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Abstract

In this project, we examine some natural ideal conditions and show how graphs can be

defined that give a visualization of these conditions. We examine the interplay between the multi-

plicative ideal theory and the graph-theoretic structure of the associated graph. In this research, we

associate a graph in a natural way with the divisors of a commutative ring.
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Motivation and Background

The concept of “zero divisor graph” of a commutative ring was introduced by D. Anderson

and P. Livingston in [4] but arguably had as its genesis some of the ideas in [6]. Let R be a

commutative ring with 1 and let Z(R) be the set of nonzero zero divisors (note that Z(R) is empty

if R is a domain). We associate a simple graph to R as follows. Let the vertex set be the nonzero

zero divisors and declare that for distinct x, y ∈ Z(R), the vertices x and y are adjacent if and

only if xy = 0. In [4], Anderson and Livingston introduced and studied the zero divisor graph

and this graph turns out to best highlights a number of interesting properties of the zero divisors

of a commutative ring. The zero divisor graph helps us to study the algebraic properties of rings

using graph theoretical tools. We can translate some algebraic properties of a ring to graph theory

language and then the geometric properties of graphs help us to explore some interesting results in

the algebraic structures of rings. The zero divisor graph of a commutative ring has been studied

extensively by too many authors to list completely, but the interested reader is invited to consult

[5], [2], [3], and [1] among others.

In 2000 Singh and Santhosh [12] defined the concept of a divisor graph in the setting of the

ordinary integers. They defined a divisor graph G as an ordered pair (V ;E) where V ⊊ Z and for

all u, v ∈ V, u ̸= v, uv ∈ E if and only if u | v or v | u. Singh and Santhosh showed no odd cycle

of length five or more is a divisor graph while all even cycles, complete graphs are divisor graphs.

In 2001, Chartrand, Muntean, Saenpholphant and Zhang [7] and also studied divisor graphs. They

let S be a finite, nonempty set of positive integers. Then, the divisor graph G(S) of S has S as its

vertex set, and vertices i and j are adjacent if and only if either i | j or j | i.

Given this history, we endeavor at first to generalize these notions to a more general setting,

and then, inspired by this work, we will look at “factorization types” for elements in monoids and

domains. This project is outlined as follows. First, some definitions, theorems, and examples are

listed. Proofs that provide useful insight for our purposes will be included, but for other results,

we will merely include a citation to a work containing the proof. In addition, well-known or minor

results, which will be used later, will be presented. All rings are assumed to be commutative with

identity unless otherwise stated. Chapter 1 contains foundational results about the ring theory and

graph theory. Chapter 2 contains some results about divisor graphs. Chapter 3 is about factorization

as well as key examples and proofs.
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Chapter 1

Introduction

1.1 Ring-theoretic definitions and elementary results

1.1.1 Rings and Ideals

This section will introduce definitions of various objects and terms referring to rings and

ideals. These concepts will be helpful in the main results of this project.

Definition 1.1.1 ([8]). A ring is a nonempty set R together with two binary operations (+, ·) such

that:

a) (R,+) is an abelian group.

b) (a · b) · c = a · (b · c) for all a, b, c ∈ R.

c) a · (b+ c) = a · b+ a · c and (a+ b) · c = a · c+ b · c for all a, b, c ∈ R.

If ab = ba for all a, b ∈ R, then we say that R is commutative. Additionally, if there is an element

(denoted 1 = 1R) such that 1(a) = a(1) = a for all a ∈ R, R is said to have (multiplicative) identity.

Unless otherwise specified, our rings will be commutative with identity.

Definition 1.1.2. An element u of a ring R is called a unit if there exists an element v in R such

that uv = vu = 1, where 1 is the multiplicative identity of the ring R. The set of units of R is

denoted by U(R).

Definition 1.1.3 ([8]). A nonempty subset I ⊆ R is a ideal if and only if for all a, b ∈ I and r ∈ R,

a) a− b ∈ I,
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b) ra ∈ I.

Definition 1.1.4 ([8]). The ideal generated by the set X is the intersection of all ideals that

contain this set: (X) =
⋂

X⊆I⊆R I. Where the intersection ranges over all ideals containing X.

We remark that ⟨X⟩ is equal to the set of all finite R-linear combinations of elements of X; that is,

(X) = {
n∑

k=1

rkxk | rk ∈ R, xk ∈ X}

.

The following definitions will introduce special types of ideals that will come in handy throughout

the paper.

Definition 1.1.5. Let I be an ideal in R. We say that I is a principal ideal if I is generated by

a single element α ∈ I and we write I = (α).

Definition 1.1.6. Let P be an ideal in R. We say that P is a prime ideal if ab ∈ P if a, b ∈ R

implies that either a ∈ P or b ∈ P .

Definition 1.1.7. Let M be an ideal in R. We say that M is a maximal ideal if given any ideal

I such that M ⊆ I, either I = M or I = R.

1.1.2 Polynomials

Here we recall the notion of a polynomial ring over a commutative ring with identity.

Definition 1.1.8. The polynomial ring R[x] in the indeterminate x with coefficients from R is

the set of all formal sums

anx
n + an−1x

n−1 + · · ·+ a1x+ a0,

with addition given by ∑
aix

i +
∑

bix
i =

∑
(ai + bi)x

i

and multiplication given by

(∑
aix

i
)(∑

bix
i
)
=

∑
cix

i
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where ci =
∑i

k=0 akbi−k.

If we have a fixed polynomial

f(x) = anx
n + an−1x

n−1 + · · ·+ a1x+ a0

with an ̸= 0, then we say that the degree of f(x) is n and the leading coefficient of f(x) is an.

Definition 1.1.9. A polynomial f(x) is called monic polynomial if its leading coefficient is equal

to 1.

1.1.3 Integral Domains and Fields

Here we introduce definitions of various objects and terms pertaining to integral domains and fields.

Some of these concepts will be central to the main results.

Definition 1.1.10. An element a in a ring R is called a zero divisor if there exists a nonzero

element b in R such that ab = 0 or ba = 0.

Proposition 1.1.1. Let R be finite. Then α ∈ R is a zero divisor if and only if it is a nonunit.

Proof. Assume that α ∈ R is a unit. Then, if β ∈ R such that αβ = 0, note that β = α−1αβ = 0.

Then if α is a unit, it is not a zero divisor. Notice that this portion of the proof does not depend on

R being finite.

Now we can assume that α is not a zero divisor. Then for any β, γ ∈ R, such that if

αβ = αγ, then α(β − γ) = 0. Since α is not a zero divisor, then β − γ = 0 implies that β = γ. In

other words, the mapping α : R → R such that α(β) = αβ is injective. Since R is finite, then this

mapping must also be surjective, so there is some β ∈ R such that αβ = 1. Thus α is a unit.

We remark that this result depends heavily on the fact that R is finite. For example, if R = Z then

every element other than −1, 0, 1, is a nonunit, but none of them are zero divisors.

Definition 1.1.11. A commutative ring with identity 1 ̸= 0 is called an integral domain if it has

no nonzero zero divisors.

Definition 1.1.12. Let R be an integral domain.
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1. Suppose r ∈ R is nonzero and is not a unit. Then r is called irreducible in R if whenever

r = ab with a, b ∈ R, one of a or b must be a unit in R. Otherwise r is said to be reducible.

2. A nonzero element p ∈ R is called prime in R if the ideal (p) generated by p is a prime ideal.

in other words, a nonzero element p is a prime if it is not a unit and whenever p | ab for any

a, b ∈ R, then either p | a or p | b.

3. Two elements a and b of R are said to be associates in R if a = ub for some unit u ∈ R.

If R is a domain, we denote the set of irreducibles of R by Irr(R). Sometimes, for instance in the

case when studying factorization in integral domains, we will generally not distinguish between an

irreducible and its associates. So, we define Irr(R) to be a set of representatives, one from each

equivalence class in the collection {πU(R) : π ∈ Irr(R)}.

Definition 1.1.13 ([8]). A field F is a set together with two binary operations + and · on F such

that (F,+) is an abelian group (call its identity 0) and (F \ {0}, ·) is an abelian group, and the

following distributive law holds:

a · (b+ c) = (a · b) + (a · c),

for all a, b, c ∈ F .

The following proposition is equivalent to the above definition of a field.

Proposition 1.1.2 ([8]). A field is a commutative ring with identity such that (0) is a maximal

ideal.

We note here that every field is an integral domain. Furthermore, rings of polynomials are integral

domains if the coefficients come from an integral domain. For example, the ring Z[x] of all polyno-

mials in one variable with integer coefficients is an integral domain (this follows easily by a degree

argument).

Proposition 1.1.3. Any finite integral domain is a field.

Proof. This is almost immediate from Proposition 1.1.1. Indeed since R is finite, each element is

either a zero divisor or a unit. If the element is nonzero, it cannot be a zero divisor as R is a domain

and hence must be a unit.
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Definition 1.1.14. A partially ordered set S satisfies the Ascending Chain Condition (ACC)

if every ascending chain of elements in S stabilizes, i.e., if there is no infinite strictly increasing

sequence

x1 < x2 < x3 < · · ·

where xi ∈ S for all i.

Definition 1.1.15. A ring R is called Noetherian if it does not contain an infinite ascending chain

of ideals. In other words, R is Noetherian if every ascending chain of ideals in R stabilizes.

Definition 1.1.16. The field of fractions of an integral domain R, denoted Frac(R), is the small-

est field containing R as a subring.

Definition 1.1.17. Let R ⊆ T be domains and π ∈ T . We say that π is integral over R if π is the

root of a monic polynomial in R[x].

Definition 1.1.18. A commutative ring R is said to be integrally closed if any element a ∈

Frac(R) that is integral over R is actually in R.

Definition 1.1.19. A commutative ring R is called a Dedekind domain if it has the following

three properties:

1. R is Noetherian,

2. R is integrally closed in its field of fractions K,

3. All nonzero prime ideals are maximal.

1.1.4 Principal Ideal Domains

Now, we will investigate the properties of principal ideal domains.

Definition 1.1.20. A principal ideal domain (PID) is an integral domain in which every ideal

is principal.

Example 1.1.1. Some examples of PIDs may include:

a) The integers Z is a PID.

b) If F is a field, then F [x] is a PID.

6



Proposition 1.1.4. In an integral domain, a nonzero prime element is always irreducible.

Proof. Suppose (p) is a nonzero prime ideal and p = ab. Then ab = p ∈ (p), so by the definition of a

prime ideal, one of a or b, is in (p). Without loss of generality, assume a ∈ (p), then a = pr for some

r. This implies that p = ab = prb so rb = 1 and b is a unit. This shows that p is irreducible.

It is not true in general that an irreducible element is necessarily prime.

Example 1.1.2. Consider the element 3 in the quadratic integer ring R = Z[
√
−5]. Using a standard

norm argument, it can be shown that 3 is irreducible in R, but 3 is not prime since (2 +
√
−5)(2−

√
−5) = 32 is divisible by 3, but neither 2 +

√
−5 nor 2−

√
−5 are divisible by 3 in R.

It is worth noting that if R is a principal ideal domain, the notions of nonzero prime and irreducible

are the same. We now briefly recall the definition of greatest common divisor (gcd).

Definition 1.1.21. Let R be an integral domain. If a, b ∈ R, we say that the element d is the

greatest common divisor of a and b if d | a, d | b, and if d′ is any other common divisor of a

and b then d′ | d.

In general, two elements a, b ∈ R may not have a greatest common divisor. In the case in which

they do, we often write gcd(a, b) for the greatest common divisor of a and b. In the case where R

is a PID then any two elements a, b ∈ R have a greatest common divisor (which is the generator of

the ideal (a, b)). We record this and more in the following proposition.

Proposition 1.1.5 ([11]). Every nonzero prime ideal in a principal ideal domain is a maximal ideal.

Proof. This is clear if R is a field, and so we will assume it is not. In this case there exists (p), a

nonzero prime ideal. Let I = (m) be any ideal containing (p). We must show that I = (p) or I = R.

Now p ∈ (m) so p = rm for some r ∈ R. Since (p) is a prime ideal and rm ∈ (p), either r or m must

lie in (p). If m ∈ (p) then (p) = (m) = I. If, on the other hand, r ∈ (p) write r = ps. In this case

p = rm = psm, so sm = 1 (since R is an integral domain) and m is a unit so, I = R.

Proposition 1.1.6 ([11]). In a principal ideal domain, a nonzero element is a prime if and only if

it is irreducible.

Proof. We have previously shown that prime implies irreducible. Now we much show that if p is

irreducible, then p is prime, i.e., the ideal (p) is a prime ideal. If M is any ideal containing (p) then

7



as R is a PID, M = (m) is a principal ideal. Since p ∈ (m), p = rm for some r. But p is irreducible

so by definition either r or m is a unit. This means either (p) = (m) or (m) = R, respectively. Thus,

the only ideals containing (p) are (p) and R. Therefore, (p) is a maximal ideal. Since maximal ideals

are prime, the proof is complete.

Definition 1.1.22. An atomic domain or factorization domain is an integral domain in which

every nonzero nonunit can be written in at least one way as a finite product of irreducible elements.

Definition 1.1.23. A monoid is a set M together with an associative binary operation

∗ : M ×M −→ M

with an identity element 1M ∈ M . That is for any a, b, c ∈ M, we have:

Closure: a ∗ b ∈ M ;

Associativity: a ∗ (b ∗ c) = (a ∗ b) ∗ c;

Identity: There exists an element 1M ∈ M such that 1M ∗ a = a ∗ 1M = a;

In other words, a monoid is a semigroup with an identity element.

Definition 1.1.24. Let (S, ◦) and (T, ∗) be monoids. Let ϕ : S −→ T be a mapping such that

∀a, b ∈ S : ϕ(a ◦ b) = ϕ(a) ∗ ϕ(b).

Suppose further that ϕ preserves identities, i.e.: ϕ(eS) = eT . Then ϕ : (S, ◦) −→ (T, ∗) is a monoid

homomorphism.

Definition 1.1.25. A submonoid of a monoid (M, ◦) is a subset N of M that is closed under the

monoid operation and contains the identity element e of M . Symbolically, N is a submonoid of M

if e ∈ N ⊆ M , and x ◦ y ∈ N whenever x, y ∈ N . In this case, N is a monoid under the binary

operation inherited from M .

Definition 1.1.26. Let (S, ◦) be a monoid. and ϕ : S −→ S a (monoid) isomorphism. Then ϕ is a

monoid automorphism.

Definition 1.1.27 ([11]). A unique factorization domain (UFD) is an integral domain R in

which every nonzero element r ∈ R which is not a unit has the following two properties:

8



1. r can be written as a finite product of irreducible pi of R (not necessarily distinct): r =

p1p2 · · · pn and

2. The decomposition in a) is unique up to associates and reordering: namely, if r = q1q2 · · · qm

is another factorization of r into irreducibles, then m = n and there is some renumbering of

the factors so that pi is associate to qi for i = 1, 2, . . . , n.

Note that a field F is trivially a unique factorization domain since every nonzero element is a unit,

so there are no elements for which Properties a) and b) must be verified.

Proposition 1.1.7 ([11]). In a unique factorization domain, a nonzero element is a prime if and

only if it is irreducible.

Proof. Let R be a unique factorization domain. Since we have shown that nonzero primes of R are

irreducible, it remains to prove that each irreducible element is a prime. Let p be irreducible in R

and assume that p | ab for some a, b ∈ R. Now we need to show that p divides either a or b. To say

that p divides ab is to say ab = pc for some c ∈ R. Writing a and b as a product of irreducibles,

we see from this last equation and from the uniqueness of the decomposition into irreducibles or

ab that the irreducible element p must be associate to one of the irreducibles occurring either in

the factorization of a or in the factorization of b. We can assume that p is associate to one of the

irreducibles in the factorization of a, i.e., that a can be written as a product a = (up)p2 · · · pn for u

a unit and some (possibly empty set of) irreducibles p2, · · · , pn. But then p divides a, since a = pd

with d = up2 · · · pn, completing the proof.

Proposition 1.1.8 ([11]). Let R be a PID, then R is a UFD.

Proof. We must first show that R is atomic, i.e., every nonzero, nonunit element factors into irre-

ducibles. Then we can show that R is in fact a UFD.

Let α1 ∈ R be an arbitrary nonzero, nonunit element of R. If α1 is irreducible, it trivially factors

into irreducibles. Otherwise, we can factor α1 = α2β2, where neither α2 nor β2 is a unit. If both α2

and β2 factor into irreducibles, then so does α1. Without loss of generality, assume that α2 does not

factor into irreducibles. Then we can write α2 = α3β3, with neither factor a unit. Now, continue

factoring in this way to produce a sequence α1, α2, · · · of elements in R such that (α1) ⊊ (α2) ⊊ . . . ,

with these inclusions being strict.

9



Now consider I =
⋃∞

i=1(αi). Due to the inclusion relation, I is an ideal in R. Then, since R is a

PID, I = (α) for some α ∈ R. So, α ∈ (αn) for some n ∈ N. Also, we know that since αn ∈ (α),

this means that (αn) = (α). Thus, for any m ≥ n,

(αn) ⊆ (αm) ⊆ (α)

which implies that (αn) = (αm), contradicting the strict inclusions. Thus, α1 must factor into

irreducibles, meaning that the sequence of strict ideal inclusions above is finite. Now we show that

this factorization is unique, as in the definition of a UFD.

Let π ∈ R be an irreducible. If I is an ideal containing (π), we have that I = (α) for some α ∈ R

and thus α | π . Then either α is a unit, which means that I = R, or α is an associate of π, in this

case I = (π). Then (π) is a maximal ideal, so we know that (π) is a prime ideal and π is a prime

element.

Now consider two factorizations

π = π1 · · ·πm = τ1 · · · τn,

with each πi, τi irreducible in R.

Without loss of generality, assume that m ≥ n. Since π1 is prime and π1 | τ1 · · · τn , we have by

induction that π1 | τj for some j, 1 ≤ j ≤ n. So, without loss of generality, assume that π1 | τ1. Then

(τ1) ⊆ (π1) ̸= R, so by maximality of (τ1), we have (τ1) = (π1), that is, π1 and τ1 are associates.

Thus, π1 = u1τ1 for some u1 ∈ U(R), so

u1π2 · · ·πm = τ2 · · · τn.

Note that u1π2 is still irreducible. We can reorder, if necessary, and use induction to reduce this

equality to uπn+1 · · ·πm = 1, with u ∈ U(R). However, since each πi is irreducible (and thus a

nonunit), we get a contradiction unless m = n. Thus, m = n and each πi is an associate of τi,

meaning that R is in fact a UFD.

Definition 1.1.28. Recall that R is a Finite Factorization Domain (FFD) if R is atomic and

every nonzero nonunit element of R has finitely many non-associate irreducible divisors.
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Definition 1.1.29. An integral domain D is called a Half Factorial Domain (HFD) if it satisfies

the following conditions:

1. Every nonzero element of D that is not a unit can be factored into a product of a finite number

of irreducibles;

2. If p1p2 · · · pm = q1q2 · · · qn are factorizations a into irreducibles, then m = n.

1.2 Graph-theoretic definitions

A graph G = (V,E) is a set V , called the vertex set, and a set of irreflexive, symmetric relations E,

on V , called the edge set. If x and y are distinct vertices of Γ, that is to say, x, y ∈ V with x ̸= y,

then if x and y are related in E, we call the relation an edge between x and y, denoted by (x, y).

Note that if (x, y) is an edge, then (y, x) denotes the same edge. We will usually demand that our

graphs are simple in the sense that there is, at most, one edge between two fixed vertices and no

loops (an edge that begins and ends at the same vertex).

It is necessary to introduce some key graph-theoretic definitions.

Definition 1.2.1. The degreeofavertexisthenumberofedgesincidenttoit.

Definition 1.2.2. A subgraph G′ of a graph G is a graph G′ whose vertex set and edge set are

subsets of those of G (and if the edge e is in G′ then both vertices to which e is incident are in G′).

Definition 1.2.3. A complete graph is a graph in which each pair of graph vertices is connected

by an edge. The complete graph with n graph vertices is denoted Kn.

If (x, y) is an edge, we say that x and y are adjacent, and when convenient we will denote it by x−y.

A path of length n from a vertex x to a distinct vertex y is a sequence of n + 1 distinct vertices

x = V0, V1, . . . , Vn = y such that Vi and Vi+1 are adjacent for 0 ≤ i ≤ n − 1. For convenience, we

will usually denote such a path by V0 − V1 − · · · − Vn. If x and y are vertices of a graph, we define

the distance between x and y, d(x, y), to be the length of the shortest path between them. If no

path exists between x and y, we say that d(x, y) = ∞. If in a graph Γ there are vertices x and y

such that d(x, y) = ∞, we say that the graph is disconnected. We define a cycle by requiring that

x = y (and n ≥ 3) in the above definition of a path. Note that for both the path and the cycle, the

length is just the number of edges determined by the {vi | 0 ≤ i ≤ n}. The diameter of a graph G,
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denoted diam(G), is defined to be the maximum of the distances d(x, y) as x and y vary over all

vertices in the graph. The girth of a graph is the length of the shortest cycle.

Definition 1.2.4. A cut vertex in the graph G is a vertex that when removed (along with all of

its incident edges), the corresponding graph has more connected components than G.

Definition 1.2.5. We say that a vertex of the graph G is a leaf (or end) if this vertex is connected

to exactly one other vertex in the graph.

Definition 1.2.6. A graph G is connected if and only if every pair of vertices in G is connected.

Definition 1.2.7. Two graphs G and H are isomorphic if there exists a bijection f : V (G) → V (H)

such that (u, v) ∈ E(G) if and only if (f(u), f(v)) ∈ E(H) for all u, v ∈ V (G).

12



Chapter 2

Divisor Graph

2.1 The Divisor Graph

This section will cover some main results of this project. Also, we explore key examples that provide

useful insight to help us understand the main results more clearly.

Let R be an integral domain and denote the set of nonzero nonunits of R by R•. If x is a nonzero

nonunit, we define the set Dx = {d ∈ R•|xd ∈ R•} (intuitively, this is the set of proper nonunit

divisors of x in R). On the set Dx, we impose the equivalence relation ∼ by declaring that for

a, b ∈ Dx, a ∼ b if and only if a = ub for some unit u ∈ R. This set of equivalence classes shall be

written as Dx. We now associate a graph with this collection of equivalence classes.

Definition 2.1.1. We define the divisor graph of the element x ∈ R• denoted as G(x) = (V,E), by

declaring that V = Dx and that (a, b) ∈ E if and only if ab divides x in R.

This graph is in the spirit of the irreducible divisor graph defined in [9], and in fact, the irreducible

divisor graph is almost a subgraph of the divisor graph. The distinction is that the irreducible

divisor graph does allow for loops.

Definition 2.1.2 ([9]). Let R be a domain, and let x ∈ R be a nonzero nonunit that can be factored

into irreducibles. We define the irreducible divisor graph of x to be the graph G(x) = (V,E) where

V = {y ∈ Irr(R) : y | x}, and for given y1, y2 ∈ Irr(R) we have the edge (y1, y2) ∈ E if and only if

y1y2 | x. Furthermore, we attach n− 1 loops to the vertex y if yn divides x.

13



We now recall the notion of the classical zero divisor graph of Anderson and Livingston. We highlight

this to point out that the divisor graph, generalized to rings that are not necessarily domains, also

has an intimate connection with the zero divisor graph. Indeed, Dx naturally coincides with the

zero divisor graph if the verticies are restricted to the nonzero zero divisors.

Definition 2.1.3. Let R be a commutative ring with a nonzero identity. We define the zero divisor

graph of R, denoted Γ(R), to be a simple graph with vertex set being the set of nonzero zero divisors

of R and with (x, y) an edge if and only if x ̸= y and xy = 0.

The following three examples are from [9].

Example 2.1.1. Let R = Z[
√
−5]. Using norms, it is easy to see that the only

non associate irreducible factorizations of 6 are:

6 = (2)(3) = (1−
√
−5)(1 +

√
−5)

So, G(6) is as follows:

In this case the irreducible divisor graph coincides with the divisor graph.

Example 2.1.2. As another example, the only irreducible factorizations of 18 in R are:

18 = (2)(32) = 3(1−
√
−5)(1 +

√
−5) = 2(2 +

√
−5)(2−

√
−5)

So, G(18) is as follows:
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Example 2.1.3. Let R = Q[x2, x3] and let f(x) = x9 − x10. The only irreducible factorizations of

f in R are:

f(x) = x2 · x2 · x3(x2 − x3) = x2 · x2 · x2(x3 − x4) = x3 · x3(x3 − x4)

And G(f) is as follows:

Proposition 2.1.1 ([9]). Let R be an atomic domain. Then R is an FFD if and only if G(x) is

finite for each nonzero nonunit x ∈ R.

Proof. If R is an FFD, then every nonzero nonunit x ∈ R has only finitely many non-associate

irreducible factors, whence the vertex set of G(x) is finite. On the other hand, if G(x) is finite for

each x, then each x has only finitely many nonassociate irreducible divisors, and R is an FFD.

How close is the graph to its subgraph, when can we be assured that they are the same? Any Kn

can be realized as an irreducible divisor graph.

Theorem 2.1.1. Let x ∈ R•. If x is irreducible then G(x) consists only of the vertex x. If x is not

irreducible and x has a prime divisor, then G(x) is connected and diam(G(x)) ≤ 2.

Example 2.1.4. Let R be a Dedekind domain with Cl(R) ∼= Z/2Z and P a nonprincipal prime

ideal. Then P2 = (α) and the powers of α all factor uniquely (in this case, α is the only irreducible

dividing αn for all n as (αn) = P2n). It is easy to see that G(αn) is a single vertex with n−1 loops.

Theorem 2.1.2. Let x ∈ R be a nonzero nonunit that has a factorization of length 2. Then G(x)

is connected if and only if x factors uniquely.
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Proof. If x factors uniquely it is obvious that G(x) is connected, so we will prove the forward

direction.

Suppose that x = π1π2 and G(x) is connected. If x has another irreducible factorization x =

ξ1ξ2 · · · ξn then the fact that G(x) is connected shows that (without loss of generality) π1 is adjacent

to ξ1. So there is a factorization of x of the form x = π1ξ1η. But comparing this with the factorization

x = π1π2, we obtain that η must be a unit and ξ1 is associated to π2. With this knowledge, we

compare again the factorizations x = π1π2 = ξ1ξ2 · · · ξn and obtain that π1 = ξ2 · · · ξn and so n = 2

and the factorization of x is unique.

16



Chapter 3

Factorization and factorization

type

3.1 Factorization

Factorization, the study of how elements factor multiplicatively (or sometimes additively in the case

of monoids) is a central topic in commutative algebra. In this section we will explore the factorization

properties of a fixed element in a monoid (or sometimes a domain).

Definition 3.1.1. Let M and M ′ be monoids and x ∈ M and y ∈ M ′ both be atomic elements. For

any x ∈ M , we define Mx to be the submonoid of M generated by Irr(x) (the irreducible divisors of

x).

Proposition 3.1.1. Suppose that f : Mx −→ M ′
y is a bijection satisfying f(ab) = f(a)f(b). Then

π ∈ Mx is irreducible if and only if f(π) ∈ M ′
y is irreducible.

Proof. Suppose that π ∈ Mx ⊆ M is an irreducible and consider f(π) ∈ M ′
y. Let f(π) = αβ with

α, β both nonunits in M ′
y ⊆ M ′. Since f is surjective, we can find a, b ∈ Mx (necessarily nonunits)

such that α = f(a) and β = f(b). By injectivity of f , this gives π = ab. The proof that f(π) is

irrededucible implies that π is irreducible is almost identical.

We now formally define what it means for two factorizations to be “the same.” This is the obvious

analog of the condition of unique factorization in a domain (or monoid).
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Definition 3.1.2. Let x ∈ M be a nonunit and suppose that x has the irreducible factorizations

x = π1π2 · · ·πn = ξ1ξ2 · · · ξm

with each πi, ξj ∈ Mx. We say that these two factorizations are equivalent if

1. n = m and

2. there is a σ ∈ Sn such that for all 1 ≤ i ≤ n, πi = uiξσ(i) with ui ∈ U(M).

The set of all factorizations of x are partitioned into equivalence classes by the above notion of

equivalence. Although there may be many different factorizations in a single equivalence class (by

introducing units and/or permuting the order), we will often think of an equivalence class as a single

factorization.

Example 3.1.1. Consider a monoid with elements x and y which factor as x = abc = cde = efg =

ghi and y = a′b′c′ = c′d′e′ = b′f ′g′ = a′h′i′ with all elements (except x and y) irreducible. The

irreducible divisor graphs are not isomorphic (in the second all three degree 4 vertices are adjacent,

but this is not the case for the first one). In fact, for these elements x and y the irreducible divisor

graphs are “close” (same number of vertices of each degree, same number of 3-cycles, both connected

and non-bipartite, both planar) but are not isomorphic. So x and y, although they have the same

number of irreducible divisors and both have precisely 4 factorizations, all square-free, of length 3,

should be of different factorization type. Additionally, for both sets of factorizations, comparing the

pairs, we see that three of the six pairs have precisely one irreducible in common. The key difference

seems to be that for y the factorization abc has common irreducibles with all other and for x this is

not true.

Definition 3.1.3. Let M be a monoid and x ∈ M we define div(x) to be the collection of equivalence

classes of divisors of x up to associates.

we will, for simplicity, consider our monoids to be reduced in the sense that 1 ∈ M is the only unit.

This reduction is common in the theory of monoid factorization, as it is easy to pass from a monoid

to its reduction without any loss of significant factorization information.

Definition 3.1.4 (Factorization type). We say that x ∈ M and y ∈ M ′ have the same factorization

type if there is a bijection f : div(x) −→ div(y) satisfying
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1. f(x) = y

2. f(1M ) = 1M ′

3. For all a1, a2 ∈ div(x),

(a) if a1a2 ∈ div(x) then f(a1a2) = f(a1)f(a2) and

(b) a1a2 ∈ div(x) if and only if f(a1)f(a2) ∈ div(y).

Lemma 3.1.1. If x and y have the same factorization type and f : div(x) −→ div(y) is our bijection

then f |Irr(x) : Irr(x) −→ Irr(y) is a bijection.

Proof. Suppose that a ∈ div(x) is irreducible and that f(a) = y1y2 where y1, y2 ∈ div(y). Since f

is onto, there are b1, b2 ∈ div(x) such that f(b1) = y1, f(b2) = y2. So we have f(a) = f(b1)f(b2) =

f(b1b2) and so a = b1b2, contradicting the irreducibility of a. Hence f |Irr(x) : Irr(x) −→ Irr(y). It

remains to establish that f |Irr(x) is a surjection. So let ξ ∈ Irr(y), and select π ∈ div(x) such that

f(π) = ξ. If π = a1a2 then ξ = f(a1)f(a2) and the proof is complete.

Example 3.1.2. To see why condition 3(b) is needed, consider the ring F [x4, x5]. In this case

div(x9) = {1, x4, x5, x9} and div(x12) = {1, x4, x8, x12}. If we define f : div(x9) −→ div(x12) by

f(x4) = x4 and f(x5) = x8 then this satisfies the assumptions of the definition of same factorization

type with the exception of 3(b). Note that f(x4)f(x4) = x8 ∈ div(x12), but x4x4 /∈ div(x9). Also

note in this example that the function f does not preserve the irreducibles. In fact, div(x9) has two

irreducibles and div(x12) has only one.

Definition 3.1.5. Let M be an atomic monoid and x ∈ M . We define the elasticity of x as follows.

ρ(x) = sup({ n
m | x = α1 · · ·αn = β1 · · ·βm;αi, βj ∈ Irr(M)}).

The elasticity of a monoid (or domain) is taken as the supremum over the elasticity of the elements

contained within the monoid (or domain).

Proposition 3.1.2. If x and y have the same factorization type, then ρ(x) = ρ(y).

Proof. Let x = π1π2 · · ·πn be an irreducible factorization. Then y = f(x) = f(π1)f(π2) · · · f(πn)

and by Lemma 3.1.1 each f(πi) is irreducible. So y has a corresponding factorization of length n. Now

suppose that y = ξ1ξ2 · · · ξm = f(a1)f(a2) · · · f(am) = f(a1a2 · · · am) = f(x) and so a1a2 · · · am = x,
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and the proof that each ai is irreducible is similar to the above. Hence each factorization of x

corresponds to an equal length factorization of y and so ρ(x) = ρ(y).

The next result also underscores the importance of condition 3(b) in the definition of factorization

type as it is crucial for assuring that the notion of factorization type is symmetric.

Theorem 3.1.1. Let M be a monoid and a, b ∈ M . The relation given by a ∼ b if a and b have the

same factorization type is an equivalence relation.

Proof. ∼ is clearly reflexive. If we have a ∼ b, then the bijection f−1 : div(b) −→ div(a) satisfies

f−1(b) = a and f−1(1) = 1. So suppose that b1, b2 ∈ div(b) (with ai = f−1(bi)). If b1b2 = f(a1a2) ∈

div(b) then a1a2 = f−1(b1b2) = f−1(b1)f
−1(b2). We also note that b1b2 ∈ div(b) if and only if

a1a2 ∈ div(a) and so the relation is symmetric.

For transitivity, suppose that f : div(x) −→ div(y) and g : div(y) −→ div(z). If a1, a2 ∈ div(x)

then f(a1), f(a2), f(a1)f(a2), and f(a1a2) are all in div(y). Hence g(f(a1)f(a2)) = gf(a1)gf(a2)

and a1a2 ∈ div(x) if and only if gf(a1)gf(a2) are in div(z).

Lemma 3.1.2. If a1, a2 ∈ div(x) then a1 | a2 if and only if f(a1) | f(a2).

Proof. If a2 = za1 then f(a2) = f(z)f(a1) and hence f(a1) divides f(a2). On the other hand, if

f(a1) divides f(a2) then there is a z ∈ div(y) such that f(a2) = zf(a1). Since f is surjective, there

is a z′ ∈ div(x) such that z = f(z′). So f(a2) = f(z′)f(a1). By 3(b), z′a1 ∈ div(x) and so by 3(a),

f(a2) = f(z′a1) and since f is one-to-one, a2 = z′a1 and hence a1 | a2.

Theorem 3.1.2. If x and y have the same factorization type, then G(x) ∼=G G(y) (G(x) is the

irreducible divisor graph).

Proof. Suppose that x ∈ M and y ∈ M ′ have the same factorization type. We use the bijection

f . Note that by Lemma 3.1.1 this give a bijection between the vertex sets of G(x) and G(y). We

merely need to show that for a1, a2 ∈ div(x) that a1 and a2 are adjacent if and only if f(a1) and

f(a2) are adjacent.

Suppose first that a1 and a2 are adjacent in G(x). Then a1a2 ∈ div(x) and so f(a1a2) = f(a1)f(a2)

and hence f(a1) and f(a2) are adjacent in G(y).

Now suppose that f(a1) and f(a2) are adjacent in G(y). Then f(a1)f(a2) ∈ div(y), hence a1a2 ∈

div(x) and so a1 and a2 are adjacent in G(x).
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Example 3.1.3. If we have the element z with factorizations z = abx1 = bcx2 = cdx3 = dex4 =

efx5 = afx6 then G(z) has a 6-cycle and has diameter 4. This example can be adjusted to show

that G(x) can have arbitrarily large diameter. The girth of any of these appears to be either 3 or ∞.

Example 3.1.4. Consider the elements x = a2bc = adef and y = abc = a2def . These two

elements have different factorization type (for example, x has 7 subfactorizations of length 3 and y

has 8 subfactorizations of length 3). But G(x) ∼=G G(y).

Example 3.1.5. Consider these factorizations

z = abx1x2x3y1 = acx4x5x6y2 = adx7x8x9y3

= bcx10x11x12y4 = bdx13x14x15y5 = cdx16x17x18y6

and

t = abx1x2x3y1 = acx4x5x6y2 = adx7x8x9y3 = bcx10x11x12y4

= bdx13x14x15y5 = cdx16x17x18y6 = abcd

It is easy to see that both z and t have the same irreducible divisor graph but their elasticity are

different, ρ(z) = 1 and ρ(t) = 6
4 .

Example 3.1.6. Let x = abx1y1 = acx2y2 = adx3y3 = bcx4y4 = bdx5y5 = cdx6y6 and y =

abx1y1 = acx2y2 = adx3y3 = bcx4y4 = bdx5y5 = cdx6y6 = abcd. ρ(x) = ρ(y) = 1 and G(x) and

G(y) coincide. But there are factorizations with more than 3 irreducible factors and G contains a

K4.

Definition 3.1.6. Let G be a graph and Km ⊆ G. For this Km we let n be the maximal integer

such that Km ⊆ Kn ⊆ G. We call this Kn a maximal complete subgraph of G.

Definition 3.1.7. Let G be a graph. We say that a Kn ⊆ G that does not correspond to a factor-

ization is a “false Kn”.

Example 3.1.7. If we consider z = a1a2x1 = a1a3x2 = a1a4x3 = a2a3x4 = a2a4x5 = a3a4x6,

then this set of irreducible factorizations gives a “false K4” in the graph. Note that each 3−cycle

21



corresponding to an irreducible factorization is a maximal K3. There appear to be some limitations

on how these can be built, but it appears that false Kn can be made arbitrarily long.

Theorem 3.1.3. In the irreducible divisor graph of x, where x is square free, the following conditions

are equivalent.

1. The irreducible divisor π is a leaf of G(x).

2. π is a vertex in a connected component of G(x) that is isomorphic to K2.

Proof. (2) implies (1) is straightforward. For (1) implies (2), suppose that π is adjacent to the

irreducible element ξ and suppose that ξ is adjacent to η. Then πξa1 · · · an = ξηb1 · · · bm. Hence

πa1 · · · an = ηb1 · · · bm. Since π is only adjacent to ξ and x is square free, a1 · · · an = 1. And so η

divides π which is the desired contradiction.

3.2 Divisors and Factorization

In this section, we will talk about both monoids and domains (the monoid structure will be written

multiplicatively).

There has been much work done with regard to factorization in monoids and domains. The simplest

structures with regard to factorization are UFMs/UFDs where the factorizations are unique. In

more general situations, factorizations into irreducibles may not be unique (or even exist in some

cases).

It is well known that any factorization into primes is necessarily unique. There are cases in which

factorization into nonprime irreducibles is unique, but this is impossible globally. We will make this

precise.

Theorem 3.2.1. If R is an atomic domain, then every irreducible factorization is unique if and

only if every irreducible element is prime.

It is worth noting that in the nonatomic situation, the previous result may not hold.

Theorem 3.2.2. ([10]) There exists a nonatomic domain with a unique (up to associates) irre-

ducible.
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Note that in such a domain, every element that can be factored into irreducibles has a unique atomic

factorization, for if π is the irreducible of the previous theorem, then every atomic factorization is

(up to associates) of the form πn for some n ∈ N.

We now produce a number of motivating examples.

Example 3.2.1. Consider first the domain Q[x2, x3]. In this domain, the element x4 factors

(uniquely) into (nonprime) irreducibles via x4 = x2.x2 and the element (1 + x2)2 is the square

of a prime. Both of these elements are the square of a single irreducible, but since only one of them

is prime, these should “philosophically” be different in some sense (even though the factorizations

of the elements themselves do not seem to distinguish from the information given alone).

Example 3.2.2. Consider the ring R := Z[
√
−38] of algebraic integers with class group isomorphic

to Z6. If Pk is a prime ideal in the ideal class corresponding to k ∈ Z6, then we consider the

elements a, b ∈ R where (a) = (P1P5)(P3P3) and (b) = (P2P4)(P3P3). The elements (principal

ideals) P1P5, P2P4 and P3P3 are all irreducible and a quick examination of the relations in the class

group demonstrate that both a and b factor uniquely.

As before, these factorizations look the same in a certain sense, but as P1P5 is a product of primes

of order 6 in the class group and P2P4 is a product of primes of order 3, somehow these should be

different because we have

α3 = (P1P5)(P1P5)(P1P5) = (P1P1P1)(P5P5P5)

and

β3 = (P2P4)(P2P4)(P2P4) = (P2P2P2)(P4P4P4)

so α3 still factors uniquely, but β3 = yz where y = P 3
2 and z = P 3

4
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