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Abstract

Optical fiber laser systems offer advantages such as high optical gain, effi-

cient cooling, and the production of high-quality optical beams. Fiber lasers are

characterized by their unique core-cladding structure, providing optical benefits and

mechanical properties that impact their performance. Interests in materials such as

yttrium aluminum garnets (YAG) and lutetium oxide (Lu2O3 also lutetia) as laser

mediums are due to their high average power capabilities, but thermal management

remains a challenge. This thesis discusses the choice of ytterbium (Yb3+) as a dopant

in YAG and lutetia, exploring its electronic structure and relevance to thermal prop-

erties. The thesis focuses on the development and implementation of optical fiber

bend tests and thermal conductivity measurement techniques on reference materials.

Mechanical properties can be evaluated using two-, three-, and four-point bend tests

however a four-point bend model is introduced to investigate the mechanical effects

of cladding. The parallel thermal conductance and optothermal Raman techniques

are explored and tested with reference samples in order to use them to measure the

thermal conductivity of optical fiber systems in future work.
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Chapter 1

Introduction to Fiber Lasers

Since the first application of neodymium-doped glass for fiber lasers in 1964

[1], fiber lasers have garnered significant interest from researchers for various applica-

tions, including military [2] and scientific research. Fiber lasers offer many potential

benefits over traditional solid-state lasers due to their high optical gain, efficient cool-

ing, and the generation of high-quality optical beams, among other properties [3–5].

Fiber lasers are unique in their design and characterized by a distinct structure. They

typically comprise an active medium (a source of optical gain from stimulated emis-

sion) in a cylindrical core surrounded by a carefully chosen coating called a cladding.

This core-cladding design (Figure 1.1) offers various optical advantages, such as total

internal reflection, numerical aperture tuning, and even the possibility of multi-mode

operation. Additionally, the cladding can alter the mechanical properties of the op-

tical fiber, which, in some cases, can enhance flexibility or induce fragility. However,

the exceptional beam quality and reliability of fiber lasers have positioned them as a

key technology in modern photonics, enabling precise and versatile laser systems that

continue to push the boundaries of what is achievable in optics and laser technology.

However, a crucial aspect of fiber lasers is their distinctive core-cladding fabrication
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and its impact on thermal and mechanical properties.

Figure 1.1: Schematic of a clad-core optical fiber designed for total internal reflection

Recently, there has been a growing interest in yttrium aluminum garnets

(YAG) and lutetium oxide (Lu2O3, also known as lutetia) as active laser media.

This increased attention is attributed mainly to their remarkable ability to operate

at high average powers [6–8]. However, it's essential to note that managing thermal

issues remains a critical and recurring challenge in high-power laser systems. The

intense pumping process generates substantial latent heat, primarily from inherent

quantum defects, leading to non-radiative transitions during the energy conversion.

A quantum defect describes the difference in energy of a pump photon with that of

a signal photon (the photon in the output radiation). The energy difference is dis-

sipated as heat. Currently, these systems are thermally constrained in their power

scaling limits [6, 9], which entails increasing power output without compromising the

fiber's optical properties. Efficiently managing this heat is imperative for maintain-

ing the performance and reliability of high-power lasers. Without effective thermal

control, excessive heat can lead to various issues, including thermal lensing, coatings

damage, and laser gain medium degradation. To prevent these detrimental effects

and ensure the longevity and consistent operation of high-power lasers, meticulous

thermal management and high mechanical stress resistance are fundamental in their

design and operation. YAG and lutetia emerge as appealing candidates in this re-
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gard, primarily because of their exceptional high-power scaling limits, attributed to

their remarkable thermal conductivity, which efficiently dissipates the heat generated

[10]. Consequently, they can scale to power levels of ∼40 and 47 kilowatts (kW),

respectively [9].

YAG and lutetia may indeed have high thermal conductivities; however, these

crystals are often doped with rare earth metals such as neodymium (Nd), chromium

(Cr), erbium (Er), thulium (Tm), or ytterbium (Yb). Introducing dopants alters the

crystal structure, lowering the material's thermal conductivity. This occurs mainly

due to the ion size mismatch between the dopant and the host lattice ions, leading to

lattice strain and phonon scattering from mass fluctuations. However, dopants offer

numerous advantages to laser systems, including improved gain (light amplification),

broadened wavelength emission, enhanced efficiency, and higher peak power than

their undoped counterpart. Therefore, the active lasing ion type and concentration

must be carefully optimized to maximize these benefits without the potential loss of

thermal conductivity.

Every active lasing ion offers distinct advantages to laser technology and var-

ious applications, including specific spectral properties, energy levels, and lifetimes

that make them suitable for various purposes. However, this thesis will concentrate

on why the Yb3+ ion was chosen as a dopant in these materials (due to its unique

characteristics) and relevance to the YAG and lutetia crystals. First, we will describe

the relevance of the Yb3+ electronic structure and how it contributes to the ther-

mal properties of its host crystal. Yb3+ has a simple two-level electronic structure

(Figure 1.2), with one excited-state 2F5/2 and a ground-state 2F7/2. In principle, this

would result in no gain and, consequently, no lasing capabilities since it operates as

a two-level system. However, the degeneracy of the spin-orbit coupling splits the

energy levels into sublevels (also named manifolds) through interactions of the local
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environment with the host material via the Stark effect [11]. Given that Yb3+ has

half-integer spin, the 2F5/2 and 2F7/2 energy levels form Kramer's doublets, leading

to a degeneracy of (2J + 1)/2, where J is the total angular momentum quantum

number [12]. Consequently, the 2F5/2 and 2F7/2 levels are divided into 3 and 4 sub-

levels, respectively, resulting in a total of 3× 4 = 12 possible transitions as shown in

Figure 1.2. This means that pumping and amplification involve transitions between

the ground-state and excited-state sublevels, a process known as in-band pumping.

This effect, resulting from closely spaced transitions, implies that the quantum defect

remains consistently small in Yb3+, enabling a high quantum efficiency of the laser

transition. This property has the potential to facilitate high-power efficiencies and

reduce thermal effects, which is one of the reasons why the Yb3+ ion is a desirable

choice. Furthermore, what's particularly exciting is that Yb3+-doped lutetia demon-

strates nearly constant thermal conductivity even at elevated doping concentrations,

thanks to the minimal ionic radius mismatch (MY b ∼ 173.04 u, MLu ∼ 174.967 u),

potentially allowing for more lasing power without thermal issues (Figure 1.3) [10,

13].

The fiber core materials of YAG or lutetia, doped with Yb3+, will also incor-

porate a cladding with its own distinct optical, thermal, and mechanical properties.

As mentioned earlier, a cladding is a coating for the fiber core, comprising a material

with a lower refractive index in contact with a core material with a higher refrac-

tive index. In this context, the core will be composed of either Yb3+-doped-YAG or

-lutetia, and the cladding will consist of undoped-YAG or -lutetia, respectively. YAG

and lutetia have lower refractive indices than their Yb3+-doped counterparts [13, 15].

The lower refractive index cladding effectively confines the light to the core through

the principle of total internal reflection. This helps increase the laser gain through

stimulated emission, where photons with matching energy levels interact with excited
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Figure 1.2: Energy level diagram of Yb3+ in YAG for various pumping modes. The
dashed line between E3 and E2 represents a part of a quntum defect. Adapted from
Ref [14].

atoms to produce additional coherent photons, thereby amplifying the laser beam's

intensity. Thermally, the selection of cladding material is of paramount importance.

Undoped -YAG and -lutetia exhibit slightly higher thermal conductivity as reported

in previous studies [10, 13], causing the cladding to function as a heat sink. This is

a crucial aspect as it efficiently dissipates heat from the core. Historically, claddings

have commonly utilized polymers or silica glass, leading to the undesirable effect of

trapping heat. Heat accumulation in the core material along the beam axis results in

transverse refractive index gradients, resulting in thermal lensing. Additionally, this

thermal stress can induce mechanical stress, potentially degrading the core-cladding

interface and the core material. Hence, the selection of core-cladding materials and
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Figure 1.3: Thermal conductivity of YAG and lutetia as a function of Yb3+ doping
concentration. Adapted from Ref [13].

meticulous fabrication processes are of utmost importance for ensuring effective ther-

mal management and mechanical integrity of high-quality optical fibers capable of

high-power operation. This thesis, therefore, focused on the development and im-

plementation of optical fiber bend tests and the refinement of thermal conductivity

measurement techniques on reference materials to ensure accurate measurements of

YAG and lutetia optical fibers.

To assess the mechanical properties of optical fibers, we discuss a 2, 3, and

4-point bend test to determine the most suitable method for measuring the fiber's

Young's modulus, which quantifies stiffness by evaluating the fiber's response to stress

(force per unit area) and strain (proportional deformation). We also developed a
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rudimentary bending model and instrumentation for the four-point bending test to

elucidate the mechanical effects of cladding. This test offers numerous advantages,

particularly for brittle fibers, as detailed in subsequent sections. Moreover, this system

is still capable of testing the elastic regions of flexible optical fibers.

To examine the thermal conductivity of core-clad fibers, we employ the parallel

thermal conductance technique [16]. This method enables precise thermal conductiv-

ity measurements for small, needle-like samples. The objective is to characterize the

thermal conductivity of optical fibers, both with and without cladding, in order to

gain insights into the properties of the core-cladding interface. Additionally, we dis-

cuss and test the potential use of the optothermal Raman technique (using graphene

as an example), explaining how it can be applied to measure thermal conductivity by

analyzing the interaction of light with the thermal properties of materials. Lastly, we

explore the scalability of this technique to provide a more comprehensive description

of the thermal conductivity of clad optical fiber systems.
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Chapter 2

Young's Modulus Measurement of

Mechanical Stress Due to Fiber

Cladding

Variations of bend tests for optical fiber samples include the two-, three-, and

four-point bend tests. These tests vary regarding the number of contact points and

the location and manner in which an external force is applied to the sample. However,

each test is designed to measure a given material's flexural strength and deformation

behavior. Each test has its advantages and is best suited for different materials.

The two-point bend test was first described by Murgatroyd et al. [17] and im-

proved upon by Matthewson et al.[18] by using a more detailed mathematical model

and measurement system. This test is characterized by its two-contact point nature

and is particularly well-suited for examining the behavior of flexible optical fibers

and ribbon-like samples. In the typical setup of a two-point bend test (Figure 2.1),

a sample is supported at two points, often using faceplates. These supports establish

a span in which the sample is subjected to a load applied at its midpoint. As a
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result, the sample experiences tensile stresses on one side and compressive stresses

across the central axis, generating a bending moment. As depicted in Figure 2.1, the

red trace of the bending moment distribution reaches its maximum at the midpoint,

where the most significant internal shear forces occur. Meanwhile, the green trace

of the shear force distribution exhibits a sign change based on the direction of the

bending moment. While the two-point bend test configuration is valuable for assess-

ing the bending behavior of optical fibers, some cladded optical fibers may not be

well-suited for this testing method due to their inherent brittleness. Cladding can

add a layer of fragility to the optical fiber, making it susceptible to fractures under

the concentrated stresses generated in the two-point bend test. In such cases, al-

ternative testing methods, such as the three- or four-point bend tests, may be more

appropriate. These configurations distribute the bending stresses more evenly and

can better accommodate the brittleness of cladded optical fibers, reducing the risk of

sample failure during testing. However, due to their high flexibility, the intention for

future work is to develop a two-point bend test for future work involving uncladded

fibers.

In the three-point bend test (Figure 2.2), the sample is supported at two

points, and a load is applied at the center. The additional support beneath the

sample is crucial in evenly distributing the applied load, reducing localized stress

concentrations. As a result of this load, the three-point bend test is characterized

by a singular point where the bending moment reaches its maximum. The shear

force is distributed across the sample support, with sign change at the center of the

sample determined by the bending moment. This test configuration is particularly

well-suited for assessing the mechanical properties of more rigid beams, primarily due

to the effective distribution of shear forces and bending stresses. Although beneficial

for assessing the mechanical properties of rigid materials, the distribution of shear

9



Figure 2.1: Two-point bend test diagram with bending moment and shear force
distribution across sample position.

forces across the entire sample can pose a risk to cladded optical fibers, as it may

subject the fragile sample to excessive stress. In such cases, a more suitable alternative

may be the four-point bend test, which provides precise control over the location and

magnitude of the applied force.

For cladded optical fibers made from materials like YAG and Lu2O3, the four-

point bend test (Figure 2.3) is the preferred testing method. This testing configuration

is chosen to mitigate the risk of damaging these fragile fibers during testing. The

four-point bend test is a variation of the three-point bend test incorporating a fourth

anvil, which applies a load on a specific fiber portion. In the four-point bend test, the

10



Figure 2.2: Three-point bend test diagram with bending moment and shear force
distribution across sample position.

maximum stress occurs between two loading points and the supporting anvils rather

than being directly under the central load, as seen in the three-point bend test. This

is shown in Figure 2.5, where the green trace is non-zero only between the load and

support anvils. This design minimizes shear forces between the two loading anvils.

This test configuration ensures a constant bending moment distribution between the

loading anvils along the sample. Consequently, it reduces the risk of sample damage,

which facilitates the assessment's accuracy since the force's magnitude is distributed

11



across the sample position rather than having a singular maximum, as observed in

the two-point and three-point bend tests.

Figure 2.3: Four-point bend test diagram with bending moment and shear force
distribution across sample position.

12



2.1 Mathematical Model for the Four-point

Bend Test

The four-point fiber bend test setup, as depicted in Figure 2.4, is the foun-

dation for our analysis. Before outlining the method, it is essential to mention some

assumptions for completeness. 1) The beam is made of a homogeneous material with

consistent and evenly distributed material properties. 2) The beam used in the test

is straight and has a constant cross-sectional shape throughout its length. 3) Young's

Modulus of Elasticity (E) value is the same in tension and compression. 4) The beam

is subjected to pure bending (i.e., no external shear stresses). 5) The plane of sym-

metry of the beam aligns with the direction of the resultant loads applied to it, which

ensures that the load distribution is even and predictable. 6) The cross-sectional

shape of the beam is assumed to remain the same before and after bending, simplify-

ing the analysis and allowing for a straightforward calculation of bending stress and

deformation.

These assumptions are crucial in idealizing the behavior of the beam under

bending conditions and simplifying the mathematical analysis of its response to ap-

plied loads. In practical applications, real materials and beams may differ from these

assumptions, but these simplifications are often valuable for initial design and analy-

sis. Our analysis will treat the sample as a solid cylinder with a uniform radius of r0.

Furthermore, we will assume that the sample is symmetrically positioned across the

support span and that the load is applied symmetrically - a fundamental assumption

because further analysis would be required in the case of asymmetry, as outlined in

Ref. [19]. We aim to derive a few key parameters: the maximum bend strength σ

and Young's modulus, denoted as E. We will start by using the bending equation for

beams.

13



Figure 2.4: Four-point bend test setup

σ =
My

J
(2.1)

Here, M represents the bending moment, y signifies the distance to the neutral axis,

and J denotes the polar moment of inertia. The moment, M , is calculated by force,

P , at a distance x from the midpoint of half of the sample (i.e., halfway between

a). Next, we will calculate the bending moment that refers to the reaction induced

in a structural element when an external force or moment is applied to the element,

resulting in the element bending.
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M =
2∑

n=1

Pn · x = −Pleft loadxmidpoint to left loading anvil + Pleft supportxmidpoint to left support

M = −P

2
(x− a) +

P

2
x =

Pa

2
(2.2)

The distance from the neutral axis to the convex surface of the cylinder, y, is

y = r0 (2.3)

The polar moment of inertia is a measure of a beam's resistance to being distorted

by torsion and is determined by its shape. The object's cross-sectional area solely

influences this rigidity and does not depend on its material composition. The formula

for the polar moment of inertia of a solid cylinder is as follows:

Jcylinder =
π

4
r40 (2.4)

Solving for σ in equation (2.1), the maximum bend strength of the solid cylindrical

sample is

σ = 2
Pa

πr30
(2.5)

In the four-point bend test, the deflection, y(x), of the entire beam is described by

the following cubic equations, which describe how the natural axis curves due to its

bending geometry [19].
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y(x) =
Px

6EJ
(3aL− 3a2 − x2) ; 0 ≤ x ≤ a (2.6)

y(x) =
Pa

6EJ
(3Lx− 3x2 − a2) ; a ≤ x ≤ L− a (2.7)

Here, L represents the total length of the support span, a is the span between the

supporting and loading anvils, and P is half of the force due to force analysis from

one loading anvil position. For the measured deflection at the loading anvil position

x = a, we can substitute y(a) into the deflection conditions and obtain

y(a) =
Pa

6EJ
(3aL− 4a2) (2.8)

Rearranging for Young's Modulus, E

E =
(3L− 4a)Ka2

6J
(2.9)

where the substitution K = P/y(a) is the bending stiffness. If we apply the equation

2.4 for a cylindrical system and align the beam such that L = 4a, we arrive at the

relation

E =
16

3π

a3

r40
K (2.10)

Here, a and r0 are predefined variables based on the optical fiber radius and the

load and support span of the anvils. Therefore, the remaining variable is the bending

stiffness K, the main parameter our system aims to measure. In the following section,

we will delve into more detail on how to measure the bending stiffness.
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2.2 Silica Optical Fiber as a Standard Reference

Measurement

The four-point bender experimental setup was designed and built as part of my

research projects (Figure 2.5). This setup includes an independent micrometer system

that downwardly displaces the loading anvils equally onto the optical fiber, resulting

in a measured deflection value denoted as ym(a). Upon contact, this records a mass

reading on the scale, from which P can be easily calculated using the gravitational

constant (9.81 m/s2). Again, the values for the total length of the bottom support

span (L), the difference in length between the support and loading anvils (a), and

the polar moment of inertia (J) are predetermined. The bending stiffness K is the

ratio of half of the force to the measured deflection P/(ym(a)) as determined by the

micrometer and scale.

To evaluate the accuracy of this system, a bare SiO2 optical fiber with a

diameter of 150 µm was utilized as a reference for calibration (see Figure 2.5). The

total length of the fiber was measured using a Mitutoyo 293-761-30 Digital Micrometer

and determined to be 59.50 mm. The sample was symmetrically positioned along the

bottom support span with a total length of L = 28.0 mm, meaning each supporting

anvil was placed at L/2 = 14.0 mm from the origin. Similarly, the top loading anvils

were placed along the top of the load span, each at L/4 = 7.0 mm from the origin.

This initial symmetry is essential based on the assumptions derived in Section 2.2.

The bending stiffness (Figure 2.6) was determined to be K ∼3.9 N/m from the slope

of the force versus deflection curve. Plugging these values into equation 2.9 yields E

∼72.3 GPa. However, the accepted E value for bare SiO2∼72 GPa [20]. This suggests

that the experimental error from our setup is < 1%. The result has been successfully

replicated; however, the precision of this measurement leaves much to be desired.
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To enhance precision, we should consider employing more accurate instrumentation

and optimization techniques. This may involve using a more sensitive scientific scale

with higher precision, favored weighted averages, and more bandwidth for deflection

measurements (scale is currently limited by its total mass load).

Additionally, implementing a laser alignment system and making other refine-

ments to the experimental setup could further improve the precision of this measure-

ment as equation 2.10 has a3 dependence. In the context of applications to cladded

optical fibers, it's essential to acknowledge that this method needs refinement due to

the cladding and core modulus mismatch before accurately and precisely determining

their mechanical material properties. However, this method serves as a useful baseline

and proof of concept that can be further developed.
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Figure 2.5: A four-point bender experimental setup that was designed and built at
Clemson Nanomaterials Institute (CNI).
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Figure 2.6: Bending stiffness graph for a bare 150 µm SiO2 optical fiber. The slope
describes the force required to displace the sample.
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Chapter 3

The Parallel Thermal Conductance

Technique

3.1 Overview

The parallel thermal conductance (PTC) technique is a steady-state method

that Tritt and coworkers developed [16] to address the challenges of working with small

diameter needle-like samples, typically less than 1 mm in at least two dimensions,

which cannot accommodate a heater and thermocouple system, as required for con-

ventional measurements. Indeed, transient techniques have been developed for small

samples, such as the 3ω [21] or pulse technique [22], but can often require a substrate

with extensive preparation and calibration, as in the case of 3ω technique. However,

the PTC technique offers numerous advantages for small samples thanks to its ease

of use and capacity to accurately characterize thermal conductance, which it achieves

by minimizing radiation losses, heat conduction and convection. The term ''parallel''

originates from the configuration that facilitates heat flow through two distinct mate-

rials in parallel – namely, the sample and the supporting post composed of a thermally
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insulating material. Figure 3.1 shows the electrical analog circuit diagram. In this

configuration, a heater serves as a power source within a parallel circuit of ther-

mal resistors. The total thermal resistance (Rtotal) of the analog circuit can be best

described by the following equation:

1

Rtotal

=
1

Rsample

+
1

Rbaseline

(3.1)

The total conductance (Ctotal) of the system is therefore

Ctotal = Csample + Cbaseline (3.2)

Here, it is shown that to characterize a sample, a baseline of conductance in

our thermal circuit must first be measured, which can be subtracted from a total

conductance measurement to obtain our sample 's thermal conductance.

Figure 3.1: Electrical analog of the PTC system measurement.
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The PTC system, which was non-operational when acquired by Clemson Nano-

materials Institute in 2022, is currently undergoing restoration to measure the thermal

conductivity of optical fibers. The PTC technique can measure the thermal conduc-

tance of thin wire samples. For example, carbon fibers, with diameters ranging from

10 to 100 µm, have been documented in previous studies [16, 23]. This makes it

well-suited for measuring the thermal conductivity of cladded optical fibers, which

often have a diameter of 150 µm or smaller. Furthermore, it can measure the thermal

conductivity of the core material and the core-clad optical fiber.

The PTC technique involves two measurements of thermal conductance. The

first step is conducting a preliminary measurement of the sample holder. This mea-

surement establishes a baseline for thermal losses associated with the specific sample

stage. The second step involves mounting a sample and then conducting a second

measurement of the thermal conductance of the entire system. The sample's thermal

conductance is calculated by subtracting the baseline measurement from this second

measurement. However, to calculate thermal conductivity, the cross-sectional and

length elements of the sample need to be accounted for. By applying Fourier's law of

heat diffusion at steady-state, we can relate thermal conductivity as follows,

κ =
P

∆T

L

A
(3.3)

Here, P represents the power passing through the sample, κ denotes the ther-

mal conductivity of the material, A is the cross-sectional area, and L is the length of

the sample, where the temperature difference, ∆T , is determined. Equation 3.3 indi-

cates that a ''power sweep'' can be conducted by adjusting the applied power to the

system while measuring the temperature gradient resulting from the response of the

material's thermal properties. This is the core relationship that the PTC technique
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seeks to measure and will be elaborated upon in subsequent sections.

3.2 The Sample Stage

The sample stage schematic is provided in Figure 3.2, while a photo depicting

its real-life construction is given in Figure 3.3. The primary design objective of

the PTC sample stage is to minimize the thermal conductance of its components

in comparison to the sample's conductance. Ideally, the magnitude of the sample's

thermal conductance should be at least one-tenth that of the sample stage (baseline)

to ensure an adequate signal-to-noise ratio for good resolution [16, 24]. To achieve this,

the sample stage is designed with a thin strip of commercially available PET inkjet

transparent film sandwiched between a copper base and a copper support structure.

One end of the copper support facilitates heat conduction through the sample and

ensures its ability to reach and maintain a steady-state temperature condition. In

addition, the inkjet transparent film is utilized on one end of the support to uphold

the sample, heater, and thermocouple. This film isolates the copper base from any

potential thermal effects from the heater and ensures that heat solely flows through

the sample, avoiding any heat loss to the sample stage. This design minimizes heat loss

to the sample stage, allowing one end of the sample to maintain ambient temperature

and create a temperature gradient across the sample. The choice of film is based on

its low electrical and thermal conductivity and structural stability. Moreover, it is

flexible enough to accommodate contraction as the system cools.

Additionally, a 120 Ω strain gauge is used as a low-power heater and attached

to the sample's end. This strain gauge generates heat by applying a small current

to create resistive heating within its heating element, thus creating a controlled tem-

perature gradient in the sample. A 1 mil Constantan-Chromega-Constantan (CCC)
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Figure 3.2: Schematic of the PTC sample stage depicted with a mounted sample.

type E differential thermocouple is utilized to measure this temperature gradient.

This specific thermocouple type is selected for its responsiveness and ability to main-

tain performance at cryogenic temperatures without junction degradation. They are

also sufficiently small to ensure negligible thermal conduction through the wires. The

temperature difference across the sample is determined by measuring the Seebeck

voltage between the two ends of the sample using a meticulously calibrated differen-

tial thermocouple. To support the junctions of the thermocouple, they are mounted

on the copper supports using Stycast # 2850FT, Catalyst 9, a thermally conductive

electrically-nonconductive epoxy encapsulant. It is essential to electrically isolate the

thermocouple (to ensure the proper functioning of its junctions) but still be in thermal

contact with the system. Once the sample stage is appropriately prepared, a baseline
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Figure 3.3: Photograph of the PTC sample stage with a mounted sample.

measurement is recorded. It's essential to emphasize that a baseline measurement

should be taken before mounting each sample to ensure accuracy. This precaution

is necessary because any potential damage or alterations to the sample holder could

affect its thermal conductance. Once the baseline is characterized, a sample is at-

tached to the stage using a minimal amount of silver paint (DuPont 4929N). This

silver paint serves as cement to ensure the sample's stability and provides the same

conductive benefits as previously mentioned about the copper support.
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3.3 System Overview

The system setup is illustrated in Figure 3.4. First, the system is evacuated

to at least 10−6 Torr pressure using a Leybold PT 151 Turbomolecular Pump. It

is essential to use a high vacuum to minimize gas heat conduction and convection

losses. Next, an ARS-2HW Helium Compressor and an ARS DE 202N Closed Cy-

cle Cryocooler are employed to cool the system from room temperature to ∼20 K.

Following the initialization, the PTC system is controlled by a LabVIEW program,

which communicates with the instruments via a GPIB interface. A Lakeshore 340

Figure 3.4: Schematic of the PTC system [24].

Temperature Controller is used to regulate the temperature of the sample base, as-

sisting in maintaining thermal equilibrium within the sample holder. A Keithley 2400

Sourcemeter provides current to the strain gauge heater, while a Keithley 2001 Multi-

meter measures the voltage across the heater, determining the heater’s power output.
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A Keithley 182 Sensitive Digital Nano-voltmeter is used to measure the voltage across

the differential thermocouple near the sample, essential for determining the temper-

ature gradient. A Kurt J. Lesker Series 979 Atmosphere to Vacuum Transducer [25]

monitors the pressure. This device combines a hot cathode sensor to measure pressure

from 5×10−10 to 3×10−3 Torr and a MicroPirani sensor for pressure ranges between

1×10−3 Torr to atmospheric pressure. The hot cathode gauge measures the ultra-high

vacuum pressures by regulating electron current from a heated filament, leading to

gas ionization in the chamber. The ion count is proportional to gas molecule density

and electron current.

3.4 System Operation

The PTC LabVIEW program was developed by Zawilski et al. [16] and is

responsible for the remote control and regulation of the necessary data acquisition

and calculations. The program panel can be seen in Figure 3.5. To operate the

program successfully, the user must provide specific inputs, including the sample's

cross-sectional area, the length between the two ends where the sample is attached,

and the desired number of sampling points. Geometry inputs are crucial because we

are measuring thermal conductance. However, our goal is to describe thermal con-

ductivity, and any geometric considerations can be factored out to better characterize

the intrinsic material properties.

The program handles all instrument configurations, and data acquisition pro-

ceeds via the flowchart depicted in Figure 3.6. Once the system is initialized, it

commences at the lowest temperature specified by the user. Upon reaching the de-

sired temperature, the system's parameters are held for 180 seconds to ensure a stable

temperature within ± 25 mK. This holding period allows ample time for the sam-

28



Figure 3.5: The PTC program control panel [16].

ple and surrounding environment to reach a steady-state condition. After this time,

power is applied to the strain gauge to heat the sample and create a temperature

gradient. Again, for the same reason, the system is held for 180 seconds for a sta-

ble temperature gradient. Once stable, the system advances to the data acquisition

phase, which consists of performing a ''power sweep'' (P vs. ∆T ), as mentioned in

the previous section. To achieve this, varying amounts of small currents are applied to

the strain gauge, resulting in different temperature gradients within the system until

at least three measurement points are recorded, up to a predefined maximum power

output. The sample temperature is determined by adding half of the temperature

gradient values to the base temperature for each data point in a power sweep (Figure
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Figure 3.6: Flowchart for the measurements conducted by the PTC system [24].
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3.7). This process is repeated for different sample temperature values, with the tem-

perature incrementally raised while acquiring data at predefined intervals until the

final temperature is reached. The program's next step involves fitting a straight line

to the recorded data obtained from each power sweep. This fitting process ensures

that at least three data points are used for better accuracy than a single data point or

even two. By fitting a straight line to the data, the program determines the thermal

conductance of the sample at the specific temperature under consideration. Following

this, the baseline at that temperature is subtracted, and the sample dimensions are

considered to calculate the thermal conductivity.

3.4.1 Development of the PTC System and a Standard

Reference Measurement

The PTC system required significant work. For example, its sample stage

components were either damaged, parts were misappropriated, or completely disas-

sembled. The sample stage needed to be reassembled to specification and constructed

for optical fiber measurements to resolve these issues. Furthermore, the entire system

needed to be reassembled, and some components were rewired to restore functionality.

First, the supports for the sample stage were constructed. Most importantly,

differential thermocouples were created because no 1-mil CCC differential thermocou-

ples were commercially available. This was achieved by welding the proper junctions

together using a thermocouple welding setup (see Figure 3.8). In this setup, a power

supply charged the capacitors in series to build up a predetermined voltage poten-

tial. For 1-mil CCC, the ideal voltage range was around 2-4 V. This potential was

discharged by completing a circuit with a foot-operated switch and tapping a knife

edge on an intersection of the thermocouple wires. This process quickly heated the
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Figure 3.7: Example of a power sweep performed for a baseline measurement, where
the slope represents thermal conductance.

intersection of the wires through resistive heating, resulting in a weld at the junc-

tion. While preparing the thermocouple is straightforward in theory, the small size

of the components made this a challenging task. Once the differential thermocouples

were created, they were mounted as described in previous sections. Subsequently, the

strain gauge was also soldered and mounted on the system.

To ensure the system's proper functioning, we identified and addressed wiring

shorts. This straightforward process involved establishing proper contacts to complete

the necessary circuits. After addressing the wiring issues, the system was tested by
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Figure 3.8: Thermocouple welding setup.

members of Clemson Nanomaterials Institute (CNI) first without a sample to establish

a baseline and later with a standard reference sample of phosphor bronze (see Figure

3.9b), which is a copper-based alloy with tin and phosphor present. The equation 3.3

can be applied where the measured cross-sectional area A = 0.016 mm2 and a length

L = 3.60 mm were used to calculate the thermal conductivity of the standard reference

sample of phosphor bronze. The calculated κ at various temperatures is given in

Figure 3.9a. Here, the CNI labeled data is the most up-to-date data recorded by the

lab members restoring the PTC's functionality. The Tritt Group/S. Bhattacharya

data is former data from the previous Clemson University group that developed the

PTC technique. The referenced data is shown for comparison, where Ref. [26] shows

a trace that is characteristic of radiation losses above ∼ 150 K. Ref. [27] is historical
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data from 1956 that was reported to values lower than 100 K. Here Figure 3.9 shows

a divergence of thermal conductivity values which are possibly explained by heat

sinking and radiation losses associated with each system's setup.

To gain insight into the thermal transport of a standard reference sample of

phosphor bronze, the total measured thermal conductivity (κ) from the PTC can be

broken down into electronic (κE) and lattice (κL) components.

κ = κE + κL (3.4)

For pure metals κE >> κL, therefore, we can apply the Wiedemann-Franz law

to calculate the electronic contribution.

κE =
L0T

ρ
(3.5)

Here, T is the temperature, ρ is the electrical resistivity, and L0 is the Lorenz

constant (2.44×10−8 WΩ/K2). To calculate κE, the temperature-dependent data of

ρ from Ref. [26] was used. Due to phosphor bronze's high electrical conductivity, it is

expected that κE contributes to a higher percentage of the total thermal conductiv-

ity. Figure 3.10 illustrates this, where κE dominates at temperatures above ∼40 K.

However, at temperatures below ∼50 K, the lattice contribution plays a greater role

in thermal conductivity. Generally, Fourier's law of heat conduction applies to 3D

materials to describe diffusive heat transport; however, it is well known that this law

breaks down in the ballistic and hydrodynamic regimes in 3D materials at extremely

low temperatures ∼0.5-1 K, much lower than the temperature range measured using

the PTC system [32]. Figure 3.11 shows an Umklapp peak in the lattice thermal

conductivity around 50 K [33, 34]. Here, the peak height is suppressed due to mass

fluctuations from the other non-copper elements [35]. Furthermore, the rise of the

34



peak around 150 K is possibly attributed to radiation losses.
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Figure 3.9: (a) Thermal conductivity for a reference sample of phosphor bronze. Each
data point represents the thermal conductivity at a given ambient temperature value.
The most up-to-date data, as reported in this thesis, is denoted by the orange ⋄
rhombus symbol. The Tritt Group/S. Bhattacharya blue circle symbol ◦ is old data
from the Clemson University lab that helped develop the PTC technique [16]. The
purple triangle △ symbol data from Ref. [26]. The green × symbol is historical data
from Ref. [27]. The red square □ indicates commercially available phosphor bronze
values from Refs. [28–31]. (b) Thermal conductance for the sample stage as a baseline
and the phosphor bronze sample thermal conductance from the CNI data.
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Figure 3.10: The total thermal conductivity κ measured by the PTC system where
κE shows the electronic contribution calculated by the Wiedemann-Franz Law. The
lattice contribution κL is then determined by subtracting κE from κ.
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Figure 3.11: Lattice thermal conductivity (κL) contribution in phosphor bronze.
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Chapter 4

Future Research: Optothermal

Raman Method

An alternative approach to determining the thermal conductivity of optical

fibers involves ''optothermal'' techniques. This term combines ''opto'' and ''thermal''

to describe phenomena that entail the interaction of light (optical) to generate heat

(thermal). Specifically, optothermal spectroscopy refers to a technique that uses laser

light to locally generate heat in a sample and measure the resulting thermal effects

through changes in the absorption or emission of light. In particular, the optothermal

Raman technique enables the study of individual vibrational modes. This approach al-

lows for examining the contributions to thermal conductivity from various vibrational

modes, with each mode potentially exhibiting significantly different thermal conduc-

tivity, particularly in the case of anisotropic materials. In the context of cladded

optical fibers, this technique can potentially be employed to analyze the interfacial

thermal conductance between the core and cladding, allowing for the identification of

radial heat flow. Additionally, it can serve as a valuable point for comparing the ther-

mal conductivity with the PTC technique. In the following sections, we will derive the
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two-dimensional case of the OTR technique to provide a baseline for understanding

the thermal conductivity of thin-film systems with a preliminary standard reference

measurement to verify our technique and analysis. Subsequently, we will extend this

knowledge to gain insights into higher-dimensional systems like optical fibers and

explore how the OTR technique can be applied in larger-scale systems.

4.1 Description of the General Optothermal Ra-

man Technique

The optothermal Raman (OTR) technique is a steady-state no-contact tech-

nique introduced by Balandin et al. [36] for measuring the thermal conductivity of

low-dimensional materials [37–43]. The initial setup is shown in Figure 4.1, where a

suspended material on a substrate is under investigation. The OTR method adopts

a two-step process to measure thermal conductivity. First, Raman peak shifts are

recorded as a function of absorbed laser power (χP ). Here, laser light is used to

heat the sample locally, approximated by a Gaussian distribution where the induced

temperature rise causes bond softening, resulting in Raman peak frequency shifts.

The total power, PD, is measured by a detector and is equal to the sum of to-

tal powers absorbed by the suspended material (Pα) and the substrate (PS), PD

= Pα + PS. The power absorbed by the material is then approximated such that

Pα = I0A(1 − exp (−αt)) ≈ αtI0A, where A is the illuminated area, I0 is the laser

intensity on the surface, α is the absorption coefficient of the material and t is the

thickness of the material. The second measurement is to record the temperature-

dependent Raman peak frequency shifts (χT ). To do this, the suspended material is

placed in a hot/cold cell where the temperature is controlled externally, and Raman
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wavenumber shifts are recorded as a function of temperature.

Figure 4.1: Schematic of original OTR technique. Graphene is suspended over a 3µm
rectangular trench where a laser is utilized to locally heat the sample [36].

Thermal conductivity is derived using Fourier's law,

∂Q

∂t
= −κ

∮
∇T · dS (4.1)

Here Q is the total heat transferred over a time t, and T is the absolute

temperature of an infinitesimal element dS. The steady-state condition allows κ to

be defined and expressed as

κ =
χT

χP

L

2tW
(4.2)

where L denotes the distance from the center of the sample to the substrate

edge, and W is the width. However, this model is limited due to the description of a

cylindrical heat distribution over a square domain with unaccounted substrate effects
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[36, 44].

To account for these effects and to minimize errors, a new model was developed

by Cai et al. [45] (Figure 4.2). The setup is similar to the Balandin et al. model;

however, a radially symmetric hole with a radius R was used to suspend the material

under investigation. Additionally, a hole was bored through the substrate so that the

transmitted power could be directly measured, and consequently, the absorbed power

could be determined.

Figure 4.2: Schematic of adapted setup by Cai et al. to measure the power dependence
Raman peak shifts over a radially symmetric hole [45].

This model also facilitated an updated description of Fourier's law, accounting

for thermal boundary effects and interfacial effects of the supported region as a means

to solve for a temperature profile of the suspended region (T1(r)) and supported region

(T2(r))
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κ
d

dr

[
r
dT1(r)

dr

]
+ q(r) = 0 ; r < R (4.3)

κs
1

r

d

dr
r
dT2(r)

dr
− g

t
(T2(r)− T (a)) = 0 ; r > R (4.4)

Here κ is the thermal conductivity of the suspended region, κs is the thermal

conductivity of the supported region, q(r) is the volumetric power density, g is the

interfacial thermal conductance between the sample and the substrate, R is the hole

radius, and T (a) is the ambient temperature. The general solutions are given by

T1(r) = c1 + c2ln(r) + c3Ei
(−r2

r20

)
; r < R (4.5)

T2(γ) = c4I0(γ) + c5K0(γ) + T (a) ; r > R (4.6)

where ci’s are constants where c4 = 0 for converging solutions, Ei(r) is an expo-

nential integral, I0(γ) and K0(γ) are zero-order modified Bessel functions (Appexdix

A), r0 is the laser spot size, and γ = r
(
g/κ′t

)1/2

. The appropriate boundary condi-

tions are given by

T2(r → ∞) = T (a) (4.7)

T1(R) = T2(R) (4.8)

−κ
dT1(r)

dr

∣∣∣
r=R

= −κs
dT1(r)

dr

∣∣∣
r=R

(4.9)

−2πRtκs
dT2(r)

dr

∣∣∣
r=R

= Q (4.10)

Here, Q is the total absorbed laser power given the difference in the power transmitted
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through the empty hole and that of the suspended material, Q = Pempty − Pmaterial.

The measured temperature distribution (Tm) weighted by the Gaussian profile of the

laser spot is given by

Tm ≈
∫ R

0
T1(r)q(r)rdr∫ R

0
q(r)rdr

(4.11)

Here, Tm is solved by applying equation (4.5).

Tm = c1 + c2a+ c3b (4.12)

The constants a and b are independent of laser power (Appendix A). The final result

of κ is related to the total thermal resistance given by

∂Tm

∂P
=

χP

χT

= α
[2ln(R)− Ei

(
− R2

r20

)
− 2a+ b

4πκt
+

K0(γR)

2πR
√
gκstK1(γR)

]
(4.13)

The experimentally measured values of the slopes, χP/χT are plotted against κ where

the thermal conductivity is extrapolated from the independent variable axis.

4.2 Linkam Temperature Stage Setup

The setup for measuring the temperature dependence of the Raman peaks

(χT ) is depicted in Figure 4.3. This equipment consists of a hot/cold cell positioned

directly beneath the laser line, connected to an inVia Renishaw Raman Spectrometer

where the sample is focused. The sample on a SiO2 substrate is placed in contact

on top of the sample stage. The sample chamber is then sealed and evacuated to

prevent condensation from forming on the sample during the cooling process. To

regulate the temperature, liquid nitrogen is circulated through the stainless steel line

connected to the sample stage. Any evaporated nitrogen is directed through a tube
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Figure 4.3: The Linkam temperature stage setup for low-temperature Raman spec-
troscopy.

to remove condensation on the glass window. A thermocouple is employed directly

beneath the sample stage to measure the sample's temperature. The thermocouple is

connected in a feedback loop to the liquid nitrogen pump, and the latter determines

the correct liquid nitrogen flow rate for maintaining the desired sample temperature.

Furthermore, a heating element is located directly beneath the stage to regulate

temperature. The desired cooling/heating rate, set point temperature, and hold time

are inputs on the controller, which then regulates the necessary steps to achieve

and maintain the desired sample temperature conditions. In the current setup, the

sample's temperature can be varied from -196◦C to 120◦C; however, some commercial

stages are capable of up to 600◦C.
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4.3 Preliminary CVD Graphene Standard

Reference Measurement

The OTR method was calibrated for a sample of graphene grown via chemical

vapor deposition (CVD) synthesis to check the validity of our system and analysis.

First, the CVD graphene is suspended over a 5 µm radially symmetric hole. First,

the temperature dependence (χT ) of the graphene G-band was measured (Figure 4.4)

by externally varying the sample temperature using the Linkam stage. Secondly,

Figure 4.4: Measured G-band temperature dependence for suspended CVD graphene.

the dependence of the G-band on the incident laser power was measured, as shown

in Figure 4.5. To extrapolate thermal conductivity, the experimentally determined

values of χT = −0.061 cm−1/K and χP = −0.43 cm−1/mW were applied to equation
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Figure 4.5: Measured G-band laser power dependence for suspended CVD graphene.

4.13. The theoretical curve was constructed using measured and literature values:

α ≈ 3.5 % [45], t = 0.335 nm, R = 5 µm, r0 = 0.3 µm, κs = 600W/m·K [45], and g

= 28 MW/m2K [45] (Figure 4.6). The extrapolated thermal conductivity was ∼2000

W/m·K at room temperature. This is within the uncertainty of the literature-reported

value of ∼2500 (+1100 /-1050) W/m·K [45].
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Figure 4.6: Extrapolated thermal conductivity of suspended CVD graphene, κ ∼2000
W/m·K. Blue text indicates literature values from Ref [45].

4.4 OTR Method in the Macro-Configuration:

Application to Optical Fibers

A prospective application of the OTR method for measuring the thermal

conductivity of optical fibers is discussed. The OTR technique was first used at

the macro-scale to measure the thermal conductivity of graphene laminate (GL)-

on-polyethylene terephthalate (PET) with thickness varying from ∼9 µm to 44 µm
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[46]. Cladded fibers (∼ 150 µm) are thicker than these dimensions but can be cut

within this range, where an alteration of the OTR analysis can be applied. The same

temperature- and power-dependent Raman peak shift measurements are performed

to determine the thermal conductivity of these materials. However, there are a few

key differences from the OTR analysis due to the substantial increase in the thickness

of cladded optical fibers. First, higher laser power is needed to cause a sufficient local

temperature rise, where the power can be upwards of 10 mW [46]. Secondly, due

to the distribution of laser power in three dimensions (3D), thermal conductivity is

extracted by solving heat diffusion in a 3D geometry. This requires a model of laser-

induced heating where a spherical distribution of the laser power P (x, y, z) through

a given layer is approximated as

P (x, y, z) =
Ptotal

2πdσ2
exp−x2 + y2

2σ2
exp−z

d
(4.14)

Here, d is the laser penetration depth, which can be determined from the

dependent refractive index of the material [39, 47]. Additionally, Ptotal is the total

laser power and σ is the standard deviation of the Gaussian function determined from

the laser spot size. To extract thermal conductivity, the modeled differential equation

is solved iteratively, where total power and thermal conductivity are the inputs to

the thermal diffusion equations, which determine the temperature distribution by

simulating it for different values of the experimentally determined slope. This is

more easily achieved by introducing the slope parameter.

Θ =
∂ω

∂P
= χT

∂T

∂P
(4.15)

This slope parameter helps simulate the plot κ vs. Θ (Figure 4.7). The specific

experimental value of the slope determines the thermal conductivity. This expansion
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Figure 4.7: Example of thermal conductivity (κ) vs. slope parameter (Θ) for various
sample thickness of GL-PET. Adapted from Ref [46].

of the OTR technique to the macroscale samples can help facilitate the determination

of radial heat flow in cladded optical fiber systems, which has not been achieved to

date. Additionally, it is a valuable comparison to other established methods, such as

the previously discussed PTC technique.
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Appendix A Optothermal RamanMathematical Val-

ues

Boundary conditions are used to solve for ci's:

c1 =
Q
[
2ln(R)− Ei

(
− R2

r20

)]
4πκt

+
QK0(γR)

2πR
√
gκstK1(γR)

+ T (a)

c2 =
−Q

2πκt

c3 =
Q

4πκt

c4 = 0

c5 =
Q

2πR
√
gκstK1(γR)

Note the appropriate integrals:

Ei(x) = −
∫ ∞

−x

e−t

t
dt

I0(γ) =
∞∑
k=0

=

(
1
4
γ2
)k

(k!)2

K0(γ) =

∫ ∞

0

cos(γt)√
t2 + 1

dt

Constants:

a =

∫∞
0

ln(r)exp
(
− r2

r20

)
rdr∫∞

0
exp

(
− r2

r20

)
rdr

b =

∫∞
0

Ei
(
− r2

r20

)
exp

(
− r2

r20

)
rdr∫∞

0
exp

(
− r2

r20

)
rdr
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