
Clemson University Clemson University

TigerPrints TigerPrints

All Theses Theses

5-2024

A Post-Quantum Mercurial Signature Scheme A Post-Quantum Mercurial Signature Scheme

Madison Mabe
mnmabe@g.clemson.edu

Follow this and additional works at: https://tigerprints.clemson.edu/all_theses

 Part of the Algebra Commons

Recommended Citation Recommended Citation
Mabe, Madison, "A Post-Quantum Mercurial Signature Scheme" (2024). All Theses. 4275.
https://tigerprints.clemson.edu/all_theses/4275

This Thesis is brought to you for free and open access by the Theses at TigerPrints. It has been accepted for
inclusion in All Theses by an authorized administrator of TigerPrints. For more information, please contact
kokeefe@clemson.edu.

https://tigerprints.clemson.edu/
https://tigerprints.clemson.edu/all_theses
https://tigerprints.clemson.edu/theses
https://tigerprints.clemson.edu/all_theses?utm_source=tigerprints.clemson.edu%2Fall_theses%2F4275&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/175?utm_source=tigerprints.clemson.edu%2Fall_theses%2F4275&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_theses/4275?utm_source=tigerprints.clemson.edu%2Fall_theses%2F4275&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:kokeefe@clemson.edu

A Post-Quantum Mercurial Signature Scheme

A Master’s Project

Presented to

the Graduate School of

Clemson University

In Partial Fulfillment

of the Requirements for the Degree

Master’s in Mathematics

Mathematics

by

Madison Nicole Mabe

May 2024

Accepted by:

Dr. Ryann Cartor, Committee Chair

Dr. Felice Manganiello

Dr. Shuhong Gao

Dr. Rafael D’Oliveira

Abstract

This paper introduces the first post-quantum mercurial signature scheme. We also discuss

how this can be used to construct a credential scheme, as well as some practical applications for the

constructions.

ii

Dedication

I would like to dedicate this work to my family and friends who have supported me while

I have been at Clemson. Specifically, I would like to dedicate this work to my dad, my sister and

most importantly my mom. My mom always dreamed of going back to school to get her Masters

but had me and my sister and never did. She has been my biggest supporter, a listening ear, and a

shoulder to cry on when things have been rough. So mom, this one’s for you!

iii

Acknowledgments

I would like to start by thanking my advisor, Dr. Ryann Cartor. She took me on as a

student during the beginning of my second year and has taught me so much about not only math,

but about life and how to be a professional in the cryptography field. She has been gracious and

understanding during times of stress and has also pushed me to be the best I can be. I have had

the time of my life doing research with her and cannot wait to continue on in the future.

I would also like to thank my committee members, Dr. Felice Manganiello, Dr. Shuhong

Gao, and Dr. Rafael D’Oliveira for agreeing to be on my committee and for taking time out of their

busy schedule to review my paper and presentation.

Finally, I would like to thank all of my friends who have supported me and encouraged

me during this crazy time of my life. I would like to especially thank those who are also graduate

students who have been there through the ups and downs of the reality of grad student life. Their

support has meant everything to me.

iv

Table of Contents

Title Page . i

Abstract . ii

Dedication . iii

Acknowledgments . iv

List of Tables . vii

List of Figures . viii

1 Introduction . 1
1.1 Why Study Cryptography? . 1
1.2 Why Look at Mercurial Signatures? . 2
1.3 Brief Overview . 2

2 Background . 4
2.1 Anonymous Credentials . 4
2.2 Relevant Multivariate Signature Schemes . 5
2.3 Example of UOV . 7

3 Mercurial Signatures and Delegatable Anonymous Credentials 8
3.1 Mercurial Signatures . 8
3.2 Delegatable Anonymous Credentials . 12
3.3 Example . 13

4 Post Quantum MS . 16
4.1 UOV∗-MS . 16
4.2 Delegatable Credential with Message-Origin Hiding 19
4.3 Parameters . 21

5 Conclusion and Future Work . 23
5.1 Efficiency . 23
5.2 Possibility to get rid of C∗ . 23
5.3 General Multivariate Cryptography - MAYO . 24

Appendices . 25
A Clemson ID Application for Semi-DAC . 26
B Possible Attacks . 28
C Voting Scheme Application for Semi-DAC . 29

v

Bibliography . 32

vi

List of Tables

4.3.1 This table shows public key, secret key, and signature size in bytes for a credential
with chain length 3 . 21

4.3.2 This table shows public key, secret key, and signature size in bytes for a credential
with chain length 4 . 21

4.3.3 This table shows public key, secret key, and signature size in bytes for a credential
with chain length 5 . 22

vii

List of Figures

A.1 This figure shows a visual representation of the multiple levels that our credential
chain for a CU ID passes through. 27

C.1 This figure shows a visual representation of the zero knowledge protocol scheme used
by the issuer and receiver when checking to see if the receiver is who they say they
are before sending a credential . 30

C.2 This figure shows a visual representation of the above voting scheme example and its
corresponding credential chain. 31

viii

Chapter 1

Introduction

1.1 Why Study Cryptography?

There have always been groups of people that wanted to securely send information back

and forth without the possibility for anyone else to see their messages. This has been especially

important in wars or even in letters that are sent between empires or countries. If a war general is

sending an attack strategy to his army on the battle field, he wants to encode his message somehow

just in case the opposing army gets a hold of the message. Some of these tactics first used like

shifting letters around (Shift Cipher) and shifting blocks around (Block Cipher) are what some first

think of when they think of Cryptography. Since then though, there has been a lot of development

in technology and thus, more security is needed [19].

The shift ciphers mentioned above are considered to be classical cryptographic schemes. As

mentioned, these shift ciphers are not secure and are easy to decipher computationally.

An example of a scheme that is still classically secure is RSA which was introduced in 1977

by by Ron Rivest, Adi Shamir and Leonard Adleman [16]. This scheme remains secure by relying

on the hardness of factoring large integers.

An algorithm was introduced by Peter Shor in 1994 that factors large numbers in polynomial

time [18]. This algorithm is based in quantum computing, but does require a large amount of qubits.

Peter Shor also introduced an algorithm to help solve the factoring in the Discrete Log Problem.

The pairing of widespread quantum computing and Shor’s algorithm would render classical public

key cryptography (based on discrete log and factoring) insecure.

1

A lot of cryptographic schemes are based on the hardness of these above problems. Some of

these schemes are classical, meaning they are secure with classical computing power. With the rise

in possibility for quantum computing, there has been a shift to study post-quantum cryptography

(PQC), instead. The hope is to create schemes whose security will be able to withstand that

computing power.

With this new interest in PQC, the National Institute of Standards and Technology (NIST)

put out a call for proposals1 of PQ-schemes that could be tested for security, and if found secure,

could be standardized for use. This call for proposals happened in 2016 with multiple rounds ever

since.

1.2 Why Look at Mercurial Signatures?

The concept of a Mercurial Signature was introduced by Elizabeth Crites and Anna Lysyan-

skaya in 2019 [8]. In this paper the authors also introduce a Mercurial Signature scheme whose

security relies on the hardness of the discrete log problem. This means the proposed scheme will be

vulnerable to Shor’s Algorithm on quantum computers. This proposed scheme creates a message-

signature pair, and with converters is able to convert both of the preexisting public and private

keys as well as change the representation of the current message-signature pair. There has yet to

be a quantum secure Mecurial signature scheme. So, there is a question of if there is some quantum

secure signature scheme that fits this defintion of a Mercurical Signature. If such a scheme exists,

there is also the question of whether it could still be used for a Delegatable Anonymous Credential,

leading to more applications. This paper will introduce the first quantum secure Mercurial Signature

scheme and its corresponding Delegatable Anonynous Credential.

1.3 Brief Overview

A signature scheme takes as input some message and a secret key into an algorithm, and

outputs some message-signature pair, this signature now being linked to this message.These con-

ventional signature schemes already allow delegatable credentials. A delegatable credential is a

credential that is able to be passed down from a root of authority to others in a chain also needing

1https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/

call-for-proposals

2

https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/call-for-proposals
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/call-for-proposals

said credential or other credentials added along the way. Each user in the chain can use their chain

of credentials to verify that the possess any credential in their chain. For example, consider Alice,

who has a public signing key pkA and a certification chain of length ℓ, can sign Bob’s public key

pkB , which gives Bob a certification chain of length ℓ + 1. So, Alice can verify that she has any

credentials in her chain of length ℓ, and Bob can verify any of those credentials as well as the new

credential that Alice gave to him [8].

The Mercurial Signature scheme also looks at anonymous credentials which allow a user to

prove possession of a set of credentials, issued by some trusted issuer or issuers, that allow access to

a resource. What makes these credentials anonymous is the fact that an issuer need not know the

user’s identity in order to issue a credential. Then, if it also delegatable, the credentials allow for

much more privacy where even the users themselves do not know the actual identities of the links

on their certification chains. They only know what they need to.

A concrete example of this is a discount program for senior citizens. Where the government

possess some credential to allow senior citizens a discount on groceries that they give to some

government official Alice to distribute to grocers. Say that Bob is one of these grocers, so when

Carol, a senior citizen, comes in to get her groceries, she can provide some sort of information that

will give her the discount. Note that this information can be scanning some sort of card or verifying

a birthday, so that most of Carol’s information if not all is kept a secret from everyone and she gets

the discount without needing to know where it came from. This chain of giving a credential can be

seen in the following diagram from [8]:

government→ Alice (government official) → Bob (grocer) → Carol (senior citizen)

3

Chapter 2

Background

2.1 Anonymous Credentials

One application of Mercurial Signatures is to create a specific type of anonymous credeantials

called Delegatable Anonymous Credentials. An anonymous credential system consists of two parties:

the users and organizations. A pseudonym is linked to a user and that pseudonym is how the

organization identifies the user. So the only thing the organization knows is this pseudonym, not

the actual identity of the user. The organization can then issue a credential to this pseudonym and

then the user can verify or prove possession of said credential to another organization that knows the

user by a different pseudonym, without revealing any personal information and losing anonymity.

There are anonymous credentials that can be used more than once, called multi-show credentials,

or ones that are only used one time, called one-show credentials. It is important to note here that

with a multi-show credential, each demonstration of the credential cannot be linked to a previous

one.

Some basic properties that these credentials possess are as follows: each pseudonym and

credential must be linked to a well-defined user, an organization can never find out anything about

a user, and the interaction between organizations and users must be efficient. For the user to be

well-defined, it cannot be possible that two users combine together some credentials and are able to

receive a credential that one of them alone would not receive. Anonymity between the organization

and user is also mentioned as being important as this is the anonymous part of the anonymous

credential. This means, that an organization should only know some credentials that go with a

4

pseudonym and if a user has two different pseudonyms, they should not be linked in any way.

Finally, as in really anything with cryptography, we desire that the issuing and verification of a

credential between user and organization is efficient, meaning if we are using multi-show credentials,

the user should be able to verify possession without getting reissued a credential.

Definition 2.1.1 (Anonymous Credentials). An anonymous credential scheme allows Issuers’ to

issue credentials to ‘Provers’, who can present said credentials as proof of authenticity to ‘Verifiers’

with the following functions:

• Issue(nym, attr, auth, isk)→ (attr, σ)

• Receive(attr, σ, usk)→ (cred)

• Prove(cred, attr, usk)→ (ϕ, ipk)

• Verify(ϕ, ipk)→ {0, 1}

An anonymous credential must also have correctness (Definition 3.1.2), unforgeability (Def-

inition 3.1.3), issuer unlinkability (Definition 3.2.1), and multi-show unlinkability (Definition 3.2.2).

For a more comprehensive and formal definition of anonymous credentials, refer to [10].

2.2 Relevant Multivariate Signature Schemes

One area of Post-Quantum cryptography is multivariate cryptogrpahy. These schemes are

based on the MQ-Problem, which is the problem of solving multivariate polynomial equations over

a finite field, and is proven to be NP-Complete [17]. Note that for a problem to be NP-Complete,

this means that the problem is both NP and NP-hard. When a problem is NP, that means that the

problem is working under nondeterministic polynomial time, meaning that the problem is solvable

and verifiable in polynomial time. A problemM is NP-Hard if every L inM can be reduced toM in

polynomial time. NP-complete problems are the hardest problems in NP. So, since the MQ-Problem

is NP-Complete, this problem is a good candidate for the basis of post-quantum signature schemes.

The general public key structure for these schemes is

y = T ◦ F ◦ S(x),

5

where T and S are linear maps and F is a quadratic map often referred to as the central map. Two

multivariate schemes will be used throughout this paper are C∗ and the Unbalanced Oil and Vinegar

(UOV).

C∗ was first introduced at Eurocrypt in 1988 [13], and is the first multivariate public key

cryptosystem. C∗ was broken in [15] using linearization equations. The construction of C∗ is as

follows: Let Fq be a finite field and K be a degree d extension. Now, use this set up, to get a

multivariate representation of a univariate map. Let f(x) be our central map such that f : K→ K

defined by f(x) = xq
θ

, where gcd(qθ + 1, qd − 1) = 1 guaranteeing invertibility. Let U and T be

affine invertible maps such that U, T : Fdq → Fdq and ϕ : Fdq → K. Then, the public key is given by

P (x) = T ◦ ϕ−1 ◦ f ◦ ϕ ◦ U(x).

The Balanced Oil and Vinegar Scheme was first proposed in 1997 by Jacques Patarin [14].

It was then broken a year later in 1998 by Adi Shamir and Aviad Kipnis [12]. The Balanced Oil

and Vinegar Scheme was then modifed by Patarin and a few other authors to be the Unbalanced

Oil and Vinegar scheme (UOV). UOV was first proposed in 1999 [11], and is still considered to be

secure against post-quantum attacks. The signature size is small and the signing and verification

are relatively fast and efficient compared to other multivariate signature schemes that have been

submitted to NIST. One down side is its larger public key size. The secret key for this scheme is

comprised of two linear invertible maps U and T and a quadratic map often referred to as the central

map. Define U, T : Fnq → Fnq and F : Fnq → Fmq , where n is the total number of variables, o is the

number of oil variables, v is the number of vinegar variables, and m = o = n − v. It is important

to note here that the central map F can be written as a vector of polynomial equations as follows:

F = (f1, . . . , fm) where

fk =

v∑
i=1

v∑
j=1

αijkxixj +

v∑
i=1

n∑
j=v+1

βijkxixj +

n∑
i=1

γijkxi

The associated public key is a set of multivariate quadratic polynomials: P (x) = T ◦F ◦U(x). In this

public key, it is the invertible maps U and T that are used to hide the structure of the main part of

our secret key, the central map. For the purposes of seeing an example and how this scheme works,

there is an example listed in section 2.3, where U and T are both the identity to make computations

simpler.

6

2.3 Example of UOV

For this example, let n = 5, m = 2, q = 3, v = 3, and o = 2. For ease in this example, let

T = U = I, so that P (x) = F (x) and P (x) = y.

F: F5
3 → F2

3

Now, let x =



v1

v2

v3

o1

o2


=



x1

x2

x3

x4

x5


=



2

1

1

x4

x5



and y =

0
1

 =

f1
f2



f1 =x21 + x22 + x23 + 2x1x2 + 2x1x3 + 2x2x3 + x1x4 + x1x5 + x2x4 + x3x4

+ x3x5 + x1 + x2 + x3 + x4 + x5

f2 =x21 + 2x22 + x23 + x2x3 + x1x4 + x1x5 + x2x4 + 2x2x5 + 2x3x4 + x3x5

+ 2x1 + x2 + x3 + x4 + 2x5

w = U−1y = Iy = y and F (z) = w = y

So, we have

f1
f2

 =

0
1

, and therefore, z =

x4
x5

 =

0
2

 .

Now, since x = T−1z = Iz = z, we have that x =



2

1

1

0

2


Note that we usually do verification with P , but Since P = F , then there is no need to look

at this because we would just be plugging in the same numbers as our F that we used to solve.

7

Chapter 3

Mercurial Signatures and

Delegatable Anonymous

Credentials

The following section describes the definitions relevant to mercurial signatures, anonymous

credentials, and delegatable anonymous credentials. These definitions are abridged, but for the

unabridged versions refer to [8] and [10]. Note here that vectors are notated by bold lowercase

letters.

3.1 Mercurial Signatures

Definition 3.1.1 (Mercurial Signature [8]). A mercurial signature scheme for parameterized equiv-

alence relations RM,Rpk,Rsk is a tuple of the following polynomial-time algorithms, which are

deterministic algorithms unless otherwise stated:

8

RM = {(M,M ′) ∈ (G∗
1)
ℓ × (G∗

1)
ℓ | ∃r ∈ Z∗

p such that M ′ =Mr}

Rsk = {(sk, s̃k) ∈ (Z∗
p)
ℓ × (Z∗

p)
ℓ | ∃r ∈ Z∗

p such that s̃k = skr}

Rpk = {(pk, p̃k) ∈ (G∗
2)
ℓ × (G∗

2)
ℓ | ∃r ∈ Z∗

p such that p̃k = pkr}

PPGen(1k)(1k) → PP : Compute BG ← BGGen(1k). Output PP = BG = (G1,G2,GT , P, P̂ , e). Now

that BG is well-defined, the relations RM ,Rpk,Rsk are also well-defined. sampleρ and sampleµ

are the same algorithm, namely the one that samples a random element of Z∗
p.

KeyGen(PP, ℓ) → (pk, sk): For 1 ≤ i ≤ ℓ, pick xi ← Z∗
p and set secret key sk = (x1, . . . , xℓ).

Compute public key pk = (X̂1, . . . , X̂ℓ), where X̂i = P̂ xi for 1 ≤ i ≤ ℓ. Output (pk, sk).

Sign(sk,M) → σ: On input sk = (x1, . . . , xℓ) and M = (M1, . . . ,Mℓ) ∈ (G∗
1)
ℓ, pick a random

y → Z∗
p and output σ = (Z, Y, Ŷ), where Z ← (

∏ℓ
i=1M

xi
i)y, Y ← P

1
y and Ŷ ← P̂

1
y .

Verify(pk,M, σ) → 0/1: On input pk = (X̂1, . . . , X̂ℓ), M = (M1, . . . ,Mℓ), and σ = (Z, Y, Ŷ),

check whether
∏ℓ
i=1 e(Mi, X̂i) = e(Z, Ŷ) ∧ e(Y, P̂) = e(P, Ŷ). If it holds, output 1; otherwise

output 0.

ConvertSK(sk, ρ)(sk, ρ)→ s̃k: On input sk = (x1, . . . , xℓ) and a key converter ρ ∈ Z∗
p, output the

new secret key s̃k = skρ.

ConvertPK(pk, ρ)(pk, ρ)→ p̃k: On input pk = (X̂1, . . . , X̂ℓ) and a key converter ρ ∈ Z∗
p, output the

new public key p̃k = pkρ.

ConvertSig(pk,M, σ, ρ)(pk,M, σ, ρ) → σ̃: On input pk, message M , signature σ = (Z, Y, Ŷ) and

key converter ρ ∈ Z∗
p, sample ψ ← Z∗

p. Output σ̃ = (Zψρ, Y
1
ψ , Ŷ

1
ψ)

ChangeRep(pk,M, σ, µ)(pk,M, σ, ρ) → (M ′, σ′): On input pk, M , σ = (Z, Y, Ŷ), µ ∈ Z∗
p, sample

ψ ← Z∗
p. Compute M ′ =Mµ, σ′ = (Zψµ, Y

1
ψ , Ŷ

1
ψ). Output (M ′, σ′).

9

To write out in simpler terms to explain what the algorithm is doing:

Generate Public Parameters PPGen(1k) → PP : On input the security parameter 1k, this

probabilistic algorithm outputs the public parameters PP . This includes parameters for the

parameterized equivalence relationsRM ,Rpk,Rsk so that they are well-defined. It also includes

parameters for the algorithms sampleρ and sampleµ which sample key and message converters,

respectively.

Key Generation: KeyGen(PP, ℓ) → (pk, sk): On input the public parameters PP and a length

parameter ℓ, this probabilistic algorithm outputs a key pair (pk, sk). The message space M

is well-defined from PP and ℓ. This algorithm also defines a correspondence between public

and secret keys: we write (pk, sk) ∈ KeyGen(PP, ℓ) if there exists a set of random choices that

KeyGen would result in (pk, sk) as the output.

Signature Algorithm: Sign(sk,M) → σ: On input the signing key sk and a message M ∈ M,

this probabilistic algorithm outputs a signature σ.

Signature Verification: Verify(pk,M, σ) → 0/1: On input the public key pk, a message M ∈

M, and a purported signature σ, output 0 or 1.

Secret Key Conversion: ConvertSK(sk, ρ)→ s̃k: On input sk and a key converter ρ ∈ sampleρ

output a new secret key s̃k ∈ [sk]Rsk
.

Public Key Conversion: ConvertPK(pk, ρ)→ p̃k: On input pk and a key converter ρ ∈ sampleρ

output a new public key p̃k ∈ [pk]Rpk
(correctness of this operation, defined below, will guar-

antee that if pk corresponds to sk, then p̃k corresponds to s̃k = ConvertSK(sk, ρ)).

Signature Conversion: ConvertSig(pk,M, σ, ρ) → σ̃: On input pk, a message M ∈ M, a

signature σ, and key converter ρ ∈ sampleρ, this probabilistic algorithm returns a new signature

σ̃ (correctness of this will require that whenever Verify(pk,M, σ) = 1, it will also be the case

that Verify(p̃k,M, σ̃) = 1.)

Change Message Representative: ChangeRep(pk,M, σ, µ)→ (M ′, σ′): On input pk, a message

M ∈ M, a signature σ, and a message converter µ ∈ sampleµ, this probabilistic algorithm

computes a new messageM ′ ∈ [M]RM
and a new signature σ′ and outputs (M ′, σ′) (correctness

of this will require that Verify(pk,M, σ) = 1⇒ Verify(pk,M ′, σ′) = 1).

10

A mercurial signature must be correct and unforgeable.

Definition 3.1.2 (Correctness [8]). A mercurial signature scheme (PPGen, KeyGen, Sign, Verify,

ConvertSK, ConvertPK, ConvertSig, ChangeRep) for parameterized equivalence relations,RM ,Rpk,Rsk

is correct if it satisfies the following conditions for all k, for all PP ∈ PPGen(1k), for all ℓ > 1, for

all (pk, sk) ∈ KeyGen(PP, ℓ):

Verification For all M ∈M, for all σ ∈ Sign(sk,M), Verify(pk,M, σ)= 1.

Key Conversion For all ρ ∈ sampleρ, (pk, sk) ∈ KeyGen(PP, ℓ). Moreover, p̃k ∈ [sk]Rsk
and

p̃k ∈ [pk]Rpk
.

Signature Conversion For all M ∈ M, for all σ such that Verify(pk,M, σ) = 1, for all ρ ∈

sampleρ, for all σ̃ ∈ ConvertSig(pk,M, σ, ρ), Verify(p̃k, M , σ̃) = 1.

Change of Message Representative For all M ∈ M, for all σ such that Verify(pk,M, σ)= 1,

for all µ ∈ sampleµ, Verify(pk,M
′, σ′) = 1, where (M ′, σ′) = ChangeRep(pk,M, σ, µ). Moreover,

M ′ ∈ [M]RM
.

Definition 3.1.3 (Unforgeability [8]). A mercurial signature scheme (PPGen, KeyGen, Sign, Verify,

ConvertSK, ConvertPK, ConvertSig, ChangeRep) for parameterized equivalence relations RM ,Rpk,Rsk

is unforgeable if for all polynomial-length parameters ℓ(k) and all probabilistic, polynomial-time

(PPT) algorithms A having access to a signing oracle, there exists a negligible function ν such that:

Pr[PP ← PPGen(1k); (pk, sk)← KeyGen(PP, ℓ(k)); (Q, pk∗,M∗, σ∗)←

ASign(sk,·)(pk) : ∀M ∈ Q, [M∗]RM
̸= [M]RM

∧ [pk∗]Rpk
= [pk]Rpk

∧Verify(pk∗,M∗, σ∗) = 1] ≤ ν(k)

where Q is the set of queries that A has issued to the signing oracle.

In informal terms, suppose Alice generates the parameters, public key, and secret key in

the described manner. Eve then has access to a list, Q, of valid message-signature pairs generated

by Alice. Assume Eve tries to create a valid σ∗ under pk or any equivalent pk∗, for a message M∗,

not equivalent to any of the message signature pairs in Q. The probability that Eve can do so is

negligible.

11

3.1.1 Properties For a DAC From a Mercurial Signature

While only correctness and unforgeability are necessary to create a mercurial signature

scheme, there are two more attributes that are beneficial when using a mercurial signature to create

a DAC: Class-hiding and Origin-hiding. Crites and Lysyanskaya introduce these hiding properties

and they give a thorough explanation of how to use a mercurial signature with these properties to

create a DAC in [8].

The class hiding property deals with message class hiding and public key class hiding. The

message class hiding property states that if an adversary is given two distinct messages,M1 and M2,

they should have a negligible advantage of determining whetherM2 ∈ [M1]R or M2 /∈ [M1]R. Public

key class hiding is the property such that if an adversary is given two distinct public keys, P1 and P2

and oracles access to the signing algorithm, they should have a negligible advantage of determining

whether P2 ∈ [P1]R or P2 /∈ [P1]R.

A mercurial signature has origin-hiding of ChangeRep if two different message signature pairs

are distributed in the same manner, even with an adversarial pk, where M0 and M1 are in the same

equivalence class, the resulting message- signature pair hides whether it came from M0 or M1. A

mercurial signature has origin-hiding of ConvertSig if given a signature on a messageM , the output

of ConvertSig hides whether ConvertSig was given one pk or another pk in the same equivalence

class. Note that this applies even for an adversarially generated pk.

3.2 Delegatable Anonymous Credentials

One of the applications for a mercurial signature is to create an anonymous credential, specif-

ically a delegatable anonymous credential. An anonymous credential is a credential that is issued and

verified anonymously so that the users information is not revealed. This can then be transformed

into a delegatable form by having an anonymous credential chain within the scheme. A delegatable

anonymous credential scheme must uphold certain properties pertaining to the anonymity conditions

of any user. While the exact definitions and conditions that are necessary for delegatable anonymous

credentials will often vary, this paper will be referencing [10] for the essential components and their

respective definitions.

Definition 3.2.1 (Issuer Unlinkability [10]). A witness to a valid Prove/Verify protocol transcript

12

should have negligible advantage in determining which Issue/

Receive protocol run generated the prover’s credential, except for any advantage gained from at-

tributes disclosed by the prover, even if the prover and verifier collude.

Definition 3.2.2 (Multi-show Unlinkability [10]). A witness to multiple Prove/

Verify protocol runs linked to the same issuer should have negligible advantage in determining

which, if any, protocol runs involved the same credential, except for any advantage gained from

attributes disclosed by the prover(s), even if the issuer and verifier collude.

Definition 3.2.3 (Delegatable Anonymous Credential). A delegatable anonymous credential holds

the same properties as an anonymous credential throughout a multi-user chain of credentials. The

credential chain must allow for anonymous delegation of credentials among different parties. This

means that no party should have knowledge of the identity of any specific link in the chain nor the

number of times a credential has been used. This type of scheme consists of algorithms (Setup,

KeyGen, NymGen) and protocols for issuing/receiving a credential and proving/verifying possession

of a credential [8].

It must also be correct and secure. There are various manners to define secure, see [1], [8],

[5], [7], [2], [6] for more detailed explanations. In this paper, we choose to leave out a definitive

definition, and we operate under the assumption that UOV is considered secure.

3.3 Example

3.3.1 Mercurial Signature Example

Let G1 and G2 be multiplicative groups of prime order p, and Z∗
p be the multiplicative group

without the identity. The length of the message M , will be denoted by ℓ.

LetG1 = Z7 andG2 = Z72 = Z49. Thus, G1 = {0, 1, 2, 3, 4, 5, 6} andG2 = {0, 1, 2 . . . 47, 48}.

Now note that the base prime of both G1 and G2 is p = 7 and thus, Z∗
p = Z∗

7 = {0, 2, 3, 4, 5, 6}.

Now, let the length of the message be l = 3 here.

Key Generation

Pick some xi ∈ Z∗
7 and set the secret key as Sk = (2, 3, 4). Now, note that P is the

multiplicative generator for G1 and P̂ is the multiplicative generator of for G2. Therefore, for this

13

example, P = 2 and P̂ = 2. Now we want to generate our public key. In order to do this, we note

that our public key (pk) is pk = (x̂1, x̂2, x̂3), where each x̂i = P̂ xi . Therefore we have the following:

x̂i = P̂ xi =


x̂1 = P̂ x1 = 22 ≡ 4 mod 7

x̂2 = P̂ x2 = 23 = 8 ≡ 1 mod 7

x̂3 = P̂ x3 = 24 = 16 ≡ 2 mod 7

(3.3.0.1)

So our public key is pk = (4, 1, 2)

Sign: (sk, M) → σ

Input the secret key sk = (2, 3, 4) and the message M = (3, 5, 6) ∈ (Z∗
7)

3.

Now, pick a random y ← Z∗
7, so let y=2.

Z = (

3∏
i=1

mxi
i)y = (32 · 53 · 64)2 ≡ 4 mod 7

Y = P
1
y = 2

1
2 ≡ 3 mod 7 and Ŷ = P̂

1
y = 2

1
2 ≡ 10 mod 49

So our signature is σ = (Z, Y, Ŷ) = (4, 3, 10).

Verify(pk,M, σ)→ 0/1

Input pk = (4, 1, 2) , M = (3, 5, 6), and σ = (4, 3, 10).

1.) Check that

3∏
i=1

mi · x̂i = e(Z, Ŷ)

So we want to check that e(3, 4) · e(5, 1) · e(6, 2) = e(4, 10).

• e(3, 4) = e(5 · 2, 2 · 2) = e(2, 2)5·2 = 210 ≡ 2 mod 7

• e(5, 1) = e(6 · 2, 25 · 2) = e(2, 2)6·25 = 2150 ≡ 1 mod 7

• e(6, 2) = e(3 · 2, 1 · 2) = e(2, 2)3·1 = 23 ≡ 1 mod 7

• e(4, 10) = e(2 · 2, 5 · 2) = e(2, 2)2·5 = 210 ≡ 2 mod 7

Therefore, we have e(3, 4) · e(5, 1) · e(6, 2) = 2 · 1 · 1 = 2 = e(4, 10)

2.) Check that e(Y, P̂) = e(P, Ŷ).

So we want to check that e(3, 2) = e(2, 10)

14

• e(3, 2) = e(5 · 2, 1 · 2) = e(2, 2)5·1 = 25 ≡ 4 mod 7

• e(2, 10) = e(1 · 2, 5 · 2) = e(2, 2)1·5 = 25 ≡ 4 mod 7

Therefore, we have e(3, 2) = 4 = e(2, 10)

So, overall, both conditions hold, and thus the message signature pair verifies.

15

Chapter 4

Post Quantum MS

4.1 UOV∗-MS

This section introduces the first post-quantum mercurial signature scheme. This scheme uses

UOV as a signature scheme, and uses C∗ in the ConvertSK, ConvertPK, ConvertSig, and ChangeRep.

This scheme has the properties of unforgeablilty, correctness, origin-hiding of CovertSig, and origin-

hiding of ChangeRep. It also has public key class-hiding up to the security of C∗.

This mercurial signature scheme lacks message class-hiding, but the construction to a Semi-

DAC implementation will have message class hiding up to the security of C∗. The possible modifi-

cation to UOV∗-MS to introduce both message class-hiding and public key class-hiding are left for

future research.

4.1.0.1 UOV∗-MS Algorithms

The message space for UOV∗-MS is the set of all vectors M = (M (1), . . . ,M (ℓ)), where

M (i) ∈ Fnq for every 1 ≤ i ≤ ℓ. Let Π represent a C∗ public key, Π(x) =W ◦ F ◦ V (x).

Rsk = {(sk, s̃k) ∈ (V ℓsec)× (V ℓsec) | ∃Π such that s̃k = sk ◦Π−1}

Rpk = {(pk, p̃k) ∈ (V ℓpub)× (V ℓpub) | ∃Π such that p̃k = pk ◦Π−1}

RM = {(M,M ′) ∈ (V ℓmes)× (V ℓmes) | ∃a ∈ Fq such that M ′ = a2M}

16

PPGen(1k)→ PP : UOV and C∗ parameter selection restricting the UOV central polynomials to

those with the form
∑v
i=1

∑v
j=1 αijkxixj +

∑v
i=1

∑n
j=v+1 βijkxixj .

KeyGen(PP, ℓ)→ (pk, sk): Choose random invertible matrices T(i) ∈ Fm×m
q and U(i) ∈ Fn×nq .

Generate a public-secret key pair using the UOV key generation algorithm. Let P (i) = U(i) ◦

F (i) ◦T(i). sk = (T(i), F (i),U(i)) for 1 ≤ i ≤ ℓ and pk = (P (1), . . . , P (ℓ)).

Sign(sk,M)→ σ: For a messageM = (M (1), . . . ,M (ℓ)) and public key P = (P (1), . . . , P (ℓ)), create

the signature σ = (x(1), . . . ,x(ℓ)) such that x(i) =
(
U(i)

)−1 ◦ F (i) ◦ (T(i))−1M (i).

Verify(pk,M, σ) → 0/1: If
(
P (1)(x(1)), . . . , P (ℓ)(x(ℓ))

)
= (M (1), . . . ,M (ℓ)), output 1. Otherwise,

output 0.

ConvertSK(sk,Π) → s̃k: On input sk = {(T(i), F (i),U(i)) : 1 ≤ i ≤ ℓ}, and a key converter

Π =W ◦ F ◦ V , we get s̃k = {(T(i), F (i),U(i) ◦Π) : 1 ≤ i ≤ ℓ}.

ConvertPK(pk,Π−1) → p̃k: On input pk = (P (1), . . . , P (ℓ)) and a key converter Π = W ◦ F ◦ V ,

output the new public key p̃ki = P i ◦Π−1.

ConvertSig(pk,M, σ, Pc) → σ̃: On input pk, message M , signature σ, and key converter Π =

W ◦ F ◦ V , output σ̃ = Π(x(i)).

ChangeRep(pk,M, σ) → (M ′, σ′): On input pk,M, σ = (x(1), . . . , x(ℓ)), sample a ∈ Fq. Compute

M ′ = a2M , and σ′ = ax. Output (M ′, σ′).

4.1.1 Security Proofs of UOV∗-MS

4.1.1.1 Correctness

Lemma 1 (Correctness for Signature Conversion). If Verify(pk,M, σ)→ 1, then Verify(p̃k,M, σ̃)→

1.

Proof. Let Verify(pk,M, σ) = 1, then P (x) = M . Examine Verify(p̃k,M, σ̃) and by the public

key conversion and signature conversion algorithms, p̃k = P ◦Π−1 and σ̃ = Π(x). Thus,

P̃ (σ̃) = P ◦Π−1(Π(x))

= P (x)

=M.

17

Therefore, Verify(p̃k,M, σ̃) = 1. ■

Lemma 2 (Scaling the Generating Function). For a ∈ Fq and F = (f1, . . . , fn) as in as in the UOV∗

parameter selection, F (ax) = a2F (x).

Proof. Let F (x) =



f1

f2
...

fn


where fk =

v∑
i=1

v∑
j=i

αijkxixj +
v∑
i=1

n∑
j=v+1

βijkxixj .

Then F (ax) will be fk(ax) for all k.

fk(ax) =

v∑
i=1

v∑
j=i

αijk(axi)(axj) +

v∑
i=1

n∑
j=v+1

βijk(axi)(axj)

=

v∑
i=1

v∑
j=i

αijk(a
2)xixj +

v∑
i=1

n∑
j=v+1

βijk(a
2)xixj

= a2

 v∑
i=1

v∑
j=i

αijkxixj +

v∑
i=1

n∑
j=v+1

βijkxixj


= a2fk.

Thus, fk(ax) ∈ F (ax) for all k, and so it follows that F (ax) = a2F (x). ■

Lemma 3 (Correctness for Changing Message Representative). If Verify(pk,M, σ) = 1, then Verify(pk,M ′, σ′) =

1

Proof. Let Verify(pk,M, σ) = 1, thus P (x) = M . Observe Verify(pk,M ′, σ′); by the change

message representative algorithm, M ′ = a2M and σ′ = ax. Thus,

P (σ′) = U ◦ F ◦T(ax)

= U ◦ F ◦ aT(x) because T is linear

= U ◦ a2F ◦T(x) by Lemma 2

= a2U ◦ F ◦T(x) because U is linear

= a2P (x)

= a2M

=M ′.

Therefore, Verify(pk,M ′, σ′)= 1. ■

18

4.1.1.2 Unforgeability

The unforgeability of UOV∗-MS is based on the unforgeability of UOV. Let the parameters,

pk, and sk be generated correctly as described in our scheme, and let Q = {(x,y) : P (x) = y}. We

claim UOV∗-MS is forgeable only-if UOV is forgeable. This implies UOV∗-MS is no more forgeable

than UOV.

Suppose UOV∗-MS is forgeable. An adversary would then be able to create a valid message-

signature pair (x∗,y∗) where (x∗,y∗) /∈ Q and y∗ /∈ [y]R so that Verify(pk∗,M∗, σ) = 1. In our

algorithms, this implies P ∗(x∗) = y∗. This means P ∗ ◦ S(S−1x∗) = T ◦ F ◦ U ◦ S(S−1x∗) =

T◦F ◦U(x∗) = y∗. If T◦F ◦U(x∗) = y∗, then a valid forged signature has been created. However,

this then contradicts the unforgeability of UOV. So, since the unforgeability of UOV∗-MS is based

on the unforgeability of UOV, then UOV∗-MS is no more forgeable than UOV.

4.2 Delegatable Credential with Message-Origin Hiding

In this section we will construct a semi-anonymous delegatable credential (Definition 4.2.1)

based on UOV∗-MS. This scheme inherits the origin-hiding and public key class-hiding properties

from UOV∗-MS. It also introduces message class-hiding by introducing a randomization algorithm.

However, it is important to note that both the public key class-hiding and message class-hiding

are only guaranteed up to the security of C∗. It is important to note here that C∗ does take some

computational power to break and thus we will have public key class-hiding and message class-hiding

as long as there isn’t strong computational power.

4.2.1 Relevant Definitions

Definition 4.2.1 (Semi-Anonymous Delegatable Credential). A semi-anonymous delegatable cre-

dential (Semi-DAC) scheme is equivalent to a delegatable anonymous credential in all respects except

that anonymity is only obfuscated from an attacker, rather than secured.

Definition 4.2.2 (Obfuscated). Let µ(x) be an algorithm of complexity ≥ O(n) where x ∼ n. Let

ω be a function such that ω(y, x)→ 1 if µ(x) = y, otherwise ω(y, x)→ 0. µ is obfuscated from ω if

the complexity of ω(y, x) > O(n2).

19

4.2.2 Semi-DAC from UOV∗-MS Algorithms

The Delegatable Credential that we introduce in this section has the properties for message

origin-hiding, but it does not have public key class-hiding, which is why it is labeled as a semi-

anonymous credential. The following construction is based on the construction given by Crites and

Lysyanskaya in [8].

Before giving the construction, it is important to mention that at each step of this algorithm,

when a credential is being issued and a credential chain is being passed along, there are verifications

being done. These verifications are done through a zero knowledge interactive protocol between the

issuer and receiver of a credential. This is meant to serve as a proof that the receiver is who they

say they are and they do have information about the secret key.

4.2.2.1 Randomization

Let a list of public keys be represented by P = (P (0), . . . , P (ℓ−1)), a list of randomized

messages be represented byM = (M (1), . . . ,M (ℓ)), and a list of randomized signatures is represented

be S = (σ(1), . . . , σ(ℓ)). A level ℓ user has a credential chain (Pℓ,Mℓ,Sℓ). such that P (i−1)(σ(i)) =

M (i). Let skC and skU represent a user’s C∗ and UOV secret keys respectively. We will define

Randomize as the following function:

Randomize(P,M,S, skC) → (P ′,M′,S ′): On input of a credential chain (P,M,S) and secret

key skC , compute P ′(i) = Π1 ◦ P (i) ◦ Π2, M ′(i) = a2(M (i)), and σ′(i) = a(x(i)). Output

(P ′,M′,S ′).

4.2.2.2 Issuing a Credential

Let “||” denote appending an element to a list. Let

(Pℓ,Mℓ+1,Sℓ+1) := Randomize(P||P (ℓ),M||P (ℓ+1),S||σ(ℓ+1), skC).

The following algorithm is employed for the Issue/Receive transaction:

Issue(P,M,S, pk, skC , skU) ↔ Receive(nym) → (Pℓ,Mℓ+1,Sℓ+1): On input credential chain

(P,M,S), public key pk, C∗ secret key skC , UOV secret key skU , and receiver’s public key

nym =M (ℓ+1), the issuer computes Sign(skU , nym)→ σ(ℓ+1). Output (Pℓ,Mℓ+1,Sℓ+1).

20

4.2.2.3 Proof of Possession of a Credential

The following algorithm is employed for the Prove/Verify transaction:

Prove(P,M,S, skC) ↔ Verify → 0/1: On input of credential chain (P,M,S), the prover cal-

culates Randomize(P,M,S, skC) → (P ′,M′,S ′). The verifier outputs Verify(P ′,M′,S ′) →

0/1. On result 1, the credential is valid. On result 0, the credential is invalid.

4.3 Parameters

The parameters for this signature scheme are based on the parameters of UOV for the

compact and expanded case for the public key, secret key, and signature size. Note here that our

public key and secret key are the only parameters that are compact or expanded. [4]

NIST n m q ℓ |epk| |esk| |cpk| |csk| |σ|
S.L. (bytes) (bytes) (bytes) (bytes) (bytes)

uov-IP 1 112 44 256 3 835,296 713,688 130,728 144 128
uov-IS 1 160 64 16 3 1,236,480 1,046,112 199,728 144 96
uov-III 3 184 72 256 3 3,676,320 3,132,960 567,696 144 200
uov-S 5 244 96 256 3 8,608,320 7,310,112 1,340,976 144 260

Table 4.3.1: This table shows public key, secret key, and signature size in bytes for a credential with
chain length 3

NIST n m q ℓ |epk| |esk| |cpk| |csk| |σ|
S.L. (bytes) (bytes) (bytes) (bytes) (bytes)

uov-IP 1 112 44 256 4 1,113,728 951,584 174,304 192 128
uov-IS 1 160 64 16 4 1,648,640 1,394,816 266,304 192 96
uov-III 3 184 72 256 4 4,901,760 4,177,280 756,928 192 200
uov-S 5 244 96 256 4 11,477,760 9,746,816 1,787,968 192 260

Table 4.3.2: This table shows public key, secret key, and signature size in bytes for a credential with
chain length 4

21

NIST n m q ℓ |epk| |esk| |cpk| |csk| |σ|
S.L. (bytes) (bytes) (bytes) (bytes) (bytes)

uov-IP 1 112 44 256 5 1,392,160 1,189,480 217,880 240 128
uov-IS 1 160 64 16 5 2,060,800 1,743,520 332,880 240 96
uov-III 3 184 72 256 5 6,127,200 5,221,600 946,160 240 200
uov-S 5 244 96 256 5 14,347,200 12,183,520 2,234,960 240 260

Table 4.3.3: This table shows public key, secret key, and signature size in bytes for a credential with
chain length 5

22

Chapter 5

Conclusion and Future Work

5.1 Efficiency

In this current scheme, there is an issue with efficiency because at every level of the DAC,

there is a new credential created and added to the credential chain. This credential gets passed

down to each user thereafter and helps in verification at each of the levels. This means that the

more levels there are in delegating a credential, the larger the credential chain is. A future goal

here would be to find a way to verify a credential with minimal information, so that the chain does

not continue to grow with the level and only keeps the level above it and the credential they were

given to verify the credential is correct and create their own. This would minimize the length of

information being sent to the lower levels of the credential levels and would minimize the operations

that are needed to verify and create a new credential.

5.2 Possibility to get rid of C∗

C∗ is broken was broken in [15], but was chosen to “scramble” the message and key repre-

sentatives because it is a cryptosystem whose plaintext and ciphertext messages are the same length.

A future goal would be to use another modifier with similar properties that is not broken in order

to gain full anonymity for the Delegatable Anonymous Credentials.

23

5.3 General Multivariate Cryptography - MAYO

MAYO was first introduced by Ward Beullens in 2021[3]. This scheme has been submitted

to the NIST competition. Much like the UOV∗ Mercurial Signature, it relies on UOV as well as

what is called a whipped modifier. There have been a few attacks on MAYO, but none of them

have been successful at completely breaking the security. My future plans involve looking at new

possible attacks for MAYO and the complexities of these attacks. The focus will be on the MinRank

and Rectangular MinRank attack. Some of these attacks have been explored before under certain

parameters in [9], so I will be looking at possible ways to modify these attacks in order to decrease

the complexity of these attacks. These attacks focus on using the public key, which is similar to

that of UOV.

24

Appendices

25

Appendix A Clemson ID Application for Semi-DAC

One practical application of the Semi-DAC with UOV∗-MS is assigning credentials to enter

buildings at a university. The university in question starts as our root of authority having the overall

credential allowing anyone working at or attending the university to enter buildings. The credential

next gets delegated to smaller programs focusing on undergraduate students, graduate students,

faculty, and staff. The undergraduate authority can then be delegated again by dorm, major/classes

being taken that year or semester, special labs, and etc. The graduate student authority can be

delegated by department and office space. The faculty and staff authority can be delegated by de-

partment and buildings they work in. All of these then go through another split giving credentials

for times of day that everyone can access each building. There can then be another layer of dele-

gations for specific situations for different universities such as building access for graduate students

that proctor in a different building than they teach/take classes. The chains are then sent to campus

security who then assigns a chain of credentials to each student and employee. These credentials are

paired with each university ID card whether it be a physical card or a digital card on their phone.

The credentials are used when a student or employee scans their ID to get into each building on

campus.

26

Clemson University ID’s:

Clemson University

Office of the President

CU Grad

School

CU Undergrad

Affairs

CU Human

Resources

Res Life

Dept. 1

.

.

.

Dept. N

Dept. 1

.

.

.

Dept. N

Athletic

Offices

.

.

.

Dept. N

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

Individual ID

Individual ID

Individual ID

Individual ID

Individual ID

Individual ID

Individual ID

Individual ID

Individual ID

Individual ID

Individual ID

Individual ID

Figure A.1: This figure shows a visual representation of the multiple levels that our credential chain
for a CU ID passes through.

27

Appendix B Possible Attacks

Identity Fraud:

It is possible on a college campus for students to lose their ID card, whether they drop

it, misplace it, forget it somewhere, or someone just out right takes it. This ID card is connected

to all credentials involving that student: student access to buildings, student access to restricted

labs/classrooms, student access to their dorm, their meal plan to buy food, and etc. If a student

looses their ID for any of the above reasons or another, it is possible for another student, worker at

the university, or even community member to find and use this card and its credentials as if they

were said student. So, in this instance, the adversary would be trying to gain some sort of credential

for Clemson University and has done it by pretending to be a student.

Grand Theft Mobile:

Because technology is advancing, at most schools, it is possible that ID cards can be found

on some sort of mobile device. In this case the adversary steals the mobile device and then has

access to the ID. There might be some protocols that can be put on phones in order to have to open

the phone to use the ID card, but in most cases the ID is added to a wallet and doesn’t require the

phone to be unlocked in order to scan and use its credentials like a credit/debit card.

Digging For Credentials:

There are also non-physical attacks such as this digging for credentials attack that is more

cyber security esque. This attack involves an adversary on their computer who has hacked into the

University’s data frame and is searching for credentials. In this case the adversary is interested in

discovering what credentials are assigned to what students vs professors and faculty and staff.

Credential Giver/Killer:

This is also a non-physical attack, where similar to the above attack, the adversary is

accessing the university data frame. But, the goal here of the adversary is different, instead of

focusing on who already has what credentials, this adversary is trying to decide which credential is

which and give access/restrict access to this credential to different people. A practical example of

this would be some student Jess who wants to be able to stay and study inside her math building

and classrooms until midnight. If she doesn’t have this credential she might pay a friend Eve who

is good at cracking code to give her this credential so that she can stay and study after hours.

28

Appendix C Voting Scheme Application for Semi-DAC

One application of a Delegatable Credential with Origin Hiding is to distribute voting cre-

dentials. This example refers to credentials that are delegated down a chain, starting with the US

government, to grant a voting ID to a US citizen. This credential chain involves verifying things

such as US citizenship, state residency, and county occupancy. For the sake of simplicity, we will

only consider these 3 credentials.

Government official Alice receives a credential directly from the government that identifies

potential voters as occupants of the US. Alice then gives a credential to a state official Bob that

identifies these potential voters as a US citizen. Bob then gives a credential to a county representative

Carol, that specifies a voter as a resident of the state. Carol can then send this chain of credentials

as well as one of her own specifying county to some other third party government official Dave who

sends a voting ID out to Emma. Because of pseudonyms attached to messages and message origin

hiding, Dave does not know what state or county Emma is from, just that she can vote. Emma

can now use her voting ID (which is some credential chain) as she votes in her next local or federal

election.

It is important to note that in this example each person is known to the government under

a pseudonym that corresponds to all of the messages that are describing some credential that they

possess and the voting ID is the signature. Because we have message origin hiding here, just as

Dave who was issuing the voting ID could not access any information about Emma, when a voting

ID is verified by some third party, they will also not be able to track down any of Emma’s personal

information about where she’s from. Thus, we have this partial anonymity in our voting scheme.

29

Issuer(Level ℓ) Reciever (Level ℓ+ 1)

Challenge

Commitment

If Yes:

Accept

Send Cred:

((M ′
ℓ, σ

′
ℓ), (Mℓ+1, σℓ+1))

s.t. Pℓ(Mℓ+1) = σℓ+1

Figure C.1: This figure shows a visual representation of the zero knowledge protocol scheme used by
the issuer and receiver when checking to see if the receiver is who they say they are before sending
a credential

30

Voting ID Scheme:

Government
P0, (M1, σ1)

Government Officials
P1, ((M

′
1, σ

′
1), (M2, σ2))

State Officials
P2, ((M

′′
1 , σ

′′
1), (M

′
2, σ

′
2), (M3, σ3))

County Officials
P3, ((M

′′′
1 , σ

′′′
1), (M ′′

2 , σ
′′
2), (M

′
3, σ

′
3), (M4, σ4))

Third Party ID Assigner

P4, ((M
(4)
1 , σ

(4)
1), (M ′′′

2 , σ
′′′
2), (M ′′

3 , σ
′′
3), (M

′
4, σ

′
4), (M5, σ5))

Voter
ID:((M

(5)
1 , σ

(5)
1), (M

(4)
2 , σ

(4)
2), (M ′′′

3 , σ
′′′
3), (M ′′

4 , σ
′′
4), (M

′
5, σ

′
5))

((M ′
1, σ

′
1))

((M ′′
1 , σ

′′
1), (M

′
2, σ

′
2))

((M ′′′
1 , σ

′′′
1), (M ′′

2 , σ
′′
2), (M

′
3, σ

′
3))

((M
(4)
1 , σ

(4)
1), (M ′′′

2 , σ
′′′
2), (M ′′

3 , σ
′′
3), (M

′
4, σ

′
4))

((M
(5)
1 , σ

(5)
1), (M

(4)
2 , σ

(4)
2), (M ′′′

3 , σ
′′′
3), (M ′′

4 , σ
′′
4), (M

′
5, σ

′
5))

Figure C.2: This figure shows a visual representation of the above voting scheme example and its
corresponding credential chain.

31

Bibliography

[1] Mira Belenkiy, Jan Camenisch, Melissa Chase, Markulf Kohlweiss, Anna Lysyanskaya, and
Hovav Shacham. Randomizable proofs and delegatable anonymous credentials. In Shai Halevi,
editor, Advances in Cryptology - CRYPTO 2009, pages 108–125, Berlin, Heidelberg, 2009.
Springer Berlin Heidelberg.

[2] Mira Belenkiy, Jan Camenisch, Melissa Chase, Markulf Kohlweiss, Anna Lysyanskaya, and
Hovav Shacham. Randomizable proofs and delegatable anonymous credentials. In Advances in
Cryptology-CRYPTO 2009: 29th Annual International Cryptology Conference, Santa Barbara,
CA, USA, August 16-20, 2009. Proceedings, pages 108–125. Springer, 2009.

[3] Ward Beullens. Mayo: Practical post-quantum signatures from oil-and-vinegar maps. Cryptol-
ogy ePrint Archive, Paper 2021/1144, 2021. https://eprint.iacr.org/2021/1144.

[4] Ward Beullens, Ming-Shing Chen, Jintai Ding, Boru Gong, Matthias J. Kannwischer, Jacques
Patarin, Bo-Yuan Peng, Dieter Schmidt, Cheng-Jhih Shih, Chengdong Tao, and Bo-Yin Yang.
UOV: Unbalanced oil and vinegar - algorithm specifications and supporting documentation
version 1.0, 2023.

[5] Melissa Chase, Markulf Kohlweiss, Anna Lysyanskaya, and Sarah Meiklejohn. Malleable signa-
tures: Complex unary transformations and delegatable anonymous credentials. IACR Cryptol.
ePrint Arch., page 179, 2013.

[6] Melissa Chase, Markulf Kohlweiss, Anna Lysyanskaya, and Sarah Meiklejohn. Malleable sig-
natures: Complex unary transformations and delegatable anonymous credentials. Cryptology
ePrint Archive, 2013.

[7] Melissa Chase and Anna Lysyanskaya. On signatures of knowledge. In Advances in Cryptology-
CRYPTO 2006: 26th Annual International Cryptology Conference, Santa Barbara, California,
USA, August 20-24, 2006. Proceedings 26, pages 78–96. Springer, 2006.

[8] Elizabeth C Crites and Anna Lysyanskaya. Delegatable anonymous credentials from mercurial
signatures. In Topics in Cryptology–CT-RSA 2019: The Cryptographers’ Track at the RSA
Conference 2019, San Francisco, CA, USA, March 4–8, 2019, Proceedings, pages 535–555.
Springer, 2019.

[9] Hiroki Furue and Yasuhiko Ikematsu. A new security analysis against mayo and qr-uov us-
ing rectangular minrank attack. In Junji Shikata and Hiroki Kuzuno, editors, Advances in
Information and Computer Security, pages 101–116, Cham, 2023. Springer Nature Switzerland.

[10] Saqib A. Kakvi, Keith M. Martin, Colin Putman, and Elizabeth A. Quaglia. Sok: Anonymous
credentials. In Felix Günther and Julia Hesse, editors, Security Standardisation Research, pages
129–151, Cham, 2023. Springer Nature Switzerland.

32

https://eprint.iacr.org/2021/1144

[11] Aviad Kipnis, Jacques Patarin, and Louis Goubin. Unbalanced oil and vinegar signature
schemes. In Jacques Stern, editor, Advances in Cryptology — EUROCRYPT ’99, pages 206–222,
Berlin, Heidelberg, 1999. Springer Berlin Heidelberg.

[12] Aviad Kipnis and Adi Shamir. Cryptanalysis of the oil and vinegar signature scheme. In Hugo
Krawczyk, editor, Advances in Cryptology — CRYPTO ’98, pages 257–266, Berlin, Heidelberg,
1998. Springer Berlin Heidelberg.

[13] Tsutomu Matsumoto and Hideki Imai. Public quadratic polynomial-tuples for efficient
signature-verification and message-encryption. In D. Barstow, W. Brauer, P. Brinch Hansen,
D. Gries, D. Luckham, C. Moler, A. Pnueli, G. Seegmüller, J. Stoer, N. Wirth, and Christoph G.
Günther, editors, Advances in Cryptology — EUROCRYPT ’88, pages 419–453, Berlin, Heidel-
berg, 1988. Springer Berlin Heidelberg.

[14] J. PATARIN. The oil and vinegar signature scheme. Presented at the Dagstuhl Workshop on
Cryptography, September 1997. transparencies, 1997.

[15] Jacques Patarin. Cryptanalysis of the matsumoto and imai public key scheme of eurocrypt’88.
In Don Coppersmith, editor, Advances in Cryptology - CRYPTO ’95, 15th Annual International
Cryptology Conference, Santa Barbara, California, USA, August 27-31, 1995, Proceedings, vol-
ume 963 of Lecture Notes in Computer Science, pages 248–261. Springer, 1995.

[16] Ronald L. Rivest, Adi Shamir, and Leonard M. Adleman. A method for obtaining digital
signatures and public-key cryptosystems. Commun. ACM, 21(2):120–126, 1978.

[17] Eligijus Sakalauskas. The multivariate quadratic power problem over zn is np-complete. Inf.
Technol. Control., 41(1):33–39, 2012.

[18] Peter W. Shor. Algorithms for quantum computation: discrete logarithms and factoring. Pro-
ceedings 35th Annual Symposium on Foundations of Computer Science, pages 124–134, 1994.

[19] Douglas R. Stinson and Maura B. Paterson. Cryptography: Theory and practice. CRC Press,
4th edition, 2019.

33

	A Post-Quantum Mercurial Signature Scheme
	Recommended Citation

	Title Page
	Abstract
	Dedication
	Acknowledgments
	List of Tables
	List of Figures
	Introduction
	Why Study Cryptography?
	Why Look at Mercurial Signatures?
	Brief Overview

	Background
	Anonymous Credentials
	Relevant Multivariate Signature Schemes
	Example of UOV

	Mercurial Signatures and Delegatable Anonymous Credentials
	Mercurial Signatures
	Delegatable Anonymous Credentials
	Example

	Post Quantum MS
	UOV*-MS
	Delegatable Credential with Message-Origin Hiding
	Parameters

	Conclusion and Future Work
	Efficiency
	Possibility to get rid of C*
	General Multivariate Cryptography - MAYO

	Appendices
	Clemson ID Application for Semi-DAC
	Possible Attacks
	Voting Scheme Application for Semi-DAC

	Bibliography

