
Clemson University Clemson University

TigerPrints TigerPrints

All Theses Theses

5-2024

Deep Reinforcement Learning of Variable Impedance Control for Deep Reinforcement Learning of Variable Impedance Control for

Object-Picking Tasks Object-Picking Tasks

Akshit Lunia
alunia@g.clemson.edu

Follow this and additional works at: https://tigerprints.clemson.edu/all_theses

 Part of the Acoustics, Dynamics, and Controls Commons, Electro-Mechanical Systems Commons, and

the Robotics Commons

Recommended Citation Recommended Citation
Lunia, Akshit, "Deep Reinforcement Learning of Variable Impedance Control for Object-Picking Tasks"
(2024). All Theses. 4257.
https://tigerprints.clemson.edu/all_theses/4257

This Thesis is brought to you for free and open access by the Theses at TigerPrints. It has been accepted for
inclusion in All Theses by an authorized administrator of TigerPrints. For more information, please contact
kokeefe@clemson.edu.

https://tigerprints.clemson.edu/
https://tigerprints.clemson.edu/all_theses
https://tigerprints.clemson.edu/theses
https://tigerprints.clemson.edu/all_theses?utm_source=tigerprints.clemson.edu%2Fall_theses%2F4257&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/294?utm_source=tigerprints.clemson.edu%2Fall_theses%2F4257&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/298?utm_source=tigerprints.clemson.edu%2Fall_theses%2F4257&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/264?utm_source=tigerprints.clemson.edu%2Fall_theses%2F4257&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_theses/4257?utm_source=tigerprints.clemson.edu%2Fall_theses%2F4257&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:kokeefe@clemson.edu

Deep Reinforcement Learning of Variable Impedance
Control for Object-Picking Tasks

A Thesis
Presented to

the Graduate School of
Clemson University

In Partial Fulfillment
of the Requirements for the Degree

Master of Science
Mechanical Engineering

by
Akshit Lunia

May 2024

Accepted by:
Dr. Yue Wang, Committee Chair

Dr. John Wagner
Dr. Phanindra Tallapragada

Abstract

The increasing deployment of robots in industries with varying tasks has acceler-

ated the development of various control frameworks, enabling robots to replace humans

in repetitive, exhaustive, and hazardous jobs. One critical aspect is the robots’ interac-

tion with their environment, particularly in unknown object-picking tasks, which involve

intricate object weight estimations and calculations when lifting objects. In this study, a

unique control framework is proposed to modulate the force exerted by a manipulator for

lifting an unknown object, eliminating the need for feedback from a force/torque sensor.

The framework utilizes a variable impedance controller to generate the required force, and

an admittance controller models the robot’s motion as a mass-spring-damper system. The

combined framework mimics a human hand guiding a robot arm, where the force generated

by the variable impedance controller pulls the robot to the desired position. The distance

to the desired position, stiffness, and damping parameters influence the variable impedance

force generated. The stiffness and damping parameters are uniquely tailored for specific ob-

ject masses and require learning. Here, deep reinforcement learning is employed to learn

the stiffness parameter, enabling the framework to lift objects of unknown mass effectively.

The effectiveness of the proposed control framework is demonstrated through training and

testing in the ROS Gazebo simulator, employing a UR5 manipulator. The trained model

exhibits the ability to lift objects with unknown masses to predetermined positions, show-

casing the framework’s practical applicability and potential in diverse industrial settings.

ii

Dedication

This thesis is a tribute to those who shaped my path. I dedicate this to my family,

partner, and friends, your unwavering support fuels my journey. To my adviser Dr. Yue

Wang for the opportunities and constant support. Thank you.

iii

Acknowledgments

I would like to express my deepest gratitude to the exceptional individuals who sup-

ported and guided me throughout this transformative journey. I am deeply thankful for the

guidance, support, and valuable insights provided by my adviser, Dr. Yue Wang. Your ex-

pertise and encouragement have been instrumental in shaping the direction of this research.

I highly valued the weekly meetings we held, which not only served as crucial checkpoints

to keep me on track academically but also provided me with plenty of encouragement.

I also appreciate the resources and facilities provided by the Interdisciplinary In-

telligence Research (I2R) Lab and Clemson University, which have been essential for con-

ducting the experiments and gathering the necessary data for this thesis. I would especially

like to thank the support offered by my colleague at I2R lab, Mr. Zhanrui Liao.

My heartfelt thanks go to my family and friends for their unwavering support, un-

derstanding, and encouragement throughout this challenging yet rewarding journey. Your

belief in me has been a constant source of motivation.

In conclusion, completing this thesis would not have been possible without the

support and encouragement of these wonderful individuals and institutions. Thank you for

being an integral part of this academic journey

iv

Table of Contents

Title Page . i

Abstract . ii

Dedication . iii

Acknowledgments . iv

List of Tables . vii

List of Figures . viii

1 Introduction . 1
1.1 Manipulator Object-Picking Task . 1
1.2 Impedance Control . 5
1.3 Admittance Control . 9
1.4 Deep Reinforcement Learning . 10

2 Problem Statement . 16
2.1 Variable Impedance Control for Object-Picking Task 17
2.2 Admittance Controller for Object-Picking Task 22
2.3 Twin-Delayed Deep Deterministic

Policy Gradient (TD3) . 23

3 Control Framework for Object-Picking Task 26
3.1 Manipulator Control Laws for Approaching and Lifting Phases 26
3.2 Simplification and Assumptions for Deep Reinforcement Learning 30
3.3 Reward Function . 31
3.4 Training Using TD3 . 32

4 Simulations . 36
4.1 Simulation Setup and Parameters . 36
4.2 Deep Reinforcement Learning Setup

and Parameters . 39

v

5 Results . 43
5.1 Approach Phase . 44
5.2 Lifting Phase . 47
5.3 Comparison Study . 52

6 Conclusion . 56

Appendices . 59
A TD3 Script . 60
B Variable Impedance Reaching Environment 77
C Variable Impedance Lifting Environment 90
D Variable PD Reaching Environment . 104
E Variable PD Lifting Environment . 116
F Fixed Impedance Lifting Environment . 130

Bibliography . 132

vi

List of Tables

4.1 Action Space . 40
4.2 Observation Space . 40

vii

List of Figures

1.1 General Hybrid Position/Force Control Structure [1]. 5
1.2 Manipulator applies force in the z axis and has motion in the x and y axes

while erasing a whiteboard. 6
1.3 Implementation of Impedance Control. 7
1.4 Implementation of Admittance Control. 9
1.5 Reinforcement Learning Workflow. 12
1.6 The actor-critic setup. 14

2.1 Impedance External Force Illustration. 18
2.2 External Force applied on a manipulator causing motion due to Admittance

Controller. 22

3.1 Control Framework Illustration. 27
3.2 Moment generated due to Gripper grasping offset. 29

4.1 Object-picking scenario setup in Gazebo simulator. 37
4.2 Gripper position offset in z-axis. 42

5.1 Difference in x in Approach Phase training. 45
5.2 Difference in y in Approach Phase training. 45
5.3 Difference in z in Approach Phase training. 46
5.4 Episode Reward Confidence Plot for Approach Phase 47
5.5 Difference in x in lift phase training. 48
5.6 Difference in y in lift phase training. 49
5.7 Difference in z in lift phase training. 49
5.8 Episode Reward confidence plot for lift phase. 50
5.9 Lift phase trained model runs. 51
5.10 Episode reward confidence plot for fixed impedance controller during lift

phase. 53
5.11 Episode reward confidence plot for variable PD controller during lift phase. 54
5.12 Episode reward plot (smoothed) for the proposed framework with reduced

object mass range. 55

viii

Chapter 1

Introduction

1.1 Manipulator Object-Picking Task

Ever since the beginning of robotics, researchers have been experimenting with

ways to imitate human behaviors with robots. One of the main behaviors of focus is being

able to manipulate objects. Object manipulation is one of the basic human activities, and

with robots being introduced in different industries like manufacturing, medicine, ware-

houses, and more, being able to interact with their environment is imperative. When ob-

serving an object-picking task, commonly known as an object pick and place task, humans

perform a multitude of estimations and calculations. These include object weight, trajec-

tory and path planning, and grasping mechanics. Being able to interact with objects and

manipulate them the way humans do will enable robots to be readily introduced to human

workplaces and replace them in repetitive, harmful, and exhausting applications.

Robots are skilled at grasping and manipulating objects in repetitive, familiar set-

tings such as industrial setups. The objects’ material properties, geometry, and weight are

controlled and known in such settings. The robots can handle some variations in object

properties, but the whole process is typically optimized to a limited set of expected varia-

1

tions [?]. Early factory settings employed robot arms to follow predetermined trajectories,

assuming the objects would appear at the exact predefined location. With the advancement

in machine learning and control algorithms, the robots can now adapt to changes in object

location and generate appropriate trajectories governed by the laws set by the control al-

gorithms, allowing humans to drop the object in the vicinity of the robot or on a conveyor

without being specific on the location of it. The current industries require solutions that

can be deployed for varying objects where the objects’ rigidness, shape, weight, and other

properties are not known entirely. A control algorithm that can adapt to such variances in

object properties is desired here. Two main problems must be solved when working with

objects: grasping and manipulation.

The grasping problem contains complexities like object detection, object proper-

ties, grasping position and force. Detecting objects is a challenge in robotics that demands

high precision across a wide range of objects, even for basic tasks like object-picking. Re-

searchers have devised unique algorithms, drawing from various sources and sensor tech-

nologies, to tackle this issue. In [40], A. Okamura and M. Cutkosky proposed a method to

enhance detection accuracy by incorporating multiple viewing angles and high-resolution

images. Extensive datasets were explored to train classifiers and the probabilistic fusion of

outputs from multiple object detectors to boost accuracy. Additionally, pan-tilt-zoom cam-

eras were introduced to capture detailed views of objects. The authors demonstrated that

their probabilistic approach significantly enhanced accuracy when detecting objects from

various perspectives. The effectiveness of training classifiers was also showcased on large

synthetic datasets, resulting in high-performance object detection.

Furthermore, in [13], A. Coates and A. Ng addressed the challenge of combin-

ing classifiers for different viewpoints, highlighting the complexities of detecting object

classes from diverse angles reliably. The work suggests employing multiple cameras and

high-resolution imagery to validate and enhance object detection accuracy. Object detec-

2

tion algorithms typically use neural networks to identify an object. A learning pipeline was

then introduced to integrate offline and online learning to swiftly train robots to detect new

objects within a few seconds. The challenges were tackled by applying deep learning mod-

els to robotics, particularly in localizing the bounding box around an object and assigning

its label. The suggested pipeline capitalized on merging a feature extraction module trained

offline with a region classifier trained online, enabling rapid adaptation to new objects. The

readily available object detection algorithms identified the object class well and were robust

enough for real-world applications.

The sense of touch provides diverse sensory information, including vibration, pres-

sure, and temperature, aiding humans in perceiving their environment [36, 42, 44]. While

research on object property detection is well-documented, it often requires additional sen-

sors, typically tactile sensors, to identify physical attributes. In their work [37], E. Maiet-

tini et al. investigate an approach for haptic exploration of unknown object surfaces using

robotic fingers. They define features based on local surface curvature and introduce al-

gorithms for feature detection using a spherical fingertip equipped with a tactile sensor.

The haptic exploration aims to discern object shape, texture, and other physical attributes.

Once the object and its properties are identified, the subsequent step involves determining

the grasping position and force.

In [16], N. Doshi et al. discuss a novel approach to manipulating unknown objects

by regulating the object’s contact configuration with the robot and the environment. They

estimate the robot’s wrench and motion constraints to manipulate different objects. Similar

works on the grasping problem are being carried out in [43] and [53]. Authors in [43] de-

velop a vision-based grasping system that uses range data to find grasp points for objects of

varying shapes. In [53], a methodology is introduced to calculate the grasping force neces-

sary to lift and manipulate objects with minimum deformation. They use deformation and

slipping data to estimate the grasping force. These techniques are crucial in successfully

3

grasping and manipulating rigid and soft objects. The techniques described here focus on

grasping and manipulation by estimating the object’s mass and material properties with the

help of various sensors. The research regarding manipulating objects of unknown mass is

limited to tackling the grasping problem, focusing on the force required to grasp the object

with various state-of-the-art sensors and rarely discussing the effort required by the robot

arm to manipulate the object of unknown mass.

Robots with additional sensors for appropriate environment and object detection

are expensive and require frequent calibrations, resulting in an undesirable increase in the

working cost and the initial investment. This thesis proposes a control framework trained

to reach and lift an object of unknown mass without using a force/torque sensor, typically

used in other techniques to estimate object mass. The proposed framework mimics the hu-

man behavior of adjusting the force applied to lift an object of unknown mass based on its

initial observations. We deploy three main concepts to achieve this: a variable impedance

controller, an admittance controller, and a deep reinforcement learning (DRL) algorithm.

Variable impedance controller learned using DRL is responsible for generating the force

lifting the object of unknown mass, whereas admittance controller converts the lifting force

into acceleration. First, we will introduce the general concepts of impedance control, ad-

mittance control, and deep reinforcement learning to develop a background in Sections

1.2, 1.3, and 1.4, respectively. Then, we discuss the object-picking problem in Chapter

2 and delve further into the three main components of our control framework concerning

the object-picking task. In Chapter 3, we derive our manipulator control laws and convert

the object-picking problem into a DRL problem. Further, in Chapter 4, we simulate our

framework to train the agent in learning appropriate policy. Finally, in Chapter 5, we dis-

cuss our observed results and compare the trained proposed policy with a fixed impedance

controller and a variable PD controller trained using the same DRL algorithm.

4

1.2 Impedance Control

Robotic manipulators have been successfully applied in simple manipulation appli-

cations such as sliding [48], throwing [20], pivoting [6], spray painting and arc welding,

where the manipulator must only follow a position trajectory [23]. The difficulty arises

when robots are required to perform contact-rich actions, such as polishing and assembly

tasks, and/or operate in unknown environments. Robots needed in real-world applications

such as in industries, healthcare, and households [5] must be able to control the interac-

tion forces and motion carefully. Both motion and force controllers for robotic manip-

ulators have been widely researched and developed [51] [63]. Though there are several

approaches, we can classify them into two significant categories [12]: impedance control

[24] and hybrid position/force control [41].

Hybrid position/force controller controls simultaneously and independently force

and position parameters [1]. It generates force in one axis while motion in the others, or

vice versa [25]. The general hybrid position/force controller can be seen in Figure 1.1.

general_hybrid_controller.png

Figure 1.1: General Hybrid Position/Force Control Structure [1].

The vectors v and f respectively represent the robot’s velocity and force exerted by

it in either cartesian or joint coordinates. Vectors vdes and fdes are the desired respective

velocity and force vectors. Hybrid position/force controllers are deployed in applications

5

where the force and motion can be separated between the axes. For example, let us take

a manipulator robot trying to clean a whiteboard with an eraser. The manipulator applies

force against the board to maintain appropriate contact force while having motions along

the plane of the whiteboard (Refer to Figure 1.2). This shows how the force and motion are

separated between the axes when using a hybrid position/force controller. The effectiveness

of the hybrid position/force controllers can also be found in detail for various other such

applications [58, 60, 62, 14, 61].

robot_erasing.png

Figure 1.2: Manipulator applies force in the z axis and has motion in the x and y axes while

erasing a whiteboard.

On the other hand, impedance control provides a unified control law that combines

force and motion and does not separate them into different axes. Impedance control models

the interaction force as a mass-spring-damper system, whereby depending on the perceived

6

force between the robot and its environment, the robot modifies its motion to either increase

or decrease the interaction force [24]. Impedance control is an indirect force controller

that seeks to control the impedance property instead of the actual position or force in the

manipulator-object interface during interaction [57].

The idea behind designing the impedance control as a mass-spring-damper system

is to imitate human musculoskeletal structure, where we change the stiffness of our muscles

to vary the forces we apply to our environment. Observe Figure 1.3; the robot is tasked to

reach the desired position (xo), which the impedance control will convert the desired motion

into force and moves while interacting with the plant dynamics. The interaction force (Fext)

is measured and used as feedback by the impedance controller.

imp_plant_dynamics.png

Figure 1.3: Implementation of Impedance Control.

There are two types of impedance control when considering a manipulator object

pick-up task: object impedance control and robot impedance control. Robot impedance

control models the robot dynamics as a compliant system wherein the robot mimics a mass-

spring-damper system. In the case of object impedance control, the object held by the robot

is modeled to mimic the mass-spring-damper system [47]. The motion and force interaction

of the object with its environment is essential here. Some applications of object impedance

control can be found in collaborative manipulation of an object between humans and robots,

such as in [46]. Though we will be using impedance control to manipulate an object, we

7

are not interested in the object’s interaction forces with its environment. Instead, we use an

impedance controller to generate a force that pulls on the object. We will further explore

this idea in Section 2.1.

Impedance control in most applications is used in cartesian space to control the end-

effector interaction with the environment [34, 4, 49, 11], as observed in haptic exploration

[17], but can also be derived to be used in joint space [55]. Impedance control is crucial

when robots interact with stiff environments and for new robot applications that bring hu-

mans and robots to share spaces, making contact between them inevitable [3]. Hence, it

becomes essential to ensure human safety [21], making impedance control an indispens-

able tool. When working alongside humans, the robots are not only supposed to be in

the human’s space and perform some specific tasks but also assist humans in various tasks

such as co-manipulation of heavy object [46, 26], handover objects [9], and various other

collaborative tasks. When robots are deployed in environments where they need to interact

with multiple entities or perform different tasks within their environment, such as opening/-

closing a door, turning on/off switches, carrying objects, etc., it becomes necessary for the

robot to be able to modulate its impedance to be able to apply appropriate force to complete

the task. This modulation in impedance is popularly known as variable impedance control,

wherein the impedance parameters such as mass, stiffness, and damping parameters can be

varied to achieve desired compliance. Variable impedance control is widely preferred in

such tasks [2, 45].

As discussed, impedance control is quite effective in modeling the force interaction

between the robot and its environment. In our application, the interactive force is inter-

preted as a phantom force required to lift an object of unknown mass. This interpretation

allows us to modulate the force based on the observed varying object displacement when

the robot applies the lifting phantom force.

8

1.3 Admittance Control

Similar to an impedance controller, admittance control models the force as a mass-

spring-damper system but uses the force applied by the environment as an input and gen-

erates motion corresponding to the applied force (Refer to Figure 1.4). The design of the

admittance controller impacts the robot’s reaction to the applied force. We can make the

robot highly reactive by decreasing the damping and stiffness. Similarly, we can reduce

the reactiveness by increasing the stiffness and damping, allowing us to achieve our desired

response behavior [33, 38].

add_plant_dynamics.png

Figure 1.4: Implementation of Admittance Control.

This type of control is widely used in collaborative manipulation tasks [46] and

haptic interaction [18], wherein the human can pull on the object held by the robot and hu-

man, and the force is transmitted via the object to the robot. Then, the admittance controller

generates motion in the robot along the force. Admittance control was first introduced on

retrofitted robots exploiting the force sensor at the base of the robot to increase safety when

working in an industrial capacity [31]. In [22], S. Grafakos et al. develop a control frame-

work that uses electromyography data of the human muscle arm to vary the damping in

the admittance controller, enabling higher cooperative movement accuracy and reduction

in human effort. In [54], S. Tarbouriech et al. propose a control strategy for collaborative

manipulation between humans and dual-arm robots. They deploy an admittance control to

9

move the object within the workspace, and they also use gravity compensation to cancel

the object’s gravity effects. C. Yang et al. in [59] develop an admittance control method

that adapts to the unknown dynamics of its environment using an adaptive neural network,

ensuring the robot achieves the desired trajectory. Often, when using admittance control in

human-robot cooperative tasks, it is essential to estimate the human’s intent to model ap-

propriate admittance control response. In [29], G. Kang et al. develop different admittance

controller responses along direct or indirect human intention. The direct human intention

admittance controller provides a rapid response to human force, whereas the indirect hu-

man intention admittance controller is used to minimize the trajectory error in long-term

tasks.

The applications of admittance control are vast, especially in human-robot co-

manipulation. Admittance controllers are also used to model the interaction between the

environment and robot end-effector in cases where the robotic system does not provide

access to low-level control, such as control over joint torque [56]. In our application, we

face a similar issue where the manipulator does not provide access to control over joint

torque. Hence, the phantom force generated by the impedance control must be converted

into velocity/position inputs for the manipulator using admittance control.

1.4 Deep Reinforcement Learning

Humans are versatile in adapting to highly unpredictable and uncertain scenarios.

In comparison, classical robotics requires a highly constrained environment to perform a

particular task using high-gain negative error feedback controllers. Robots need a compli-

ant low-gain control capable of estimating appropriate actions for a dynamic task to adapt

to different scenarios and uncertainties.

Reinforcement learning (RL) is a widely used solution in robotics to overcome

10

such dynamic environments. RL is essentially learning through interaction [7]. An RL

agent interacts with its environment and observes the consequences of its actions [7, 28].

According to the observed consequences, the agent learns and alters its behavior to achieve

the maximum reward provided by a reward function. A reward function is a mathematical

equation defining a task’s success or failure when performing a specific action. Using

the reward function, the agent explores the environment by performing actions (at) and

observing the change in the state (st) of the environment. The reward function then uses

the observations to provide a reward (rt). The idea is similar to training a pet; we provide

positive reinforcement as a treat when the pet performs an action that we want it to do. An

RL agent, after performing multiple actions and generating rewards for those actions, starts

learning a policy (π) that will enable it to find an optimal solution to maximize the reward

it receives (Refer to Figure 1.5).

11

rl.png

Figure 1.5: Reinforcement Learning Workflow.

Essentially, the Markov decision process (MDP) is used to describe RL [7] consist-

ing of a set of states (S), a set of actions (A), a transition dynamics (T(st+1|st, at)) that map

a state-action pair at time t onto a distribution of states at time t + 1, an immediate reward

function (R(st, at, st+1)), and a discount factor (γ ∈ [0, 1]). The lower values of the discount

factor (γ) provide more weight to the immediate rewards. The policy (π) maps the states to

a probability distribution over action,

π : S→ p(A = a|S) (1.1)

The goal of RL is to find an optimal policy (π∗) that provides the maximum reward

from all states,

12

π∗ = argmaxπ E[R|π] (1.2)

There are three approaches to solving RL problems: methods based on value func-

tions, methods based on policy search, and methods that employ both value functions and

policy search, commonly known as the hybrid actor-critic approach. Value function meth-

ods require estimating the value of being in a particular state. Policy search methods do

not need a value function and instead directly search for an optimal policy π∗. Actor-critic

methods combine value function and policy search methods, as shown in Figure 1.6. The

”actor” (policy) learns by using the feedback from the ”critic” (value function). The actor-

critic method aims to solve the problems faced by value function and policy search meth-

ods, trading off variance reduction of policy gradients with bias introduction from value

functions methods [32, 50].

13

actor_critic.png

Figure 1.6: The actor-critic setup.

In [35], J. Luo et al. use RL to learn the variable impedance controller for a tight-fit

assembly. The assembly consisted of four sequential steps requiring high accuracy, which is

beyond a typical industrial robot. Using RL with variable impedance control, they achieved

the skills to assemble by mapping the interaction forces to control actions. J. Buchli et

al. have a similar approach in [10], creating a framework that scales to complex robotic

systems while learning both the appropriate trajectory and the time-varying impedance

control. RL tasks can be significantly simplified by carefully designing the action and

observation spaces. This concept of simplifying RL is explored by R. Martı́n-Martı́n et al.

in [39], wherein they showcase the result of RL training by selecting a simplified action

space.

14

Although RL has succeeded in various applications and fields, it lacks scalability

and is inherently limited to low-dimensional problems [7]. These limitations exist in RL al-

gorithms, similar to other algorithms, and contain complexity issues such as memory com-

plexity, computational complexity, and sample complexity in the case of machine-learning

algorithms [52]. Deep learning can be helpful here with its ability to automatically find

low-dimensional representations of high-dimensional data [7]. Deep learning enables RL

to scale decision-making problems and simplify policy learning for model-free applications

by reducing memory, computational, and sample complexities. Deep learning with RL is

often dubbed deep reinforcement learning (DRL).

DRL combines an artificial neural network with reinforcement learning to map the

actions to states and generate a policy function. The main difference between RL and

DRL is using artificial neural networks to approximate the optimal policy (π∗) and/or the

optimal value functions [7]. In RL, we create a table of values for each action performed

at a particular state. This data table can be enormous in continuous environments, which

is usually true in robotics and the real world. Instead, DRL uses artificial neural networks

that learn to map actions to states and estimate the value of a particular action for a specific

state. Using DRL, we can create a control framework that can adapt to and learn a dynamic

environment and task.

Our application uses DRL to learn the optimal policy necessary to generate the

phantom force (as introduced in Section 1.2). The optimal policy should be able to observe

the current state of the robot arm and the desired goal and generate the necessary impedance

parameters to move the robot arm from its current position to the desired goal while holding

the object of unknown mass. In Chapter 2, we dive deeper into the object-picking task,

variable impedance control, admittance control, and twin-delayed deep deterministic policy

gradient.

15

Chapter 2

Problem Statement

Consider an object-picking task where the object mass (m) is unknown and varies

with each successful task completion. The end-effector and object locations vary in every

task episode along with the object mass. The objective of the task is for the end-effector

arm to reach the object location, grasp it, and apply the appropriate force necessary to lift

the object of unknown mass to the desired goal location without using an F/T sensor or any

object mass measurement.

When tasked with lifting an object of unknown mass to a certain position, we first

estimate its mass based on our previous experience of lifting it. If our estimation is inac-

curate, we modulate the force we apply to lift and move the object toward the goal. The

modulation of force is a necessary ability when lifting an object with an unknown mass.

For robots, impedance control is a popular control technique used to generate the force

that the manipulator applies on its environment during interaction, in this scenario, the ob-

ject. Impedance control force is a function of distance to the goal and will modulate force

generated based on the end-effector’s distance to the desired goal and not the object mass.

So for varying object mass, we require varying impedance control wherein by varying the

stiffness (Kd(t) ∈ 6 × 6) and damping (Dd(t) ∈ 6 × 6) matrices, we can generate the force

16

(Wc ∈ 6 × 1) required to lift an object with different masses.

The UR5 manipulator arm is either a velocity-controlled or a position-controlled

robot and does not accept force as an input. This is a common problem in robotics, and we

solve this using an Admittance Controller, which converts the force acting on the robot into

robot motion. Here, the variable impedance force acts like a phantom force that pulls the

robot towards the desired goal position. The Admittance Controller converts the phantom

force (Wc) into end-effector acceleration (ẍA ∈ 6× 1). The end-effector acceleration (ẍA) is

then converted into the end-effector position (xc using kinematic equations.

2.1 Variable Impedance Control for Object-Picking Task

Impedance control is a control technique that provides a relationship between po-

sition, velocity, acceleration, and force, all four, instead of controlling just one of the state

variables [8]. Impedance control allows us to model the robot as a mass-spring-damper

system. And like a mass-spring-damper system, we can make the robot compliant or stiff.

Let’s take a manipulator arm that needs to reach a certain desired end-effector position

(refer to Figure 2.1). When moving toward its desired position, the manipulator arm will

apply a certain force to its environment when opposed, called Fext. To avoid this force from

damaging the robot or its environment, we model the interaction force as a mass-spring-

damper system, which reduces the overall force applied by the robot arm when trying to

reach the goal. The mass-spring-damper system is a function of its stiffness and damping

parameters, and by changing them, we can change the system’s behavior. The same prin-

ciple can be applied to an impedance controller where by varying the stiffness (Kd(t)) and

damping (Dd(t)) parameters we can create a variable impedance controller.

17

imp.png

Figure 2.1: Impedance External Force Illustration.

In this section, we derive the task space variable impedance control [27]. The equa-

tion of motion of the robot is,

τ = M(q)q̈m + C(q, q̇)q̇m + g(q) + JT (q)Fext (2.1)

Where, q is the joint angular position (6× 1), q̇ is the joint angular velocity (6× 1),

q̈ is the joint angular acceleration (6× 1), τ is the joint actuation torque, M(q) is the inertia

matrix (6 × 6), C(q, q̇) is the Coriolis matrix (6 × 6), g(q) is the gravity matrix (6 × 1), and

JT (q)Fext is the external torque wrenches.Here M(q), C(q, q̇), and g(q) can be calculated

using equations (2.2, 2.4, 2.3) [30].

M(q) = [
n∑

i=1

(miJT
vi

Jvi + JT
wi

RiIiRT
i Jwi)] (2.2)

18

where, Jvi and Jwi are the respective linear and angular parts of the Jacobian matrix

J i. For the coriolis matrix, we derive its elements (ci j) from the elements of the inertia

matrix (mi j) via the formula,

ci j =

n∑
k=1

1
2

(
∂mi j

∂qk
+
∂mik

∂q j
+
∂mk j

∂qi
)q̇k (2.3)

Finally, the elements of the gravity vector (gi(q)) are given by,

gi(q) =
∂P

∂qi
(2.4)

Here, P is the potential energy due to gravity. Since impedance controller models

external interaction force as a mass-spring-damper system,

JT (q)Fext = Kd(q)(qd − qm) + Dd(q)(q̇d − q̇m) + Md(q)(q̈d − q̈m) (2.5)

Here, qd is the desired joint angular position (6 × 1), q̇d is the desired joint angular

velocity (6 × 1), q̈d is the desired joint angular acceleration (6 × 1), Kd(q) is the desired

variable joint space stiffness matrix (6×6), Dd(q) is the desired variable joint space damping

matrix (6×6), and Md(q) is the desired joint space inertia matrix. By substituting Equation

(2.5) in (2.1) we get,

τ = M(q)q̈m+C(q, q̇)q̇m+g(q)+Kd(q)(qd−qm)+Dd((q))(q̇d−q̇m)+Md(q)(q̈d−q̈m)

(2.6)

We can set the desired inertia matrix as the actual inertia matrix to simplify the

equation of motion. Therefore,

19

τ = M(q)q̈d +C(q, q̇)q̇m+ g(q)+ Kd(q)(qd − qm)+ Dd((q))(q̇d − q̇m) (2.7)

Since we are interested in the interaction between the end-effector and the object as

well as the distance of the end-effector to the goal location, we formulate the problem in

the task space instead of the joint space. According to differential kinematics, we know

q̇ = J−1(q)ẋ (2.8)

Where ẋ is the end-effector velocity (6×1), and J(q) is the Jacobian matrix (6×6).

On differentiating Equation (2.8), we get

q̈ = J−1(q)ẍ − J−1(q)J̇(q)J−1(q)ẋ (2.9)

Also, joint actuation torque can be converted to task-space force as,

Wc = JT (q)τ (2.10)

On substituting Equations (2.8), (2.9), and (2.7) in Equation (2.10), we get task

space equation of motion as,

Wc = Kd(t)(xd − xm) + Dd(t)(ẋd − ẋm) + J−T (q)M(q)J−1(q)ẍd

+J−T (q)[C(q̇, q) − M(q)J−1(q)J̇(q)]J−1(q)ẋm

+J−T (q)g(q)

(2.11)

20

Let,

Λ(x) = J−T(q)M(q)J−1(q)

µ(ẋ, x) = J−T(q)[C(q̇, q) − M(q)J−1(q) J̇(q)]J−1(q)

γ(x) = J−T(q)g(q)

where, Λ(x) is the task space Inertia matrix (6×6), µ(ẋ, x) is the task space Coriolis matrix

(6× 6), and γ(x) is the task space gravity matrix (6× 1). Therefore, the task space variable

impedance control is,

Wc = Λ(x)ẍd + µ(ẋ, x)ẋm + γ(x) + Kd(t)(xd − xm) + Dd(t)(ẋd − ẋm)

(2.12)

When the end-effector reaches its goal position, it should stop at the goal and not

have any velocity and acceleration. Hence, we set the desired end-effector velocity and ac-

celeration as zero. Therefore, the task space variable impedance control (Equation (2.12))

changes to,

Wc = µ(ẋ, x)ẋm + γ(x) + Kd(t)(xd − xm) − Dd(t)ẋm (2.13)

Our task space variable impedance control now generates the phantom force (Wc)

pulling on the end-effector. We can now formulate the admittance controller, which con-

verts the phantom force into end-effector acceleration.

21

2.2 Admittance Controller for Object-Picking Task

Admittance control, like impedance control, is a control technique that provides

a relationship between force, position, velocity, and acceleration. But unlike impedance

control, admittance control provides motion to a robot when a force is applied by the

environment on the robot arm. The force applied by the environment is modeled as a

mass-spring-damper system, generating robot acceleration and resulting in motion (Refer

to Figure 2.2).

add.png

Figure 2.2: External Force applied on a manipulator causing motion due to Admittance
Controller.

Imagine pulling on a spring; when you apply force at the end of the spring, it dis-

places as a function of the force applied and its stiffness. Similarly, when an admittance

control is deployed on a manipulator, the force applied on it generates motion of the arm as

a function of the force applied and its stiffness (Kad) and damping (Dad) matrices. There-

fore,

22

W = Md ẍA + Kad(xm − xd) + Dad ẋm (2.14)

Where, W is the force acting on the robot arm (6 × 1), Md is the desired inertia

matrix (6× 1), Kad is the desired admittance stiffness matrix (6× 6), and Dad is the desired

admittance damping matrix (6 × 6).

In the object-picking task, we want the robot to move to the object and lift it to

the desired position. Here, we only know the desired position, and so we use a variable

impedance controller to generate the force which the admittance controller uses, W = Wc,

to calculate the end-effector acceleration (ẍA) guiding the robot toward the goal. Therefore,

ẍA = M−1
d (Wc − Kad(xm − xd) − Dad ẋm) (2.15)

2.3 Twin-Delayed Deep Deterministic

Policy Gradient (TD3)

As discussed in Section 2.1, the object-picking task requires a variable impedance

control to generate the force necessary to lift objects with varying mass. Now that we

have our variable impedance control (Equation (2.13)) and admittance control (Equation

(2.15)), we can implement a deep reinforcement learning algorithm to learn the stiffness

and damping parameters for variable impedance controller.

TD3, a successor to Deep Deterministic Policy Gradient (DDPG), is an off-policy

algorithm widely used to solve continuous control problems. Although DDPG can solve

continuous control problems with high performance, it can be sensitive to hyperparameters

and other tuning parameters [19]. Both DDPG and TD3 learn Q-functions. Unlike DDPG,

23

which can overestimate Q-values of the critic (value) network when built over time, leading

to the agent being stuck at a local optimum [19], TD3 instead uses two Q-functions (Qϕ1

and Qϕ2), hence the ”twin”, using the lower of the two Q-values to avoid overestimation and

also delays the updates of the actor-network, hence the ”delayed,” which further reduces

the possibility of overestimating the Q values. Another trick TD3 uses is the introduction

of noise in the target action, preferring robust actions with higher values [19].

To understand the working of TD3 and its difference from DDPG, we must discuss

the key features of TD3, i.e., target policy smoothing and clipped double-Q learning. Policy

smoothing in TD3 refers to the smoothing of the Q-function of the target policy (µθtarg) by

adding clipped noise (ϵ), where −c < ϵ < c and c ∈ N, to the target action (a′(s′)) which is

further clipped to fall under action limits (alow < a < ahigh). Policy smoothing helps avoid

exploitation of actions with a high peak by the policy [19]. The target action is,

a′(s′) = clip(µθtarg(s′) + clip(ϵ,−c, c), alow, ahigh) (2.16)

TD3 uses double-Q learning inspired by the Double Q-learning introduced by Van

Hasselt, 2010, to select the Q value of the smaller critic networks. Therefore, the target

value is,

y(r, s′, d) = r + γmin
i=1,2

Qϕi,targ(s′, a′(s′)) (2.17)

The critic networks are then learned by regressing to the target value by using the

mean-squared Bellman error (MSBE) function,

L(ϕ1,R) = E
(s,a,r,s′,d)∼R

[(Qϕ1(s, a) − y(r, s′, d)] (2.18)

24

L(ϕ2,R) = E
(s,a,r,s′,d)∼R

[(Qϕ2(s, a) − y(r, s′, d)] (2.19)

Where ϕi is the critic parameters, R is the transition tuple (s, a, r, s′, d). d indicates

whether state s′ is the terminal state, a is the action performed at state s for which we get

the reward r. Further, the policy learning is the same as in DDPG by maximizing Qϕ1 .

25

Chapter 3

Control Framework for Object-Picking

Task

3.1 Manipulator Control Laws for Approaching and Lift-

ing Phases

Now that we have introduced all three main components of our control framework,

we can combine them (refer to Figure 3.1). This control framework works for both phases

of the object-picking task. Note that though the framework is the same, the DRL algorithm

needs to be trained separately for the two phases.

Referring to Figure 3.1, the only input to the framework is the desired end-effector

position (xd). As discussed previously, the variable impedance controller with the DRL

agent will derive the force (Wc) necessary to move the end-effector (Equation (2.12)). The

admittance controller will then convert the force into end-effector acceleration (Equation

(2.15)). Since we use position-controlled UR5, we then convert the end-effector acceler-

ation (ẍA) into end-effector position (xc) (Equation (3.3)). UR5 manipulator provides an

26

controller.png

Figure 3.1: Control Framework Illustration.

interface where you command joint actuation values to move the arm. Since we know the

end-effector position, using inverse kinematics (IK), we calculate the necessary joint actu-

ation values (qc) and actuate the joints. Using the joint sensor measurements as feedback,

which is converted to end-effector position (xm) and velocity (ẋm) using forward kinemat-

ics and forward differential kinematics is compared with the desired position to vary the

variable impedance force.

The approach phase is a more straightforward task where the only uncertainties are

the object and end-effector locations, and the DRL training is relatively simpler. But for

the lifting phase, where the object height when lifted is proportional to the force generated

by the variable impedance controller and is inversely proportional to the unknown mass of

the object, the training is much more complex. Here, the TD3 algorithm needs to observe

the initial displacement of the object for the applied force to estimate the object weight and

modulate the force generated by variable impedance control to not overshoot the goal or be

unable to lift the object. By combining Equations (2.15) and (2.13) we get our control law,

27

ẍA = M−1
d (µ(ẋ, x)ẋm + γ(x) + Kd(t)(xd − xm)

−Dd(t)ẋm − Kad(xm − xd) − Dad ẋm)
(3.1)

Validation of this control framework is especially challenging when implemented

on a position-controlled or velocity-controlled manipulator arm such as UR5. When lifting

any object to a certain position with some velocity, UR5 applies the effort necessary to

lift the object without providing any control over the applied effort. This can obscure

the results of the control framework. To avoid this, we subtract the load of the object

from the variable impedance force to mimic the behavior of reduced motion due to the

weight of the object. This is only done for the lifting phase to mimic the behavior of

a torque-controlled manipulator and is not required for manipulators that natively offer

torque-control interfaces. Therefore, the control law for the lifting phase will change,

ẍA = M−1
d (µ(ẋ, x)ẋm + γ(x) + Kd(t)(xd − xm)

−Dd(t)ẋm − Kad(xm − xd) − Dad ẋm − Mo g)
(3.2)

Where Mo is the object mass (kg) and g is the acceleration due to gravity (1×6). The

weight of the object can also induce a moment at the object and gripper contact point when

the gripper is off-center to the object (Refer to Figure 3.2), but we can ignore that since we

fix the orientation of the gripper and object which will be explained further in Section 3.2.

As introduced, UR5 is either velocity or position-controlled, and since we have acceleration

from the admittance controller, we need to convert it to commands acceptable by the UR5.

28

contact_moment.png

Figure 3.2: Moment generated due to Gripper grasping offset.

For the object-picking task where the objective is to reach a goal position, we con-

vert admittance control acceleration (ẍA) into end-effector position (xc) (refer to Equation

(3.3)). A position controller UR5 manipulator allows us to limit the motion of the arm

within a set boundary, helping us avoid collisions with itself or the table. Using a position

control makes it possible to clip the manipulator’s position within a set boundary. Using

kinematics equation we convert the admittance control acceleration ẍA into end-effector

29

position command xc,

xc(t) = xm(t) + ẋm(t)t +
1
2

ẍA(t) t2 (3.3)

After obtaining the end-effector position, we use inverse kinematics to calculate

joint angular position values (qc), which can then be commanded to the UR5 arm. Now

that we have our control law for both the approach phase (Equation (3.1)) and the lifting

phase (Equation (3.2)), we need to train the DRL agent for individual tasks, but before

that, we need first to select an appropriate action space, observation space, and the reward

function.

3.2 Simplification and Assumptions for Deep Reinforce-

ment Learning

The complexity of the DRL task is heavily dependent on its action and observation

space. Selecting an appropriate action and observation space size and shape is imperative in

speeding up the learning process. The observation space for the object-picking task consists

of the end-effector current and desired pose, both having 4 × 4 dimensions. Similarly, the

action space is the stiffness and damping matrices of the variable impedance controller.

Both stiffness and damping matrices are 6 × 6 matrices which, even when reduced to only

selecting diagonal elements, reduces the action space to 1 × 12 array. We must shrink the

observation and action space to simplify and speed up the learning.

In the object-picking task, where the object is a cube with a fixed shape, the grip-

per can grasp the object successfully by having its fingers parallel to the cube’s face. To

ensure that the object is grasped every time, we must fix the cube’s and the gripper’s ori-

entation. The objective of the control framework is to reach the cube and lift it to the goal

30

successfully and not find the appropriate grasping orientation. Selecting a fixed cube and

gripper orientation can reduce the observation space to 1×6 array of the current and desired

end-effector positions.

Since we have a fixed orientation of the object and the end-effector and do not want

any unnecessary motion concerning the orientation of the object and end-effector, we can

assume to have extremely high stiffness and damping for dimensions that correspond to

the stiffness of the orientation axes. By doing so, we can eliminate the action space by

half. Taking inspiration from [10], we can use a multiplier (ξ ∈ N) to create a relationship

between the stiffness and the damping matrices,

Dd(t) = ξ · Kd(t) (3.4)

We can further simplify the task by reducing the action space to just 3 dimensions.

Now that we have defined our action and observation space, we need to create our reward

function, which will guide our training for the object-picking task.

3.3 Reward Function

The object-picking task can be broken down into two phases: the approach phase

and the lift phase. Both these phases can be formulated as a go-to-goal problem, with

the only difference being whether the manipulator arm holds the object. The go-to-goal

problem is attributed to the distance of the end-effector to the goal and can be formulated

in the task space as,

min
u(t)

xd −
m x(t) (3.5)

31

s.t. mx(t + 1) = f (mx(t),u(t))

Where, xd is the desired goal position, mx(t) is the measured current end-effector position,

u(t) is the action performed, and f is the unknown system dynamics. In the proposed con-

trol framework, the action u(t) is the stiffness matrix (Kd(t)) selected by the TD3 algorithm.

Since the objective is to minimize the distance to the goal, the short-term reward

function for the TD3 algorithm is set as,

rs = min
Kd(t)

T∑
t=1

−100 × ||xd −
m x(t)|| (3.6)

Whereas a high terminal positive reward, rt, is given to the agent for successfully

completing the task. Now that we have established the action space, the observation space,

and the reward function, we can start our training for the approach and the lifting phases.

3.4 Training Using TD3

The pseudocode for the training with the TD3 algorithm is illustrated in Algorithm

1. We start with defining the hyperparameters that define the training scenario, such as

maximum episodes, maximum steps, and batch size. In TD3, we also define the update

interval, which is responsible for delaying network updates. Once the hyperparameters are

set, we initialize the robot and task environment. They are responsible for performing the

action the agent selects and generating observations and rewards for the agent to review for

its next action decision. We then initialize the replay buffer, which holds the transition tuple

containing state, action, reward, next state, and whether the state is a terminal state (done).

We then initialize the actor, critic, and target neural networks containing predefined layers

and nodes. Now that we have our training setup complete, we can start with the training.

32

DRL training is a repetitive task where every episode refers to one training scenario

consisting of a predefined number of steps. We use a nested for-loop where the first loop

runs for the maximum number of episodes defined in our hyperparameters, and the second

loop is for the maximum allowable steps within an episode. The idea is to terminate an

episode if the agent can’t achieve its goal and restart the training with a new approach. At

the beginning of every episode, we reset the robot and task environment and then perform

the action the agent selects. Often it is a good idea to allow the agent to explore the envi-

ronment and actions at the beginning of the training to have a better data set for learning.

If we decide to allow the agent to explore for certain steps, the agent will select random

actions from the action space and repeat until it has reached the maximum allowable explo-

ration. Note that during the exploration phase, the episodes and step relation persist, and

the environments will reset after every episode.

After the exploration phase, the agent selects actions using the neural network map-

ping, and we add some noise to the actions to make the learning more robust. After the

robot environment executes the action, the task environment provides a reward with new

observations. The transition tuple is then pushed to the replay buffer, which generates a

table of data with a size equal to the defined batch size. After every step, the transition

tuple is stored, and the episode reward is calculated. This continues till the task is complete

or the maximum number of steps is reached.

Once filled up to the desired batch size, the replay buffer is used to train the net-

works after each episode. If the replay buffer is incomplete, the training moves on to the

next episode without updating the networks. As discussed previously, TD3 uses a neat

trick to avoid overestimation, known as delayed updates. The network models are stored

and updated only after a few episodes. We also save the network models that can be loaded

to produce the results of the trained model in the testing phase.

The testing phase is performed after the training is complete. Here, we load the

33

saved trained model and run the model through multiple episodes of the task. The testing

continues for a set number of episodes, and each episode runs till the task is complete.

Algorithm 1 TD3 Training and Testing Pseudocode
1: Set hyperparameters:
2: max episodes: Maximum number of training episodes
3: max steps: Maximum number of steps per episode
4: batch size: Number of experiences to consider from buffer
5: explore steps: Number of initial steps
6: update itr: Number of updates per step
7: hidden dim: Number of nodes in each hidden layer
8: policy target update interval: Interval for updating the policy and target net-

works
9: explore noise scale: Scale for exploration noise

10: eval noise scale: Scale for evaluation noise
11: Initialize robot and task environment
12: Initialize empty replay buffer R with Max Capacity
13: Initialize Q networks (critic) Qϕ1 and Qϕ2 and policy network (actor) π
14: Set target networks Q′ϕ1

← Qϕ1 , Q′ϕ2
← Qϕ2 , and π′ ← π

15: if train is True then
16: for episodes in range(max episodes) do
17: Reset the Robot and Task Environment and get the current state
18: Set Episode Reward to 0
19: for step in range(max steps) do
20: if f rame idx is greater than explore steps then
21: Select action with exploration noise
22: else
23: Sample action from the action range
24: end if
25: Execute action and get the next state, reward, done, and info from the En-

vironment
26: Push transition tuple (state, action, reward, next state, done) to R
27: Replace state with next state
28: Add reward to Episode Reward
29: Increase f rame idx by 1

34

Algorithm 1 continued · · ·
30: if len(R) is greater than batch size then
31: for i in range(update itr) do
32: Update the networks
33: end for
34: end if
35: if done then
36: Break
37: end if
38: end for
39: Append the Episode reward to the reward list
40: if episode is even and greater than 0 then
41: Save reward list
42: Save the Model
43: end if
44: end for
45: Save the Model
46: end if
47: if test is True then
48: Load the trained model
49: for episodes in range(10) do
50: Reset the Robot and Task Environment and get the current state
51: Set Episode Reward to 0
52: Set done as False
53: while not done do
54: Select Action with exploration noise
55: Execute action and get the next state, reward, done, and info from the En-

vironment
56: Add reward to Episode Reward
57: replace the state with next state
58: end while
59: end for
60: end if

35

Chapter 4

Simulations

After deriving our control law and designing the task as a DRL problem, we will

now simulate and test the performance and validate our control framework. The chapter is

separated into two parts; the first section explains the task setup in the Gazebo simulator

and the task and robot-related parameters. Whereas the second section discusses the DRL

setup and its parameters.

4.1 Simulation Setup and Parameters

Using Gazebo, a 3D robotics simulation package, we create our task environment

(Refer to Figure 4.1). The environment consists of a UR5 robot arm equipped with a

Robotiq 2f-85 gripper and the object to be picked. We restrict the task space of the robot

arm within a bounded box, as shown in Figure 4.1 to avoid collisions with the table and

with itself. The object in focus is a cube with unknown mass (Mo) and needs to be lifted

by a UR5 manipulator arm.

In Section 3.1, we discuss we need two separate control laws for the approach and

lift phases due to the lack of torque interface in the UR5 arm. In the lift phase, we subtract

36

scenario.png

Figure 4.1: Object-picking scenario setup in Gazebo simulator.

the variable impedance force with the force due to the object’s mass to mimic behavior

similar to a torque-controlled robotic arm without the DRL agent knowing the object’s

mass. The training and controller validation is performed within the Gazebo simulator,

37

allowing us to randomize the object mass in every training episode and making it possible

to observe the random mass, which can then be subtracted from the phantom force (Wc)

generated by the variable impedance controller in the lifting phase. This allows us to reduce

or increase (depending on the direction of the phantom force) the effect of the phantom

force, resulting in a decreased acceleration output by the admittance controller and, hence,

reduced positional or velocity control command.

In Section 3.2, we discuss fixing the orientation of the robot arm and the cube to

reduce the observation and action spaces. The orientation of the robot arm can be fixed by

keeping the rotation matrix of the homogeneous transformation constant. The configuration

of choice is q = [0.0,−1.57, 1.57,−1.57,−1.57, 1.57]T rad, where q is the join position

value. This configuration can be seen in Figure 4.1 and allows the robot arm to move

within the permitted workspace and provides ideal grasping. The permitted workspace is

of volume 0.4 × 0.44 × 0.45 m3. The object mass can vary between 1 kg to 4 kg, which is

a reasonable range as the maximum payload capacity for the UR5 arm is 5 kg.

UR5 manipulator joints can achieve the maximum velocity of 3.14 rad/s, which

is higher than we desire. We limit the end-effector velocity to 1 m/s. Since we are using

position control instead of velocity control, we limit the maximum end-effector velocity

by limiting the maximum end-effector displacement of 0.2 m for a time period of 0.2 s.

The maximum displacement and time period are selected based on observing the robot’s

behavior in the simulator.

38

4.2 Deep Reinforcement Learning Setup

and Parameters

The TD3 algorithm, similar to other DRL techniques, requires us to set up the

training hyperparameters, such as the maximum episodes, maximum steps in an episode,

batch size, policy update interval, and exploration steps. We implement the TD3 algorithm

inspired by the GitHub repository [15]. The policy update interval is the hyperparameter re-

sponsible for the delayed policy updates and is carried forward from the GitHub repository

[15]. For both the approach and lift phases, we could train the DRL agent in 450 episodes

with a maximum of 50 steps. The exploration steps allow us to select the number of steps

at the beginning of the training the agent needs to explore. An initial exploration step of

300 with a batch size of 300 would give the agent enough experience to start learning. The

hyperparameters for any DRL task can be extremely sensitive and require fine-tuning and

intuition to set up. The action and observation spaces of the DRL task directly affect the

complexity and the speed of the learning process. We discussed in Section 3.2 the tech-

nique to reduce the size of the action and observation spaces for the object-picking task.

In this section, we will further discuss the action and observation spaces by selecting the

appropriate range for our task.

The action space, i.e., Kd(t), is set to a maximum 600 N/m2 and the multiplier, ξ, is

set to 10 for the approach phase. Whereas for the lifting phase, Kd(t), is set to a maximum

1200 N/m2. The increase in the stiffness parameter is due to the excess force required to lift

the object in the lifting phase as compared to no object load in the approach phase. Also, as

the end-effector reaches closer to its desired position, the force due to variable impedance

control decreases significantly, requiring higher stiffness values to generate enough force

to lift the object. Hence, the action space is,

39

Table 4.1: Action Space

Phases

Actions Low (N/m2) High (N/m2)

x y z x y z

Approach -600 -600 -600 600 600 600

Lift -1200 -1200 -1200 1200 1200 1200

The observation space in our task is an array of current and desired end-effector

positions. We want the robot to move freely within its permitted workspace to increase

the task’s difficulty while keeping it safe from collisions. So the current end-effector posi-

tion can be anywhere within the permitted workspace. In the approach phase, the desired

end-effector position is the object’s position in the world frame. The object is spawned

randomly at different positions on the table within the permitted workspace. In the lifting

phase, the desired end-effector position is the desired lifting position instead of the object

position. Hence, the observation space for the object-picking task is,

Table 4.2: Observation Space

Phases

Observations
Low (m) High (m)

Current Desired Current Desired

x y z x y z x y z x y z

Approach 0.3 -

0.22

0.5 0.4 -

0.2

0.5 0.7 0.22 0.9 0.7 0.2 0.9

Lift 0.3 -

0.22

0.5 0.3 -

0.2

0.7 0.7 0.22 0.95 0.7 0.2 0.95

As discussed in Section 3.3, we provide a short-term reward, rs, which is a function

40

of distance to the goal at every time step. Whereas a high positive reward, 2000 pts, is

given to the agent for successful completion of the task with an additional reward for high

accuracy in X, rx, and Y axes, ry. The task is said to be completed when the end-effector

breaches a threshold distance dt. The task completion threshold is set to be 0.025 m for the

approaching phase and 0.035 m for the lifting phase. The lower threshold distance in the

approach phase allows the gripper to move in close enough for successful grasping. The

additional rewards for X and Y accuracy make sure the end-effector gripper is centered on

the object in the approach phase for a good object grasp. We avoid providing the same

accuracy reward in the Z axis since the gripper extends when grasping and can collide

with the table (refer to Figure 4.2). We can make it so that the extended gripper fingers’

positions are considered, but we will then need to increase the threshold distance by the

equivalent increment so that the gripper fingers can grasp the object, leading to the same

training setup.

41

gripper_position.png

Figure 4.2: Gripper position offset in z-axis.

The simulation and DRL setup is complete and we can train the agent for the two

sub-tasks, approach and lift, and validate the control framework. The main parameter to

observe during the training and testing of the control framework, is the distance of the

end-effector to its desired position.

42

Chapter 5

Results

This thesis presented a novel control framework that employed a task-space vari-

able impedance controller learned using the TD3 algorithm and a task-space admittance

controller to convert the phantom force generated by the variable impedance controller into

end-effector acceleration. The motive was to achieve a human-like object-picking behav-

ior, which varied the force applied by the robot to pick an object of unknown mass. We

separated the object-picking task into two phases, the approaching and the lifting phase,

and derived control law and the DRL training scenarios for both.

This chapter discusses the results of each phase of the object-picking task. The

performance for both phases is measured with the end-effector’s ability to reach the desired

position using the control law specific to the scenario. The threshold distance required to

be met by the end-effector can be reduced to improve the robot’s accuracy. Still, our motive

is to validate the control framework and decreasing the threshold distance would require

longer training times and a high-performance workstation.

43

5.1 Approach Phase

In the approach phase, the object position was the desired end-effector position for

the DRL task. The short-term reward to the agent was the distance to the object position

with high positive reward when reaching the threshold distance. We also provided addi-

tional rewards for high accuracy in X and Y directions. We measure the performance of

DRL training and the control framework by observing the difference in object position and

end-effector position and the reward it gets after each episode. If the control law and the

reward functions are effective, we should see a reduction in the distance to the goal and an

increase in reward values as the training progresses.

Figures 5.1, 5.2, and 5.3 show the difference between the object and the end-effector

distances in each of the axes. The plots show a confidence interval (95%), light blue shaded

region, and mean. We can observe that as the training progresses, we see a reduction in the

difference between the object and the end-effector at the end of each episode and a decrease

in the confidence interval, where the majority of the learning can be observed within the

first 100 episodes.

44

approach_diff_x.png

Figure 5.1: Difference in x in Approach Phase training.

approach_diff_y.png

Figure 5.2: Difference in y in Approach Phase training.

45

approach_diff_z.png

Figure 5.3: Difference in z in Approach Phase training.

Figure 5.4 showcases the reward achieved by the DRL agent at the end of each

episode with a confidence interval (95%) and mean. We observe a similar trend, as seen in

the distance difference plot, where the majority of the learning can be observed in the first

100 episodes and by episode 300, the agent has completely learned the policy.

46

approach_ep_reward.png

Figure 5.4: Episode Reward Confidence Plot for Approach Phase

5.2 Lifting Phase

In the lifting phase, the goal position was the desired end-effector position for the

DRL task and same as the approach phase, the short-term reward to the agent is the distance

to the goal position with high positive reward when reaching the threshold distance. In the

lifting phase, we use a higher threshold distance as compared to the approach phase to

speed up the learning process, and the effects of this can be seen in Figures 5.5 and 5.7

where the distance to goal is higher compared to the approach phase. We measure the

performance of DRL training and the control framework by observing the difference in

goal and end-effector positions and the reward it gets after each episode. If the control law

and the reward functions are effective, we should see a reduction in distance to the goal and

an increase in reward values as the training progresses. We will also observe the result of

the trained model in Figure 5.9.

47

Figures 5.5, 5.6, and 5.7 show the difference between the goal and the end-effector

distances in each of the axes. The plots show a confidence interval (95%), light blue shaded

region, and mean. As the training progresses, we observe a reduced difference between the

object and the end-effector at the end of each episode and a decreasing confidence interval

where most of the learning can be observed within the first 100 episodes.

lift_diff_x.png

Figure 5.5: Difference in x in lift phase training.

48

lift_diff_y.png

Figure 5.6: Difference in y in lift phase training.

lift_diff_z.png

Figure 5.7: Difference in z in lift phase training.

Unlike the approach phase, where we rapidly increase the episode reward and reach

49

a maximum reward higher than 2000 pts, the lifting phase requires higher episodes to reach

its maximum reward (Refer to Figure 5.8). The maximum reward in the lift phase is lower

than in the approach phase. This is because it takes higher steps to reach the goal. The

confidence interval in the lifting phase is wider than in the approaching phase.

lift_ep_reward.png

Figure 5.8: Episode Reward confidence plot for lift phase.

Figure 5.9 illustrates the trained DRL model for the lifting phase. Here, we deploy

the trained model for five runs, and in every run, the object position is randomized. The dif-

ferent lines depict the object’s position. We can observe that the agent can use the proposed

control law to lift the object to the exact goal location for multiple runs.

50

lift_test.png

Figure 5.9: Lift phase trained model runs.

51

5.3 Comparison Study

To further display the merit of the proposed framework in lifting an object of un-

known mass, we simulate the same scenario, but instead of using a variable impedance

controller to generate the phantom force, we select two controllers, fixed impedance and

variable PD controllers, for our comparison study. The framework remains the same, but

only the phantom force-generating variable impedance controller will be replaced by either

a fixed impedance controller or a variable PD controller. The two controllers are selected to

directly compare the efficacy of variable impedance in adapting to the unknown object mass

with the two popular controllers. Both fixed impedance and variable PD controllers will be

trained using the TD3 algorithm with the same hyperparameters for ideal comparison.

Upon conducting the training, we observed that training for fixed impedance and

variable PD controllers would end without achieving the desired training episodes and with-

out learning an optimal policy to pick an object of mass between 1 and 4 kg. Both fixed

impedance and variable PD controllers couldn’t adapt to the unknown object mass and re-

quired a higher action space range and reduced object mass variance to reach the desired

learning episodes. For the fixed impedance, the object mass was reduced to vary between

1 to 2 kg, and for variable PD, the object mass was reduced to vary between 1 to 2.5 kg in

contrast to the variable impedance controller, which completed the training for 1 to 4 kg of

object mass range.

We then trained the variable impedance controller for a reduced object mass range, 1

to 2 kg, to better compare the three controllers. Starting with the fixed impedance controller

(refer to Figure 5.10), the optimal policy learned by the agent saturates the episode reward

of just over 1000 pts for the lifting phase.

52

fixd_imp_episode_reward.png

Figure 5.10: Episode reward confidence plot for fixed impedance controller during lift

phase.

Similarly, in Figure 5.11, we observe the variable PD controller starts learning, and

the episode reward increases as the training continues. Still, it can only reach a maximum of

500 pts episode reward by the end of the training period. With this, we have our benchmark

to compare our proposed framework to.

53

pd_lift_episode_reward.png

Figure 5.11: Episode reward confidence plot for variable PD controller during lift phase.

As discussed at the beginning of this section, we train our proposed framework

with a reduced object mass range to compare to the benchmark set by fixed impedance and

variable PD controller. Figure 5.12 shows the proposed framework’s training simulation

with reduced object mass variance, 1 to 2 kg. The framework can quickly adapt to the

varying object mass (within 100 episodes), learn an optimal policy and reach a maximum

reward of about 2000 pts by the end of the training. This showcases the superiority of the

variable impedance controller in our specific task. The proposed framework can reduce the

training speed and achieve a higher reward per episode than fixed impedance and variable

PD controllers.

54

vimp_redcd_weight_episode_reward_2.png

Figure 5.12: Episode reward plot (smoothed) for the proposed framework with reduced

object mass range.

55

Chapter 6

Conclusion

In this thesis, we proposed a novel framework to lift an object with an unknown

mass. The idea is to mimic human-like object-picking behavior by applying force based

on the realized object mass. We deploy three main techniques for this: variable impedance

control, TD3 algorithm, and admittance control. The manipulator of choice is a UR5 ma-

nipulator, and the object to be picked is a cube of 1 to 4 kg mass. The object-picking task

is broken into two phases: approaching and lifting.

Variable impedance control generates force as a function of distance to the goal and

the stiffness and damping matrices. Since the distance to the goal for any object mass can

be the same, resulting in the same force for different object masses, we use the stiffness

and damping matrix to modulate the force generated. As the object mass is unknown, the

stiffness and damping matrices must be varied to generate appropriate phantom force to lift

the object at every episode. To realize the object’s mass and vary the phantom force to be

able to lift that object requires machine learning.

Deep reinforcement learning algorithms are especially effective in such model-free

tasks. We use twin-delayed deep deterministic policy gradient (TD3), an off-policy DRL

algorithm. We design our task as a DRL problem and tune the hyperparameters to achieve

56

the desired learning. Now that we have the generated force required to lift the object, we

need to convert the force into communicable control for the UR5 arm. UR5 arm only allows

us to control the joint position and velocity and doesn’t provide us with any control over its

joint torque. This limitation requires us to convert the phantom force into a joint position

or velocity.

Admittance control is a popular choice to convert force applied on a robot’s end-

effector into motion. The idea is to use the force generated by the variable impedance

controller and TD3 as an external force pulling (phantom force) on the end-effector to

the desired position. The admittance controller converts the force into end-effector accel-

eration. As UR5 is either a velocity-controlled or a position-controlled robot, we need

to convert end-effector acceleration into either end-effector velocity or position using the

kinematics equation, which can then be converted into joint actuation values using inverse

kinematics. We opt for position control as it allows us to restrict the motion of the robot

arm within a permitted workspace.

Validating our control framework on a position-controlled UR5 is impossible with-

out adjusting the control law. When using position control, UR5 applies the effort necessary

to reach the position without providing any interface to control the effort. This would mean

that no matter what the object’s mass is, UR5 would reach the desired position. For this, we

deduct the force due to the object’s weight from the control law in the lifting phase, reduc-

ing the end-effector acceleration and mimicking a similar effect to what would be observed

in a torque-controlled manipulator.

After deriving our control law and parameters for the DRL problem, we simulate

and train the agent in Gazebo and PyTorch. The training data is analyzed, and the lifting

phase is tested. We observe successful training of the model in both the approaching and

lifting phases. The distance to the goal decreases with every training episode while the re-

wards increase. Further, we perform a comparison study wherein the proposed framework

57

is pitted against a fixed impedance and a variable PD controller. Both fixed impedance

and variable controller are integrated into the proposed framework by replacing the vari-

able impedance controller to generate the phantom force. The outcome of the comparison

study showcases the superiority of the variable impedance controller over the other two

controllers by learning an optimal policy quicker and gaining higher reward per episode.

Future research will focus on a more in-depth analysis of the control framework by assess-

ing the force and displacement of the end-effector and deploying the trained model on a

physical UR5 robot.

58

Appendices

59

Appendix A TD3 Script

1 #!/usr/bin/env python

2

3 import math

4 import random

5

6 import gymnasium as gym

7 import numpy as np

8

9 # Torch imports

10 import torch

11 import torch.nn as nn

12 import torch.optim as optim

13 import torch.nn.functional as F

14 from torch.distributions import Normal

15 from torch.utils.tensorboard import SummaryWriter

16

17 from IPython.display import clear_output

18 import matplotlib.pyplot as plt

19 from matplotlib import animation

20 from IPython.display import display

21

22 # Robot and task space import

23 from robo_env import ROBO_ENV

24 from ur5_reaching import UR5_REACHING

25 from ur_imp_lift import UR_IMP_LIFT

26 from ur_imp_reach import UR_IMP_REACH

27 from ur_pd_reach import UR_PD_REACH

28 from ur_pd_lift import UR_PD_LIFT

29

60

30 import argparse

31 import time

32

33 # Comment out seeds and only keep 1 at a time

34 torch.manual_seed(1234) #Reproducibility

35 torch.manual_seed(1000)

36 torch.manual_seed(900)

37 torch.manual_seed(800)

38 torch.manual_seed(700)

39 torch.manual_seed(600)

40

41 GPU = True

42 device_idx = 0

43 if GPU:

44 device = torch.device("cuda:" + str(device_idx) if torch.cuda.

is_available() else "cpu")

45 else:

46 device = torch.device("cpu")

47 print(device)

48

49

50 class ReplayBuffer:

51 def __init__(self, capacity):

52 self.capacity = capacity

53 self.buffer = []

54 self.position = 0

55

56 def push(self, state, action, reward, next_state , done):

57 if len(self.buffer) < self.capacity:

58 self.buffer.append(None)

61

59 self.buffer[self.position] = (state, action, reward, next_state ,

done)

60 self.position = int((self.position + 1) % self.capacity) # as a

ring buffer

61

62 def sample(self, batch_size):

63 batch = random.sample(self.buffer, batch_size)

64 state, action, reward, next_state , done = map(np.stack, zip(*

batch)) # stack for each

element

65 ’’’

66 the * serves as unpack: sum(a,b) <=> batch=(a,b), sum(*batch) ;

67 zip: a=[1,2], b=[2,3], zip(a,b) => [(1, 2), (2, 3)] ;

68 the map serves as mapping the function on each list element: map

(square, [2,3]) => [4,9] ;

69 np.stack((1,2)) => array([1, 2])

70 ’’’

71 return state, action, reward, next_state , done

72

73 def __len__(self):

74 return len(self.buffer)

75

76 class NormalizedActions(gym.ActionWrapper):

77 def _action(self, action):

78 low = self.action_space.low

79 high = self.action_space.high

80

81 action = low + (action + 1.0) * 0.5 * (high - low)

82 action = np.clip(action, low, high)

83

84 return action

85

62

86 def _reverse_action(self, action):

87 low = self.action_space.low

88 high = self.action_space.high

89

90 action = 2 * (action - low) / (high - low) - 1

91 action = np.clip(action, low, high)

92

93 return action

94

95

96 class ValueNetwork(nn.Module):

97 def __init__(self, state_dim , hidden_dim , init_w=3e-3):

98 super(ValueNetwork , self).__init__()

99

100 self.linear1 = nn.Linear(state_dim , hidden_dim)

101 self.linear2 = nn.Linear(hidden_dim , hidden_dim)

102 self.linear3 = nn.Linear(hidden_dim , hidden_dim)

103 self.linear4 = nn.Linear(hidden_dim , 1)

104 # weights initialization

105 self.linear4.weight.data.uniform_(-init_w, init_w)

106 self.linear4.bias.data.uniform_(-init_w, init_w)

107

108 def forward(self, state):

109 x = F.relu(self.linear1(state))

110 x = F.relu(self.linear2(x))

111 x = F.relu(self.linear3(x))

112 x = self.linear4(x)

113 return x

114

115

116 class QNetwork(nn.Module):

63

117 def __init__(self, num_inputs , num_actions , hidden_size , init_w=3e

-3):

118 super(QNetwork, self).__init__()

119

120 self.linear1 = nn.Linear(num_inputs + num_actions , hidden_size)

121 self.linear2 = nn.Linear(hidden_size , hidden_size)

122 self.linear3 = nn.Linear(hidden_size , hidden_size)

123 self.linear4 = nn.Linear(hidden_size , 1)

124

125 self.linear4.weight.data.uniform_(-init_w, init_w)

126 self.linear4.bias.data.uniform_(-init_w, init_w)

127

128 def forward(self, state, action):

129 x = torch.cat([state, action], 1) # the dim 0 is number of samples

130 x = F.relu(self.linear1(x))

131 x = F.relu(self.linear2(x))

132 x = F.relu(self.linear3(x))

133 x = self.linear4(x)

134 return x

135

136

137 class PolicyNetwork(nn.Module):

138 def __init__(self, num_inputs , num_actions , hidden_size ,

action_range=1., init_w=3e-3, log_std_min=-20, log_std_max=2):

139 super(PolicyNetwork , self).__init__()

140

141 self.log_std_min = log_std_min

142 self.log_std_max = log_std_max

143

144 self.linear1 = nn.Linear(num_inputs , hidden_size)

145 self.linear2 = nn.Linear(hidden_size , hidden_size)

64

146 self.linear3 = nn.Linear(hidden_size , hidden_size)

147 self.linear4 = nn.Linear(hidden_size , hidden_size)

148

149 self.mean_linear = nn.Linear(hidden_size , num_actions)

150 self.mean_linear.weight.data.uniform_(-init_w, init_w)

151 self.mean_linear.bias.data.uniform_(-init_w, init_w)

152

153 self.log_std_linear = nn.Linear(hidden_size , num_actions)

154 self.log_std_linear.weight.data.uniform_(-init_w, init_w)

155 self.log_std_linear.bias.data.uniform_(-init_w, init_w)

156

157 self.action_range = action_range.detach().cpu()

158 self.num_actions = num_actions

159

160

161 def forward(self, state):

162 x = F.relu(self.linear1(state))

163 x = F.relu(self.linear2(x))

164 x = F.relu(self.linear3(x))

165 x = F.relu(self.linear4(x))

166

167 mean = F.tanh(self.mean_linear(x))

168

169

170 log_std = self.log_std_linear(x)

171 log_std = torch.clamp(log_std, self.log_std_min , self.

log_std_max)

172

173 return mean, log_std

174

65

175 def evaluate(self, state, deterministic , eval_noise_scale , epsilon=1

e-6):

176 ’’’

177 generate action with state as input wrt the policy network, for

calculating gradients

178 ’’’

179 mean, log_std = self.forward(state)

180 mean = mean.cpu()

181 std = log_std.exp() # no clip in evaluation, clip affects gradients

flow

182

183 normal = Normal(0, 1)

184 z = normal.sample()

185 action_0 = torch.tanh(mean.to(device) + std*z.to(device)) #

TanhNormal distribution as actions; reparameterization trick

186 action_range = self.action_range.to(device)

187 action = action_range*mean.to(device) if deterministic else

action_range*action_0

188 log_prob = Normal(mean.cpu(), std.cpu()).log_prob(mean.cpu()+

std.cpu()*z.cpu()) - torch.log(1. - action_0.pow(2).cpu() + epsilon)

- np.log(action_range.cpu())

189

190 log_prob = log_prob.sum(dim=1, keepdim=True)

191 ’’’ add noise ’’’

192 eval_noise_clip = 2*eval_noise_scale

193 noise = normal.sample(action.shape) * eval_noise_scale

194 noise = torch.clamp(noise, -eval_noise_clip , eval_noise_clip)

195 action = action + noise.to(device)

196

197 return action, log_prob, z, mean, log_std

198

199

66

200 def get_action(self, state, deterministic , explore_noise_scale):

201 ’’’

202 generate action for interaction with env

203 ’’’

204 state = torch.FloatTensor(state).unsqueeze(0).to(device)

205 mean, log_std = self.forward(state)

206 std = log_std.exp()

207

208 normal = Normal(0, 1)

209 z = normal.sample().to(device)

210

211 action = mean.detach().cpu().numpy()[0] if deterministic else

torch.tanh(mean + std*z).detach().cpu().numpy()[0]

212

213 ’’’ add noise ’’’

214 noise = normal.sample(action.shape) * explore_noise_scale

215 print(’\nNoise: ’, noise)

216 action = self.action_range*action + noise.numpy()

217

218 return action

219

220

221 def sample_action(self,):

222 a=torch.FloatTensor(self.num_actions).uniform_(-1, 1)

223 return self.action_range*a.numpy()

224

225

226 class TD3_Trainer():

227 def __init__(self, replay_buffer , hidden_dim , action_range ,

policy_target_update_interval=1):

228 self.replay_buffer = replay_buffer

67

229

230

231 self.q_net1 = QNetwork(state_dim , action_dim , hidden_dim).to(

device)

232 self.q_net2 = QNetwork(state_dim , action_dim , hidden_dim).to(

device)

233 self.target_q_net1 = QNetwork(state_dim , action_dim , hidden_dim)

.to(device)

234 self.target_q_net2 = QNetwork(state_dim , action_dim , hidden_dim)

.to(device)

235 self.policy_net = PolicyNetwork(state_dim , action_dim ,

hidden_dim , action_range).to(device)

236 self.target_policy_net = PolicyNetwork(state_dim , action_dim ,

hidden_dim , action_range).to(device)

237 print(’Q Network (1,2): ’, self.q_net1)

238 print(’Policy Network: ’, self.policy_net)

239

240 self.target_q_net1 = self.target_ini(self.q_net1, self.

target_q_net1)

241 self.target_q_net2 = self.target_ini(self.q_net2, self.

target_q_net2)

242 self.target_policy_net = self.target_ini(self.policy_net , self.

target_policy_net)

243

244

245 q_lr = 3e-5#3e-4

246 policy_lr = 3e-5#3e-4

247 self.update_cnt = 0

248 self.policy_target_update_interval =

policy_target_update_interval

249

68

250 self.q_optimizer1 = optim.Adam(self.q_net1.parameters(), lr=q_lr

)

251 self.q_optimizer2 = optim.Adam(self.q_net2.parameters(), lr=q_lr

)

252 self.policy_optimizer = optim.Adam(self.policy_net.parameters(),

lr=policy_lr)

253

254 def target_ini(self, net, target_net):

255 for target_param , param in zip(target_net.parameters(), net.

parameters()):

256 target_param.data.copy_(param.data)

257 return target_net

258

259 def target_soft_update(self, net, target_net , soft_tau):

260 # Soft update the target net

261 for target_param , param in zip(target_net.parameters(), net.

parameters()):

262 target_param.data.copy_(# copy data value into target
parameters

263 target_param.data * (1.0 - soft_tau) + param.data *

soft_tau

264)

265

266 return target_net

267

268 def update(self, batch_size , deterministic , eval_noise_scale ,

reward_scale=10., gamma=0.9,soft_tau=1e-2):

269 state, action, reward, next_state , done = self.replay_buffer.

sample(batch_size)

270 # print(’sample:’, state, action, reward, done)

271

69

272 state = torch.FloatTensor(state).to(device)

273 next_state = torch.FloatTensor(next_state).to(device)

274 action = torch.FloatTensor(action).to(device)

275 reward = torch.FloatTensor(reward).unsqueeze(1).to(device)

reward is single value, unsqueeze() to add one dim to be [reward] at the

sample dim;

276 done = torch.FloatTensor(np.float32(done)).unsqueeze(1).to

(device)

277

278 predicted_q_value1 = self.q_net1(state, action)

279 predicted_q_value2 = self.q_net2(state, action)

280 new_action , log_prob, z, mean, log_std = self.policy_net.

evaluate(state, deterministic , eval_noise_scale=0.0) # no noise,

deterministic policy gradients

281 new_next_action , _, _, _, _ = self.target_policy_net.evaluate(

next_state , deterministic , eval_noise_scale=eval_noise_scale) #

clipped normal noise

282

283 reward = reward_scale * (reward - reward.mean(dim=0)) / (reward.

std(dim=0) + 1e-6) # normalize with batch mean and std; plus a small number

to prevent numerical problem

284

285 # Training Q Function

286 target_q_min = torch.min(self.target_q_net1(next_state ,

new_next_action),self.target_q_net2(next_state , new_next_action))

287

288 target_q_value = reward + (1 - done) * gamma * target_q_min # if

done==1, only reward

289

290 q_value_loss1 = ((predicted_q_value1 - target_q_value.detach())

**2).mean() # detach: no gradients for the

variable

291 q_value_loss2 = ((predicted_q_value2 - target_q_value.detach())

**2).mean()

70

292 self.q_optimizer1.zero_grad()

293 q_value_loss1.backward()

294 self.q_optimizer1.step()

295 self.q_optimizer2.zero_grad()

296 q_value_loss2.backward()

297 self.q_optimizer2.step()

298

299 if self.update_cnt%self.policy_target_update_interval==0:

300 # This is the **Delayed** update of policy and all targets.

301 # Training Policy Function

302 ’’’ implementation 1 ’’’

303 ’’’ predicted_new_q_value = torch.min(self.q_net1(state,

new_action),self.q_net2(state, new_action)) ’’’

304 ’’’ implementation 2 ’’’

305 predicted_new_q_value = self.q_net1(state, new_action)

306

307 policy_loss = - predicted_new_q_value.mean()

308

309 self.policy_optimizer.zero_grad()

310 policy_loss.backward()

311 self.policy_optimizer.step()

312

313 # Soft update the target nets

314 self.target_q_net1=self.target_soft_update(self.q_net1, self

.target_q_net1 , soft_tau)

315 self.target_q_net2=self.target_soft_update(self.q_net2, self

.target_q_net2 , soft_tau)

316 self.target_policy_net=self.target_soft_update(self.

policy_net , self.target_policy_net , soft_tau)

317

318 self.update_cnt+=1

71

319

320 return predicted_q_value1.mean()

321

322 def save_model(self, path):

323 torch.save(self.q_net1.state_dict(), path+’_q1’)

324 torch.save(self.q_net2.state_dict(), path+’_q2’)

325 torch.save(self.policy_net.state_dict(), path+’_policy’)

326

327 def load_model(self, path):

328 self.q_net1.load_state_dict(torch.load(path+’_q1’))

329 self.q_net2.load_state_dict(torch.load(path+’_q2’))

330 self.policy_net.load_state_dict(torch.load(path+’_policy’))

331 self.q_net1.eval()

332 self.q_net2.eval()

333 self.policy_net.eval()

334

335 def plot(rewards):

336 clear_output(True)

337 plt.figure(figsize=(20,5))

338 plt.plot(rewards)

339 plt.savefig(’td3.png’)

340 # plt.show()

341

342 # Only keep the env in focus, comment out rest

343 env = ROBO_ENV()

344 env = UR_IMP_LIFT()

345 env = UR_PD_REACH()

346 env = UR_PD_LIFT()

347 env = UR_IMP_REACH()

348 action_dim = env.action_space.shape[0]

349 state_dim = env.observation_space.shape[0]

72

350 action_range = env.action_space.high

351 action_range = torch.tensor(action_range , dtype = torch.float32, device

= device)#torch.device(’cpu’))

352

353 replay_buffer_size = 5e5

354 replay_buffer = ReplayBuffer(replay_buffer_size)

355

356

357 # hyper-parameters for RL training

358 max_episodes = 450

359 max_steps = 50 #20

360 frame_idx = 0

361 batch_size = 300#150

362 explore_steps = 300 # for random action sampling in the beginning of training

363 update_itr = 1

364 hidden_dim = 256#512

365 policy_target_update_interval = 3 # delayed update:policy and target networks

366 DETERMINISTIC=True # DDPG: deterministic policy gradient

367 explore_noise_scale = 0.1

368 eval_noise_scale = 0.1

369 reward_scale = 1.

370 rewards = []

371 # Check model path before every run

372 model_path = ’./model/td3_imp_lift_redcd_weight’

373

374 td3_trainer=TD3_Trainer(replay_buffer , hidden_dim=hidden_dim ,

policy_target_update_interval=policy_target_update_interval ,

action_range=action_range)

375

376 if __name__ == ’__main__’:

377

73

378 # train = False

379 train = True

380 if train:

381

382 writer = SummaryWriter(comment="TD3_IMP_lift_redcd_weight")

383 episode_reward = 0

384 rewards = []

385 total_timesteps = 0

386

387 # training loop

388 for eps in range(max_episodes):

389

390 state = env.reset()

391 episode_reward = 0

392

393 for step in range(max_steps):

394

395 if frame_idx > explore_steps:

396 action = td3_trainer.policy_net.get_action(state,

deterministic = DETERMINISTIC , explore_noise_scale=

explore_noise_scale)

397 else:

398 action = td3_trainer.policy_net.sample_action()

399

400 print("\nEpisode: ",eps,"| Step: ", step)

401 next_state , reward, done, info = env.step(action)

402 replay_buffer.push(state, action, reward, next_state ,

done)

403

404 state = next_state

405 episode_reward += reward

74

406 frame_idx += 1

407

408 if len(replay_buffer) > batch_size:

409 for i in range(update_itr):

410 _=td3_trainer.update(batch_size , deterministic=

DETERMINISTIC , eval_noise_scale=eval_noise_scale , reward_scale=

reward_scale)

411

412 total_timesteps += 1

413 writer.add_scalar("reward_step", reward, total_timesteps

)

414 if done:

415 break

416

417 rewards.append(episode_reward)

418 avg_reward = np.mean(rewards[-100:])

419 print("\nAvg_reward = ", avg_reward)

420 writer.add_scalar("avg_reward", avg_reward , total_timesteps)

421 writer.add_scalar("episode_reward", episode_reward , eps)

422

423 writer.add_scalar("Difference in x", info[0], eps)

424 writer.add_scalar("Difference in y", info[1], eps)

425 writer.add_scalar("Difference in z", info[2], eps)

426

427 if eps % 2 == 0 and eps>0:

428 np.save(’rewards_td3’, rewards)

429 td3_trainer.save_model(model_path)

430

431 print(’Episode: ’, eps, ’| Episode Reward: ’, episode_reward

)

432

75

433 td3_trainer.save_model(model_path)

434

435 # test = True

436 # test = False

437 # if test:

438 if not train:

439 td3_trainer.load_model(model_path)

440 for eps in range(10):

441

442 state = env.reset()

443 episode_reward = 0

444 done = False

445

446 while not done:

447 action = td3_trainer.policy_net.get_action(state,

deterministic = DETERMINISTIC , explore_noise_scale=0.0)

448 next_state , reward, done, _ = env.step(action)

449

450 episode_reward += reward

451 state=next_state

452

453

454

455 print(’Episode: ’, eps, ’| Episode Reward: ’, episode_reward

)

Listing 1: TD3 Python Code

76

Appendix B Variable Impedance Reaching Environment

1 #!/usr/bin/env python

2

3 # Gazebo Imports

4 import rospy

5 import rospkg

6 from gazebo_msgs.msg import ModelState

7 from gazebo_msgs.srv import SetModelState , GetModelState , GetLinkState

8 import control_msgs.msg

9 import actionlib

10 from trajectory_msgs.msg import *

11 from sensor_msgs.msg import JointState

12 from trajectory_msgs.msg import JointTrajectory

13 from trajectory_msgs.msg import JointTrajectoryPoint

14 from geometry_msgs.msg import WrenchStamped

15 from std_srvs.srv import Empty

16

17 import numpy as np

18 import gymnasium as gym

19 import sys

20 import torch

21 import time

22

23 # Robotics toolbox -python imports for kinematics and dynamics of ur5

24 import roboticstoolbox as rtb

25 from spatialmath import SE3

26

27 class UR_IMP_REACH():

28

29 def __init__(self):

77

30

31 rospy.init_node(’ROBO_ENV’, anonymous = True) # Initializing node

32

33 self.jointstate = JointState()

34 self.modelstate = ModelState()

35 self.q_cmd = JointTrajectory()

36 self.q_cmd.joint_names = [’ur5_arm_shoulder_pan_joint’, ’

ur5_arm_shoulder_lift_joint’, ’ur5_arm_elbow_joint’, ’

ur5_arm_wrist_1_joint’, ’ur5_arm_wrist_2_joint’, ’

ur5_arm_wrist_3_joint’]

37 self.point = JointTrajectoryPoint()

38

39 self.cube_name = ’cube1’

40 self.cube_relative_entity_name = ’link’

41 self.link_name = ’robot::left_inner_finger’

42

43 self.robot = rtb.models.UR5() # Load UR5

44 self.robot_dh = rtb.models.DH.UR5()

45

46 # Gazebo Services

47 self.model_coordinates = rospy.ServiceProxy(’/gazebo/

get_model_state’, GetModelState)

48 self.link_coordinates = rospy.ServiceProxy(’/gazebo/

get_link_state’, GetLinkState)

49 self.set_state = rospy.ServiceProxy(’/gazebo/set_model_state’,

SetModelState)

50 self.unpause = rospy.ServiceProxy(’/gazebo/unpause_physics’,

Empty)

51 self.pause = rospy.ServiceProxy(’/gazebo/pause_physics’, Empty)

52

53 # Publisher and Subscriber

78

54 self.ur_cmd = rospy.Publisher(’/arm_controller/command’,

JointTrajectory , queue_size = 1)

55 self.ur_jointstate = rospy.Subscriber(’/joint_states’,

JointState , self.ur5_joint_callback)

56 self.gripper_client = actionlib.SimpleActionClient(’/

gripper_controller/gripper_cmd’, control_msgs.msg.

GripperCommandAction)

57 self.ft_sensor = rospy.Subscriber(’/ft_sensor/raw’,

WrenchStamped , self.ft_sensor_callback)

58 self.goal = control_msgs.msg.GripperCommandGoal()

59

60 # Limits of end-effector position

61 self.max = np.array([0.60, 0.22, 0.40, 0, 0, 0])#30])

62 self.min = np.array([0.29, -0.22, 0.2, 0, 0, 0])#188])

63 self.max_x = torch.tensor(self.max, dtype = torch.float32,

device = torch.device("cpu"))

64 self.min_x = torch.tensor(self.min, dtype = torch.float32,

device = torch.device("cpu"))

65

66 # Action space : x direction,y direction,z direction: task space

67 self.action_space = gym.spaces.Box(low = np.array([-6,-6,-6]),

high = np.array([6,6,6]), dtype= np.float32)

68

69 self.max_action = self.action_space.high

70 self.min_action = self.action_space.low

71

72 # Observation Space = [x,y,z,cube.x,cube.y,cube.z]

73 self.observation_space = gym.spaces.Box(low = np.array([30, -25,

20, 40, -15, 0]), high = np.array([70, 25, 35, 50, 15, 60]), dtype=

np.float32)

74

79

75 self.cuda0 = torch.device(’cuda:0’)

76

77 self.reward = 0

78 self.prev_reward = 0

79 self.prev_distToGoal = 0

80 self.distToGoal = 0

81 self.done_counter = 0

82 self.eps = 0.75

83 self.Ka = 1*np.identity(6)

84 self.Da = self.eps*self.Ka

85 self.Md_a = 3*np.identity(6)

86 self.t = 0.5

87

88 # Desired Velocity and Acceleration

89 self.xdot_d = np.zeros(6,).reshape((-1,1))

90 self.xddot_d = np.zeros(6,).reshape((-1,1))

91

92 def ur5_joint_callback(self, data):

93

94 self.jointstate = data

95

96 def ft_sensor_callback(self,data):

97

98 self.ft_data = data

99

100 def get_observation(self):

101

102 self.q0 = self.jointstate.position

103

104 # Cube Coordinates

80

105 self.inner_finger_coord = self.link_coordinates(self.link_name ,

’world’)

106 self.tcp_x = self.inner_finger_coord.link_state.pose.position.x

- 0.0681975

107 self.tcp_y = self.inner_finger_coord.link_state.pose.position.y

108 self.tcp_z = self.inner_finger_coord.link_state.pose.position.z

- 0.066 - 0.435

109 self.tcp_coord = np.array([100*self.tcp_x, 100*self.tcp_y, 100*

self.tcp_z])

110 print("\nTCP Coordinates: ", self.tcp_coord)

111

112 # Creating observation array

113 self.obs = np.array([])

114 self.obs = np.append(self.obs, self.tcp_coord)

115 self.obs = np.append(self.obs, self.x_goal)

116

117 return self.obs

118

119

120 def reset(self):

121

122 self.q_cmd1 = JointTrajectory()

123 self.q_cmd2 = JointTrajectory()

124 self.q_cmd1.joint_names = [’ur5_arm_shoulder_pan_joint’, ’

ur5_arm_shoulder_lift_joint’, ’ur5_arm_elbow_joint’, ’

ur5_arm_wrist_1_joint’, ’ur5_arm_wrist_2_joint’, ’

ur5_arm_wrist_3_joint’]

125 self.q_cmd2.joint_names = [’ur5_arm_shoulder_pan_joint’, ’

ur5_arm_shoulder_lift_joint’, ’ur5_arm_elbow_joint’, ’

ur5_arm_wrist_1_joint’, ’ur5_arm_wrist_2_joint’, ’

ur5_arm_wrist_3_joint’]

81

126 self.point1 = JointTrajectoryPoint()

127 self.point2 = JointTrajectoryPoint()

128

129 self.q = [0.0,-1.57,1.57,-1.57,-1.57,1.57]

130

131 # UR5 reset position

132 self.q_dot_cmd = [0.0,0.0,0.0,0.0,0.0,0.0]

133 self.og_Te = np.array(self.robot.fkine(np.array

([0.0,-1.57,1.57,-1.57,-1.57,1.57])))

134 self.sol1 = self.robot.ikine_LM(SE3(self.og_Te), q0 = self.q)

135 self.point1.positions = self.sol1.q

136 self.point1.velocities = -3*self.q_dot_cmd

137 self.point1.time_from_start = rospy.Duration(1)

138 self.q_cmd1.points.append(self.point1)

139 # self.unpause()

140 # time.sleep(0.5)

141 # time.sleep(1.5)

142

143 # Randomize UR5 gripper x and y location

144 self.ur_x = np.random.uniform(0.30,0.59)

145 self.ur_y = np.random.uniform(-0.15,0.15)

146 self.og_Te[0][3] = self.ur_x

147 self.og_Te[1][3] = self.ur_y

148 self.sol2 = self.robot.ikine_LM(SE3(self.og_Te), q0 = self.sol1.

q)

149 self.point2.positions = self.sol2.q

150

151 # Publish UR5 velocity and position

152 self.unpause()

153 self.point2.velocities = -3*self.q_dot_cmd

154 self.point2.time_from_start = rospy.Duration(2)

82

155 self.q_cmd1.points.append(self.point2)

156 self.ur_cmd.publish(self.q_cmd1)

157 time.sleep(0.5)

158 # time.sleep(3)

159

160 # Publish gripper as open and set gripper status = 0

161 self.gripper_status = 0

162 self.gripper_client.wait_for_server()

163 self.goal.command.position = self.gripper_status

164 self.goal.command.max_effort = -1.0 # Do not limit the effort

165 self.gripper_client.send_goal(self.goal)

166 self.gripper_client.wait_for_result()

167

168 # Randomize x and y location of cube

169 self.cube_x = np.random.uniform(0.4,0.6)

170 self.cube_y = np.random.uniform(-0.15,0.15)

171

172 # Cube reset position

173 self.modelstate.model_name = ’cube1’

174 self.modelstate.pose.position.x = self.cube_x #0.4

175 self.modelstate.pose.position.y = self.cube_y #-0.1

176 self.modelstate.pose.position.z = 0.6

177 self.modelstate.pose.orientation.x = 0

178 self.modelstate.pose.orientation.y = 0

179 self.modelstate.pose.orientation.z = 0

180 self.modelstate.pose.orientation.w = 0

181 rospy.wait_for_service(’/gazebo/set_model_state’)

182

183 try:

184 self.resp = self.set_state(self.modelstate)

185 # time.sleep(0.3)

83

186 time.sleep(0.5)

187

188 except rospy.ServiceException as e:

189 print ("Service call failed: %s" % e)

190

191 self.cube_coord = self.link_coordinates(’cube1::link’, ’world’)

192 self.cube_x = self.cube_coord.link_state.pose.position.x

193 self.cube_y = self.cube_coord.link_state.pose.position.y

194 self.cube_z = self.cube_coord.link_state.pose.position.z - 0.435

195

196 # Goal and desired end-effector position

197 self.x_goal = np.array([100*self.cube_x, 100*self.cube_y, 100*

self.cube_z]) #only interested in position and not

orientation

198 self.x_d = np.array([self.x_goal[0],self.x_goal[1],self.x_goal

[2],0,0,0]) #need orientation for proper

dimensions

199

200 self.obs = self.get_observation()

201 self.reward = 0

202 self.prev_reward = 0

203 self.stage = 0

204 self.pause()

205

206 return self.obs

207

208 def calculate_reward(self, new_obs):

209

210 self.reward = 0

211 self.new_obs = new_obs

212 self.new_x0 = self.new_obs[0:3]

213 self.x_goal = self.new_obs[-3:]

84

214

215 self.diff_x = self.new_x0[0] - self.x_goal[0]

216 self.diff_y = self.new_x0[1] - self.x_goal[1]

217 self.diff_z = self.new_x0[2] - self.x_goal[2]

218

219 self.distToGoal = np.linalg.norm(self.x_goal - self.new_x0)

220 print("\nDist to goal = ", self.distToGoal)

221 self.reward = -self.distToGoal

222

223 if self.distToGoal <= 2.5:#3.5:

224 self.reward += 2000#1000

225 if np.linalg.norm(self.new_x0[0] - self.x_goal[0]) < 0.5:

226 self.reward += 200

227 if np.linalg.norm(self.new_x0[1] - self.x_goal[1]) < 0.5:

228 self.reward += 200

229 self.done = True

230 self.done_counter +=1

231 print("\ndone_counter =", self.done_counter)

232

233 else:

234 self.done = False

235

236 print("\nReward: ", self.reward)

237

238 self.info = np.array([self.diff_x, self.diff_y, self.diff_z])

239

240 return self.reward, self.done, self.info

241

242 def step(self,action):

243

244 self.pause()

85

245 self.q_cmd = JointTrajectory()

246 self.q_cmd.joint_names = [’ur5_arm_shoulder_pan_joint’, ’

ur5_arm_shoulder_lift_joint’, ’ur5_arm_elbow_joint’, ’

ur5_arm_wrist_1_joint’, ’ur5_arm_wrist_2_joint’, ’

ur5_arm_wrist_3_joint’]

247 self.point = JointTrajectoryPoint()

248

249 self.action = action

250 print("\nAction: ", self.action)

251

252 # Impedance Stiffness and Damping

253 self.Ki = np.diag(np.append(np.array(action), [1000, 1000,

1000]))

254 self.Di = self.eps*self.Ki

255

256 # Get measured joint position and velocity

257 self.q_m = np.array(self.jointstate.position)

258 self.q_m_r = self.q_m.reshape((-1,1))

259 self.qdot_m = np.array(self.jointstate.velocity)

260 self.qdot_m_r = self.qdot_m.reshape((-1,1))

261 self.Te = np.array(self.robot.fkine(self.q_m))

262

263 # Measured and Desired

264 self.x_m = 100*np.array([self.Te[0][3],self.Te[1][3],self.Te

[2][3],0,0,0]).reshape((-1,1))

265 self.x_d = self.x_d.reshape((-1,1))

266

267 self.J = self.robot.jacob0(self.q_m) # Jacobian matrix

268

269 # Measured end-effector Velocity

270 self.xdot_m = np.matmul(self.J,self.qdot_m_r)

86

271 self.xdot_m = self.xdot_m

272

273 # Actual and Desired Task Space Dynamics

274 self.lambda_x = self.robot_dh.inertia_x(self.q_m) # Inertia Matrix

275 self.mu_x = self.robot.coriolis_x(q = self.q_m[0:], qd = self.

qdot_m[0:], Mx = self.lambda_x) #

Coriolis

276 self.gamma_x = self.robot.gravload_x(q = self.q_m).reshape

((-1,1)) #

Gravity

277

278 # Impedance Control

279 self.mm1 = np.matmul(self.mu_x, self.xdot_m)

280 self.xdm = self.x_d - self.x_m

281 self.mm2 = np.matmul(self.Ki, self.xdm)

282 self.mm3 = np.matmul(self.Di, self.xdot_m)

283 self.W_e = self.mm1 + self.gamma_x + self.mm2 - self.mm3

284

285 # Admittance control

286 self.a = np.matmul(self.Ka, -self.xdm) + np.matmul(self.Da, self

.xdot_m)

287 self.b = self.W_e - self.a

288 self.xddot_ac = np.matmul(np.linalg.inv(self.Md_a), self.b)

289

290 # Acceleration to Position

291 self.x_c = self.xdot_m*self.t + self.xddot_ac*(self.t**2)

292 self.x_c = 0.01*np.reshape(self.x_c, 6)

293 self.x_c = np.clip(self.x_c, np.array

([-0.5,-0.5,-0.5,-0.5,-0.5,-0.5]), np.array

([0.5,0.5,0.5,0.5,0.5,0.5]))

294

295 self.x_c[0] += self.Te[0][3]

87

296 self.x_c[1] += self.Te[1][3]

297 self.x_c[2] += self.Te[2][3]

298

299 self.x_cliped = np.clip(self.x_c, self.min_x, self.max_x)

300 print("\nx_cliped: ", self.x_cliped)

301

302 self.og_Te[0][3] = self.x_cliped[0]

303 self.og_Te[1][3] = self.x_cliped[1]

304 self.og_Te[2][3] = self.x_cliped[2]

305

306 # Calculate joint positions

307 self.sol = self.robot.ikine_LM(SE3(self.og_Te), q0 = self.q0)

308 self.point.positions = self.sol.q

309

310 # Publish UR5 velocity and position

311 self.unpause()

312 self.point.time_from_start = rospy.Duration(self.t)

313 self.q_cmd.points.append(self.point)

314 self.ur_cmd.publish(self.q_cmd)

315 time.sleep(0.5)

316 # time.sleep(1.5)

317 self.pause()

318

319 self.new_obs = self.get_observation()

320 self.reward, self.done, self.info = self.calculate_reward(self.

new_obs)

321

322 # self.info = None

323

324 return self.new_obs, self.reward, self.done, self.info

88

Listing 2: Variable Impedance Reaching Environment

89

Appendix C Variable Impedance Lifting Environment

1 #!/usr/bin/env python

2

3 # Gazebo Imports

4 import rospy

5 import rospkg

6 from gazebo_msgs.msg import ModelState

7 from gazebo_msgs.srv import SetModelState , GetModelState , GetLinkState ,

SetLinkProperties

8 import control_msgs.msg

9 import actionlib

10 from trajectory_msgs.msg import *

11 from sensor_msgs.msg import JointState

12 from trajectory_msgs.msg import JointTrajectory

13 from trajectory_msgs.msg import JointTrajectoryPoint

14 from geometry_msgs.msg import WrenchStamped , Pose

15 from std_srvs.srv import Empty

16

17 import numpy as np

18 import gymnasium as gym

19 import sys

20 import torch

21 import time

22

23 # Robotics toolbox -python imports for kinematics and dynamics of ur5

24 import roboticstoolbox as rtb

25 from spatialmath import SE3

26

27 class UR_IMP_LIFT():

28

90

29 def __init__(self):

30

31 rospy.init_node(’ROBO_ENV’, anonymous = True) # Initializing node

32

33 self.jointstate = JointState()

34 self.modelstate = ModelState()

35 self.com = Pose()

36 self.q_cmd = JointTrajectory()

37 self.q_cmd.joint_names = [’ur5_arm_shoulder_pan_joint’, ’

ur5_arm_shoulder_lift_joint’, ’ur5_arm_elbow_joint’, ’

ur5_arm_wrist_1_joint’, ’ur5_arm_wrist_2_joint’, ’

ur5_arm_wrist_3_joint’]

38 self.point = JointTrajectoryPoint()

39

40 self.cube_name = ’cube1’

41 self.cube_relative_entity_name = ’link’

42 self.link_name = ’robot::left_inner_finger’

43 self.robot = rtb.models.UR5() # Load UR5

44 self.robot_dh = rtb.models.DH.UR5()

45

46 # Gazebo Services

47 self.model_coordinates = rospy.ServiceProxy(’/gazebo/

get_model_state’, GetModelState)

48 self.link_coordinates = rospy.ServiceProxy(’/gazebo/

get_link_state’, GetLinkState)

49 self.set_state = rospy.ServiceProxy(’/gazebo/set_model_state’,

SetModelState)

50 self.link_properties = rospy.ServiceProxy(’/gazebo/

set_link_properties’, SetLinkProperties)

51 self.unpause = rospy.ServiceProxy(’/gazebo/unpause_physics’,

Empty)

91

52 self.pause = rospy.ServiceProxy(’/gazebo/pause_physics’, Empty)

53

54 # Publisher and Subscriber

55 self.ur_cmd = rospy.Publisher(’/arm_controller/command’,

JointTrajectory , queue_size = 1)

56 self.ur_jointstate = rospy.Subscriber(’/joint_states’,

JointState , self.ur5_joint_callback)

57 self.gripper_client = actionlib.SimpleActionClient(’/

gripper_controller/gripper_cmd’, control_msgs.msg.

GripperCommandAction) #.0/.8:open/close

58 self.ft_sensor = rospy.Subscriber(’/ft_sensor/raw’,

WrenchStamped , self.ft_sensor_callback)

59 self.goal = control_msgs.msg.GripperCommandGoal()

60

61 # Limits of end-effector position

62 self.max = np.array([0.60, 0.22, 0.50, 0, 0, 0])#30])

63 self.min = np.array([0.29, -0.22, 0.22, 0, 0, 0])#188])

64 self.max_x = torch.tensor(self.max, dtype = torch.float32,

device = torch.device("cpu"))

65 self.min_x = torch.tensor(self.min, dtype = torch.float32,

device = torch.device("cpu"))

66

67 # Action space: x direction,y direction,z direction: task space

68 self.action_space = gym.spaces.Box(low = np.array([-12,-12,-12])

, high = np.array([12,12,12]), dtype= np.float32)

69 self.max_action = self.action_space.high

70 self.min_action = self.action_space.low

71

72 # Observation Space = [x,y,z,goal.x,goal.y,goal.z]

73 self.observation_space = gym.spaces.Box(low = np.array([29, -22,

22, 29, -22, 70]), high = np.array([70, 22, 95, 70, 22, 95]), dtype

92

=np.float32)

74

75 #self.cuda0 = torch.device(’cuda:0’)

76

77 self.reward = 0

78 self.prev_reward = 0

79 self.prev_distToGoal = 0

80 self.distToGoal = 0

81 self.done_counter = 0

82 self.eps = 10#0.75

83 self.Ka = 1*np.identity(6)

84 self.Da = self.eps*self.Ka

85 self.Md_a = 3*np.identity(6)

86 self.t = 0.2

87 self.gravity_acc = np.array([0,0,9.81,0,0,0]).reshape((-1,1))

88

89 # Desired Velocity and Acceleration

90 self.xdot_d = np.zeros(6,).reshape((-1,1))

91 self.xddot_d = np.zeros(6,).reshape((-1,1))

92

93

94 def ur5_joint_callback(self, data):

95

96 self.jointstate = data

97

98 def ft_sensor_callback(self,data):

99

100 self.ft_data = data

101

102 def get_observation(self):

103

93

104 self.q0 = self.jointstate.position

105

106 # Cube Coordinates

107 self.inner_finger_coord = self.link_coordinates(self.link_name ,

’world’)

108 self.tcp_x = self.inner_finger_coord.link_state.pose.position.x

- 0.0681975

109 self.tcp_y = self.inner_finger_coord.link_state.pose.position.y

110 self.tcp_z = self.inner_finger_coord.link_state.pose.position.z

111 self.tcp_coord = np.array([100*self.tcp_x, 100*self.tcp_y, 100*

self.tcp_z])

112 print("\nTCP Coordinates: ", self.tcp_coord)

113

114 # Creating observation array

115 self.obs = np.array([])

116 self.obs = np.append(self.obs, self.tcp_coord)

117 self.obs = np.append(self.obs, self.x_goal)

118

119 return self.obs

120

121

122 def reset(self):

123

124 self.q_cmd1 = JointTrajectory()

125 self.q_cmd1.joint_names = [’ur5_arm_shoulder_pan_joint’, ’

ur5_arm_shoulder_lift_joint’, ’ur5_arm_elbow_joint’, ’

ur5_arm_wrist_1_joint’, ’ur5_arm_wrist_2_joint’, ’

ur5_arm_wrist_3_joint’]

126 self.point1 = JointTrajectoryPoint()

127 self.point2 = JointTrajectoryPoint()

128 self.q = [0.0,-1.57,1.57,-1.57,-1.57,1.57]

94

129

130 self.goal_x = 45

131 self.goal_y = 11 #np.random.uniform(-22, 22)

132 self.goal_z = 88 #np.random.uniform(45, 89)

133 self.x_goal = np.array([self.goal_x, self.goal_y, self.goal_z])

134 self.x_d = np.array([self.goal_x, self.goal_y, self.goal_z, 0,

0, 0])

135

136 # Release the cube

137 self.unpause()

138 self.gripper_status = 0

139 self.gripper_client.wait_for_server()

140 self.goal.command.position = self.gripper_status

141 self.goal.command.max_effort = -1.0 # Do not limit the effort

142 self.gripper_client.send_goal(self.goal)

143 self.gripper_client.wait_for_result()

144 time.sleep(1.0)

145 self.pause()

146

147 # Randomize mass of cube and set link properties

148 self.mass = np.random.uniform(1,4)

149 print("\nmass: ",self.mass)

150 self.inertia = (1/12)*self.mass*(0.05**2+0.5**2)

151 self.gravity_mode = True

152 self.com.position.x = 0.0

153 self.com.position.y = 0.0

154 self.com.position.z = 0.0

155 self.com.orientation.x = 0.0

156 self.com.orientation.y = 0.0

157 self.com.orientation.z = 0.0

158 self.com.orientation.w = 0.0

95

159 self.ixx = self.inertia

160 self.ixy = 0

161 self.ixz = 0

162 self.iyy = self.inertia

163 self.iyz = 0

164 self.izz = self.inertia

165

166 rospy.wait_for_service(’/gazebo/set_link_properties’)

167

168 try:

169 # self.unpause()

170 self.resp1 = self.link_properties(’cube1::link’, self.com,

self.gravity_mode , self.mass, self.ixx, self.ixy, self.ixz, self.iyy

, self.iyz, self.izz)

171 time.sleep(0.3)

172 # self.pause()

173

174 except rospy.ServiceException as e:

175 print ("Service call failed: %s" % e)

176

177 # Randomize x and y location of cube

178 self.cube_x = np.random.uniform(0.3,0.6)

179 self.cube_y = np.random.uniform(-0.22,0.22)

180 self.modelstate.model_name = ’cube1’

181 self.modelstate.pose.position.x = self.cube_x

182 self.modelstate.pose.position.y = self.cube_y

183 self.modelstate.pose.position.z = 0.6

184 self.modelstate.pose.orientation.x = 0

185 self.modelstate.pose.orientation.y = 0

186 self.modelstate.pose.orientation.z = 0

187 self.modelstate.pose.orientation.w = 0

96

188 self.unpause()

189 rospy.wait_for_service(’/gazebo/set_model_state’)

190

191 try:

192 self.resp = self.set_state(self.modelstate)

193 # time.sleep(0.3)

194 time.sleep(0.6)

195

196 except rospy.ServiceException as e:

197 print ("Service call failed: %s" % e)

198

199 self.pause()

200

201 # UR5 reset position

202 self.q_dot_cmd = [0.0,0.0,0.0,0.0,0.0,0.0]

203 self.og_Te = np.array(self.robot.fkine(np.array

([0.0,-1.57,1.57,-1.57,-1.57,1.57])))

204 self.sol1 = self.robot.ikine_LM(SE3(self.og_Te), q0 = self.q)

205 self.point1.positions = self.sol1.q

206 self.point1.velocities = -3*self.q_dot_cmd

207 self.point1.time_from_start = rospy.Duration(1)

208 self.q_cmd1.points.append(self.point1)

209

210 # Move UR5 gripper to where the cube is

211 self.ur_x = self.cube_x

212 self.ur_y = self.cube_y

213 self.og_Te[0][3] = self.ur_x

214 self.og_Te[1][3] = self.ur_y

215 self.og_Te[2][3] = 0.215

216 self.sol2 = self.robot.ikine_LM(SE3(self.og_Te), q0 = self.sol1.

q)

97

217 self.point2.positions = self.sol2.q

218

219 # Publish UR5 velocity and position

220 self.point2.velocities = -3*self.q_dot_cmd

221 self.point2.time_from_start = rospy.Duration(2)

222 self.q_cmd1.points.append(self.point2)

223 self.unpause()

224 self.ur_cmd.publish(self.q_cmd1)

225 time.sleep(1)

226 # time.sleep(2)

227

228 # Grasp the object

229 self.gripper_status = 0.8

230 self.gripper_client.wait_for_server()

231 self.goal.command.position = self.gripper_status

232 self.goal.command.max_effort = -1.0 # Do not limit the effort

233 self.gripper_client.send_goal(self.goal)

234 time.sleep(1.5)

235

236 self.obs = self.get_observation()

237 self.reward = 0

238 self.prev_reward = 0

239 self.stage = 0

240 self.pause()

241

242 return self.obs

243

244 def calculate_reward(self, new_obs):

245

246 self.reward = 0

247 self.new_obs = new_obs

98

248 self.new_x0 = self.new_obs[0:3]

249 self.x_goal = self.new_obs[-3:]

250 print("\nx_goal: ", self.x_goal)

251

252 self.diff_x = self.new_x0[0] - self.x_goal[0]

253 self.diff_y = self.new_x0[1] - self.x_goal[1]

254 self.diff_z = self.new_x0[2] - self.x_goal[2]

255

256 self.distToGoal = np.linalg.norm(self.x_goal - self.new_x0)

257 print("\nDist to goal = ", self.distToGoal)

258 self.reward = -self.distToGoal

259

260 if self.distToGoal <= 3.5:

261 self.reward += 2000#1000

262 if np.linalg.norm(self.new_x0[0] - self.x_goal[0]) < 1:

263 self.reward += 200

264 if np.linalg.norm(self.new_x0[1] - self.x_goal[1]) < 1:

265 self.reward += 200

266 self.done = True

267 self.done_counter +=1

268 print("\ndone_counter =", self.done_counter)

269

270 else:

271 self.done = False

272

273 print("\nReward: ", self.reward)

274

275 self.info = np.array([self.diff_x, self.diff_y, self.diff_z])

276

277 return self.reward, self.done, self.info

278

99

279 def step(self,action):

280

281 self.pause()

282 self.q_cmd = JointTrajectory()

283 self.q_cmd.joint_names = [’ur5_arm_shoulder_pan_joint’, ’

ur5_arm_shoulder_lift_joint’, ’ur5_arm_elbow_joint’, ’

ur5_arm_wrist_1_joint’, ’ur5_arm_wrist_2_joint’, ’

ur5_arm_wrist_3_joint’]

284 self.point = JointTrajectoryPoint()

285

286 self.action = action

287 print("\nAction: ", self.action)

288

289 # Impedance Stiffness and Damping

290 self.Ki = np.diag(np.append(np.array(action), [1000, 1000,

1000]))

291 self.Di = self.eps*self.Ki

292

293 # Get measured joint position and velocity

294 self.q_m = np.array(self.jointstate.position)

295 self.q_m_r = self.q_m.reshape((-1,1))

296 self.qdot_m = np.array(self.jointstate.velocity)

297 self.qdot_m_r = self.qdot_m.reshape((-1,1))

298 self.Te = np.array(self.robot.fkine(self.q_m))

299

300 # Measured and Desired

301 self.x_m = 100*np.array([self.Te[0][3],self.Te[1][3],self.Te

[2][3]+0.445,0,0,0]).reshape((-1,1))

302 self.x_d = self.x_d.reshape((-1,1))

303

304

100

305 self.J = self.robot.jacob0(self.q_m) # Jacobian matrix

306

307 # Measured end-effector Velocity

308 self.xdot_m = np.matmul(self.J,self.qdot_m_r)

309 self.xdot_m = self.xdot_m

310

311

312 # Actual and Desired Task Space Dynamics

313 self.lambda_x = self.robot_dh.inertia_x(self.q_m) # Inertia Matrix

314

315 self.mu_x = self.robot.coriolis_x(q = self.q_m[0:], qd = self.

qdot_m[0:], Mx = self.lambda_x) #

Coriolis

316

317 self.gamma_x = self.robot.gravload_x(q = self.q_m).reshape

((-1,1)) #

Gravity

318

319

320 # Impedance Control

321 self.mm1 = np.matmul(self.mu_x, self.xdot_m)

322

323 self.xdm = self.x_d - self.x_m

324 self.mm2 = np.matmul(self.Ki, self.xdm)

325 self.mm3 = np.matmul(self.Di, self.xdot_m)

326 self.W_e = self.mm1 + self.gamma_x + self.mm2 - self.mm3

327

328 # Admittance control

329 self.a = np.matmul(self.Ka, self.xdm) + np.matmul(self.Da, self.

xdot_m)

330 self.mm4 = self.mass*self.gravity_acc

331 self.b = self.W_e - self.mm4 - self.a

101

332 self.xddot_ac = np.matmul(np.linalg.inv(self.Md_a), self.b)

333

334 # Acceleration to Position

335 self.x_c = self.xdot_m*self.t + self.xddot_ac*(self.t**2)

336 self.x_c = 0.01*np.reshape(self.x_c, 6)

337 self.x_c = np.clip(self.x_c, np.array

([-0.2,-0.2,-0.2,-0.2,-0.2,-0.2]), np.array

([0.2,0.2,0.2,0.2,0.2,0.2]))

338

339

340 self.x_c[0] += self.Te[0][3]

341 self.x_c[1] += self.Te[1][3]

342 self.x_c[2] += self.Te[2][3]

343

344 self.x_cliped = np.clip(self.x_c, self.min_x, self.max_x)

345 print("\nx_cliped: ", self.x_cliped)

346

347 self.og_Te[0][3] = self.x_cliped[0]

348 self.og_Te[1][3] = self.x_cliped[1]

349 self.og_Te[2][3] = self.x_cliped[2]

350

351 # Calculate joint positions

352 self.sol = self.robot.ikine_LM(SE3(self.og_Te), q0 = self.q0)

353 self.point.positions = self.sol.q

354

355 # Publish UR5 velocity and position

356 self.unpause()

357 self.point.time_from_start = rospy.Duration(self.t)

358 self.q_cmd.points.append(self.point)

359 self.ur_cmd.publish(self.q_cmd)

360 time.sleep(0.5)

102

361 # time.sleep(1.5)

362 self.pause()

363

364 self.new_obs = self.get_observation()

365 self.reward, self.done, self.info = self.calculate_reward(self.

new_obs)

366

367 # self.info = None

368

369 return self.new_obs, self.reward, self.done, self.info

Listing 3: Variable Impedance Lifting Environment

103

Appendix D Variable PD Reaching Environment

1 #!/usr/bin/env python

2

3 # Gazebo Imports

4 import rospy

5 import rospkg

6 from gazebo_msgs.msg import ModelState

7 from gazebo_msgs.srv import SetModelState , GetModelState , GetLinkState

8 import control_msgs.msg

9 import actionlib

10 from trajectory_msgs.msg import *

11 from sensor_msgs.msg import JointState

12 from trajectory_msgs.msg import JointTrajectory

13 from trajectory_msgs.msg import JointTrajectoryPoint

14 from geometry_msgs.msg import WrenchStamped

15 from std_srvs.srv import Empty

16

17 import numpy as np

18 import gymnasium as gym

19 import sys

20 import torch

21 import time

22

23 # Robotics toolbox -python imports for kinematics and dynamics of ur5

24 import roboticstoolbox as rtb

25 from spatialmath import SE3

26

27 class UR_PD_REACH():

28

29 def __init__(self):

104

30

31 rospy.init_node(’ROBO_ENV’, anonymous = True) # Initializing node

32

33 self.jointstate = JointState()

34 self.modelstate = ModelState()

35 self.q_cmd = JointTrajectory()

36 self.q_cmd.joint_names = [’ur5_arm_shoulder_pan_joint’, ’

ur5_arm_shoulder_lift_joint’, ’ur5_arm_elbow_joint’, ’

ur5_arm_wrist_1_joint’, ’ur5_arm_wrist_2_joint’, ’

ur5_arm_wrist_3_joint’]

37 self.point = JointTrajectoryPoint()

38

39 self.cube_name = ’cube1’

40 self.cube_relative_entity_name = ’link’

41 self.link_name = ’robot::left_inner_finger’

42 self.robot = rtb.models.UR5() # Load UR5

43 self.robot_dh = rtb.models.DH.UR5()

44

45 # Gazebo Services

46 self.model_coordinates = rospy.ServiceProxy(’/gazebo/

get_model_state’, GetModelState)

47 self.link_coordinates = rospy.ServiceProxy(’/gazebo/

get_link_state’, GetLinkState)

48 self.set_state = rospy.ServiceProxy(’/gazebo/set_model_state’,

SetModelState)

49 self.unpause = rospy.ServiceProxy(’/gazebo/unpause_physics’,

Empty)

50 self.pause = rospy.ServiceProxy(’/gazebo/pause_physics’, Empty)

51

52 # Publisher and Subscriber

105

53 self.ur_cmd = rospy.Publisher(’/arm_controller/command’,

JointTrajectory , queue_size = 1)

54 self.ur_jointstate = rospy.Subscriber(’/joint_states’,

JointState , self.ur5_joint_callback)

55 self.gripper_client = actionlib.SimpleActionClient(’/

gripper_controller/gripper_cmd’, control_msgs.msg.

GripperCommandAction)

56 self.ft_sensor = rospy.Subscriber(’/ft_sensor/raw’,

WrenchStamped , self.ft_sensor_callback)

57 self.goal = control_msgs.msg.GripperCommandGoal()

58

59 # Limits of end-effector position

60 self.max = np.array([0.60, 0.22, 0.40, 0, 0, 0])

61 self.min = np.array([0.29, -0.22, 0.2, 0, 0, 0])

62 self.max_x = torch.tensor(self.max, dtype = torch.float32,

device = torch.device("cpu"))

63 self.min_x = torch.tensor(self.min, dtype = torch.float32,

device = torch.device("cpu"))

64

65 self.action_space = gym.spaces.Box(low = np.array([-6,-6,-6]),

high = np.array([6,6,6]), dtype= np.float32)

66 self.max_action = self.action_space.high

67 self.min_action = self.action_space.low

68

69 # Observation Space = [x,y,z,cube.x,cube.y,cube.z]

70 self.observation_space = gym.spaces.Box(low = np.array([30, -25,

20, 40, -15, 0]), high = np.array([70, 25, 35, 50, 15, 60]), dtype=

np.float32)

71

72 self.cuda0 = torch.device(’cuda:0’)

73

106

74 self.reward = 0

75 self.prev_reward = 0

76 self.prev_distToGoal = 0

77 self.distToGoal = 0

78 self.done_counter = 0

79 self.eps = 0.75

80 self.Ka = 1*np.identity(6)

81 self.Da = self.eps*self.Ka

82 self.Md_a = 3*np.identity(6)

83 self.t = 0.5

84

85 # Desired Velocity and Acceleration

86 self.xdot_d = np.zeros(6,).reshape((-1,1))

87 self.xddot_d = np.zeros(6,).reshape((-1,1))

88

89 def ur5_joint_callback(self, data):

90

91 self.jointstate = data

92

93 def ft_sensor_callback(self,data):

94

95 self.ft_data = data

96

97 def get_observation(self):

98

99 self.q0 = self.jointstate.position

100

101 # Cube Coordinates

102 self.inner_finger_coord = self.link_coordinates(self.link_name ,

’world’)

107

103 self.tcp_x = self.inner_finger_coord.link_state.pose.position.x

- 0.0681975

104 self.tcp_y = self.inner_finger_coord.link_state.pose.position.y

105 self.tcp_z = self.inner_finger_coord.link_state.pose.position.z

- 0.066 - 0.435

106 self.tcp_coord = np.array([100*self.tcp_x, 100*self.tcp_y, 100*

self.tcp_z])

107 print("\nTCP Coordinates: ", self.tcp_coord)

108

109 # Creating observation array

110 self.obs = np.array([])

111 self.obs = np.append(self.obs, self.tcp_coord)

112 self.obs = np.append(self.obs, self.x_goal)

113

114 return self.obs

115

116

117 def reset(self):

118

119 self.q_cmd1 = JointTrajectory()

120 self.q_cmd2 = JointTrajectory()

121 self.q_cmd1.joint_names = [’ur5_arm_shoulder_pan_joint’, ’

ur5_arm_shoulder_lift_joint’, ’ur5_arm_elbow_joint’, ’

ur5_arm_wrist_1_joint’, ’ur5_arm_wrist_2_joint’, ’

ur5_arm_wrist_3_joint’]

122 self.q_cmd2.joint_names = [’ur5_arm_shoulder_pan_joint’, ’

ur5_arm_shoulder_lift_joint’, ’ur5_arm_elbow_joint’, ’

ur5_arm_wrist_1_joint’, ’ur5_arm_wrist_2_joint’, ’

ur5_arm_wrist_3_joint’]

123 self.point1 = JointTrajectoryPoint()

124 self.point2 = JointTrajectoryPoint()

108

125

126 self.q = [0.0,-1.57,1.57,-1.57,-1.57,1.57]

127

128 # UR5 reset position

129 self.q_dot_cmd = [0.0,0.0,0.0,0.0,0.0,0.0]

130 self.og_Te = np.array(self.robot.fkine(np.array

([0.0,-1.57,1.57,-1.57,-1.57,1.57])))

131 self.sol1 = self.robot.ikine_LM(SE3(self.og_Te), q0 = self.q)

132 self.point1.positions = self.sol1.q

133 self.point1.velocities = -3*self.q_dot_cmd

134 self.point1.time_from_start = rospy.Duration(1)

135 self.q_cmd1.points.append(self.point1)

136

137 # Randomize UR5 gripper x and y location

138 self.ur_x = np.random.uniform(0.30,0.59)

139 self.ur_y = np.random.uniform(-0.15,0.15)

140 self.og_Te[0][3] = self.ur_x

141 self.og_Te[1][3] = self.ur_y

142 self.sol2 = self.robot.ikine_LM(SE3(self.og_Te), q0 = self.sol1.

q)

143 self.point2.positions = self.sol2.q

144

145 # Publish UR5 velocity and position

146 self.unpause()

147 self.point2.velocities = -3*self.q_dot_cmd

148 self.point2.time_from_start = rospy.Duration(2)

149 self.q_cmd1.points.append(self.point2)

150 self.ur_cmd.publish(self.q_cmd1)

151 time.sleep(0.5)

152 # time.sleep(3)

153

109

154 # Publish gripper as open and set gripper status : 0

155 self.gripper_status = 0

156 self.gripper_client.wait_for_server()

157 self.goal.command.position = self.gripper_status

158 self.goal.command.max_effort = -1.0 # Do not limit the effort

159 self.gripper_client.send_goal(self.goal)

160 self.gripper_client.wait_for_result()

161

162 # Randomize x and y location of cube

163 self.cube_x = np.random.uniform(0.4,0.6)

164 self.cube_y = np.random.uniform(-0.15,0.15)

165

166 # Cube reset position

167 self.modelstate.model_name = ’cube1’

168 self.modelstate.pose.position.x = self.cube_x #0.4

169 self.modelstate.pose.position.y = self.cube_y #-0.1

170 self.modelstate.pose.position.z = 0.6

171 self.modelstate.pose.orientation.x = 0

172 self.modelstate.pose.orientation.y = 0

173 self.modelstate.pose.orientation.z = 0

174 self.modelstate.pose.orientation.w = 0

175 rospy.wait_for_service(’/gazebo/set_model_state’)

176

177 try:

178 self.resp = self.set_state(self.modelstate)

179 # time.sleep(0.3)

180 time.sleep(0.5)

181

182 except rospy.ServiceException as e:

183 print ("Service call failed: %s" % e)

184

110

185 self.cube_coord = self.link_coordinates(’cube1::link’, ’world’)

186 self.cube_x = self.cube_coord.link_state.pose.position.x

187 self.cube_y = self.cube_coord.link_state.pose.position.y

188 self.cube_z = self.cube_coord.link_state.pose.position.z - 0.435

189

190 # Goal and desired end-effector position

191 self.x_goal = np.array([100*self.cube_x, 100*self.cube_y, 100*

self.cube_z]) # only interested in position and not

orientation

192 self.x_d = np.array([self.x_goal[0],self.x_goal[1],self.x_goal

[2],0,0,0]) # need orientation for proper

dimensions

193

194 self.obs = self.get_observation()

195 self.reward = 0

196 self.prev_reward = 0

197 self.stage = 0

198 self.pause()

199

200 return self.obs

201

202 def calculate_reward(self, new_obs):

203

204 self.reward = 0

205 self.new_obs = new_obs

206 self.new_x0 = self.new_obs[0:3]

207 self.x_goal = self.new_obs[-3:]

208

209 self.diff_x = self.new_x0[0] - self.x_goal[0]

210 self.diff_y = self.new_x0[1] - self.x_goal[1]

211 self.diff_z = self.new_x0[2] - self.x_goal[2]

212

111

213 self.distToGoal = np.linalg.norm(self.x_goal - self.new_x0)

214 print("\nDist to goal = ", self.distToGoal)

215 self.reward = -self.distToGoal

216

217 if self.distToGoal <= 2.5:#3.5:

218 self.reward += 2000#1000

219 if np.linalg.norm(self.new_x0[0] - self.x_goal[0]) < 0.5:

220 self.reward += 200

221 if np.linalg.norm(self.new_x0[1] - self.x_goal[1]) < 0.5:

222 self.reward += 200

223 self.done = True

224 self.done_counter +=1

225 print("\ndone_counter =", self.done_counter)

226

227 else:

228 self.done = False

229

230 print("\nReward: ", self.reward)

231

232 self.info = np.array([self.diff_x, self.diff_y, self.diff_z])

233

234 return self.reward, self.done, self.info

235

236 def step(self,action):

237

238 self.pause()

239 self.q_cmd = JointTrajectory()

240 self.q_cmd.joint_names = [’ur5_arm_shoulder_pan_joint’, ’

ur5_arm_shoulder_lift_joint’, ’ur5_arm_elbow_joint’, ’

ur5_arm_wrist_1_joint’, ’ur5_arm_wrist_2_joint’, ’

ur5_arm_wrist_3_joint’]

112

241 self.point = JointTrajectoryPoint()

242

243 self.action = action

244 print("\nAction: ", self.action)

245

246 # P: Ki and D: Di

247 self.Ki = np.diag(np.append(np.array(action), [1000, 1000,

1000]))

248 self.Di = self.eps*self.Ki

249

250 # Get measured joint position and velocity

251 self.q_m = np.array(self.jointstate.position)

252 self.q_m_r = self.q_m.reshape((-1,1))

253 self.qdot_m = np.array(self.jointstate.velocity)

254 self.qdot_m_r = self.qdot_m.reshape((-1,1))

255 self.Te = np.array(self.robot.fkine(self.q_m))

256

257 # Measured and Desired

258 self.x_m = 100*np.array([self.Te[0][3],self.Te[1][3],self.Te

[2][3],0,0,0]).reshape((-1,1))

259 self.x_d = self.x_d.reshape((-1,1))

260

261 self.J = self.robot.jacob0(self.q_m) # Jacobian matrix

262

263 # Measured end-effector Velocity

264 self.xdot_m = np.matmul(self.J,self.qdot_m_r)

265 self.xdot_m = self.xdot_m

266

267 # Impedance Control

268 self.xdm = self.x_d - self.x_m

113

269 self.W_e = np.matmul(self.Ki, self.xdm) - np.matmul(self.Di,

self.xdot_m)

270

271 # Admittance control

272 self.a = np.matmul(self.Ka, -self.xdm) + np.matmul(self.Da, self

.xdot_m)

273 self.b = self.W_e - self.a

274 self.xddot_ac = np.matmul(np.linalg.inv(self.Md_a), self.b)

275

276 # Acceleration to Position

277 self.x_c = self.xdot_m*self.t + self.xddot_ac*(self.t**2)

278 self.x_c = 0.01*np.reshape(self.x_c, 6)

279 self.x_c = np.clip(self.x_c, np.array

([-0.5,-0.5,-0.5,-0.5,-0.5,-0.5]), np.array

([0.5,0.5,0.5,0.5,0.5,0.5]))

280

281 self.x_c[0] += self.Te[0][3]

282 self.x_c[1] += self.Te[1][3]

283 self.x_c[2] += self.Te[2][3]

284

285 self.x_cliped = np.clip(self.x_c, self.min_x, self.max_x)

286 print("\nx_cliped: ", self.x_cliped)

287

288 self.og_Te[0][3] = self.x_cliped[0]

289 self.og_Te[1][3] = self.x_cliped[1]

290 self.og_Te[2][3] = self.x_cliped[2]

291

292 # Calculate joint positions

293 self.sol = self.robot.ikine_LM(SE3(self.og_Te), q0 = self.q0)

294 self.point.positions = self.sol.q

295

114

296 # Publish UR5 velocity and position

297 self.unpause()

298 self.point.time_from_start = rospy.Duration(self.t)

299 self.q_cmd.points.append(self.point)

300 self.ur_cmd.publish(self.q_cmd)

301 time.sleep(0.5)

302 # time.sleep(1.5)

303 self.pause()

304

305 self.new_obs = self.get_observation()

306 self.reward, self.done, self.info = self.calculate_reward(self.

new_obs)

307

308 # self.info = None

309

310 return self.new_obs, self.reward, self.done, self.info

Listing 4: Variable PD Reaching Environment

115

Appendix E Variable PD Lifting Environment

1 #!/usr/bin/env python

2

3 # Gazebo Imports

4 import rospy

5 import rospkg

6 from gazebo_msgs.msg import ModelState

7 from gazebo_msgs.srv import SetModelState , GetModelState , GetLinkState ,

SetLinkProperties

8 import control_msgs.msg

9 import actionlib

10 from trajectory_msgs.msg import *

11 from sensor_msgs.msg import JointState

12 from trajectory_msgs.msg import JointTrajectory

13 from trajectory_msgs.msg import JointTrajectoryPoint

14 from geometry_msgs.msg import WrenchStamped , Pose

15 from std_srvs.srv import Empty

16

17 import numpy as np

18 import gymnasium as gym

19 import sys

20 import torch

21 import time

22

23 # Robotics toolbox -python imports for kinematics and dynamics of ur5

24 import roboticstoolbox as rtb

25 from spatialmath import SE3

26

27 class UR_PD_LIFT():

28

116

29 def __init__(self):

30

31 rospy.init_node(’ROBO_ENV’, anonymous = True) # Initializing node

32

33 self.jointstate = JointState()

34 self.modelstate = ModelState()

35 self.com = Pose()

36 self.q_cmd = JointTrajectory()

37 self.q_cmd.joint_names = [’ur5_arm_shoulder_pan_joint’, ’

ur5_arm_shoulder_lift_joint’, ’ur5_arm_elbow_joint’, ’

ur5_arm_wrist_1_joint’, ’ur5_arm_wrist_2_joint’, ’

ur5_arm_wrist_3_joint’]

38 self.point = JointTrajectoryPoint()

39

40 self.cube_name = ’cube1’

41 self.cube_relative_entity_name = ’link’

42 self.link_name = ’robot::left_inner_finger’

43 self.robot = rtb.models.UR5() # Load UR5

44 self.robot_dh = rtb.models.DH.UR5()

45

46 # Gazebo Services

47 self.model_coordinates = rospy.ServiceProxy(’/gazebo/

get_model_state’, GetModelState)

48 self.link_coordinates = rospy.ServiceProxy(’/gazebo/

get_link_state’, GetLinkState)

49 self.set_state = rospy.ServiceProxy(’/gazebo/set_model_state’,

SetModelState)

50 self.link_properties = rospy.ServiceProxy(’/gazebo/

set_link_properties’, SetLinkProperties)

51 self.unpause = rospy.ServiceProxy(’/gazebo/unpause_physics’,

Empty)

117

52 self.pause = rospy.ServiceProxy(’/gazebo/pause_physics’, Empty)

53

54 # Publisher and Subscriber

55 self.ur_cmd = rospy.Publisher(’/arm_controller/command’,

JointTrajectory , queue_size = 1)

56 self.ur_jointstate = rospy.Subscriber(’/joint_states’,

JointState , self.ur5_joint_callback)

57 self.gripper_client = actionlib.SimpleActionClient(’/

gripper_controller/gripper_cmd’, control_msgs.msg.

GripperCommandAction)

58 self.ft_sensor = rospy.Subscriber(’/ft_sensor/raw’,

WrenchStamped , self.ft_sensor_callback)

59 self.goal = control_msgs.msg.GripperCommandGoal()

60

61 # Limits of end-effector position

62 self.max = np.array([0.60, 0.22, 0.50, 0, 0, 0])#30])

63 self.min = np.array([0.29, -0.22, 0.22, 0, 0, 0])#188])

64 self.max_x = torch.tensor(self.max, dtype = torch.float32,

device = torch.device("cpu"))

65 self.min_x = torch.tensor(self.min, dtype = torch.float32,

device = torch.device("cpu"))

66

67 # Action space = [x,y,z]

68 self.action_space = gym.spaces.Box(low = np.array([-60,-60,-60])

, high = np.array([60,60,60]), dtype= np.float32)

69 self.max_action = self.action_space.high

70 self.min_action = self.action_space.low

71

72 # Observation Space = [x,y,z,goal.x,goal.y,goal.z]

73 self.observation_space = gym.spaces.Box(low = np.array([29, -22,

22, 29, -22, 70]), high = np.array([70, 22, 95, 70, 22, 95]), dtype

118

=np.float32)

74

75 #self.cuda0 = torch.device(’cuda:0’)

76

77 self.reward = 0

78 self.prev_reward = 0

79 self.prev_distToGoal = 0

80 self.distToGoal = 0

81 self.done_counter = 0

82 self.eps = 10#0.75

83 self.Ka = 1*np.identity(6)

84 self.Da = self.eps*self.Ka

85 self.Md_a = 3*np.identity(6)

86 self.t = 0.2

87 self.gravity_acc = np.array([0,0,9.81,0,0,0]).reshape((-1,1))

88

89 # Desired Velocity and Acceleration

90 self.xdot_d = np.zeros(6,).reshape((-1,1))

91 self.xddot_d = np.zeros(6,).reshape((-1,1))

92

93

94 def ur5_joint_callback(self, data):

95

96 self.jointstate = data

97

98 def ft_sensor_callback(self,data):

99

100 self.ft_data = data

101

102 def get_observation(self):

103

119

104 self.q0 = self.jointstate.position

105

106 # Cube Coordinates

107 self.inner_finger_coord = self.link_coordinates(self.link_name ,

’world’)

108 self.tcp_x = self.inner_finger_coord.link_state.pose.position.x

- 0.0681975

109 self.tcp_y = self.inner_finger_coord.link_state.pose.position.y

110 self.tcp_z = self.inner_finger_coord.link_state.pose.position.z

111 self.tcp_coord = np.array([100*self.tcp_x, 100*self.tcp_y, 100*

self.tcp_z])

112 print("\nTCP Coordinates: ", self.tcp_coord)

113

114 # Creating observation array

115 self.obs = np.array([])

116 self.obs = np.append(self.obs, self.tcp_coord)

117 self.obs = np.append(self.obs, self.x_goal)

118

119 return self.obs

120

121

122 def reset(self):

123

124 self.q_cmd1 = JointTrajectory()

125 self.q_cmd1.joint_names = [’ur5_arm_shoulder_pan_joint’, ’

ur5_arm_shoulder_lift_joint’, ’ur5_arm_elbow_joint’, ’

ur5_arm_wrist_1_joint’, ’ur5_arm_wrist_2_joint’, ’

ur5_arm_wrist_3_joint’]

126 self.point1 = JointTrajectoryPoint()

127 self.point2 = JointTrajectoryPoint()

128 self.q = [0.0,-1.57,1.57,-1.57,-1.57,1.57]

120

129

130 self.goal_x = 45

131 self.goal_y = 11 #np.random.uniform(-22, 22)

132 self.goal_z = 88 #np.random.uniform(45, 89)

133 self.x_goal = np.array([self.goal_x, self.goal_y, self.goal_z])

134 self.x_d = np.array([self.goal_x, self.goal_y, self.goal_z, 0,

0, 0])

135

136 # Release the cube

137 self.unpause()

138 self.gripper_status = 0

139 self.gripper_client.wait_for_server()

140 self.goal.command.position = self.gripper_status

141 self.goal.command.max_effort = -1.0 # Do not limit the effort

142 self.gripper_client.send_goal(self.goal)

143 self.gripper_client.wait_for_result()

144 time.sleep(1.0)

145 self.pause()

146

147 # Randomize mass of cube and set link properties

148 self.mass = np.random.uniform(1,2.5)

149 print("\nmass: ",self.mass)

150 self.inertia = (1/12)*self.mass*(0.05**2+0.5**2)

151 self.gravity_mode = True

152 self.com.position.x = 0.0

153 self.com.position.y = 0.0

154 self.com.position.z = 0.0

155 self.com.orientation.x = 0.0

156 self.com.orientation.y = 0.0

157 self.com.orientation.z = 0.0

158 self.com.orientation.w = 0.0

121

159 self.ixx = self.inertia

160 self.ixy = 0

161 self.ixz = 0

162 self.iyy = self.inertia

163 self.iyz = 0

164 self.izz = self.inertia

165

166 rospy.wait_for_service(’/gazebo/set_link_properties’)

167

168 try:

169 # self.unpause()

170 self.resp1 = self.link_properties(’cube1::link’, self.com,

self.gravity_mode , self.mass, self.ixx, self.ixy, self.ixz, self.iyy

, self.iyz, self.izz)

171 time.sleep(0.3)

172 # self.pause()

173

174 except rospy.ServiceException as e:

175 print ("Service call failed: %s" % e)

176

177 # Randomize x and y location of cube

178 self.cube_x = np.random.uniform(0.3,0.6)

179 self.cube_y = np.random.uniform(-0.22,0.22)

180 self.modelstate.model_name = ’cube1’

181 self.modelstate.pose.position.x = self.cube_x

182 self.modelstate.pose.position.y = self.cube_y

183 self.modelstate.pose.position.z = 0.6

184 self.modelstate.pose.orientation.x = 0

185 self.modelstate.pose.orientation.y = 0

186 self.modelstate.pose.orientation.z = 0

187 self.modelstate.pose.orientation.w = 0

122

188 self.unpause()

189 rospy.wait_for_service(’/gazebo/set_model_state’)

190

191 try:

192 self.resp = self.set_state(self.modelstate)

193 # time.sleep(0.3)

194 time.sleep(0.6)

195

196 except rospy.ServiceException as e:

197 print ("Service call failed: %s" % e)

198

199 self.pause()

200

201 # UR5 reset position

202 self.q_dot_cmd = [0.0,0.0,0.0,0.0,0.0,0.0]

203 self.og_Te = np.array(self.robot.fkine(np.array

([0.0,-1.57,1.57,-1.57,-1.57,1.57])))

204 self.sol1 = self.robot.ikine_LM(SE3(self.og_Te), q0 = self.q)

205 self.point1.positions = self.sol1.q

206 self.point1.velocities = -3*self.q_dot_cmd

207 self.point1.time_from_start = rospy.Duration(1)

208 self.q_cmd1.points.append(self.point1)

209

210 # Move UR5 gripper to where the cube is

211 self.ur_x = self.cube_x

212 self.ur_y = self.cube_y

213 self.og_Te[0][3] = self.ur_x

214 self.og_Te[1][3] = self.ur_y

215 self.og_Te[2][3] = 0.215

216 self.sol2 = self.robot.ikine_LM(SE3(self.og_Te), q0 = self.sol1.

q)

123

217 self.point2.positions = self.sol2.q

218

219 # Publish UR5 velocity and position

220 self.point2.velocities = -3*self.q_dot_cmd

221 self.point2.time_from_start = rospy.Duration(2)

222 self.q_cmd1.points.append(self.point2)

223 self.unpause()

224 self.ur_cmd.publish(self.q_cmd1)

225 time.sleep(1)

226 # time.sleep(2)

227

228 # Grasp the object

229 self.gripper_status = 0.8

230 self.gripper_client.wait_for_server()

231 self.goal.command.position = self.gripper_status

232 self.goal.command.max_effort = -1.0 # Do not limit the effort

233 self.gripper_client.send_goal(self.goal)

234 time.sleep(1.5)

235

236 self.obs = self.get_observation()

237 self.reward = 0

238 self.prev_reward = 0

239 self.stage = 0

240 self.pause()

241

242 return self.obs

243

244 def calculate_reward(self, new_obs):

245

246 self.reward = 0

247 self.new_obs = new_obs

124

248 self.new_x0 = self.new_obs[0:3]

249 self.x_goal = self.new_obs[-3:]

250 print("\nx_goal: ", self.x_goal)

251

252 self.diff_x = self.new_x0[0] - self.x_goal[0]

253 self.diff_y = self.new_x0[1] - self.x_goal[1]

254 self.diff_z = self.new_x0[2] - self.x_goal[2]

255

256 self.distToGoal = np.linalg.norm(self.x_goal - self.new_x0)

257 print("\nDist to goal = ", self.distToGoal)

258 self.reward = -self.distToGoal

259

260 if self.distToGoal <= 3.5:

261 self.reward += 2000#1000

262 if np.linalg.norm(self.new_x0[0] - self.x_goal[0]) < 1:

263 self.reward += 200

264 if np.linalg.norm(self.new_x0[1] - self.x_goal[1]) < 1:

265 self.reward += 200

266 self.done = True

267 self.done_counter +=1

268 print("\ndone_counter =", self.done_counter)

269

270 else:

271 self.done = False

272

273 print("\nReward: ", self.reward)

274

275 self.info = np.array([self.diff_x, self.diff_y, self.diff_z])

276

277 return self.reward, self.done, self.info

278

125

279 def step(self,action):

280

281 self.pause()

282 self.q_cmd = JointTrajectory()

283 self.q_cmd.joint_names = [’ur5_arm_shoulder_pan_joint’, ’

ur5_arm_shoulder_lift_joint’, ’ur5_arm_elbow_joint’, ’

ur5_arm_wrist_1_joint’, ’ur5_arm_wrist_2_joint’, ’

ur5_arm_wrist_3_joint’]

284 self.point = JointTrajectoryPoint()

285

286 self.action = action

287 print("\nAction: ", self.action)

288

289 # Impedance Stiffness and Damping

290 self.Ki = np.diag(np.append(np.array(action), [1000, 1000,

1000]))

291 self.Di = self.eps*self.Ki

292

293 # Get measured joint position and velocity

294 self.q_m = np.array(self.jointstate.position)

295 self.q_m_r = self.q_m.reshape((-1,1))

296 self.qdot_m = np.array(self.jointstate.velocity)

297 self.qdot_m_r = self.qdot_m.reshape((-1,1))

298 self.Te = np.array(self.robot.fkine(self.q_m))

299

300 # Measured and Desired

301 self.x_m = 100*np.array([self.Te[0][3],self.Te[1][3],self.Te

[2][3]+0.445,0,0,0]).reshape((-1,1))

302 self.x_d = self.x_d.reshape((-1,1))

303

304 self.J = self.robot.jacob0(self.q_m) # Jacobian matrix

126

305

306 # Measured end-effector Velocity

307 self.xdot_m = np.matmul(self.J,self.qdot_m_r)

308 self.xdot_m = self.xdot_m

309

310 # Actual and Desired Task Space Dynamics

311 self.lambda_x = self.robot_dh.inertia_x(self.q_m) # Inertia Matrix

312 self.mu_x = self.robot.coriolis_x(q = self.q_m[0:], qd = self.

qdot_m[0:], Mx = self.lambda_x) #

Coriolis

313 self.gamma_x = self.robot.gravload_x(q = self.q_m).reshape

((-1,1)) #

Gravity

314

315 # Impedance Control

316 self.xdm = self.x_d - self.x_m

317 print("\nxdm: ", self.xdm)

318 self.W_e = np.matmul(self.Ki, self.xdm) - np.matmul(self.Di,

self.xdot_m)

319 print("\nW_e: ",self.W_e)

320

321 # Admittance control

322 self.a = np.matmul(self.Ka, self.xdm) + np.matmul(self.Da, self.

xdot_m)

323 self.mm4 = self.mass*self.gravity_acc

324 self.b = self.W_e - self.mm4 - self.a

325 self.xddot_ac = np.matmul(np.linalg.inv(self.Md_a), self.b)

326

327

328 # Acceleration to Position

329 self.x_c = self.xdot_m*self.t + self.xddot_ac*(self.t**2)

330 self.x_c = 0.01*np.reshape(self.x_c, 6)

127

331 self.x_c = np.clip(self.x_c, np.array

([-0.2,-0.2,-0.2,-0.2,-0.2,-0.2]), np.array

([0.2,0.2,0.2,0.2,0.2,0.2]))

332

333 self.x_c[0] += self.Te[0][3]

334 self.x_c[1] += self.Te[1][3]

335 self.x_c[2] += self.Te[2][3]

336

337 self.x_cliped = np.clip(self.x_c, self.min_x, self.max_x)

338 print("\nx_cliped: ", self.x_cliped)

339

340 self.og_Te[0][3] = self.x_cliped[0]

341 self.og_Te[1][3] = self.x_cliped[1]

342 self.og_Te[2][3] = self.x_cliped[2]

343

344 # Calculate joint positions

345 self.sol = self.robot.ikine_LM(SE3(self.og_Te), q0 = self.q0)

346 self.point.positions = self.sol.q

347

348 # Publish UR5 velocity and position

349 self.unpause()

350 self.point.time_from_start = rospy.Duration(self.t)

351 self.q_cmd.points.append(self.point)

352 self.ur_cmd.publish(self.q_cmd)

353 time.sleep(0.5)

354 # time.sleep(1.5)

355 self.pause()

356

357 self.new_obs = self.get_observation()

358 self.reward, self.done, self.info = self.calculate_reward(self.

new_obs)

128

359

360 # self.info = None

361

362 return self.new_obs, self.reward, self.done, self.info

Listing 5: Variable PD Lifting Environment

129

Appendix F Fixed Impedance Lifting Environment

1

2 #!/usr/bin/env python

3

4 import numpy as np

5

6 # Torch imports

7 from torch.utils.tensorboard import SummaryWriter

8

9 # Robot and task space import

10 from ur_imp_lift import UR_IMP_LIFT

11 from ur_imp_reach import UR_IMP_REACH

12

13 #Select Env and comment the other

14 env = UR_IMP_LIFT()

15 env = UR_IMP_REACH()

16 max_eps = 450

17 max_steps = 50

18 total_timesteps = 0

19

20 writer = SummaryWriter(comment="TD3_FixdIMP_reach_4.8")

21

22 for eps in range(max_eps):

23

24 state = env.reset()

25 episode_reward = 0

26 rewards = []

27 done = False

28

29 for step in range(max_steps):

130

30 # while not done:

31 action = np.array([4.8, 4.8, 4.8])

32 next_state , reward, done, info = env.step(action)

33 total_timesteps += 1

34 episode_reward += reward

35 state=next_state

36 writer.add_scalar("reward_step", reward, total_timesteps)

37

38 if done:

39 break

40

41 rewards.append(episode_reward)

42 avg_reward = np.mean(rewards[-100:])

43 print("\nAvg_reward = ", avg_reward)

44 writer.add_scalar("avg_reward", avg_reward , total_timesteps)

45 writer.add_scalar("episode_reward", episode_reward , eps)

46 writer.add_scalar("Difference in x", info[0], eps)

47 writer.add_scalar("Difference in y", info[1], eps)

48 writer.add_scalar("Difference in z", info[2], eps)

49

50 print(’Episode: ’, eps, ’| Episode Reward: ’, episode_reward)

Listing 6: Fixed Impedance Lifting Environment

131

Bibliography

[1] Hybrid position/force control, velocity projection, and passivity. IFAC Proceedings
Volumes, 30(20):325–331, 1997. 5th IFAC Symposium on Robot Control 1997 (SY-
ROCO ’97), Nantes, France, 3-5 September.

[2] Fares J. Abu-Dakka, Leonel Rozo, and Darwin G. Caldwell. Force-based learning of
variable impedance skills for robotic manipulation. In 2018 IEEE-RAS 18th Interna-
tional Conference on Humanoid Robots (Humanoids), pages 1–9, 2018.

[3] Fares J. Abu-Dakka and Matteo Saveriano. Variable impedance control and learn-
ing—a review. Frontiers in Robotics and AI, 7, 2020.

[4] A. Albu-Schaffer and G. Hirzinger. Cartesian impedance control techniques for torque
controlled light-weight robots. In Proceedings 2002 IEEE International Conference
on Robotics and Automation (Cat. No.02CH37292), volume 1, pages 657–663 vol.1,
2002.

[5] Akhil S. Anand, Rituraj Kaushik, Jan Tommy Gravdahl, and Fares J. Abu-Dakka.
Data-efficient reinforcement learning for variable impedance control. IEEE Access,
12:15631–15641, 2024.

[6] Rika Antonova, Silvia Cruciani, Christian Smith, and Danica Kragic. Reinforcement
learning for pivoting task. 03 2017.

[7] Kai Arulkumaran, Marc Peter Deisenroth, Miles Brundage, and Anil Anthony
Bharath. Deep reinforcement learning: A brief survey. IEEE Signal Processing Mag-
azine, 34(6):26–38, 2017.

[8] Aude Billard and Danica Kragic. Trends and challenges in robot manipulation. Sci-
ence, 364(6446):eaat8414, 2019.

[9] Jonathan Bohren, Radu Bogdan Rusu, E. Gil Jones, Eitan Marder-Eppstein, Caroline
Pantofaru, Melonee Wise, Lorenz Mösenlechner, Wim Meeussen, and Stefan Holzer.
Towards autonomous robotic butlers: Lessons learned with the pr2. In 2011 IEEE
International Conference on Robotics and Automation, pages 5568–5575, 2011.

132

[10] Jonas Buchli, Evangelos Theodorou, Freek Stulp, and Stefan Schaal. Variable
impedance control a reinforcement learning approach. 07 2010.

[11] Fabrizio Caccavale, Pasquale Chiacchio, Alessandro Marino, and Luigi Villani. Six-
dof impedance control of dual-arm cooperative manipulators. IEEE/ASME Transac-
tions on Mechatronics, 13(5):576–586, 2008.

[12] Chien-Chern Cheah and Danwei Wang. Learning impedance control for robotic ma-
nipulators. IEEE Transactions on Robotics and Automation, 14(3):452–465, 1998.

[13] Adam Coates and Andrew Y. Ng. Multi-camera object detection for robotics. In 2010
IEEE International Conference on Robotics and Automation, pages 412–419, 2010.

[14] J.J. Craig and M.H. Raibert. A systematic method of hybrid position/force control
of a manipulator. In COMPSAC 79. Proceedings. Computer Software and The IEEE
Computer Society’s Third International Applications Conference, 1979., pages 446–
451, 1979.

[15] Zihan Ding. Popular-rl-algorithms. https://github.com/quantumiracle/

Popular-RL-Algorithms, 2019.

[16] Neel Doshi, Orion Taylor, and Alberto Rodriguez. Manipulation of unknown objects
via contact configuration regulation. In 2022 International Conference on Robotics
and Automation (ICRA), pages 2693–2699, 2022.

[17] Thomas Eiband, Matteo Saveriano, and Dongheui Lee. Learning haptic exploration
schemes for adaptive task execution. In 2019 International Conference on Robotics
and Automation (ICRA), pages 7048–7054, 2019.

[18] Eric L. Faulring, Kevin M. Lynch, J. Edward Colgate, and Michael A. Peshkin. Haptic
display of constrained dynamic systems via admittance displays. IEEE Transactions
on Robotics, 23(1):101–111, 2007.

[19] Scott Fujimoto, Herke van Hoof, and David Meger. Addressing function approxima-
tion error in actor-critic methods, 2018.

[20] Ali Ghadirzadeh, Atsuto Maki, Danica Kragic, and Mårten Björkman. Deep predic-
tive policy training using reinforcement learning. In 2017 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pages 2351–2358, 2017.

[21] Michael A. Goodrich and Alan C. Schultz. 2008.

[22] Stavros Grafakos, Fotios Dimeas, and Nikos Aspragathos. Variable admittance con-
trol in phri using emg-based arm muscles co-activation. In 2016 IEEE International
Conference on Systems, Man, and Cybernetics (SMC), pages 001900–001905, 2016.

133

https://github.com/quantumiracle/Popular-RL-Algorithms
https://github.com/quantumiracle/Popular-RL-Algorithms

[23] B. Heinrichs, N. Sepehri, and A.B. Thornton-Trump. Position-based impedance
control of an industrial hydraulic manipulator. IEEE Control Systems Magazine,
17(1):46–52, 1997.

[24] Neville Hogan. Impedance control: An approach to manipulation. In 1984 American
Control Conference, pages 304–313, 1984.

[25] Guanhua Hu, Qingjiu Huang, and Takuya Hanafusa. Hybrid position/force control
with virtual impedance model of robot manipulators. In Journal of Physics: Confer-
ence Series, volume 1601, page 062014. IOP Publishing, 2020.

[26] R. Ikeura, T. Moriguchi, and K. Mizutani. Optimal variable impedance control
for a robot and its application to lifting an object with a human. In Proceedings.
11th IEEE International Workshop on Robot and Human Interactive Communication,
pages 500–505, 2002.

[27] Alireza Izadbakhsh and Saeed Khorashadizadeh. Robust impedance control of robot
manipulators using differential equations as universal approximator. International
Journal of Control, 91(10):2170–2186, 2018.

[28] Leslie Pack Kaelbling, Michael L Littman, and Andrew W Moore. Reinforcement
learning: A survey. Journal of artificial intelligence research, 4:237–285, 1996.

[29] Gitae Kang, Hyun Seok Oh, Joon Kyue Seo, Uikyum Kim, and Hyouk Ryeol
Choi. Variable admittance control of robot manipulators based on human intention.
IEEE/ASME Transactions on Mechatronics, 24(3):1023–1032, 2019.

[30] Parham M. Kebria, Saba Al-wais, Hamid Abdi, and Saeid Nahavandi. Kinematic and
dynamic modelling of ur5 manipulator. In 2016 IEEE International Conference on
Systems, Man, and Cybernetics (SMC), pages 004229–004234, 2016.

[31] Arvid QL Keemink, Herman van der Kooij, and Arno HA Stienen. Admittance con-
trol for physical human–robot interaction. The International Journal of Robotics Re-
search, 37(11):1421–1444, 2018.

[32] Vijay Konda and John Tsitsiklis. Actor-critic algorithms. Advances in neural infor-
mation processing systems, 12, 1999.

[33] P Lammertse. Admittance control and impedance control-a dual. FCS Control Sys-
tems, 13, 2004.

[34] Vincenzo Lippiello, Bruno Siciliano, and Luigi Villani. A position-based visual
impedance control for robot manipulators. In Proceedings 2007 IEEE International
Conference on Robotics and Automation, pages 2068–2073, 2007.

134

[35] Jianlan Luo, Eugen Solowjow, Chengtao Wen, Juan Aparicio Ojea, Alice M.
Agogino, Aviv Tamar, and Pieter Abbeel. Reinforcement learning on variable
impedance controller for high-precision robotic assembly, 2019.

[36] Shan Luo, Joao Bimbo, Ravinder Dahiya, and Hongbin Liu. Robotic tactile percep-
tion of object properties: A review. Mechatronics, 48:54–67, 2017.

[37] Rosasco L. Maiettini E., Pasquale G. and Natale L. On-line object detection: a
robotics challenge. Autonomous Robots, 44:739–757, 2020.

[38] J Maples and Joseph Becker. Experiments in force control of robotic manipulators.
In Proceedings. 1986 IEEE International Conference on Robotics and Automation,
volume 3, pages 695–702. IEEE, 1986.

[39] Roberto Martı́n-Martı́n, Michelle A. Lee, Rachel Gardner, Silvio Savarese, Jeannette
Bohg, and Animesh Garg. Variable impedance control in end-effector space: An
action space for reinforcement learning in contact-rich tasks. In 2019 IEEE/RSJ In-
ternational Conference on Intelligent Robots and Systems (IROS), pages 1010–1017,
2019.

[40] Allison M. Okamura and Mark R. Cutkosky. Feature detection for haptic exploration
with robotic fingers. The International Journal of Robotics Research, 20(12):925–
938, 2001.

[41] M. H. Raibert and J. J. Craig. Hybrid Position/Force Control of Manipulators. Journal
of Dynamic Systems, Measurement, and Control, 103(2):126–133, 06 1981.

[42] Maurizio Valle Ravinder S. Dahiya. Robotic Tactile Sensing. Springer Dordrecht,
2012.

[43] Mario Richtsfeld and Markus Vincze. Grasping of unknown objects from a table top.
In Workshop on Vision in Action: Efficient strategies for cognitive agents in complex
environments, Marseille, France, October 2008. Markus Vincze and Danica Kragic
and Darius Burschka and Antonis Argyros.

[44] Rocco A. Romeo and Loredana Zollo. Methods and sensors for slip detection in
robotics: A survey. IEEE Access, 8:73027–73050, 2020.

[45] Leonel Rozo, Sylvain Calinon, Darwin Caldwell, Pablo Jimenez, and Carme Torras.
Learning collaborative impedance-based robot behaviors. 07 2013.

[46] Behzad Sadrfaridpour, Maziar Fooladi Mahani, Zhanrui Liao, and Yue Wang. Trust-
based impedance control strategy for human-robot cooperative manipulation. page
V001T04A015, 09 2018.

135

[47] S.A. Schneider and R.H. Cannon. Object impedance control for cooperative manipu-
lation: theory and experimental results. IEEE Transactions on Robotics and Automa-
tion, 8(3):383–394, 1992.

[48] Jian Shi, J. Zachary Woodruff, Paul B. Umbanhowar, and Kevin M. Lynch. Dynamic
in-hand sliding manipulation. IEEE Transactions on Robotics, 33(4):778–795, 2017.

[49] Bruno Siciliano and Luigi Villani. An inverse kinematics algorithm for interaction
control of a flexible arm with a compliant surface. Control Engineering Practice,
9(2):191–198, 2001.

[50] David Silver, Guy Lever, Nicolas Heess, Thomas Degris, Daan Wierstra, and Martin
Riedmiller. Deterministic policy gradient algorithms. In International conference on
machine learning, pages 387–395. Pmlr, 2014.

[51] Mark W Spong, Frank L Lewis, and Chaouki T Abdallah. Robot control: dynamics,
motion planning, and analysis. IEEE press, 1992.

[52] Alexander L. Strehl, Lihong Li, Eric Wiewiora, John Langford, and Michael L.
Littman. Pac model-free reinforcement learning. In Proceedings of the 23rd In-
ternational Conference on Machine Learning, ICML ’06, page 881–888, New York,
NY, USA, 2006. Association for Computing Machinery.

[53] Taisuke Sugaiwa, Genki Fujii, Hiroyasu Iwata, and Shigeki Sugano. A methodology
for setting grasping force for picking up an object with unknown weight, friction, and
stiffness. In 2010 10th IEEE-RAS International Conference on Humanoid Robots,
pages 288–293, 2010.

[54] Sonny Tarbouriech, Benjamin Navarro, Philippe Fraisse, André Crosnier, Andrea
Cherubini, and Damien Sallé. Admittance control for collaborative dual-arm ma-
nipulation. In 2019 19th International Conference on Advanced Robotics (ICAR),
pages 198–204, 2019.

[55] Dzmitry Tsetserukou, Naoki Kawakami, and Susumu Tachi. isora: Humanoid robot
arm for intelligent haptic interaction with the environment. Advanced Robotics,
23:1327–1358, 01 2009.

[56] Luigi Villani and Joris De Schutter. Force Control, pages 195–220. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2016.

[57] Yanjun Wang. Impedance control without force sensors with application in homecare
robotics. PhD thesis, University of British Columbia, 2014.

[58] Yangsheng Xu, Richard P. Paul, and Peter I. Corke. Hybrid position force control
of robot manipulator with an instrumented compliant wrist. In Vincent Hayward and
Oussama Khatib, editors, Experimental Robotics I, pages 244–270, Berlin, Heidel-
berg, 1990. Springer Berlin Heidelberg.

136

[59] Chenguang Yang, Guangzhu Peng, Yanan Li, Rongxin Cui, Long Cheng, and
Zhijun Li. Neural networks enhanced adaptive admittance control of optimized
robot–environment interaction. IEEE Transactions on Cybernetics, 49(7):2568–2579,
2019.

[60] T. Yoshikawa. Dynamic hybrid position/force control of robot manipulators–
description of hand constraints and calculation of joint driving force. IEEE Journal
on Robotics and Automation, 3(5):386–392, 1987.

[61] T. Yoshikawa and A. Sudou. Dynamic hybrid position/force control of robot
manipulators-on-line estimation of unknown constraint. IEEE Transactions on
Robotics and Automation, 9(2):220–226, 1993.

[62] T. Yoshikawa, T. Sugie, and M. Tanaka. Dynamic hybrid position/force control of
robot manipulators-controller design and experiment. IEEE Journal on Robotics and
Automation, 4(6):699–705, 1988.

[63] Ganwen Zeng and Ahmad Hemami. An overview of robot force control. Robotica,
15(5):473–482, 1997.

137

	Deep Reinforcement Learning of Variable Impedance Control for Object-Picking Tasks
	Recommended Citation

	Title Page
	Abstract
	Dedication
	Acknowledgments
	List of Tables
	List of Figures
	Introduction
	Manipulator Object-Picking Task
	Impedance Control
	Admittance Control
	Deep Reinforcement Learning

	Problem Statement
	Variable Impedance Control for Object-Picking Task
	Admittance Controller for Object-Picking Task
	Twin-Delayed Deep Deterministic Policy Gradient (TD3)

	Control Framework for Object-Picking Task
	Manipulator Control Laws for Approaching and Lifting Phases
	Simplification and Assumptions for Deep Reinforcement Learning
	Reward Function
	Training Using TD3

	Simulations
	Simulation Setup and Parameters
	Deep Reinforcement Learning Setupand Parameters

	Results
	Approach Phase
	Lifting Phase
	Comparison Study

	Conclusion
	Appendices
	TD3 Script
	Variable Impedance Reaching Environment
	Variable Impedance Lifting Environment
	Variable PD Reaching Environment
	Variable PD Lifting Environment
	Fixed Impedance Lifting Environment

	Bibliography

