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Abstract

A theoretical model is developed for the resonant frequencies and mode shapes of pinned edge

surface waves on a viscoelastic fluid contained in a finite depth cylindrical container. A boundary

integral approach is used to map the governing equations to the domain boundary. The surface

waves obey an eigenvalue operator equation that depends on four dimensionless parameters: the

cylinder aspect ratio, the Bond number, the Ohnesorge number, and the elastocapillary number.

A solution is constructed using a Rayleigh-Ritz variational procedure over a constrained function

space, which is able to effectively incorporate the pinned edge boundary condition. Mode shapes are

defined by the mode number pair (n,m), where n is the radial mode number and m is the azimuthal

mode number. The focus is on irrotational motions, but we show that rotational effects only affect

the dissipation in the system. The theoretical predictions agree well with related experiments over

a wide range of material parameters.
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Chapter 1

Introduction

There are numerous applications in which pattern formation on the surface of a liquid has

been utilized, such as spray cooling [1] and drop atomization for drug delivery [2] [3] [4]. Chen

et al. [5] has demonstrated that wave patterns can be used to assemble microscale materials into

ordered structures. In particular, surface wave patterns have been used to assemble organoid cells

in the bioengineering of 3D microtissues [6] with application to bottom-up tissue engineering [7].

Typically a soft gel such as agarose or alginate is used in these bioengineering technologies [8] [9]. It

has been shown that surface waves in a brimful cylindrical tank can be used as a DNA biosensor by

relating the surface rheology to biomolecules [10] [11]. Particle redistribution using Faraday waves

has been explored by Wright and Saylor [12] and Saylor and Kinard [13]. Strickland et al. [14] has

investigated the dynamics of insoluble surfactant density redistribution driven by gravity-capillary

waves in a cylindrical container. Surface waves have been used to reorder layers of granular media

[15] and create turbulent mixing of two miscible fluids [16]. Liquid and surfactant properties have

also both been measured using edge waves [17] [18].

In these applications, understanding and controlling pattern formation on a liquid/gas inter-

face is necessary. To that end, extensive experimental study of surface waves on viscoelastic fluids in

a cylinder with various boundary conditions has been conducted by Dr. Xingchen Shao. Motivated

by this experimental work, in this thesis a theoretical model is developed for surface waves on a

viscoelastic fluid in a finite depth cylindrical container.

1



1.1 Background

The study of surface waves on a fluid in a container originated with Faraday and his ex-

periments in 1831 [19]. He observed that vertically oscillated fluids form standing surface waves,

and his observation was that these waves appear at half of the driving frequency, which is known

as a sub-harmonic response. Study of this phenomena was continued by Mathiessen in 1868 [20]

[21], who observed a waves with a harmonic response (equal to the driving frequency), and Rayleigh

in 1883 [22] [23], who observed sub-harmonic surface waves like Farady. Theoretical understanding

of surface waves was significantly advanced in 1954 through the work of Benjamin and Ursell [24],

who applied linear stability analysis to the problem of inviscid fluid in an oscillating cylinder and

derived the Mathieu equation. The Mathieu equation defines when surface waves will appear though

“tongues” of instability in terms of the driving frequency and amplitude. This analysis showed that

Faraday waves can exhibit a subharmonic, harmonic, or superharmonic response. Typically the

subharmonic instability tongue requires the lowest onset acceleration, which is why sub-harmonic

Faraday waves are most frequently observed experimentally. It should be noted, however, that there

are exceptions where another instability tongue has a lower onset acceleration. For example, in thin

viscous fluid layers the harmonic instability tongue can have a lower onset acceleration [25] [26].

In addition, oscillating a container of fluid with multiple driving frequencies has been observed to

create complex quasi-patterns [27] [28].

In addition to Faraday waves, harmonic edge waves can also appear on a fluid surface,

generally at lower driving amplitudes. These capillary-gravity waves are caused by the meniscus at

the contact line between the container and the free surface of the fluid, and are defined by a balance

between the fluid inertia and the forces of surface tension and gravity (which act as restorative forces

in the system). In 1932, Lamb [29] showed that capillary-gravity waves can be characterized by a

dispersion relationship with a continuous spectrum. Provided a meniscus and a pinned contact line

are present, vertical oscillations of a container create waves that propagate from the walls to the

center of the container. If the forcing amplitude is below the Faraday wave threshold, the edge waves

will exhibit a harmonic response [19] [24]. In the case of a cylindrical container in particular, at a

resonance frequency, radially propagating edge waves will constructively interact to create a standing

wave defined by a fixed number of circular nodes. In some cases this can lead to mode mixing, where

a combination of Faraday waves and edge waves are observed. If pure Faraday waves are of interest,
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edge waves can been suppressed in several ways in experimental investigations. Christiansen et al.

[30] accomplished this by using a container with a large aspect ratio, while Bechhoefer et al. [31] used

a highly viscous fluid that caused the edge waves to become over-damped. Soluble surfactants have

also been used to creating a sliding (unpinned) meniscus [32] [33], suppressing edge wave formation.

However, if high enough driving frequencies are applied, neither container geometry nor the edge

conditions affect the surface wave formation [27].

It has been shown that for a finite sized tank, capillary-gravity waves tend to conform to the

geometry of the container [34] [35], and it has likewise been shown that for small containers, Faraday

waves tend to conform to the container geometry [36] [37]. In the case of a cylindrical container, this

means that the surface waves are can be described by an integer-valued mode number pair (n,m),

where n is the radial mode number and m is the azimuthal mode number, and each mode has a finite

bandwidth over which it can be excited [32]. Henderson and Miles [38] have experimentally measured

the resonance frequencies and decay rates for surface waves in a brimful cylindrical container. In

finite sized cylindrical containers, it has been demonstrated that there can be interaction between

two modes with very similar frequencies, leading to chaotic dynamics [39] [40] [41]. Henderson

and Miles [38] have theoretically modeled a first-order approximation of the cylinder assuming a

fixed contact line (pinned edge condition) and Stokes boundary layers. Their predictions of natural

frequencies and damping rations have been further developed by Martel, Nicolas, and Vega [42] to

include higher order viscous effects. The decay rate due to viscous dissipation within the bulk liquid

was further considered by Miles and Henderson [43].

For low mode number shapes, dissipation due to contact-line motion can be comparable

to bulk viscous dissipation [44] [45] [46], so contact line conditions are an important consideration.

Contact-line dissipation can be avoided by enforcing either a pinned contact line or a free sliding

contact line, the two limiting cases of contact line motion. Experimentally, a pinned contact line

can be created by filling a container brimful, and a free sliding contact line can be achieved by

using surfactants [32] or by using two or more immiscilbe liquids [47] [48]. It has been shown by

Kidambi [49] that for a viscous liquid, the spectrum is affected by the value of the static contact

angle. The large Bond number limit for an inviscid fluid was analyzed by Nicolás [50], in which both

the free sliding and pinned edge contact line conditions were compared. It was demonstrated by

Kidambi [51] that even in an inviscid fluid there is damping due to dynamic wetting effects (contact

line motion). Michel, Pétrélis and Fauve [52] have recently shown that the presence of a meniscus

3



(3,7) (5,2) (4,4)

Figure 1.1: Example of experimentally observed surface wave patterns defined by an (n,m) mode
number.

can cause surface wave damping. The review articles by Miles and Henderson [53] and Perlin and

Schultz [54] can be referenced for an overview of the literature on surface waves.

1.2 Experimental Motivation

In the experimental work of Dr. Xingchen Shao, extensive experimental observations were

made of surface waves generated by mechanically vibrating liquid in a cylinder with a flat, brimful

pinned edge condition and an angled meniscus edge condition [55] [56] [57] [58] [59]. Several examples

of these surface wave patterns are shown in Figure 1.1 [57]. These experiments were used to identify

the first 50 resonance modes of pure water (along with more complex mixed mode patterns involving

multiple waves with different dynamics). The theoretical model presented in this thesis shows

excellent agreement with those experimental works.

Further experiments were performed using viscoelastic materials to explore the effect of

material properties on surface waves. While Faraday waves have been widely studied for Newtonian

fluids [36] [60] [30] [27] [61] [54] [62], there has been far less investigation of complex viscoelastic

fluids. Viscoelastic materials are characterized by displaying both viscous and elastic behavior,

which is defined by a complex modulus G′ + iG′′. Rheological tests are used to evaluate this

complex modulus [63]. The elastic behavior is defined by the storage modulus G′, while the viscous

behavior is defined by the loss modulus iG′′. While these properties are typically dependent on the

frequency of applied shear, materials where used in the experiments that have constant rheological

properties over the range of driving frequencies that were applied. Experimentally, the elastic and
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viscous material properties were isolated by using two different materials. Glycerol/water mixtures

were used to vary the loss modulus iG′′ (viscosity) with negligible elasticity, as the elastic behavior

is negligible compared to the viscous behavior. Agarose gels were used to vary the shear modulus

G with relatively low viscosity, since aragose gels generally fall into the category of ‘inviscid elastic

fluids,’ where G′ is orders of magitude greater than G′′ [64] [65] [66]. Surface waves on aragose gels

fall into the category of elastocapillarity, where the elastic and surface tension forces are comparable

[67] [68] [69] [65] [66] [59]. Elastocapillary effects are known to affect the wave response in classical

hydrodynamic instabilities including drop oscillations [70] [71], Plateau-Rayleigh instability [72],

and Rayleigh-Taylor instability [73]. By varying concentrations in the glycerol/water mixtures and

agarose gels used, rheological properties were manipulated to explore viscous and elastic effects over

a wide range of values.

1.3 Theoretical Approach

In terms of theoretical modeling, the dynamics of surface waves can be broadly characterized

by an operator equation of the following form [46]:

λ2M + λL+R = K (1.1)

Here λ is the scaled driving frequency, M is the liquid inertia operator, L is the dissipation operator

(viscosity), R is the restorative force operator (including surface tension, gravity, and elasticity),

and K is the driving amplitude. In this work, a model of this form is derived which is dependent on

four dimensionless parameters: the aspect ratio (h), the Bond number (Bo), the Ohnesorge number

(Oh), and the elastocapillary number (Ec).

The contact line is of important consideration in developing a theoretical model. If motion

of the contact line is allowed (i.e. the contact line is sliding and the contact angle can vary),

dynamic wetting effects can be introduced, causing contact-line dissipation even for inviscid liquids.

This was first discovered by Davis [44] and Hocking [45], and Davis showed that this is a purely

dissipative feature of the system [44]. Consequently, contact line dissipation can be accounted for

in the dissipation operator L, often by introducing a constitutive law relating the contact angle and

the contact line speed. Lyubimov et al. [74] and Bostwick and Steen [75] have studied the effect of

contact line dissipation on frequency response for driven sessile drops.
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In most of the experiments that motivate the theoretical study presented here, a pinned

contact line is enforced. As such, the theoretical model is developed to include a pinned edge

condition. However, the theoretical modeling of surface waves with a pinned contact line presents

a difficulty because a pinned edge condition is incompatible with the no-penetration condition at

the sidewall of the container. The natural boundary condition for this problem is an orthogonal

sliding contact line, where the slope of the free surface is always zero at the contact line, but the

contact line can “slide” vertically up and down the container wall. This allows for a much simpler

analysis in which a spacial normal mode to be factored through the governing equations, giving

a purely time-dependent equation and the dispersion relationship. For the pinned edge case, the

incompatible boundary conditions result in an over constrained problem, and there have been several

approaches employed to resolve this issue.

A variational approach with a Lagrange multiplier was used by Benjamin and Scott to

analyze pinned edge surface waves in narrow open channels with rectangular geometry [76], and this

analysis was expanded by Graham-Eagle to model a brimful, pinned edge, infinite depth cylinder

[77]. Another approach, proposed by Prosperetti, is to create a pinned contact line by introducing

a singular pressure term at the contact line [78], allowing for a similar analysis to the typical

methods used for the unconstrained problem (see [29] and [79]). Finally, Bostwick and Steen have

used a Rayleigh–Ritz variational procedure over a constrained function space to analyze capillary

oscillations of constrained drops [80] [81] [82] and bridges [83] [84], and that is the approach that is

used here.

While most of the research to date has focused on inviscid or viscous fluids, the model that

is developed here accounts for both viscous and elastic effects, which allows for theoretical modeling

of viscous fluids, elastic gels, and fluids that exhibit viscoelastic behavior. The theoretical model

predicts the natural frequencies for modes with both radial and azimuthal waves, in addition to

including the effect of a finite cylinder depth. The model shows excellent agreement between the

predicted resonance frequencies and the experimentally observed mode frequencies. This theoretical

work, along with the corresponding experimental study, has been published in three journal papers

[57] [56] [55].
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1.4 Chapter Overview

Chapter 2 presents the derivation of the theoretical model for surface waves on a cylindrical

container assuming irrotational flow. Both the free and forced responses of the system are modeled

with a pinned edge contact line, and the dispersion relationship is derived for the sliding contact

line condition. In Chapter 3, the theory is extensively compared to experimental results to validate

the model. Comparison is made with experiments varying all of the dimensionless parameters

(h,Bo,Oh,Ec) for both axisymmetric and nonaxisymmetric modes, as well as both pinned and

sliding contact lines. It is demonstrated that the theory shows excellent agreement with experimental

observations. The effects of varying the dimensionless parameters are also analyzed. In Chapter 4,

a model is derived allowing for rotational flow in the fluid. While the majority of research assumes

irrotational flow, this research explores the effects of including fluid rotation through this second

model. The model predicts the natural frequencies for axisymmetric modes for an infinite depth

cylinder, and the results are compared with the irrotational theory. Finally, concluding remarks are

presented in Chapter 5.
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Chapter 2

Irrotational Theory

In this chapter, the theoretical model is derived for surface waves on a viscoelastic fluid in

a cylinder, assumming irrotational flow and incorporating a pinned edge boundary condition.

2.1 Derivation of governing equations

The problem definition sketch is shown in Figure 2.1. A cylindrical container of fluid is

considered, of height L, where the container is filled to the brim, creating a pinned edge boundary

condition at r = a. The area above the fluid surface is filled with a passive gas that does not affect

the dynamics of the system. A small perturbation η(r, θ, t) is applied to the free surface of the fluid,

such that the height of the free surface, the fluid pressure, and the fluid velocity can be defined in

terms of base quantities of O(1) and perturbed quantities of O(ε).

z = L+ εη (2.1a)

P = P0 + εP (2.1b)

u = u0 + εu (2.1c)

Here the base height of the interface is simply the height of the cylinder L. Since the fluid is exposed

at the free surface, the base pressure P0 is equal to the pressure of the gas. The unperturbed fluid

8



L

η(r, θ, t)

a

φ(r, z, θ, t)

êz

êr

Figure 2.1: System definition sketch.

is static, so the base velocity u0 = 0. Lengths are nondimensionalized by the radius a:

r∗ =
r

a
→ r = r∗a (2.2a)

z∗ =
z

a
→ z = z∗a (2.2b)

For the time being η is kept in dimensional form. Here an aspect ratio is naturally introduced, which

is defined as

h =
L

a
. (2.3)

For simplicity, r, z, and η will refer to the dimensionless radius, height, and disturbance. We thus

have that r ∈ [0, 1] and z ∈ (0, h).

2.1.1 Conservation of mass

The two field equations governing the system are conservation of mass (continuity) and

conservation of momentum (Navier-Stokes). Assuming the fluid is incompressible, continuity dictates
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that the divergence of the velocity must equal zero. Hence we have:

∇ · u = 0 (2.4)

Further assuming that the flow is irrotational, the velocity field can be described by a velocity

potential, where the velocity is equal to the gradient of the potential.

u = ∇Φ (2.5)

Substituting (2.5) into (4.3) yields Laplace’s equation, which governs the velocity potential.

∇2Φ = 0 (2.6)

2.1.2 Conservation of momentum

Conservation of momentum is governed by the incompressible Navier-Stokes equations:

ρ
Du

Dt
= −∇P + µ∇2u +∇U (2.7)

Here P is the pressure in the fluid, µ is the viscosity, and U is the gravitational potential. The

material derivative (left hand side of the equation), can be expanded to

ρ
Du

Dt
= ρ

∂u

∂t
+ ρ(u · ∇)u (2.8)

However, in the linear approximation the convective term is neglected because it is O(ε2), so the

material derivative reduces to

ρ
Du

Dt
= ρ

∂u

∂t
(2.9)

Using a vector identity, the viscous term can be expanded as follows:

µ∇2u = µ [∇(∇ · u)−∇×∇× u] (2.10)
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Continuity states that the divergence of the velocity is equal to zero, which means that the first

term disappears and the viscous term becomes

µ∇2u = −µ∇×∇× u. (2.11)

The gravitational potential U can be expressed as

U = −ρgz. (2.12)

The height z is expressed in (4.1a). Taking only the O(ε) term gives

U = −ρgη. (2.13)

Substituting (2.9),(2.11), and (2.13) into (2.7), the momentum balance is expressed as

ρ
∂u

∂t
= −∇P − µ∇×∇× u−∇(ρgη). (2.14)

Substituting the velocity potential definition (2.5) into (2.14) the viscous term disappears, and

factoring out a gradient, the equation is reduced to

ρ
∂Φ

∂t
= −P − ρgη. (2.15)

In the case of forced oscillations, a driving pressure must be included in the governing equations, so

the pressure in the momentum balance is expanded to

P → P + Pd, (2.16)

where Pd is an oscillating pressure imposed on the system by an external force. The momentum

balance can thus be expressed as

ρ
∂Φ

∂t
= −P − Pd − ρgη. (2.17)

Equations (2.6) and (2.17) govern the fluid motion within the cylinder.

11



2.1.3 Volume conservation

As the fluid is assumed to be incompressible, a volume constraint must be enforced over the

perturbation on the free surface:

∫ 2π

0

∫ 1

0

rη (r, θ, t) drdθ = 0 (2.18)

This condition ensures that the mode solutions conserve volume for the fluid in the cylinder.

2.1.4 Normal modes

The time and azimuthal dependency of the velocity potential, fluid pressure, driving pres-

sure, and surface perturbation are separated using normal modes:

Φ(r, z, θ, t) = φ(r, z)eimθeiωt (2.19a)

P (r, z, θ, t) = p(r, z)eimθeiωt (2.19b)

Pd(r, θ, t) = pd(r)e
imθeiωt (2.19c)

η(r, θ, t) = y(r)eimθeiωt (2.19d)

Substituting (2.19) into (2.6) and (2.17) results in reduced governing equations:

∇2φ = 0 (2.20a)

iωρφ = −p− pd − ρgy (2.20b)

The volume conservation constraint (2.18) is naturally satisfied for m 6= 0, but it is not for m = 0.

For m = 0, the reduced surface perturbation y must satisfy

∫ 1

0

ry (r)dr. (2.21)
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2.1.5 Boundary conditions

The following boundary conditions are applied at the boundaries of the cylindrical container.

No penetration is required on the bottom surface and on the walls of the cylinder:

∂φ

∂z
= 0

∣∣∣∣
z=0

(2.22a)

∂φ

∂r
= 0

∣∣∣∣
r=1

(2.22b)

In addition, there is a kinematic condition at the surface of the fluid, which requires the fluid velocity

be equal to the velocity of the surface disturbance:

∂φ

∂z
=
∂η

∂t

∣∣∣∣
z=h

(2.23)

Substituting in the normal modes, the kinematic condition becomes

∂φ

∂z
= iωy

∣∣∣∣
z=h

. (2.24)

Finally, a kinetic condition must be applied at the fluid surface. The difference in normal stresses

across the interface is balanced by the curvature of the surface, as described by the Young-Laplace

equation

n̂ · T f · n̂− n̂ · T g · n̂ = −σ(∇ · n̂), (2.25)

where T f is the stress tensor in the fluid, T g is the stress tensor in the gas, σ is the surface tension

at the interface, n̂ is the unit normal vector of the surface (in the positive z direction). If the fluid

is Newtonian, the O(ε) component of the normal stress in the z direction can be expressed as

Tzz = −p+ 2µ
∂uz
∂z

. (2.26)

The normal stress for the gas is simply −P0, so the O(ε) component is zero. Thus, the kinetic

boundary condition becomes

p− 2µ
∂uz
∂z

= σ(∇ · n̂). (2.27)
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Per the derivation in Appendix A, the divergence of the normal is

∇ · n̂ =
1

a2

[
− d2

dr2
− 1

r

d

dr
+
m2

r2

]
y (2.28)

Substituting the velocity potential (2.5) and the curvature (2.28) into (2.27) gives

p− 2µ
∂2φ

∂z2
= − σ

a2

[
d2

dr2
+

1

r

d

dr
− m2

r2

]
y. (2.29)

2.1.6 Elasticity

If the fluid exhibits viscoelastic behavior, this can be accounted for by replacing the viscosity

µ with a complex version:

µ→ µ+
G

iω
(2.30)

where G is the shear modulus of the liquid. Substituting this expanded viscosity into (2.29) results

in a viscoelastic version of the Young-Laplace equation:

p− 2µ
∂2φ

∂z2
− 2G

iω

∂2φ

∂z2
= − σ

a2

[
d2

dr2
+

1

r

d

dr
− m2

r2

]
y (2.31)

Note that if the shear modulus is equal to zero (i.e. the fluid exhibits no elastic behavior), then

(2.31) simply reduces to the viscous equation (2.29).

2.1.7 Solution

A solution can be constructed for the velocity potential using separation of variables, where

the velocity potential is defined as

φ(r, z) = R(r)Z(z), (2.32)

and the solution for Z(z) must be of the form

Z(z) = An cosh(kmnz) +Bn sinh(kmnz). (2.33)

Because of the no penetration condition (2.22a) at z = 0, it follows that Bn = 0, which gives

Z(z) = An cosh(kmnz). (2.34)
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The solution to R(r) is a Bessel function of the form

R(r) = Jm(kmnr). (2.35)

We let kmn be the nth zero of J ′m in order to satisfy the no penetration condition (2.22b)at r = 1.

The reduced velocity potential is then

φ(r, z) =

∞∑
n=1

An cosh(kmnz)Jm(kmnr) (2.36)

Since the Bessel functions appear in the velocity potential, it is natural to construct a

solution to the surface disturbance using a Bessel series (use Bessel functions as a basis for y). Due

to the orthogonality of the Bessel functions, we can express y as follows:

y(r) =

∞∑
n=1

CnJm(kmnr) (2.37a)

Cn =
〈y, Jm(kmnr)〉

〈Jm(kmnr), Jm(kmnr)〉
, (2.37b)

where the inner product is defined as

〈f(r), g(r)〉 =

∫ 1

0

rf(r)g(r)dr. (2.38)

Substituting the disturbance (2.37) and the velocity potential (2.36) into the kinematic condition

(2.24), we have

∞∑
n=1

kmn
a
An sinh(kmnh)Jm(kmnr) = iω

∞∑
n=1

CnJm(kmnr) (2.39a)

⇒kmn
a
An sinh(kmnh) = iωCn (2.39b)

⇒An =
iωaCn

kmn sinh(kmnh)
(2.39c)

Thus, we can express the velocity potential as

φ(r, z) = iω

∞∑
n=1

a

kmn

cosh(kmnz)

sinh(kmnh)

〈y, Jm(kmnr)〉
〈Jm(kmnr), Jm(kmnr)〉

Jm(kmnr). (2.40)
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We solve for the pressure from the momentum balance (2.20b):

p = −iωρφ− pd − ρgy (2.41)

Substituting the velocity potential and pressure into the kinetic boundary condition (2.29) gives

−iωρφ− pd − ρgy − 2µ
∂2φ

∂z2
− 2G

iω

∂2φ

∂z2
= − σ

a2

[
d2

dr2
+

1

r

d

dr
− m2

r2

]
y. (2.42)

(2.42) is valid at the free surface (z = h); hence, the velocity potential is evaluated at the free surface

φ(r, z) = iω

∞∑
n=1

a

kmn
coth(kmnh){y}Jm(kmnr) (2.43a)

{y} =
〈y, Jm(kmnr)〉

〈Jm(kmnr), Jm(kmnr)〉
(2.43b)

and substituted into the kinetic condition (2.42) to give an integro-differential equation in terms of

the velocity potential and the disturbance:

ρω2a

∞∑
n=1

1

kmn
coth(kmnh){y}Jm(kmnr)

− i2µω
a

∞∑
n=1

kmn coth(kmnh){y}Jm(kmnr)

− 2G

a

∞∑
n=1

kmn coth(kmnh){y}Jm(kmnr)

− pd − ρgy +
σ

a2

[
d2

dr2
+

1

r

d

dr
− m2

r2

]
y = 0. (2.44)

We now scale y by the radius a such that

y∗ =
y

a
→ y = y∗a. (2.45)

For simplicity, y∗ is denoted as y from now on. Substituting in the scaled disturbance into (2.44)
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and dividing through by σ
a , we have

λ2
∞∑
n=1

1

kmn
coth(kmnh){y}Jm(kmnr)

− iλ2(Oh)

∞∑
n=1

kmn coth(kmnh){y}Jm(kmnr)

− 2(Ec)

∞∑
n=1

kmn coth(kmnh){y}Jm(kmnr)

− p̂d − (Bo)y +

[
d2

dr2
+

1

r

d

dr
− m2

r2

]
y = 0, (2.46)

where λ is the dimensionless frequency, Oh is the Ohnesorge number (dimensionless viscosity param-

eter), Ec is the elastocapillary number (dimensionless elasticity parameter), Bo is the Bond number

(dimensionless gravity parameter), and p̂d is the dimensionless driving pressure, defined as

λ ≡
√
ρa3ω2

σ
(2.47a)

Oh ≡ µ
√
ρσa

(2.47b)

Ec ≡ Ga

σ
(2.47c)

Bo ≡ ρga2

σ
(2.47d)

p̂d =
pda

σ
(2.47e)

The kinetic force balance (2.46) can be written as an operator equation of the following form:

λ2M [y] + λL[y;Oh] +R[y;Ec,Bo] = A, (2.48)

The operator M [y] is the inertial term, defined as

M [y] ≡
∞∑
n=1

1

kmn
coth(kmnh){y}Jm(kmnr). (2.49)

The operator L[y;Oh] is the viscous term, which is introduced through the boundary conditions and

causes dissipation in the system:

L[y;Oh] ≡ −i2(Oh)

∞∑
n=1

kmn coth(kmnh){y}Jm(kmnr) (2.50)

17



The operator R[y;Ec,Bo] is related to the elasticity, the gravitational force, and the curvature (i.e.

the surface energy) at the interface:

R[y;Ec,Bo] ≡ −2(Ec)

∞∑
n=1

kmn coth(kmnh){y}Jm(kmnr)

− (Bo)y +

[
d2

dr2
+

1

r

d

dr
− m2

r2

]
y (2.51)

Finally, the A term on the right hand side of the equation is a forcing function, which in this case

is simply the driving pressure:

A = p̂d (2.52)

The operator equation (4.72) forms a polynomial eigenvalue problem, which governs the dynamics

of the system.

2.1.8 Sliding basis functions

As was noted in Figure 2.1, the problem definition sketch, the primary boundary condition

we are interested in studying is the pinned edge condition, where the surface disturbance is always

equal to zero at the rim of the cylinder:

y = 0|r=1 (2.53)

However, another possible boundary condition is requiring that the derivative of the surface distur-

bance is equal to zero at the edge of the cylinder:

∂y

∂r
= 0

∣∣∣∣
r=1

(2.54)

This is a sliding boundary condition, where the fluid contact line can “slide” up and down in the z

direction, but the derivative must remain equal to zero at every point on the contact line. In this

case, the Bessel functions naturally fulfill the sliding contact line condition (2.54). If we define the

surface disturbance y as a series of Bessel functions, as done previously in (2.37), and plug that into

the governing equation (2.48) with the driving pressure equal to zero, the result is a relatively simple
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equation:

λ2 − iλ2(Oh)k2mn − 2(Ec)k2mn − tan(kmnh)(Bo+ k2mn) = 0 (2.55)

Equation (2.55) is a second order polynomial equation that can easily be solved for the dimensionless

frequency λ given the four dimensionless parameters Oh, Ec, Bo, and h, as well as kmn, which

corresponds to a specific (n,m) mode. λ represents the natural frequency of the vibrational mode.

Thus, equation (2.55) allows for the straightforward calculation of the natural frequencies of different

modes with a sliding contact line condition.

2.1.9 Pinned basis functions

Ordinary Bessel functions cannot be used in solving for the pinned edge condition, as these

functions do not inherently satisfy equation (2.53). In order to account for this, modified Bessel

functions are computed, which are used as basis functions in the Rayleigh-Ritz method solution.

The modified Bessel functions are as follows:

Smn (r) = Jm(kmnr)−
Jm(kmn)

Jm(km1)
Jm(km1r) n = 2, 3, ...N (2.56)

It can be easily seen that if r = 1, Smn must necessarily be zero, which creates the required pinned

condition. However, Sm1 is zero everywhere, so the function space is reduced to N − 1 and n

begins counting from 2. In addition, the functions Smn are not orthogonal. The Grahm-Schmidt

orthogonolization process is used to remedy this. The resulting orthogonal functions that satisfy the

pinned edge condition are denoted V mn (r), where n = 1, 2, 3, ...N These functions necessarily satisfy

∫ 1

0

rV mi (r)V mj (r)dr = 0 i 6= j (2.57)

Thus, for the pinned contact line condition, the surface disturbance can be expressed as a linear

combination of these basis functions:

y(r) =

∞∑
n=1

cnV
m
n (r) (2.58)
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It should be noted that these modified basis functions satisfy the volume constraint (2.21) for m = 0.

This can be shown from the following Bessel identity:

∫ 1

0

rJ0 (kr)dr =
−J ′0 (k)

k2
(2.59)

The k values were defined such that J ′ = 0, which means that for k0n, J ′0 = 0. Thus, the integral

must be equal to zero for any n: ∫ 1

0

rJ0 (kr)dr = 0 (2.60)

Since the modified basis functions are just a linear combination of the Bessel functions, we can also

conclude that ∫ 1

0

rV 0
n (r)dr = 0. (2.61)

Thus, the volume constraint is satisfied by the pinned edge basis functions.

2.2 Free solution

The free solution is when the forcing term in the operator equation (2.48) is zero (i.e.

p̂d = 0):

λ2M [y] + λL[y;Oh] +R[y;Ec,Bo] = 0, (2.62)

This means that the frequency is an unknown and must be solved for. Using the pinned basis

functions (2.58), the integro-differential operator equation (2.62) is difficult to solve analytically;

hence, it is numerically solved using the Rayleigh-Ritz method, which approximates the solution to

the eigenvalue problem by expressing it as a matrix equation. Each of the operators in (2.48) are

transformed into matrices via inner products with the orthogonal basis functions as follows:

〈
λ2M [yi] + λL[yi] +R[yi], Vj

〉
= 0 (2.63a)

⇒ ci
〈
λ2M [V mi ] + λL[V mi ] +R[V mi ], V mj

〉
= 0 (2.63b)

where the inner product is defined as (2.38). Thus, the operator equation can be expressed as

(λ2M + λL + R)c = 0, (2.64)
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where the matrices M, L, and R are defined as

M = 〈M [Vi], Vj〉 (2.65a)

L = 〈L[Vi], Vj〉 (2.65b)

R = 〈R[Vi], Vj〉 (2.65c)

i, j = 1, 2, 3, ...N (2.65d)

As N is increased, the accuracy of the approximation increases, but the computations can become

costly. The polynomial eigenvalue problem (2.64) is solved using the MATLAB function “polyeig.”

The solution produces eigenvalue, eigenvector pairs (λ,c), which correspond to different vibrational

modes. For each mode λ is the dimensionless natural frequency and the vector c contains the

coefficients that define the shape of the surface disturbance according to (4.78). In this research

N = 30 terms are used for calculations. This strikes a balance between accuracy and computational

costs, giving a relative eigenvalue convergence of 0.01% (see[85]).

2.3 Forced solution

The forced solution is when the forcing term in the operator equation (2.48) is not zero (i.e.

p̂d 6= 0). Physically, this corresponds to the cylinder being oscillated in the vertical direction at a

known frequency ω and amplitude Pd. The forced solution is more simple than the free solution

because the frequency is no longer an unknown, it is a set input parameter. The operator equation

for the forced case is

λ2M [y] + λL[y;Oh] +R[y;Ec,Bo] = p̂d. (2.66)

However, since the dimensionless frequency λ is known, the operator equation (2.66) can be simplified

to

K[y;Oh,Ec,Bo] = p̂d, (2.67)

where

K[y;Oh, ξ,Bo] = λ2M [y] + λL[y;Oh] +R[y;Ec,Bo]. (2.68)

21



This simplified operator equation (2.67) can be transformed into a matrix equation and then simply

solved as a linear equation. Using the Rayleigh-Ritz method and the pinned basis functions basis

functions, (2.67) is transformed into a matrix equation as follows:

〈K[yi], Vj〉 = 〈p̂d, Vj〉 (2.69a)

⇒ ci 〈K[Vi], Vj〉 = 〈p̂d, Vj〉 (2.69b)

Thus, the operator equation (2.67) is transformed into the matrix equation

Kc = p, (2.70)

where

K = 〈K[Vi], Vj〉 (2.71a)

p = p̂d 〈1, Vj〉 (2.71b)

i, j = 1, 2, 3, ...N (2.71c)

Solving for the coefficient vector c is a simple linear operation:

c = pK−1 (2.72)

As with the free disturbance, the vector c contains the coefficients that describe the surface distur-

bance according to (2.37). Again, N=30 terms are used in the matrix expansion. For a given m,

the amplitude response can be computed over a range of frequencies, with spikes in the amplitude

corresponding to vibrational modes (n = 1, n = 2, n = 3, etc.).
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Chapter 3

Results and Experimental

Comparison

In this chapter, results from the theoretical model are presented, and the impact of the

dimensionless parameters (h,Bo,Oh,Ec) on the mode frequencies is explored. The validity of the

model is demonstrated through extensive comparison to experimental data with various parameter

values and boundary conditions.

3.1 Theoretical Results

3.1.1 Mode Shapes

A 3D rendering of several vibrational mode shapes that are explored in this research is

shown in Figure 3.1. Note that these modes have a pinned contact condition around the rim of the

cylinder. The modes are defined by both a radial mode number n and an azimuthal mode number

m. The mode number indicates the number of nodes, or the number of times the wave crosses the

undisturbed free surface of the fluid. A mode is designated by an (n,m) number pair, indicating

both the radial and azimuthal mode numbers. For example, Figure 3.1a shows the shape of the

(1,0) mode, which indicates n = 1 and m = 0 for this mode. Note that m can be 0,1,2,3, etc., but

n cannot be zero, so it equals 1,2,3, etc. This is because a (0,0) mode would be a completely flat,

undisturbed surface (the natural state of the system under consideration).
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(a) (1, 0) (b) (2, 0) (c) (3, 0)

(d) (1, 1) (e) (2, 2) (f) (3, 3)

Figure 3.1: Illustration of various modes. (a)-(c) show the first three axisymmetric modes where
n = 1, 2, 3, while (d)-(f) show modes with azimuthal waves where m = 1, 2, 3.

24



n = 1 2 3 4 5 6
m = 0 28.50 42.15 56.76 73.12 91.35 111.39

1 19.82 35.07 49.10 64.58 81.89 101.05
2 26.41 41.20 56.04 72.49 90.78 110.85
3 32.10 47.29 63.09 80.56 99.82 120.81
4 37.49 53.46 70.31 88.81 109.03 130.91
5 42.83 59.78 77.71 97.23 118.40 141.17
6 48.23 66.28 85.30 105.84 127.95 151.59

Table 3.1: Pinned condition dimensionless natural frequencies for various modes. Calculations are
for water in an infinite depth cylinder (h =∞, Bo = 167, Oh = 6× 10−4).

n = 1 2 3 4 5 6
m = 0 26.43 39.00 52.52 67.81 85.02 104.09

1 17.74 32.33 45.31 59.72 75.99 94.16
2 23.25 37.76 51.59 67.02 84.31 103.44
3 27.90 43.11 57.98 74.48 92.79 112.87
4 32.27 48.53 64.54 82.12 101.44 122.46
5 36.60 54.11 71.28 89.95 110.27 132.20
6 40.98 59.86 78.22 97.97 119.27 142.10

Table 3.2: Sliding condition dimensionless natural frequencies for various modes. Calculations are
for water in an infinite depth cylinder (h =∞, Bo = 167, Oh = 6× 10−4).

In Figure 3.1, (a)-(c) are axisymmetric modes, meaning that m = 0. The shapes look

something like ripples and are completely symmetric about the vertical axis. (d)-(f) in Figure 3.1

are non-axisymmetric modes, where m 6= 0. The inclusion of azimuthal waves results in more

complex modes shapes and more involved analysis.

3.1.2 Mode Frequencies

The first several natural frequencies are calculated for the pinned contact line condition and

are shown in Table 3.1. These calculations are for water (σ = 71.7 mN/m, µ = 0.96 mPa·s, ρ = 1000

kg/m3) in an infinite depth cylinder with a radius of a = 35 mm. For comparison, the sliding contact

line frequencies are also calculated and shown in Table 3.2.

For each azimuthal mode number m, the frequency increases as n increases. The converse

is true with the exception of m = 0. For m 6= 0, as m increases for a given n, the frequency also

increases. The m = 0 frequencies fall in between m = 2 and m = 3. As can be seen in the tables,

the first few frequencies in order are (1, 1), (1, 2), (1, 0), (1, 3), (2, 1), and so on. For all modes,
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the pinned frequencies are higher than the sliding frequencies. Note that the difference between the

pinned and sliding frequencies increases as both m and n increase.

3.1.3 Pressure and Velocity Fields

Figure 3.2 shows an example of the shape of three modes from a side view, along with the

corresponding pressure and velocity fields. The first three axisymmetric modes are shown. Figures

3.2a-3.2c give a clear illustration of how n is related to the number of times the wave crosses the

undisturbed free surface. The system is considered in polar coordinates, where the center of the

cylinder is the origin and the r-direction radiates outward. Consequently, the radial mode number n

corresponds to the number of times the wave crosses between the origin and the rim of the cylinder.

For the (1,0) mode, the dashed line (representing the surface wave) crosses the solid line (representing

the undisturbed free surface) a total of two times, but only once on each side as we travel from the

center of the cylinder out to the rim. Likewise, the (2,0) mode crosses the undisturbed free surface

twice on each side, the (3,0) mode crosses three times on each side, and so forth and so on.

Figures 3.2d-3.2f show the corresponding pressure fields in the cylinder for these three modes.

Here yellow indicates regions of higher pressure, while blue denotes regions of lower pressure. For

the (1,0) mode, the center is concave, which results in a higher pressure at the center of the cylinder

and a lower pressure towards the cylinder walls. On the other hand, the (2,0) mode is convex, which

creates a lower pressure region in the center of the cylinder and higher pressure moving outwards.

Notice the two areas of particularly high pressure which correspond to the two concave regions. The

pressure in the (3,0) mode varies as we move outward radially, corresponding to the convex and

concave regions (the peaks and troughs of the surface waves), with the highest pressure in the center

like the (1,0) mode.

Examples of the corresponding velocity fields are shown in Figures 3.2g-3.2i. In the (1,0),

velocity field indicates fluid moving upwards towards the center of the cylinder, while in the (2,0)

mode the fluid is moving downwards away from the center of the cylinder. The (3,0) mode again

shows fluid moving upwards towards the center of the cylinder. This is because surface tension is

acting as a restorative force, acting to restore the surface to an unperturbed state. The center of the

(1,0) and (3,0) modes are concave, so surface tension is acting to ”restore” the surface in an upward

direction at this point. The (2,0) mode, on the other hand, is convex at the center, so surface tension

is acting to “restore” the surface in a downward direction at the center.
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(a) (1, 0) shape (b) (2, 0) shape (c) (3, 0) shape

(d) (1, 0) pressure (e) (2, 0) pressure (f) (3, 0) pressure

(g) (1, 0) velocity (h) (2, 0) velocity (i) (3, 0) velocity

Figure 3.2: Illustration of the shape, pressure field, and velocity field of the first three axisymmetric
modes (1,0), (2,0), and ((3,0). In (d)-(f), the light yellow indicates high pressure, while the dark
blue indicates low pressure.
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Figure 3.3: Semilog plot showing how the dimensionless frequency λ changes as the cylinder aspect
ratio h varies (Oh = 0, Ec = 0, Bo = 0).

3.1.4 Free Response Parameter Variation

Varying the four dimensionless parameters Oh, Ec, Bo, and h affects the natural frequency

of each mode. These effects are examined by varying each parameter individually while setting the

others parameters equal to zero (Oh, Ec, and Bo) or infinity (h). This is done for the first ten

modes. The results are shown in Figures 3.3 - 3.6.

3.1.4.1 Varying h

Figure 3.3 shows the effect of the aspect ratio h on the dimensionless frequency λ for the first

ten modes. The semilog plot shows each curve initially steadily increasing and then reaching a clear

transition point where each curve flattens out. The transition point represents the infinite depth

limit, where the aspect ratio no longer affects the frequency, and occurs at about h ∼ 1. Before

this point, increasing the aspect ratio (which means increasing the depth relative to the radius)

significantly increases the natural frequencies. Note that the infinite depth limit shifts to lower h

values as the mode increases. Also note that the aspect ratio has a more significant effect on the
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Figure 3.4: Semilog plot showing how the dimensionless frequency λ changes as the Bond number
Bo varies (h =∞, Oh = 0, Ec = 0).

frequency of higher modes, meaning that the slope of the curve is higher before it plateaus. The

higher the mode, the more h will affect the frequency, but h will also stop affecting the frequency

at a lower value.

3.1.4.2 Varying Bo

Figure 3.4 shows the effect of the Bond number on the natural frequency of the first ten

modes. The log-log plot shows that the curves remain relatively flat until a transition point when

they increase rapidly. This indicates that lower Bo values have no significant effect on the frequency,

but after the transition point, the increasing the Bond number substantially increases the natural

frequencies. The transition occurs around Bo ∼ 10. At this point the waves transition from being

pure capillary waves to being capillary-gravity waves. Notice that this transition point is not the

same for all modes. It occurs at a higher Bo value for higher modes. Thus, as Bo is increased,

gravity will affect the lower modes before the higher modes.
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Figure 3.5: Semilog plot showing how the dimensionless frequency λ changes as the elastocapillary
number Ec varies (h =∞, Oh = 0, Bo = 0).

3.1.4.3 Varying Ec

In Figure 3.5, we see the effect of the elastocapillary number on the natural frequency of

the first ten modes. The effect is similar to that of the Bond number in Figure 3.4. The curves

remain relatively flat and then at a transition point begin to increase sharply. This indicates that

low Ec values do not substantially affect the frequencies, but after the transition point, increasing

the elastocapillary number significantly increases the natural frequency of each mode. This marks

a transition from purely capillary waves to elasto-capillary waves, and this occurs around Ec ∼ 1.

Note that the transition Ec value increases as the modes increase. This is because higher modes

have shorter wavelengths, which means that surface tension effects are more important than elastic

effects.
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(b) Imaginary frequency response

Figure 3.6: Comparison of real and imaginary frequencies as the Ohnesorge number Oh is varied for
the first three modes (h =∞, Ec = 0, Bo = 0).

3.1.4.4 Varying Oh

Finally, Figure 3.6 shows how the natural frequency is affected by Oh for the first three

modes. Unlike the first three parameters, the Onesorge number affects both the real and imaginary

components of the frequency. The real component of the λ is shown in Figure 3.6a, while the

imaginary component is shown in Figure 3.6b. Re[λ] is the physical natural frequency, and Im[λ]

represents the viscous dissipation in the system.

In Figure 3.6a, we see that as the Oh increases, the frequency of each mode decreases until

it becomes zero. This is because the Ohnesorge number is related to viscosity in the system. As Oh

increases, the viscosity in the system, and therefore the viscous damping, increases until the system

becomes overdamped, at which point the frequency become zero. This is clearly shown in Figure

3.6b, where we see that the imaginary frequency, which corresponds to viscous damping, starts at

zero and increases as Oh increases. At a particular value of Oh, each mode undergoes a pitchfork

bifurcation, which is the point at which the system becomes overdamped. It can be observed that

the bifurcation points in Figure 3.6b precisely correspond with the zero frequency points in Figure

3.6a. The (1, 1) mode becomes overdamped at Oh = 2.32, the (1, 2) mode becomes overdamped at

Oh = 1.47, and the (1, 0) mode becomes overdamped at Oh = 1.25.

Notice that the higher modes have higher natural frequencies at low Oh values. This makes

sense - if the damping effects are low, the frequency should increase as the modes increase. However,

as Oh increases, higher modes become overdamped before lower modes. Again, this makes sense
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Figure 3.7: Curves representing the transition from underdamped to overdamped in relation to the
elastocapillary number Ec and the Ohnesorge number Oh for the first five modes (h =∞, Bo = 0).

because higher modes have higher frequencies, and therefore more oscillations, which means that

greater motion will cause more dissipation. This results in the highest mode (1, 0) being the first

one to become overdamped, while the lowest mode (1, 1) is the last one to become overdamped.

3.1.4.5 Critical Damping

In Figure 3.7, curves are plotted showing the dependence of the critical damping point on

Oh and Ec. The curves represent the transition from underdamped to overdamped for the first five

modes. As the mode increases, the curves shift to the left, which means that the critical Oh value

decreases. This is expected based on Figures 3.6. For all three modes, as Ec increases, the critical

Oh value shifts to the right, which means greater viscosity is required to damp out the oscillations.

In addition, as the mode increases, the curves become steeper, which means that Ec has a less

significant impact on the critical Oh value.
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Figure 3.8: Forced amplitude response as the nondimensional frequency λ is increased for m = 0.

3.1.5 Forced Response Parameter Variation

In the forced case, we are imposing a given frequency and computing the amplitude response

at that frequency. The amplitude is quantified by taking the norm of the coefficient vector c, defined

in equation 2.72. The coefficients are applied to the basis functions to give the shape of the mode.

Thus, taking the norm gives a general indication of the magnitude of the wave amplitude of the

mode.

An example is shown in Figure 3.8, where the norm of the coefficient vector is computed over

a range of frequency values. The sharp peaks correspond to the natural or resonance frequencies,

which are shown in Table 3.1. Note that this computation is for m = 0, and each peak is a

corresponding n value. The first peak corresponds to (1, 0), the second to (2, 0), the third to (3, 0),

and so on. With the exception of the first peak, as n (and λ) increases, the amplitude decreases and

the width of the peaks increases. The decreased amplitude and the increased width of the peaks

corresponds to the viscous damping in the system, which we would expect to be larger at higher

frequencies.
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Figure 3.9: Comparison of the the first peak (n = 1) for several azimuthal modes.

Figure 3.9 shows the first peak (where n = 1) for several m values. For m = 1 − 3, as the

azimuthal mode number increases, the peak frequency increases as well (i.e. the peaks shift to the

right); however, m = 0 falls in between m = 2 and m = 3. This is precisely what we expect based

on the frequency results in Table 3.1, where we see that the ascending order of these four modes is:

(1, 1), (1, 2), (1, 0), and (1, 3).

3.1.5.1 Varying Oh

The effect of varying Oh and Ec is demonstrated for the forced cases, as with the free.

Figure 3.10 shows the effect of changing the Ohnesorge number. As Oh increases, the peak flatten

and spread out. Again, this is because Oh is related to viscous dissipation. Increased dissipation

causes the modes to damp out, which we see in the reduced peaks. The peaks correspond to

amplitude, so the smaller peaks indicate smaller amplitude waves. For the (6, 0) mode (the peak on

the far right), the highest Oh value almost completely damps out the amplitude, which physically

means that this mode would be only just visible on the surface of the cylinder.
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Figure 3.10: Example of how the forced response changes as the Ohnesorge number Oh is varied.

3.1.5.2 Varying Ec

Finally, Figure 3.11 shows the effect of changing the elastocapillary number. Several ob-

servations can be made. First, increasing Ec increases the natural frequencies (i.e. shifts all of the

peaks to the right). This makes sense, because elasticity acts as a restoring force, which would tend

to increase the frequency of oscillations. In addition, increasing Ec decreases the peak magnitude,

which means that the wave amplitude is smaller. Again, this makes sense since elasticity acts a

restoring force, which would tend to decrease the amplitude of the waves. Finally, we see that

increasing Ec has a more substantial impact on the higher modes. Notice that, moving from right

to left in Figure 3.11, the peaks become more spread out. This means that increasing Ec causes a

larger frequency shift the higher the mode. For example, for n = 1, the peak frequency shifts from

λ = 28.6 to λ = 34.2, an increase of 5.6. However, for n = 2, the peak frequency shifts from λ = 42.8

to λ = 54.2, an increase of 11.4. Figure 3.11 shows that this trend continues for higher modes as

well.
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Figure 3.11: Example of how the forced response changes as the elastocapillary number Ec is varied.

3.2 Experimental Comparison

In order to verify the theoretical results, comparison was made with physical experiments

corresponding to the theoretical system. These extensive experiments were performed by Dr.

Xingchen Shao. In addition to thorough comparison of the mode frequencies of pure water, the

theoretical results are compared to experiments with varying Ohnesorge numbers, elastocapillary

numbers, aspect ratios, as well as experiments with both pinned and sliding contact line conditions.

Comparing the theory with these experiments shows that the model which has been developed is

accurate in a wide array of scenarios with different parameters.

In the experiments, surface waves were generated by placing a cylinder of fluid on an elec-

tromechanical shaker, which vibrates the cylinder in a vertical direction. With one exception, the

cylinders were filled to the brim to created a pinned contact line condition, which is of primary

interest for model comparison. One experiment compares sliding and pinned contact lines and is

discussed below. A laser light system was used to detect and record Faraday waves on the fluid

surface. A beam of collimated light was directed at the surface of the fluid, and the reflected
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light was captured by a digital camera. In this way images were recorded of various modes and

the corresponding driving frequencies. Importantly, the Faraday waves excited were subharmonic,

meaning that the observed wave frequency was half of the driving frequency in the experiments.

Thus, for comparison to the theoretical computations, the observed driving frequency for each mode

was divided in half.

3.2.1 Shape

The orientation of the camera and light source was such that in the recorded images areas

with a zero wave slope appear brighter, while areas with a non-zero wave slope appear to be darker.

The result is essentially a wave slope magnitude image. Corresponding plots were created from

the theoretical results, which are shown in Figure 3.12. This was accomplished by computing the

absolute value of the magnitude of the gradient at each point and plotting it using an inverse color

scheme (i.e. where the gradient is zero appears lightest, and where the gradient is largest appears

darkest).

In Figure 3.12, (a)-(c) show the shapes of the first three axisymmetric modes, Below, (d)-(f)

show the corresponding wave slope countour images, which are viewed from above the cylinder. The

radial mode number n corresponds to the number of white rings that appear in the contour image.

One can see that the (1,0) mode has one ring, the (2,0) mode has two rings, and the (3,0) mode

has three rings. Naturally this is true for higher modes as well. Figures 3.12g-3.12l show examples

that include azimuthal waves. In the wave slope image, the azimuthal mode number m corresponds

to the number of radial white rays emanating from the origin divided by two. For a given mode

number m, one will visually observe 2m white rays. In Figure 3.12, the (3,1) mode has two rays,

the (3,2) mode has four rays, the (3,3) mode has size rays, and this pattern continues for higher

azimuthal mode numbers.

Experimental images were obtained for the first fifty modes of water, corresponding to the

mode frequencies shown in Table 3.3. The theoretical wave slope images correspond very well to the

experimental images, which indicates that the mode shapes computed from the theoretical model

are accurate.
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(a) (1, 0) shape (b) (2, 0) shape (c) (3, 0) shape

(d) (1, 0) contour (e) (2, 0) contour (f) (3, 0) contour

(g) (3, 1) shape (h) (3, 2) shape (i) (3, 3) shape

(j) (3, 1) contour (k) (3, 2) contour (l) (3, 3) contour

Figure 3.12: Illustration of the shape and corresponding wave slope contour image for various modes.
(a)-(f) show the first three axisymmetric modes where n = 1, 2, 3, while (g)-(l) show modes with
azimuthal waves where m = 1, 2, 3.
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n = 1 2 3 4 5 6
m = 0 5.82(0.4%) 8.67(0.3%) 11.68(0.2%) 15.05(1.0%) 18.80(1.1%) 22.92(0.8%)

1 3.71(0.2%) 7.20(0.0%) 10.10(0.0%) 13.29(0.1%) 16.85(0.3%) 20.79(0.5%)
2 5.33(0.5%) 8.47(0.3%) 11.53(0.3%) 14.92(0.1%) 18.68(0.6%) 22.81(0.8%)
3 6.58(0.4%) 9.73(0.7%) 12.98(0.1%) 16.58(0.7%) 20.54(0.3%)
4 7.71(0.1%) 11.00(0.0%) 14.47(0.5%) 18.28(0.4%)
5 8.81(1.0%) 12.30(0.8%) 15.99(0.7%) 20.01(0.9%)
6 9.93(0.3%) 13.64(1.0%) 17.56(0.8%) 21.78(0.5%)
7 11.06(1.2%) 15.02(0.5%) 19.16(0.2%)
8 12.23(0.6%) 16.43(0.4%)
9 13.43(0.3%) 17.89(3.9%)
10 14.68(0.8%) 19.39(2.6%)
11 15.96(0.3%) 20.92(1.3%)
12 17.28(0.1%)
13 18.64(0.3%)
14 20.04(0.7%)
15 21.49(0.1%)

Table 3.3: Pinned condition dimensionless natural frequencies of various modes for water with
h = 0.629.

3.2.2 Water Mode Frequency Comparison

The first 50 modes are computed for water (σ = 71.7 mN/m, µ = 0.96 mPa·s, ρ = 1000

kg/m3) with a pinned contact line condition. The cylinder here has a depth L = 22 mm and a radius

a = 35 mm, giving an aspect ratio of h = 0.629. Table 3.3 shows the results from the theoretical

model compared with the experimental results. The percent difference from the experimentally

recorded values is shown in parenthesis to the right of each mode frequency. Table 3.3 shows excellent

agreement between the theoretical and experimental mode frequencies, with an average difference of

0.6%. All but four of the theoretical frequency values are within 1% difference of the experimental

values; the four exceptions are the (1,7), (2,9), (2,10), and (5,0) modes. The largest difference is seen

in the (2,9) mode at 3.9%. This difference is likely due to some experimental error. Despite a few

larger differences, the agreement between the theory and experiment is excellent and demonstrates

that the theoretical model which has been developed is reliable and valuable for predicting mode

frequencies.
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ratio Oh× 103 n = 1 2 3 4 5 6
0:1 0.60 5.82(0.4%) 8.67(1.5%) 11.68(2.4%) 15.05(4.4%) 18.80(4.3%) 22.92(5.0%)
1:5 0.94 5.79(1.6%) 8.59(2.2%) 11.51(4.6%) 14.77(4.7%) 18.40(6.8%) 22.39(6.9%)
1:3 1.30 5.78(1.4%) 8.55(1.7%) 11.43(4.8%) 14.64(7.4%) 18.21(7.5%) 22.13(10.1%)
1:2 1.85 5.77(1.1%) 8.51(2.5%) 11.35(5.9%) 14.51(7.2%) 18.02(8.2%) 21.87(9.9%)
2:3 2.70 5.75(0.9%) 8.47(2.1%) 11.28(6.2%) 14.39(7.9%) 17.85(10.3%) 21.64(10.9%)
3:1 29.43 5.71(2.0%) 8.35(4.3%) 11.03(5.8%) 13.96(7.1%) OD OD

Table 3.4: Pinned condition dimensionless natural frequencies of various modes for different glyc-
erol/water ratios with h = 0.629.

3.3 Viscous Variation Comparison

While computing mode frequencies for water is a valuable baseline for validating the model,

various parameter values are of particular interest as well. Table 3.4 shows theoretical computa-

tions for various Ohnesorge numbers, again in a cylinder with h = 0.629. Note that these are all

axisymmetric modes, with m = 0. Experimentally, different Ohnesorge numbers were achieved by

creating mixtures of glycerol and water at different ratios. In Table 3.4, the glycerol/water ratio is

shown in the leftmost column. For example, the first row is a ration of 0:1, which is just pure water.

The amount of glycerol increases as we move down the column, and as the ratio increases, so does

the Ohnesorge number, which is shown in the second column. Once again, the percent difference

between the theoretical frequencies (the values shown) and the experimentally observed frequencies

is shown in parenthesis to the right of the values. Two of the modes were not experimentally ob-

served and are noted as overdamped (OD). While not as close as the pure water values, there is

still reasonable agreement between the theory and experiment. The average difference is 8.0%, with

the smallest difference at 0.4% and the largest at 10.9%. Notice that the percent difference tends to

increase both as the Ohnesorge number increases and as the mode number n increases. The former

difference could be because of uncertainty in the material properties of the glycerol/water mixture.

Small changes in the surface tension and density (along with the viscosity of course), have a sig-

nificant impact on the computed results, so experimental error in measuring these two parameters

could be resulting in larger differences for fluids with a higher glycerol/water ratio. It is uncertain

why the percent difference increases as the mode number increases, as this effect is not observed for

the pure water computations in Table 3.3.
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G(Pa) Ec n = 1 2 3
1.2 0.59 5.90(1.7%) 8.84(3.9%) 11.93(9.0%)
3.6 1.76 6.06(0.9%) 9.16(2.6%) 12.41(0.1%)
8.4 4.10 6.35(0.7%) 9.77(2.4%) 13.32(6.4%)
15.3 7.47 6.76(3.9%) 10.58(6.6%) 14.52(1.5%)
20.2 9.82 7.03(3.3%) 11.12(5.7%) 15.32(6.9%)

Table 3.5: Pinned condition dimensionless natural frequencies of various modes for different agarose
gels with h = 0.629.

3.4 Elastic Variation Comparison

Experimentally, agarose gels were used to observe modes with varying elasticity. Once again,

these observations are for an aspect ratio of h = 0.629 and for axisymmetric modes with m = 0.

The gels are modeled as having the density and surface tension of water and zero viscosity (σ = 71.7

mN/m, ρ = 1000 kg/m3); the only parameter that changes is the shear modulus. The first three

mode frequencies are computed for five different gels, and the results are shown in Table 3.5. The

leftmost column indicates the shear modulus, and the corresponding elastocapillary number is shown

in the second column. Again, theoretical frequencies are shown with the percent difference from the

experimentally observed values shown in parenthesis to the right. The average difference is 3.7%,

showing very good agreement between the theory and experiment.

3.5 Height Variation Comparison

Table 3.6 and Table 3.7 show results comparing cylinders with different aspect ratios. Table

3.6 shows frequencies for a cylinder with a radius a of 35 mm and a depth L of 22 mm, giving an

aspect ratio of h = 0.629. Table 3.7 shows results for a cylinder with the same radius, but a depth

of just 7 mm, giving an aspect ratio of h = 0.2. Results are computed for five different modes and

four different Ohnesorge numbers. As before, the Ohnesorge number variation was experimentally

achieved by using mixtures of glycerol and water for the fluid. Again, the glycerol to water ratio

is shown in the leftmost column, with the corresponding Ohnesorge number shown in the second

column. The percent differences between the displayed theoretical results and the experimentally

observed values are shown in parenthesis to the right of each mode frequency. The agreement between

the theory and experiment is excellent, with an average difference of 1.1% for the results in Table
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Ratio Oh× 103 (1, 2) (1, 0) (1, 3) (2, 1) (1, 4)
0:1 0.57 5.33(0.6%) 5.82(0.4%) 6.58(0.3%) 7.21(0.1%) 7.72(0.2%)
1:2 1.86 5.27(1.3%) 5.76(0.7%) 6.48(1.2%) 7.09(0.1%) 7.57(0.9%)
1:1 4.21 5.23(1.6%) 5.73(0.4%) 6.43(2.8%) 7.04(0.2%) 7.49(1.9%)
2:1 12.71 5.21(3.1%) 5.71(1.0%) 6.39(2.2%) 6.99(0.6%) 7.43(2.5%)

Table 3.6: Pinned condition dimensionless natural frequencies of various modes for different glyc-
erol/water ratios with h = 0.629.

Ratio Oh× 103 (1, 2) (1, 0) (1, 3) (2, 1) (1, 4)
0:1 0.57 4.07(0.8%) 4.75(1.1%) 5.55(0.9%) 6.43(0.4%) 6.93(0.5%)
1:2 1.86 4.02(1.9%) 4.70(0.0%) 5.47(0.5%) 6.34(1.0%) 6.81(1.3%)
1:1 4.21 3.99(2.4%) 4.67(0.6%) 5.42(0.4%) 6.28(0.3%) 6.74(0.6%)
2:1 12.71 3.98(4.6%) 4.66(1.2%) 5.40(3.7%) 6.25(0.9%) 6.70(1.5%)

Table 3.7: Pinned condition dimensionless natural frequencies of various modes for different glyc-
erol/water ratios with h = 0.2.

(1, 2) (1, 0) (1, 3) (2, 1)
Sliding 3.49(0.3%) 4.29(2.2%) 4.66(0.9%) 5.72(2.1%)
Pinned 3.90(0.1%) 4.57(1.6%) 5.25(2.9%) 6.10(1.6%)

Table 3.8: Pinned and sliding dimensionless natural frequencies of various modes for a Triton/water
solution with h = 0.629.

3.6 and an average difference of 1.2% for the results in Table 3.7. This comparison demonstrates

the reliability of the model at different aspect ratios. From the experimental data, it is clear that

changing the aspect ratio does not significantly impact the accuracy of the theoretical model.

3.6 Pinned vs. Sliding Comparison

While the theoretical analysis and experimentation has been largely concerned with the

pinned contact line condition (as this is the more complicated case from a theoretical perspective),

experiments were also performed to obtain sliding and pinned contact line results for the same

modes. Experimentally, this was accomplished using a Triton/water solution of 0.0132g/300ml.

This solution was modeled with a surface tension of σ = 40.7 mN/m. Four mode frequencies are

computed and compared against the experimental values in Table 3.8. The theory and experiment

show excellent agreement, with an average percent difference of 1.5%. The average difference for the
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sliding case alone and the pinned case alone are 1.4% and 1.6%, respectively. This indicates that

the results from the Rayleigh-Ritz methodology for the pinned condition are almost as accurate as

the results from the simple dispersion relationship for the sliding condition.
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Chapter 4

Rotational Theory

In the analysis outlined in Chapter 2, it is assumed that the flow is irrotational, as this

greatly simplifies the analysis. In this chapter, a theoretical model is derived for axisymmetric

surface waves on a viscoelastic fluid in an infinite depth cylinder where rotational flow in the fluid

is included. The results are then compared to the irrotational model.

4.1 Derivation of governing equations

The problem definition sketch is shown in Figure 4.1. The setup is similar to the irrotational

analysis, with several exceptions. First, to simplify the analysis, the cylinder is assumed to be of

infinite depth. Second, rotation is allowed in the r− z plane, but it is assumed that there is no swirl

(i.e. there is no velocity in the θ direction). Finally, for simplicity, only axisymmetric modes are

considered in this analysis (i.e. m = 0 only), which means that none of the variables are dependent

on θ (e.g. η(r, θ, t) → η(r, t)). As for the irrotational analysis, the cylinder is filled to the brim

with fluid, and the area above the fluid is filled with a passive gas that does not affect the system

dynamics. A small perturbation η(r, t) is applied to the free surface, allowing the height of the

free surface, the fluid pressure, and the fluid velocity to be defined as base quantities of O(1) and
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Figure 4.1: System definition sketch.

perturbed quantities of O(ε):

z = 0 + εη (4.1a)

P = P0 + εP (4.1b)

u = u0 + εu (4.1c)

Note that to simplify the calculations, the coordinate system origin is at the unperturbed free surface,

whereas for the irrotational analysis it was located at the bottom surface of the cylinder. This means

that the unperturbed free surface height is z = 0 instead of z = L. As before, the base pressure

P0 is equal to the pressure of the passive gas, and the base velocity u0 is equal to zero because the

unperturbed fluid is assumed to be static. The vertical and radial lengths are nondimensionalized

by the cylinder radius a:

r∗ =
r

a
→ r = r∗a (4.2a)

z∗ =
z

a
→ z = z∗a (4.2b)
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For simplicity, we let r and z represent the dimensionless radius and height from here on. Thus, r

varies from 0 to 1 and z varies from −∞ to 0. The perturbation height η is kept in dimensional

form for now.

4.1.1 Governing equations

For the irrotational analysis, the field equations governing the system were conservation of

mass (continuity) and conservation of momentum (Navier-Stokes). These two equations are retained,

but an additional governing equation is applied in the form of conservation of angular momentum

(vorticity equation). For an incompressible fluid, the continuity equation is

∇ · u = 0. (4.3)

In the irrotational analysis, continuity was expressed as Laplace’s equation, but because we do not

assume irrotational flow here, the velocity cannot be defined in terms of a potential. The linearized

incompressible Navier-Stokes equations can be expressed as

ρ
∂u

∂t
= −∇P − µ∇×∇× u. (4.4)

The linearization is explicitly shown in the derivation in Chapter 2. The vorticity is defined as the

curl of the velocity:

Ω ≡ ∇× u (4.5)

Substituting this definition into (4.4) gives the vorticity equation:

ρ
∂Ω

∂t
= −µ∇×∇×Ω, (4.6)

Equations (4.3),(4.4), and (4.6) constitute the governing equations of the system. It is assumed that

there is no swirl, meaning the azimuthal velocity (uθ) is zero. Thus, the velocity field is defined as

u = ur(r, z, t)êr + uz(r, z, t)êz, (4.7)
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and the vorticity is defined as

Ω = Ω(r, z, t)êθ =

(
∂ur
∂z
− ∂uz

∂r

)
êθ. (4.8)

4.1.2 Normal modes

The following normal modes are applied to separate the time dependency of the velocity,

vorticity, pressure, and perturbation:

ur(r, z, t) = vr(r, z)e
iγt (4.9a)

uz(r, z, t) = vz(r, z)e
iγt (4.9b)

Ω(r, z, t) = ω(r, z)eiγt (4.9c)

P (r, z, t) = p(r, z)eiγt (4.9d)

η(r, t) = y(r)eiγt (4.9e)

Note that unlike the irrotational analysis, there is not an azimuthal normal mode because we assume

azimuthal symmetry (therefore there is no θ dependency). It should also be noted that γ is used

in (4.9) for the dimensional frequency instead of ω because ω is used for the reduced vorticity.

Substituting (4.9) into (4.3)-(4.6) results in the following reduced governing equations:

∇ · v = 0 (4.10a)

iγρv = −∇p− µ∇×∇× v (4.10b)

iγρω = −µ∇×∇× ω (4.10c)

ω ≡ ∇× v (4.10d)

4.1.3 Boundary conditions

A no penetration condition is applied at the walls of the cylinder, requiring the radial fluid

velocity to be zero at r = 1:

vr = 0|r=1 (4.11)
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Three boundary conditions are applied at the free surface: a no shear condition, a kinematic condi-

tion, and a kinetic condition. The no shear condition requires that the shear in the fluid at the free

surface be zero:

∂vr
∂z

+
∂vz
∂r

= 0

∣∣∣∣
z=0

(4.12)

The kinematic condition requires that the fluid velocity be equal to the perturbation velocity at the

free surface:

vz =
∂η

∂t

∣∣∣∣
z=0

(4.13)

When normal modes are applied, (4.13) is reduced to

vz = iγy|z=0. (4.14)

Finally, a kinetic condition is applied to balance the normal stresses across the fluid/gas interface

at the free surface. This is described by the Young-Laplace equation:

n̂ · T f · n̂− n̂ · T g · n̂ = −σ(∇ · n̂) (4.15)

Here T f is the stress tensor in the fluid, T g is the stress tensor in the gas, σ is the surface tension at

the interface, n̂ is the unit normal vector of the surface (in the positive z direction). Since the normal

stress for the gas is −P0, the O(ε) component is zero. We can thus express the O(ε) component of

(4.15) as

Tzz = σ(∇ · n̂)|z=0. (4.16)

For a Newtoniain fluid, the O(ε) component of the normal stress in the z direction is

Tzz = −p+ 2µ
∂vz
∂z

, (4.17)

and the divergence of the surface normal vector is

∇ · n̂ =
σ

a2

(
d2y

dr2
+

1

r

dy

dr

)
. (4.18)
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The Young-Laplace equation, which describes the kinetic boundary condition, can then be written

as

−p+ 2µ
∂vz
∂z

=
σ

a2

(
d2y

dr2
+

1

r

dy

dr

)
. (4.19)

4.1.4 Velocity field decomposition

Using the Helmholtz decomposition theorem, the velocity field is decomposed into irrota-

tional and rotational components [86]. The vorticity is thus defined in terms of a vector potential

B:

ω = ∇×B (4.20)

Since the flow is axisymmetric, B must necessarily be in the z direction, and can therefore be written

as follows [87]:

B = B(r, z)êz. (4.21)

The velocity can then be written in terms of a velocity potential (associated with the irrotational

component of flow) and the vector potential (associated with the rotational component of flow):

v = B +∇Ψ (4.22)

Thus, the velocity can be expressed as

v =

(
∂Ψ

∂r

)
êr +

(
B +

∂Ψ

∂z

)
êz. (4.23)

Applying normal modes and separating variables, B and Ψ are defined as follows:

B(r, z, t) = Tn(z)J(knr)e
iγt (4.24a)

Ψ(r, z, t) = φn(z)J(knr)e
iγt (4.24b)

Tn(z) and φn(z) are unknown functions of z which will be solved for. For both B and Ψ, the r

component is defined in terms of a series of Bessel functions of the form J(knr). Here kn is the nth

zero of J ′, which satisfies the no penetration condition at the cylinder wall.

49



4.1.5 Vorticity equation

To find an equation for Tn(z), B(r, z, t) is substituted into the vorticity equation (4.10c).

The vorticity is found by taking the curl of B:

ω = ∇×B = −∂B
∂r

êθ (4.25)

The curl of the curl of ω is calculated to be

∇×∇×
(
−∂B
∂r

)
êθ =

∂

∂r

(
∂2B

∂z2
+
∂2B

∂r2
+

1

r

∂B

∂r

)
. (4.26)

Substituting (4.26) into (4.10c) gives

iγρa2
(
−∂B
∂r

)
= −µ ∂

∂r

(
∂2B

∂z2
+
∂2B

∂r2
+

1

r

∂B

∂r

)
, (4.27)

which reduces to

iγρa2B = µ

(
∂2B

∂z2
+
∂2B

∂r2
+

1

r

∂B

∂r

)
. (4.28)

Substituting in the definition of B (4.24a) into (4.28) and rearranging, the vorticity equation becomes

(
∂2

∂z2
+

∂2

∂r2
+

1

r

∂

∂r

)
Tn(z)J(knr)−

iγρa2

µ
Tn(z)J(knr) = 0. (4.29)

According to the Bessel equation, assuming azimuthal symmetry:

(
∂2

∂r2
+

1

r

∂

∂r

)
J(knr) = −k2nJ(knr) (4.30)

Substituting (4.30) into (4.29), we have

∂2Tn
∂z2

J(knr)− k2nTnJ(knr)−
iγρa2

µ
TnJ(knr) = 0, (4.31)

which reduces to

∂2Tn
∂z2

−
(
k2n +

iγρa2

µ

)
Tn = 0. (4.32)
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4.1.6 Continuity equation

The devinition of v (4.22) is substituted into the continuity equation (4.10a) to find an

equation for φn(z). The divergence of the velocity is

∇ ·
[
∂Ψ

∂r
êr +

(
B +

∂Ψ

∂z

)
êz

]
=
∂2Ψ

∂r2
+

1

r

∂Ψ

∂r
+
∂2Ψ

∂z2
+
∂B

∂z
. (4.33)

Substituting the definition of Ψ (4.24b) into (4.33) gives

(
∂2

∂r2
+

1

r

∂

∂r
+

∂2

∂z2

)
φn(z)J(knr) = − ∂

∂z
Tn(z)J(knr). (4.34)

Using the Bessel equation correlation (4.30), the continuity equation can be simplified to

∂2φn
∂z2

J(knr)− k2nφnJ(knr) = −∂Tn
∂z

J(knr), (4.35)

which reduces to

∂2φn
∂z2

− k2nφn = −∂Tn
∂z

. (4.36)

Equations (4.32) and (4.36) can be solved for Tn and φn.

4.1.7 Solution for Tn

Equation (4.32) can be rewritten as

Tn
′′ − k̂2Tn = 0, (4.37)

where

k̂2 = k2 +
iγρa2

µ
. (4.38)

Note that the n subscript for k has been dropped for convenience. This is a simple homogeneous

second order differential equation whose solution is of the form

Tn = c1e
k̂z + c2e

−k̂z. (4.39)
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Because the cylinder is of an infinite depth, Tn → 0 as z → −∞, which implies that c2 = 0. Thus,

the solution to (4.37) can be written as

Tn = Ane
k̂z. (4.40)

4.1.8 solution for φn

Equation (4.36) can be written as

φ′′n − k2φn = −T ′n. (4.41)

Since this equation is not homogeneous, the method of undetermined coefficients is used to find a

solution. The solution is separated into the homogeneous solution and the particular solution:

φn = φh + φp (4.42)

The homogeneous solution φh is the solution to

φ′′h − k2φh = 0. (4.43)

As with equation (4.37), the solution is exponential. Since the cylinder is of an infinite depth, the

solution is

φh = Bne
kz. (4.44)

The particular solution is found to be

φp = − Ank̂

k̂2 − k2
ek̂z. (4.45)

The total solution can thus be written as

φn = Bne
kz − Ank̂

k̂2 − k2
ek̂z. (4.46)
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4.1.9 Boundary conditions

The shear boundary condition at the free surface is defined by equation (4.12). By substi-

tuting equation (4.24) into (4.23), the fluid velocity components can be written as

vr = φnJ
′ (4.47a)

vz = TnJ + φ′nJ (4.47b)

Note that J(knr) is denoted as J for simplicity. Plugging in the velocity components to the shear

condition (4.12) results in

φ′nJ
′ + TnJ

′ + φ′nJ
′ = 0, (4.48)

which can be simplified to

Tn + 2φ′n = 0. (4.49)

The kinematic condition is defined by equation (4.14). Substituting in the definition of vz (4.47b)

gives

TnJ + φ′nJ = iγy. (4.50)

Since the Bessel functions appear in the r component of the velocity solution, it is natural to define

the surface disturbance y as a Bessel series:

y =

∞∑
n=1

CnJ(knr) (4.51)

Due to the orthogonality of the Bessel functions, Cn is necessarily defined as

Cn = {y} ≡ 〈y, J〉
〈J, J〉

, (4.52)

where the inner product is defined as

〈g(r), h(r)〉 =

∫
rg(r)h(r)dr. (4.53)

53



Substituting this definition of y into (4.50) gives

TnJ + φ′nJ = iγ{y}J, (4.54)

which can be reduced to

Tn + φ′n = iγ{y}. (4.55)

Substituting in the solutions for Tn and φn into equation (4.49) and evaluating at z = 0 gives the

shear condition in terms of the coefficients A and B:

An + 2Bnk −
2Ank̂

2

k̂2 − k2
= 0 (4.56)

Similarly, the solutions for Tn and φn are substituted into (4.55) and evaluated at z = 0 to give the

kinematic condition in terms of A and B:

An +Bnk −
Ank̂

2

k̂2 − k2
= iγ{y} (4.57)

Solving equations (4.56) and (4.57) as a system of two equations and two unknowns gives solutions

for An and Bn:

An = iγ2{y} (4.58a)

Bn =
iγ{y}

(
k̂2 + k2

)
k
(
k̂2 − k2

) (4.58b)

Substituting the solutions for A and B into equations (4.40) and (4.46), we can write the solutions

to Tn and φn as

Tn = iγ2{y}ek̂z (4.59a)

φn =
iγ{y}

(
k̂2 + k2

)
k
(
k̂2 − k2

) ekz − iγ2{y}k̂
k̂2 − k2

ek̂z. (4.59b)

Recall that Tn(z) is related to the rotational component of velocity, and φn(z) is related to the

irrotational component of velocity.
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4.1.10 Pressure

To define the pressure at the free surface, the solutions for Tn and φn are substituted into the

reduced momentum balance equation (4.10b). The curl of the curl of the velocity in the r-direction

is

∇×∇× v =

(
−∂

2vr
∂z2

+
∂2vz
∂z∂r

)
êr =

∂

∂r

(
∂B

∂z

)
êr. (4.60)

The momentum balance in the r-direction (4.10b) can then be written as

iγρ
∂Ψ

∂r
= −∂p

∂r
− µ ∂

∂r

(
∂B

∂z

)
, (4.61)

which can be reduced to

iγρΨ = −p− µ∂B
∂z

. (4.62)

Substituting the definitions of B and Ψ into (4.62) and solving for p, the pressure can be expressed

as

p =
(
−iγρφn − µTn′

)
J. (4.63)

4.1.11 Young-Laplace equation

Substituting the definition of pressure (4.63) into the Young-Laplace equation (4.19) gives

− (−iγρφn − µT ′n) J + 2µ (T ′ + φ′′n) J =
σ

a2

(
d2y

dr2
+

1

r

dy

dr

)
, (4.64)

which can be simplified to

(2µφ′′n + iγρφn + 3µT ′n + ρg{y}) J =
σ

a2

(
d2y

dr2
+

1

r

dy

dr

)
. (4.65)

Equation (4.65) is an integro-differential in terms of the growth rate γ and the surface disturbance y.

Substituting solutions for Tn and φn (4.59), along with the definition of k̂ (4.38), into equation (4.65)

produces an equation governing the dynamics of the system in terms of γ and y. After simplification,
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the result is

γ2
(
−ρa{y}

k
J

)
+ iγ

(
4µk{y}

a
J

)
+ µ2

(
4k3{y}
ρa3

J

)
− µ2

(
4k2k̂{y}
ρa3

J

)
=

σ

a2

(
d2y

dr2
+

1

r

dy

dr

)
. (4.66)

Note that two of the terms on the left hand side of the equation are proportional to µ2. If we assume

a small viscosity, i.e. µ� 1, then these two terms can be neglected and we have:

γ2
(
ρa{y}
k

)
− iγ

(
4µk{y}

a

)
+

σ

a2

(
d2y

dr2
+

1

r

dy

dr

)
= 0 (4.67)

4.1.12 Non-dimensionalize

The surface perturbation y is now scaled by the cylinder radius such that

y∗ =
y

a
→ y = y∗a. (4.68)

For simplicity the asterisk is dropped from now on. Applying this scaling to (4.67) results in the

following dimensionless equation:

λ2
(
{y}
k
J

)
− iλ (4 (Oh) k{y}J) +

(
d2y

dr2
+

1

r

dy

dr

)
= 0 (4.69)

Here λ is the dimensionless frequency and Oh is the Ohnesorge number:

λ ≡
√
ρa3γ2

σ
(4.70a)

Oh ≡ µ
√
ρσa

(4.70b)

(4.70c)

Note that k and J are summed for n = 1, 2...∞. Applying summation notation, equation (4.69) is

be written as

λ2
∞∑
n=1

{y}
kn

Jn − iλ4 (Oh)

∞∑
n=1

kn{y}Jn +

(
d2y

dr2
+

1

r

dy

dr

)
= 0. (4.71)

56



For simplicity, equation (4.69) is expressed as an operator equation:

λ2M [y] + λL[y;Oh] +R[y] = 0, (4.72)

The operator M [y] represents the inertial term, defined as

M [y] ≡
∞∑
n=1

1

kn
{y}Jn(knr). (4.73)

The operator L[y;Oh] is the viscous damping term, defined as

L[y;Oh] ≡ i4 (Oh)

∞∑
n=1

kn{y}Jn(knr). (4.74)

The operator R[y] is related to the curvature (surface energy) at the interface, and is defined as

R[y] =
d2y

dr2
+

1

r

dy

dr
. (4.75)

Note that the result derived here is the same as for the irrotational analysis, except that the coefficient

in the L operator is 4 instead of 2.

4.1.13 Basis functions

Previously, the surface disturbance was expressed as a series of Bessel functions; however,

these functions do not satisfy the pinned edge condition around the rim of the cylinder (r = a,

z = 0). In order to account for this, modified Bessel functions are computed, which are used as basis

functions in the Rayleigh-Ritz method solution. The same method used in the irrotational analysis

is used here, in which modified Bessel functions are defined as follows:

Sn(r) = Jn(knr)−
Jn(kn)

Jn(k1)
Jn(k1r) n = 2, 3, ...N (4.76)

It can be easily seen that if r = 1, Sn must necessarily be zero, which creates the required pinned

condition. However, S1 is zero everywhere, so the function space is reduced to N − 1 and n begins

counting from 2. In addition, the functions Sn are not orthogonal. The Grahm-Schmidt orthogono-

lization process is used to remedy this. The resulting orthogonal functions that satisfy the pinned
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edge condition are denoted Vn(r), where n = 1, 2, 3, ...N These functions necessarily satisfy

∫ 1

0

rVi(r)Vj(r)dr i 6= j. (4.77)

Thus the surface disturbance can be expressed as a linear combination of these modified basis

functions:

y(r) =

∞∑
n=1

cnVn(r) (4.78)

4.1.14 Rayleigh-Ritz

Equation (4.71) is a polynomial eigenvalue problem, which is once again solved using the

Rayleigh-Ritz method. Inner products are taken with the orthogonal basis functions to form the

following matrix equation:

(λ2M + λL + R)c = 0, (4.79)

where the matrices are define as

M = 〈M [Vi], Vj〉 (4.80a)

L = 〈L[Vi], Vj〉 (4.80b)

R = 〈R[Vi], Vj〉 (4.80c)

i, j = 1, 2, 3, ...N (4.80d)

Again, solving (4.79) gives an approximate solution to the problem in the form of eigenvalue, eigen-

vector pairs (λ, c), with the accuracy of the solution increasing as N is increased. Each (λ, c) pair

corresponds to a vibrational mode, λ being the natural frequency and c being a vector of coeffi-

cients which when applied to (4.78) give the shape of the surface perturbation (i.e. the shape of the

mode). As for the irrotational computations, equation (4.79) is solved using the “polyeig” function

in MATLAB.

4.2 Results and comparison

For water (σ = 71.7 mN/m, µ = 0.96 mPa·s, ρ = 1000 kg/m3), the eigenvalues are

computed for the first six axisymmetric modes and shown in Table 4.1. Note that since these are
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Mode Re[λr] Im[λr] Re[λi] Im[λi]
1 10.35 0.020 10.35 0.010
2 22.52 0.065 22.52 0.032
3 37.33 0.133 37.33 0.066
4 54.35 0.224 54.35 0.112
5 73.32 0.339 73.32 0.170
6 94.06 0.478 94.06 0.239

Table 4.1: Real and imaginary frequencies for the first six axisymmetric modes from both irrotational
and rotational analysis. Computations are for water at room temperature.

axisymmetric modes, m = 0. Recall that the rotational model was simplified by assuming axial

symmetry, which is why only axisymmetric results are shown. In Table 4.1, λr is the rotational

eigenvalue and λi is the irrotational eigenvalue. The results show that the real frequencies are the

same for both the irrotational and rotational analysis; however, the imaginary frequencies differ,

which correspond to the damping in the system. This is expected because the viscous term has

a higher coefficient in the rotational analysis. In the irrotational analysis, the coefficient is 2, but

in the rotational analysis presented here it is 4. The result is that the imaginary frequencies are

twice the irrotational imaginary frequencies, which directly corresponds to the higher coefficient in

the viscous term. Thus, including rotational effects does not alter the natural frequencies of the

system, but simply increases the damping by a factor of two. Recall that this is only true with the

assumption of small viscosity.

This results makes sense because damping, or viscous dissipation, is associated with move-

ment in a system. In Table 4.1 we see that as n increases, both the real and imaginary frequencies

increase, indicating that the damping increases as the real frequency of the mode increases. A higher

frequency, which means greater motion in the system, leads to more damping in the system. In the

irrotational analysis, however, we ignored all rotational fluid movement. Including the rotational

movement should naturally lead to an increase of damping in the system. In this analysis it was

shown that for small viscosity, an increase in damping is the only effect of the rotational fluid motion,

and it was shown that the damping increases by a factor of two.

4.2.1 Varying Oh

The effect of allowing rotation for various Oh values is shown in Figure 4.2. The real natural

frequency as Oh varies is shown in Figure 4.2a, while the imaginary frequency component is shown
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Figure 4.2: Comparison of the irrotational and rotational frequency response as the Ohnesorge
number is varied for the first axisymmetric mode (n = 1).

in Figure 4.2b. The change in frequency is shown for the (1, 0) mode for both the irrotational

and rotational analysis. Figure 4.2b shows that as Oh increases, the imaginary frequency, which

corresponds to damping, increases twice as quickly when rotational effects are included. The result

is that the rotational system becomes overdamped at a much lower Oh value. The critical damping

point is signified by the pitchfork bifurcation of the imaginary frequency. The irrotational system

becomes overdamped at Oh = 1.25, while the rotational system becomes overdamped at Oh = 0.62.

In Figure 4.2a, the critical damping point is when the frequency decreases to zero. The increased

damping means that the real rotational frequency decreases twice as quickly when Oh increases.

4.2.2 Forced comparison

The rotational effect is further illustrated by considering the response diagram of if the mo-

tion of the cylinder is forced. Using the same method as the irrotational analysis, a forced frequency

response diagram was computed for the rotational model. The vertical axis represents the norm

of the coefficient vector, which gives and indication of the magnitude of the surface perturbation.

The peaks correspond to natural frequencies (mode frequencies). Figure 4.3 is for the axisymmetric

case, where m = 0. The first peak corresponds to n = 1, the second to n = 2, and so on. The in-

creased damping in the rotational case has no effect on the peak frequencies, which is consistent with

the results in Table 4.1. However, the increased damping causes the peak amplitudes to decrease

significantly, which is what we should expect.
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Figure 4.3: Comparison of the irrotational and rotational forced amplitude response as the nondi-
mensional frequency λ is increased.
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Chapter 5

Conclusion

A theoretical model for surfaces waves formed on a liquid contained in a cylindrical container

with brimful conditions has been presented here. This model includes effects from viscosity, elasticity,

surface tension, and gravity on the inertial movement of the fluid. The pinned edge boundary

condition is included in the model by deriving modified basis functions in a constrained function

space, which results an integro-differential equation governing the dynamics of the system. This

governing equation is expressed as a nonlinear eigenvalue problem by transforming it into a matrix

operator equation, with inertial, viscous, and restorative force operators. An approximate solution

to this equation is achieved using a Rayleigh-Ritz variational procedure. This procedure allows for

the shape and resonance frequency of any mode to be computed, given a set of physical parameters.

The effects of various parameters on the mode frequencies are explored. It is demonstrated

that as the aspect ratio increases, the mode frequencies increase as well until plateauing at the

infinite depth limit. While this limit is not constant (it decreases for higher modes), it is shown

that this transition occurs at h ∼ 1. It is demonstrated that the transition from capillary waves

to capillary-gravity waves occurs at Bo ∼ 10, and that the transition point increases as the mode

increases. The transition from capillary waves to elastocapillary waves is shown to occur at Ec ∼ 1.

As with capillary-gravity waves, the transition point increases as the mode increases.

The Ohnesorge number is varied to study the its effects on the mode frequency. Unlike

the other parameters, the Ohnesorge number effects both the real and imaginary parts of the mode

frequency, the real component representing the actual resonance frequency and the imaginary com-

ponent representing the viscous damping. The transition point from underdamped to overdamped
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is observed when the real frequency decreases to zero. It is shown that this point decreases as the

mode increases. This transition is the result of a pitchfork bifurcation in the imaginary component

of the mode frequency. Curves are produced showing the critical damping transition point as a

function of both the elastocapillary number and the Ohnesorge number. It is shown that increases

in both Oh and Ec result in a higher critically damping point for the system.

A forced version of the governing integro-differential equation is derived and reduced to a

simple linear matrix equation. The Rayleigh-Ritz method is again used to approximate a solution.

Frequency sweeps are produced showing the amplitude response of the system across a range of

driving frequency values. Peaks are identified which correspond precisely to the mode frequencies

computed from the free model. A decrease in peak amplitude and spreading of the peak base as

modes increase are observed, indicative of increased dissipation at higher modes. It is demonstrated

that increasing the Ohnesorge number decreases the peak amplitudes with no impact on the peak

frequencies. In contrast, increasing the elastocapillary number is shown to both increase the peak

frequencies and decrease the peak amplitude. Higher modes are shown to exhibit a larger frequency

shift.

The theoretical model is verified through comparison with experimental data obtained by

Dr. Xingchen Shao. The overall agreement between the theory and experiment is excellent. The

resonance frequencies for the first fifty modes are computed for water and almost all are within

1% of the experimental values. For glycerol/water mixtures with different Ohnesorge numbers, the

theoretical frequencies computed have an average difference of 8% from the experimental values.

Theoretical frequencies for agarose gels with various elastocapillary numbers have an average differ-

ence of 3.7%. Frequencies computed for two different aspect ratios (h = 0.629 and h = 0.2) have an

average difference of 1.1% and 1.2%, respectively. Comparison is made for several modes with both

pinned and sliding boundary conditions, with average difference of 1.4% and 1.6%, respectively.

A rotational model is also derived for the same system, using similar (although substantially

different) methodology. This model is derived to examine the irrotational assumpion, and explore the

effects of including fluid rotation. A governing integro-differential equation was derived governing

the dynamics of the rotational system. Using a small viscosity assumption (µ << 1), the governing

equation is transformed into an operator equation of similar form to the irrotational model. It is

demonstrated that, given µ << 1, the only difference in the two models comes through the viscous

operator, which is increased by a factor of two. Thus, it is demonstrated that rotational effects only
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impact the dissipation in the system, while the mode frequencies remain unaffected. Practically,

this means that the real mode frequencies are unchanged, but the imaginary component of the mode

frequencies are doubled.

Further development of this theoretical work could include consideration of materials with

complex (frequency dependent) rheology. In the theoretical analysis presented here, it is assumed

that material properties are constant, since in the corresponding experimental studies materials

were chosen that exhibit constant rheological properties over the range of frequencies investigated.

However, many viscoelastic materials exhibit complex rheology, where the material behavior changes

at a crossover frequency. Material behavior may transition from fluid-like (viscous) to solid-like

(elastic) or vice versa, as in the case of shear-thickening (viscous to elastic) and shear-thinning

(elastic to viscous) materials. The model derived in this thesis could be extended to investigate the

complex dynamics of surface waves on these materials.
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Appendix A Derivation of the free surface curvature

The curvature of the free surface of the fluid is defined as the divergence of the surface

normal. The following derivation demonstrates how a mathematical expression for the curvature in

this problem is obtained. Naturally, this expression is derived in cylindrical coordinates. First, as

in the problem presented in Chapter 2, the free surface is defined as

z = L+ εη, (1)

with the O(ε) surface perturbation defined as a function of r, θ, and t:

η(r, θ, t) = y(r)eimθeiωt (2)

Rearranging (1) gives

z − L− εη = 0, (3)

a function that is equal to zero at every point on the free surface. The surface normal vector can

then be written as the gradient of this zero function:

~n = ∇(z − L− εη) (4)

Likewise, the unit normal vector is obtained simply by dividing by the vector magnitude:

n̂ =
∇(z − L− εη)

|∇(z − L− εη)|
(5)

Evaluating the numerator gives

∇(z − L− εη) = ε
∂η

∂r
êr + ε

1

r

∂η

∂θ
êθ + (1)êz. (6)

Note that the first two terms are O(ε) and the last term is O(1). Evaluating the denominator gives

|∇(z − L− εη)| =

√(
ε
∂η

∂r

)2

+

(
ε

1

r

∂η

∂θ

)2

+ (1)2 ∼ 1. (7)
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The first two terms under the radical are O(ε2) and hence very small, so the magnitude is approx-

imately equal to 1. Thus, evaluating the partial derivatives in (6), the unit normal vector can be

expressed as

n̂ = ε
dy

dr
eimθeiωtêr + ε

1

r
imyeimθeiωtêθ + (1)êz. (8)

Taking the divergence of the normal gives

∇ · n̂ =
1

r

∂(rεdydr e
imθeiωt)

∂r
+

1

r

∂(ε 1r imye
imθeiωt)

∂θ
+
∂(1)

∂z
. (9)

Evaluating the partial derivatives results in

∇ · n̂ = ε
1

r

[
r
d2y

dr2
+ (1)

dy

dr

]
eimθeiωt + ε

1

r2
(−m2)yeimθeiωt, (10)

which can be simplified to

∇ · n̂ = ε

[
d2y

dr2
+

1

r

dy

dr
− m2

r2
y

]
eimθeiωt. (11)

So, the O(ε) divergence of the surface normal can be expressed as

∇ · n̂ =

[
d2

dr2
+

1

r

d

dr
− m2

r2

]
η. (12)

Note that the time and azimuthal components of the surface perturbation η factor through in the

problem solution method presented in Chapter 2. In this case, the divergence of the surface normal

can be simplified and written in terms of y only:

∇ · n̂ =

[
d2

dr2
+

1

r

d

dr
− m2

r2

]
y. (13)
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Appendix B MATLAB Code for Rayleigh-Ritz Solution Method

B.1 Bessel Basis Functions

1 %% Bessel Basis Functions for Rayleigh -Ritz Solution Method

2 % Phillip Wilson

3

4 % Start timer

5 tic

6

7 % Opening commands

8 clear

9 clc

10 close all

11

12 % Input variables

13 m = 0; % Basis function order

14 N = 30; % Number of basis functions

15

16 %% Define roots

17 % This finds the non -zero roots of J’ (the Bessel function derivative),

18 % which are the k values that are used to define the basis functions.

19

20 % Define zeros

21 Jm = chebfun(@(x) besselj(m,x) ,[0 1000]); % Define bessel function

22 Jmp = diff(Jm); % Differentiate function

23 k = roots(Jmp); % Determine the roots of the derivative

24

25 % Ensure that all the roots are non -zero

26 if k(1) == 0

27 k(1) = [];

28 end

29

30 %% Define basis functions

31 % This defines an orthogonal set of basis functions in terms of the Bessel

32 % functions , which naturally satisfy the no penetration condition and a

33 % sliding contact line condition.

34

35 % Define basis functions in terms of the Bessel functions
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36 x = chebfun(’x’ ,[0 1]);

37 J = cell(N,1);

38 for i = 1:N

39 J{i} = besselj(m,k(i)*x);

40 end

41

42 %% Store basis functions

43 file = "W_Free_Basis_Functions_m_N30.mat";

44 filename = insertAfter(file ,24, num2str(m));

45 save(filename)

46

47 % End timer

48 toc

49

50 % End code
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B.2 Modiefied (Pinned) Basis Functions

1 %% Modified (Pinned) Basis Functions for Rayleigh -Ritz Solution Method

2 % Phillip Wilson

3

4 % Start timer

5 tic

6

7 % Opening commands

8 clear

9 clc

10 close all

11

12 % Input variables

13 m = 0; % Basis function order

14 N = 30; % Number of basis functions

15

16 %% Define roots

17 % This finds the non -zero roots of J’ (the Bessel function derivative),

18 % which are the k values that are used to define the basis functions.

19

20 % Define roots of the Bessel function derivative

21 Jm = chebfun(@(x) besselj(m,x) ,[0 1000]); % Define bessel function

22 Jmp = diff(Jm); % Differentiate function

23 k = roots(Jmp); % Determine the roots of the derivative

24

25 % Ensure that all the roots are non -zero

26 if k(1) == 0

27 k(1) = [];

28 end

29

30 %% Define basis functions

31 % This defines an orthogonal set of basis functions that satisfies the

32 % pinned boundary condition.

33

34 % Define set of non -orthogonal functions

35 x = chebfun(’x’ ,[0 1]);

36 P = cell(N+2,1);

37 for p = 1:N+2
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38 P{p} = besselj(m,k(p)*x) - (besselj(m,k(p)*1)/besselj(m,k(1) *1))*besselj(m,k(1)*x

);

39 end

40

41 % Othogonolize using the Grahm -Schmidt process

42 V = cell(N,1);

43 S = chebfun(’0’ ,[0 1]);

44 for i = 1:N

45 w = i;

46 V{i} = P{i+1} - S;

47

48 S = chebfun(’0’ ,[0 1]);

49 for j = 1:w

50 S = S + (sum(x*P{i+2}*V{j})/sum(x*V{j}*V{j}))*V{j};

51 end

52 end

53

54 %% Store basis functions

55 file = "W_Basis_Functions_m_N30.mat";

56 filename = insertAfter(file ,19, num2str(m));

57 save(filename)

58

59 % End timer

60 toc

61

62 % End code
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B.3 Expansion Matrices

1 %% Expansion Matrices for Rayleigh -Ritz Solution Method

2 % Phillip Wilson

3

4 % Begin timer

5 tic

6

7 % Opening commands

8 clear

9 clc

10 close all

11

12 % Input variables

13 m = 0; % Basis function order

14 N = 30; % Number of basis functions

15 h = 0.6286; % Aspect ratio

16

17 %% Load basis functions V{i}

18 % This loads the modified basis functions (which fulfilled the pinned edge

19 % condition) and the Bessel functions of the first kind.

20

21 % Load modified (pinned) basis functions

22 file = ’W_Basis_Functions_m_N30.mat’;

23 filename = insertAfter(file ,19, num2str(m));

24 load(filename ,’V’,’k’,’x’);

25

26 % Load ordinary Bessel functions

27 file = ’W_Free_Basis_Functions_m_N30.mat’;

28 filename = insertAfter(file ,24, num2str(m));

29 load(filename ,’J’);

30

31 %% Construct matrices

32 % This expands the governing operator equation into a matrix equation by

33 % taking inner products with the modified basis functions.

34

35 % Initialize the matrices

36 A0_1 = zeros(N); % Zeroth order matrix 1 (elasticity)

37 A0_2 = zeros(N); % Zeroth order matrix 2 (gravity)
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38 A0_3 = zeros(N); % Zeroth order matrix 3 (surface tension)

39 A1 = zeros(N); % First order matrix (viscosity)

40 A2 = zeros(N); % Second order matrix (pressure)

41

42 % Compute matrices

43 for i = 1:1:N

44 for j = 1:1:N

45 % Zeroth order terms

46 M0_1 = chebfun(’0’ ,[0 1]); % Initialize

47 for n = 1:N % Apply operator (series)

48 M0_1 = M0_1 + (k(n))*(1/ tanh(k(n)*h))*(sum(x*V{i}*J{n})/sum(x*J{n}*J{n}))

*J{n};

49 end

50 M0_1 = -M0_1; % Make negative

51 A0_1(i,j) = sum(x*M0_1*V{j}); % Inner product

52

53 M0_2 = -V{i}; % Apply operator

54 A0_2(i,j) = sum(x*M0_2*V{j}); % Inner product

55

56 M0_3 = diff(diff(V{i})) + (1/x)*diff(V{i}) - ((m^2)/(x^2))*V{i}; % Apply

operator

57 integrand = chebfun(x*M0_3*V{j},[0,1],’splitting ’,’on’); % Split function

58 A0_3(i,j) = sum(integrand); % Inner product

59

60 % First order term

61 M1 = chebfun(’0’ ,[0 1]); % Initialize

62 for n = 1:N % Apply operator (series)

63 M1 = M1 + (k(n))*(1/ tanh(k(n)*h))*(sum(x*V{i}*J{n})/sum(x*J{n}*J{n}))*J{n

};

64 end

65 M1 = -1i*M1; % Make negative and imaginary

66 A1(i,j) = sum(x*M1*V{j}); % Inner product

67

68 % Second order term

69 M2 = chebfun(’0’ ,[0 1]); % Initialize

70 for n = 1:N % Apply operator (series)

71 M2 = M2 + (1/k(n))*(1/ tanh(k(n)*h))*(sum(x*V{i}*J{n})/sum(x*J{n}*J{n}))*J

{n};

72 end
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73 A2(i,j) = sum(x*M2*V{j}); % Inner product

74 end

75 end

76

77 %% Store expansion matrices

78 file = "W_Expansion_Matrices_m_N_hexp3.mat";

79 file = insertAfter(file ,22, num2str(m));

80 filename = insertAfter(file ,25, num2str(N));

81 save(filename)

82

83 % End timer

84 toc

85

86 % End code
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B.4 Free Solution

1 %% Free Rayleigh -Ritz Solution for Cylinder Problem

2 % Phillip Wilson

3

4 % Begin timer

5 tic

6

7 % Opening commands

8 clear

9 clc

10 close all

11

12 %% Input variables

13 % Here all the relavent problem parameters are defined. This can be done in

14 % dimensional form , or via the dimensionless parameters.

15

16 % Initial parameters

17 m = 0; % Order

18 N = 30; % Length of series expansion

19

20 % Input parameters

21 r = 0.035; %0.0277; % Cylinder radius [m]

22 d = 0.022; %0.0380; % Cylinder depth [m]

23 y = 71.7*10^ -3; % Surface tension [N/m]

24 u = 0.96*10^ -3; % Viscosity [Pa-s]

25 s = 0; % Shear modulus [Pa]

26 g = 9.81; % Gravitational acceleration [m/s^2]

27 rho = 1000; % Density [kg/m^3]

28

29 % Define dimensionless parameters

30 h = d/r; % Aspect ratio

31 H = ’inf’; % Aspect ratio: equals ’exp ’ or ’inf ’

32 Bo = (rho*g*r^2)/y; % Bond number

33 Oh2 = 2*(u/sqrt(rho*y*r)); % Ohnesorge number (times 2)

34 Ec2 = 2*((s*r)/y); % Elastocapillary number (times 2)

35

36 % Alternatively , directly input dimensionless parameters

37 % h = 1000; % Aspect ratio
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38 % H = ’inf ’; % Aspect ratio: equals ’exp ’ or ’inf ’

39 % Bo = 150; % Bo number

40 % Oh2 = 1*2; % Ohnesorge number (times 2)

41 % Ec2 = 10*2; % Elastocapillary number (times 2)

42

43 %% Compute expansion matrices

44 % Here the generic expansion matrices are loaded , and the specific

45 % expansion matrices are computed using the dimensionless parameters.

46

47 % Load expansion matrices A0,A1,A2

48 file2 = ’W_Expansion_Matrices_m_N_h3.mat’;

49 file2 = insertAfter(file2 ,22, num2str(m));

50 file2 = insertAfter(file2 ,25, num2str(N));

51 filename2 = insertAfter(file2 ,29, num2str(H));

52 load(filename2 ,’A0_1’,’A0_2’,’A0_3’,’A1’,’A2’);

53

54 % Compute specific matrices

55 spec_A0 = Ec2*A0_1 + Bo*A0_2 + A0_3;

56 spec_A1 = Oh2*A1;

57 spec_A2 = A2;

58

59 %% Solve for eigenvalues

60 % This solves the polynomical eigenvalue problem and sorts the resulting

61 % eigenvalues and eigenvectors.

62

63 % Extract eigenvalues and eigenvectors

64 [Vec ,Eig] = polyeig(spec_A0 ,spec_A1 ,spec_A2);

65

66 % Sort eigenvalues

67 [Eval_Sorted ,Index] = sort(Eig ,’ComparisonMethod ’,’real’);

68 Eval_Filtered = zeros(N,1);

69 for i = 1:N

70 Eval_Filtered(i) = Eval_Sorted(N+i);

71 end

72

73 % Sort eigenvectors

74 Evec_Filtered = zeros(N,N);

75 for j = 1:N

76 Evec_Filtered (:,j) = Vec(:,Index(N+j));
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77 end

78

79 % Separate eigenvalues into real and imaginary components

80 reig = real(Eval_Filtered); % Real eigenvalues

81 ieig = imag(Eval_Filtered); % Imaginary eigenvalues

82 c = real(Evec_Filtered); % Real eigenvectors

83

84 % Convert eigenvalues to dimensional frequencies

85 lamda = (Eval_Filtered .^2)/Bo;

86 f = sqrt(lamda *9.81/r)/(2*pi);

87 fr = real(f); % Real dimensional frequencies

88

89 % End timer

90 toc

91

92 % End code
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B.5 Forced Solution

1 %% Forced Rayleigh -Ritz Solution for Cylinder Problem

2 % Phillip Wilson

3

4 % Begin timer

5 tic

6

7 % Opening commands

8 clear

9 clc

10 close all

11

12 %% Input variables

13 % Here all the relavent problem parameters are defined.

14

15 % Initial parameters

16 m = 0; % Order

17 N = 30; % Length of series expansion

18

19 % Response diagram parameters

20 Freq_min = 0; % Minimum frequency value (in Hz)

21 Freq_max = 25; % Maximum frequency value (in Hz)

22 grid = 50000; % Number of grid points

23

24 % System parameters

25 r = 0.035; % Cylinder radius [m]

26 d = 0.022; % Cylinder depth [m]

27 y = 71.7*10^ -3; % Surface tension [N/m]

28 u = 0.96*10^ -3; % Viscosity(index)*10^ -3; % Viscosity [Pa-s]

29 s = 20.2; % Shear modulus [Pa]

30 g = 9.81; % Gravitational acceleration [m/s^2]

31 rho = 1000; % Density [kg/m^3]

32

33 % Dimensionless parameters

34 h = d/r; % Aspect ratio

35 H = ’exp’; % Aspect ratio: equals ’exp ’ or ’inf ’

36 Bo = (rho*g*r^2)/y; % Bond number

37 Oh2 = 2*(u/sqrt(rho*y*r)); % Ohnesorge number (times 2)
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38 Ec2 = 2*((s*r)/y); % Elastocapillary number (times 2)

39

40 %% Load expansion matrices

41 % This loads the generic expansion matrices which are used to compute the

42 % frequency response.

43

44 % Load expansion matrices A0,A1,A2

45 file2 = ’W_Expansion_Matrices_m_N_h3.mat’;

46 file2 = insertAfter(file2 ,22, num2str(m));

47 file2 = insertAfter(file2 ,25, num2str(N));

48 filename2 = insertAfter(file2 ,29, num2str(H));

49 load(filename2 ,’A0_1’,’A0_2’,’A0_3’,’A1’,’A2’);

50

51 %% Compute frequency sweep

52 % This computes frequency response data over the range specified above by

53 % solving the linear matrix equation Ac=B for each frequency value.

54

55 % Define B matrix (representing uniform acceleration if the cylinder)

56 B = ones (30 ,1);

57

58 % Begin frequency variation loop

59 Freq_val = transpose(linspace(Freq_min ,Freq_max ,grid)); % Frequency values

60 C = zeros(grid ,1); % Initialize amplitude vector

61 q = 0;

62 for l = Freq_min :(Freq_max -Freq_min)/(grid -1):Freq_max

63 q = q + 1;

64

65 e = sqrt((rho *((2*pi*l)^2)*(r^3))/y); % Dimensionless driving frequency

66

67 A = Ec2*A0_1 + Bo*A0_2 + A0_3 + e*Oh2*A1 +(e^2)*A2;

68

69 c = linsolve(A,B); % Solve the linear matrix equation

70 C(q,1) = norm(c); % Represent amplitude as norm of coefficient vector

71 end

72

73 %% Plot frequency response diagram

74 % This plots the norm of the coefficient vector c (which corresponds to

75 % amplitude) against the driving frequency in Hz.

76
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77 % Plot

78 figure % Create figure

79 plot(Freq_val ,C) % Plot the frequency response diagram

80

81 % Axis labels

82 xlabel(’f [Hz]’)

83 ylabel(’|c|’)

84

85 % End timer

86 toc

87

88 % End code
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Appendix C MATLAB Code for Parameter Analysis

C.1 h Paramater Variation Analysis

1 %% h Parameter Variation Analysis

2 % Phillip Wilson

3

4 % Begin timer

5 tic

6

7 % Opening commands

8 clear

9 clc

10 close all

11

12 %% Input variables

13 % Here all the relavent problem parameters are defined. This can be done in

14 % dimensional form , or via the dimensionless parameters.

15

16 % Initial parameters

17 m = 0; % Order

18 N = 30; % Length of series expansion

19

20 % Input parameters

21 r = 0.035; %0.0277; % Cylinder radius [m]

22 d = 0.022; %0.0380; % Cylinder depth [m]

23 y = 71.7*10^ -3; % Surface tension [N/m]

24 u = 0.96*10^ -3; % Viscosity [Pa-s]

25 s = 0; % Shear modulus [Pa]

26 g = 9.81; % Gravitational acceleration [m/s^2]

27 rho = 1000; % Density [kg/m^3]

28

29 % Define dimensionless parameters

30 h = d/r; % Aspect ratio

31 H = ’inf’; % Aspect ratio: equals ’exp ’ or ’inf ’

32 Bo = (rho*g*r^2)/y; % Bond number

33 Oh2 = 2*(u/sqrt(rho*y*r)); % Ohnesorge number (times 2)

34 Ec2 = 2*((s*r)/y); % Elastocapillary number (times 2)

35
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36 % Alternatively , directly input dimensionless parameters

37 % h = 1000; % Aspect ratio

38 % H = ’inf ’; % Aspect ratio: equals ’exp ’ or ’inf ’

39 % Bo = 150; % Bo number

40 % Oh2 = 1*2; % Ohnesorge number (times 2)

41 % Ec2 = 10*2; % Elastocapillary number (times 2)

42

43 %% Load basis functions

44 % This loads the modified basis functions (which fulfilled the pinned edge

45 % condition) and the Bessel functions of the first kind.

46

47 % Load modified (pinned) basis functions

48 file = ’W_Basis_Functions_m_N30.mat’;

49 filename = insertAfter(file ,19, num2str(m));

50 load(filename ,’V’,’k’,’x’);

51

52 % Load ordinary Bessel functions

53 file = ’W_Free_Basis_Functions_m_N30.mat’;

54 filename = insertAfter(file ,24, num2str(m));

55 load(filename ,’J’);

56

57 %% Load expansion matrices

58 % Here the first and second parts of the generic zeroth order expansion

59 % matricix are loaded. All other matrices are a function of h and must be

60 % recalculated for each h value.

61

62 % Load expansion matrices A0_2 ,A0_3

63 file2 = ’W_Expansion_Matrices_m_N_h3.mat’;

64 file2 = insertAfter(file2 ,22, num2str(m));

65 file2 = insertAfter(file2 ,25, num2str(N));

66 filename2 = insertAfter(file2 ,29, num2str(H));

67 load(filename2 ,’A0_2’,’A0_3’);

68

69 %% Calculate results for h variation

70 % This calculates the frequency over a range of h values. Note that the

71 % h values are defined logarithmically , as the results are best displayed

72 % on a semilog plot.

73

74 % Define logarithmic h values
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75 grid = 3; % Number of grid points

76 ii = linspace(-3,2,grid);

77 h_val = zeros(grid ,1);

78 for kk = 1:1: grid

79 h_val(kk ,1) = 10^ii(kk);

80 end

81

82 % Initialize counter

83 t = 0;

84

85 % Initialize frequency vectors

86 Realn1 = zeros(grid ,1);

87 Realn2 = zeros(grid ,1);

88 Realn3 = zeros(grid ,1);

89

90 % Calculate frequency values

91 for hi = 1:1: grid

92 h = h_val(hi);

93

94 t = t +1;

95

96 % Initialize expansion matrices

97 A0_1 = zeros(N); % First zeroth order matrix

98 A1 = zeros(N); % First order matrix

99 A2 = zeros(N); % Second order matrix

100

101 % Compute expansion matrices

102 for i = 1:1:N

103 for j = 1:1:N

104 % Zeroth order terms

105 M0_1 = chebfun(’0’ ,[0 1]); % Initialize

106 for n = 1:N % Apply operator (series)

107 M0_1 = M0_1 + (k(n))*(1/ tanh(k(n)*h))*(sum(x*V{i}*J{n})/sum(x*J{n}*J{n}))

*J{n};

108 end

109 M0_1 = -M0_1; % Make negative

110 A0_1(i,j) = sum(x*M0_1*V{j}); % Inner product

111

112 % First order term
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113 M1 = chebfun(’0’ ,[0 1]); % Initialize

114 for n = 1:N % Apply operator (series)

115 M1 = M1 + (k(n))*(1/ tanh(k(n)*h))*(sum(x*V{i}*J{n})/sum(x*J{n}*J{n}))*J{n

};

116 end

117 M1 = -1i*M1; % Make negative and imaginary

118 A1(i,j) = sum(x*M1*V{j}); % Inner product

119

120 % Second order term

121 M2 = chebfun(’0’ ,[0 1]); % Initialize

122 for n = 1:N % Apply operator (series)

123 M2 = M2 + (1/k(n))*(1/ tanh(k(n)*h))*(sum(x*V{i}*J{n})/sum(x*J{n}*J{n}))*J

{n};

124 end

125 A2(i,j) = sum(x*M2*V{j}); % Inner product

126 end

127 end

128

129 % Define specific expansion matrices

130 A0 = Ec2*A0_1 + Bo*A0_2 + A0_3;

131 A1 = Oh2*A1;

132

133 % Extract eigenvalues and eigenvectors

134 [Vec ,Eig] = polyeig(A0,A1,A2);

135

136 % Sort eigenvalues

137 [Eval_Sorted ,Index] = sort(Eig ,’ComparisonMethod ’,’real’);

138 Eval_Filtered = zeros(N,1);

139 for i = 1:N

140 Eval_Filtered(i) = Eval_Sorted(N+i);

141 end

142

143 % Sort eigenvectors

144 Evec_Filtered = zeros(N,N);

145 for i = 1:N

146 Evec_Filtered (:,i) = Vec(:,Index(N+i));

147 end

148

149 Realn1(t,1) = real(Eval_Filtered (1));
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150 Realn2(t,1) = real(Eval_Filtered (2));

151 Realn3(t,1) = real(Eval_Filtered (3));

152

153 disp(t)

154 end

155

156 %% Make plot

157 % This creates a semilog plot of the first three modes.

158

159 % Plot

160 figure

161 semilogx(h_val ,Realn1 ,’-b’,h_val ,Realn2 ,’--b’,h_val ,Realn3 ,’:b’,’LineWidth ’ ,1.5)

162

163 % Set axis properties

164 xlim ([10^ -3 10^2])

165 set(gca ,’Units’,’normalized ’,’Position ’ ,[0.1 0.1 0.8 0.8],’FontSize ’,9,’FontName ’,’

Times’)

166 xlabel(’$h$’,’interpreter ’,’latex ’,’FontSize ’ ,10)

167 ylabel(’$\lambda$ ’,’interpreter ’,’latex’,’FontSize ’ ,10)

168 legend ("(1," + m + ")","(2," + m + ")","(3," + m + ")",’interpreter ’,’latex’,’

FontSize ’,8,’Location ’,’NorthWest ’)

169

170 % End timer

171 toc

172

173 % End code
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C.2 Bo Paramater Variation Analysis

1 %% Bo Parameter Variation Analysis

2 % Phillip Wilson

3

4 % Begin timer

5 tic

6

7 % Opening commands

8 clear

9 clc

10 close all

11

12 %% Input variables

13 % Here all the relavent problem parameters are defined. This can be done in

14 % dimensional form , or via the dimensionless parameters.

15

16 % Initial parameters

17 m = 0; % Order

18 N = 30; % Length of series expansion

19

20 % Input parameters

21 r = 0.035; %0.0277; % Cylinder radius [m]

22 d = 0.022; %0.0380; % Cylinder depth [m]

23 y = 71.7*10^ -3; % Surface tension [N/m]

24 u = 0.96*10^ -3; % Viscosity [Pa-s]

25 s = 0; % Shear modulus [Pa]

26 g = 9.81; % Gravitational acceleration [m/s^2]

27 rho = 1000; % Density [kg/m^3]

28

29 % Define dimensionless parameters

30 h = d/r; % Aspect ratio

31 H = ’inf’; % Aspect ratio: equals ’exp ’ or ’inf ’

32 Bo = (rho*g*r^2)/y; % Bond number

33 Oh2 = 2*(u/sqrt(rho*y*r)); % Ohnesorge number (times 2)

34 Ec2 = 2*((s*r)/y); % Elastocapillary number (times 2)

35

36 % Alternatively , directly input dimensionless parameters

37 % h = 1000; % Aspect ratio
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38 % H = ’inf ’; % Aspect ratio: equals ’exp ’ or ’inf ’

39 % Bo = 150; % Bo number

40 % Oh2 = 1*2; % Ohnesorge number (times 2)

41 % Ec2 = 10*2; % Elastocapillary number (times 2)

42

43 %% Compute expansion matrices

44 % Here the generic expansion matrices are loaded , and the specific

45 % expansion matrices are computed using the dimensionless parameters.

46

47 % Load expansion matrices A0,A1,A2

48 file2 = ’W_Expansion_Matrices_m_N_h3.mat’;

49 file2 = insertAfter(file2 ,22, num2str(m));

50 file2 = insertAfter(file2 ,25, num2str(N));

51 filename2 = insertAfter(file2 ,29, num2str(H));

52 load(filename2 ,’A0_1’,’A0_2’,’A0_3’,’A1’,’A2’);

53

54 % Define fixed matrices

55 Bo_A1 = Oh2*A1;

56 Bo_A2 = A2;

57

58 %% Calculate results for Bo variation

59 % This calculates the frequency over a range of Bo numbers. Note that the

60 % Bo numbers are defined logarithmically , as the results are best displayed

61 % on a log -log plot.

62

63 % Define logarithmic Bo values

64 grid = 100; % Number of grid points

65 ii = linspace(-3,3,grid);

66 Bo_val = zeros(grid ,1);

67 for kk = 1:1: grid

68 Bo_val(kk ,1) = 10^ii(kk);

69 end

70

71 % Initialize counter

72 j = 0;

73

74 % Initialize frequency vectors

75 Realn1 = zeros(grid ,1);

76 Realn2 = zeros(grid ,1);
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77 Realn3 = zeros(grid ,1);

78

79 % Calcullate frequency values

80 for bi = 1:1: grid

81 Bo = Bo_val(bi);

82

83 j = j + 1;

84

85 % Compute matrices

86 Bo_A0 = Ec2*A0_1 + Bo*A0_2 + A0_3;

87

88 % Extract eigenvalues and eigenvectors

89 [Vec ,Eig] = polyeig(Bo_A0 ,Bo_A1 ,Bo_A2);

90

91 % Sort eigenvalues

92 [Eval_Sorted ,Index] = sort(Eig ,’ComparisonMethod ’,’real’);

93 Eval_Filtered = zeros(N,1);

94 for i = 1:N

95 Eval_Filtered(i) = Eval_Sorted(N+i);

96 end

97

98 % Sort eigenvectors

99 Evec_Filtered = zeros(N,N);

100 for i = 1:N

101 Evec_Filtered (:,i) = Vec(:,Index(N+i));

102 end

103

104 % Store real eigenvalues for the first three modes

105 Realn1(j,1) = real(Eval_Filtered (1));

106 Realn2(j,1) = real(Eval_Filtered (2));

107 Realn3(j,1) = real(Eval_Filtered (3));

108

109 end

110

111 %% Make plot

112 % This creates a log -log plot of the first three modes.

113

114 % Plot

115 figure
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116 loglog(Bo_val ,Realn1 ,’-b’,Bo_val ,Realn2 ,’--b’,Bo_val ,Realn3 ,’:b’,’LineWidth ’ ,1.5)

117

118 % Set axis properties

119 xlim ([10^ -3 10^3])

120 set(gca ,’Units’,’normalized ’,’Position ’ ,[0.1 0.1 0.8 0.8],’FontSize ’,9,’FontName ’,’

Times’)

121 xlabel(’$Bo$’,’interpreter ’,’latex’,’FontSize ’ ,10)

122 ylabel(’$\lambda$ ’,’interpreter ’,’latex’,’FontSize ’ ,10)

123 legend ("(1," + m + ")","(2," + m + ")","(3," + m + ")",’interpreter ’,’latex’,’

FontSize ’,8,’Location ’,’NorthWest ’)

124

125 % End timer

126 toc

127

128 % End code
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C.3 Ec Paramater Variation Analysis

1 %% Ec Parameter Variation Analysis

2 % Phillip Wilson

3

4 % Begin timer

5 tic

6

7 % Opening commands

8 clear

9 clc

10 close all

11

12 %% Input variables

13 % Here all the relavent problem parameters are defined. This can be done in

14 % dimensional form , or via the dimensionless parameters.

15

16 % Initial parameters

17 m = 0; % Order

18 N = 30; % Length of series expansion

19

20 % Input parameters

21 r = 0.035; %0.0277; % Cylinder radius [m]

22 d = 0.022; %0.0380; % Cylinder depth [m]

23 y = 71.7*10^ -3; % Surface tension [N/m]

24 u = 0.96*10^ -3; % Viscosity [Pa-s]

25 s = 0; % Shear modulus [Pa]

26 g = 9.81; % Gravitational acceleration [m/s^2]

27 rho = 1000; % Density [kg/m^3]

28

29 % Define dimensionless parameters

30 h = d/r; % Aspect ratio

31 H = ’inf’; % Aspect ratio: equals ’exp ’ or ’inf ’

32 Bo = (rho*g*r^2)/y; % Bond number

33 Oh2 = 2*(u/sqrt(rho*y*r)); % Ohnesorge number (times 2)

34 Ec2 = 2*((s*r)/y); % Elastocapillary number (times 2)

35

36 % Alternatively , directly input dimensionless parameters

37 % h = 1000; % Aspect ratio
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38 % H = ’inf ’; % Aspect ratio: equals ’exp ’ or ’inf ’

39 % Bo = 150; % Bo number

40 % Oh2 = 1*2; % Ohnesorge number (times 2)

41 % Ec2 = 10*2; % Elastocapillary number (times 2)

42

43 %% Compute expansion matrices

44 % Here the generic expansion matrices are loaded , and the specific

45 % expansion matrices are computed using the dimensionless parameters.

46

47 % Load expansion matrices A0,A1,A2

48 file2 = ’W_Expansion_Matrices_m_N_h3.mat’;

49 file2 = insertAfter(file2 ,22, num2str(m));

50 file2 = insertAfter(file2 ,25, num2str(N));

51 filename2 = insertAfter(file2 ,29, num2str(H));

52 load(filename2 ,’A0_1’,’A0_2’,’A0_3’,’A1’,’A2’);

53

54 % Define fixed matrices

55 Ec_A1 = Oh2*A1;

56 Ec_A2 = A2;

57

58 %% Calculate results for Ec variation

59 % This calculates the frequency over a range of Ec numbers. Note that the

60 % Bo numbers are defined logarithmically , as the results are best displayed

61 % on a log -log plot.

62

63 % Define logarithmic Ec values

64 grid = 100; % Number of grid points

65 ii = linspace(-3,3,grid);

66 Ec2_val = zeros(grid ,1);

67 for kk = 1:1: grid

68 Ec2_val(kk ,1) = 10^ii(kk)*2;

69 end

70

71 % Initialize counter

72 j = 0;

73

74 % Initialize frequency vectors

75 Realn1 = zeros(grid ,1);

76 Realn2 = zeros(grid ,1);
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77 Realn3 = zeros(grid ,1);

78

79 % Calculate frequency values

80 for ei = 1:1: grid

81 Ec2 = Ec2_val(ei);

82

83 j = j + 1;

84

85 % Compute matrices

86 Ec_A0 = Ec2*A0_1 + Bo*A0_2 + A0_3;

87

88 % Extract eigenvalues and eigenvectors

89 [Vec ,Eig] = polyeig(Ec_A0 ,Ec_A1 ,Ec_A2);

90

91 % Sort eigenvalues

92 [Eval_Sorted ,Index] = sort(Eig ,’ComparisonMethod ’,’real’);

93 Eval_Filtered = zeros(N,1);

94 for i = 1:N

95 Eval_Filtered(i) = Eval_Sorted(N+i);

96 end

97

98 % Sort eigenvectors

99 Evec_Filtered = zeros(N,N);

100 for i = 1:N

101 Evec_Filtered (:,i) = Vec(:,Index(N+i));

102 end

103

104 % Store real eigenvalues for the first three modes

105 Realn1(j,1) = real(Eval_Filtered (1));

106 Realn2(j,1) = real(Eval_Filtered (2));

107 Realn3(j,1) = real(Eval_Filtered (3));

108

109 end

110

111 % Adjust Ec value

112 Ec_val = Ec2_val /2;

113

114 %% Make plot

115 % This creates a log -log plot of the first three modes.
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116

117 % Plot

118 figure

119 loglog(Ec_val ,Realn1 ,’-b’,Ec_val ,Realn2 ,’--b’,Ec_val ,Realn3 ,’:b’,’LineWidth ’ ,1.5)

120

121 % Set axis properties

122 xlim ([10^ -3 10^3])

123 set(gca ,’Units’,’normalized ’,’Position ’ ,[0.1 0.1 0.8 0.8],’FontSize ’,9,’FontName ’,’

Times’)

124 xlabel(’$E$’,’interpreter ’,’latex ’,’FontSize ’ ,10)

125 ylabel(’$Re[\ lambda]$’,’interpreter ’,’latex’,’FontSize ’ ,10)

126 legend ("(1," + m + ")","(2," + m + ")","(3," + m + ")",’interpreter ’,’latex’,’

FontSize ’,8,’Location ’,’NorthWest ’)

127

128 % End timer

129 toc

130

131 % End code
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C.4 Oh Paramater Variation Analysis

1 %% Oh Parameter Variation Analysis

2 % Phillip Wilson

3

4 % Begin timer

5 tic

6

7 % Opening commands

8 clear

9 clc

10 close all

11

12 %% Input variables

13 % Here all the relavent problem parameters are defined. This can be done in

14 % dimensional form , or via the dimensionless parameters.

15

16 % Initial parameters

17 m = 0; % Order

18 N = 30; % Length of series expansion

19

20 % Input parameters

21 r = 0.035; %0.0277; % Cylinder radius [m]

22 d = 0.022; %0.0380; % Cylinder depth [m]

23 y = 71.7*10^ -3; % Surface tension [N/m]

24 u = 0.96*10^ -3; % Viscosity [Pa-s]

25 s = 0; % Shear modulus [Pa]

26 g = 9.81; % Gravitational acceleration [m/s^2]

27 rho = 1000; % Density [kg/m^3]

28

29 % Define dimensionless parameters

30 h = d/r; % Aspect ratio

31 H = ’inf’; % Aspect ratio: equals ’exp ’ or ’inf ’

32 Bo = (rho*g*r^2)/y; % Bond number

33 Oh2 = 2*(u/sqrt(rho*y*r)); % Ohnesorge number (times 2)

34 Ec2 = 2*((s*r)/y); % Elastocapillary number (times 2)

35

36 % Alternatively , directly input dimensionless parameters

37 % h = 1000; % Aspect ratio
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38 % H = ’inf ’; % Aspect ratio: equals ’exp ’ or ’inf ’

39 % Bo = 150; % Bo number

40 % Oh2 = 1*2; % Ohnesorge number (times 2)

41 % Ec2 = 10*2; % Elastocapillary number (times 2)

42

43 %% Compute expansion matrices

44 % Here the generic expansion matrices are loaded , and the specific

45 % expansion matrices are computed using the dimensionless parameters.

46

47 % Load expansion matrices A0,A1,A2

48 file2 = ’W_Expansion_Matrices_m_N_h3.mat’;

49 file2 = insertAfter(file2 ,22, num2str(m));

50 file2 = insertAfter(file2 ,25, num2str(N));

51 filename2 = insertAfter(file2 ,29, num2str(H));

52 load(filename2 ,’A0_1’,’A0_2’,’A0_3’,’A1’,’A2’);

53

54 % Define fixed matrices

55 Oh_A0 = Ec2*A0_1 + Bo*A0_2 + A0_3;

56 Oh_A2 = A2;

57

58 %% Calculate and plot results for Oh variation

59 % This calculates the frequency over a range of Oh numbers. Because it is

60 % difficult to isolate individual modes , all of the modes are plotted.

61 % Either the real or imaginary frequencies are plotted.

62

63 % Define parameter range and grid

64 Oh_min = 0; % Minimum value

65 Oh_max = 5; % Maximum value

66 grid = 500; % Number of points

67

68 % Define Oh values

69 Oh_val = linspace(Oh_min ,Oh_max ,grid);

70

71 % Initialize counter

72 j = 0;

73

74 % Calculate and plot frequency values

75 figure

76 for Oh = Oh_min :(Oh_max -Oh_min)/(grid -1):Oh_max
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77

78 j = j+1;

79

80 % Compute matrices

81 Oh_A1 = 2*Oh*A1;

82

83 % Extract eigenvalues

84 [Vec ,Eig] = polyeig(Oh_A0 ,Oh_A1 ,Oh_A2);

85

86 % Select either real or imaginary eigenvalues

87 Eval_Filtered = real(Eig( Eig >0 )); % Use real() or imag()

88

89 % Plot eigenvalues

90 hold on

91 plot(Oh ,Eval_Filtered ,’.’)

92

93 end

94

95 % Set axis properties

96 ylim ([0 100])

97 set(gca ,’Units’,’normalized ’,’Position ’ ,[0.1 0.1 0.8 0.8],’FontSize ’,9,’FontName ’,’

Times’)

98 xlabel(’$Oh$’,’interpreter ’,’latex’,’FontSize ’ ,10)

99 ylabel(’$Re[\ lambda]$’,’interpreter ’,’latex’,’FontSize ’ ,10)

100

101 % End timer

102 toc

103

104 % End code
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Appendix D MATLAB Code for Mode Visualization

D.1 3D Shape Visualization

1 %% 3D Shape Visualization of Cylindrical Modes

2 % Phillip Wilson

3

4 % Start timer

5 tic

6

7 % Opening commands

8 clear

9 clc

10 % close all

11

12 % Input variables

13 n = 1; % Radial wavenumber

14 m = 0; % Azimuthal wavenumber (order)

15 N = 30; % Number of basis functions

16

17 %% Load basis functions and coefficients

18 % This loads both the modified (pinned) basis functions and the coefficient

19 % vector for the specified mode.

20

21 % Load basis functions V{i}

22 file = ’W_Basis_Functions_m_N30.mat’;

23 filename = insertAfter(file ,19, num2str(m));

24 load(filename ,’V’)

25

26 % Load coefficients c

27 file = ’W_Natural_m_V1 .01 _N30_hinf.mat’;

28 filename = insertAfter(file ,11, num2str(m));

29 load(filename ,’c’)

30 c = c(:,n);

31

32 %% Define surface

33 % This uses the coefficient vector c and the basis functions V to compute

34 % a function z defining the perturbed free surface.

35
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36 % Define shape function

37 z = chebfun(’0’ ,[0 1]);

38 for i = 1:N

39 z = z + c(i)*V{i};

40 end

41

42 %% Make 3D plot

43 % This plots the surface shape as well as a visual of the cylinder

44 % containing the fluid.

45

46 % Create 3D mesh

47 Grid = 100; % Grid size

48 r = linspace (0,1,Grid); % Define radial points

49 th = linspace (0,2*pi,Grid); % Define azimuthal points

50 [R,TH] = meshgrid(r,th); % Create a meshgrid

51 Z = 0.2*z(R).*cos(m.*TH); % Calculate meshgrid surface

52

53 % Plot cylinder

54 figure

55 [x,y,z] = cylinder (1.05 ,50); % Create cylinder

56 h1 = surf(x,y,z,’FaceColor ’, [0,0,0]); % Plot cylinder

57

58 % Plot surface

59 hold on

60 h2 = surfl(R.*cos(TH), R.*sin(TH), Z+1); % Plot surface z

61 colormap(gray) % Change color map to gray

62 set(h2 , ’EdgeColor ’, ’interp ’, ’FaceColor ’, ’interp ’); % Interpolate colors across

lines and faces

63

64 % Adjust plot settings

65 axis vis3d % 3D axis view

66 grid off % Turn of grid

67 set(gca ,’visible ’,’off’,’xtick ’ ,[]) % Turn off axis scales

68 set(gca ,’YTick’,[],’XTick ’ ,-1:1:1,’Units ’,’normalized ’,’Position ’ ,[0 0 1 1],’FontSize

’,9,’FontName ’,’Times’)

69

70 %% Print

71 print(’3dshapem0n1_exp ’,’-depsc’) % Print as an eps file

72
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73 % End timer

74 toc

75

76 % End code
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D.2 2D Shape Visualization

1 %% 2D Shape Visualization of Cylindrical Modes

2 % Phillip Wilson

3

4 % Start timer

5 tic

6

7 % Opening commands

8 clear

9 clc

10 close all

11

12 % Input variables

13 n = 1; % Radial wavenumber

14 m = 0; % Azimuthal wavenumber (order)

15 N = 30; % Number of basis functions

16

17 %% Load basis functions and coefficients

18 % This loads both the modified (pinned) basis functions and the coefficient

19 % vector for the specified mode.

20

21 % Load basis functions V{i}

22 file = ’W_Basis_Functions_m_N30.mat’;

23 filename = insertAfter(file ,19, num2str(m));

24 load(filename ,’V’)

25

26 % Load coefficients c

27 file = ’W_Natural_m_V1 .01 _N30_hinf.mat’;

28 filename = insertAfter(file ,11, num2str(m));

29 load(filename ,’c’)

30 c = c(:,n);

31

32 %% Define surface

33 % This uses the coefficient vector c and the basis functions V to compute

34 % a function z defining the perturbed free surface.

35

36 % Define shape function

37 z = chebfun(’0’ ,[0 1]);
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38 for i = 1:N

39 z = z + c(i)*V{i};

40 end

41

42 %% Make 2D plot

43 % This plots the surface shape as well as a visual of the cylinder

44 % containing the fluid.

45

46 % Calculate surface values

47 e = 0.1;

48 grid = 100;

49 r1 = linspace (0,1,grid);

50 r2 = linspace(0,-1,grid);

51 zval = e*z(r1) + 0.6286;

52

53 % Plot surface

54 figure

55 plot(r1 ,zval ,’:k’,’LineWidth ’ ,1.5)

56 hold on

57 plot(r2 ,zval ,’:k’,’LineWidth ’ ,1.5)

58

59 % Plot cylinder

60 hold on

61 rectangle(’Position ’,[-1 0 2 0.6286] ,’LineWidth ’ ,1.5)

62

63 % Set axis properties

64 axis([-1 1 0 0.8])

65 set(gca ,’YTick’,[],’XTick ’,[],’Units’,’normalized ’,’Position ’ ,[0.2 0.1 0.6 0.8],’

FontSize ’,9,’FontName ’,’Times ’)

66

67 %% Print

68 print(’shapem0n1 ’,’-depsc ’) % Print as an eps file

69

70 % End timer

71 toc

72

73 % End code
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D.3 Pressure Visualization

1 %% Pressure Visualization of Cylindrical Modes

2 % Phillip Wilson

3

4 % Start timer

5 tic

6

7 % Opening commands

8 clear

9 clc

10 close all

11

12 % Input variables

13 n = 1; % Radial wavenumber

14 m = 0; % Azimuthal wavenumber (order)

15 N = 30; % Number of basis functions

16

17 %% Load basis functions and coefficients

18 % This loads both the modified (pinned) basis functions and the coefficient

19 % vector for the specified mode.

20

21 % Load basis functions V{i}

22 file = ’W_Basis_Functions_m_N30.mat’;

23 filename = insertAfter(file ,19, num2str(m));

24 load(filename ,’V’,’k’,’x’)

25

26 % Load coefficients c

27 file = ’W_Natural_m_V1 .01 _N30_hinf.mat’;

28 filename = insertAfter(file ,11, num2str(m));

29 load(filename ,’c’,’h’)

30 c = c(:,n);

31

32 %% Define surface

33 % This uses the coefficient vector c and the basis functions V to compute

34 % a function z defining the perturbed free surface.

35

36 % Define shape function

37 z = chebfun(’0’ ,[0 1]);
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38 for i = 1:N

39 z = z + c(i)*V{i};

40 end

41 Eta = z;

42

43 %% Calculate pressure

44 % This creates a meshgrid of a 2D cross section of the cylinder and then

45 % evaluates the pressure at each point.

46

47 % Create meshgrid

48 grid = 10;

49 r = linspace (0,1,grid);

50 z = linspace (0 ,0.6286 , grid);

51 [R,Z] = meshgrid(r,z);

52 ETA = Eta(R);

53

54 % Evaluate pressure at each point

55 p = zeros(grid ,grid);

56 for i = 1:grid

57 for j = 1:grid

58 for l = 1:N

59 Jm = V{l};

60 p(i,j) = p(i,j) + (1/k(l))*(cosh(k(l)*Z(i,j))/sinh(k(l)*h))*(sum(x*ETA(i,

j)*V{l})/sum(x*V{l}*V{l}))*Jm(R(i,j));

61 end

62 end

63 end

64

65 %% Make plot

66 % This plots the pressure distribution as well as a visual of the cylinder

67 % containing the fluid.

68

69 % Plot pressure

70 figure

71 contourf(R,Z,p)

72 hold on

73 contourf(-R,Z,p)

74

75 % Plot cylinder
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76 hold on

77 rectangle(’Position ’,[-1 0 2 0.6286] ,’LineWidth ’ ,1.5)

78

79 % Set axis properties

80 axis([-1 1 0 0.8])

81 set(gca ,’YTick’,[],’XTick ’,[],’Units’,’normalized ’,’Position ’ ,[0.2 0.1 0.6 0.8],’

FontSize ’,9,’FontName ’,’Times ’)

82

83 %% Print

84 print(’pressurem0n1 ’,’-depsc’) % Print as an eps file

85

86 % End timer

87 toc

88

89 % End code
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D.4 Velocity Visualization

1 %% Velocity Visualization of Cylindrical Modes

2 % Phillip Wilson

3

4 % Start timer

5 tic

6

7 % Opening commands

8 clear

9 clc

10 close all

11

12 % Input variables

13 n = 1; % Radial wavenumber

14 m = 0; % Azimuthal wavenumber (order)

15 N = 30; % Number of basis functions

16

17 %% Load basis functions and coefficients

18 % This loads both the modified (pinned) basis functions and the coefficient

19 % vector for the specified mode.

20

21 % Load basis functions V{i}

22 file = ’W_Basis_Functions_m_N30.mat’;

23 filename = insertAfter(file ,19, num2str(m));

24 load(filename ,’V’,’k’,’x’)

25

26 % Load coefficients c

27 file = ’W_Natural_m_V1 .01 _N30_hinf.mat’;

28 filename = insertAfter(file ,11, num2str(m));

29 load(filename ,’c’,’h’)

30 c = c(:,n);

31

32 %% Define surface

33 % This uses the coefficient vector c and the basis functions V to compute

34 % a function z defining the perturbed free surface.

35

36 % Define shape function

37 z = chebfun(’0’ ,[0 1]);
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38 for i = 1:N

39 z = z + c(i)*V{i};

40 end

41 Eta = z;

42

43 %% Calculate velocity

44 % This creates a meshgrid of a 2D cross section of the cylinder and then

45 % evaluates the velocity vector at each point.

46

47 % Create meshgrid

48 grid = 10;

49 r = linspace (0.1,1, grid);

50 z = linspace (0 ,0.6286 , grid);

51 [R,Z] = meshgrid(r,z);

52 ETA = Eta(R);

53

54 % Evaluate velocity potential at each point

55 ph = zeros(grid ,grid);

56 for i = 1:grid

57 for j = 1:grid

58 for l = 1:N

59 Jm = V{l};

60 ph(i,j) = ph(i,j) + (1/k(l))*(cosh(k(l)*Z(i,j))/sinh(k(l)*h))*(sum(x*ETA(

i,j)*V{l})/sum(x*V{l}*V{l}))*Jm(R(i,j));

61 end

62 end

63 end

64

65 % Calculate velocity vector components at each point

66 [U,V] = gradient(ph);

67 UN = U./sqrt(U.^2+V.^2);

68 VN = V./sqrt(U.^2+V.^2);

69

70 %% Make plot

71 % This plots the velocity field as well as a visual of the cylinder

72 % containing the fluid.

73

74 % Plot velocity

75 figure
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76 quiver(R,Z,UN ,VN,’AutoScale ’,’on’,’AutoScaleFactor ’ ,0.3,’Color’,’k’)

77 hold on

78 quiver(-R,Z,-UN,VN,’AutoScale ’,’on’,’AutoScaleFactor ’ ,0.3,’Color’,’k’)

79

80 % Plot cylinder

81 hold on

82 rectangle(’Position ’,[-1 0 2 0.6286] ,’LineWidth ’ ,1.5)

83

84 % Set axis properties

85 axis([-1 1 0 0.8])

86 set(gca ,’YTick’,[],’XTick ’,[],’Units’,’normalized ’,’Position ’ ,[0.2 0.1 0.6 0.8],’

FontSize ’,9,’FontName ’,’Times ’)

87

88 %% Print

89 print(’velocitym0n1 ’,’-depsc’) % Print as an eps file

90

91 % End timer

92 toc

93

94 % End code
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D.5 Slope Magnitude Visualization

1 %% Slope Magnitude Visualization of Cylindrical Modes

2 % Phillip Wilson

3

4 % Start timer

5 tic

6

7 % Opening commands

8 clear

9 clc

10 close all

11

12 % Input variables

13 n = 1; % Radial wavenumber

14 m = 0; % Azimuthal wavenumber (order)

15 N = 30; % Number of basis functions

16

17 %% Load basis functions and coefficients

18 % This loads both the modified (pinned) basis functions and the coefficient

19 % vector for the specified mode.

20

21 % Load basis functions V{i}

22 file = ’W_Basis_Functions_m_N30.mat’;

23 filename = insertAfter(file ,19, num2str(m));

24 load(filename ,’V’)

25

26 % Load coefficients c

27 file = ’W_Natural_m_V1 .01 _N30_hexp.mat’;

28 filename = insertAfter(file ,11, num2str(m));

29 load(filename ,’c’)

30 c = c(:,n);

31

32 %% Define surface

33 % This uses the coefficient vector c and the basis functions V to compute

34 % a function z defining the perturbed free surface.

35

36 % Define shape function

37 z = chebfun(’0’ ,[0 1]);
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38 for i = 1:N

39 z = z + c(i)*V{i};

40 end

41

42 %% Calculate slope magnitude

43 % This creates a meshgrid of the cylinder surface and then calculates the

44 % wave slope magnitude at each point.

45

46 % Create meshgrid

47 Grid = 100;

48 r = linspace (0,1,Grid);

49 th = linspace (0,2*pi,Grid);

50 [R,TH] = meshgrid(r,th);

51 Z = 0.1*z(R).*cos(m.*TH);

52

53 % Calculate slope (Ggradient components)

54 [dZr ,dZt] = gradient(Z,r,th);

55 dZt = dZt ./( repmat(r(:) ’,length(th) ,1));

56

57 %% Make plot

58 % This plots the magnitude of the wave slope , with higher magnitude areas

59 % appearing darker , and lower magnitude areas appearing lighter. This

60 % corresponds to experimental images.

61

62 % Plot slope magnitude

63 figure

64 h1 = surf(R.*cos(TH),R.*sin(TH),Z,abs(sqrt(dZr.^2 + dZt .^2)));

65 colormap(flipud(gray))

66 set(h1 , ’EdgeColor ’, ’interp ’, ’FaceColor ’, ’interp ’);

67 view (2)

68

69 % Set axis properties

70 grid off

71 set(gca ,’visible ’,’off’,’xtick ’ ,[])

72 set(gca ,’YTick’,[],’XTick ’ ,-1:1:1,’Units ’,’normalized ’,’Position ’ ,[0.2 0.1 0.6 0.8],’

FontSize ’,9,’FontName ’,’Times ’)

73

74 %% Print

75 print(’waveslopem0n1 ’,’-depsc’) % Print as an eps file
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76

77 % End timer

78 toc

79

80 % End code
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