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Abstract

One of the biggest concerns of the digital era is to keep data secure. With the rise of

quantum computers, some of the problems that were considered hard will be solved in polynomial

time. Therefore, efforts are taken to design practical cryptosystems that will resist attacks from both

classical computers and quantum computers. In this thesis, we analyze three quantum-resistant

code-based cryptosystems. We propose a new type of attack based on mixed-integer non-convex

programming for the NIST submission FuLeeca.
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Chapter 1

Introduction

Whitfield Diffie, one of the pioneers of public key cryptography once said, “without strong

encryption, you will be spied on systematically by lots of people.” Cryptography has been used to

protect information for thousands of years. From the use of hieroglyphs by the Egyptians1, to the

Enigma machine of World War II [2], symmetric encryption was used in important communication,

oftentimes of military value so that the messages could only be read by the intended receiver. In

symmetric encryption, both the sender and the receiver need to agree on a shared secret. This shared

secret, called the secret key is used in order to encrypt the message, that is to transform the message

into a form that is not readable by an outsider. It is also used to decrypt the message, meaning to

transform the message back to the original form. In the last few decades, the need for a secure way

to send messages is no longer reserved for military use. Every day companies and individuals send

and receive a lot of classified or sensitive information, for example, social security numbers can be

used to apply for a loan in our names. We can also mention our credit card information and our

health data. It is clear that encryption should be used on such pieces of information. Modern-day

symmetric-key cryptosystems like AES [3] provide us with a way to encrypt and decrypt data with

high speed, and AES has proven to be computationally impractical to break. One question then

needs to be asked: how do we exchange the secret key in order to communicate securely?

Another concern for the digital era is the ownership and repudiation of a message. Let

us suppose that a person named Alice communicates with another person named Bob. How could

Bob be sure that the message he received is from Alice and not from an evil Eve who tries to

1See http://all.net/edu/curr/ip/Chap2-1.html
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impersonate Alice? Also, how can Bob hold Alice accountable for the message that she sent to Bob?

Lastly, how could Bob know if the message he receives does not contain errors? Nowadays, the term

cryptography is used as an umbrella for the answers to all the previous questions. It refers to the

use of mathematical algorithms in order to hide sensitive information (encryption schemes), verify

identities (digital signature scheme), ensure private communication (key exchange), and prevent

messages from being tampered with (cryptographic hash function).

In his paper [4], Diffie presented us the idea of public key cryptography. Public key cryp-

tography was proposed as an answer to the problem of key distribution and identity verification.

In a public key cryptosystem, Alice has a public key that she publishes for the whole world to use.

Anyone can then encrypt a message to be sent to Alice but only Alice can decrypt the ciphertext

using her private key. In order to construct such a cryptosystem, cryptographers use a one-way

function with a trapdoor. That is a function such that the preimage is difficult to compute except

for someone in possession of a secret piece of information (the trapdoor, a.k.a the secret key). The

RSA encryption scheme [5] and the Diffie-Hellman key exchange [6] are two of the earliest public

key cryptosystems that are still widely in use and most importantly, provide security to many of our

internet transactions.

The RSA cryptosystem is based on the fact that the factorization of a product of two large

primes is difficult unless one already has the factors. The private key is a pair of large primes p and

q and the public key is N = pq. The Diffie-Hellman key exchange [6] is built upon the difficulty

of solving the discrete logarithm. That is given a power of prime q, a primitive element α ∈ Fq.

It is very easy to compute y = αx mod q for any x ∈ Fq, and solving for x in y = αx mod q is

computationally expensive. With the computational infrastructures that we have now, both the

RSA cryptosystem and the Diffie-Hellman key exchange algorithm are secure. What is concerning

is when quantum computers of large-scale will be available.

There is no known polynomial time algorithm to solve the factorization problem and the

discrete logarithm problem with a classical computer. In 1994, while no useful quantum computers

were built yet, Shor [7] proposed algorithms that use the property of quantum superposition and

quantum Fourier transformation in order to factor a large number and get the discrete logarithm of

a number efficiently using a quantum computer. As of now, the most powerful quantum computer

is the Osprey chip by IBM [8], and has 433 qubits. Many other companies are also in the race to

build larger quantum computers. This tells us that the large-scale quantum computers will arrive
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and we need to be prepared.

The goal of post-quantum cryptography is to develop public key cryptosystems that can be

used in our classical architectures and are secure against cryptanalysis performed using both classical

computers and quantum computers. This mostly means, using hard problems in maths other than

factorization and the discrete logarithm to create cryptosystems. We also would like to note that

post-quantum cryptography is different from quantum cryptography. Quantum cryptography utilizes

quantum mechanics in its encryption and decryption process so it requires a quantum facility to run.

On the other hand, Post-Quantum Cryptography does not need any quantum facility.

To mitigate this threat posed by quantum computers, in 2016, the National Institute of

Standards and Technology (NIST) started a project to standardize quantum-resistant public key

cryptosystems (encryption, key encapsulations, and signature) [9]. The first formal call for sub-

mission was announced in 2016 and 82 submissions were received for this first round, one of them

being the Classic McEliece cryptosystem [10]. This standardization process is not a competition in

the sense that there is no ‘winner’ to be selected. A variation of algorithms will be selected to be

standardized and some algorithms, even those not chosen to be standardized will still be considered

as “good choice”. All algorithms that are submitted are evaluated by both NIST and the pub-

lic. The candidates for the NIST standardization can be classified by the mathematical structures

they are based on. First, we have the cryptosystems based on lattices. Their security relies on

the difficulty of either finding short integer solutions or a closest vector in a lattice. Second, we

have multivariate cryptosystems which are based on the difficulty of solving a system of multivari-

ate quadratic polynomial equations over a finite field. Third, we have hash-based schemes which

are taking advantage of the properties of a cryptographic hash function. And lastly, we have the

code-based cryptosystems on which we are focusing in this thesis. As of now, NIST has selected

four algorithms for standardization2: the public key encryption CRYSTALS-KYBER (based on lat-

tice) and the three signature schemes CRYSTALS-Dilithium (based on lattice), FALCON (based

on lattice) and SPHINCS+ (hash-based signature scheme) and the cryptosystems BIKE 3, Classic

McEliece 4, HQC 5 and SIKE 6 are on the fourth round of evaluation.

Among the finalists of this standardization process, the Classic McEliece cryptosystem de-

2https://csrc.nist.gov/news/2022/pqc-candidates-to-be-standardized-and-round-4
3https://bikesuite.org/
4https://classic.mceliece.org/
5https://pqc-hqc.org/
6https://sike.org/
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serves a closer look. This NIST candidate is considered secure and is still under consideration to

be standardized. The only drawback is that it has a large public key and therefore, may not be

widely used in practice. The Classic McEliece cryptosystem is based on the original version of the

McEliece cryptosystem which was proposed in [11] one year after the RSA cryptosystem was in-

troduced. The McEliece cryptosystem, and hence the Classic McEliece NIST candidate, is based

upon Goppa codes. Goppa codes are a type of linear code that is already well-studied. From the

apparition of the McEliece cryptosystem to now, there are several papers that study both the linear

code and the cryptosystem itself. A selected list can be viewed on the official website of Classic

McEliece7. We will give the basic background of linear codes in Chapter 2 and an overview of the

Classical McEliece in detail in Chapter 3.

The only standardized digital signatures are based on lattices and hash functions. In an

effort to diversify the signature portfolio, NIST called for additional signature schemes for the

post-quantum cryptosystem standardization [12]. This call for Additional Signatures received 4

submissions whose security is based on hard problems in coding theory·These cryptosystems were

Enhanced pqsigRM, FuLeeca, LESS, MEDS, and Wave. We will focus on the FuLeeca cryptosystem

and its cryptanalysis in Chapter 4.

Our main contribution is presenting a mixed integer programming key recovery attack

against the NIST candidate FuLeeca.

7https://classic.mceliece.org/papers.html
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Chapter 2

Background on Linear codes

2.1 Notation and basic concepts

Throughout this thesis, we use bold letters to denote vectors and matrices. Let q be a prime

number and m, n, and k be positive integers such that n ≥ k ≥ 1. We denote by Fq the finite field

of order q and Fqm an extension field of Fq of degree m. We will use Ik to denote the identity matrix

of size k. LetMk,n(Fqm) denote the space of all k × n matrices over Fqm , and GLn(Fqm) denotes

the set of all invertible matrices inMn,n(Fqm). For a matrix M ∈ Mk,n(Fqm), ⟨M⟩qm denotes the

vector space spanned by the rows of M over Fqm . The element in the j-th row and k−th column of

M is denoted by mjk.

2.2 Linear codes

Definition 1 (Linear codes). An [n, k] linear code over Fqm is a subspace of Fn
qm of dimension k.

An [n, k] linear code has length n and rate k/n. An element of a code is called a codeword.

A [n, k] linear code C can be defined by giving a matrix G ∈ Mk,n(Fqm) of full rank, called a

generator matrix of C, such that each codeword can be uniquely written as y = xG. Using the

notation described above, C = ⟨G⟩Fqm
. We can also define C by giving a matrix H ∈ F(n−k)×n

qm and

defining C = {y ∈ Fn
qm |yH⊤ = 0}. The matrix H is called a parity check matrix of C. For any

vector v ∈ Fn
qm , the syndrome of v is the vector vH⊤. Note that vH⊤ = 0⇔ v ∈ C.

In order to quantify the distance between vectors in Fn
qm , we endow Fn

qm with a metric.
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Below we will define different metrics that one can use. Each metric will induce a set of properties

on codes and we will look at those details in later chapters.

Definition 2 (Hamming metric). Let n ∈ N. For x ∈ Fn
qm , the Hamming weight of x, denoted by

wtH(x), is the number of its non-zero components. That is wtH(x) = |{i ∈ {1, . . . , n}|xi ̸= 0}|.

For x,y ∈ Fn
qm , the Hamming distance of x and y is dH(x,y) = wtH(x−y). Note that we also have

dH(x,y) = |{i ∈ {1, . . . , n}|xi ̸= yi}|.

Example 1. Let x = (0, 1, 1, 0, 1), y = (1, 1, 0, 1, 1) ∈ F5
2, then dH(x,y) = wtH(x − y) =

wtH((1, 0, 1, 1, 0)) = 3.

Definition 3 (Rank metric). Fix a basis β = {β1, . . . , βm} of Fqm over Fq. Then for each element

x = (x1, x2, . . . , xn) ∈ Fn
qm , we associate the matrix

x =



x11 x12 . . . x1n

x21 x22 . . . x2n

...
...

. . .
...

xm1 xm2 . . . xmn


∈Mm,n(Fq),

where xij is the ith coordinate of xj with respect to the basis β for 1 ≤ i ≤ m, 1 ≤ j ≤ n. The rank

weight of x is wtR(x) = Rank(x). Note that the rank weight of x does not depend on the chosen

basis.

For x,y ∈ Fn
qm , the rank distance of x and y is dR(x, y) = wtR(x− y) for x, y ∈ Fn

qm .

A [n, k] rank linear code over Fqm is a [n, k] linear code viewed as a rank metric space.

Example 2. For example, consider q = 2,m = n = 6, k = 2 and the finite field F2m = F26 ≡

F2[x]/(x
6 + x4 + x3 + x+ 1) ≡ F2[a] where a is a root of x6 + x4 + x3 + x+ 1.

Take the basis β = {1, a, a2, a3, a4, a5} and consider the element

v =
(
1, a2 + 1, a4 + 1, a4 + a3 + a, a5 + a4 + a2 + a, a5 + a4

)
.
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The corresponding matrix is x =



1 1 1 0 0 0

0 0 0 1 1 0

0 1 0 0 1 0

0 0 0 1 0 0

0 0 1 1 1 1

0 0 0 0 1 1


and wtR(x) = rank(x) = 6.

Definition 4 (Lee metric). For the Lee metric-based codes, we require m = 1.

There are two equivalent definitions of the Lee weight of an element:

• Given an element a in Fp where the representation of a is chosen to be in {0, . . . , q − 1}, the

Lee weight of a is wtL(a) := min{a, q − a}.

• Given an element a in Fp where the representation of a is chosen to be in {− q−1
2 , . . . , 0, . . . , q−1

2 },

the Lee weight of a is |a|.

The Lee Weight of a vector x = (x1, . . . , xn) ∈ Fn
q is defined as wtL(x) =

∑n
i=1 wtL(xi) and

the the Lee distance of two vectors x and y is dL(x,y) = wtL(x− y).

Example 3. Let p = 7, then the Lee weight of 0, 1, 2, 3, 4, 5, 6 will be respectively 0, 1, 2, 3, 3, 2, 1.

The Lee weight of the vector (4, 5, 6, 3) is wtL ((4, 5, 6, 3)) = 3 + 2 + 1 + 3 = 7.

An [n; k] Lee metric linear code C is a k-dimensional linear subspace of Fn
p endowed with the

Lee metric. Note that for q ∈ {2, 3}, the Lee metric coincides with the Hamming metric. However,

for other p, we can have a vector with a small Hamming weight and a large Lee weight or a vector

with a large Hamming weight and a small Lee weight.

Definition 5 (Minimum Distance). Let C ⊆ Fn
qm be a linear code endowed with a distance d and

its associated weight function wt. The minimum distance of C is denoted by

d(C) = min{d(x,y)|x,y ∈ C,x ̸= y}

. Note that C has finitely many elements, so d(C) is well-defined. Also, for any x,y ∈ C, x− y ∈ C,

so d(C) can be equivalently defined as d(C) = min{wt(v)|v ∈ C,v ̸= 0}.

7



2.3 Hard problems in Coding Theory

Coding theory is the branch of mathematics that is focused on designing error-correcting

codes that can be used efficiently to send reliable information across noisy channels. From the start

of coding theory, some types of codes have been found to be easy to decode. Those will be the

codes that we use in cryptography. However, for a general code, the decoding process is hard, so

we transform our basis so that our public key resembles a random code. We present here a selected

list of hard problems in coding theory and we will later give some cryptosystems based on their

difficulties. We use the term attack to refer both to the act of solving an instance of a given hard

problem and any particular algorithm designed for that purpose.

A linear code is a subspace of a finite-dimensional vector space over a finite field endowed

with a distance function. This subspace is created using a “nice basis” or a “nice parity check

matrix”, a term that we will rigorously define for each cryptosystem that we will analyze, which is

kept as the secret key. A “scrambled basis” or a “scrambled parity check matrix” is used as the

public key and resembles a random matrix. Depending on the cryptosystem, the transformation

from the “nice” to the “scrambled” may be kept secret [1] or published [13]. In a typical code-based

encryption scheme, a ciphertext is an element of the code (a.k.a. a codeword) plus a random error

vector of known weight (distance from the origin). The ciphertext can be easily computed by anyone

using the scrambled basis. Suppose C ∈ Fn
qm is a [n, k]-linear code over Fqm that is defined by a nice

basis G and a scrambled basis G′. For a message x, to get the corresponding ciphertext, we encode

x. That is, we compute y = xG′ + e where e is randomly generated with given weight. The “nice

basis” allows the extraction of the codeword, a process named decoding from the ciphertext very

easily. A strong cryptosystem is designed so that using the public key and the ciphertext only, it is

hard for an attacker to get the codeword. Such a cryptosystem relies on the difficulty of

1. Inverting the transformation, and hence, compute G or an equivalent matrix G1, from G′.

Here the term “equivalent” means that G1 may not be equal to G but it is also a nice basis

of C that can be used interchangeably with G.

2. Decoding y using G′.

For a signature scheme, the nice basis is used to generate a signature for a message. The

signature is a codeword with the following properties. It is easy to verify that the signature is a

8



codeword using the public key. The signature must satisfy a set of conditions, different for each

cryptosystem, that is hard to achieve if an attacker starts with the public key. Such a cryptosystem

relies on the difficulty of

1. Inverting the transformation.

2. Producing a codeword with the desired properties (usually a restriction on weight with other

cryptosystem-specific characteristics).

2.3.1 The bounded decoding problem in Hamming metric

Problem 1 ((q,m, n, k, r)Bounded Decoding Problem in Hamming metric).
Input: G ∈Mk,n(Fqm) of rank k, y ∈ Fn

qm and r ∈ N such that wtH(y − xG) ≤ r for some x ∈ Fk
qm .

Output: x ∈ Fk
qm and e ∈ Fn

qm such that wtH(e) ≤ r and y = xG+ e.

This problem is already extensively studied in the literature and is proven to be NP-

complete. Up to now, the most efficient algorithms to solve a general instance of Problem 1 is

based on a method called Information Set Decoding(ISD). Starting with an instance of Problem 1

which is promised to have a unique solution, the idea of ISD is to randomly select k positions of y.

Let us call the set of selected positions I. If the corresponding submatrix in G is full rank, then

solve yI = aGI . If the weight of y− aG is ≤ r then I correspond to the positions of y where there

was no error then a = x. In case I do not give a solution that satisfies y − aG ≤ r repeat the

process until we get the desired result and x is found. Even with the help of quantum computers,

the complexity of ISD is exponential, which works in favor of the cryptographic systems based on

Problem 1.

For a family of code called Goppa code, an algorithm for fast decoding has been found. The

Classic McEliece cryptosystem that we will study in Chapter 3 is taking advantage of that property.

2.3.2 The bounded Rank Decoding Problem

Problem 2 ((q,m, n, k, r)Bounded Rank Decoding Problem (RD)).
Input: G ∈Mk,n(Fqm) of rank k, y ∈ Fn

qm and r ∈ N such that wtR(y − xG) ≤ r for some x ∈ Fk
qm .

Output: x ∈ Fk
qm and e ∈ Fn

qm such that wtR(e) ≤ r and y = xG+ e.

This problem is not known to be hard, however, it can be reduced to Problem 1. There are

two main categories of attacks on the RD problem: combinatorial attacks and algebraic attacks. In

a typical combinatorial attack, the adversary makes an educated guess on the support of the error

9



e, that is which components of e will be non-zero. Then, they transform the RD problem into a

system of linear equations on the components of e with respect to that guess. We show in Table

4.3.2 the complexity of the best-known combinatorial attacks.

Attack Complexity

[14] O
(
min

{
m3t3q(t−1)(k+1), (k + t)3t3q(t−1)(m−t)

})
[15] O

(
(n− k)3m3qmin{t⌈mk

n ⌉,(t−1)⌈m(k+1)
n ⌉})

[16] O
(
(n− k)3m3qt⌈

m(k+1)
n ⌉−m

)
Table 2.1: Best known combinatorial attacks on the RD problem. [1]

For the algebraic attack, the RD problem is converted into a system of polynomials, and

this system is solved using algebraic techniques. In the case where an educated guess is used to

speed up the computation, the process is called a hybrid attack. In Table 4.3.2, we summarize the

algebraic attacks that were considered in [1].

Attack Condition and method used Complexity

[15]
[
(t+1)(k+1)−(n+1)

t

]
⩽ k O

(
k3t3qt[

(t+1)(k+1)−(n+1)
t ⌉

)
Annulator polynomial

[17] m
(
n−k−1

t

)
⩾

(
n
t

)
− 1

O
(
m
(
n−p−k−1

t

)(
n−p
t

)ω−1
)
, where ω = 2.81 and

p = min
{
1 ⩽ i ⩽ n : m

(
n−i−k−1

t

)
⩾

(
n−i
t

)
− 1

}
[18] Maximal minors O

((
((m+n)t)⊤

t!

)ω)
[17] m

(
n−k−1

t

)
<

(
n
t

)
− 1

O
(
qatm

(
n−k−1

t

)(
n−a
t

)ω−1
)

where a = min
{
1 ⩽ i ⩽ n : m

(
n−k−1

t

)
⩾

(
n−i
t

)
− 1

}
[18] Maximal minors O

((
((m+n)t)t+1

(t+1)!

)ω)
Table 2.2: Best known algebraic attacks on the RD problem. [1]

For example, takeG =

 1 a+ 1 a2 + 1 a3 + 1 a4 + 1 a5 + 1

1 a2 + 1 a4 + 1 a4 + a3 + a a5 + a4 + a2 + a a5 + a4

 ∈
M2,6(F26). We see here that G is full rank so its rows generate a [6, 2] rank linear code C over F26 .

Encoding the vector x = (1+a, a2+a) gives the element xG = (a2+1, a4+a3+a+1, a5+

a4 + a, a4 + a3 + a2, a5 + a4 + 1, a5 + a3 + a2 + a) ∈ C. The vector e = (1, a + 1, 0, 0, 0, 0), of rank

weight 2 is not in C. We can prove that by stacking e on top of G and taking the row echelon form.
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 e

G

 REF−→


1 0 0 a5 + a4 + a2 + a a4 + a3 + a2 a5 + a4 + a3 + a2

0 1 0 a4 + a a5 + a4 + a3 + a2 + 1 a4 + a2

0 0 1 a5 + a4 + a2 a2 + 1 a5 + a4 + a3 + a2

 .

Thus the vector y = xG+e =
(
a2, a4 + a3, a5 + a4 + a, a4 + a3 + a2, a5 + a4 + 1, a5 + a3 + a2 + a

)
is not in C. We provide a code for solving this instance of RD problem using the annulator polynomial

in Macaulay2 in Appendix ?? Code A.

The families Gabidulin Codes and Low-Rank Parity-Check Codes(LRPC) have fast decoding

algorithms. Although many cryptosystems based on Gabidulin Codes have been completely broken,

[1] proposed a cryptosystem based on Gabidulin Codes that stands against the attacks used on its

peers. We will investigate this cryptosystem in Chapter 4.

2.3.3 Finding Codeword of Given Lee Weight

The problem of finding a codeword of Given Lee weight can be used to create signature

schemes and is described as follows:

Problem 3 (Finding Codeword of Given Lee Weight). Given H ∈ F(n−k)×n
p which is a parity check

matrix for a [n, k] linear code C in Fq, and w ∈ N, find a codeword c ∈ Fn
p such that cH⊤ = 0 and

wtL(c) = w.

The decision version of Problem 3 is proven to be NP-complete. All of the algorithms that

are proposed to solve this problem belong to the family of ISD and therefore are of exponential com-

plexity. The NIST candidate FuLeeca, which we will study in Chapter 5 marks the first cryptosystem

based on the Lee metric.
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Chapter 3

A cryptosystem based on

Hamming linear codes: McEliece

Cryptosystem,

3.1 Overview of the McEliece Cryptosystem

Code-based cryptography was born with the paper [11]. This was the same period where

the RSA [5] and Diffie-Hellman [6] cryptosystems were introduced. RSA and Diffie-Hellman knew

large practical use and the McEliece cryptosystem did not because of its large public key size. 45

years later, the practical use of RSA and Diffie-Hellman was challenged by the rise of quantum

computers which broke their mathematical security foundation. All eyes are now on the original

McEliece cryptosystem, which is believed to be quantum-resistant. Not only the original McEliece

cryptosystem is one of the foundations of the NIST submission Classic McEliece but McEliece’s idea

of hiding the structure of an easy-to-decode linear code was borrowed from by many researchers to

build many of our current code-based cryptosystems.

12



3.2 Background

3.2.1 History and development of the McEliece Cryptosystem

In [11], McEliece presents a secure cryptosystem with an extremely rapid data rate that

is suitable for multi-user communication networks. He built his work on the existence of Goppa

codes which will be explained in Section 3.2.2. It is the first cryptosystem that uses random error

in the encryption process. This attractiveness of McEliece leads to two different directions in the

cryptographic research.

The first direction is to use different types of linear codes that will lead to smaller public

key sizes. A lot of McEliece variants that use Hamming weight but replace the Goppa codes were

broken as the structure of their public key matrices could be exploited to solve for the private key.

Therefore, the original version of McEliece is still considered the most secure version. Another way

to use different types of codes is to consider different metrics. This leads to the study of rank-linear

codes and Lee metric linear codes.

The second direction is the improvement of the cryptanalysis of McEliece. The most efficient

algorithms to attack McEliece, called Information Set Decoding, are built from the work of [19].

Although those algorithms have been extensively studied, their complexity in time and in memory

is exponential with respect to the number of errors in the codeword. The recent paper [20] proposes

the fastest quantum ISD algorithm that still requires an exponential quantum memory. Therefore,

even if the large-scale quantum computers are practical, the McEliece cryptosystem will still be

secure. We will only need to update the parameters.

3.2.2 Theoretical foundation of the system: Goppa codes

Definition 6 (Goppa codes). Let g(z) = g0+g1z+ · · ·+gtz
t ∈ Fqm [z], and L = {α1, . . . , αn} ⊆ Fqm

such that g(αi) ̸= 0, for all αi ∈ L. Then the Goppa code with parameters g(z) and L is defined by

Γ(L, g(z)) =

{
y = (y1, . . . , yn) ∈ Fn

q :

n∑
i=1

yi
z − αi

≡ 0 mod g(z)

}
.

The Patterson Algorithm [21] we describe below decodes Goppa codes in polynomial time.
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Algorithm 1: Patterson’s Algorithm for Error Correction

Input: The received vector y and the Goppa code Γ(L, g).
Output: The error vector e.

1 Compute syndrome S(y) an element of
Fqm [z]
⟨g(z)⟩

2 Compute T (z) = S(y)−1 mod g(z)

3 Compute P (z) =
√
T (z) + z mod g(z)

4 Compute u(z) and v(z) with u(z) = v(z)S(y) mod g(z)
5 Compute the locater polynomial σ(z) = u(z)2 + zv(z)2

6 Find the roots of σ(z)
7 Find error positions, i.e., error vector e

3.3 The scheme

The McEliece cryptosystem is a block-cipher, meaning the data to be encrypted needs to be

divided into k-bit blocks. The key generation, encryption, and decryption processes for the McEliece

cryptosystems are as follows.

Algorithm 2: The Key Generation Algorithm for McEliece

Input: Parameters integers m, k, n, t where n = 2m is the length of the code,
k ≥ n− tm is the dimension of the code and t is the minimum distance of the
code.

Output: {pk, sk} a public key-secret key pair
1 Randomly select an irreducible polynomial of degree t over F(2m)
2 Produce a k × n generator matrix G for the Goppa code corresponding to t.
3 Randomly select a k × k invertible matrix S
4 Randomly select a n× n permutation matrix P
5 Computes G′ = SGP
6 Return sk = {S,G,P} and pk = G′

Algorithm 3: The Encryption Algorithm for McEliece

Input: A block of message x ∈ Fk
2 , public key G′

Output: EG′(x) ciphertext of x encrypted using G′

1 Randomly generate a vector e of length n and weight t.
2 Return y = xG′ + e

Algorithm 4: The Decryption Algorithm

Input: y = EG′(x) ciphertext of x encrypted using G′, corresponding secret key G
Output: The original message x

1 Compute y′ = yP−1

2 Decode y′ using Patterson’s algorithm and let x′ be the coefficient vector.
3 Return x = x′S−1

14



3.4 Strengths of the McEliece Cryptosystem

The first advantage of the McEliece Cryptosystem over the RSA algorithm was presented by

McEliece himself in the original paper. The encryption and decryption of the McEliece cryptosystem

are significantly faster than those of the RSA cryptosystem. Now that extensive cryptanalysis of

McEliece has been done over decades, the McEliece cryptosystem is still believed to be quantum-

resistant. Therefore, we still can expect to see the McEliece cryptosystem being in consideration

long after the RSA and Diffie Hellman cryptosystems are retired. A lot of effort is also put into the

improvement of the implementation of the McEliece scheme and it will only get better.

3.5 Weaknesses and Criticisms

Since its early days, the McEliece cryptosystem has been criticized for its large public key

size. First, storing a whole matrix in itself requires a lot of memory. Also, for the scheme to be

secure, we need to use codes of low rate [22]. That is the value of k needs to be significantly smaller

than n.

The original version proposed by McEliece is not secure against the chosen ciphertext attack.

That is, given a ciphertext y, the adversary can request the decryption of any different ciphertext

from a random oracle except the ciphertext of interest. Then, based on the plaintext he received,

he can do some computation to retrieve the plaintext corresponding to the ciphertext of interest.

Suppose x is encrypted as y = xG + e. We can randomly choose one bit from the set of bits

with entry 1 and one bit from the set of bits with entry 0. By inverting those bits, we obtain with

probability t(n− t)/n(n− 1) a new valid different ciphertext for x with exactly t errors. We can

then send this new ciphertext to a random decryption oracle and get the message back! However, if

the inverting does not give us a valid ciphertext, we will receive a decryption failure error.

3.6 McEliece today

The NIST candidate Classic McEliece is built upon on original McEliece cryptosystem and

mitigates this last criticism of McEliece. That is if an adversary attempts a chosen ciphertext attack

on Classic McEliece, instead of getting back a decryption failure error, Classic McEliece is designed

to avoid leaking side channel errors and to return back a “fake plaintext”. McEliece is used in the
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iPhone and iPad app PQChat1.

1https://post-quantum.com/messaging/index.html
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Chapter 4

A Cryptosystem based on Rank

linear codes

There have been many cryptosystems built on the rank metric, including Rollo[23] and

RQC[24]. In this chapter, we will provide more detail on the scheme introduced in [1].

4.1 Background

4.1.1 Gabidulin codes

Definition 7 (Moore matrices). For positive integers k ≤ n ≤ m, let us consider a vector g =

(g1, . . . ,gn) ∈ Fn
qm . The Moore matrix of k rows generated by g is the matrix G ∈ Mk,n(Fqm)

defined by

G =



g1 g2 . . . gn−1 gn

gq
1 gq

2 . . . gq
n−1 gq

n

gq2

1 gq2

2 . . . gq2

n−1 gq2

n

...
...

. . .
...

...

gqk−1

1 gqk−1

2 . . . gqk−1

n−1 gqk−1

n


=

(
gqi−1

j

)
i∈[1..k],j∈[1..n]

.

Some properties of Moore matrices are described in the following proposition.

Proposition 1. 1. Let A,B ∈ Mk,n(Fqm) be the two Moore matrices generated respectively
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by g1 and g2. Then A + B is the Moore matrix generated by g1 + g2. In fact, for each

i ∈ [1..k], j ∈ [1..n],
(
g1j + g2j

)qi−1

=
(
g1j

)qi−1

+
(
g2j

)qi−1

as the intermediate terms in the

binomial form will be multiple of q.

2. For a vector g ∈ Fn
qm and a matrix Q ∈Mn,l(Fq), let G ∈Mn,l(Fqm) be the Moore matrix of

k rows generated by g. Then GQ is the k× l Moore matrix generated by gQ. This is because

the Frobenius automorphism u 7→ uq and its powers fix any element in Fq.

3. For a vector g ∈ Fn
qm with wtR(g) = n, the Moore matrix G of k rows generated by g

satisfies rank(G) = k. In fact, if wtR(g) = n, then the set of the components of g is linearly

independent over q. We then obtain {g1, . . . ,gk} is linearly independent. If rank(G) < k then

there is any λ ∈ Fk
qm such that λ⊤G = 0Fn

qm
. In particular we should have t λ⊤(g1, . . . ,gk)

⊤ =

0 as (g1, . . . ,gk)
⊤ is the first column of G. Since that contradicts the fact that {g1, . . . ,gk}

is linearly independent, we conclude that G is full rank.

Definition 8 (Gabidulin codes). For positive integers k ≤ n ≤ m and g ∈ Fn
qm with wtR(g) = n,

let G be the Moore matrix of k rows generated by g. Then, the rowspace ⟨G⟩qm of G is called the

[n, k] Gabidulin code generated by g.

Gabidulin codes were introduced in [25] where it was proved that a [n, k] Gabidulin code

has a minimum rank distance of d = n − k + 1. This makes them the first codes that can correct

up to ⌊n−k
2 ⌋ to be known such that the construction is possible for any k ≤ n ≤ m. Another reason

that makes them valuable is that they have efficient decoding algorithms [25], [26], [27]. This allows

us to use Gabidulin codes in a McEliece-like cryptosystem.

As we saw previously, a Gabidulin code can be determined using the generator g and the

parameters q,m, n, k. That is, instead of storing or sending the matrix G, we only need to store

or send the vector g. Another technique to cut down the memory used to store the code is by

generating it using partial circulant matrices which will be described below.

4.1.2 Partial cyclic codes

Definition 9 (Partial circulant matrices). Let g = {g1, . . . ,gn} ∈ Fn
qn and k ≤ n and integer. The

k× n partial circulant matrix generated by g is obtained by cyclically right shifting its i− 1-th row

for 2 ≤ i ≤ n, that is
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PCk(g) =



g1 g2 . . . gn−1 gn

gn g1 . . . gn−2 gn−1

gn−1 gn . . . gn−3 gn−2

...
...

. . .
...

...

gn−k+2 gn−k+3 . . . gn−k gn−k+1


.

A square partial circulant matrix is called circulant matrix. For a given field F, which may

be any of the fields we are working with, we will denote by PCn(F) the set of all n × n circulant

matrices over F. The paper by Chalkley [28] gives a more in-depth study of partial circulant matrices.

In particular, he proved that PCn (Fq) forms a commutative ring under usual matrix addition and

multiplication. Guo and Fu [1] use invertible circulant matrices inMn,n(Fq) in the key generation.

It is then important to give a sufficient and necessary condition for a circulant matrix to be invertible

and the number of invertible circulant matrices over Fq.

Proposition 2. [29] For a vector m = (m0, · · · ,mn−1) ∈ Fn
q , we define m(x) =

∑n−1
i=0 mix

i ∈

Fq[x]. A sufficient and necessary condition for PCn(m) being invertible is gcd (m(x), xn − 1) = 1.

Proposition 3. [30] For a polynomial f(x) ∈ Fq[x] of degree n, let g1(x), · · · , gr(x) ∈ Fq[x] be r

distinct irreducible factors of f(x), i.e. f(x) =
∏r

i=1 gi(x)
ei for some positive integers e1, · · · , er.

Let di = deg (gi(x)) for 1 ⩽ i ⩽ r, then

Φq(f(x)) = qn
r∏

i=1

(
1− 1

qdi

)
,

where Φq(f(x)) denotes the number of polynomials relatively prime to f(x) of degree less than n.

Remark 1. To generate the Gabidulin code in their cryptosystem, Guo and Fu [1] started with a

normal element g ∈ Fqn over g ∈ Fq. The vector g = (gq
n−1

, gq
n−2

, . . . , g) ∈ Fn
qn is then a Fq basis

vector of Fqn . Note that the n× k partial circulant matrix generated by g is

G =



gq
n−1

gq
n−2

. . . g

g gq
n−1

. . . gq
1

...
...

. . .
...

gq
k−2

gq
k−3

. . . gq
k−1


,
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which coincides with the Moore matrix generated by g. Therefore the [n, k] linear code

G = ⟨G⟩qn is called a partial cyclic Gabidulin code generated by g.

The following proposition gives the total number of normal elements.

Proposition 4. [30] Normal elements of Fqn over Fq are in one-to-one correspondence to circulant

matrices in GLn (Fq). Therefore the total number of normal elements of Fqn over Fq can be evaluated

as Φq(n) = Φq (x
n − 1).

The cryptosystem [1] uses a semilinear transformation φ over Fqn/Fqm as part of the secret

key. Let us then define the semilinear transformations and give some properties which form the

backbone of the cryptosystem.

4.2 Semilinear transformations

Definition 10. A basis vector of Fqm is any vector a = (a1, . . . ,am) ∈ Fm
qm such that {a1, . . . ,am}

form a basis of Fqm over Fq.

For example, let us consider q = 2,m = 6 and the finite field F2m = F26 ≡ F2[x]/(x
6 + x4 +

x3 + x+ 1) ≡ F2[a] where a is a root of x6 + x4 + x3 + x+ 1. The vector (1, x, x2, x3, x4, x5, x6) is a

basis vector and so is each of its image by permutation. We use the term polynomial (resp. normal)

for an element α ∈ Fm
q such that (1, α, α2, . . . , αm−1) (resp. (α, αq, . . . , αqm−1

)) is a basis vector of

Fqm .

The term semi-linear mapping is an established term in the literature ([31], [32],...). It refers

to certain types of mappings between codes and is related to projective geometry. However, we will

keep the terminology used by Guo and Fu [1].

Definition 11 (linear automorphism of Fqn/Fqm ). In [1], we consider integers m,n, k such that

k ≤ n and n = ml for some integer l. Therefore, Fqn can be seen as a vector space over Fqm . Let

a = {a1, . . . ,al} and b = {b1, . . . ,bl} be two basis of Fqn over Fqm . In practice, a is fixed and b will

be randomly generated. We define the corresponding automorphism of Fqn by mapping an element

v =
∑l

i=1 λiai ∈ Fqn (with λi ∈ Fqm) to

φ(v) =

l∑
i=1

λiφ(ai) =

l∑
i=1

λibi.
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Such map, by design, is Fqm linear. Henceforth, we will denote AutFqn/Fqm
the set of all

Fqm linear automorphism of Fqn . For any matrix M ∈ GLnFqm , Ma gives us a unique basis b and

all basis b can be obtained this way. Therefore we have the following:

Proposition 5. The total number of Fqm linear automorphisms of Fqm is

|AutFqn/Fqm
| = |GLnFqm | =

l−1∏
i=0

(qml − qmi).

Definition 12 (semi-linear automorphism of Fqn/Fqm ). Given φ ∈ AutFqn/Fqm
, for v = {v1, . . . , vn} ∈

Fn
qn , let φ(v) = {φ(v1), . . . , φ(vn)}. In the same way, for a subset V ∈ Fn

qn , let φ(V) = {φ(v) : v ∈

V}, for a matrix M = (Mij) ∈ Mk,n((Fqn), let φ(M) = (φ(Mij)). In these settings, φ is called a

semilinear transformation over Fqn/Fqm .

Definition 13 (Fully linear automorphism). Let C ⊆ Fm
qm be an [n, k] linear code over Fqn and

φ ∈ AutFqn
/Fqm . If φ(C) is also a linear code over Fqn , we say that φ is linear over C. If φ is linear

over all linear codes over Fqn , we say that φ is fully linear over Fqm .

Guo and Fu [1] proved the following properties for semi-linear transformations.

Proposition 6 (Properties of semilinear transformations). Let φ be a semilinear transformation

over Fqn/Fqm .

1. For a vector v ∈ Fn
qn , wtR(φ(v)) = wtR(φ(v)), whether we take the rank weight with respect

to Fqm or Fq, (Proposition 6 and Remark 4 in [1])

2. The image φ(C) of a code C ⊆ Fm
qm is always a Fqm and Fq linear space.

3. Let a = {a1. . . . , al} be a basis vector of Fqn over Fqm and φ ∈ AutFqn/Fqm
. Let A =

[φ(a1a)
⊤, . . . , φ(ala)

⊤], then φ is fully linear if and only if Rank(A) = 1. (Theorem 8 in [1]).

The nonlinearity of φ with extension degree l is defined to be NLm(φ) = Rank(A)
l .

4. The total number of fully linear transformations in AutFqn/Fqm
is l(qn − 1). (Theorem 10 [1])

5. A semi-linear transformation φ ∈ AutFqn/Fqm
defines a polynomial in Fqn [X] with coefficients

in Fqm . That is, we can always write φ(x) =
∑l−1

i=0 ai
(
x(qm)

)i
. Then NLl(φ) =

w
l where w is

the number of non-zero coefficients in (a1, . . . , al). (Proposition 7 [1])

Let us now discover the cryptosystem proposed by Guo and Fu [1].
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4.3 The cryptosystem

4.3.1 Description of the proposal

For a given target security level, the authors propose the parameters q,m, n, k, l, λ1 and

λ2 where n = lm. Let g = (gq
n−1

, gq
n−2

, . . . , g) be a normal basis vector of Fqn over Fq, and

G = PCk(g). Note that g and G are publicly available.

Algorithm 5: The Key Generation Algorithm

Input: (q, n,m, k, l, λ1, λ2)
Output: The public key (g⋆, t). and the private key (m1,m2, φ)

1 For i = 1, 2, randomly choose the vector mi ∈ Fn
qn such that wtR(mi) = λi and

Mi = PCn(mi) is invertible.
2 Randomly choose a semilinear transformation φ over Fqn/Fqm that is not fully linear.

3 g⋆ = φ(gM−1
1 )M−1

2

4 t =
⌊

n−k
2λ1λ2

⌋
.

5 Return the public key (g⋆, t). and the private key (m1,m2, φ)

Algorithm 6: The Encryption Algorithm

Input: A plaintext x ∈ Fk
qm and a public key (g⋆, t)

Output: The ciphertext y of x encrypted using(g⋆, t)
1 Randomly choose e ∈ Fn

qn with wtR(e) = t.

2 Return y = xPCk(g
∗) + e.

Algorithm 7: The Decryption Algorithm

Input: A ciphertext y encrypted using (g⋆, t) and the secret key (m1,m2, φ)
Output: The plaintext x corresponding to y

1 Compute yM2 = xφ(GM−1
1 ) + eM2 = φ(xGM−1

1 ) + eM2

2 Compute y′ = φ−1(yM2)M1 = xG+ φ−1(eM2)M1.

3 e′ = φ−1(eM2)M1 (Note that wtR(e
′) ≤

⌊
n−k
2

⌋
)

4 Apply the fast decoder of ⟨G⟩qn to y′ to reveals e′

5 Recover x by solving xG = y′ − e′.
6 Return y

4.3.2 Notes on the security

The authors made the following notes on the security of the schemes. All normal elements

can be obtained by multiplying any normal element with an invertible circulant matrix. Therefore,

they can work equivalently in this scheme and the security of the cryptosystem does not depend on
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g. Using a fully linear φ leads to a weak scheme which have already been broken. We also should

avoid using m1 or m2 in Fqm because doing so will reduce breaking the cryptosystem to only solving

for φ. Given φ and m1, one can always solve for m2. So the security depends on keeping φ and m1

secret.

The cryptosystem [1] is secure against the Overbeck’s attack [33], Coggia-Couvreur attack

[34], and the Loidreau’s attack [35]. Those attacks take advantage of the algebraic structure of the

public key and thanks to the semi-linear transformation, their techniques do not work here.

One can do a brute force attack to recover a valid duple (φ,m1) but since there are N (φ) ≈

q(l−1)n nonequivalent semi-linear transformations, the brute force is not computationally feasible.

It is also possible to attack the cryptosystem using a generic RD attack which time complexity is

given below.

In the appendix A, we propose an implementation of this scheme in Macaulay2.

Attack Complexity

[14] O
(
min

{
m3t3q(t−1)(k+1), (k + t)3t3q(t−1)(m−t)

})
[15] O

(
(n− k)3m3qmin{t⌈mk

n ⌉,(t−1)⌈m(k+1)
n ⌉})

[16] O
(
(n− k)3m3qt⌈

m(k+1)
n ⌉−m

)
Table 4.1: Best known combinatorial attacks on the RD problem. [1]

Attack Condition and method used Complexity

[15]
[
(t+1)(k+1)−(n+1)

t

]
⩽ k O

(
k3t3qt[

(t+1)(k+1)−(n+1)
t ⌉

)
Annulator polynomial

[17] m
(
n−k−1

t

)
⩾

(
n
t

)
− 1

O
(
m
(
n−p−k−1

t

)(
n−p
t

)ω−1
)
, where ω = 2.81 and

p = min
{
1 ⩽ i ⩽ n : m

(
n−i−k−1

t

)
⩾

(
n−i
t

)
− 1

}
[18] Maximal minors O

((
((m+n)t)⊤

t!

)ω)
[17] m

(
n−k−1

t

)
<

(
n
t

)
− 1

O
(
qatm

(
n−k−1

t

)(
n−a
t

)ω−1
)

where a = min
{
1 ⩽ i ⩽ n : m

(
n−k−1

t

)
⩾

(
n−i
t

)
− 1

}
[18] Maximal minors O

((
((m+n)t)t+1

(t+1)!

)ω)
Table 4.2: Best known algebraic attacks on the RD problem. [1]
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Chapter 5

A cryptosystem based on the Lee

metric code: FuLeeca (NIST

candidate)

FuLeeca is a Lee-metric code-based signature scheme introduced in [13] and proposed in the

Additional Signature Submission for NIST-PQC. It has been broken using LWE attacks but we will

present a different style of attack. It proposes easier implementation and smaller public key and

signature sizes. We present the structure of FuLeeca and the idea behind it. We will focus more on

the key generation process and show that the private key can be obtained from the public key only

using a mixed integer non-convex programming. This attack is based on the structure of the private

key and therefore may not be applied directly to other future Lee-metric code-based schemes. We

also note here that the key generation algorithm described in [13] slightly differs from the reference

implementation that was submitted. We will cover both the algorithm described in the paper, which

we will refer to as “textbook FuLeeca” and the reference implementation.

Since FuLeeca is the first digital signature on our survey, let us go through the high-level

components of a digital signature scheme. First, we have two parties: the signer, who call Alice, and

the verifier which can be anyone. We also need three algorithms: the key generation, the signature

generation, and the signature verification. In the key generation, Alice randomly samples a pair

{sk, pk} of a secret key sk and its associated public key pk. The signer, Alice, then publishes the
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public key in a public repository. Given a message m, the signer uses the signature generation

algorithm to compute a signature using m and sk as inputs. The verifier has access to the pk and

uses the verification algorithm to check the validity of the signature using pk and the constraints

imposed by the scheme.

5.1 Background

We work with the finite field Fp where p is a prime and represent it using the symmetric

notation, that is Fp =
{
−p−1

2 , . . . , 0, . . . , p−1
2

}
. The maximum Lee weight of an element in Fp is

M = p−1
2 and sgn(x) denotes the signum of the element x in symmetric notation. That is sgn(x) = 0

if x = 0, sgn(x) = 1 if x > 0 and sgn(x) = −1 if x < 0. For two vectors x and y in Fn
p , we denote

the number of sign matches as mt(x,y) := |{i ∈ {1, . . . , n} s.t. sgn(xi) = sgn(yi), xi ̸= 0, yi ̸= 0}|.

The following definitions are taken directly from [13].

Definition 14 (Logarithmic Matching Probability (LMP)). For a fixed v ∈ Fn
p and y

$← {±1}n, the

probability of y to have µ := mt(y,v) sign matches with v is B (µ,wtH(v), 1/2) , where B(k, n, q)

is the binomial distribution defined as B(k, n, q) =

 n

k

 qk(1− q)n−k.

We will use the notation LMP(v,y) = − log2 (B (µ,wtH(v), 1/2)). This function can be

efficiently approximated via additions and subtractions of precomputed values of log2(x!), i.e. using

a look-up table. As n tends to infinity we have, for any x ∈ Fp, the probability that one entry of x

is equal to x is given by

pw(x) =
1

Z(β)
exp (−βwtL(x))

where Z denotes the normalization constant and β is the unique solution to w =
∑p−1

i=0 wtL(i)pw(x).

Definition 15 (Typical Lee Set). For a fixed weight w, and a rounding function f . we define the

typical Lee set as

T (p, n, w) =
{
x ∈ Fn

p | xi = x for f (pw(x)n) coordinates i ∈ {1, . . . , n}
}

That is the set of vectors for which the element x occurs f (pw(x)n) times. In principle, f

could be simply chosen as the rounding function. The authors gave a rounding function to use for
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the reference implementation. Because of this rounding, the elements of T (p, n, w) do in general not

have Lee weight w.

5.2 Textbook FuLeeca

5.2.1 Description of the scheme

Let Hash be a cryptographically secure hash function (examples include SHA256) and

CSPRNG a cryptographically secure pseudo-random number generator (we can also use SHA256

for this). The algorithms for key generation, signature generation, and signature verification are

specified in the documentation [13] as follows.

Algorithm 8: Textbook FuLeeca Key-generation

Input: Prime p, code length n, security level λ, Lee weight wkey

Output: public key T, private key Gsec

1 Choose a,b
$← T (p, n/2, wkey ).

2 Construct cyclic matrix A ∈ Fn/2×n/2
p from all shifts of a. A needs to be invertible. If

this is not the case, resample a according to Line 1.

3 Construct cyclic matrix B ∈ Fn/2×n/2
p from all shifts of b.

4 Generate the secret key Gsec =
(
A B

)
∈ Fn/2×n

p .

5 Calculate the systematic form Gsys =
(
In/2T

)
of Gsec with T = A−1B.

6 Return public key T, private key Gsec

We note that for a given security level, the multiset of the Typical Lee Set is fixed. For

a signature scheme, Alice does not need to “decode” any ciphertext so we do not need a special

type of code that has fast decoding algorithms. The linear code used in FuLeeca is called “quasi-

cyclic code” which is generated by a “quasi-cyclic” matrix: a matrix obtained by adjoining two

cyclic matrices. The use of quasi-cyclic code results in efficiency: instead of storing a whole matrix

for the secret key, Alice only needs to store one row. For a given NIST security level, FuLeeca

proposes a significantly smaller public key and signature key size compared to the Classic McEliece

cryptosystem. We provide an implementation of a toy example for FuLeeca on this web-page.

The parameters proposed for FuLeeca in the NIST submission were selected so that the

public code looks random and it is easy to find codewords that have enough sign matches with a

given message digest. If Eve would like to impersonate Alice, there are two things that she could

try. The first one is to recover the secret key directly from the public key. This attack is called a
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Algorithm 9: FuLeeca Signature Generation

Input: Secret key a,b, message m, threshold ε, signature weight wsig, key weight
wkey, scaling factor s ∈ R, security level λ, number of concentrating iterations
ncon.

Output: salt, signature y

1 Gsec ← (A,B), G =

(
Gsec

−Gsec

)
with rows g′

i

2 m′ ← Hash(m)
3 repeat

4 salt
$← {0, 1}256 // Simple signing starts

5 c = (c1, . . . , cn)← CSPRNG(m′∥salt)
6 ci ← (−1)ci ∀i
7 x← (0, . . . , 0)
8 for i← 1 to n/2 do

9 xmt = mt (gi, c)−
wtH(gi)

2
10 xi = ⌊xmt⌋ // Simple signing ends

11 A ← {1, . . . , n} // Allowed row index set

12 ν ← xGsec // Concentrating starts

13 ν′ ← (0, . . . , 0), i′ = 0
14 lf ← 1
15 for j ← 1 to ncon do
16 for i ∈ {1, . . . , n} do
17 ν′′ ← ν + g′

i

18 if |LMP(ν′′, c)− (λ+ 64 + ε)| ≤ |LMP(ν′, c)− (λ+ 64 + ε)| then
19 if i ∈ A∥lf = 0 then
20 ν′ ← ν′′, i′ ← i

21 w′ ← wtL (ν′)
22 if w′ > wsig − wkey then
23 lf ← 0

24 if w′ ≤ wsig then
25 ν ← ν′

26 if i′ ≤ n
2 then

27 A ← A\{i′ + n/2}
28 else
29 A ← A\{i′ − n/2}

30 if wtL(ν) ≤ wsig &&wtL(ν) > wsig − 2wkey &&LMP(ν, c) ≥ λ+ 64 then
31 [y,yT ]← ν return salt, ENCODE(y)
32 else
33 go to Line 3 // Concentrating ends

34 until A signature is returned

“key recovery attack” and is the type of attack we propose. The other option is to forge a signature

directly from the public key. For both options, Eve will need to find a codeword with a given Lee

weight, which is solving Problem 3. The key recovery attack requires us to find two permutations of
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Algorithm 10: FuLeeca Signature Verification

Input: signature (salt, y′ ) message m, public key T, Lee weight wsig

Output: Accept or Reject
1 y← DECODE (y′)
2 m′ ← Hash(m)
3 c = (c1, . . . , cn)← CSPRNG(m′∥ salt )
4 ci ← (−1)ci ∀i
5 v = [yyT]
6 if wtL(v) ≤ wsig and LMP(v, c) ≥ λ+ 64. then
7 Accept
8 else
9 Reject.

the Typical Lee Set, which is already fixed. However, for a signature forgery, we do not have prior

knowledge about the form of the codeword and we have the additional constraint of having a given

number of sign matches. Since the known attacks for solving Problem 3 are all based on ISD, our

proposed attack based on Mixed Integer Non-Convex Programming provides a new perspective.

5.2.2 Our Attack

Let λ be a security level, m be the multiset of the typical Lee Set corresponding to λ viewed

as a row vector, and T a given FuLeeca public key for that level. Suppose we have {a,b} a valid

secret key corresponding to T. Note that {a,b} is not unique because we can do a right shift on

both a and b to get another valid and equivalent secret key. Since a and b are both elements of the

Typical Lee Set, they are permutation images of m and can be written respectively as mP a and

mP b. Here, P a and P b are both permutation matrices so their entries are taken from {0, 1} and

only one element for each row and each column is 1. The vectors a and b are related to the fact

that b = aT in Fp.

The key recovery of FuLeeca can be modeled as follows.
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min
a,b

0

s.t. aT = b mod p,

a = mPa,

b = mPb,

n/2∑
j=1

Pa
ij = 1∀i ∈ [1..n/2],

n/2∑
j=1

Pb
ij = 1∀i ∈ [1..n/2],

n/2∑
i=1

Pa
ij = 1∀j ∈ [1..n/2],

n/2∑
i=1

Pb
ij = 1∀j ∈ [1..n/2],

0 ≤ ai,bi ≤ p− 1∀i ∈ [1..n/2],

ai,bi ∈ Z∀i ∈ [1..n/2],

Pa
ij ,P

b
ij ∈ {0, 1}∀i, j ∈ [1..n/2]

(5.1)

This modeling is mathematically correct. However, it is not in a format that can be solved

by a computer. We then reformulate this basic modeling as follows.

1. Let e be an entry of one of the permutation matrices. Instead of imposing e to be a binary

variable, we impose that e is a continuous variable between 0 and 1 such that e2 − e = 0.

2. For the modulo equation, we use the transformation proposed by [36].

The transformation is described as follows:

Since aT = b mod p, we have 0 ≤ a,b ≤ p − 1 and aT + yK = b for some vector

y ∈ Zn/2 where K is the diagonal matrix pIn/2. Let P =

 T K

In/2 0n/2

. Assuming that aT = b

mod p is consistent, the matrix P is an integer non-singular matrix. Therefore, P has a Hermite

Normal Form N. Let Q be the unimodular matrix such that PQ = N. Write N =

R1 0

R2 H


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and Q =

Q1 Q2

Q3 Q4

. Substituting

a

y

 =

Q1 Q2

Q3 Q4


u

z

 in the original constraints yields


R1u = b,

0 ≤ R2u+Hz ≤ (p− 1)Jn/2

u, z ∈ Z

where Jn/2 is the column vectors with all entry 1.

By transforming the key recovery attack on FuLeeca into a mixed integer problem, we

can take advantage of commercial solvers and other improvements in the field of mixed integer

programming to finish our attack.

We made our own implementation of the Notebook FuLeeca with the proposed attack in a

Python library. All of the codes we explored can be accessed in this GitHub repository. Running

the attack on the level 1 security level for NIST leads us to an overflow error when computing the

Hermite Normal Form. This can be remediated by setting the type of variables to hold a larger

range of values. Since the typical Lee set for a fixed value of p, n and wkey is fixed, we believe that

the complexity of the computation should be similar to solving the same problem using an arbitrary

multiset with low-weight elements. We illustrate our attack in Appendix B using a toy example with

p = 5 and n = 22.

5.3 Reference Implementation of FuLeeca

5.3.1 Description of the scheme

For the implementation of FuLeeca, we can see the following difference from the textbook

FuLeeca.

Typical Lee Set In the reference implementation, the typical Lee set refers to a list of Lee weights.

That is to generate a and b, we take the Typical Lee Set S, perform a Fisher-Yates shuffle, and

then randomly assign a sign to each of the entries of a and b. The choice of Fisher-Yates shuffle is

to prevent a side-channel timing attack during the key generation process and flipping the sign will

make sure that achieving an invertible matrix A is always possible.

Data Types of the secret key In the reference implementation, a and b are viewed both as

arrays and as polynomials in Fp. That is a =
∑n/2

i=1 aix
i−1 and b =

∑n/2
i=1 bix

i−1. Instead of doing
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matrix computation, polynomial operations were used. For example, the reference implementation

uses the polynomial/array u such that ua ≡ 1 mod [p, xn/2−1] instead of A−1.

The presentation of the Public Key The public key of the reference implementation is obtained

by multiplying u, described above with b. This results in a polynomial that is stored in an array

instead of a matrix. However, the matrix T can be recovered by reconstructing the cyclic matrix.

5.3.2 Updated attack

In order to mitigate the difference between Textbook FuLeeca and the reference implemen-

tation, we need to make a few changes to the previous model.

Change in the definition of Typical Lee Set Now a and b are obtained by getting a per-

mutation of m followed by a random sign flip. In order to model a and b, we do the following

a = ap − am where ap,am ≥ 0, ap = mPap,am = mPam, where Pap and Pam are matrices with

entries in {0, 1} that sum up into a permutation matrix.

Change in the representation of the public key We only need to recover the public key

matrix from the public key array.

Our Python module attackfuleeca.py that can be viewed in the GitHub repository imple-

ments these changes and Appendix C illustrate its use using a toy example for p = 5 and n = 11.

5.4 Why are we interested in implementing a MIP attack?

Quantum computers improve the complexity of solving MIP [37], [38],[39]. Solving a general

MIP is NP-hard. Ongoing research on using quantum computers to solve optimization problems,

Commercial optimization solvers are getting better and better. Therefore, if a cryptosystem can be

attacked using MIP techniques, all of those improvements should be taken into account.

5.5 Future work on our attack

For the textbook FuLeeca and the reference implementation, we give a proof of concept that

a new attack can be used. Our future work in this direction includes getting a closer look at the
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overflow error and mitigating it. This would allow us to perform the attack on instances in the NIST

security levels. Once we are able to use the attack on level 1, we will generate 100 instances and

attack them using our method. We will also explore the different ways to solve an MIP to see what

works best with our modeling. Due to its sparsity, our model may be prone to numerical instability.

Therefore, we will also put an effort into strengthening the model. The attack we proposed works

because of the specific structure of the FuLeeca secret key. A good question to ask is then, can this

attack be modified to be applied to other cryptosystems or solve other problems? We also plan on

comparing the performance of our attack to the performance of the other attacks, namely the ISD

attack and the LWE attack.
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Chapter 6

Conclusions and Discussion

To conclude, the complexity of solving hard problems in coding theory gives advantages to

code-based cryptosystems in the NIST PQC competition. To build a strong code-based cryptosys-

tem, one must consider all the different attacks that can be applied to their scheme. For the McEliece

cryptosystem, the best attacks are based on ISD and are all of exponential complexity. Code-based

cryptography comes in different flavors and one needs to examine the rise and fall of each previously

proposed scheme. Other advancements in other areas of maths should also be taken into account as

they may lead to other styles of attacks. One of the areas of maths that is actually on the rise is

machine learning. We speculate that it can also be used to attack code-based cryptosystems.
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Appendix A Our implementation of the attack based on An-

nulator polynomial

-- Macaulay2 code for solving a toy instance of the RD problem using the annulator polynomial

restart

K= ZZ/2

-- Defining Fq

R = K[ p0,p1, x1,x2,a, MonomialOrder=>Lex] -- The variables used

J = ideal(a^6 + a^4 + a^3 + a + 1)

S = R/J -- Fq^m

-- G1 and G2 are the rows of G

G1 = vector{1,a +1 ,a^2 +1, a^3 +1,a^4 +1, a^5 +1}

G2 = vector{1, a^2+1, a^4 +1, a^4+a^3 +a, a^5 +a^4+a^2+a, a^5 +a^4}

-- Computing y = xG +e

y = (1+a)*G1+ (a^2+a)*G2 +vector{1,a+1, 0,0,0,0}

-- This is the ciphertext we send

-- Now suppose we got only G1,G2 and y but not x and e

-- We can just copy and paste the value we received

y = vector{ a^3, a^4+a^3, a^5+a^4+a,a^4+a^3+a^2, a^5+a^4+1, a^5+a^3+a^2+a}

-- Specifying the value of z in the polynomial

z = y - x1*G1-x2*G2

-- Write the polynomials in the setting

L = for i from 0 to 5 list ( z_(i)^4 + p1*z_(i)^2 +p0*z_(i))

monomials L_(0)

I = ideal(L)

v = gens gb I -- Solving the system
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Appendix B Our implementation of the Textbook FuLeeca

with HNF and MIP attack
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hnftextbookfuleecainuse

November 7, 2023

# Textbook FuLeeca with HNF in use

The python module generate a key pair and write then in textfiles. Then it loads the public key,
format it so that it can be fed into the Pyomo model. Finally, use the modules to attack the
intsance and we can see that we get a valid secret key.

[1]: #!pip install pyomo
#!pip install hsnf==0.3.13

[1]: import TextbookFuLeecawithtNHF
from datetime import datetime
import pandas as pd

Solver you already have
['base', 'gurobi', 'highs']

[2]: attack = TextbookFuLeecawithtNHF.attack(option = "quadratic")

WARNING: Implicitly replacing the Component attribute Ca (type=<class
'pyomo.core.base.constraint.IndexedConstraint'>) on block unknown with a new
Component (type=<class 'pyomo.core.base.constraint.IndexedConstraint'>). This
is usually indicative of a modelling error. To avoid this warning, use
block.del_component() and block.add_component().
WARNING: Implicitly replacing the Component attribute Cb (type=<class
'pyomo.core.base.constraint.IndexedConstraint'>) on block unknown with a new
Component (type=<class 'pyomo.core.base.constraint.IndexedConstraint'>). This
is usually indicative of a modelling error. To avoid this warning, use
block.del_component() and block.add_component().

[3]: print(attack)

Hello, I am the python class used to attack FuLeeca,
I can be used to generate a key pair for FuLeeca,
I also can load a public key from a file,
I format the public key so that it can be used in Pyomo,

, I use Pyomo to attack the FuLeeca cryptosystem and you got to choose which
solver to use!
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0.1 Trying the attack on the smallest toy example

[4]: attack.generate_key(level =0,verbose =True)

p is5
halfn is 11
Alice's a value: [1, 2, 0, 0, 2, 1, 1, 2, 0, 1, 1]
Alice's b value: [1 1 2 1 2 1 0 0 0 2 1]
Alice's T value:
[[2 3 0 4 3 2 1 3 1 4 3]
[3 2 3 0 4 3 2 1 3 1 4]
[4 3 2 3 0 4 3 2 1 3 1]
[1 4 3 2 3 0 4 3 2 1 3]
[3 1 4 3 2 3 0 4 3 2 1]
[1 3 1 4 3 2 3 0 4 3 2]
[2 1 3 1 4 3 2 3 0 4 3]
[3 2 1 3 1 4 3 2 3 0 4]
[4 3 2 1 3 1 4 3 2 3 0]
[0 4 3 2 1 3 1 4 3 2 3]
[3 0 4 3 2 1 3 1 4 3 2]]

This should be 1 if the sekret keys are valid
1

[5]: T = attack.get_T('T.csv')

[6]: print(attack.T_to_dat(T, level = 0))

Task done, see your file at toyexample.dat
param level:=0;
param p:= 5;
param uba:= 2;
param halfn:= 11;
param: i:

Mset:=
1 0
2 0
3 0
4 1
5 1
6 2
7 2
8 2
9 1
10 1
11 1;

param T: 1 2 3 4 5 6 7 8 9 10 11:=
1 2 3 0 4 3 2 1 3 1 4 3
2 3 2 3 0 4 3 2 1 3 1 4
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3 4 3 2 3 0 4 3 2 1 3 1
4 1 4 3 2 3 0 4 3 2 1 3
5 3 1 4 3 2 3 0 4 3 2 1
6 1 3 1 4 3 2 3 0 4 3 2
7 2 1 3 1 4 3 2 3 0 4 3
8 3 2 1 3 1 4 3 2 3 0 4
9 4 3 2 1 3 1 4 3 2 3 0
10 0 4 3 2 1 3 1 4 3 2 3
11 3 0 4 3 2 1 3 1 4 3 2;

param Q1: 1 2 3 4 5 6 7 8 9 10 11:=
1 1 4 2 3 4 4 2 4 3 3 3
2 3 3 0 2 3 4 4 2 4 3 3
3 3 3 3 0 2 3 4 4 2 4 3
4 1 2 3 3 0 2 3 4 4 2 4
5 2 2 3 3 3 0 2 3 4 4 2
6 4 0 3 3 3 3 0 2 3 4 4
7 4 2 4 3 3 3 3 0 2 3 4
8 4 4 2 4 3 3 3 3 0 2 3
9 3 4 4 2 4 3 3 3 3 0 2
10 2 3 4 4 2 4 3 3 3 3 0
11 0 2 3 4 4 2 4 3 3 3 3;

param R1: 1 2 3 4 5 6 7 8 9 10 11:=
1 1 0 0 0 0 0 0 0 0 0 0
2 0 1 0 0 0 0 0 0 0 0 0
3 0 0 1 0 0 0 0 0 0 0 0
4 0 0 0 1 0 0 0 0 0 0 0
5 0 0 0 0 1 0 0 0 0 0 0
6 0 0 0 0 0 1 0 0 0 0 0
7 0 0 0 0 0 0 1 0 0 0 0
8 0 0 0 0 0 0 0 1 0 0 0
9 0 0 0 0 0 0 0 0 1 0 0
10 0 0 0 0 0 0 0 0 0 1 0
11 0 0 0 0 0 0 0 0 0 0 1;

param Q2: 1 2 3 4 5 6 7 8 9 10 11:=
1 5 0 0 0 0 0 0 0 0 0 0
2 0 5 0 0 0 0 0 0 0 0 0
3 0 0 5 0 0 0 0 0 0 0 0
4 0 0 0 5 0 0 0 0 0 0 0
5 0 0 0 0 5 0 0 0 0 0 0
6 0 0 0 0 0 5 0 0 0 0 0
7 0 0 0 0 0 0 5 0 0 0 0
8 0 0 0 0 0 0 0 5 0 0 0
9 0 0 0 0 0 0 0 0 5 0 0
10 0 0 0 0 0 0 0 0 0 5 0
11 0 0 0 0 0 0 0 0 0 0 5;

param J: 1 2 3 4 5 6 7 8 9 10 11:=
1 -1 -4 -2 -3 -4 -4 -2 -4 -3 -3 -3
2 -3 -3 0 -2 -3 -4 -4 -2 -4 -3 -3
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3 -3 -3 -3 0 -2 -3 -4 -4 -2 -4 -3
4 -1 -2 -3 -3 0 -2 -3 -4 -4 -2 -4
5 -2 -2 -3 -3 -3 0 -2 -3 -4 -4 -2
6 -4 0 -3 -3 -3 -3 0 -2 -3 -4 -4
7 -4 -2 -4 -3 -3 -3 -3 0 -2 -3 -4
8 -4 -4 -2 -4 -3 -3 -3 -3 0 -2 -3
9 -3 -4 -4 -2 -4 -3 -3 -3 -3 0 -2
10 -2 -3 -4 -4 -2 -4 -3 -3 -3 -3 0
11 0 -2 -3 -4 -4 -2 -4 -3 -3 -3 -3;

param H: 1 2 3 4 5 6 7 8 9 10 11:=
1 5 0 0 0 0 0 0 0 0 0 0
2 0 5 0 0 0 0 0 0 0 0 0
3 0 0 5 0 0 0 0 0 0 0 0
4 0 0 0 5 0 0 0 0 0 0 0
5 0 0 0 0 5 0 0 0 0 0 0
6 0 0 0 0 0 5 0 0 0 0 0
7 0 0 0 0 0 0 5 0 0 0 0
8 0 0 0 0 0 0 0 5 0 0 0
9 0 0 0 0 0 0 0 0 5 0 0
10 0 0 0 0 0 0 0 0 0 5 0
11 0 0 0 0 0 0 0 0 0 0 5;

[7]: attack.forge_lin_sk(solvername = 'gurobi', ampl = False,verbose = True)

[ 0.00] starting timer
We just have built the instance, start solving stay tuned!
Solver script file: '/local_scratch/pbs.1520213.pbs02/tmpkd_sn23w.gurobi.script'
Solver log file: 'my.log'
Solver solution file: '/local_scratch/pbs.1520213.pbs02/tmpb7q0a_oy.gurobi.txt'
Solver problem files: ('/local_scratch/pbs.1520213.pbs02/tmptt67k6gv.pyomo.lp',)
feasible
0
Verifying that indeed aT = b mod p
This should be 1 if the sekret keys are valid:

1
[+ 3.05] task 1
elapsed time: 3.0 s
Value of a[0, 1, 2, 2, 0, 1, 2, 1, 1, 1, 0]
Value of b[0, 0, 1, 2, 1, 2, 1, 1, 1, 0, 2]
Value of aT[0 0 1 2 1 2 1 1 1 0 2]

[7]: [1, 3.047435585409403]
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newfuleecainuse

November 7, 2023

# Reference implementation in use

The python module generate a key pair and write then in textfiles. Then it loads the public key,
format it so that it can be fed into the Pyomo model. Finally, use the modules to attack the
intsance and we can see that we get a valid secret key.

[1]: #!pip install pyomo
#!pip install hsnf==0.3.13

[1]: import attackfuleeca
from datetime import datetime
import pandas as pd

Solver you already have
['base', 'gurobi', 'highs']

[2]: attack = attackfuleeca.attack(option = "quadratic")

[3]: print(attack)

Hello, I am the python class used to attack FuLeeca,
I can be used to generate a key pair for FuLeeca,
I also can load a public key from a file,
I format the public key so that it can be used in Pyomo,

, I use Pyomo to attack the FuLeeca cryptosystem and you got to choose which
solver to use!

[4]: attack.generate_key(level =0,verbose =True)

p is5
halfn is 11
Alice's a value: [ 0 1 -1 -1 -2 1 -2 0 1 0 2]
Alice's b value: [ 0 2 0 1 -2 -1 -2 -1 0 -1 1]
Alice's T value:
[[1 1 1 1 0 2 0 1 1 3 2]
[2 1 1 1 1 0 2 0 1 1 3]
[3 2 1 1 1 1 0 2 0 1 1]
[1 3 2 1 1 1 1 0 2 0 1]
[1 1 3 2 1 1 1 1 0 2 0]

1



[0 1 1 3 2 1 1 1 1 0 2]
[2 0 1 1 3 2 1 1 1 1 0]
[0 2 0 1 1 3 2 1 1 1 1]
[1 0 2 0 1 1 3 2 1 1 1]
[1 1 0 2 0 1 1 3 2 1 1]
[1 1 1 0 2 0 1 1 3 2 1]]

This should be 1 if the sekret keys are valid
1

[6]: T = attack.get_T('T.csv')

[7]: print(attack.T_to_dat(T, level = 0))

Task done, see your file at toyexample.dat
param level:=0;
param p:= 5;
param uba:= 2;
param halfn:= 11;
param: i:

Mset:=
1 0
2 0
3 0
4 1
5 1
6 2
7 2
8 2
9 1
10 1
11 1;

param T: 1 2 3 4 5 6 7 8 9 10 11:=
1 3 0 0 2 0 0 0 3 4 3 0
2 0 3 0 0 2 0 0 0 3 4 3
3 3 0 3 0 0 2 0 0 0 3 4
4 4 3 0 3 0 0 2 0 0 0 3
5 3 4 3 0 3 0 0 2 0 0 0
6 0 3 4 3 0 3 0 0 2 0 0
7 0 0 3 4 3 0 3 0 0 2 0
8 0 0 0 3 4 3 0 3 0 0 2
9 2 0 0 0 3 4 3 0 3 0 0
10 0 2 0 0 0 3 4 3 0 3 0
11 0 0 2 0 0 0 3 4 3 0 3;

param Q1: 1 2 3 4 5 6 7 8 9 10 11:=
1 0 0 0 0 0 0 0 0 0 0 0
2 4 2 4 4 1 3 3 0 1 0 0
3 4 1 1 3 0 4 1 3 1 1 0
4 3 0 4 4 3 2 1 0 3 0 0

2



5 4 0 4 3 0 1 0 1 1 3 0
6 1 3 1 0 1 0 1 2 4 3 0
7 1 0 4 2 3 1 0 3 0 1 0
8 3 2 3 2 2 0 3 4 3 4 0
9 0 1 2 3 4 1 4 4 1 4 0
10 0 3 1 2 0 3 0 0 1 2 0
11 2 0 0 3 1 1 4 3 4 4 0;

param R1: 1 2 3 4 5 6 7 8 9 10 11:=
1 1 0 0 0 0 0 0 0 0 0 0
2 0 1 0 0 0 0 0 0 0 0 0
3 0 0 1 0 0 0 0 0 0 0 0
4 0 0 0 1 0 0 0 0 0 0 0
5 0 0 0 0 1 0 0 0 0 0 0
6 0 0 0 0 0 1 0 0 0 0 0
7 0 0 0 0 0 0 1 0 0 0 0
8 0 0 0 0 0 0 0 1 0 0 0
9 0 0 0 0 0 0 0 0 1 0 0
10 0 0 0 0 0 0 0 0 0 1 0
11 4 4 4 4 4 4 4 4 4 4 5;

param Q2: 1 2 3 4 5 6 7 8 9 10 11:=
1 1 0 0 0 0 0 0 0 0 0 0
2 1 5 0 0 0 0 0 0 0 0 0
3 1 0 5 0 0 0 0 0 0 0 0
4 1 0 0 5 0 0 0 0 0 0 0
5 1 0 0 0 5 0 0 0 0 0 0
6 1 0 0 0 0 5 0 0 0 0 0
7 1 0 0 0 0 0 5 0 0 0 0
8 1 0 0 0 0 0 0 5 0 0 0
9 1 0 0 0 0 0 0 0 5 0 0
10 1 0 0 0 0 0 0 0 0 5 0
11 1 0 0 0 0 0 0 0 0 0 5;

param J: 1 2 3 4 5 6 7 8 9 10 11:=
1 0 0 0 0 0 0 0 0 0 0 0
2 -4 -2 -4 -4 -1 -3 -3 0 -1 0 0
3 -4 -1 -1 -3 0 -4 -1 -3 -1 -1 0
4 -3 0 -4 -4 -3 -2 -1 0 -3 0 0
5 -4 0 -4 -3 0 -1 0 -1 -1 -3 0
6 -1 -3 -1 0 -1 0 -1 -2 -4 -3 0
7 -1 0 -4 -2 -3 -1 0 -3 0 -1 0
8 -3 -2 -3 -2 -2 0 -3 -4 -3 -4 0
9 0 -1 -2 -3 -4 -1 -4 -4 -1 -4 0
10 0 -3 -1 -2 0 -3 0 0 -1 -2 0
11 -2 0 0 -3 -1 -1 -4 -3 -4 -4 0;

param H: 1 2 3 4 5 6 7 8 9 10 11:=
1 1 0 0 0 0 0 0 0 0 0 0
2 1 5 0 0 0 0 0 0 0 0 0
3 1 0 5 0 0 0 0 0 0 0 0
4 1 0 0 5 0 0 0 0 0 0 0

3



5 1 0 0 0 5 0 0 0 0 0 0
6 1 0 0 0 0 5 0 0 0 0 0
7 1 0 0 0 0 0 5 0 0 0 0
8 1 0 0 0 0 0 0 5 0 0 0
9 1 0 0 0 0 0 0 0 5 0 0
10 1 0 0 0 0 0 0 0 0 5 0
11 1 0 0 0 0 0 0 0 0 0 5;

[8]: attack.forge_lin_sk(solvername = 'gurobi', ampl = False,verbose = True)

[ 0.00] starting timer
We just have built the instance, start solving stay tuned!
Solver script file: '/local_scratch/pbs.1517163.pbs02/tmphqop_l4n.gurobi.script'
Solver log file: 'my.log'
Solver solution file: '/local_scratch/pbs.1517163.pbs02/tmpppyreho0.gurobi.txt'
Solver problem files: ('/local_scratch/pbs.1517163.pbs02/tmp06prv5m0.pyomo.lp',)
feasible
0
Verifying that indeed aT = b mod p
This should be 1 if the sekret keys are valid:

1
[+ 7.60] task 1
elapsed time: 7.6 s
Value of a[1, 0, 1, 0, 0, 1, 2, 1, 2, 2, 1]
Value of b[0, 2, 0, 1, 1, 2, 3, 1, 0, 1, 4]
Value of aT[0 2 0 1 1 2 3 1 0 1 4]

[8]: [1, 7.602939046919346]
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