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Abstract

Computer models of physical systems are widely used in lieu of, or in tandem

with, experimental testing. It is critical to verify the accuracy of computer models

through the process of calibration. Typical calibration methods are often compu-

tationally expensive and therefore cannot be performed in real time. This thesis

presents a novel Bayesian calibration method using a Griddy Gibbs sampling algo-

rithm to improve calibration speeds. This method was verified in two applications:

a location-dependent dataset in the heat transfer analysis of an engine piston, and

time-dependent tire forces in a drum test. The proposed method was directly com-

pared to a traditional Bayesian calibration method in the engine piston application.

It was found that the two methods were close in accuracy with large amounts of cal-

ibration data, and the Griddy Gibbs method was significantly less computationally

expensive; it could calibrate in less than a minute, while the traditional method took

several days.
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Chapter 1

Introduction

When experimental testing is difficult or expensive to perform, mathematical

computer models can be used to approximate physical processes. A computer model

can act as a digital twin to a physical model and update continuously according

to physical data, or it can operate and update separately. These models can vary

in complexity, computational time, and accuracy to the physical system, but most

simply, they take in inputs and return outputs. These inputs often have physical

meaning, for example describing the setup or operating conditions of the system,

that cannot always be directly measured or controlled. The outputs are the modeled

behavior of the physical system.

It is important to calibrate a computer model to experimental data to ensure

it accurately represents the physical system. To this end, it is necessary to estimate

model input parameters which would generate a given set of experimental data. With

this information, one could predict how that specific system would perform in a

different test scenario. Model calibration can be performed using a variety of methods,

but most basically they aim to match the experimental data with simulation data

via the tuning of unknown input parameters. Many existing methods for model
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calibration require many simulations to be run in a linear manner until convergence

to the best set of parameters is reached, precluding the ability to perform model

calibration in real time.

This thesis describes a novel model calibration method which utilizes Griddy

Gibbs sampling from a library of simulation data. The use of Griddy Gibbs sampling

allows the calibration to run in real time, as the algorithm samples only from the

existing library of simulation data, rather than having to construct and run a Gaussian

process model at each iteration of the sampler. The method is validated and directly

benchmarked against a traditional Bayesian calibration method in calibrating a piston

thermal model with location-dependent temperature data. After, the approach is used

to calibrate a tire model with time-dependent response data.

The thesis content is organized as follows: Chapter 2 reviews the existing

literature related to model calibration. Chapter 3 presents the methodology for the

proposed novel calibration method and an initial verification for this method. Chapter

4 presents a case study in which the proposed method is directly compared to a

traditional Bayesian calibration method when applied to location-based calibration

data. In chapter 5, the proposed method is applied to time-based calibration data.

Chapter 6 provides conclusions and recommendations for future work. More detailed

information about the codes used in calibration can be found in the appendices.
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Chapter 2

Literature Review

2.1 Overview of Model Calibration Methods

There are many methods for model calibration, using Bayesian statistics, fre-

quentist statistics, and combinations and variations thereof. Frequentist model cali-

bration methods tend to be conceptually simple to understand and implement. Cali-

bration is typically performed using a single metric, e.g. mean error [6], mean absolute

error [3, 19], mean squared error [6, 1], maximum likelihood estimation [5, 17], method

of moments [21], or root mean squared error [3, 19], to name a few. The maximum

likelihood estimator (MLE) is the most common method for model calibration in the

frequentist paradigm and involves locating a combination of parameters which max-

imize the likelihood function. As a simple example (from [16]), say we wanted to

estimate the underlying probability of a coin landing on heads. We flip the coin 100

and find it lands on heads 55 times. The likelihood function, or the likelihood that

the coin lands on heads for a given probability p, for this binomial example is given

3



by its probability density function:

L(p) =

(
100

55

)
p55(1− p)55 (2.1)

To find the maximum value of this equation, we take its derivative and set it equal

to zero.

d

dp
(L(p)) =

(
100

55

)
(55p54(1− p)45 − 45p55(1− p)44) = 0 (2.2)

When we solve this equation we see that our estimate for the probability of heads

p̂ = 0.55.

Using a single frequentist calibration metric like the MLE makes it difficult

to quantify the many sources of uncertainty in the calibration problem. While MLE

does allow for the calculation of standard error, it does not include an estimate of

the uncertainty of the parameter estimates or model discrepancy. Because of these

limitations of frequentist methods, many advocate for the use of multiple frequentist

methods in evaluating model performance [3], or frequentist methods in tandem with

Bayesian methods [20]. For example, if the desired frequentist metric is sensitive to

outliers, the use of an additional metric may provide a better understanding of the

data.

Although most frequentist methods neglect the fundamental difference or dis-

crepancy between a computer model and the real physical process, there is some work

in this area. No computer model will be exactly equal to a physical process, and it

is useful for a calibration methodology to acknowledge this fact through the addition

of a discrepancy term.

In contrast, Bayesian calibration methods utilize Bayes’ theorem (equation

2.3) to approximate the distribution of a parameter given some data. Bayesian meth-

4



ods require the user to define prior distributions on each parameter. This is useful

in allowing expertise or previous work to inform the calibration, but if the priors are

specified incorrectly, it can bias the posterior estimate. To avoid this, one can specify

an uninformative prior for a parameter. Another possible drawback of Bayesian cali-

bration methods is that they can be computationally expensive because they require

large numbers of samples from the parameter distribution to converge. However,

Bayesian calibration is widely used because it allows for robust quantification of un-

certainty.

2.2 Bayesian Calibration Methods

Bayesian calibration methods utilize the relationship between the posterior

(p(θ|y)) and prior (p(θ)) distributions as established by Bayes’ Theorem:

p(θ|y) ∝ p(y|θ)p(θ) (2.3)

This relationship states that the posterior probability that a model parameter θ takes

on a certain value given some data y is proportional to the probability that data was

generated using a certain value of that parameter, multiplied by the prior probability

of the parameter taking on that value, up to a constant. This proportionality constant

is given by ∫
p(y|θ)p(θ) dθ (2.4)

This integral is often very difficult or impossible to evaluate directly. Instead, many

Bayesian methods sample from the posterior distribution. With enough samples,

the full posterior distribution can be approximated without needing to calculate the

proportionality constant. Depending on the complexity of the sampling distribution,

5



obtaining sufficient samples can be a time intensive process.

The prior probability p(θ) is one key difference between Bayesian and other

methods of model calibration: it allows the user to impart his or her prior knowledge

about a parameter, its range and/or its distribution, into the calibration process.

Most often, model calibration is performed using a Bayesian methodology,

particularly that developed by Kennedy and O’Hagan in 2001 [11]. Significantly, this

approach accounts for the inherent discrepancy between a computer model and the

physical process it aims to represent, as well as random measurement error. Kennedy

and O’Hagan model the relationship between experimental observations zi, the true

physical process ζ(xi), the computer model η(xi, θ), and unknown regression param-

eter ρ as:

zi = ζ(xi) + ei = ρη(xi, θ) + δ(xi) + ei (2.5)

Traditional Bayesian calibration methods typically employ emulators [12] as a means

to bypass the generation of computer simulation data (η(xi, θ)) at each parameter

configuration. This is useful when running these simulations are time intensive and

an emulator can accurately represent the simulation, but should be avoided when an

accurate emulator is difficult to obtain.

Many researchers have presented work building on the Kennedy O’Hagan

framework, including efforts to calibrate model using a combination of simulation

data and small amounts of experimental data [10]; when only a small number of re-

alizations from the model are available [15]; when a traditional Gaussian discrepancy

still does not accurately represent the physical process [8]

Bayesian calibration methods require a way to take large numbers of samples

from the posterior distribution. This is most often done using Monte Carlo methods

[13], usually Markov chain Monte Carlo (MCMC) methods. The theory behind Monte

6



Carlo methods is using large numbers of random simulations to approximate a desired

quantity, rather than calculating it directly. A Markov chain is a series of samples in

which each value depends on the previous state in the chain. Together, an MCMC

sampling algorithm samples from a posterior distribution by creating Markov chains

using Monte Carlo simulations [2]. These algorithms usually require large numbers

of samples to converge, and they often have a ”burn-in” period in which the sampler

vacillates between different values until it eventually converges.

The two most common MCMCmethods are the Metropolis-Hastings algorithm

and Gibbs sampling. The Metropolis-Hastings algorithm uses a random walk with

some acceptance-rejection criteria [4] to generate its Markov chains of samples from

the posterior joint distribution, and Gibbs sampling instead takes a random walk

taking samples from conditional distributions.

2.3 Gibbs Sampling

The Gibbs sampler was introduced by Geman and Geman in 1984 [7] as a novel

method for sampling from a posterior distribution in a Bayesian analysis. In this

method, the joint posterior distribution is approximated through successive sampling

from conditional distributions, each time holding all but one parameter at its previous

value, beginning at an arbitrary first value. In other words, to approximate a joint

distribution p(xi...xn), one would sample:

1. x
(i+1)
1 from p(x1|x(i)

2 , . . . , x
(i)
n )

2. x
(i+1)
2 from p(x2|x(i+1)

1 , . . . , x
(i)
n )

...

3. x
(i+1)
n from p(xn|x(i+1)

1 , . . . , x
(i+1)
n−1 )

The Gibbs sampler is a type of Markov chain Monte Carlo algorithm. Each

7



sample is not independent, as it depends on the previously calculated values for the

parameters. It does follow the Markov property, meaning that future states rely only

on the current state of the algorithm, not previous states. This fact, noted by Geman

and Geman, means that the Gibbs sampler is a parallel algorithm which can be run

on multiple computers simultaneously.

An update to the Gibbs sampler, the Griddy Gibbs sampler, was presented by

Ritter and Tanner in 1992 [18]. They present this method for use when the conditional

distributions are difficult to sample from. Instead, they suggest evaluating these

conditional distributions at a discrete grid of points. Their methodology is as follows:

1. Evaluate the full conditional distribution at a discrete grid of points

2. Approximate the inverse CDF (cumulative distribution function) of the full

conditional distribution (e.g. piecewise linear or piecewise constant).

3. Generate a random number between 0 and 1 and inverse transform sample from

the inverse CDF

Ritter and Tanner pay special attention to the density and distribution of the sample

grid, in particular advocating for a more densely packed grid of points in more highly

visited areas. For simplicity, in this study we used either a uniformly spaced grid of

points or a latin hypercube sampling of points, but an adaptive grid, which grows

more dense in areas of repeated samples, could present a promising opportunity for

future research.

8



Chapter 3

Griddy Gibbs Calibration

Methodology and Initial

Verification

3.1 Introduction

The following describes the novel Bayesian calibration method using Griddy

Gibbs sampling.

3.2 Methodology

3.2.1 Data Model

The joint probability distribution of the experimental results with respect to

independent variable x and parameters θ is often expressed as a function of the

9



deterministic computer model, discrepancy δ(x) and error term ϵ.

y(x, θ) = g(x, θ) + δ(x) + ϵ (3.1)

The discrepancy term δ represents the inherent differences that would exist between

experimental conditions and the data model. In the proposed model calibration

method, this discrepancy term δ is not included. While it is important when training

a surrogate model to account for the differences between the model and the true

process, in a model calibration problem where one is only in search of a best fit,

including the discrepancy in the data model is not necessary and does not improve

the accuracy of calibration. The effect of random error ϵ is also taken as negligible in

this formulation.

The joint distribution y(x, θ) = g(x, θ) is difficult to sample from, and therefore

it is convenient to sample from the conditional distribution. This distribution is

multivariate normal with mean structure g(θ) and correlation structure σ2I, where I

is the identity matrix.

y|x, θ ∼ MVN(g(x, θ), σ2I) (3.2)

Because it is assumed that the experimental data follows a normal distribution,

the likelihood function L(θ) can be taken as the probability density function of a

multivariate normal distribution:

L(θ) = P (y|θ) =
n∏

i=1

(2πσ2)−
1
2 exp

(
− 1

2σ2
[y(xi, θi)− g(xi, θi)]

2

)
(3.3)

Where n denotes the total number of simulation observations. For computational

efficiency, we let

Cθ = (y(x, θ)− g(x, θ))2 (3.4)

10



and precompute the quantity for each (x, θ). This reduces computation time, as no

redundant operations are performed in the MCMC draws.

Let τ = 1/σ2. The likelihood function becomes

L(θ) =
( τ

2π

)n
2
exp

(
−τ

2

n∑
i=1

Cθ

)
(3.5)

Because n is large, the likelihood function tends towards infinity. For numerical

stabilization, calculate the log likelihood:

ln(L(θ)) =
n

2
ln
( τ

2π

)
− τ

2

n∑
i=1

Cθ (3.6)

3.2.2 Prior Distributions

We specify a flat, uninformative prior distribution for each θ. The design of

experiments is normalized in the range of each θ, giving us:

π(θ) ∼ U(0, 1) (3.7)

The prior distribution π(τ) is a gamma distribution with α = 1 × 10−9 and β =

1× 10−9. It is designed to be a relatively weak prior distribution.

π(τ) ∼ Gamma(1× 10−9, 1× 10−9) (3.8)

3.2.3 Griddy Gibbs Sampling

The full conditional distributions from which we sample are as follows:

p(θ|y, τ) ∝ L(y|θ, τ)× U(0, 1) (3.9)

11



p(τ |y, θ) ∝ L(y|θ, τ)×Gamma(1× 10−9, 1× 10−9) (3.10)

Inverse transform sampling is used to sample from these full conditional distributions

at our discrete grid of points. As mentioned previously, to save computation time we

reference previously calculated quantity Cθ (equation 3.4) In this process, for each

sample i of n total, we:

1. Divide the vector of full conditional distributions by their sum:

L(yi|θi, τi)π(θi)∑n
i=1 L(yi|θi, τi)π(θi)

(3.11)

Since the full conditional distribution is proportional to the posterior distribu-

tion up to a constant, this normalization process removes the constant. It also

converts the quantities into probabilities.

2. Find the cumulative density function (CDF) of the normalized full conditional

distributions

3. Generate a random number u from a uniform distribution between 0 and 1.

For the first iteration, we assume an arbitrary first value for θ and τ .

The data y(x, θ) used in calibration can be generated either directly from a

finite element model of the system, or a surrogate model trained on FE data. The

latter approach is useful when the computer model is computationally expensive and

an accurate surrogate model is possible and easy to generate. However, if these two

conditions are not met–if the computer model runs quickly or an accurate model

emulator cannot be trained–the computer model alone should be used to generate

the data used in calibration.

12



Figure 3.1: Diesel engine finite element model [22]

3.3 Initial Verification

The Griddy Gibbs calibration methodology was first used to calibrate three

coefficients in a heat transfer analysis of an engine piston. These heat transfer coeffi-

cients correspond to the heat flux on the backside of the piston in three locations–the

undercrown, cooling gallery 1, and cooling gallery 2–which are difficult to determine

experimentally. These locations can be seen in the finite element model of the piston

in figure 3.1.

These parameters were calibrated using temperature data at different locations

in the piston, temporally averaged during the analysis. The locations were chosen on

the surface of each boundary condition where the temperature change would be most

sensitive to each parameter. They can be seen in figure 3.2. The amount of data

points was varied in this study, but for each variation it was ensured that data was

taken from each of the three locations of interest. For more information about this

data, see [22].

The data used in each test case was generated using a deterministic finite

element model of the piston. A uniform grid of test points was used to ensure that
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Figure 3.2: Underside of piston model, with 27 output locations shown. The under-
crown is shown in green, cooling gallery 1 in magenta, and cooling gallery 2 in cyan.

the entire range of each parameter was represented, and the true value for each

parameter would not exist in a sparsely populated area. This grid is represented in

figure 3.3

Because running this FE model is extremely time intensive, it is infeasible to

run for the hundreds of simulations necessary to calibrate the piston model using a

discrete Griddy Gibbs methodology incapable of interpolation. Therefore, the finite

element model was run the 343 times required to train an accurate surrogate model,

and this surrogate model was used to generate the remainder of the temperature data

used in calibration. The computation times reported in the results of this paper do

not include the time needed to train the surrogate model; they only reflect the time

required to complete the calibration.

The data for which parameters are being estimated is not true experimental

temperature data, but rather FE model data. In order to mimic experimental data,

error has been added to these values. This error follows the following form:

ϵ ∼ MVN(0, 0.4I) (3.12)
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Figure 3.3: Fixed grid design of experiments
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The term I indicates the identity matrix. While error exists in the experimental

data, it should be noted that for simplicity the formulation of the calibration does

not specifically include error in its formulation. The initial verification will determine

if the calibration is reasonably accurate even without explicitly accounting for error.

A similar verification will then be performed to investigate the effect of a discrepancy

between the experimental data and simulation data. This discrepancy will take the

form:

δ ∼ MVN(0, 40C) (3.13)

where C represents the correlation structure of the discrepancy.

C = σ2

nx∏
k=1

ρ
4[xk−xk−1]

2

k (3.14)

Here, σ2 is the variance and ρ is the correlation parameter. The correlation parameter

used here was 0.8. The variance was set as 40, which is a reasonable amount of

variance one would expect for this application. A comparison of the response data

with and without error and discrepancy can be found in figure 3.4.

The Griddy Gibbs methodology was initially assessed for its response to vary-

ing two values: the number of simulations, or different values and combinations of

the unknown parameters; and the amount of experimental data to which to calibrate.

The goals of this verification were to determine the optimum number of simulations

and experimental data points which provided enough data for the Griddy Gibbs sam-

pler to consistently select the correct value for each parameter, while minimizing run

time.

To this end, the Griddy Gibbs calibration methodology was used to calibrate

piston data using 14 different values for the number of simulations: 27, 64, 125, 216,
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Figure 3.4: Experimental data with and without error and discrepancy

343, 512, 729, 1000, 3375, 10648, 19683, 32768, 59319, and 103823. As there were

three parameters being calibrated, these values correspond to 3, 4, 5, 6, 7, 8, 9, 10,

15, 22, 27, 32, 39, and 47 samples in the range of each calibration parameter. These

ranges are summarized in table 3.1.

The true value for θ1, θ2, and θ3 for each run was 1000, 3000, and 2000 W
m2K

,

respectively. For each number of simulations used, separate cases were run using 6,

15, 27, and 64 experimental data points. The calibration consisted of 35,000 runs of

the MCMC with a burn-in of 15,000.
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θ1 θ2 θ3
True value 1000 3000 2000
Minimum 13.85 8.61 35.33
Maximum 11984.70 11977.45 12002.49
Range 11970.85 11968.84 11967.16

Table 3.1: Parameter ranges and true values for piston model calibration

3.3.1 Results Without Discrepancy

The results of the initial verification are shown in figures 3.5 through 3.8

below. For each setting of experimental data, the impact of number of simulation on

parameter estimate and 95% confidence interval is shown. In figure 3.9, the impact

of the number of simulations on calibration runtime is shown. For this study, only

random error was added to the experimental data.

Figure 3.5: Varying number of simulations, 6 experimental data points, no discrep-
ancy

As expected, the 95% confidence intervals tend to narrow as the amount of

experimental data increases. Increasing the number of simulations also improves the

accuracy of calibration. This can be seen in a comparison of the posterior predictive

checks for the lowest (27) and highest (103823) number of simulations as well as the

lowest (6) and highest (54) number of data points included in this study in figures

3.10 through 3.13.
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Figure 3.6: Varying number of simulations, 15 experimental data points, no discrep-
ancy

Figure 3.7: Varying number of simulations, 27 experimental data points, no discrep-
ancy

For a calibration using only six data points, the true parameter values (shown

in red) are not captured in the 95% confidence interval. As the number of experi-

mental data points increases to 27 and 54, each parameter value becomes contained

within this interval. The mean parameter estimates tend to stabilize within the confi-

dence interval at the 59319 simulation case. Therefore, this value was selected as the

optimum number of simulations within the given range to inform the Griddy Gibbs

calibration. This number corresponds to 39 samples in each of the three parameter

dimensions. Even at the lowest amount of data points used in this study (6), at 59319

simulations an accurate prediction of temperature data can be produced.
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Figure 3.8: Varying number of simulations, 54 experimental data points, no discrep-
ancy

3.3.2 Results With Discrepancy

The test cases from the previous section were then repeated, adding both error

and discrepancy to the experimental data. The results from this study are produced

in figures 3.14 through 3.22. The time taken for calibration is summarized in figure

3.18.

The results from this study do not differ notably from those in the previous

study. It appears that the presence of systematic discrepancy does not significantly

impact the quality of calibration, and neglecting the discrepancy term in the formu-

lation of the data model used in calibration is an acceptable simplification.
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Figure 3.9: Runtime comparison, no discrepancy
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Figure 3.10: Posterior predictive check, 6 data points, 27 simulations, no discrepancy
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Figure 3.11: Posterior predictive check, 6 data points, 59319 simulations, no discrep-
ancy
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Figure 3.12: Posterior predictive check, 54 data points, 27 simulations, no discrepancy
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Figure 3.13: Posterior predictive check, 54 data points, 59319 simulations, no dis-
crepancy

Figure 3.14: Varying number of simulations, 6 experimental data points, with dis-
crepancy
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Figure 3.15: Varying number of simulations, 15 experimental data points, with dis-
crepancy

Figure 3.16: Varying number of simulations, 27 experimental data points, with dis-
crepancy

Figure 3.17: Varying number of simulations, 54 experimental data points, with dis-
crepancy
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Figure 3.18: Time comparison, with discrepancy
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Figure 3.19: Posterior predictive check, 6 data points, 27 simulations, with discrep-
ancy
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Figure 3.20: Posterior predictive check, 6 data points, 59319 simulations, with dis-
crepancy
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Figure 3.21: Posterior predictive check, 54 data points, 27 simulations, with discrep-
ancy
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Figure 3.22: Posterior predictive check, 54 data points, 59319 simulations, with dis-
crepancy
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Chapter 4

Griddy Gibbs Compared to

Traditional Bayesian Calibration

The Griddy Gibbs model calibration method was compared to a traditional

Bayesian method in the same calibration of three backside boundary conditions in

a heat transfer analysis of an engine piston. The relative accuracy of each method

was tested in calibrating to 6, 15, 27, and finally 54 experimental data points. The

Griddy Gibbs method used 59319 simulations (39 per parameter), which was the

optimum value determined in its initial verification. The Griddy Gibbs results for

each case were compared to a traditional Bayesian calibration methodology trained

on 343 simulations (7 per calibration parameter). 343 simulations were used because

additional simulations did not improve the efficacy of the traditional methodology.

Discrepancy was included in the experimental data, but was not sampled or included

in the data model used in calibration, as in section 3.3.2.

Posterior distributions for each parameter and posterior predictive checks are

produced in figures 4.1 through 4.7 and tables 4.1 through 4.4. Computation times

were compared in table 4.5.
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In the posterior distributions, the blue bins represent results from the Griddy

Gibbs code, and the red is the traditional Bayesian code. Areas in which they overlap

are shaded purple. Each blue bin and square along the x-axis represents a different

discrete available parameter setting in the design of experiments for the Griddy Gibbs

calibration. As expected, as the number of simulations increase, these bins will be-

come more narrow, and there will be more settings of each parameter represented

along the x-axis.

Traditional Bayesian Calibration Griddy Gibbs Calibration

θ1

95% LB 980.4 1511.2
Estimate 1004.8 1511.3
Truth 1000 1000
95% UB 1027.7 1511.2

θ2

95% LB 2868.7 4220.0
Estimate 2959.7 4457.2
Truth 3000 3000
95% UB 3058.3 4519.1

θ3

95% LB 1986.1 2113.2
Estimate 2078.2 2401.0
Truth 2000 2000
95% UB 2170.9 2411.9

Table 4.1: Parameter summary for 6 data points

Figure 4.1: Posterior distribution, 6 data points
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Traditional Bayesian Calibration Griddy Gibbs Calibration

θ1

95% LB 959.2 912.5
Estimate 971.8 912.7
Truth 1000 1000
95% UB 985.0 912.5

θ2

95% LB 3129.5 2724.4
Estimate 3188.9 2957.0
Truth 3000 3000
95% UB 3253.5 3023.5

θ3

95% LB 2108.6 2113.2
Estimate 2159.8 2144.1
Truth 2000 2000
95% UB 2212.2 2411.9

Table 4.2: Parameter summary for 15 data points

Traditional Bayesian Calibration Griddy Gibbs Calibration

θ1

95% LB 997.8 912.5
Estimate 1005.4 913.2
Truth 1000 1000
95% UB 1013.1 912.5

θ2

95% LB 2835.2 2724.4
Estimate 2864.5 3010.5
Truth 3000 3000
95% UB 2894.8 3023.5

θ3

95% LB 1899.9 2113.2
Estimate 1926.8 2136.7
Truth 2000 2000
95% UB 1855.7 2411.9

Table 4.3: Parameter summary for 27 data points
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Traditional Bayesian Calibration Griddy Gibbs Calibration

θ1

95% LB 1007.0 912.5
Estimate 1010.5 912.5
Truth 1000 1000
95% UB 1014.1 912.5

θ2

95% LB 3013.1 3023.5
Estimate 3027.7 3023.1
Truth 3000 3000
95% UB 3041.9 3023.5

θ3

95% LB 2092.6 2113.2
Estimate 2106.1 2279.9
Truth 2000 2000
95% UB 2120.0 2411.9

Table 4.4: Parameter summary for 54 data points

Data Points Traditional Bayesian Calibration Griddy Gibbs Calibration
6 653.8 40.6
15 15321.5 42.8
27 79817.2 38.8
54 610182.3 38.8

Table 4.5: Comparison of runtime, in seconds
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As the number of experimental data points increases, The posterior distri-

butions are able to more closely match those generated using traditional Bayesian

methods, and simulation results generated using calibrated values for each parameter

(i.e. the posterior predictive check) more closely matches the data to which we were

calibrating.

4.1 Summary of Results

The primary difference between the novel model calibration technique pre-

sented in this paper and traditional Bayesian model calibration is that the Griddy

Gibbs technique samples only from existing simulation data. Therefore, there is no

need to create and train a Gaussian process model, which allows for a dramatic reduc-

tion in computation time, particularly if the number of data points is high. Increasing

experimental data points from 6 to 54 increased runtime for the traditional Bayesian

calibration by over 90,000%, from 10 minutes to 169 hours, the Griddy Gibbs cali-

bration runtime stayed effectively constant at around 40 seconds.

The Griddy Gibbs calibration methodology was less accurate than the tra-

ditional Bayesian methodology when data was scarce. Even when more data was

available with which to calibrate, the traditional methods were still able to provide

a slightly more accurate calibration. It is hypothesized that the traditional Bayesian

calibration may better handle situations in which some or all of the parameters are

confounding, that is they are not completely independent.
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Figure 4.2: Posterior predictive check, 6 data points
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Figure 4.3: Posterior distribution, 15 data points
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Figure 4.4: Posterior predictive check, 15 data points
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Figure 4.5: Posterior distribution, 27 data points

40



Figure 4.6: Posterior predictive check, 27 data points
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Figure 4.7: Posterior distribution, 54 data points
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Figure 4.8: Posterior predictive check, 54 data points
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Chapter 5

Tire Model Calibration

After completing the initial Griddy Gibbs verification process, we applied the

algorithm to a vehicle dynamics problem using time series data. We aimed to esti-

mate the inputs to the Fiala tire model used to generate a set of experimental data,

specifically the normal force generated in the contact patch of a tire as it runs over

a speed bump. In the absence of experimental data, we are calibrating to simulation

data with an added Gaussian discrepancy. This data point was held back from the

simulation data the algorithm was able to sample from. In the first study, the Fiala

tire model was used to generate both the ”experimental” data (in this case model data

with a discrepancy added) and the model simulation data used to inform the calibra-

tion. In the second study, we calibrate Fiala tire parameters to PAC2002 simulation

data. This simulation data was generated at a large number (6,000) of simulations,

for 2,000 unique parameter combinations at 3 settings of the independent x variable,

speed bump height. 50,000 MCMC iterations were used for calibration.
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5.0.1 Data Model

We again assume our unknown parameters follow the multivariate normal dis-

tribution. We take the same relationship between the data model and experimental

data as in equation 3.1, with unknown parameters vertical stiffness (θ1) and vertical

damping (θ2) and independent variables speed bump height and time. Again, dis-

crepancy was not included in the formulation of the data model, but a discrepancy

was added to the results to which we are calibrating in order to more closely resemble

true experimental data.

5.1 Simulation and Tire Models

The Tire Testrig within ADAMS/Car was used to perform this simulation and

isolate its effects on the tire. A ”flat road with cleat” simulation was performed at

a speed of 20 m/s. The cleat was 100mm long and occurred immediately after the

simulation began. The cleat height was taken as a controllable independent variable

in the calibration. Three height settings were used: 412 mm, 274.4 mm, and 121.3

mm. A constant static load of 3 kN was applied to the tire.

The Fiala tire model assumes the tire acts as a beam on an elastic foundation.

It assumes the contact patch is rectangular and pressure is uniform across it. It

neglects the effects of the tire’s camber angle. model calculates the normal force as

Fz = min(0, Fzk + Fzc) (5.1)

where Fzk is the normal force due to the vertical stiffness of the tire, and Fzk is

the normal force due to the vertical damping of the tire. These quantities can be
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Figure 5.1: SAE coordinate system [14]

calculated per the following:

Fzk = −k ∗ ρ (5.2)

Fzc = −c ∗ dρ

dt
(5.3)

where ρ is vertical deflection or penetration of the tire. These equations use SAE

coordinates, in which the positive z-axis is directed downward [9].

In the PAC2002 model, the vertical tire response is modeled as a spring and

damper in parallel. The contact patch is found by assuming the tire acts as a rigid

disc. The normal force in the tire is calculated as follows:

Fz = Kzρ̇+ ([1 + qpFz1dpi]γCzFzo)×
(
qFz1ρ

Ro

+
qFz2ρ

2

R2
o

+
qFz3γ

2ρ

Ro

)
× . . .(

qreo +
qv2|Ω|Ro

Vo

− qFcx1Fx

Fzo

− qFcy1Fy

Fzo

+ qFcγ1γ
2

) (5.4)

where
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Fx = Longitudinal force

Fzo = Nominal wheel load

Ω = Wheel rotational velocity

Ro = Unloaded radius

Vo = Measurement speed at test bench

γ = Camber (inclination) angle

ρ = Tire deflection

λCz = Scale factor for vertical tire stiffness

Kz = Tire vertical damping

qREO = Correction factor for measured unloaded radius

qV 2 = Tire stiffness variation coefficient with speed

qFcx1 = Tire stiffness interaction with Fx

qFcγ1 = Tire stiffness interaction with camber

qFz1 = Tire vertical stiffness coefficient (linear)

qFz2 = Tire vertical stiffness coefficient (quadratic)

qFz3 = Camber dependency of the tire vertical stiffness

qpFz1 = Factor to include effect of inflation pressure

dpi = Normalized inflation pressure

The PAC2002 tire model is more complex than the Fiala model, and it con-

siders much more information in its calculation.

5.2 Sensitivity Study

A sensitivity study was performed to determine parameters and a response

metric with which to perform calibration. The simulation was the same as that de-
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scribed previously, except it only involved one speed bump of height 100 mm. This

simulation was repeated at 10% intervals across the expected ranges for each of the

nine input parameters in the Fiala tire model: vertical stiffness, vertical damping,

rolling resistance, ”cslip” (the partial derivative of longitudinal force with respect to

longitudinal slip ratio at zero longitudinal slip), ”calpha” (the partial derivative of

lateral force with respect to slip angle at zero slip angle, also known as cornering

stiffness), ”umin” (the coefficient of friction with full slip, or slip ratio = 1), ”umax”

(the coefficient of friction with zero slip), and relaxation length in the x and y di-

rections. It was found that changing vertical stiffness and vertical damping at these

increments generated pronounced effects on the normal force in the tire. As a result of

this study, vertical stiffness and vertical damping were chosen as the two parameters

to calibrate to normal force data. For simplicity, and because they were not sensitive

to the normal force metric chosen, the remaining seven Fiala input parameters were

held constant in this study. Further work into calibrating all Fiala parameters to

PAC2002 results is needed in order to apply this calibration methodology to a model

selection tool.

The ranges for vertical stiffness and damping can be found in table 5.1. The

results of this sensitivity study for vertical stiffness and damping can be found in

figures 5.2 and 5.3. A higher vertical stiffness corresponded to higher peak force

values which dissipated slower than lower stiffness values. A higher vertical damping

corresponded to a much quicker dissipation of force in the tire.

Vertical stiffness (N/mm) Vertical damping (Ns/mm)
Minimum 50 0
Maximum 800 5
Range 750 5

Table 5.1: Parameter ranges for tire model calibration
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Figure 5.2: Change in normal force subject at 10% increments of vertical stiffness
range
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Figure 5.3: Change in normal force subject at 10% increments of vertical damping
range

5.3 Fiala to Fiala Calibration

The results for this calibration are summarized in table 5.2.

95% Lower bound θ estimate True value 95% Upper bound
θ1 460.9 460.9 450 460.9
θ2 1.53 1.53 1.5 1.53

Table 5.2: Fiala to Fiala calibration results

The 95% confidence interval is reported here, but note that this metric may

be misleading for our case where the posterior distribution is composed of a discrete

number of bins. For example, if the expected value in a calibration is 2000, and the

sampler chooses a value of 2100 with a very narrow confidence interval that does
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Figure 5.4: Distribution of parameters in design of experiments

not include 2000, this would still represent an accurate calibration if the preceding

data point was 1800. Regardless, the true values for each parameter is not captured

in this interval. This interval is extremely narrow due to the large number of data

points (500) used in calibration, which misleadingly decreases the estimated standard

deviation and causes the sampler to select a single data point.

The posterior distributions (figure 5.5) for both parameters are centered around

the expected mean values. These distributions are very narrow, likely due to the large

amount of data (500 points) used in calibration. As can be seen in the trace plots

from figure 5.6, only one value for each parameter is sampled in the 50,000 MCMC it-

erations. As seen in figure 5.7, simulation results generated with the median estimate

(shown in red) closely match the ”experimental” data (shown in black). This poste-

rior predictive check is also reproduced with the random noise included in calibration
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in figure 5.8.

Figure 5.5: Posterior distributions for Fiala-to-Fiala calibration

Figure 5.6: Trace plots for Fiala-to-Fiala calibration

5.4 Fiala to PAC2002 Calibration

The results for this calibration are summarized in table 5.3. Unlike in the

Fiala-to-Fiala calibration, the true values for the parameter estimates are unknown,

as the PAC2002 model includes many more parameters which influence the normal

force generated in the tire.

The posterior distributions for each parameter are represented in figure 5.9. As

in the Fiala-to-Fiala calibration, they are extremely narrow due to the large amounts
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Figure 5.7: Posterior predictive check without noise for Fiala-to-Fiala calibration

95% Lower bound θ estimate 95% Upper bound
θ1 313.2 313.2 313.2
θ2 1.37 1.37 1.37

Table 5.3: Fiala to PAC2002 calibration results

of data points (500) used in calibration. Again, the sampler heavily favors one value

for each parameter, but more are visited, likely due to the greater uncertainty in-

volved in calibrating to a different model type (figure 5.10). The posterior predictive

check shows a close match between the data which was calibrated to and the selected

simulation observations (figure 5.11), though the peaks are generally underestimated.

This is likely due to the inherent differences between the PAC2002 and Fiala models;

no Fiala parameter combination will accurately represent those peaks. Again, this

figure is reproduced including random noise which was included during the calibration

(figure 5.12).
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Figure 5.8: Posterior predictive check with noise for Fiala-to-Fiala calibration

Figure 5.9: Posterior distributions for Fiala-to-Pac2002 calibration
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Figure 5.10: Trace plots for Fiala-to-Pac calibration

Figure 5.11: Posterior predictive check without noise for Fiala-to-Pac2002 calibration
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Figure 5.12: Posterior predictive check with noise for Fiala-to-Pac2002 calibration
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Chapter 6

Conclusions

This thesis describes the novel application of the Griddy Gibbs sampler to a

Bayesian model calibration process. This technique is directly compared to a tradi-

tional Bayesian calibration method, which used the Metropolis-Hastings algorithm,

in the calibration of boundary conditions in a piston heat transfer analysis. The

Griddy Gibbs method was found to generate nearly identical results at a high num-

ber of simulations. When the number of data points was large, the Griddy Gibbs

method presented significant time savings compared to the traditional method. This

is because it is a discrete method and samples only from a library of existing data;

however, because of this fact, a robust library of existing data must exist to gain

accurate calibration results with the Griddy Gibbs method.

The Griddy Gibbs calibration method was then used to calibrate time depen-

dent data in a vehicle dynamics problem. This calibration utilized large amounts of

data, which would be extremely time intensive using traditional sampling methods.

In this application, the Griddy Gibbs method was able to calibrate tire parameters

with very small error, but the large amount of data caused an underestimation of

the variance of the data. This caused the posterior distributions to be extremely
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narrow. More work is needed in this area to accurately describe the uncertainty in

the Griddy Gibbs calibration, as well as to study the method’s behavior subject to

varying numbers of unknown parameters.

6.1 Future Work

In addition to this uncertainty problem, more work is needed in assessing the

importance of including the correlation parameter in calibration. This is especially

relevant because in its absence, the Griddy Gibbs calibration process can operate

in real time. This presents the opportunity for a powerful tool which could aid in

the navigation of autonomous vehicles. More work is planned for this application,

specifically the development of a tool to select optimal vehicle subsystem models to

use in varying environmental conditions.
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Appendix A R Code Steps

A.1 Inputs

The Griddy Gibbs code takes three input files: design, expobs, and simobs.

The design file contains the values of the parameter settings for each simulation and

should be organized with independent x settings first, followed by θ parameters. The

”expobs” file holds the experimental data to calibrate to, and the ”simobs” file holds

the simulation observations used in calibration. The expobs file should include the x

settings used to generate the data, and its x settings should match those in the design

file.

These inputs should be arranged as follows, for nx x settings, ny responses,

per simulation i:

Y (i) =

[
Y1(i) Y2(i) . . . Ynx(i)

]
(1)

where

Y1(i) =

[
Y1(x1) Y2(x1) . . . Yny(x1)

]
(2)

Y2(i) =

[
Y1(x2) Y2(x2) . . . Yny(x2)

]
(3)

Ynx(i) =

[
Y1(xnx) Y2(xnx) . . . Yny(xnx)

]
(4)

This is not the standard format for input files generated using the Los Alamos
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”simobs” Matlab code, which considers each x setting a separate simulation, hence

the ”rearrange truth & simobs” section in lines 36-64.

A.2 Precalculation

In this section, the correlation matrices and portions of the logarithmic like-

lihood function are precalculated. The correlation matrices are calculated in lines

68-83 according to the following equation:

nx∑
i=1

ρ
|xni−xnj |
xn (5)

For the term in the ith row and jth column of R describing the correlation between

n independent variables x. If it is not desired to include the correlation parameter in

calibration, it should be set to zero.

The variable Cθ = (Y (θ, x, z) − g(θ))TR−1(Y (θ, x, z) − g(θ)) is calculated for

each simulation and rho setting specified. This is taken from the equation for the

logarithmic likelihood

ln(L(θ)) =
n

2
ln
( τ

2π

)
− 1

2
ln(|R|)− τ

2
Cθ (6)

In lines 114-118, each combination of the correlation parameter ρ per x value

is assembled. If more or fewer than three x variables are used, these lines should be

edited.

A.3 Gibbs Sampling

The Griddy Gibbs sampling algorithm includes the following steps, for each i

iteration:
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1. Sample θ(i)

(a) Calculate the full conditional distribution for each simulation: p(θ|τ (i), ρ(i)) =

L(θ)π(θ). On the first iteration i = 1, assume arbitrary values for τ (1) and

ρ(1). On each successive iteration i, use the previous i − 1 simulation’s

value.

(b) Normalize the full conditional distribution: pN(θ|else)(i) = p(i)(θ|τ (i),ρ(i))∑n
i=1 π

(i)(θ|τ (i),ρ(i)) .

Because this function is proportional to the joint posterior distribution, this

normalization process in effect removes that proportionality constant.

(c) Take the cumulative logarithmic likelihood: cp(i)(θ|τ (i), ρ(i)). Draw a ran-

dom number k(i) between 0 and 1. The ith estimate for θ, θ(i), will

be the combination of parameters used in the simulation run for which

p(i)(θ|τ (i), ρ(i)) > k(i).

2. Sample τ (i)

(a) Because the sampling distribution for τ follows the multivariate normal

distribution and the prior distribution follows the gamma distribution,

τ can be sampled directly using a value for Cθ calculated using the ith

estimate for θ, θ(i). The parameters α and β should be assigned values 1

and 0, respectively, to be uninformative.

π(τ |θ) ∼ Gamma(α + n/2, β + C
(i)
θ /2) (7)

3. Sample ρ(i)

(a) Calculate the full conditional distribution, p(ρ|θ(i), τ (i)) = L(ρ)π(ρ), using

the ith calculated value for τ (i), θ(i).
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(b) Normalize the full conditional distributions:

pN(ρ|θ(i)τ (i))(i) = p(i)(ρ|θ(i),τ (i))∑n
i=1 p

(i)(ρ|θ(i),τ (i)) .

(c) Take the cumulative log likelihood, cp(i)(ρ|θ(i)τ (i)). Draw a random number

k(i) between 0 and 1. The ith estimate for ρ, ρ(i), will be the combination

of ρ for which p(i)(ρ|θ(i)τ (i)) > k(i).

The mean of the i estimates for θ, τ , ρx, and ρt are considered the sampler’s

estimate for their true values.

Appendix B Tire Model Calibration

The application of the Griddy Gibbs code to the vehicle dynamics calibration

generally follows the same process as listed in Appendix A, except a different method

for calculation the correlation matrices is used.

In this application, we observe Y (t, x) at a discrete number of x and t values.

For one case, we observe the normal force at nt = 500 and nx = 3. Because we

observe each of the time points at each x setting, we can take the general correlation

matrix R to be the Kronecker product of the two separate correlation matrices, Rx

and Rt.

R = Rx ⊗Rt (8)

The Kronecker product multiplies the entire Rt matrix by each value in Rx.

Rx ⊗Rt =



Rx11 ×Rt Rx12 ×Rt · · · Rx1nx
×Rt

Rx21 ×Rt Rx22 ×Rt · · · Rx2nx
×Rt

...
...

. . .
...

Rxnx1 ×Rt Rxnx2 ×Rt · · · Rxnxnx
×Rt


(9)
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The determinant of the Kronecker product of two matrices is given by

det(Rx ⊗Rt) = det(Rx)
nt × det(Rt)

nx (10)

For large values of ρ, det(R) tends towards 0, and for large values of ny, det(Rt)
nx

tends towards infinity. For numerical stabilization, we can use the natural log of

the determinant, and use the fact that Rt is composed of an evenly spaced grid of

evaluation points with step size ϵ, to alternatively calculate the determinant of R:

det(Rt) = (1− (ρϵ)2)
(ny−1)

(11)

ln(det(Rt)) = ny × ln(det(Rx)) + nx × (ny − 1)× ln(1− (ρϵ)2) (12)

In the preceding equation, the determinant of Rx can be directly calculated as its

exponent is sufficiently small that it does not tend towards infinity.

The inverse of the Kronecker product of two matrices is given by

(Rx ⊗Rt)
−1 = R−1

x ⊗R−1
t (13)
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