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Abstract

We consider how the domination number of an undirected graph changes on the removal of a

maximal matching. It is straightforward that there are graphs where no matching removal increases

the domination number, and where some matching removal doubles the domination number. We

show that in a nontrivial tree there is always a matching removal that increases the domination

number; and if a graph has domination number at least 2 there is always a maximal matching

removal that does not double the domination number. We show that these results are sharp and

discuss related questions.
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Chapter 1

Introduction

We begin by discussing relevant definitions and known results. For the purpose of this thesis,

we assume that a graph G = (V,E), defined by vertex set V and edge set E, is simple and undirected.

There are three essential topics in the theory of graphs necessary to understand our results. We

explore each in depth, beginning with Domination in graphs. We introduce known results about

dominating sets and present some standard proofs. We then discuss operations performed on graphs

which change the domination number. Lastly in this introduction, we discuss matchings in graphs,

presenting some well known results. Chapter 2 will then discuss the main results and Chapter 3 will

pose some open questions.

1.1 Domination in Graphs

We define a dominating set, D, of a graph to be a subset of the vertex set such that every

vertex of G is either in D, or is adjacent to a vertex in D. We can give an equivalent definition

using the closed neighborhood of a vertex v, denoted by N [v]. The closed neighborhood of a vertex

v is defined to be all vertices adjacent to v, including v itself (note if we want the neighborhood

without v, we call this the open neighborhood of v, denoted N(v)). We can extend this to the closed

neighborhood of a vertex subset D denoted N [D] as the union of closed neighborhoods of vertices

in D (the open neighborhood of a vertex subset D denoted N(D) is defined similarly). As such, a

dominating set can be defined equivalently as a set D such that the removal N [D] leaves the empty

graph. We define the domination number of G to be the minimum cardinality among all dominating
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sets and denote it γ(G). As such, we call a dominating set a γ-set

In the introduction of [8] the authors include a review of the historical development of

domination in graphs. The classic motivating example is the Dominating Queens, or the n−Queens

Problem. The authors note that the original problem posed in the 1850s was to determine the

minimum number of queens needed to be placed on a chessboard so that all squares are either

attacked by a queen or are occupied by a queen. For a standard 8× 8 chessboard this number is 5;

however, the problem has been generalized extensively to different sized boards, and boards with

holes. The problem is equivalent to taking the queen’s graph representing all legal moves of a queen

on a chessboard and finding a minimum dominating set.

Clearly, the existence of a dominating set is trivial as one could take the entire vertex set.

However, the complexity of finding γ(G) in general is known to be an NP-hard problem (with a proof

provided in [8]). There are variations of the domination number that are also extensively studied

including the total domination number and the independent domination number ; however, those are

not discussed here.

The following gives an upper bound on the domination number of a graph with a version of

the standard proof.

Theorem 1. Given a connected graph G of order n ≥ 2, γ(G) ≤ n
2 [10].

Proof. Let D be a minimum dominating set of a graph G. Define X to be vertices of G not in D.

We first claim that X is also a dominating set. Assume that there is some v ∈ D such that v does

not have a neighbor in X. Then all neighbors of v are in D and so D \ {v} is also a dominating set

which contradicts minimality. So X is also a dominating set. Note now if D contained more than

half of the vertices of G then X would be a smaller dominating set. So D is at most half the order

of G.

This bound is sharp. Given a graph G, we define the k-corona of G as the graph obtained

by, for each vertex, adding k new end-vertices adjacent to that vertex. If k = 1 we call it simply the

corona. The previous bound is attained by the corona of a graph. In Figure 1.1 we give an example

of the corona of P5. Note that the original P5 vertices form a minimum dominating set of size half

the order of the corona.
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Figure 1.1: Corona of P5

1.2 Bondage in Graphs

One fundamental area of study as regards the domination number of a graph is how it

changes under graph operations. In particular, both the removal of vertices, and the removal or

addition of edges, have been the focus of many papers. For example, vertex-critical graphs are

ones where the deletion of any vertex decreases the domination number (see for example [4]) while

critical graphs are ones where the addition of any edge decreases the domination number (see for

example [11]). One specific parameter in this regard is the bondage number of a graph (denoted

b(G)) which is defined to be the minimum number of edges whose removal increases the domination

number. The following result gives a bound on the bondage number of a tree. The proof by the

original authors in [5] is included to illustrate which edges are chosen to remove.

Theorem 2. If T is a nontrival tree, then b(T ) ≤ 2 [5].

Proof. The statement is obviously true for trees of order 2 or 3; so we shall suppose that T has at

least 4 vertices.

Suppose first that T has a vertex u that is adjacent to two end-vertices v and w (and possibly

more). If D is a dominating set for T that does not contain u, then D contains both v and w; but

then, (D \ {v, w}) ∪ {u} is also a dominating set for T . Thus every minimum dominating set for

T contains the vertex u and therefore does not contain v. Since every dominating set of T − uv

contains v and is also a dominating set for T , it follows that γ(T − uv) > γ(T ). Hence b(T ) = 1 in

this case.

Suppose now that each vertex of T is adjacent with exactly one end-vertex. Then T has

a vertex u of degree 2 that is adjacent with exactly one end-vertex v. Let w be the other vertex

adjacent to u, and let D be a minimum dominating set for T − uv − uw. Then both u and v are in

D and D \ {v} is a dominating set for T . Hence γ(T ) < γ(T − uv − uw) and b(T ) ≤ 2.
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Note that we see in the second case the authors removed two edges incident with u. This is

not necessary; that is, if a graph has bondage number 2 then we can always find two independent

edges.

Theorem 3. For a tree T with bondage number 2 one can find a bondage set of independent edges.

Proof. First note that if T is the path Pn then n ≡ 1 (mod 3) otherwise it has bondage 1. One can

verify that in this case removing both (necessarily independent) edges incident with leaves increases

the domination number.

So assume T is not a path. We note that for trees, the packing number and domination

number are equal [9]. Note further that trees with bondage 2 are exactly those with a unique

maximum packing [7]. Concerning trees with unique maximum packing, every leaf vertex is included

in our packing (if not, then given a leaf not in the packing, add it and remove the vertex in the packing

closest to it, contradicting uniqueness). For T not a path, we can still remove two independent edges

such that the resulting forest has higher domination number.

Root T at some end vertex, r. Find a vertex x with deg(x) ≥ 3 such that it is farthest from

r. There must exist paths Pi of lengths pi to end vertices vi for i ∈ {1, 2} such that other than x

and vi all vertices have degree 2. These can be found by traveling further down our rooted tree, by

choice of x. Note that v1 and v2 cannot both be leaf vertices else we contradict T with bondage

number 2.

Case 1: Some P1 has length p1 ≥ 3. As stated above, since we have bondage 2 we have a

unique maximum packing containing leaf vertices. Considering the path from v1 to x, remove the

first and third edge. A new packing contains the isolate, one of the vertices from the P2 component,

and vertices from the original packing in the third component. The third component has packing

number one less than the original tree and so the domination number has increased and we have an

independent bondage set.

Case 2: Without loss of generality p1 = 1 and p2 = 2. We claim that the leaf edges incident

with v1 and v2 form a bondage set. Upon removal we have v1 and v2 in our packing, and can

additionally add the support vertex of v2 since v1 was in the original packing. So we have two

isolates in our packing, and the nontrivial component has decreased its packing size by 1. Thus the

edges form an independent bondage set.

Case 3: Consider p1 = p2 = 2. If x has no neighbor in the packing then we again remove
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both leaf edges and as in case 2 we add a new leaf vertex to the packing and notice we indeed have

an independent bondage set of size 2. So suppose x does have a neighbor in the packing; call it y.

In this case remove the edge incident with v1 and the edge between x and y. Then v1 is in our new

packing and we can include the new leaf formed by removing v1 since x no longer has a neighbor in

the packing. So again we have found an independent bondage set.

We study an extension of edge removal by considering what happens when one removes

a matching from a graph, where a matching is defined in the following chapter. We see in what

follows that removing matchings puts on the restriction that at most one edge incident to a vertex

is removed.

1.3 Matchings in Graphs

We now introduce the concept of a matching. A matching is a subset of the edge set of a

graph such that each vertex is incident to at most one edge. We define the matching number of

a graph G to be the maximum cardinality of a matching and denote it M(G). There are a few

different types of matchings that will be relevant:

• A perfect matching is a matching in which every vertex is incident to an edge in our matching.

• A maximal matching is a matching such that no proper super set of edges is a matching.

• A maximum matching is a matching with greatest cardinality among all matchings of a graph.

We note that perfect matchings can only occur in graphs of even order and that they are

necessarily maximum and maximal with size |V (G)|/2 (where |V (G)| denotes the number of vertices

of G, also called the order of G, denoted |G|). Maximum matchings are always maximal; however,

the converse is not true. An example is given in Figure 1.2.

In the section that follows, the above tree and matching will prove interesting as we discuss

how the removal of a matching affects the domination number. For further examples of matchings,

Figure 2.1 in the following section shows a tree with multiple maximal matchings of different sizes.

The following standard result gives some intuition that was useful for considering matchings

in trees. A proof is provided to supplement the intuition. One needs that an augmenting path of
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Figure 1.2: A maximal but not maximum matching (above) and a maximum matching (below)

a matching is one that starts with an unmatched edge and alternates between matched edges and

unmatched edges, ending at another unmatched edge. Berge observed that if we can find such a

path then removing matched edges from the matching and adding unmatched edges increases the

size of the matching.

Lemma 1. Every maximum matching on a tree T has an edge incident to a leaf.

Proof. LetM be a maximum matching and assume for a contradiction that no leaf is matched byM .

This is not perfect by definition, so let v be unmatched. Move along its unmatched edge to another

vertex, say v2. Vertex v2 must be matched, else we can increase our matching which contradicts

M maximum. We follow the matched edge incident to v2 to its matched neighbor v3. If v3 has no

neighbors then v3 is a leaf and we have found a matched leaf. Else we continue the pattern. Since

T is a finite tree, we must terminate at some vertex with no neighbors and so we terminate at a

leaf. If we terminate at an unmatched vertex vn then v1, v2, ..., vn gives an augmenting path which

contradicts M being a maximum matching. So we must terminate at a matched vertex; that is, we

terminate at a matched leaf.

6



Chapter 2

Results

We now discuss the results that make up the bulk of this thesis. This chapter was accepted

for publication; see [2]. Even for trees, the question of how much or how little the least-impact or

the most-impact matching changes the domination number seems interesting. For example, we show

that: (a) for a tree there always exists a matching whose removal increases the domination number

(indeed any maximum matching suffices); (b) there are trees of arbitrarily large domination number

where no matching removal increases it by more than 1; (c) in any graph a matching removal can

at most double the domination number; and (d) while there is no graph with domination number

bigger than 1 where for every maximal matching its removal doubles the domination number, there

are trees of arbitrarily large domination number r where the removal of any maximal matching

increases the domination number to at least 2r − 1.

2.1 The Fundamentals

The removal of a matching can both change and not change the domination number. There

are graphs, such as the 5-cycle, where removing any matching does not change the domination

number. Or, for example, if the 2-domination number of a graph (meaning the smallest size of a set

D such that every vertex outside D has at least two neighbor in D) equals its domination number,

then the removal of a matching cannot change the domination number. But there are graphs, such

as the complete graph Kn for n even, where the removal of any maximal matching does increase the

domination number.
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There is a simple limit though on how much the removal of a matching can increase the dom-

ination number. Since each vertex in a dominating set loses at most one neighbor, one immediately

has:

Lemma 2. Removing a matching from a graph can at most double the domination number of the

graph.

For example, Figure 2.1 shows a tree T with γ(T ) = 3, where there are maximal matchings

M3 = {c, d}, M4 = {c, e}, M5 = {a, b, d}, and M6 = {a, b, e} such that γ(T −Mi) = i for 3 ≤ i ≤ 6.

a b
c d e

Figure 2.1: A tree with multiple maximal matchings

Now, in the case that one is removing a matching that has the most impact (that is, increases

the domination number as much as possible), it is immediate that one may assume that the matching

is maximal. On the other hand, in the case where one is removing a matching that has the least

impact, it is necessary to add some condition on the matching, else the empty matching will be the

answer. In this paper:

The focus is on the case that the matching is maximal.

Some of the results apply to all matchings, and so we state them as such. We also occasionally

consider the case that the matching is required to be maximum, but this is a different problem.

For example, Figure 2.2 shows a tree that has a unique maximum matching up to symmetry, and

removing it increases the domination number from 3 to 5. On the other hand, removing the depicted

maximal matching, consisting of two leaf-edges and the central edge, increases the domination

number to 6. In general we use end-vertex to mean a vertex of degree 1, and leaf-edge to mean an

edge incident to such a vertex.

There is a partial connection with the bondage number. If the bondage number of a graph

is 1, then it is immediate that the removal of any matching containing that one edge increases the

domination number. As noted above, a tree has bondage number at most 2, but the two edges might

need to be adjacent. With matchings, our edges must be independent.

8



Figure 2.2: A tree where the matching with most impact is not maximum

As stated previously, it is well-known that the domination number of a graph without isolates

is at most half its order. One can ask a similar question for a matching-deleted graph:

Theorem 4. If G is a connected graph of order n ≥ 3 and M a matching of G, then γ(G−M) ≤

3n/4.

Proof. Since the removal of an edge cannot decrease the domination number, we may assume G is

a tree. The proof is by induction on the order n. If G is a star, then γ(G −M) = 2. So we may

assume G is not a star. If G has diameter 3, then γ(G) = 2 and so γ(G −M) ≤ 4. The bound

follows if n ≥ 6. But it can be easily checked that the bound is true if n is 4 or 5. So we may assume

that G has diameter at least 4. Consider a longest path P in G with penultimate vertex v.

Case 1: Vertex v has at least two end-vertex neighbors. Then let L be the set consisting

of v and its end-vertex neighbors. In G −M it is still possible to dominate L using at most two

vertices. Let G′ = G−L, and let M ′ be the matching M restricted to V (G′). Since G has diameter

at least 4, the graph G′ has at least three vertices. So by the induction hypothesis, G′ −M ′ can be

dominated with at most 3/4 its order. It follows that γ(G−M) ≤ 2 + 3(n− |L|)/4 < 3n/4.

Case 2: For all choices of P , vertex v has exactly one end-vertex neighbor. That is, it has

degree 2 in G. Let w be the other neighbor of v, and x the other neighbor of w on P . If P has length

5 or more, then let J be the set of vertices separated from x by the bridge xw. Then let G′ = G−J

and let M ′ be the matching M restricted to V (G′). By the induction hypothesis, G′ −M ′ can be

dominated with at most 3/4 its order. If P has length 4, then let J = V (G) and vacuously the

graph G′ = G− J can be dominated with at most 3/4 its order.

Say J contains ℓ neighbors of w of degree 1 and t neighbors of w of degree 2. (Since we are in

Case 2 it holds that t ≥ 1.) Note that |J | = 2t+ℓ+1. If ℓ = 0, in G−M one can dominate J with at

most t+1 vertices; since (t+1) < 3(2t+1)/4 it follows that then γ(G−M) < 3|J |/4+3|G′|/4 = 3n/4.

If ℓ > 0, in G −M one can dominate J with at most t + 2 vertices; since (t + 2) ≤ 3(2t + 2)/4 it

9



follows that then γ(G−M) ≤ 3|J |/4 + 3|G′|/4 = 3n/4.

The bound in Theorem 4 is best possible and is achieved for the corona of a corona of a

graph. Figure 2.3 shows an example where removing all leaf-edges increases the domination number

to 15.

Figure 2.3: A corona of a corona

2.2 Matchings Whose Removal (Almost) Double the Domi-

nation Number

In this section we provide some insight into the maximum change that removing a matching

can cause. Consider for example a tree T where every vertex in the (necessarily unique) γ-set has

(at least) two end-vertex neighbors. Fink et al. [5] observed that for such a tree the bondage number

is 1. We note that if M is a matching consisting of a leaf-edge incident with each vertex in the

dominating set, it is immediate that γ(T −M) = 2γ(T ).

There is a bound on the domination number of graphs that have a matching whose removal

doubles the domination number. We will need the following terminology: given a vertex set D and

a vertex v of D, an external private neighbor of v with respect to D is defined to be a vertex outside

D whose only neighbor in D is v.

Theorem 5. If a connected graph G with order n ≥ 3 has a matching M such that γ(G −M) =

2γ(G), then γ(G) ≤ n/3.

Proof. Consider a γ-set D of G; we can choose D to not contain an end-vertex. For each vertex

v ∈ D, if v is incident with an edge of M then let v′ be the end of that edge. Let the set X consist

of D and all the v′. This set dominates G−M . By the hypothesis, this means |X| = 2|D|, so that

all the vertices v′ exist; that is, every vertex of D is incident with M . Further, the set X must be
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minimal dominating. So it follows that each v′ has no neighbor in D− v; that is, in G the vertex v′

is an external private neighbor of v with respect to D.

Let D′ be the set of vertices of D that have only one external private neighbor in G. If D′

is nonempty, consider any vertex v ∈ D′. By the choice of D, the vertex v is not an end-vertex and

thus has a neighbor other than v′, say w. Since the set X is minimal dominating in G −M , and

vertex v is in X only to dominate itself, it must be that w is not in D. Further, we claim that w

has only one neighbor in D′. Since, if w also has neighbor u ∈ D′, one can take X and replace u, v

by w and get a smaller dominating set, which is a contradiction.

For each vertex v ∈ D′, define the triple Rv = {v, v′, w}. For each vertex v ∈ D−D′, define

the triple Rv as v and two of its external private neighbors in G. By the above discussion these

triples are disjoint. Thus the order of G is at least 3|D|, whence the desired bound.

There are graphs and indeed trees that achieve the bound in Theorem 5. The simplest

example is the 2-corona of any graph; an example is shown in Figure 2.4. But another example is

given in Figure 2.1.

Figure 2.4: A 2-corona

It is also natural to look for graphs where the removal of any maximum matching doubles

the domination number. Or even stronger, where the removal of any maximal matching doubles

the domination number.

The graphs with domination number 1 are a special case. If a graph has domination number

1 and even order, then the removal of any maximal matching M increases the domination number

to 2. For suppose there is a still a dominating vertex v after the removal of M . Then v is not

covered by M , and since the order is even, there is another uncovered vertex, necessarily a neighbor

of v, which contradicts the maximality of M . If a graph has domination 1 and odd order, then

both possibilities can occur. For example, the removal of any maximal/maximum matching from a

star increases the domination number; but the removal of any maximal/maximum matching from a

complete graph keeps it at 1.
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So consider graphs with domination number at least 2. Here there are graphs where the

removal of any maximum matching doubles the domination number. For example, define the octopus

Or by taking the star K1,r and subdividing every edge except one exactly three times. The result

has γ(Or) = r, achieved uniquely by taking the support vertices (where a support vertex is defined

as one with an end-vertex neighbor). Further, the graph has a unique perfect matching, and its

removal increases the domination number to 2r. Figure 2.5 shows O5.

Figure 2.5: The octopus O5

But the situation is (slightly) different if one considers all maximal matchings:

Theorem 6. If G is a connected graph with γ(G) > 1, then there exists a maximal matching M

such that γ(G−M) < 2γ(G).

Proof. Consider a γ-set D of G. If G is not a tree, choose a spanning tree T such that D dominates

T . It then follows that there exist two vertices u and v of D that are distance at most 3 apart in T ,

say joined by path P . Construct a maximal matching M by starting with the first edge of P and,

if the length of P is 3, also the last edge of P . Extend to a maximal matching arbitrarily.

Create a dominating set D′ of T −M as follows. Start with D′ = D. For every vertex of D

other than u or v, they lose at most one neighbor when M is removed; if they do lose a neighbor,

add that neighbor to D′. At this point |D′| ≤ 2|D| − 2. The only possible vertices not dominated

by D′ are the neighbors of u and v in M ; call these u′ and v′ respectively. If u and v are adjacent

in T , then we constructed M to include the edge uv, and D′ to include both u and v, and so there

is no undominated vertex. If u and v are at distance 2 in T , then u′ is dominated by v, and so only

v′ is not dominated by D′, and we can add it to D′. If u and v are at distance 3, then u′ and v′ are

the undominated vertices. But they are adjacent, and so can be dominated by adding one of them

to D′. In all cases it follows for the final D′ that |D′| < 2|D|.
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The bound in Theorem 6 is best possible. That is, for all r ≥ 2 there is a connected graph

with γ(G) = r and for every maximal matchingM of G it holds that γ(G−M) ≥ 2r−1. For example,

consider the octopus Or defined above and a maximal matching M of Or. By the maximality of

M , it must contain an edge incident with every support vertex. It follows that a dominating set

of Or −M must contain at least two vertices from each subdivided edge, and one more vertex to

dominate the end-vertex neighbor of the center. That is, γ(Or −M) ≥ 2r − 1.

2.3 Trees With Unique γ-Sets

We observed earlier that if a tree has a γ-set where every vertex is adjacent to at least two

end-vertices, then the tree has a matching whose removal doubles the domination number. Such a

tree is a special case of a tree with a unique γ-set. However, it is not the case that having a unique

γ-set forces there to be a “doubling matching”. The smallest example is the path P9, where γ = 3

but the removal of a matching can only increase the domination number to 5.

It is immediate that if a graph has a unique γ-set, then the bondage number is 1 (first

observed in [12]) and hence there is a matching whose removal increases the domination number.

But one can say more in trees.

Theorem 7. If a tree T has a unique γ-set, then there is a matching M in T such that γ(T −M) >

3
2γ(T ).

This result is best possible as shown by the paths P3m for m odd. Then γ(P3m) = m, but

removing a matching can only increase the domination number to (3m+ 1)/2.

For the proof of Theorem 7, it is easier to work in a slightly more general setting. Gunther

et al. [6] observed that in any graph if D is the unique γ-set (and there are no isolated vertices), then

every vertex in D has (at least) two external private neighbors. Thus Theorem 7 follows from the

following theorem. (Note that the statement of the theorem does not require D to be dominating.)

Theorem 8. If a tree T has a set D such that every vertex in D has at least two external private

neighbors, then there is a matching M in T such that γ(T −M) > 3
2 |D|.

Proof. The proof is by induction on the order of T . Trivially we may assume D is not empty. Indeed:

13



Claim 1. We may assume that every support vertex is in D.

The condition onD precludes an end-vertex x from being inD. So if such x is not dominated

by D, just delete it from T and apply the induction hypothesis (and note that deleting an end-vertex

cannot increase the domination number).

Consider the base case. If each vertex in D has two neighbors that are end-vertices, then the

matchingM consisting of one leaf-edge incident with each vertex of D is such that γ(T −M) ≥ 2|D|.

It follows that we may assume the diameter of T is at least 5. If the diameter is exactly 5 and there

is a vertex in D without two end-vertex neighbors, then let M consist of the central edge and one

leaf-edge incident with each vertex of D, and again it follows that γ(T −M) ≥ 2|D|. So we may

assume the diameter is at least 6.

For the inductive step, most of the time we proceed as follows. We identify a subset S of

the vertices such that T ′ = T − S is a tree that satisfies the hypothesis with D − S. The inductive

hypothesis yields a matching M ′ of T ′, which we extend to a matching M of T by adding a set N

of edges all of whose ends are in S. Further, S and M are such that the vertices of T ′ that have a

neighbor in S can be dominated in T −M by one vertex of V (T ′). We say S and M with all the

above properties are standard.

For any subset S and matching M , let ψM
S denote the minimum possible number of vertices

of S in any dominating set of T −M .

Claim 2. Let S and M be standard.

(a) It holds that γ(T −M) ≥ ψM
S + γ(T ′ −M ′)− 1.

(b) If ψM
S ≥ 3

2 |D ∩ S|+ 1, then the inductive step is valid.

(c) Further, if no set that achieves ψM
S has a neighbor in V (T ′), then for the inductive step it is

sufficient that ψM
S ≥ 3

2 |D ∩ S|.

(a) Consider a γ-set of T −M and let X be the restriction of it to V (T ′). Then |X| ≤

γ(T −M) − ψM
S . Further, X dominates all of T ′ −M except possibly those vertices of T ′ with

neighbors in S, and these can be dominated by one vertex of V (T ′) by the definition of standard.

Thus γ(T ′ −M ′) ≤ |X| + 1. It follows that γ(T −M) − ψM
S ≥ γ(T ′ −M ′) − 1, which re-arranged

gives one the desired inequality.

(b) We have that γ(T−M) ≥ ψM
S +γ(T ′−M ′)−1 > ψM

S + 3
2 (|D−S|)−1 = 3

2 |D|+ψM
S − 3

2 |D∩S|−1.
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The claim follows.

(c) The calculation is similar, except that γ(T −M) ≥ ψM
S + γ(T ′ −M ′).

It is common in trees to induct by focussing on the vertices at the end of a longest path. We

generalize this slightly. Given a pair of adjacent vertices v and w, we define a (v, w)-peripheral path

as a path starting with edge vw of longest possible length, and call its length the (v, w)-peripheral

length. For a vertex v that is not an end-vertex, we define the peripherality of v, denoted per(v),

by considering the multiset of (v, w)-peripheral lengths for all neighbors w, and taking the second-

largest length (which might equal the largest). We define per(v) = 0 if v is an end-vertex. For

example, if v0v1 . . . vd is a longest path in T , then per(vi) = per(vn−i) = i for 0 ≤ i ≤ d/2. Further,

we designate the neighbor w of v with the largest (v, w)-peripheral length its free neighbor. Note

that, if the diameter of T is more than 2 per(v), then the free neighbor of v is uniquely determined;

otherwise designate one arbitrarily, if necessary.

We continue the proof of the theorem. Since the diameter is at least 6 there is some vertex

v3 with per(v3) = 3. Note that in all the figures in the proof of this theorem, solid vertices are

vertices that are definitely in D and hollow vertices are vertices that are definitely not in D.

Claim 3. If per(v3) = 3 with peripheral path v3v2v1v0, then we may assume both v1 and v2 have

degree 2.

By Claim 1, v1 ∈ D.

(i) We first prove that v1 has degree 2. So suppose that v1 has at least two end-vertex

neighbors. There are three cases.

Case A: Assume v2 is in D and v2 has two end-vertex neighbors. Then induct with S

consisting of all vertices separated from v2 by the bridge v1v2, and N = {v0v1}. (See Figure 2.6a

for an example.) It is immediate that ψM
S = 2 while |D ∩ S| = 1. Since one may assume that v2 is

in the dominating set of T −M (as it has an end-vertex neighbor), the bound holds by Claim 2b.

Case B: Assume v2 is in D but has only one end-vertex neighbor. Then v3 must be the

other external private neighbor of v2. Let v4 be the free neighbor of v3. Then, by the peripherality

of v3, all other neighbors of v3, if any, are within distance 2 of an end-vertex. Since v3 has no

other neighbor in D and is not in D itself, it follows that each of these neighbors must be distance

exactly 2 from an end-vertex, have a neighbor in D and all other neighbors of that neighbor must

be end-vertices. (See Figure 2.6b for an example.) Induct with S consisting of all vertices separated
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v0 v1 v2 v3

v0 v1 v2 v3 v4 v0 v1 v2 v3

(a) (b) (c)

Figure 2.6: Three possible choices of S

from v4 by the bridge v3v4, and N consisting of one leaf-edge incident with each vertex in D ∩ S.

Then every vertex of D ∩ S except v2 has two end-vertex neighbors in T and hence at least one

end-vertex neighbor in T −M ; thus ψM
S = 2|D ∩ S| − 1. However, any set achieving this does not

dominate v4. So the bound holds by Claim 2b, since |D ∩ S| ≥ 2.

Case C: Assume v2 /∈ D. By the peripherality of v3, it must be that any neighbor of v2,

other than v3, is in D and has at least two end-vertex neighbors. (See Figure 2.6c for an example.)

Induct with S consisting of all vertices separated from v3 by the bridge v2v3, and N consisting of

one leaf-edge incident with each vertex of D ∩ S. We have ψM
S = 2|D ∩ S|; but a set achieving this

cannot dominate v3. So the bound holds by Claim 2b.

Hence we have shown that one may assume that v1 has degree 2.

(ii) It follows that v2 is the external private neighbor of v1. Thus v2 cannot have another

neighbor with peripherality at most 1, and so it has degree 2.

It follows that a vertex of peripherality 3 cannot be in D.

Claim 4. We may assume that every vertex v3 of peripherality 3 has degree 2.

Let v3v2v1v0 be a peripheral path, and let v4 denote the free neighbor of v3. Suppose v3

has a third neighbor w.

(i) Assume that w has peripherality 2. Then by Claim 3, w has degree 2 and its other

neighbor has degree 2 too. Then induct with S consisting of the vertices separated from v3 by the

bridge v2v3 together with the vertices separated from v3 by the bridge wv3, and N consisting of

a leaf-edge incident with each vertex of D ∩ S. (See Figure 2.7a.) It follows that ψM
S = 4 while

|D ∩ S| = 2, and so the bound holds by Claim 2a.

(ii) Assume that w has peripherality 1 and two end-vertex neighbors. Then induct as in the

previous case.
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v0 v1 v2 v3

w

v0 v1 v2 v3 v4

w

(a) (b)

Figure 2.7: Two possible choices of S

(iii) Assume v3 has no neighbor of these two types. It follows that w has peripherality 1 and

only one end-vertex neighbor, and thus that v3 is an external private neighbor of w. In particular,

v3 has degree 3. (See Figure 2.7b.) Then induct with S consisting of the vertices separated from

v4 by the bridge v3v4, and N consisting of v0v1, v2v3, and the leaf-edge incident with w. It follows

that ψM
S = 4 while |D ∩ S| = 2, and so the bound holds by Claim 2b.

If the tree has diameter 6 or 7, then it follows from the above claim that T is a path, that

is, P7 or P8. It is easy to observe that the largest D satisfying the hypothesis of the theorem has

two vertices, and that removing a maximum matching yields a forest with domination number at

least 4. So we may assume that T has diameter at least 8. In particular, there exists some vertex

v4 with per(v4) = 4.

Claim 5. We may assume that every vertex v4 of peripherality 4 is in D and has degree 2.

Let v4v3v2v1v0 be a peripheral path.

(i) Suppose that v4 /∈ D. Then induct with S = {v0, v1, v2, v3} and N = {v0v1, v2v3}. Then

ψM
S = 2 and no set achieving this contains v3, while |D ∩ S| = 1. Thus the bound follows from

Claim 2c. So we may assume v4 is in D.

(ii) Suppose v4 has degree more than 2. Let v5 be its free neighbor. Let m be the length

of the longest path that starts with v4 and does not use v3 or v5. Since per(v4) = 4, it follows that

m ≤ 4. There are four cases.

Case A: m = 4. Say we have path v4w3w2w1w0. Then per(w3) = 3, and so by the above

claim has degree 2. We use a non-standard inductive step. Let S = {v0, v1, v2, w0, w1, w2}. (See

Figure 2.8a.) Then induct on T ′ = T − S to produce matching M ′. Then, since M ′ can contain

only one edge incident with v4, we may assume without loss of generality that the edge v3v4 is not

in M ′. So we can define N = {v0v1, v2v3, w0w1}. It follows that ψM
S = 4, but only one vertex of T ′
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can be dominated by S in T −M . Thus γ(T −M) ≥ γ(T ′ −M ′) + 3, while |D ∩ S| = 2, and so the

bound follows.

v0 v1 v2 v3 v4

w0 w1 w2 w3

v0 v1 v2 v3 v4

w1 w2

v0 v1 v2 v3 v4

w1

(a) (b) (c)

Figure 2.8: Three possible choices of S

Case B: m = 3. Say we have path v4w2w1w0. Then w1 is a support vertex and so it is in D;

and thus w1 has (at least) two end-vertex neighbors, while w2 is not an external private neighbor of

v4. Indeed, per(y) ≤ 1 for all neighbors y of w2 other than v4. Again we use a non-standard inductive

step. Let S consist of v0, v1, v2 together with all vertices separated from v4 by the bridge w2v4. (See

Figure 2.8b.) Then induct on T ′ = T − S to produce matching M ′. Now form M∗ from M ′ by

deleting edge v3v4 if present. Then formM fromM∗ by adding v2v3 and one leaf-edge incident with

each vertex of D ∩S. Then ψM
S = 2|D ∩S|. But since in T −M vertex v3 is an end-vertex adjacent

to v4, we may assume v4 is in the dominating set of T −M ; thus a set achieving ψM
S cannot help

with dominating V (T ′). It follows that γ(T −M) ≥ ψM
S + γ(T ′ −M∗) ≥ ψM

S + γ(T ′ −M ′)− 1, and

the bound follows since |D ∩ S| ≥ 2.

Case C: m = 2. Say we have path v4w1w0. Then w1 is in D and has (at least) two end-

vertex neighbors. Again we use a non-standard inductive step. Let S consist of v0, v1, v2 together

with all vertices separated from v4 by the bridge w1v4. (See Figure 2.8c.) Then induct on T ′ = T−S

to produce matching M ′. Now, form M∗ from M ′ by deleting edge v3v4 if present. Then form M

from M∗ by adding edges v0v1, v2v3, and w0w1. Then ψ
M
S = 4 while |D ∩ S| = 2; and by a similar

argument to the previous case, it follows that γ(T −M) ≥ γ(T ′−M ′)+3, so that the bound follows

similarly.

Case D: m = 1. That is, all other neighbors of v4 are end-vertices. Then induct with

S consisting of all vertices separated from v5 by the bridge v4v5, and N consisting of a leaf-edge

incident with each of v1 and v4. Again ψM
S = 4 while |D ∩ S| = 2. Thus the claim holds.

If the tree has diameter 8 or 9, then it follows from the above claim that T is a path, that
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is, P9 or P10. It is easy to observe that the largest D satisfying the hypothesis of the theorem has

three vertices, and that removing a maximum matching yields a forest with domination number at

least 5. So we may assume that T has diameter at least 10. In particular, there exists some vertex

v5 with per(v5) = 5.

Say v5 has peripheral path v5v4v3v2v1v0 and free neighbor v6. Let y be a neighbor of v5

other than v6, if it exists. Then per(y) ≤ 4. Since v5 cannot have a second neighbor in D, it follows

that y is not in D. Hence by the above claim per(y) ̸= 4. Also y does not have an end-vertex

neighbor. It follows that, for each neighbor z of y apart from v5, per(z) ≤ 2. If per(z) = 2 then

per(y) = 3, and so z is not in D. (See Figure 2.9.) If there is a z with per(z) = 1 that does not have

at least two end-vertex neighbors, then it is the only z with per(z) = 1. Induct with S consisting

of all vertices separated from v6 by the bridge v5v6, and N consisting of v0v1, v2v3, v4v5, and one

leaf-edge incident with each vertex in (D ∩ S) − {v1, v4}. Then ψM
S = 2|D ∩ S| − 1 and any set

achieving this does not contain v5. So the bound follows from Claim 2c, since |D ∩ S| ≥ 3.

v0 v1 v2 v3 v4 v5 v6

z y

Figure 2.9: One possible choice of S

If y does not exist, then induct similarly with S = {v0, . . . , v5}.

This concludes the proof.

2.4 Trees where Matching Removal Has Little Impact

We considered earlier the case where the removal of a matching doubles or nearly doubles

the domination number. We consider here the other extreme but only for trees. We show first that

there is always a matching whose removal increases the domination number.

We will need the following fact, originally obtained by Bollobás and Cockayne, and include

our own version of a standard proof:
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Lemma 3. [1] The domination number of a graph without isolated vertices is at most its matching

number.

Proof. Let G be a graph without isolated vertices and let D be a γ-set. We want to change D into a

dominating set such that every vertex in the set has an external private neighbor. For every vertex

v ∈ D, v must have a neighbor not in D else we could remove it from D (contradicting minimality).

If its neighbor is an external private neighbor then leave it alone. Suppose then that v has no

external private neighbors. Then every vertex in N(v) is dominated by another vertex in D. Also,

N(v) has no vertices in D, else again we could remove v from D. So remove v from D and let any

vertex u in N(v) enter D \ {v}. We see that v is an external private neighbor of u. We can continue

this process for every vertex in our dominating set to obtain a dominating set D′ such that every

vertex in that set has an external private neighbor.

Now we construct a matching M by matching every vertex in D′ with an external private

neighbor. We can extend M to a maximal matching M ′ which has cardinality less than or equal to

the matching number of G and thus γ(G) ≤M(G).

This yields the following:

Theorem 9. Removing any maximum matching M from a nontrivial tree T increases the domina-

tion number.

Proof. It is immediate that T −M has |M | + 1 components. Thus γ(T −M) ≥ |M | + 1, since we

need at least one vertex in each component. By the above lemma, |M | ≥ γ(T ).

As noted earlier, it is not true that every maximal matching removal increases the domina-

tion number.

We next consider the trees where removing any maximal matching only increases the dom-

ination number by at most 1. We have already seen that the star is an example. We define two

families of trees:

• Let S denote the set of all trees that have radius at most two and at most one vertex of degree

more than 2. We call the vertex of degree more than 2 the “hub”.
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• Let T denote the set of all trees obtained from a tree of diameter 3 by subdividing each edge

once. (Note that all trees in T have odd order.) We call the starting tree the base tree.

Figure 2.10 gives a picture of a tree in S and a tree in T .

b

a

c

d

Figure 2.10: A tree in S and in T

Lemma 4. If T is a tree in S ∪ T , then the removal of a matching M from T either leaves the

domination number unchanged or increases it by 1.

Proof. Assume T ∈ S. Then γ(T ) equals the number of vertices of degree 2, plus one if the hub has

a neighbor that is an end-vertex. Further, γ(T −M) is at most the number of vertices of degree 2

plus one for the hub, plus one if M contains an edge joining the hub to an end-vertex neighbor.

Assume T ∈ T with order n. Then γ(T ) = (n− 1)/2 as, for example, the end-vertices and

the central vertex form a dominating set while we need a different vertex to dominate each of them.

On the other hand, γ(T −M) ≤ (n+1)/2, as the original vertices of the base tree dominate T even

after the removal of a matching.

It is well-known and trivial that adding an edge to a graph can reduce the domination

number by at most 1.

Theorem 10. A tree T has the property that γ(T −M) ≤ γ(T )+1 for all matchings M if and only

if T is in S ∪ T .

Proof. Let us say a matching is “bad” if its removal increases the domination number by more than

1, and a tree is “good” if it has no bad matching. By Lemma 4, it remains to show that if a tree T

is good then it is in one of the two families. The proof is by induction on the order of T .
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For the base case consider a tree of diameter at most 3. If such a tree has at most one vertex

of degree more than 2, then it is in S. If such a tree has two vertices of degree more than 2, then a

maximum matching is bad. Hence we may assume T has diameter at least 4.

Consider a longest path P of good T with penultimate edge uv where all other neighbors of

v are end-vertices. Say T − uv consists of trees Tu and Tv. By Theorem 9, there exists a matching

of Tu whose removal increases the domination number of Tu; let Mu be any such matching (not

necessarily maximum). ExtendMu to matchingM of T by adding a leaf-edge incident with v. Then

γ(T −M) ≥ γ(Tu −Mu) + 1 > γ(Tu) + 1 ≥ γ(T ).

In particular, γ(T −M) = γ(T ) + 1 requires both that γ(T ) = γ(Tu) + 1 and that γ(Tu −

Mu) = γ(Tu) + 1. Since Mu was any matching such that γ(Tu −Mu) > γ(Tu), this implies that Tu

is good, and thus Tu ∈ S ∪ T .

Let Dℓ denote the set of support vertices of T , let Mℓ be a matching consisting of a leaf-

edge incident with each support vertex, and let Uℓ be the tree obtained from T by removing each

end-vertex incident to an edge of Mℓ. We say that the tree T is leafy if Dℓ forms a dominating set.

If so, γ(T −Mℓ) = |Mℓ|+ γ(Uℓ) = γ(T ) + γ(Uℓ). So Uℓ must have γ(Uℓ) = 1 and thus be a star if

T is leafy.

Assume first that Tu ∈ S. If Tu is a star, then T is leafy and γ(T ) = 2. It is easily checked

that the only way T can be good is that it is P5, which is in S. So assume Tu is not a star. In Tu,

let a be a vertex at distance 2 from the hub, c the hub, and b their common neighbor. Let d be an

end-vertex neighbor of the hub, if it exists.

Up to symmetry there are four possibilities for u. (a) Assume u = a. Then vabc is in Uℓ,

and so T is not leafy; thus the hub has no end-vertex neighbor. So if v has degree 2 in T the tree

T is in T . Otherwise it can be checked that any maximal matching containing the edge bc and a

leaf-edge incident with v is bad. (b) Assume u = b. Then T is leafy. The only way Uℓ can be a star

is that both v and c have degree 2 in T , and c’s other neighbor is an end-vertex; so T is in S. (c)

Assume u = c. Then T is leafy. If v has degree 2 in T then T is in S; otherwise Uℓ is not a star. (d)

Assume u = d. Then T is leafy, but Uℓ is not a star, which contradicts the above.

Assume second that Tu ∈ T . By the choice of P , u cannot be the central vertex of Tu. If u

is an end-vertex of Tu, then it is easily checked that γ(T ) = γ(Tu), which contradicts the above. If
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u is a subdivision vertex in Tu, then one can check that there is maximum matching whose removal

increases the domination number of T by 2. If u is one of the large-degree vertices, then we are in

T if v has degree 2 in T , and there is a bad matching otherwise.
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Chapter 3

Further Thoughts

There are several directions to consider further. In this thesis we study the effects of remov-

ing a matching from a graph on the domination number. This is of course a special case of more

general questions such as: what is the smallest k such that there exists a subset of edges, inducing

a subgraph with maximum degree k, whose removal increases γ by at least ℓ? Alternatively, if one

wants to remain in the realm of removing matchings one can ask if sharper bounds can be obtained

for other families of graphs? Even for trees, one could restrict the maximum degree and then ask

about better bounds for the impact of matching removal. There is also the question of an algorithm

for finding a matching in a tree whose removal increases the domination number the most, and

the complexity of that task in general graphs (recall that Figure 2.2 shows it is not as simple as

taking a maximum matching). We noted that if every vertex has two leaf neighbors then there is

a doubling matching. One could try to classify the family of graphs exactly that have a doubling

matching. Lastly we also note that we could consider the effects of removing a matching on other

domination related parameters. Notably one can consider how the removal of a matching affects

the independence number, the total domination number, and the independent domination number

which was explored in [3].
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