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Abstract

A pathway to prevalence for autonomous electrified transportation is reliant upon accurate

and reliable information in the vehicle’s sensor data. This thesis provides insight as to the effective

cyber-attack placements on an autonomous electric vehicle’s lateral stability control system (LSCS).

Here, Data Integrity Attacks, Replay Attacks, and Denial-of-Service attacks are placed on the sensor

data describing the vehicle’s actual yaw-rate and sideslip angle. In this study, there are three different

forms of detection methods. These detection methods utilize a residual metric that incorporate

sensor data, a state-space observer, and a Neural-Network. The vehicle at hand is a four-motor

drive autonomous electric vehicle that is propelled using 4-pole, 3-phase Brushless DC motors. Each

motor is controlled using the Direct-Torque control motor control scheme that provides fast output

torque response time. This vehicle is controlled via multiple layers of control. A Model Predictive

Control Layer is used to discern what lateral trajectory commands minimize the difference between

the requested and actual lateral position of the vehicle. These lateral motions are discovered through

a Linear-Quadratic Regulator. This study was develop using the MATLAB Simulink environment.
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Chapter 1

Introduction

1.1 Cyber-Security in Electric Vehicles

An increase in intelligence seen by our population’s modes of transportation is paralleled

by an increase in the potential avenues for cyber-attacks. As stated in [1], there are expected to be

as many as 125 million electric vehicles on the streets by 2030. The prevalence of electric vehicles

brings reasonable concern to both the cyber physical security of a vehicle on the road, as well as for

the vehicle’s ability to make a secure charge. Cyber-Security challenges regarding electric vehicle

infrastructure are discussed in [2]. In [2], it is discussed that insecure charging stations do not only

provide an opportunity to cause harm for the direct user, but insecure charging points can also induce

problems on the stability of the whole power grid due to the interconnections of the entire system.

The authors of [3] explore the vulnerabilities in charging infrastructure. A major concern for an

end user in this study involves the payment process for charging one’s electric vehicle with a public

charger. The cyber-physical security of electric vehicle charging stations is presented in [4]. Cyber-

Attacks of concern include Man-in the-Middle Attacks, Denial-of-Service Attacks, SQL Injection

Attacks, and Malware Attacks. This list is expanded on in [5], were additional vulnerabilities include,

Server-side request forgery, Cross-site scripting, Comma-Separated value injection, Cross-site request

forgery, and External Media injection. An example method for increasing the cyber-security in

charging stations is given in [6]. The authors promote a human-less multi-factor authentication

protocol to charge their vehicles, to prevent hackers from ceasing confidential information on their

charging cards. A strategy to hamper Message Tampering Attacks on charging stations is given
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in [7]. This method explores a cohesive protocol between user authentication and a central server.

Susceptible points of cyber-attack interfaces are described in [8] and include charging ports, power

electronics, controllers, and local generation.

As expected, cyber-attacks on vehicle control units have increased with the intelligence of

vehicle infrastructure. Cyber-Physical attacks on an electric vehicle have the potential to inflict

physical consequences on the vehicle itself. Recently, a Tesla Model X was hacked as seen in [9]. In

this instance, firmware was rewritten over the Bluetooth key fob. Another cyber breach is seen in [10],

where a Jeep Grand Cherokee was remotely hijacked while moving. This does not only present lethal

danger for the driver, but also those sharing the rode with the driver. Tesla takes precautionary

measures against cyber-threats by pushing out updates once a threat has been identified as seen

in [11]. Research interest as to to Cyber-Physical security have seen in an increase in research

recently. In [12], the authors investigate the Cyber-Physical security in a vehicle’s power train. The

author’s of this paper convey that hackers can leverage the same attack strategies used on electric

vehicle chargers to attack a vehicle, given the hackers have prior knowledge of the system. In [13],

sophisticated cyber-attacks are placed on a hybrid electric vehicle. To detect the presence of an

attack, a probability metric is created that alludes to the probability of there being an attack. The

authors of [14] conduct a study where the effects of a cyber-attack placed on a vehicle’s electrical

control unit are analyzed. In addition to electric vehicles, the cyber-security of autonomous vehicles

is evaluated in [15]. To build upon previously described methods, artificial intelligence for the

sake of physical cyber-security is studied in [16]. Here, an LSTM architecture is utilized to detect

cyber-threats. Inputs to the network include yaw-rate and sideslip angle from previous time-steps.

1.2 Lateral Stability Control

In the field of automotive and controls, there a multitude of methods for controlling the

lateral stability of a vehicle. The vehicle’s lateral stability is commonly controlled through the

vehicle’s yaw-rate and sideslip angle. A vehicle’s yaw-rate can be defined as the speed at which the

vehicle rotates around its vertical axis. A vehicle’s yaw-rate is often measured by the means of a

yaw-rate sensor, that records the yaw-rate in radians per second. As discussed in [17], a common

application of yaw-rate sensors in commercial vehicles, is to compare the vehicle’s actual yaw-rate

to a reference value, and then apply necessary steering actions or braking forces for the vehicle
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to meet its reference. Sideslip anlge, or slip angle, is another lateral metric of a moving vehicle

that is described as the angle between the vehicle’s orientation and the direction of the vehicle’s

movement. In [18], the sideslip angle is visually described as the angle between the vehicle’s forward

longitudinal direction and the vehicle’s velocity vector. In practice, sideslip angle is commonly

estimated via an observer or gleaned from measurements made by other vehicular sensors. In [19], it

is discussed that sideslip angle sensors are not practical in application due to their expense. Instead,

the authors propose an observer based strategy utilizing a Kalman Filter to make an estimate as

to the sideslip angle. A comprehensive study of the methods to make a sideslip angle estimation

have been provided in [20]. One of the discussed methods includes a machine learning approach

utilizing a Neural-Network. Here, sensor values from previous time-steps describing wheel speed,

longitudinal and lateral acceleration, yaw-rate, roll-rate, and steering wheel angle are used as inputs

to the Neural-Network. This information provided the model sufficient information to make a sideslip

angle prediction at the current time-step.

A vehicle’s Lateral Stability Control System, LSCS, is responsible for maintaining a vehicle’s

lateral stability by preventing the vehicle from entering states where the driver of the vehicle loses

control. A common tool for controlling a vehicle’s LSCS is Model Predictive Control. In [21], a

MPC objective function is developed that brings the vehicle’s sideslip angle to a stable region if the

vehicle’s sideslip angle causes instability. Here, the MPC discovers what lateral maneuvers would

optimize their objective function. The authors of [22] also utilize MPC to obtain lateral stability.

The goal of this MPC strategy is to bring the vehicle to the target yaw-rate, lateral speed, and wheel

slip ratio. The control inputs used in this study to minimize their objective function are additional

torque moments. A Non-Linear Model Predictive Control, NMPC, is adopted in [23] to adopt lateral

stability. For this controller design, the yaw-rate and sideslip angle are brought to reference values

by the NMPC. The NMPC control inputs are the angle of the front wheels as well as the braking

force of the tires. In [24], the authors develop three distinct regions in a 2D plane which describe

the vehicle’s current yaw-rate and sideslip angle. These three regions describe whether the vehicle

is stable, critically stable, or unstable. The author’s MPC strategy aims to either move the vehicle

towards or keep the vehicle in its stable region.

In addition to MPC, machine learning techniques have also been utilized to maintain lateral

stability. Unlike physics based approaches like MPC, machine learning techniques utilize an abun-

dance of data. Data describing the system the machine learning model will be placed in is used to
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train models like a Neural-Network to predict outputs of a given system. A common problem with

this approach involves the absence of a robust data set describing the system. A common approach

to solve this problem is to create the data set by means of simulation. In [25], the authors propose

a single neuron Neural-Network to track a reference yaw-rate and sideslip angle. For this model,

the difference between target yaw-rate and and actual yaw-rate, as well as the difference between

target sideslip angle and actual sideslip angle are used as inputs. The output of the network is an

additional yaw-moment for the vehicle to track target values. Another instance of lateral stability

controlled through machine learning is seen in [26]. In [26], the authors study a vehicle with fourteen

degrees of freedom. For this network, the vehicle’s target yaw-rate and actual yaw-rate are used as

inputs. The output of the network is the additional yaw-moment necessary to track the reference

yaw-rate.

1.3 Motoring Schemes in Electric Vehicles

Propulsion power in an electric vehicle is created by the output of its electric motoring

system. Common types of electric motors used in EVs include Brushed DC motors, Brushless

DC motors, Induction machines, Permanent Magnet Synchronous machines, and Switch Reluctance

machines. Different types of motors offer different types of benefits and drawbacks. The authors

of [27] provide a survey on the strengths and weaknesses of different types of electric motors for

vehicular applications. In this study, it is shown that Brushless DC Machines are very efficient.

This is due to the fact that they do not have coils on their rotor, and therefore do not sustain

the same losses as machines with coils on their rotor. This survey study concludes by saying the

prevalence of Induction machines and Brushless DC machines in electric vehicles is a consequence

of their efficiency, high power density, and their cost. The study conducted in [28] also makes

comparisons between different types of machines in electric vehicles. While Induction machines have

seen a surge in popularity in electric vehicles, their study notes that Induction machines have a small

power factor as well as larger losses at high speeds. The study also states that car manufactures

such as Honda, Toyota, and Nissan utilize Permanent Magnet Synchronous machines. While these

machines have the same efficiency benefits as machines without coils on the rotor, they do suffer

from a a smaller range of speeds that deliver constant power.

Arguments for Brushless DC motors in electric vehicles are made in [29] when placed in
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electric vehicles. Reasonable support for the motor is gained through its lack of maintenance, the

motor’s volume, and again, its efficiency. These points are reemphasized in [30]. The authors

of [30] mention that one of the bigger flaws associated with Brushless DC motors is torque ripple.

They suggest that a stronger rotor core can reduce this effect. A comprehensive study is conducted

in [31] for Brushless DC machines in electric vehicles. The paper provides an outline for sizing these

machines for a vehicle and also provides data describing the machine’s prowess.

When designing an electric vehicle, not only is the type of motor one of the design consider-

ations, but also the method used to control the motor. Principle operation of the motoring portion

of an electric vehicle is reliant upon both a DC Link Voltage and a converter. DC Link Voltage

acts as a power supply for the converter. The converter is the power source for the motor and can

be seen as either a voltage source or current source to the motor. The type of source the motor

sees the converter as, is dependent upon the type of control scheme that is used. All motor control

schemes control the motor by determining when to close or open the switches in the converter. A

survey on motor control strategies in electric vehicles is seen in [32]. The purpose of this study is

to draw comparisons between Direct Torque Control and Field Oriented Control for electric vehicle

applications. The popularity of Direct Torque Control is noted in [33], [34], and [35]. Popularity

stems from the simplicity of the control algorithm as well as the precise torque response.
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Chapter 2

Vehicle Model Designing

The objective of this study’s vehicle model is for the vehicle to complete a double lane

change maneuver. This is accomplished through three layers of control. These layers include an

outer loop for path tracking, an inner loop for reference trajectory command tracking, and an inner

loop for motor control. This procedure is very similar to that which is seen in [36].

Fig. 2.1 depicts the system’s structure as well as the interactions between the control layers.

The devil in Fig. 2.1 depicts the cyber-attack targets.

Figure 2.1: Vehicle Control System Diagram
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2.1 Lateral Movement Discovered through MPC

If an EV’s LSCS is placed under a cyber-attack, its lateral path tracking capability becomes

compromised. This means that the ordinary driving maneuvers a car driver uses would no longer

provide a normal lateral response. However, the driver will notice trends in the vehicle’s behavior

and can adapt to the vehicle’s new behavior. Model Predictive Control, (MPC), is a well suited

control method for mimicking a human driver’s intelligence.

The purpose of the MPC loop is to move the vehicle to a desired lateral location. It does

this by assigning the optimal lateral movement commands to the system’s LSCS. These commands

include a reference yaw rate denoted as γref and a reference sideslip angle denoted as βref . The

MPC problem determines what values for yaw rate and sideslip angle would minimize the difference

between the vehicle’s current lateral position denoted as sy and its target lateral position denoted

as sy,ref for future time-steps. Predicted lateral positions are found using Eq. 2.1 where Vx is

longitudinal velocity, tp is the time of the future horizon, and φ is heading angle.

sy(t+ tp) = (tp − t) ∗ (Vx ∗ sin(γ(tp) ∗ (tp − t) + φ(t))+

Vx ∗ tan(β(tp)) ∗ cos(γ(tp) ∗ (tp − t) + φ(t))) + sy(t) (2.1)

Once the predicted lateral position has been found, Eq. 2.2 is used to determine what values

of β and γ bring the vehicle closest to the target location.

min

∫ tp

t

(sy(tp)− sy,ref (t))
2 dt (2.2)

The optimal trajectory commands are then used as reference values for the LSCS.

2.2 Vehicular State-Space System

The purpose of the LSCS is to bring the vehicles yaw rate and sideslip angle to their target

values determined by the MPC. By developing state space equations where yaw rate and sideslip

are the system’s states, and steering wheel angle denoted as δ, and additional yaw moment denoted

as Mz as control inputs, a linear quadratic regulator, (LQR), can be used to bring the states to the

7



desired values.

Using the differential equations describing β and γ, the state matrix and input matrix for

this system are created. In order to create the state-space system, differential equations describing

the time derivatives of the systems must be created.

d

dt
γ(t) =

LfFyf (t)− LrFyr(t) +Mz(t)

Ix
(2.3)

d

dt
β(t) =

Fyf (t) + Fyr(t)

vxM
− γ(t) (2.4)

In Eq. 2.3 and Eq. 2.4, Lf is the distance from the front axle to the vehicle’s center of mass,

Lr is the distance from the rear axle to the vehicle’s center of mass, Ix is the vehicle’s moment of

inertia, and m is the vehicle’s mass. Fyf and Fyr denote the lateral force at the vehicle’s front and

rear tires.

Lateral force is a function of the sideslip angle of the wheels, α. α can be approximated by

utilizing Eq. 2.5 and Eq. 2.6.

αf (t) = β(t) +
Lf

vx
γ(t)− δ(t) (2.5)

αr(t) = β(t) +
Lr

vx
γ(t) (2.6)

Since the lateral force is a function of α, a force calculation can be made for the respective

position of the wheels given Eq. 2.7.

Fy(t) = −2Cyα(t) (2.7)

By utilizing the equations describing the time derivative of the states, and the lateral force

equations, the control matrix and input matrix can be created. They are seen in Eq. 2.8 and Eq.

2.9 respectively.

A =

 −2∗(Cyf+Cyr)
Vx∗m −1− 2∗(Lf∗Cyf−Lr∗Cyr)

V 2
x ∗m

−2∗(Lf∗Cyf−Lr∗Cyr)
Ix

−2∗(Lf∗2Cyf−L2
r∗Cyr)

Ix∗Vx

 (2.8)
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B =

 2∗Cyf

Vx∗m 0

2∗Cyf∗Lf

Ix
1
Ix

 (2.9)

In Eq. 2.8 and Eq. 2.9, Cy represents cornering stiffness which is different for the front and

rear axles.

β′

γ
′

 = A

β
γ

+B

 δ

Mz

 (2.10)

Eq. 3.12 depicts the entire state space equation for the LSCS.

As stated previously, a LQR is used to bring the vehicles yaw rate and sideslip angle to

the target values provided by the MPC. The LQR solves for the optimal gain matrix, K, that can

be used to bring the LSCS’s states to their desired values. The gain matrix is found using Eq.

2.11, where the gain matrix minimizes cost. Gain matrix K is found offline and is applied during

simulation.

J =

∫ ∞

0

(xTQx+ uTRu+ 2xTNu) dt (2.11)

The inputs sent to the LSCS are then calculated using Eq. 2.12.

 δ

Mz

 = −K

β − βref

γ − γref

 (2.12)

2.3 Longitudinal Control and Torque Split

Two metrics are necessary to calculate the necessary output torque of each motor to fulfill

a desired lateral movement. These metrics are the additional yaw moment found using the LQR

and the total torque demand, Tdem, found using longitudinal control. Tdem is found using Eq. 2.13,

where rw is wheel radius, M is the mass of the vehicle, ρa is air density, Af is the area of the vehicle’s

face, Cd is the coefficient of air resistance, θ is the slope of the road, and f is the coefficient of rolling

resistance.

Tdem = rw(Mar +
1

2
ρaAfCdv

2
x +Mg[sin(θ) + fcos(θ)]) (2.13)
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PID control is used to bring the vehicle to its desired longitudinal speed. The PID’s error

signal is the difference between actual speed and target speed, and uses this signal as an acceleration

command in Eq. 2.13.

Consider the motor associated with the front left wheel to be motor 1, front right wheel

motor 2, back left wheel motor 3, and back right wheel motor 4. The target torque demanded for

motor 1 and motor 3 are given by Eq. 2.14 and Eq. 2.15 respectively.

Tref,1 =
1

4
Tdem −∆Tref,1 (2.14)

Tref,3 =
1

4
Tdem −∆Tref,3 (2.15)

The delta component of these equations are given by Eq. 2.16 and Eq. 2.17

∆Tref,1 =
Lfrw

(Lf + Lr)Ld
Mz (2.16)

∆Tref,3 =
Lrrw

(Lf + Lr)Ld
Mz (2.17)

The output torque of motor 2 and motor 4 are given by 2.18 and 2.19.

Tref,2 =
1

4
Tdem − 2∆Tref,1 (2.18)

Tref,4 =
1

4
Tdem − 2∆Tref,3 (2.19)

Vehicle specifications for this study are given in Table 2.1

2.4 Lateral Tracking Performance

The objective of this chapter’s section is to illustrate the ability of this vehicular system

model to execute a double-lane change maneuver. The standard procedure for this study involves
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Table 2.1: Vehicle Parameters
Parameter Value

rw 0.3m
M 1575kg
ρa 1.225kg
Iz 4000kg ∗m2

Lr 1.6m
Lf 1.2m

Figure 2.2: Lateral Position Tracking During Double-Lane Change Maneuver

the vehicle’s lateral position to begin at 0m at simulation start up and remain in that position from

t = 0s to t = 1s. From t = 1s to t = 6s, the vehicle moves to a lateral position of 3m. The vehicle

maintains this position from t = 6s to t = 14s. After completing this sequence, the vehicle returns

to its original lane by t = 18s and remains there for the rest of the simulation. As seen in Fig. 2.2,

the vehicle obeys the control law and successfully completes the maneuver.

Fig. 2.3 and Fig. 2.4 depict the yaw-rate tracking and sideslip angle tracking respectively.

From these figures, it is apparent that the LQR is bringing these states to their desired values which

were created by the human driver MPC.
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Figure 2.3: Yaw-Rate Tracking During Double-Lane Change Maneuver

Figure 2.4: Sideslip Angle Tracking During Double-Lane Change Maneuver

12



Chapter 3

Brushless DC Motor Modeling and

Control Scheme

This chapter is devoted to describing the motor-drive system used for this electric vehicle.

As mentioned previously, the vehicle at hand uses an independent Brushless DC motor at each wheel,

and the motors are controlled by means of Direct Torque Control. The motors used possess a large

enough rotational inertia to provide a large enough summed output torque to move the vehicle’s

mass. Modeling for the Brushless DC machine was completed similarly to what is seen in [37].

3.1 Mechanical Modeling

The mechanics of the machines concern the rotational moment of inertia J , the load torque

TL, the damping force coefficient B, electromagnetic torque Te, shaft speed ωr, and shaft angle θr.

Eq. 3.1 is utilized to solve for the position of the shaft as well as its speed.

Te = J
dωr

dt
+Bωr + TL (3.1)

Eq. 3.1 can be rearranged to solve for the time derivative of shaft speed, and then be

integrated once to solve for the shaft speed, and then integrated again to solve for the position of

the shaft.
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Table 3.1: Converter Voltages and Currents
Switch On Current Polarity vxg ixdc

Upper + vdc ixs
- vdc + vd ixs
0 vdc ixs

Lower + −vd 0
- vsw 0
0 0 0

Neither + −vd 0
- vdc + vd ixs
0 vdc/2 0

3.2 Electrical Modeling

For this motor-drive system, a 6-switch, 2-level converter is used. The voltage between

an output leg of the converter and the 0 VDC point is dependent upon the switch position of the

converter and the current polarity of the respective phase. Voltage values given these conditions are

seen in Table 3.1. Each leg in the converter has three possible switch positions. These include the

upper switch being closed while the lower switch remains open, the lower switch being closed and

the upper switch is open, or each switch being open. Under no circumstances are both switches in

the same leg left open.

In Table 3.1, vxg is the voltage between the respective converter leg and 0 VDC. vdc is the

DC link voltage, and vd is the voltage drop across the switch.

After finding the phase to ground voltage of each phase leg, the phase to neutral voltage

for each phase must be found. This is accomplished by first finding the neutral to ground voltage.

This is given by Eq. 3.2.

vng =
1

3
(vag + vbg + vcg) (3.2)

The stator voltages are then found using Eq. 3.3.

vxs = vxg − vng (3.3)

After finding stator voltages, stator currents can then be solved for. Eq. 3.4 depicts the

voltage equations for the stator windings of the machine. Here, rs is the winding resistance, Ls is

the winding inductance, and is is the winding current.
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vxs = rs ∗ ix + Ls
dix
dt

(3.4)

By rearranging Eq. 3.4 into the form of Eq. 3.5, this KVL equation can be used as a solution

for current in simulation.

ix =

∫
vxs − rs ∗ ix

Ls
dt (3.5)

In this model, an accurate estimate of electromagnetic torque must be made. The first step

for making this estimate involves modeling the back EMF voltages for each of the phases. Here,

back-EMF takes on a trapezoidal waveform, and is a function of rotor speed and the trapezoidal

function for each phase.

Ex = Ke ∗ ωr ∗ Fx (3.6)

Eq. 3.6 provides the back EMF for each phase, where Ex is the back EMF for an arbitrary

phase, Ke is the back EMF constant, and Fx is the trapezoidal function for an arbitrary phase. The

torque constant has units Volts per speed and provides the relationship between voltage and shaft

speed.

For the trapezoidal back EMF function, each phase is separated by 120 degrees. Fig. 3.4

depicts the nature of each of these functions during a period of constant torque. Eq. 3.7 - Eq. 3.9

depict the piece-wise functions describing each trapezoidal function. Here, it is apparent that back

EMF is not only dependent upon shaft speed, but also the position of the shaft.

Fa(θr) = θr
6

π
, 0 ≤ θr <

π

6

1,
π

6
≤ θr <

5π

6

(π − θr)
6

π
,
5π

6
≤ θr <

7π

6

−1,
7π

6
≤ θr <

11π

6

(θr − 2π)
6

π
,
11π

6
≤ θr < 2π

(3.7)
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Figure 3.1: Trapezoidal Back EMF Functions

Fb(θr) = −1, 0 ≤ θr <
π

2

(−2π

3
+ θr)

6

π
,
π

2
≤ θr <

5π

6

1,
5π

6
≤ θr

3π

2

(−5π

3
+ θr)

6

π
,
3π

2
≤ θr <

11π

6

−1,
11π

6
≤ θr < 2π

(3.8)

Fc(θr) = 1, 0 ≤ θr <
π

6

(
π

3
− θr)

π

6
,
π

6
≤ θr <

π

2

−1,
π

2
≤ θr <

7π

2

(−4π

3
+ θr)

6

π
,
7π

2
≤ θr <

3π

2

1,
3π

2
≤ θr < 2π

(3.9)

The next step for making an accurate electromagnetic torque estimation entails solving

for the back EMFs in the stationary reference frame as well as the stator winding currents. This

is realized utilizing Eq. 3.10 and Eq. 3.11. For balanced systems, such as this, the zero axis
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components may be neglected since they equal zero.


esq

esd

esz

 =
2

3


1 − 1

2 − 1
2

0 −
√
3
2

√
3
2

1
2

1
2

1
2



ea

eb

ec

 (3.10)


isq

isd

isz

 =
2

3


1 − 1

2 − 1
2

0 −
√
3
2

√
3
2

1
2

1
2

1
2



ia

ib

ic

 (3.11)

An estimate for electromagnetic torque can then be made using Eq. 3.12. Note that rotor

speed is in the denominator of the equation and that rotor speed is zero at simulation initialization.

Therefore, a prime mover is required at the first time step of the simulation.

Te =
Es

q

ωr
∗ Isq +

Es
d

ωr
∗ Isd (3.12)

3.3 Direct-Torque Control

Unlike many motor control schemes, Direct-Torque Control, DTC aims to directly control

the motor’s output torque opposed to its shaft speed. For the vehicular system used in this study,

each motor receives a torque command from the torque split. These are the target torque outputs.

DTC was modeled according to the procedure set in [38].

Significant components for this method include a flux and torque estimator, multiple com-

parators, a table look up, and sample and hold blocks. Sample and hold blocks are necessary for

preventing the switches of the converter from changing too quickly. Therefore, the sample and hold

blocks prevent the switches from changing faster than the simulation’s time-step. The comparators

are utilized to make numerical comparisons between the estimated torque and flux to the desired

torque and flux. Two metrics are created for the torque estimation. These include the angle α

between the q axis and d axis flux linkage and the vector magnitude of the q axis and d axis flux

linkage. The angle α is found by taking the arc tangent between the q axis and d axis flux linkage.

The angle α is then utilized to determine which of the 6 sections the flux vector lies in, which is seen

in Fig. 3.4. Note that each of these section has a bandwidth of 60 degrees.
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Table 3.2: Voltage Vectors and Switching States
Voltage Vector T1/T4 T2/T5 T3/T6

V0 0 0 0
V1 1 0 0
V2 1 1 0
V3 0 1 0
V4 0 1 1
V5 0 0 1
V6 1 0 1
V7 1 1 1

The first part of the process for DTC involves the comparison between desired and requested

values for torque and flux. As seen in Fig. 3.2, a boolean decision is made after the comparator’s

output. The output is reflected in Table 3.3. For ∆Te, if the difference between requested torque is

positive, the variable is set to one, if the difference is negative, the variable is set to negative one,

and if the difference is zero (or close to zero), the variable is set to zero. The comparator for flux

takes the difference between the requested flux magnitude vector and the estimated flux magnitude

vector. Unlike the boolean torque variable, |λs| can only take on values zero or one. If the difference

is large enough, the variable is set to one, and is otherwise set to zero. The possible voltage vectors

are seen in Fig. 3.3.

Figure 3.2: DTC Control Diagram

After making a boolean decision for each of the comparator’s outputs, a voltage vector must
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Figure 3.3: Voltage Vector and Switching States

Table 3.3: Switching Table for Direct-Torque Control
∆Te ∆|λs| I II III IV V VI
1 1 V2 V3 V4 V5 V6 V1

0 1 V7 V0 V7 V0 V7 V0

-1 1 V6 V1 V2 V3 V4 V5

1 0 V3 V4 V5 V6 V1 V2

0 0 V0 V7 V0 V7 V0 V7

-1 0 V5 V6 V1 V2 V3 V4

be applied from the converter to bring both of the boolean variables to zero. In table 3.3, it is seen

that there are six possible voltage vectors to execute for each of six possible states of the variables.

Which voltage vector is applied is dependent upon the location of angle α as seen in Fig. 3.4. After

determining what voltage vector should be applied to machine’s stator windings, Table 3.2 is utilized

to determine the correct converter switching sequence.

The prowess of DTC for Brushless DC machines is seen in Fig. 3.5. Here, the output torque

of the machine accurately tracks the reference step command from 1 Nm of torque to 4 Nm. As

seen from the graph, desired torque maintains values centered around the reference.
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Figure 3.4: Stator Flux Position Graph

Figure 3.5: DTC Step Response Performance
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Chapter 4

Cyber-Attack Modeling and

Detection Schemes

In this study, three different forms of cyber-attacks are placed on the vehicle’s LSCS. These

include Data Integrity Attacks, Replay Attacks, and Denial of Service Attacks. The purpose of the

attacks is to distort the sensor value seen in the LSCS and the human driver MPC. This will in turn

alter the necessary control action of the LSCS to reach the desired lateral trajectory commands sent

from the MPC and will also distort the necessary lateral trajectory commands to accomplish the

double-lane change maneuver. Yaw-rate and sideslip angle are the most dynamic signals used by

the LSCS, and are therefore the signals placed under cyber-threat.

It should be noted that this study is mainly concerned with detecting cyber-attacks that

still provide the driver with enough control to reasonably complete the maneuver. Therefore, attacks

leading to complete instability will not be considered since the vehicle is obviously under a cyber-

attack in this scenario.

4.1 Data Integrity Attack

Data Integrity Attacks aim to skew the real value of the signal by either scaling the signal by

a value other than one, summing the signal with a value other than zero, or using the combination
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of both methods. Eq. 4.1 and Eq. 4.2 express the nature of this attack in equation form.

γatck = vγ + ϵ (4.1)

βatck = vβ + ϵ (4.2)

As seen from Eq. 4.1 and Eq. 4.2, Data Integrity Attacks linearly corrupt the signal.

Epsilon inflicts the same effect on the signal of the attack for the duration of the simulation, and v

linearly effects the attack for the duration of the simulation. In this study, the Data Integrity attack

lasts from t = 3s to t = 4s. The attack is placed during this time frame since the vehicle is making

a lateral movement from the starting lane to the next lane.

4.2 Replay Attack

Replay Attacks are another common form of cyber-attacks which effect the true value of a

signal. In the event of a Replay Attack, the signal is not allowed to update during the time-steps

governed by the attack length. Therefore, the value of the signal at the beginning of the attack will

be the same value seen by the LSCS and MPC for the duration of the attack.

γatck = γtstart (4.3)

βatck = βtstart
(4.4)

The effects on the signals seen by the MPC and LSCS can be realized through Eq. 4.3 and

Eq. 4.4. Here, tstart depicts the signal at the time-step the attack begins. The signal will remain

the same until the attack has been removed. In this study, each Replay Attack begins at t = 3.2s

and lasts a variable amount of time. The severity of the Replay Attack increases with the duration

of the attack.
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4.3 Denial of Service Attacks

The Denial of Service, DOS, Attack is another form of cyber-attacks. This form of attack

interferes with the sampling of a signal. DOS attacks can be used to either slow down the rate at

which a signal is samples, or flood the controller using the signal with updated values for a signal

at a rate that is higher than which the controller is designed to sample. There are many different

forms of DOS attacks. In [39], Low-Rate DOS Attacks are used to throttle the flow of information

between two points of communications. Other forms of DOS attacks are given in [40], and include

Application Layer Attacks, Reflection Attacks, Amplification Attacks, and Zero-Day DDoS Attacks.

In this study, DOS attacks are manifested by adjusting the rate at which one of the signals

is allowed to update. As an example, if a signal were under a DOS attack, it will be sampled at a

different rate than the rest of the system. Therefore, the LSCS and MPC will see different values

for the signal at different rates than the signal not under DOS attack.

Sample− Timeβ =
1

m
(time− step), Sample− Timeγ = time− step (4.5)

Sample− Timeγ =
1

m
(time− step), Sample− Timeβ = time− step (4.6)

Eq. 4.5 and Eq. 4.6 govern the time-steps of the simulation in the event of a DOS attack.

The time-step altering variable m modifies the jeopardized signal. As is the nature of simulation,

the signal can not be updated faster than the predefined time-step of the simulation. Therefore, m

decreases the sampling-rate. As an example, using Eq. 4.5, m may be set to 0.5. If this were the

case, the sideslip angle signal would only update at half of the rate the yaw-rate would update. In

this study, multiple values of m are used and the DOS Attack lasts the entirety of the simulation.

4.4 Detection Method Preface

Cyber-Security requires an accurate understanding of the system at hand under normal

operating conditions in order to make an accurate decision as to whether the system studied is

facing a cyber-attack. This study incorporates this strategy by first conducting a study under safe

conditions and evaluates the lateral metrics of the system in an offline manner.

Here, the vehicle’s yaw-rate, and sideslip angle are used to make a cyber-security decision.
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Three forms of the lateral metrics are used. They include their actual values, estimated values from

the state-space observer, and the predictions made by a pre-trained Neural-Network.

There are three different detection methods utilized to detect the cyber-threat. First, there

is a residual metric, DM: 1, which compares actual and estimated values. The second detection

method, DM: 2, compares target and estimated values. Lastly, DM: 3, compares the output of the

Neural-Network to the observer’s estimated values.

While the values used by the detection method’s are not the same, the underlying principal

of the detection strategy is the same. In this simulation, a fixed time-step of 0.0001 s is used. Prior

to implementing a cyber-attack, Eq. 4.10, Eq. 4.11, and Eq. 4.12 are called at each time-step.

These can be considered as a form of error. The values gained from these error equations are used to

create an error band. The error band serves as a guideline as to suitable error values during normal

operation. The error band values can be stored in a vector and read back into the program during

simulation. If error metrics excceed the error band plus a predetermined threshold, the system is

assumed to be under cyber-attack.

4.5 Residual Metric Comparing Actual and Estimated Lat-

eral Metrics, DM: 1

As stated previously, DM: 1 makes a comparison between the actual and estimated yaw-rate

and sideslip angle. Its band is governed by Eq. 4.10. An observer is a useful controls tool, that can

make estimates as to the system’s states. Observers are often used whenever the states of a given

system cannot be measured. Estimated values are found by finding an observer gain L that will

make the observer system converge to the actual states. Converging to the actual states is done by

placing the poles of the system farther out in the left half plane. The state matrices for the observer

system have the form seen in Eq. 4.7 - Eq. 4.9.

A =

 A−Bk Bk

zeros(size(A)) A− LC

 (4.7)

B =

 B

zeros(size(B))

 (4.8)
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C =

[
C zeros(size(C))

]
(4.9)

In Eq. 4.10, β(i) and γ(i) represent actual lateral values discovered through the LSCS,

whereas βest(i) and γest(i) depict the estimated metrics found through the observer. As seen from

Eq. 4.10, r1 takes on the sum of the differences between estimated and actual lateral values for 10

time steps to create the band.

r1 =

10∑
i=1

(β(i)− βest(i))
2 + (γ(i)− γest(i))

2 (4.10)

Fig. 5.2 depicts the residual band for DM: 1, as well as the output of Eq. 4.10 at each time

step. Note, that the residual band has also been summed with a predefined threshold.

Figure 4.1: Residual Metric for Actual and Estimated Values
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4.6 Residual Metric Comparing Target and Estimated Met-

rics, DM: 2

DM: 2 is the second detection scheme used in this study, and makes the comparison between

the target yaw-rate and sideslip angle (discovered through the MPC), and the estimated lateral

metrics discussed previously. It is interesting to note that the peaks in r2 have a larger magnitude

than those of r1. The reason this occurs is related to the nature of the lateral values at time step

they are associated with. In Eq. 4.11, γtar(i) and βtar(i) provide the target values of sideslip angle

and yaw-rate which minimize the difference between actual and target lateral position of the vehicle

at the next time-step. Therefore, the target values deal with the system placed one time-step into

the future in comparison to the estimated values. Fig. 4.2 displays the graph for r2.

r2 =

10∑
i=1

(βtar(i)− βest(i))
2 + (γtar(i)− γest(i))

2 (4.11)

Figure 4.2: Residual Metric for Estimated and Target Values
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4.7 Residual Metric Comparing Neural-Network Output to

Estimated Metrics, DM: 3

Neural-Networks are well suited for making accurate predictions, given the model was

trained using a robust data set. For the problem at hand, a Neural-Network is an appropriate

tool for making predictions as to the vehicle’s yaw-rate and sideslip angle at the current time-step.

A Neural-Network model was created utilizing MATLAB Simulink’s Deep Learning Tool Box. A

training data set was created offline using various drive cycles that did not include the actual lat-

eral movement used in the cyber-security study. The Levenberg-Marquardt optimization tool was

used to train the network. This training strategy is responsible for modifying the Neural-Network’s

weights and biases at each epoch that will minimize the error gradient. According to Mathwork’s

documentation regarding the algorithm, it is considered to be one of the fastest algorithms in terms

of convergence time.

A depiction of the model is made by Fig. 4.3. As seen by the figure, the model takes on four

different inputs. These include the actual yaw-rate and sideslip angle of the system at the previous

time-step, as well as the target yaw-rate and sideslip angle at the previous time-step. These inputs

are passed through the Neural-Network model and create two distinct outputs. These include the

predicted sideslip angle and yaw-rate at the current time-step.

Figure 4.3: Neural-Network Architecture

r3 =

10∑
i=1

(βNN (i)− βest(i))
2 + (γNN (i)− γest(i))

2 (4.12)

In Eq. 4.12, βNN (i) and γNN (i) represent the output of the Neural-Network. These metrics

are compared with the output of the observer to manifest the residual band for DM: 3. Fig. 4.4
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illustrates this residual band.

Figure 4.4: Residual Metric for NN and Estimated Values

28



Chapter 5

Results and Analysis

The purpose of this chapter is to illustrate the effectiveness of each of the three detection

schemes for making cyber-threat defections in the event of each of the cyber-attack schemes described

previously. This chapter begins by displaying graphical information to visually describe at what

point in the simulation the attacks were or were not detected, and comparing the detective prowess

of each method. Note that in Chapter 5, a filled in circle represent the successful detection of a

cyber-attack, and a blank circle depicts the failure of an attack.

5.1 Performance seen through Graphics

The first attack studied is a Data Integrity Attack, where the nature of the attack involves

scaling the true value of the signal with a value other than one. As seen in Fig. 5.1, six different

values of m are utilized. The values of m include 0, 0.5, 0.9, 1.01, 1.1, and 1.5. Obviously, values

that stray farther from one have a larger impact on signal distortion.

Fig. 5.1 shows that different detection methods performed differently depending upon

whether yaw-rate or sideslip angle was being targeted. In the case of yaw-rate being placed un-

der attack, DM: 1 exhibited superior performance to its counterparts. For three of the six attack

forms, it was able to detect the attack within the first two time-steps. In contrast, for the attack

targeting the sideslip angle sensor, DM: 3 was able to detect five of the six attacks. DM: 3 was also

the only one of the three detection schemes capable of noticing the presence of an attack for an m

value of 1.1.
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Figure 5.1: Data Integrity Attack Detection Times

Fig. 5.2 depicts Data Integrity Attacks where the true value of a signal is summed with a

value other than zero over the duration of the attack. In this scheme, m takes on value that are

either positive or negative, and it is clear that the potency of the attack is dependent upon the size

of the magnitude of the attack signal. Values for m include ±0.1, 0.01, 0.001. For this form of a

Data Integrity Attacks targeting the yaw-rate, each detection method provided similar results. For

m values of ±0.1, each detection method was able to detect the attack. DM: 1 provided the quickest

response for detecting the attack, with DM: 3 being the second fastest. All three detection methods

were unable to discern the attacks of the four smallest magnitudes. When sideslip angle faces this

form of attack, DM: 3 provided a 100% detection rate. Note that detection occurs outside the range

of attack. This is not caused by the accruing residual, since the residual is reset to zero at the end

of every 10 time-steps. This is caused by by the permanent effects placed on the vehicle during

lateral movements. While the vehicle still completes the maneuver, lateral metrics are altered from

the offline simulation, causing distinct differences in the vehicle’s movements later in the simulation.

These changes are noticed once the vehicle is making the return to its original lane.

Fig. 5.3 illustrates the performance statistics of each of the detection methods when the
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Figure 5.2: Data Integrity Attack Detection Time Statistics

vehicle is placed under a Replay Attack. As described previously in this study, the Replay Attack

is initiated at t = 3.2s. The severity of the attack is dependent upon the longevity of the attack.

Attack lengths include 0.05, 0.1, 0.3, 0.4, and 0.5 s. When the replay attack is focused on the yaw-

rate sensor, DM: 1 outperforms DM: 2 and DM: 3 in terms of detection rate and detection time.

For each length of attack, DM: 1 makes a successful detection at the same time-step. DM: 3 catches

three of the five attack scenarios and DM: 2 misses each attack.

As discussed previously, DOS Attacks target the sampling rate of a signal. Here, the DOS

Attack only allows a targeted signal to update at a rate that is different from other sensor signals.

Fig. 5.4 depicts each detection method’s performance for when a signal is only allowed to update

every two time-steps, and when a signal is only allowed to update every three time-steps. In the first

case, where sideslip angle updates slower than yaw-rate, DM: 1 is the only detection method unable

to detect the cyber-attack. DM: 2 and DM: 3 make a successful detection, but DM: 3 detects the

attack over twice as fast. Whenever the yaw-rate is sampled at a smaller rate than sideslip angle,

each of the detection methods notify the presence of an attack, but DM: 3 provides the fastest

response.
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Figure 5.3: Replay Attack Detection Time Statistics

5.2 Performance seen through Numerical Comparison

This section is utilized to make a numerical comparison between respective detection method’s

performance on detecting the cyber-threats and to make a reasonable argument as to which of the

three methods provides the most security. This method not only distinguishes whether or not a

detection was made, but also the amount of time it takes for the detection method to detect the

attack after the attack has been initiated.

To start, the attack data must first be prepared in a way that allows attack data across all

forms of attacks to be compared to each other. The data preparation process can be most easily

understood through the flowchart seen in Fig. 5.5. Note that the logic seen in this flowchart must

be executed once for each of the detection methods.

The process begins by setting two counter variables, (i, j), equal to one. Storage variables,

sγ and sβ are set equal to zero. The variable i represents the quantity of subsets of one of the forms

of the four attacks. As an example, the summation Data-Integrity Attack would have five values

for i. These include the five values of m used in the attack. While in the first loop, sγ and sβ are
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Figure 5.4: DOS Attack Detection Time Statistics

Table 5.1: Detection Method Score
Detection Method Score

DM : 1 4.8482
DM : 2 6.6022
DM : 3 2.9199

summed with themselves, and the difference between detection time and attack. In the event that

a detection method missed the presence of an attack, the end of simulation time, (t = 20s), is used.

Upon completion of the first loop, the summed values of sγ and sβ are passed to a vector of size

2 ∗ j = 8. At the end of the data preparation, there are three vectors of size eight, unique to the

respective detection method. The data set can now be normalized by means of Eq. 5.1. Elements

of each vector describing the respective detection methods can be summed. The summed value is

then used as a numeric score. As seen from Table 5.1, DM: 3 provided the best score making it the

most suitable method for detecting cyber-threats.

SDM :x =
SDM :x − SDM :xmin

SDM :xmax − SDM :xmin
(5.1)
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Figure 5.5: Flowchart Describing Data Preparation Process for Numerical Comparison
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Chapter 6

Conclusions and Discussion

6.1 Answering the Research Questions

This thesis presents a comprehensive cyber-security study in an electric vehicle’s lateral

stability control system. The first step to conducting this study involved the modeling of a four

motor-drive electric vehicle that is autonomously controlled. As described in this paper, the vehicle

model is controlled through multiple layers of control. The most outer layer of control implements

Model Predictive Control to determine what lateral metrics bring the vehicle closest to a desired

lateral location. Next, a linear quadratic regulator is utilized to bring the lateral metrics to their

reference values. Finally, the additional yaw-moment discerned by the linear quadratic regulator is

used in conjunction with a torque split to determine what are the necessary torques at each of the

vehicle’s wheels. In addition to a sophisticated vehicle model, an appropriate motor drive system was

also created that uses Brushless DC motors that are controlled by means of Direct-Torque Control.

Upon completing a dynamic vehicle model, a cyber-security study was conducted. In this

study, the vehicle was placed under Data-Integrity Attacks, Replay Attacks, and Denial of Service

Attacks. To detect the presence of a cyber-attack, three different threat detection methods were

developed. Each detection method uses some combination of sensor data, the estimated values of

an observer, and a Neural-Network. Conclusive results drawn from the study indicate that each

method provides sound cyber-security for an electric vehicle.
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6.2 Recommendations for Further Research

To accommodate the increase of intelligent transportation and infrastructure, a motivated

pursuit of research in this field must be continuously developed. For this unique study, there are

multiple aspects of the cyber-security portion that can be built upon. At the forefront, a more so-

phisticated residual could be developed. An idea for this would be to take the current residual bands

as a starting point, but device an adaptive band for the residual to take on dynamic environmental

variables. These would include variables such as weather fluctuations as well as motor-drive wear

and tear. In addition to an adaptive residual band, an artificial intelligence architecture could be

developed that prevents the need for an offline band calculation. An example of such architecture

would be one that takes on vehicle metrics from previous time-steps, and makes accurate predictions

as to the metrics a set amount of time-steps into the future. The future time-step predictions could

then be used to manifest residual band.
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Appendix A MATLAB LQR Coding

Appendix A present coding information for finding the gain matrix K, and creating the

observer.

Q = [500 0; 0 5000];

R = 1;

K = lqr(A,B,Q,R);

p1=-2.2061 + 1.7499i;

p2=-2.2061 - 1.7499i;

k = place(A,B,[p1 p2]);

o1 = -2.2061*5 + 1.7499i;

o2 = -2.2061*5 - 1.7499i;

C = [1 0; 0 1]

L = place(A’,C’,[o1 o2])’;
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