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Abstract

Medical coding is the process by which standardized medical codes are assigned

to patient health records. This is a complex and challenging task that typically

requires an expert human coder to review health records and assign codes from a

classification system based on a standard set of rules. Considering the downstream

use of these codes in statistical analysis, billing, and patient care, improving the

accuracy and efficiency of the medical coding process through automation could have

a far-reaching impact on the healthcare domain. Since health records typically consist

of a large proportion of free-text documents, this problem has traditionally been

approached as a natural language processing (NLP) task. While machine learning-

based methods have seen recent popularity on this task, they tend to struggle with

codes that are assigned less frequently, for which little or no training data exists.

In this thesis, we utilize the open-source programming language for natural lan-

guage processing, NLP++, and its associated integrated development environment

to design and build an automated system to assign International Classification of

Diseases (ICD) codes to discharge summaries that functions in the absence of labeled

training data. We evaluate our system using the MIMIC-III dataset and compare

our results to supervised approaches. Results show that for datasets where labels

are sparse, our approach matches state-of-the-art machine learning approaches. It

is somewhat less effective for densely labeled datasets, but provides additional sup-
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port for explainability and adaptability. Overall, our approach presents an effective

pathway for code assignment in clinical documents by providing both competitive

performance and enhanced explainability.
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Chapter 1

Introduction

1.1 Motivation

Medical coding is the process by which health clinics and institutions assign

standardized codes to patient health records for downstream use in applications such

as statistical analysis, indexing patient health records, coding medical billing claims

[32], and assessing quality of patient care [40]. In the United States, The Health

Insurance Portability and Accountability Act (HIPAA), enacted in 1996, mandates

the use of standard coding systems for healthcare transactions and delegates over-

sight of the execution of the standardization process to the department of Health and

Human Services [1, 37]. At the time of writing, the coding systems that have been

selected for use include both the Clinical Modification (ICD-10-CM) and Procedure

Coding System (ICD-10-PCS) of the 10th revision of the International Classification

of Diseases, the Current Procedural Terminology (CPT), the Healthcare Common

Procedure Coding System (HCPCS), the Code on Dental Procedures and Nomen-

clature (CDT), and the National Drug Codes (NDC) [38]. Each coding system is

specific to a particular subset of medical terminology and healthcare application and,
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due to the exacting nature of the medical lexicon, each can be quite large, with the

ICD-10 comprising more than 70,000 codes and the HCPCS comprising over 7,000

codes. While these systems of classification represent a critical infrastructure with

extensive significance in the healthcare domain, the success of their implementation

largely rests on the efficient and precise assignment of these codes to a patient’s

health record. In practice, however, the task of assigning ICD codes to patient health

records is a complex, multi-stage process with many possible points of failure [40].

While clinicians ultimately generate the paper trail that makes up the health record

for a patient hospital visit and have some involvement in the assignment of medical

codes, much of the burden of this process is placed on trained human experts, known

as medical coders.

Despite the widespread adoption of electronic health records systems [35] and

the proliferation of software to aid in the parsing of medical data [2], medical coding

remains a difficult task, even for expert coders. One challenge is that health records

include a large amount of heterogeneous data, including clinical notes, lab reports,

tabular data, and imaging results, requiring medical coders to synthesize information

across a broad range of modalities. To add to the complexity, constituent elements

of the health record are typically recorded at different phases of a patient’s trajec-

tory and by different clinicians, introducing variations in terminology and notation

[40]. Additionally, coders are required to have a working knowledge of various clas-

sification systems, each containing thousands of codes, as well as the complex rules

governing their assignment [12]. In practice, this leads to considerable variation in

the assignment of medical codes [12] and undermines the objective of standardization

for which these classification systems were designed. The compounded effect of this

variation in the assignment of medical codes can adversely affect downstream ap-

plications which utilize these codes. Particularly noteworthy is the financial impact
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resulting from their use in medical billing. From a financial perspective, increased

automation in medical encoding could reduce the need for human coders and increase

encoding accuracy, both of which would reduce the cost burden of coding for health-

care providers and further limit their risk of fraud litigation [6], which can result

in significant financial and institutional penalties. In fact, the Department of Health

and Human services found in 2010 that approximately half of all claims for evaluation

and management services were incorrectly coded, resulting in $6.7 billion in improper

payments by Medicare [27]. Medical coding thus presents itself as a critical task which

would greatly benefit from increased automation and could have a sweeping impact

on healthcare, a sector for which national spending is projected to grow at an annual

average rate of 5.4% per year to 2028 [16].

Since much of the information required for assigning codes is contained within

unstructured text documents, the problem of medical coding has traditionally been

approached through the framework of natural-language processing (NLP). Though

much research has been conducted in this area, it remains a challenging problem and

inherent limitations of state-of-the-art approaches tend to restrict their practical util-

ity [12]. One such limitation of these approaches is a lack of explainability, or the

ability to understand a system’s decision-making process. This is especially detrimen-

tal to deep learning based approaches, which often function as black-boxes, providing

little or no rationale for results. Current approaches to medical coding automation

lack sufficient accuracy to be effectively employed in the clinical setting. Addition-

ally, both classical machine-learning an deep-learning based approaches tend to be

limited the need for quality data for initial training and validation, as well as ongoing

testing and updating. Due to restrictions on the distribution of patient medical data,

collecting and curating useful data sets for these tasks is a major challenge [22, 46, 23]

and annotation costs to develop gold-standard datasets can be prohibitive [46].
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To address the limitations of current approaches to the task of medical code

assignment, we investigate the feasibility of applying a natural language process-

ing programming language and integrated development environment called NLP++.

NLP++ utilizes a multi-pass, multi-strategy architecture in which each pass over the

input text performs a specific step in processing or parsing the text [10]. Further-

more, the multi-pass strategy constructs a single parse tree which is refined by each

successive pass. In this architecture, passes are chosen or defined by the programmer

to function according to the needs of the project. Sequences of passes are grouped

together as an analyzer tailored to a particular application. Thus NLP++ can be

adapted to a variety of natural language understanding tasks and downstream appli-

cations. NLP++ is selected due its support for explainability, adaptability, and its

practicality in settings with little or no annotated data.

1.2 Research Challenges

In our analysis of the work on International Classification of Diseases coding

we identify a few key areas of research which are both of critical importance and

continue to pose challenging problems for existing systems: low-resource performance,

explainability and adaptability. While each of these has been investigated to some

degree in prior work (see Chapter 3), existing approaches fail to address these issues

in a single, cohesive manner. Here we define each of these issues.

Another critical area of research which is under-studied is that of low-resource

medical coding. A significant amount of research into ICD coding is conducted using

the MIMIC [23] datasets, which provide clinical notes and corresponding ICD codes

from the electronic health record system of the Beth Israel Deaconess Medical Center.

It is worth noting that considerable effort was expended to both de-identify this data
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and to aggregate and publish it [23]. While this constitutes a tremendous step forward

for research, there is no guarantee that results on MIMIC are generalizable to other

domains and assembling a dataset of this size and quality is not always feasible in

a practical setting. Additionally, due to the long-tail distribution of code labels

in MIMIC, some ICD codes are vastly underrepresented in the dataset and others

don’t appear at all, adversely affecting the overall performance of systems which rely

on large amounts of training data [54]. For these reasons, few-shot (access to only a

small set of training samples) and zero-shot (no access to in-domain training samples)

approaches to ICD coding are of critical importance, but also an area in which existing

state-of-the-art approaches tend to struggle [12, 54].

An explainable system provides a sensible, human-interpretable motivation for

a particular decision, or a “trace of their inference steps” [18]. With respect to the

coding of clinical notes, a popular approach to enhancing explainability is by provid-

ing a context span from the clinical note to support a particular code assignment.

For example, for the code with title “Tobacco Use Disorder” a supporting text span

from the note may be “. . . patient is a current smoker”. These context spans allow for

enhanced interoperability with human coders by providing a human-verifiable justifi-

cation for a code assignment. Since automated systems for medical coding have not

reached the performance level necessary to be deployed autonomously, these systems

are typically used to support human coders. As such, the ability to provide human-

interpretable predictions is of critical importance. Explainability poses a significant

challenge for deep learning-based approaches.

Finally, we seek to address the issue of adaptability, a term which we use to

describe a system which is able to be modified to address either the requirements of

the user or changes in the input or output space. One drawback to existing state-

of-the-art deep learning approaches to ICD coding is their inflexibility [12]. This
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can be problematic for end-users of the system, who may wish to alter aspects of

the deployed system to line up with individual or institutional requirements. This

can also problematic with respect to the changing nature of coding systems like the

ICD-9, in which codes are periodically removed, added, merged, or shifted. An ideal

classification system would be able to easily adapt to these changes without the need

for expensive re-training or significant architectural modifications.

The remainder of this thesis is organized as follows. In Chapter 2 , we pro-

vide background information on the research problem, including an overview of the

MIMIC-III dataset, the International Classification of Diseases, NLP++ and the

UMLS. In Chapter 3, we give an overview of previous work in the area of medi-

cal coding. Chapter 4 provides a detailed outline of the experiments conducted and

Chapter 5 provides the results of these experiments, along with analysis of the results.

Finally, we identify several promising directions for future work in Chapter 6.
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Chapter 2

Background

2.1 MIMIC

A critical component in the development and deployment of automated sys-

tems for medical coding is annotated data. While sufficient data is being collected as

a result of the increasing use of electronic health record systems, barriers remain to

accessing and aggregating this data [35]. For one, the private nature of patient health

records entails strict regulation and oversight, restricting access to and dissemination

of patient medical records [22]. In addition, there is no incentive for EHR system ven-

dors or medical institutions to facilitate the sharing of data with other organizations

[25]. These restrictions inhibit the creation and curation of large, multi-institution

health data sets, which are crucial for reducing biases and supporting more general

AI technologies. Some work has been done to improve the availability of clinical data

for research [23, 36], but there still exists a massive disparity between the amount

of data available to researchers and that collected by health institutions [22]. One

of the projects seeking to overcome this disparity is the Medical Information Mart

for Intensive Care, or MIMIC [23, 21]. MIMIC is an openly accessible database of
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de-identified electronic health record data for patients admitted to the intensive care

unit of the Beth Israel Deaconess Medical Center, the teaching hospital of Harvard

Medical School [23]. There are four releases of the MIMIC dataset (I-IV); our work

focuses on the third release, since full access to the fourth release was not available

until late in the project.

The third release of MIMIC, or MIMIC-III, was published in 2016 and contains

data collected from 2001 to 2012 for 49,785 distinct hospital admissions correspond-

ing to 38,597 unique patients [23]. Each hospital admission record is comprehensive

and includes data falling into one of the following categories: billing, descriptive, dic-

tionary, interventions, laboratory, medications, notes, physiologic, and reports [23].

In particular, MIMIC-III includes free text notes and reports–for example, radiol-

ogy reports and hospital discharge summaries–as well as medical codes–ICD-9, CPT,

and Diagnosis-Related Group (DRG) codes–for a hospital admission, making it an

invaluable resource for the development and evaluation of automated code extraction

systems.

Despite the demonstrated utility of MIMIC-III, the generalizability of results

on the MIMIC-III coding dataset is limited by the quality of the assigned codes.

ICD codes available in the MIMIC database, which are used as labels for the task

of medical coding, are drawn from the electronic health record system [22]. This

suggests that they have been assigned through the standard medical coding process,

which is problematic given the typical incidence of error in medical code assignment

[40, 12] and the frequent treatment of MIMIC-III ICD labels as a gold standard

label set in the literature [46]. Searle et al. [46] conduct a review of ICD code

assignment in MIMIC-III by comparing the labels in the dataset to entities found

by a medical named-entity recognition and linking model, MedCAT. They find that

the most frequently assigned codes in MIMIC-III are under-coded by up to 35% [46].
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Full [33] Top 50 [33] Rare 50 [54]

Number of Documents 52,723 11,368 391

Number of Patients 41,126 10,356 386

Number of Unique Codes 8,922 50 50

Mean Codes per Document 15.9 5.7 1.0

Train/Dev/Test % 90.5/3.1/6.4 71.0/13.8/15.2 60.6/4.9/34.5

Table 2.1: Subsets of the MIMIC-III coding dataset.

This is a significant result, since supervised approaches which rely on these labels can

inherent these flaws. While a revision of code assignments in MIMIC-III via secondary

validation would be a useful solution to this problem, it is an expensive solution [46]

and one that has not yet been undertaken at scale. We aim to circumvent this issue

by designing a system that functions in the absence of training data, referred to in

the literature as a zero-shot setting.

2.2 International Classification of Diseases

The International Classification of Diseases constitutes a standardized nomen-

clature and classification system for diseases and medical procedures, which was orig-

inally intended to facilitate the statistical analysis of health data [32]. As the ICD

has evolved and expanded, so have its practical applications in the healthcare do-

main, which have come to include the indexing of health record data in hospitals,

the coding of medical billing claims [32], and the assessment of quality of patient

care [40]. Each successive revision to the ICD, typically spanning 10-20 years, has

sought to address these new use cases while simultaneously adapting to advances in

medicine and healthcare [32]. As a result, the International Classification of Diseases

has continued to grow in number of total codes as well as hierarchical depth, with the
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ICD-9-CM–a clinical modification of the ICD-9 adapted for use in the US–containing

over 14,000 codes and a maximum height of 6.

Each entity within the ICD-9-CM is encoded by a unique identification string

consisting of three to five digits and an optional single letter prefix corresponding to a

supplementary category (E for External Causes of Injury and Poisining, V for Factors

Influencing Health Status and Contact with Health Services, and M for Morphology

of Neoplasms) [40]. Each additional digit in a code specifies a greater specificity,

or depth, within the hierarchy (see figure 2.1 for an example of a path within the

ICD-9 hierarchy). In codes with more than three digits, a decimal point is added to

distinguish between the three-digit parent class and the following digits.

One drawback to the approach to encoding hierarchical information in ICD-9

is the lack of correlation between the numerical representation of an entity in the ICD

and its relative location in the hierarchy. For example, given that 140 is the 3-digit

code for the category Malignant Neosplasm of the Lip and that 157 is the 3-digit

code for the category Malignant Neoplasm of Pancreas, one might assume that the

first digit, 1, corresponds to the more general class of neoplasms, while the last two

digits correspond to severity or locality. Though the latter tends to hold, the former

does not. Thus there is no way to determine from the code alone that code 135,

Sarcoidosis, does not belong to the class Neoplasms (codes 140 to 239.99) but in fact

belongs to Infectious and Parasitic Diseases, which spans codes 001 to 139.99.

More challenging than the structure of ICD codes are the challenges inherent

to medical classification systems. One major issue that arises is that of synonymy.

O’Malley et al. point out the example of stroke, a term with a large number of

synonyms; in this case, one doctor could code cerebrovascular accident (Code 436)

and another could code intracerebral hemmorhage (Code 431) and both would be

correct. This adversely affects precision and could be a confounding factor for auto-
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Figure 2.1: Path in the ICD-9 hierarchy for terminal child codes of 995.6: Anaphy-
lactic Shock due to Adverse Food Reaction.

mated coding systems [40]. Another issue is the size and complexity of the ICD and

the associated rules for code assignment. Some of the problems with synonymy and

ambiguity in the ICD-9 could be resolved by more precise rules and more specificity

in the hierarchy, but this would also have the effect of increasing the complexity of

an already complex classification system. These limitations of the ICD serve to make

ICD coding a particularly challenging task, especially when paired with complex and

often ambiguous health record data. Some of these issues were considered in the

development of the ICD-10. In particular, the coding system was redesigned to in-

corporate single letter prefixes corresponding to chapters as opposed to the arbitrary

numeric ranges of the ICD-9. To address the issue of synonymy, titles were altered

to incorporate a higher level of specificity in an attempt to better encapsulate the

information needed to make a code assignment [52]. Additionally, the ICD-10 was ex-

panded to allow for more granularity in the coding system, resulting in approximately

55,000 more codes compared to ICD-9. While these changes addressed critical issues
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in the ICD-9, it is unclear to what extent ICD coding has improved in practice since

the roll out of ICD-10. In 2013, Topaz et al [52] carry out an analysis of the literature

on clinical data quality in the ICD-9 versus the ICD-9 and find no significant indi-

cation of ”improvements or deficits”. Our work focuses on the ICD-9 due to access

to labeled ICD-9 data, however, we suspect that the methods outlined in this paper

would carry over to ICD-10, either by restructuring the system to accommodate the

new code set or by translating the ICD-9 output codes to ICD-10 codes using, for

example, the general equivalence mappings provided by the Department of Health

and Human Services [37].

2.3 NLP++

The technology selected for this project is a programming language dedicated

to natural language processing, called NLP++ [30, 10]. NLP++ utilizes a multi-pass,

multi-strategy architecture in which each pass over the input text performs a specific

step in processing or parsing the text. Passes are broken down into specific regions:

rule regions, code regions and declarative regions. Rule regions perform operations

on the parse tree using predefined operators (for an example, see listing 2.3), code

regions include code which is executed at runtime, and declarative regions include

user-defined functions which can be called from both rule and code regions. The

multi-pass strategy constructs a single, best-first parse tree which is refined by each

successive pass. In the multi-pass architecture, passes are chosen or defined by the

programmer to function according to the needs of the project. Sequences of passes

are grouped together as an analyzer tailored to a particular application. NLP++

can thus be adapted to a variety of language tasks including information extraction,

named entity recognition, sentiment analysis, word-sense disambiguation, and part of
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speech tagging.

1 @NODES _ROOT

2

3 @RULES

4

5 _BLANKLINE <-

6 _xWILD [min=0 max=0 matches =(\ \t \r)] ### (1)

7 \n ### (2)

8 @@

9

10 _LINE <-

11 _xWILD [min=0 max=0 fails =(\r \n)] ### (1)

12 _xWILD [one match =(\n _xEND)] ### (2)

13 @@

Listing 2.1: Code example of a built-in rule pass in an NLP++ analyzer to reduce

lines in the parse tree. Blank lines are placed under a new node named BLANKLINE

and all other lines are placed under the LINE node.

NLP++ also incorporates a hierarchical knowledge base management system

(KBMS) called Conceptual Grammar (CG) for integrating domain, task, dictionary,

and linguistic knowledge, as well as allowing the programmer to dynamically store

and use information extracted from multiple input texts. The conceptual grammar

includes both knowledge bases (files with extension .kb) and dictionaries (extension

.dict). Knowledge bases allow the user to store and retrieve information in a hierar-

chical manner. Dictionaries, on the other hand, consist of entries and corresponding

key/value pairs. After tokenization, a lookup is performed on the parse tree and

nodes that match dictionary entries are tagged with their respective key/value pairs.

This facility thus constitutes a key aspect of building effective analyzers for parsing
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text.

Figure 2.2: Example of an NLP++ knowledge base for ICD code example from figure
2.1 with code ranges .

An integrated development environment (IDE) called the NLP Engine bundles

both NLP++ and CG into a sandbox for rapid prototyping and development. Vi-

sualText supported deployments by NASDAQ and IBM Global Services UK, among

others. The NLP Engine IDE supports multi-platform deployments on Linux, Win-

dows, and Mac operating systems. The IDE serves to streamline and accelerate the

prototyping, development, and maintenance of NLP systems in particular. NLP++

is also integrated into High Performance Computing Cluster (HPCC) Systems from

LexisNexis for handling large datasets.

2.4 Biomedical Knowledge Bases

While the International Classification of Diseases represents an international

standard in morbidity and mortality reporting, it is not the only attempt to system-
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Figure 2.3: Section of the built-in part of speech dictionary for the English language.

atize biomedical knowledge. There exist a variety of medical coding systems, thesauri,

and ontologies, each with their own terminology, structure, and scope. A key goal in

biomedical research has thus been to develop systems to integrate these knowledge

bases by developing a standard terminology and knowledge representation. One ef-

fort in this direction is the Unified Medical Language System (UMLS), a repository of

biomedical vocabularies and associated tools which is developed and maintained by

the US National Library of Medicine [4]. The UMLS consists of the Metathesaurus,

a biomedical thesaurus which links concepts from different constituent vocabularies;

the Semantic Network, which defines semantic types and provides relationships be-

tween UMLS concepts; and the SPECIALIST Lexicon, an English dictionary that

includes biomedical terms [39].

.

The Metathesaurus is a collection of source vocabularies which includes biomed-

ical thesauri, classification systems, coding systems, and controlled term lists [39] such

as SNOMED-CT[50]. Terms in these vocabularies are linked to standard identifiers

using semantic or lexical information. These identifiers, in order of increasing speci-

ficity, are Concept Unique Identifiers (CUIs) which refer to a specific meaning of
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Figure 2.4: An example of the different UMLS identifiers for terms mapping to the
C0004238 concept: Atrial Fibrillation [39]. The table has columns for concept unique
identifier, lexical unique identifier, string unique identifier and atom unique identifier.

a term; Lexical Unique Identifiers (LUIs) which link all lexical variants of a term,

for example spelling variations, abbreviations or plural forms; String Unique Identi-

fiers (SUIs) which are assigned to a specific string literal for each vocabulary; and

Atom Unique Identifiers (AUIs) which are assigned to each individual entry in a

vocabulary[39]. An example for the concept Atrial Fibrillation is provided in figure

2.4. The Semantic Network defines semantic types for these concepts as well as rela-

tionships between them. The Semantic Network defines 127 different semantic types

and 54 different relationships, thus comprising a network in which types are the nodes

and relationships are the vertices [39]. We leverage the this concept structure along

with the relationships defined in the Semantic Network to map key terms found in
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the text to concepts in the UMLS.

The Specialist Lexicon is a dictionary containing both common English terms

as well as domain-specific biomedical terms which was developed with the express pur-

pose of aiding in natural language processing [39]. The lexicon includes key linguistic

information for each term, including spelling variations, conjugations or conjugation

patterns, plural forms, and more [5]. Additionally, the NLM releases a set of utilities

for working with the specialist lexicon. Of these utilities, we use the Lexical Variant

Generator to generate variants and semantic neighbors of terms within the ICD-9

code titles.
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Chapter 3

Related Work

Though research on automated medical coding dates as least as far back as the

1970’s [42, 49], access to data and hardware limitations prevented the development of

large-scale solutions. The first work on International Classification of Diseases coding

specifically was published in the 1990s and treated the task as one of information

retrieval, employing k-nearest-neighbors, relevance feedback, and Bayesian classifiers

to select and rank relevant codes [26]. Other early approaches leveraged biomedical

natural language processing systems, such as MedLEE [14], to extract clinically-

significant entities which could then be linked to codes from the target coding system

[3, 15]. While these approaches saw some success on test datasets, they were limited

by their ability to generalize to new datasets and their ability to scale to larger label

spaces.

Medori and Fairon examined the automated assignment of ICD-9-CM codes

to French language clinical notes [29]. The express purpose of this study was to de-

velop a tool to help medical coders at the Cliniques Universitaires Saint-Luc, thus the

target corpus consisted of 166,670 notes and corresponding codes from the hospital’s

health record system. Despite its size, code-coverage was limited with only 4,039

18



unique codes present in the dataset. Their system was bipartite, including an ex-

traction step using both dictionary-based and heuristic methods to identify relevant

coding information and a classification step using Näıve Bayes classifiers to assign

codes. Classifiers were built for codes that appeared more than five times in the

corpus, resulting in only 1,497 classifiers. Results were limited in scope; the reported

metrics were recall at 10, 15 and 20, and the highest of these, 81.1, was achieved after

reducing classification to categories as opposed to individual codes. The approach

taken by Medori and Fairon of separating the task into an extraction and classifica-

tion step inspires our approach to isolating relevant context which is then used for

code classification.

Perotte et al. utilize the hierarchical structure of the ICD-9 to aide in the

assignment of ICD-9 codes to notes in MIMIC II [41]. Support-vector machine clas-

sifiers are trained for each ICD-9 code, including both terminal and parent codes,

using a training set of MIMIC-II discharge summaries (20,533 total notes) [41]. At

test time, notes in the test split (2,282 total notes) are evaluated from the root of

the hierarchy downward such that each parent code serves as a gate for its respective

child nodes. Thus a negative prediction for a node results in negative predictions for

each of its descendants in the hierarchy. This approach demonstrates considerable

performance improvement compared to a flat setup, in which predictions are made for

each code without any consideration for hierarchy [41]. The hierarchical approach has

the additional benefit of computational improvement at inference time, since negative

predictions for parent codes effectively prune their subtrees in the hierarchy. Though

the approach taken by Perotte et al. fundamentally differs from our approach (see

Chapter 4), our approach to evaluating our system in a hierarchical setup is motivated

by their success in exploiting the ICD hierarchy.

More recently, Chen et al. [9], investigated the feasibility of various NLP

19



systems for extracting codes from a subset of documents considered in the medical

billing process including: Chief Complaint, History of Present Illness, and Past, Fam-

ily, and/or Social History. The authors tested two systems on this task: a pipeline

built around a rule-based system called CLAMP and a large language model trained

on medical data, ClinicalBERT. The results demonstrated that each of the systems

performed better at different tasks; for example, the rule-based system was better at

identifying multi-word elements when considering the small training corpus, whereas

the deep-learning model performed better at overall precision, but lacked the ability

to effectively generalize due to the low amount of training data. Overall performance

for both systems was low, suggesting that automating code extraction for medical

billing still poses a challenging problem. Furthermore, the dataset used for training

and testing consisted of only 61 samples (80% were used for training and 20% for

testing) [9], which is likely too small to extrapolate the results to medical coding in

general.

Mullenbach et al. [34] introduce an attentional convolutional network to as-

sign ICD-9 codes to discharge summaries in the MIMIC-III dataset. Mullenbach et

al. introduce train, development and test splits for the full set of MIMIC-III dis-

charge summaries as well as splits for the top-50 subset which includes only the 50

most frequently assigned codes. Their system applies per-label attention to the out-

put of a convolutional neural network and then applies a softmax function to the

resulting vectors. For classification, these vectors are passed to an additional layer

and sigmoid [34]. The advantage of this approach is that the intermediate output of

the softmax can be interpreted as relative importance of locations in the document

for a particular code assignment, thus enhancing the explainability of the approach

while simultaneously achieving state-of-the-art performance. Both the full and top-50

train/development/test splits defined by Mullenbach et al. have become the standard
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for comparison in the literature [54], so we choose to evaluate our system on the test

split of each of these.

Yang et al. [54] address the long-tail challenge of ICD coding by both defining

a rare code subset of the MIMIC-III dataset and introducing a training algorithm

to improve performance on rare codes. The rare code subset, named MIMIC-III-

rare50, includes the 50 least common codes in MIMIC-III and corresponding discharge

summaries. The motivation for this subset comes from the observation that 4,115 of

the 8,692 unique codes in the MIMIC-III dataset occur fewer than 6 times [54]. Given

the reliance of pretrained language models on labeled data, few- and zero-shot settings

like those introduced in the rare-50 subset pose a challenging problem. We use the

rare-50 split to evaluate the performance of our system in a low-resource setting.
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Chapter 4

Methods

4.1 MIMIC-III Dataset Pre-processing

The MIMIC-III dataset consists of a series of tables containing electronic

health record data indexed by unique identifiers such as SUBJECT ID, which refers

to a unique patient, and HADM ID, which corresponds to a unique hospital admis-

sion [23]. In particular, the NOTEEVENTS table contains charted notes along with

corresponding metadata; for a comprehensive list of data types included in the NO-

TEEVENTS table, see Table 4.1. We extract all notes from the NOTEEVENTS

table in the MIMIC-III dataset (version 1.4) with CATEGORY field matching Dis-

charge Summary, including both reports and addenda. Notes where the ISERROR

flag is set are dropped and all addendum-type discharge summaries are concatenated

to their corresponding original reports, following previous work [33]. ICD-9 codes

for these discharge summaries are then generated from the PROCEDURES ICD and

DIAGNOSES ICD tables using the subject and hospital admission IDs. To facili-

tate processing, these codes are then mapped to their ICD-9 source representation

by adding a decimal after the first two characters for procedure codes and after the
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Figure 4.1: Flowchart of our evaluation pipeline on the MIMIC-III coding dataset. In
the figure, stages of the pipeline are encoded by color: yellow corresponds to MIMIC
dataset pre-processing, green to medical knowledge-base integration, blue to note
processing, and red to post-processing.

first three characters for diagnosis codes, with the exception of E codes for which a

decimal is added after the first four characters. In cases where the reformatted code

ends with a decimal, the decimal is dropped. As a final step in pre-processing the

dataset, the resulting table of discharge summaries and ICD-9 code labels is filtered
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MIMIC-III NOTEEVENTS DATA TABLE

Column Name Description

ROW ID Unique identifier for row index in the table

SUBJECT ID† Unique patient identifier

HADM ID† Unique hospital admission identifier

CHARTDATE Date on which the note was charted

CHARTTIME Time at which the note was charted

STORETIME Time at which the note was stored

CATEGORY† Category of the note, e.g. Discharge summary

DESCRIPTION† Additional description of note, e.g. whether the note is a
report or addendum

CGID Unique caregiver identifier

ISERROR† Whether the note contains an error

TEXT† The de-identified text of the note

Table 4.1: Column descriptions for the NOTEEVENTS table of MIMIC-III v1.4 [23].
Column names marked † are utilized in our approach.

according to each of the splits: Full, Top 50, and Rare 50. The resulting dataframes

are saved to disk for later use and the discharge summaries are written to individual

text files indexed by hospital admission ID, for use in the note processing stage.

4.2 Domain Knowledge Integration

The Unified Medical Language System serves two key roles in our system: the

first is to help identify clinically significant terms within ICD-9 titles and the sec-

ond is to resolve ambiguous domain-specific language. To the first end, we utilize

the UMLS term mapping utility to normalize terms within ICD-9 titles by mapping

them to alphanumeric lexical identifiers in the Specialist Lexicon, known as Entry

Unique Identifiers. These terms can be either single words or n-grams within the
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title. For, example, the ICD-9 code 285.1, with title Acute posthemorrhagic ane-

mia, would generate the EUIs E0007202, acute posthemmorhagic anemia; E0049207,

posthemmorhagic; E0007127, acute; and E0008920, anemia (see Figure 4.2, Step 1).

Figure 4.2: Outline of the pipeline for term normalization and variant generation for
ICD-9 titles.

In the second step, we leverage the normalized terms identified in the first

step to generate sets of alternative forms of these terms, a process which is depicted

in Step 2 of figure 4.2. These alternative forms, or variants, include at minimum

abbreviations, acronyms, plural forms, conjugations, and spelling variations. To ac-

complish this, we use the Lexical Variant Generation (LVG) command line utility

included with the Specialist Lexicon tools [47]. The LVG takes a term or list or

terms as input and outputs a list of variants according to the specified flow control

options. These options include normalization methods like stripping punctuation and

diacritics, and splitting ligatures as well as derivational options like generating fruit-

ful variants, inflections, synonyms, and spelling variants (for a comprehensive list, see

Appendix B). Since prior work has shown that the optimal choice of variant types

can vary by task [17], we experiment with different variant generation setups. The
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first approach, which we dub the lexical expansion approach, generates variants using

spelling variants, acronyms and abbreviations, and derivations. The second approach,

which we dub the semantic and lexical expansion approach, generates variants using

the fruitful variants flag, which includes the a comprehensive set of variations, includ-

ing spelling variants, inflections, synonyms, acronyms and abbreviations, expansions

of abbreviations and acronyms, and derivations [11].

The objective of this stage is ultimately to integrate domain knowledge into

our NLP++ analyzer, so as a last step in the process, we convert the raw data output

by the UMLS utilities into NLP++ knowledge bases and dictionaries. The resulting

files are organized as follows:

1. Knowledge Bases

ID to EUI: Maps each variant to an Entry Unique Identifier (EUI) or list of

possible EUIs.

EUI to ICD Code: Maps each EUI from ID to EUI knowledge base to a

list of ICD codes with titles containing the normalized EUI term.

ICD Code to EUI: Maps each ICD code in the set to a list of EUIs such that

each EUI term is contained within the ICD code title.

2. Dictionaries

Variant to ID: Maps each lexically unique variant to an unique integer id

corresponding to an index in the ID to EUI knowledge base.

Negations: Negation terms with attribute defining pre- or post-negation for

use with the NegEx algorithm.
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4.3 Note Processing

In the note processing stage, we take a set of notes, in this case each of the test

sets of MIMIC-III, and output a set ICD-9 codes for each note ranked by relevance.

Our approach involves three steps: extraction, linking and ranking. In the first step

we decompose the input text into structured sections. In the second step we extract

key terms link these to central concepts. In the third step we rank the set of extracted

codes using a inverse-document frequency-based method. In this section we give an

overview of the analyzer structure and experimental setup to investigate the effects

of knowledge sources and ranking formulations on overall ICD coding performance.

We first describe the general structure of the NLP++ analyzer. Our analyzer

consists of 27 distinct passes (for a comprehensive list with pass types, see Appendix

A) each of which performs a distinct step in note processing. The first step for NLP++

analyzers is the tokenization step in which we perform tokenization of the input

note using the built-in Dictionary Tokenizer in NLP++. The Dictionary Tokenizer

uses a word-based tokenization strategy which splits the text on whitespace and

punctuation. Additionally, strings containing both digits and letters are split into

tokens containing either all letters or all numbers. The tokenization pass also performs

lookups in the dictionaries for each token in the parse tree. If a token matches an

entry in one of the dictionaries, its attributes are added to the corresponding parse

tree node, as in Figure 4.3. In the case that a multi-token phrase is matched, the

entire token sequence match is reduced to a phrase node in the parse tree 4.3. The

output of the tokenization step is thus a shallow parse tree consisting of tokens from

the input text which are tagged with negation type and an integer EUI identifier,

where applicable.

The next three passes of the analyzer-2: KBFuncs ; 3: array funcs ; and 4:
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Figure 4.3: A section of the parse tree for a note after the tokenization pass. Terms
from the NegEx dictionary are tagged with the ‘negation’ attribute. Terms with
entries in the Specialist Lexicon are tagged with ‘conid’ integer inidices and multi-
word terms are reduced to phrase nodes. Spaces in the input text are represented
by the ‘ ’ token in the parse tree.
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pn funcs-are declarative passes which define functions which are called throughout

the analyzer. KBFuncs is a built-in pass, or library pass, that provides useful func-

tions for working with knowledge bases. In particular, we utilize the AddUniqueStr,

AddUniqueConVal, and AddUniqueCon functions to add unique strings, concepts,

and values to knowledge bases, respectively, along with functions which facilitate ex-

porting knowledge bases. In the array funcs pass, we define functions to perform

common array operations, including array concatenation, element swapping, Quick-

Sort, binary search, duplicate filtering, and conversion functions for interoperability

with knowledge base data structures. The pn funcs pass includes a single function–

PnrPushUniqueVal–which appends a value to a parse tree node’s variable.

Passes 6 through 19 A perform cleaning of the note text and organization of

the parse tree. Starting with pass 6, clean notes, we excise non-relevant information

including de-identified placeholder strings of the form ‘[** <previously-identifiable

text >**]’ as well as headers and footers, which empirical investigation suggests pre-

dominantly contain metadata. After filtering, we begin to organize the parse tree

into structural components, in order of increasing granularity: sections, subsections,

enumerated lists, and sentences (see Figure 4.4 for an example of the resulting parse

tree structure). For sections and subsections, header names, ‘History of Patient Ill-

ness’ or ‘Chief Complaint’ for example, are added as attributes on the parent node

when present. Finally, we clean all whitespace from the parse tree, including space

characters, tabs, and newlines.

Pass 20, gather negations implements the NegEx algorithm with a maximum

distance of 5 nodes between a negation term and a clinical entity. Our negation win-

dow size follows the original NegEx implementation [7] to its relative effectiveness and

ease of implementation, though some work has shown improvement using a dynamic

window size [31]. The first rule in the pass matches a leaf node tagged as pre-negation,
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Figure 4.4: Beginning of parse tree after pass 19: remove whitespace. section nodes
beneath the root node have been collapsed to demonstrate the hierarchical structure
of the parse tree, with the exception of the Social History section. Each sentence
node in the social history section contains the tokenized text of a single sentence from
the section. The ‘fired’ tag refers to the fact that the whitespace cleaning rule in pass
19 has been applied to the node.

along with the next 5 sibling nodes or up to the next section/ subsection/ sentence

boundary, whichever comes first. Since compound medical terms are reduced to a

single phrase node, they are treated as a single entity, or node match. The following

example outlines the steps of the algorithm implementation:

1. Chest radiography showed no signs of
pre-negation

pleural effusion
EUI

or pneumothorax
EUI

.

2. Chest radiography showed <pre-negation >pleural effusion or pneumothorax.

3. Chest radiography showed <pre-negation ><EUI ... >or <EUI ... >.

4. Chest radiography showed <pre-negation >EUI
1

or
2
EUI

3
.

5. Chest radiography showed <negated >
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Figure 4.5: Parse tree after the completion of Pass 21. Normalized term identifiers
are shifted to parent nodes under the attribute conid.

The next rule performs the same operation for post-negation terms, instead

excising the preceding 5 nodes.

Pass 21-27 A perform the term extraction and ranking steps. The aim of these

steps is to take the structured parse tree with terms tagged for normalization and

rank the importance of the terms using a term-frequency inverse-document-frequency

based method [48] with the set of all ICD-9 titles as the reference corpus. We start

by copying all tagged terms in the parse tree onto parent nodes, so that each section,

subsection, and sentence node contains a list of all normalized terms (represented by

unique identifiers) contained within.

For any given ICD-9 code c ∈ C, we represent it as a set of terms that occur

within its title such that Tc = {t1, t2, ..., tn} (for an example, see Figure 4.2). We

then calculate the frequency of each unique term within all ICD-9 titles, given by

ft, to encode the relative specificity of each term (lower corpus frequency => higher

specificity) [48]. We then define the total weight of a code, Wc, as the sum of the
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inverse document frequencies (IDFs) of each of its constituent terms, t ∈ Tc over the

ICD-9 corpus, C, as follows:

Wt =
ft
|C|

(4.1)

Wc =

|Tc|∑
i

Wti (4.2)

We then use the same IDF term weights to calculate the ranking score of a

code with respect to a particular note. Let G = t1, t2, ..., tm be the set of all terms in

the document of interest and H = G ∩ Tc be the set of codes in both the input text

and the code c, then the rank of code c with respect to the note, Rc, is given by the

following:

Rc =

|H|∑
j=1

WHj

Wc

(4.3)

By dividing by the total possible code weight, we ensure that the ranking score for

a code is not dependent on the number of terms within its title. Note that unlike

TF-IDF, we are not taking into account the frequency of a term within the note.

Since we are ranking a code based on the occurrence of its constituent terms

within the target text, we hypothesize that constraining term matches to smaller

sections of the text will lead to better performance. To test this we re-formulate our

ranking function by assigning a weight to each code for each section s and aggregate

the ranking score for each code by applying an aggregation function: max, mean, or

sum. We experiment with ranking codes at the section and sentence level.

Due to the considerable size of the MIMIC-III corpus and the lengthy run-
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time of our analyzer, the note processing stage is conducted in parallel on Clemson’s

Palmetto Cluster. For resources, we allocate 18 nodes with 20 CPUs and 120GB’s

of memory per node. Notes are first written to individual text files, which are then

mapped to available processes with GNU Parallel [51]. Each process runs an instance

of the note processing analyzer 4.3 in the NLP++ engine. The final pass in the

analyzer, Pass 27, writes the analyzer results to a single-line csv file containing the

hospital admission ID (HADM ID) for the discharge summary followed by ranking

scores for all ICD-9 codes, in predetermined order. Each of these output files is read

and appended to a single csv file which is indexed by HADM ID and has columns

corresponding to ranking scores for each ICD code. This final step is also performed

in parallel using GNU Parallel to coordinate the process.

4.4 Evaluation

We evaluate all approaches on the test sets of the Full, Top 50 and Rare 50

splits of MIMIC-III. Following previous work [33, 54], we use the receiver operat-

ing charateristic area under the curve (ROC AUC ), F1-score. For the top set, we

additionally use precision at k, for k = 5. Since ICD-coding is a multi-class classifi-

cation problem, we provide ROC AUC and F1-score results using both macro- and

micro-averaging. Macro-averaging uses the arithmetic mean of the metric for each

individual class, thus weighting each class equally. Micro-averaging, on the other

hand, aggregates the results of all classes to compute the average metric, giving equal

weight to each instance. We give a brief explanation of each of these metrics.

The receiver operating characteristic (ROC) curve was originally developed

in World War II to gauge the ability of radar operators to distinguish a signal (e.g.

aircraft or warships) from noise [13]. In modern practice, the ROC curve is widely
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used to test the performance of a classifier. The ROC curve plots sensitivity, or True

Figure 4.6: Example receiver operating characteristic curve. The red line represents
an ROC area under the curve of 0.5, or a random classifier, the blue point at (0.0, 1.0)
represents a perfect classifier, and the green curve represents a relatively good classi-
fier.

Positive Rate, versus 1−specificity, or False Positive Rate, across all threshold values

(see Figure 4.6). The Area Under the Curve (AUC) of the ROC thus provides a scalar

value between 0.0 and 1.0 that represents the general performance of a classifier for

all threshold values.

The F -score, or F-measure, is the weighted harmonic mean of recall (R) and

precision (P ) which is often expressed in terms of the parameter β that weights the
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relative importance of recall over precision (Equation 4.4) [45].

Fβ =
(β2 + 1)PR

β2P +R
(4.4)

F1 =
2PR

P +R
(4.5)

We evaluate our system using F-score with a β of 1, referred to as F1-score (4.5), so

that precision and recall are weighted equally.

Precision at k is a metric which is frequently used to measure the relevance of

the top results of an information retrieval system [45] and is defined as the precision

using only the k highest-ranked labels [33]. Since the mean number of labels for the

Full set of MIMIC-III is approximately 15, k-values of 5, 8 and 15 are frequently used

in the literature [33, 54]. Since the mean number of labels for the top-50 set is 5.7,

we report precision at k with k = 5. Likewise, since the mean number of labels in the

Rare set of MIMIC-III is approximately 1, results for this metric are not reported.
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Chapter 5

Results

5.1 Overview of Results

In this chapter we provide results of our experiments and some discussion of

these results. We present results separately for each of the subsets of MIMIC-III on

which we test: top-50 and rare-50. We also provide a comparison to previous state-

of-the-art methods, including CAML [33], MultiResCNN [28], LAAT [53], PLM-ICD

[19], and KEPTLongformer [54] for the top-50 set and KEPTLongformer and MSMN

[55] for the rare-50 set. We select methods that were state-of-the-art at the time of

publication and had published results for the target dataset.

We denote each of our methods as follows: LexSyn refers to the use of lexical

variants and synonyms for normalization. The subscript refers to the aggregation

method-max, sum, or mean-and the scope of term matches-sent for sentence-level,

sect for section level, and full for the full note. Results for the complete MIMIC-III

test set are available in Appendix C for space reasons.
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MIMIC-III Rare 50 Results

ROC AUC F1-Score

Approach Micro Macro Micro Macro
P
re
v
io
u
s

MSMNpretrained 76.2 75.3 17.1 17.2
MSMNzero-shot 48.9 52.3 3.5 4.0
MSMNfinetuned 44.0 58.2 3.3 4.2
KEPTLongformerpretrained 82.3 81.4 30.9 25.8
KEPTLongformerzero-shot 76.5 74.9 16.7 15.2
KEPTLongformerfinetuned 83.3 82.7 32.6 30.4

O
u
r
R
es
u
lt
s LexSyn-Sectionmax 77.8 80.0 12.6 24.7

LexSyn-Sectionmean 76.7 77.2 12.4 23.4
LexSyn-Sectionsum 77.0 80.4 12.5 20.8
LexSyn-Sentencemax 76.2 81.0 10.2 28.2
LexSyn-Sentencemean 74.0 77.6 8.8 28.2
LexSyn-Sentencesum 75.9 80.8 10.3 29.2
LexSyn-Full 77.8 80.0 12.2 23.6

Table 5.1: Results on the MIMIC-III Rare 50 test set. Best-performing scores for
each of our approaches are bolded. Results for previous approaches are taken from
Yang et al., 2022 [54].

5.1.1 Rare 50

Results for the rare-50 split are displayed in Figure 5.1.1. We compare our

results to the two state-of-the-art models evaluated by the original authors: KEPT-

Longformer [54] and MSMN [55]. Each of these models is evaluated in three different

training setups: pretrained, zero-shot, and finetuned. Pretrained refers to the setup

in which the pretrained language model is directly finetuned on the rare-50 train set

before evaluation on the test set. Zero-shot refers to the setup in which a model is

trained on the top-50 test set and then directly evaluated on the rare-50 set. Fine-

tuned refers to the setup in which the model is first finetuned on the top-50 set then

further trained on the rare-50 train set before evaluation on the rare-50 test set.

This last setup also includes training with an additional Hierarchical Self-Alignment
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Pretraining objective in order to learn an embedding space in which similar medical

terms are grouped closer together.

We find that our LexSyn-Sectionmax analyzer achieves a level of performance

comparable to recent state-of-the-art approaches in terms of ROC AUC, falling within

4 points of the best-performing deep-learning model, KEPTLongformerfinetuned . De-

spite the slight performance difference, we identify a few key advantages which support

the utility of our analyzer in a clinical setting. The first of these is explainability:

our system is fully traceable and provides evidence from the text to support a partic-

ular code assignment. Furthermore, our approach does not require any training data

(labeled or unlabeled) which is advantageous in a low-resource setting.

5.1.2 Top 50

Results for the top-50 split are displayed in Figure 5.1.2. We find that on the

top − 50 split, our results fall short of recent state-of-the-art deep learning methods

in all evaluation metrics. We suspect that this is due in part to the top-50 split

being an easier task for deep-learning based methods. In particular, the smaller label

space (50 labels vs 8,922 for the full set) and the large number of samples per label

make this dataset significantly less challenging for deep-learning models than both the

rare-50 and full sets. We nonetheless find that our approaches achieve a reasonable

performance baseline and identify a few strategic modifications that could potentially

increase performance. We find that our sources of error on this dataset fall into four

main classes: partitioning, numeric or tabular data, semantic linking, and idiopathic

issues.

We observe that performance for individual codes on the Top-50 dataset is

highly variable as evidenced by the per-code F1-scores in Figure 5.1. Using our
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MIMIC-III Top 50 Results

ROC AUC F1-Score Prec. @ k

Approach Micro Macro Micro Macro 5
P
re
v
io
u
s

CAML [33] 91.1 87.5 52.4 60.6 61.1
MultiResCNN [28] 92.4 89.7 62.2 67.3 63.4
LAAT [53] 92.8 90.5 60.8 66.8 64.0
PLM-ICD [19] 93.8 91.7 66.3 70.5 65.7
KEPTLongformer [54] 94.8 92.6 72.9 68.9 67.3

O
u
r
R
es
u
lt
s

LexSyn-Sectionmax 69.8 70.9 33.3 37.1 29.4
LexSyn-Sectionmean 67.8 68.9 30.1 33.7 26.3
LexSyn-Sectionsum 68.6 71.3 31.7 39.6 27.6
LexSyn-Sentencemax 69.6 69.1 31.3 34.4 29.0
LexSyn-Sentencemean 71.7 72.2 34.5 37.1 31.8
LexSyn-Sentencesum 70.0 72.2 32.9 40.8 27.7
LexSyn-Full 68.0 68.0 31.9 38.5 29.6

Table 5.2: Results on the MIMIC-III Top 50 test set [33]. LexSyn denotes the normal-
ization type: lexical and semantic normalization. Section, subsection, and sentence
subscripts refer to the scope to which we assign codes.

LexSyn-Sectionmax analyzer as a baseline, we conduct error analysis for the five ICD-

9 codes with the worst individual F1-scores, listed in Table 5.3. We first plot the

confusion matrices, seen in Figure 5.2, for each of these codes to better understand

where our analyzer is failing. We observe that for two of the three codes with an

F1 of 0.0–codes 285.1 and 39.61–a positive label is never predicted. In general, we

find that our analyzer tends produce more false negatives for these codes than false

positives. The exception to this trend is the code 410.71, which has the opposite

problem: a much higher rate of false positives than false negatives. To identify the

source of these problems, we manually review a selection of notes from the test set.

We struggle to identify a consistent source of error for code 412, Old myocardial

infarction, though we do note the challenge of distinguishing between this code and,

for example, code 410, Acute myocardial infarction, or even 410.71, Subendocardial
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Figure 5.1: F1-score per code on the Top-50 dataset, sorted by decreasing F1-score.
Bar colors represent frequency of the code in the Top-50 training set; the color scale
is displayed on the bar to the right of the plot.

Code Title Freq. F1

412 Old myocardial infarction 121 0.0

285.1 Acute posthemorrhagic anemia 203 0.0

39.61 Extracorporeal circulation auxiliary to open heart surgery 226 0.0

410.71 Subendocardial infarction, initial episode of care 91 0.02

33.24 Closed [endoscopic] biopsy of bronchus 127 0.03

Table 5.3: Test set frequencies, F1-scores and titles for the five worst-performing
codes on the Top-50 set using the LexSyn-Sectionmax analyzer.

infarction, initial episode of care. We find that in the notes we review, Old myocardial

infarction is almost exclusively assigned when ”myocardial infarction”, or its initialism

MI, occurs in the Past Medical History section of the discharge summary. In fact,

applying a simple matching rule for these terms in the Past Medical History section
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Figure 5.2: Confusion matrices for the worst-performing codes on the top-50 set in
terms of F1-Score.

significantly outperforms our approach, with an F1 score on the Top 50 test set of

58.2.

In the discharge summaries that we review for code 285.1, Acute posthem-

orrhagic anemia, we find that the terms themselves do not appear in the text. We

suspect that the indicator of this code comes from blood sample results, for which

abnormal red blood cell counts and hemoglobin levels are marked by an asterisk. This

type of inference from non-textual signifiers or numerical data is outside the scope of

our analyzer, though one could add a heuristic rule to help identify these cases.

For code 39.61, Extracorporeal circulation auxiliary to open heart surgery, we
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find that the title and key subphrases of the title (e.g. extracorporeal circulation) do

not occur as such in the text. In the set of discharge summaries selected for review, we

observe the presence of procedures which may classify as extracorporeal circulation

methods, for example ”CPB”, an initialism for cardiopulmonary bypass. Further

investigation reveals that cardiopulmonary bypass (UMLS CUI: C0007202) is defined

as a narrower, or child, concept of extracorporeal circulation (UMLS CUI: C0015354).

This suggests that leveraging ontological information beyond just synonyms may be

necessary to improve performance. We note a similar effect for code 33.24, Closed

[endoscopic] biopsy of bronchus, for which the positive signal in the note often appears

to be a specific procedure term, like bronchoscopy.

We are unable to identify a consistent source of error for the code 410.71,

Subendocardial infarction, initial episode of care. We do, however, note the relative

paucity of the term subendocardial in the Top 50 test set, which occurs in only two

notes. We suspect that the high count of false positives produced by our analyzer

stems from the frequency of the term infarction in notes in the test set coupled with

its relative infrequency in ICD-9 titles.

In our error analysis of the Top-50 set, we find that our analyzer does not

effectively leverage code frequency within individual notes. As described in Section

4.3, our analyzer generates code ranks for each sentence or section (with the exception

of the full note analyzer). This quite often results in a large number of ranking scores

for codes in a single note. To handle the situation in which a code is assigned a

rank multiple times in the same note, we use one of three aggregation methods: the

mean of the ranks, the sum, or the median. While both sum and median aggregation

leverage the frequency of code appearance to some extent, we suspect this could also

adversely affect performance due to the incorporation of noisy ranking scores. To

test this hypothesis, we add a filtering step to the raw output of the analyzer and
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re-calculate results. To filter ranking scores for a note, we calculate the mode of the

scores generated by our analyzer and use this as a threshold (see Figure 5.3). Scores

below this threshold are set to zero and scores above the mode remain unchanged.

After filtering, we aggregate the results using the three aggregation methods described

in Section 4.3 and evaluate on the test set. Results are displayed in Table 5.1.2. For

the sum aggregation method, we find that filtering increases micro-averaged ROC

AUC by 1.2 points and macro-averaged ROC-AUC by 2.2 points, resulting in our

overall best-performing analyzer for the Top-50 test set in terms of macro-ROC AUC.

On the other hand, we find that filtering has an adverse effect when applying mean

aggregation and likewise negatively impacts performance on the rare set.

ROC AUC F1-Score

Approach Micro Macro Micro Macro

LexSyn-Sentencemean 71.7 72.2 34.5 37.1
LexSyn-Sentencesum 70.0 72.2 32.9 40.8

Filtered-Sentencemean 71.1 74.4 32.9 30.8
Filtered-Sentencesum 70.2 70.2 31.3 28.5

Table 5.4: Results on the Top 50 test set after filtering ranking scores below the
mode. Original results are on the top two rows and results with filtering are on the
bottom two rows.

One of the challenges of the Top-50 test set is the variability in the number of

ground truth labels per note. Choice of activation threshold value when converting

ranking scores to binary predictions can thus significantly impact overall F1-score as

demonstrated in Figure 5.4. We test the effect of different threshold values on the

test set and calculate resulting F1 scores. We find that activating scores above the

mean score per note provides a reasonably good choice of threshold.
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Figure 5.3: Kernel Density Estimation plot using a Gaussian Kernel for per-sentence
code ranks on the Top-50 test set. We find the mode of all per-sentence code ranks
to be an effective threshold for filtering low-quality rank assignments.
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Figure 5.4: To produce a final set of codes for evaluation from the ranking scores
assigned by our analyzer, a threshold value is chosen per note and codes with ranking
scores above this value are added to the set. Here we plot of micro- and micro-averaged
F1-score vs choice of threshold value for each scope and aggregation method on the
MIMIC-III Top-50 test set.
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Chapter 6

Future Work

6.1 Word Sense Disambiguation

Our system tends to have higher recall than precision. This could partially

be caused by our approach to extracting clinical entities which does not differentiate

between semantic interpretations of a particular medical entity. This is particularly

salient for abbreviations and acronyms, which often require contextual clues to disam-

biguate [43]. Consider, for example, the term ‘ms’, which maps to 12 unique concepts

in the 2007AC UMLS [43]: Marinesco-Sjogren syndrome, metric system, Mississippi

(geographic location), mitral valve stenosis, Montserrat, multiple sclerosis, millisec-

onds, MTR gene, academic degree (Master of Science), supernumerary mandibular

left primary canine, microbiology susceptibility domain, and multiple sclerosis (sus-

ceptibility to). Our system would, in practice, give equal weight to each of these

senses of the term ‘ms’ without attempting to identify the true sense of the term in

the text. An lucrative path for future work may be to incorporate heuristic algorithms

for word-sense disambiguation (WSD) [44, 8] into the entity extraction passes of the

analyzer.
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6.2 Leveraging Ontological Information

In our system we utilize the Lexical Variant Generator of the UMLS to identify

variants of key medical terms. This allows us to normalize these variants in the

text by mapping them to a central concept. We experiment with different variant

generation setups as outlined in Section 4.2. With the exception of a couple of

disparate studies [11, 17], we find the literature on lexical normalization for medical

entities to be lacking. In particular, an in-depth analysis of the downstream impact of

different variant generation setups would be a useful tool for guiding the construction

of systems that utilize the lexical tools. Additionally, we hypothesize that our system

could better leverage existing ontological information, including free text descriptions

and hierarchical relationships.

6.3 Data Quality

The dataset on which we evaluate our system, MIMIC-III [23], is a large

and meticulously compiled dataset which has realized significant progress toward the

systematic study of medical coding. Due to the increasing ubiquity of MIMIC in

the literature on medical coding, the validation of ground truth labels in the dataset

has become supremely important [46]. Perhaps the most critical area for future

research that we identify is the development of gold-standard labels for the MIMIC

dataset. On a broader scale, the impact of imperfect–or silver-standard–labels is

pernicious, as it limits the ability to empirically compare different approaches and

could falsely conflate (or deflate) results. The lack of open-access, quality coding

datasets also inhibits the ability of researchers to gauge the capacity of a system

to generalize across domains. It may be the case that notes or label-assignments
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within the MIMIC dataset, having been sourced from a single hospital system [23],

are measurably different from those originating from other healthcare providers. This

hypothetical difference could result in significant performance degradation for many

state-of-the-art systems. However due to the paucity of other openly available coding

datasets, this hypothesis is difficult to test without a considerable annotation budget

and access to expert annotators.

6.4 Explainability

To better investigate the explainability of our system, we build a visualization

tool for clinical notes in HTML. Our visualization tool is adapted from the entity

resolver visualizer from Spark NLP [24] which places a color-coded bounding box

with corresponding labels around target entities in the text, as seen in Figure 6.1.

While the Spark NLP visualizer is a useful tool, there were a few drawbacks that

Figure 6.1: An example visualization of the Spark NLP visualizer applied out-of-the-
box [20].

limited its application to our use-case. The first of these is the size and frequency

of the bounding boxes. The high frequency of tagged entities in our documents and

the length of text in our tags inhibit legibility, often limiting the resulting document

visualization to just a few tagged terms per line. To address this issue, we replace
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the static bounding boxes with color-coded highlighting in the text and add dynamic

information boxes which appear on hover. We color code terms in the text by the

ICD-9 code with which the term is associated. In the hover box we add the ICD-9

code, its title, and the ranking score assigned by the analyzer. We also add a header

containing color references for each of the ICD-9 codes identified in the text. While

we find this to be a useful tool for tracing the classification process of our analyzer,

more work is needed to turn this into a tool that can be deployed in practice.
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Appendix A Analyzer Pass Structure

# Pass Type

1 dicttokz Tokenizer

2 KBFuncs @DECL

3 array funcs @DECL

4 pn funcs @DECL

5 init kb @CODE

6 clean notes @RULES

7 get negation @RULES

8 get breaks @RULES

9 get sections @RULES

10 get loose passages @RULES

11 group loose passages @RULES

12 remove breaks @RULES

13 get subsection headers @RULES

14 get subsections @RULES

15 get list itemsR @RULES

16 get lists @RULES

17 get sentences @RULES

18 sentences @RULES

19 remove whitespace @RULES

20 gather negations @RULES

21 shift keywords @RULES

22 keyword funcs @DECL

23 set line count @CODE

24 extract codes @RULES

25 rank codes @CODE

26 aggregate and predict @CODE

27 kb out @CODE

Table 1: Pass structure in the NLP++ ICD-coding analyzer for MIMIC-III notes.
Passes marked R are recursive.
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Appendix B Lexical Variant Generator Flow Com-

ponents

1 -f:0 Strip NEC and NOS.

2 -f:a Generate known acronym expansions.

3 -f:A Generate known acronyms.

4 -f:An Generate antiNorm.

5 -f:b Uninflect the input term.

6 -f:B Uninflect words.

7 -f:Bn Normalized Uninflect words.

8 -f:c Tokenize.

9 -f:ca Tokenize keep all.

10 -f:ch Tokenize no hyphens.

11 -f:C Canonicalize.

12 -f:Ct Lexical name.

13 -f:d Generate derivational variants.

14 -f:dc~LONG Generate derivational variants , specifying output

categories

15 -f:e Retrieve uninflected spelling variants.

16 -f:E Retrieve Eui.

17 -f:f Filter output.

18 -f:fa Filter out acronyms and abbreviations.

19 -f:fp Filter out proper nouns.

20 -f:g Remove Genitive.

21 -f:G Generate fruitful variants.

22 -f:Ge Fruitful variants , enhanced.

23 -f:Gn Generate known fruitful variants.

24 -f:h Help menu for flow components (this is it).

25 -f:i Generate inflectional variants.
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26 -f:ici~LONG+LONG Generate inflectional variants , specifying

output categories and inflections

27 -f:is Generate inflectional variants (simple infl).

28 -f:l Lowercase the input.

29 -f:L Retrieve category and inflection.

30 -f:Ln Retrieve category and inflection from database.

31 -f:Lp Retrieve category and inflection for all terms begins

with the given word.

32 -f:m Metaphone.

33 -f:n No operation.

34 -f:nom Retrieve nominalizations.

35 -f:N Normalize.

36 -f:N3 LuiNormalize.

37 -f:o Replace punctuation with space.

38 -f:p Strip punctuation.

39 -f:P Strip punctuation , enhanced.

40 -f:q Strip diacritics.

41 -f:q0 Map symbols to ASCII.

42 -f:q1 Map Unicode to ASCII.

43 -f:q2 Split ligatures.

44 -f:q3 Get Unicode names.

45 -f:q4 Get Unicode synonyms.

46 -f:q5 Norm Unicode to ASCII.

47 -f:q6 Norm Unicode to ASCII with synonym option.

48 -f:q7 Unicode core norm.

49 -f:q8 Strip or map Unicode.

50 -f:r Recursive synonyms.

51 -f:rs Remove (s), (es), (ies).

52 -f:R Recursive derivations.

53 -f:s Generate spelling variants.

54 -f:S Syntactic uninvert.
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55 -f:Si Simple inflections.

56 -f:t Strip stop words.

57 -f:T Strip ambiguity tags.

58 -f:u Uninvert phrase around commas.

59 -f:U Convert output.

60 -f:v Generate fruitful variants from database.

61 -f:w Sort by word order.

62 -f:ws~INT Word size filter.

63 -f:y Generate synonyms.

64 -f:z Generate antonyms.

65 -f:zs Antonym Substitutions.

Listing 1: Flow control options of the Lexical Variant Generator (version lvg.2023)

[39].
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Appendix C MIMIC-III Full Results

MIMIC-III Full Results

ROC AUC F1-Score Prec. @ k

Approach Micro Macro Micro Macro 5

P
re
v
io
u
s

CAML 98.6 89.5 53.9 8.8 -
MultiResCNN 91.0 98.6 55.2 8.5 -
LAAT 98.8 91.9 57.5 9.9 81.3
PLM-ICD 98.9 92.6 59.8 10.4 84.4
KEPTLongformer 96.5 85.7 59.9 11.8 84.8

O
u
rs

LexSyn-Sectionmax 62.7 68.0 1.0 2.4 2.3
LexSyn-Sectionmean 62.9 69.3 1.1 2.6 1.4
LexSyn-Sectionsum 62.6 68.0 1.1 2.7 1.7

Table 2: Results on the MIMIC-III Full test set [33]. Results from previous approaches
come from Huang et al.[19]
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