that is not a star is

achieved by removing a single vertex.

Proof. Consider a tough set S of minimum cardinality. By Lemma 4.1, we may

assume it is a strong cut-set; thus S does not contain any end-vertex. Suppose S is

not a singleton.

Consider an S-extremal vertex x. Let A denote the set of vertices v of V (T )−S

such that in T every path from v to a vertex of S−{x} goes through x. Let B denote

the set of vertices v of V (T )− S such that in T every path from v to x goes through

at least one vertex of S − {x}. Let C be the remaining vertices in V (T ) − S. Note

that C might be empty, but if it is nonempty, then the subgraph induced by C is

connected. Let α = mw(A), β = mw(B), and γ = mw(C), where we set γ = 0 if C is

empty. Figure 4.2 gives a depiction.

A

C

B

x
S−x

Figure 4.2: Splitting a tree

Now, if one removes vertex x from T , then the components of T − x are those

induced by A, and one component consisting of the vertices of B, C, and all of S−{x}.

The maximum weight of a vertex in the latter component is at least γ. It follows that
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mw(T−x) ≥ α+γ. By a similar reasoning, it follows that mw(T−(S−{x})) ≥ β+γ.

On the other hand, mw(T − S) = α + β + γ.

Thus, the fully weighted toughness of the tree T is bounded above by both

τx ≤ w(x)

α + γ
and τS−x ≤ w(S − {x})

β + γ
.

By considering the mediant of τx and τS−x, it follows that the fully weighted

toughness of the tree is at most

τw(T ) ≤
w(x) + w(S − x)

(α + γ) + (β + γ)
=

w(S)

α + β + 2γ
≤ w(S)

α + β + γ
= τw(T ) .

By Lemma 4.5, both τx and τS−x equal τw(T ), and hence both {x} and S − {x}

contradict the choice of S. ■

Proposition 4.8. The fully weighted toughness of a star is achieved by removing the

center vertex or all the other vertices.

Notice that propositions 4.7 and 4.8 give us the following directly:

Corollary 4.9. There exists a polynomial time algorithm for finding the fully weighted

toughness of a tree

Given an unweighted graph, one can ask for the weights that minimize or

maximize the fully weighted toughness. The former question is trivial. As mentioned

in Corollary 4.4, one can simply put weight 0 on a cut-set, and then the fully weighted

toughness is 0. The latter question is more interesting, and that is what we consider

next.
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4.2 Maximizing Fully Weighted Toughness

For a graph G, we define MFWT(G) as the maximum value of τw(G) over

all weightings w of G. Since one can give every vertex weight 1, it follows that

MFWT(G) ≥ τ(G). At the same time, if vertex v has maximum weight, one can

choose S = V (G)− {v}, and so

MFWT(G) ≤ (n− 1)w(v)/w(v) = n− 1

, where n = |V (G)|.

It is immediate from Lemma 4.2 that if G is a complete r-partite graph, then

MFWT(G) = r − 1, attained by making the weight on each partite set equal. There

are also graphs where the maximum fully weighted toughness is arbitrarily small.

Consider the octopus graph Os defined by starting with the star with s leaves and

subdividing each edge exactly once.

Lemma 4.10. For s ≥ 1, MFWT(Os) = 1/
√
s.

Proof. Since O1 is a complete bipartite graph, by the above comment, MFWT(O1) =

1. So consider the case s ≥ 2. Since Os is not a star, it follows from Proposition 4.7

that the only S one need consider are the singletons {v} where v is not an end-vertex.

Thus the weights of the end-vertices appear only in the denominator of ratios, and

since we are interested in the maximum value of the ratios, these weights may be

assumed to be 0.

Let w1, . . . , ws denote the weights of the degree-2 vertices and y the weight of

the center. Then we have τw(Os) ≤ wi/y for each i (since the maximum component

weight is at least y), and τw(Os) ≤ y/
∑

wi. It can easily be checked that the

biggest value of the minimum of these ratios is achieved when all the wi are equal,
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and y =
√
swi. That is, MFWT(Os) ≤ 1/

√
s. But the stated weights also show

equality. ■

Figure 4.3 shows an optimal weighting of O5.

1

1

1
1

1

0

0

0

0

0
√
5

Figure 4.3: An optimal weighting of the octopus graph O5 that maximizes τw(O5).

We continue with an example that further demonstrates the contrast with

ordinary toughness. We will need the following lemma.

Lemma 4.11. If vertices u and v of a graph G are adjacent and have the same

neighbors, then in computing MFWT(G), one may assume the two vertices get the

same weight.

Proof. Suppose w is a weighting with w(u) > w(v). Let weighting w′ be obtained

from w by increasing the weight of v to equal that of u. We claim that τw′(G) ≥ τw(G).

Consider first a strong cut-set S. Then either both u and v are in S or neither is

in S. If neither is in S, then u and v are in the same component of G − S, and

so kw(G − S) = kw′(G − S) and τw′(G) = τw(G). If both vertices are in S, then

w′(S) > w(S) and τw′(G) > τw(G). Consider second a set where G − S is a single

vertex. The smallest ratio for such S is achieved where G−S is a vertex of maximum

weight, so the largest tough ratio for such a set is the same for w′ as it is for w. This

proves the claim. ■
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Lemma 4.12. Let G be the graph formed by the join of clique Ka with disjoint cliques

Kb1 ∪ . . . ∪Kbs with s ≥ 2 and b = max(b1, . . . , bs). Then

MFWT(G) =
2ab√

(a− 1)2 + 4ab− (a− 1)

.

Proof. Assume that b1 = b. By the Lemma 4.12, we may assume that for each

constituent clique, every vertex in that clique has the same weight. By scaling, we

may assume that each vertex in Ka has weight 1, and each vertex in Kbi has weight

wi.

The fully weighted toughness is achieved either by removing all of Ka, or by

removing all vertices of G except one vertex ofKa. Thus, the fully weighted toughness

is given by

min

{
a

w1 + · · ·+ ws

, a− 1 +
s∑

i=1

biwi

}
.

For a fixed value of
∑

wi, the second quantity is maximized at w2 = · · · = ws = 0.

(That is, we may put all the weight on the biggest clique.) Then the first quantity

is decreasing in w1 while the second is increasing in w1. Hence the minimum is

maximized where the two quantities are equal. So we have

a/w1 = a− 1 + bw1.

In this equation, we can solve for w1, and deduce that the maximum ratio is the

stated bound. ■

For example, if a = 1, then the value in Lemma 4.12 simplifies to
√
b, while

the ordinary toughness is 1/s. Figure 4.4 shows an example weighting for the join of

K1 with cliques K2 ∪K3.
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Figure 4.4: The join of K1 with K2 ∪K3 and an optimal weighting.

Now, if we fix a, by calculus the expression in Lemma 4.12 is increasing in

b. So for fixed a and the order of the graph, the bound is maximized by making

b as large as possible; that is, by taking s = 2 and b2 = 1 so that b = n − a − 1.

So, not unexpectedly, the maximum fully weighted toughness of a graph with given

connectivity a is achieved by the graph obtained by taking the cliqueKn−1 and adding

one new vertex and joining it to a vertices of the clique. Thus we obtain the following.

Proposition 4.13. If G is a graph of order n and connectivity a, then

τw(G) ≤ 2a(n− a− 1)√
(a− 1)2 + 4a(n− a− 1)− (a− 1)

,

and this bound is sharp.

Since a graph with connectivity 1 is not Hamiltonian, it follows that no value

of the fully weighted toughness is sufficient to guarantee Hamiltonicity. Even if one

imposes a large value of connectivity, there is no threshold. For, graphs in the above

family need not be 1-tough even for given connectivity, but can have arbitrarily large

fully weighted toughness.

There are other simple cases where MFWT(G) > τ(G).

Lemma 4.14. If nontrivial graph G is connected and has a unique tough set for

ordinary toughness, then MFWT(G) > τ(G).
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Proof. Assume S is the ordinary tough set. Then for some ε > 0, define a weighting

w by giving the vertices in S weight 1 + ε/|S| and the other vertices weight 1. Since

the total increase in weight is ε, if X is any other candidate set, then kw(G −X) ≤

k(G−X)+ε. Note that if a, b, c, d are positive integers and a/b < c/d, then (a+ε)/b <

c/(d+ ε) for all ε sufficiently small. Thus (|S|+ ε)/k(G− S) < |X|/(k(G−X) + ε),

provided ε is small enough. That is, S remains the unique tough set, and τw(G) >

τ(G). ■

4.2.1 Graphs That Cannot be Toughened

We show next that for certain graphs their fully weighted toughness is at most

their ordinary toughness. One simple example is the 4-cycle. Let x1, . . . , x4 be the

vertices with weights w1, . . . , w4. Then {x1, x3} is a cut-set where x2 and x4 are in

different components, and vice versa. It follows that the fully weighted toughness is

always at most the minimum of (w1+w3)/(w2+w4) and (w2+w4)/(w1+w3), which

is at most 1, the ordinary toughness.

One can extend this idea to other symmetric graphs. Fix some cut-set S of the

graph G. Say G−S has r components with vertex sets S1, . . . , Sr of orders x1, . . . , xr.

If Y is a cut-set such that G − Y is isomorphic to G − S, then one can number the

components Y 1, . . . , Y r of G− Y such that Y j is isomorphic to Sj for 1 ≤ j ≤ r. An

S-family is a collection Y1, . . . , Yℓ of cut-sets such that G− Yi is isomorphic to G− S

for each i. We say that an S-family rotates if

(i) each vertex of G is in an equal number of the Yi (necessarily ℓ|S|/n

times)

(ii) for each j, the collection Y j
1 , . . . , Y

j
ℓ contains every vertex of G the

same number of times (necessarily ℓxj/n times).
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We say that a graph is rotatable if every cut-set has a rotating family.

For example, it is easy to see that cycles are rotatable. As a specific instance,

the 5-cycle has up to symmetry only one strong cut-set S, namely two nonadjacent

vertices, and its removal yields two components. Say the vertices are a, b, c, d, e in

order. Here is the S-family that rotates:

Yi Y 1
i Y 2

i

a, c b d, e

b, d c e, a

c, e d a, b

d, a e b, c

e, b a c, d

Another rotatable graph is the balanced complete bipartite graph: if S is the cut-set

consisting of one partite set, then a rotating S-family is given by it and the other

partite set. Another example is the rooks graph, defined as the Cartesian product of

two complete graphs.

Proposition 4.15. If graph G is rotatable, then MFWT(G) = τ(G).

Proof. Fix a weighting w of G, and consider a tough set S for ordinary toughness. By

assumption, there is a rotating S-family Y1, . . . , Yℓ. For each Yi, the fully weighted

toughness of G is at most w(Yi)/kw(G − Yi). By replacing the maximum in each

component by the average in each component, we have that

kw(G− Yi) ≥
r∑

j=1

w(Y j
i )

xj

.

Let M be the mediant of the ratios w(Yi)/kw(G − Yi) for 1 ≤ i ≤ ℓ. As the
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fully weighted toughness of G is at most each of these ratios, it follows that

τw(G) ≤ M =

∑ℓ
i=1 w(Yi)∑ℓ

i=1 kw(G− Yi)
≤

∑ℓ
i=1 w(Yi)∑ℓ

i=1

∑r
j=1w(Y

j
i )/xj

.

Since each vertex appears in ℓ|S|/n of the Yi, the numerator simplifies to ℓ|S|W/n,

whereW is the total weight on the vertices of G. Similarly, the denominator simplifies

as
ℓ∑

i=1

r∑
j=1

w(Y j
i )

xj

=
r∑

j=1

ℓ∑
i=1

w(Y j
i )

xj

=
r∑

j=1

ℓxjW/n

xj

=
rℓW

n
.

Thus

τw(G) ≤ M ≤ ℓ|S|W/n

rℓW/n
=

|S|
r

=
|S|

k(G− S)
= τ(G),

as required. ■

4.2.2 Paths

In this section we calculate the maximum fully weighted toughness of the path.

The ordinary toughness of a path is 1
2
.

Proposition 4.16. For n ≥ 4, the value MFWT(Pn) is

the (positive) root of the equation α2 + α3 + · · ·+ α(n−1)/2 = 1
2
if n is odd,

and of α + α2 + · · ·+ α(n−2)/2 = 1 if n is even.

In particular, the maximum fully weighted toughness of such a path lies strictly

between 1
2
and 1 For example, MFWT(P5) = 1/

√
2 and MFWT(P6) = (

√
5 − 1)/2.

An optimal weighting of each is shown in Figure 4.5.

Proof. Let w be a weighting. Say the vertices of the path are v1, . . . , vn from left to

right with weights w1, . . . , wn. By Proposition 4.7, we know that the toughness ratio

τw is achieved by removing exactly one of the non-end vertices. Let τi denote the
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Figure 4.5: Optimal weightings of short paths

ratio achieved by the removal of vertex vi for 2 ≤ i ≤ n − 1. Our goal is an upper

bound for the minimum of these n− 2 ratios.

Then τi = wi/(x+ y), where x is the maximum weight to the left of vertex vi

and y is the maximum weight to the right of vertex vi. This quantity is at most 1
2
if

both x and y are at least wi. It follows that the fully weighted toughness of a path is

at most 1
2
, unless the weight distribution has no local minimum: that is, the weights

are strictly increasing up to the maximum weight, which occurs either once or on two

consecutive vertices, and then the weights are strictly decreasing from there on.

Since one can scale all weights and not change the fully weighted toughness, we

may assume that the maximum weight is 1. Assume that wℓ is the leftmost occurrence

of the maximum weight and wr is the rightmost occurrence. As noted above, either

r = ℓ or r = ℓ+1. The weight w1 only appears in the ratio τ2 and in the denominator.

Thus we may assume w1 is as small as possible, namely 0. Similarly we may assume

wn = 0.

Claim 1. We may assume τ2 = τ3 = · · · = τℓ−1 = w2, and so

wi = wi−1
2 + wi−2

2 + · · ·+ w2

for all 3 ≤ i < ℓ.

Proof. Assume ℓ > 3 and consider the weight w2. It appears in only two of

the ratios, namely τ2 = w2/1 and τ3 = w3/(1 + w2). Then if τ2 ̸= τ3, one can adjust

35



w2 until the ratios are equal; note that this increases the smaller of the two ratios,

and thus cannot decrease τw. That is, we may assume that τ2 = τ3, and thus that

the equation w2(w2 + 1) = w3 holds. Note that this adjustment preserves w2 < w3.

Similarly, assume ℓ > 4 and consider the weight w3. It appears only in the ratio

τ3 in the numerator, and in the ratio τ4 in the denominator. If τ3 ̸= τ4, we can adjust

w3 and w2 simultaneously, maintaining the equality w2(w2 + 1) = w3, until τ3 = τ4.

Again, this increases the smaller of the ratios, and does not affect the monotonicity

of the weights. Thus we may assume that w4/(w3 + 1) = w3/(w2 + 1) = w2. In

particular, the equation w4 = w3
2 + w2

2 + w2 holds. The remainder of the claim is

proved similarly. ◁

By a similar argument, we may assume τr+1 = τr+2 = . . . = τn−1 = wn−1, and

that

wn+1−i = wi−1
n−1 + wi−2

n−1 + . . .+ wn−1

for all 3 ≤ i < n− r.

Claim 2. We may assume that

w2 = wn−1.

Proof. By the above discussion, τw = min{w2, wn−1, τℓ, τr}. Note that if ℓ = r,

then τℓ = 1/(wℓ−1 + wℓ+1); otherwise τℓ = 1/(wℓ−1 + 1) and τr = 1/(1 + wr+1).

Suppose w2 ̸= wn−1; say w2 > wn−1. Then one can adjust w2 down, which decreases

wℓ−1, and this change can only increase τℓ (while preserving τr if r > ℓ) and so does

not decrease τw. (And note that this cannot affect the monotonicity of the weights.)

Thus the claim follows. ◁

Let α = w2 = wn−1. Let A(k) =
∑k

j=1 α
j. Then wi = A(i−1) for 2 ≤ i ≤ ℓ−1

and wi = A(n − i) for r + 1 ≤ i ≤ n − 1. Now, assume w is the optimal weighting;
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that is, the one where τw(Pn) is maximized.

Assume first that this weighting has r = ℓ. Out of all weightings achieving

the optimum, choose one where ℓ is as close to the middle as possible. Suppose that

ℓ ̸= (n + 1)/2. Without loss of generality, we may assume ℓ > (n + 1)/2. Then by

the above formulas, we have wℓ−2 ≥ A(n/2 − 2) while wℓ+1 ≤ A(n/2 − 2). Thus

wℓ−2 ≥ wℓ+1.

We claim that one can swap the weights wℓ−1 and 1 without decreasing τw. For,

this swap affects only the two ratios τℓ−1 and τℓ, which change from wℓ−1/(1 + wℓ−2)

and 1/(wℓ−1+wℓ+1) to τ ′ℓ−1 = 1/(wℓ−2+wℓ−1) and τ ′ℓ = wℓ−1/(1+wℓ+1), respectfully.

Then τ ′ℓ−1 > τℓ−1 since wℓ−1 < 1, while τ ′ℓ ≥ τℓ−1 since wℓ−2 ≥ wℓ+1. Thus the new

τ ′w is at least the old τw, which contradicts the choice of w. That is, we may assume

that ℓ = (n+1)/2. In particular, it follows that n is odd, and that the fully weighted

toughness of Pn in this case is the solution to

α =
1

wℓ−1 + wℓ+1

=
1

2A(n−3
2
)
;

that is, the solution to A(n−1
2
)− α = 1

2
.

Assume second that the optimal weighting is only achieved when r = ℓ + 1.

Suppose that ℓ ̸= n/2. Without loss of generality we may assume ℓ > n/2. By the

above formulas, we have wℓ−1 > wr+1.

We claim one can decrease the weight wr from its 1 without decreasing τw.

For, this change affects only the two ratios τℓ and τr. The former will increase. For

the latter, we note that for ε > 0 sufficiently small, (1− ε)/(1+wr+1) > 1/(1+wℓ−1)

since wℓ−1 > wr+1. That is, the new τ ′w is at least the old τw if ε is small enough.

The new weighting has a unique maximum weight, which contradicts the choice of w.

Thus we may assume that ℓ = n/2. In particular, it follows that n is even, and that
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the fully weighted toughness of Pn in this case is the solution to

α =
1

1 + wℓ−1

=
1

1 + A(n−4
2
)
;

that is, the solution to A(n−2
2
) = 1.

The upper bound on MFWT(Pn) follows. It can be achieved by assigning

weights according to the formulas. ■

4.2.3 Trees

We show here that if a tree has at least three vertices, then there is a weighting

such that the fully weighted toughness exceeds the ordinary toughness. Recall that

the ordinary toughness of a tree is 1/∆ where ∆ is the maximum degree.

Proposition 4.17. If T is a tree of order at least 3, then MFWT(T ) > τ(T ).

Proof. We already know this fact for the star. (By Lemma 4.2, the maximum is 1,

but the ordinary toughness is 1/(n−1).) So assume the tree is not a star. By Propo-

sition 4.7, we need only consider singleton cut-sets. We will construct a weighting w

such that w(v)/mw(T − v) > 1/∆ for each cut-vertex v.

We define a partition E0, E1, E2, . . . of V (T ) as follows. Let M be the set of

vertices of maximum degree. Define E0 = V (T ) −M . Define E1 to be the extremal

vertices of M . Define E2 to be the extremal vertices of M −E1, and so on. It follows

that for i ≥ 1, for each vertex v ∈ Ei there is one component of T − v that contains

all of (Ei − v) ∪ Ei+1 ∪ Ei+2 ∪ · · · . Figure 4.6 gives an example, where the numbers

inside each vertex give the index i of the Ei to which that vertex belongs.
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Figure 4.6: A weighted tree.

Now, let ε = 1/∆. For each i ≥ 0, assign each vertex of Ei the weight

µi = 1 + ε− ε

2i
.

Note that every vertex receives a weight that is at least 1 but less than 1 + ε. An

example weighting is given above.

Let τi denote the minimum of the ratio w(vi)/kw(T − vi) over all vi ∈ Ei. The

numerator is always µi. For E0, we have kw(T − v0) < (∆ − 1)(1 + ε), since v0 has

degree at most ∆− 1. Thus

τ0 >
1

(∆− 1)(1 + ε)
=

∆

∆2 − 1
>

1

∆
.

For i ≥ 1, for Ei we have kw(T−vi) < (∆−1)µi−1+(1+ε), since vi is extremal

with respect to M − Ei−1, and so all components except one have maximum vertex

weight at most µi−1. By the definition of the µi, it holds that 2µi − µi−1 = 1 + ε.

Thus

τi >
µi

(∆− 1)µi−1 + (1 + ε)
=

µi

(∆− 2)µi−1 + 2µi

≥ µi

∆µi

=
1

∆
.

That is, we have shown that w(v)/kw(T−v) > 1/∆ for all choices of cut-vertex v. ■
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Chapter 5

Related Ideas and Conclusion

5.1 Weighted Connectivity

Another parameter that measures vulnerability is of course the connectivity.

The connectivity of a graph gives a natural and overall insight about the vulnerability

of a graph. One can ask similar questions as before.

Definition 5.1. Let G be a connected weighted graph with order n. The weighted

connectivity of G, denoted Tw(G), is the minimum weight required to remove to

disconnect the graph or reduce it to a single vertex.

As with our discussion of weighted integrity, we consider normalized weightings. We

find that calculating the weighted connectivity of a graph G may be quite difficult at

times. However, given the ability to choose a weighting of vertices, the value can be

always reduced to 0 as with the fully weighted toughness.

Proposition 5.1. Let G be a connected weighted graph with order n. Then, Tw(G) ≥

0 and if n > 1 then there exists a normalized weighting of G such that Tw(G) = 0.

Proof. Clearly Tw(G) ≥ 0, since the weights of G are nonnegative. Also, given any
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graph G, we can find a minimal cut set of G and give each of those vertices weight

0 and assign weights to the remaining components in any way such that the total

weight is n. The resulting weighted connectivity is Tw(G) = 0. ■

The more interesting question is when is the weighted connectivity maximized?

Let S (G) denote the set of all minimal cut sets of G. The maximum weighted

connectivity is the solution to the linear program

max c

s.t. c ≤ w(S) for all S ∈ S (G)

w(V (G)) = n

wu ≥ 0 for all u ∈ V (G).

Now we note that there exist graphs that have higher weighted connectivity than

normal connectivity. We define MWC(G) of a graph G as the maximum weighted

connectivity over all normalized weightings. An example is shown in Figure 5.1.

v1
5

8

v2
5

8

v4
5

8

v5
5

8

v3

10

4

Figure 5.1: MWC(G) = 2.5, but G has connectivity 1.
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Proposition 5.2. For n ≥ 3, MWC(Cn) = 2 and for all n ̸= 4 the only weighting

that achieves this maximum assigns all vertices with weight 1.

Proof. Consider the cycle Cn. Every pair of nonadjacent vertices form a cut set. The

weighted connectivity is thus at most the average weight of two nonadjacent vertices,

which by symmetry, is at most 2.

To achieve equality, it is necessary that the average equals 2 and hence every

minimal cut set has weight exactly 2. If n ≥ 7, then for every pair of vertices u and

v, there exists a vertex x such that {u, x} and {v, x} are cut sets; hence u and v must

have the same weight. The argument for n = 3, 5 or 6 is similar. ■

For n = 4, in the case of the cycle, the only cut sets are pairs of opposite

vertices. It is sufficient that for every pair of opposite vertices, the weights sum to 2.

Figure 5.2 illustrates two different normalized weightings w and w′ of C4 that both

result in the weighted connectivity being 2.

v2

3/2

v1

1

v3

1

v4

1/2

v2

π

v1

7/8

v3

9/8

v4

2− π

Figure 5.2: Tw(C4) = 2 and Tw′(C4) = 2.
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5.2 Conclusion and Future Work

For further research, it would be interesting to determine what other classes

of graphs have polynomial time algorithms for calculating the weighted integrity and

fully weighted toughness, and which do not. Also, more calculations and bounds on

both parameters for specific families of graphs would be helpful. We know little about

when MFWT(G) is equal to the ordinary toughness and we know nothing about the

complexity of calculating MFWT(G) at this time.
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