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ABSTRACT 

 

 

South Carolina is one of the most vulnerable states in the United States to the 

impact of hurricanes. Currently, when threatened with a natural disaster such as a 

hurricane, the state government makes many vital decisions based on knowledge and 

experience. In this study, the distribution of disaster relief commodities to meet 

immediate needs is analyzed through two models for the case of South Carolina to 

generate an optimal logistics strategy that considers the social vulnerability of affected 

populations. The first model is a multi-objective pre-disaster logistics model that uses a 

four-index formulation for the multiple trip vehicle routing problem. The second model is 

a multi-objective pre- and post-disaster time-expanded network flow model with detailed 

operational-level decisions for the overarching tactical planning decisions, which allows 

the model to act as an optimization-based simulator. Sensitivity analyses were conducted 

to determine optimal conditions for the cases used and to analyze the effects of different 

assumptions on the resulting logistics plan. This paper presents models that optimize 

scenario-dependent logistics plans, visualize logistic solutions, and suggest alternatives to 

some aspects of the government’s current logistics plan to aid in the efficient distribution 

of life-saving supplies. 
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CHAPTER ONE 

 

INTRODUCTION 

 

 

Between 1851 and 2023, 286 tropical cyclones impacted the state of South 

Carolina, five of which were classified as category 3+ (1851-2023 is the period of record) 

[1]. The state’s 187-mile coastline leaves it highly vulnerable to hurricanes and tropical 

storms [2]. South Carolina is ranked 5th among US states for the most hurricane impacts 

over recorded history, making hurricane planning a critical issue in the state [1]. The state 

government acknowledges its responsibility to protect its citizens and has a variety of 

plans that “establish the procedures by which the State will coordinate pre- and post-

incident logistics operations including needs assessment, receiving supplies, 

staging/warehousing supplies, supply distribution, ordering, processing, and transporting 

supplies requested by county emergency management departments, State agencies and 

other response and relief entities supported by the State” [3]. 

Logistics operations related to a disaster are coordinated by the South Carolina 

Emergency Management Division (SCEMD) and start before a known event or 

immediately following the impact of an unexpected incident [3]. Our research team has 

partnered with SCEMD to model their decision-making process. The goals of this 

partnership include evaluating current plans and solution visualization. 
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Figure 1.1: Tropical Storms and Hurricanes that Impacted South Carolina [1] 

 

Inadequate planning can have various consequences, including loss of lives and 

waste of resources. A recent example of logistics mismanagement was FEMA’s 

distribution process in response to Hurricanes Irma and Maria, where the organization 

lost visibility on approximately 38% of its commodity shipments, worth approximately 

$257 million [4].  When commodities were successfully delivered, they took an average 

of 69 days to reach their destinations [4]. This mismanagement happened during a 

disaster scenario, but the causes can be attributed to a lack of planning and preparation of 

the processes that take place in a disaster of such magnitude [4]. Historically, South 

Carolina has been able to save lives through the proper execution of thoroughly vetted 

logistics plans [5] [6]. 
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South Carolina Logistics Plan Elements Pertaining to Disaster Events  

South Carolina’s logistics plan includes information on regional staging areas, 

warehouses, demand, procurement of resources, and distribution. 

Regional Staging Areas (RSAs) 

Regional staging areas (RSAs) are locations determined by SCEMD where 

commodities will be prepositioned before being distributed to individual points of 

demand [3]. The placement of RSAs is dependent on which regions are most likely to be 

impacted by the event and in proportion to the scale of the event [3]. Bills of Lading and 

other shipping documentation must be completed as resources enter and leave an RSA, 

the signing and processing of which will be handled by the State Emergency Operations 

Center (SEOC) Resource Coordinator [3]. 

SCEMD Warehouses 

SCEMD has two warehouses that store, receive, and distribute resources before, 

during, and after an incident [3]. The first primary warehouse is located in Winnsboro, 

SC and contains disaster meals, water, sandbags, and tarps (the SCEMD team has 

indicated they do not regularly keep an inventory of perishable goods) [3]. The 

Winnsboro warehouse has 43,000 sq. ft. and is estimated to store 1,200 pallets, according 

to the SCEMD DMP 2023 Workbook [3]. Six loading docks and three forklifts are 

available at the Winnsboro location, but there are no permanent warehouse staff members 

(warehouse management and support staff are required for operation after activation) [3]. 

A secondary location in Fairfield County is available as necessary and used upon request, 
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providing storage space for up to 2,400 pallets [3]. The second primary warehouse is in 

Prosperity, SC and holds PPE for public health emergencies.  

Cots have different storage considerations as the majority are not state-owned. 

There are 4,000 cots stored at the McEntire Joint Base outside of Columbia [2]. These 

4,000 cots are primarily distributed to Group 1 shelters by the South Carolina National 

Guard [2]. There are another 8,000 cots already in the state, which are part of the 

American Red Cross Regional Stock [2]. These 8,000 cots are staged in four hurricane 

regions (Myrtle Beach area, North Charleston, Jasper County, and the Upstate), and the 

American Red Cross leads their distribution in the event of a disaster [2]. While the 

SCEMD team does not play a direct role in cot distribution, they are responsible for 

identifying resource gaps and coordinating the distribution [2]. 

Demand 

Counties conduct their own damage assessments and report damage and 

population affected to SCEMD when submitting resource requests [3]. Requests are 

submitted to the SEOC Supply Unit, and specify the resources and quantities needed 

along with the delivery locations, delivery timelines, and Points of Contact regarding the 

delivery [3]. South Carolina takes a cutting-edge approach to disaster recovery demand 

fulfillment by considering social vulnerability and income level throughout the entire 

logistics process as socioeconomic variables can indicate a community’s ability to 

prepare for, respond to, and recover from natural disasters [5]. Holistic social 

vulnerability considers a variety of factors, including age (being over 65 or having 

children under five contributes to vulnerability), social status, race, wealth (level of 
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poverty), ethnicity, gender, state of housing (focused on transitional housing and 

homelessness which increases vulnerability), and unemployment [5] [6]. 

Procurement of Commodities 

Before purchasing commodities, the SEOC Supply Unit will check if the 

commodity is available in their warehouses or through donated goods [3]. If purchasing 

the commodity requested, the Logistics Chief or their designee will use pre-existing 

contracts when possible [3]. These contracts are not public, but SCEMD has provided 

some examples of suppliers. 

Commodity Distribution 

The distribution of commodities follows the flow depicted in Figure 1.2. Counties 

are responsible for unloading, delivery documentation, and distribution of supplies at the 

demand nodes (shelters and points of distribution (PoDs)) [3]. 

Figure 1.2: Commodity Distribution Flow 
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South Carolina’s Policy at Demand Points 

Demand occurs at shelters and points of distribution (PoDs). Shelters are 

designated for evacuees or survivors to eliminate or lessen immediate threats to their 

safety [7] [8]. PoDs provide life-saving commodities such as food (in the form of MREs) 

and water to the vulnerable population that does not evacuate, commonly referred to as 

the stay-back population.  

Shelters 

South Carolina Code of Laws states that counties are responsible for developing 

and implementing a sheltering plan [7]. Shelter locations are determined prior to the 

threat of a disaster by a team of organizations, which include County Emergency 

Management, SCEMD, Emergency Support Function (Mass Care (ESF-6)), and the 

American Red Cross [7]. Locations selected as shelter candidates are generally along 

evacuation routes, have a large capacity, are accessible, and have a backup power source 

[7]. Shelters are grouped into tiered opening levels where groups are sequentially opened 

[7]. Additional shelters are opened based on the “percentage full” of current open 

shelters, where, as a group of shelters reaches 75% of its capacity, the next group will 

open [7]. 

The estimated number of evacuees guides the shelter space planning requirements 

and is based on the calculated vulnerable population. The vulnerable population includes 

residents and tourists within a Category 5 storm surge inundation area [7]. The Army 

Corps of Engineers is responsible for completing the Hurricane Evacuation study, which 

determines the shelter requirements for vulnerable populations [7]. The vulnerable 
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population, specifically in the Coastal Hurricane Region of the state, is dynamic and 

generally increasing [7]. This increase is caused by a rise in coastal population and a 

growing percentage of the population living in vulnerable structures [7]. 

In South Carolina, the emergency capacity for hurricane evacuation shelters is 

calculated using 20 sq. ft. per person, but for shelters extending their operation beyond 72 

hours, 40 sq. ft. per person is required, causing a population shift [7]. According to the 

SCEMD team, the aim is to supply three days’ worth of supplies as a standard, and there 

is an explicit effort to close shelters as rapidly as possible. This desire to rapidly close 

shelters is because many are schools, and the ongoing shelter (and PoD) operations have 

a negative impact on the local economy during recovery. 

The American Red Cross has generated a list of standards to be considered for 

hurricane evacuation shelter selection, which is followed by the state of South Carolina 

[7]. The standards address risks linked with hurricane-associated hazards, which include 

surge inundation, rainfall flooding, and high winds [9]. Other considerations include 

whether hazardous materials are present and the safety criteria of the interior of the 

building [9]. When selecting locations, the Red Cross encourages “least-risk decision 

making” and insists safety is the primary consideration [9]. Evaluating a potential shelter 

requires the identification of a viable site, execution of a risk assessment on the site, 

assessment of the facility by a structural engineer, and completion of a Red Cross Facility 

Survey [9]. 
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Points of Distribution (PoDs) 

According to conversations with the SCEMD team, counties are responsible for 

commodity allocation and distribution of life-saving supplies, such as food and water, at 

points of distribution (PoDs) to the stay-back population. Counties determine how many 

days of materials will be distributed to an individual, the locations of PoDs, and the 

quantity of PoDs within their jurisdiction.  

SCEMD uses daily reports from affected counties to determine PoD locations, 

daily commodity distribution quantities, and shipment deliveries [3]. SCEMD processes 

PoD requests in order of priority and provides the county with the shipment’s departure 

and expected arrival time [3]. As previously stated, counties are responsible for unloading 

the material from the shipping vehicle, distributing the items, and completing delivery 

documentation [3].  
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CHAPTER TWO 

 

LITERATURE REVIEW 

 

 

There is a variety of literature on disaster logistics with a considerable breadth of 

cases assessed. Literature related more generally to modeling techniques was also 

reviewed, including vehicle routing, time-expanded networks, and fairness in modeling.  

Optimization Literature Related to Disaster Relief Logistics 

Emergency Supply Pre-positioning 

Rawls and Turnquist (2010) showed a two-stage stochastic mixed integer problem 

with the goal of providing an emergency response pre-positioning strategy for disaster 

threats [10]. This paper’s objective statement minimizes the expected costs over all 

scenarios dependent on the selection of the pre-positioning locations and their size, 

commodity procurement, shipments of supplies to demand points, unmet demand 

penalties, and holding costs for unused materials [10]. Similarly, Salmerón and Apte 

(2010) proposed a two-stage stochastic model to guide pre-disaster planning [11]. The 

first objective of the model is to minimize the expected casualties of individuals requiring 

emergency evacuation groups and those who choose not to evacuate, with the second 

objective of minimizing the unmet needs of individuals who choose to evacuate [11]. 

This paper has a further emphasis on different methods of transit than other papers and 

includes a unique decision variable that determines how many square feet of aircraft 

ramp space should be created [11]. 
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Alem et al. (2021) examine how social vulnerability can be used to effectively 

meet needs within disaster preparedness and logistics modeling [12]. This paper focuses 

on warehouse inventory and capacity with an objective statement to maximize the 

effectiveness of the disaster response [12]. This paper stands apart from other literature as 

a social vulnerability index (SVI) was used to evaluate the extent to which the logistics 

plan covers as many victims’ needs as possible [12]. 

Robust Optimization Modeling 

Robust optimization was used in various papers to model disaster logistics 

planning under uncertain demand represented through scenarios. It was used by Avishan 

et al. (2023) to maximize total utility gained by relief logistics teams, by Ben-Tal et al. 

(2011) to decide emergency response and evacuation traffic flow with time-dependent 

demand uncertainty, and by Wang and Paul (2020) to determine optimal deployment time 

before deciding optimal PoD locations, stockpile capacities, and network flow 

[13][14][15]. 

Case Studies 

Case studies based on real-world logistic problems related to natural disasters can 

be seen in most papers on this subject. Case studies related to the papers discussed in this 

literature review are briefly overviewed here. 

The Rawls and Turnquist (2010) pre-positioning paper includes a case study on 

the Southeast United States due to the Atlantic Basin’s frequent hurricanes [10]. The 

Alem et al. (2021) paper on humanitarian supply chain focuses their case study on Brazil, 

as the country struggles with unequal distribution of commodities and social inequalities, 
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which push the most vulnerable to risky areas or informal settlements [12]. The robust 

optimization papers used the cases of the Van earthquakes that hit Turkey in 2011 and 

hurricane evacuation on the Cape May peninsula in New Jersey [13] [14]. 

There are many other cases examined in other papers beyond those included in 

this review that relate to natural disaster logistics planning, but none that explicitly focus 

on the state of South Carolina. 

Vehicle Routing Problem 

The Vehicle Routing Problem (VRP) minimizes the total cost of travel by 

determining efficient vehicle routes, where a route is a trip that begins and ends at the 

depot and visits a subset of the customers in a specified sequence [16]. Each customer or 

demand node is assigned to exactly one of the vehicle routes, meaning that customer 

demand cannot exceed vehicle capacity [16]. 

Split Delivery Vehicle Routing Problem 

The Split Delivery Vehicle Routing Problem (SDVRP) has an objective of 

minimizing the total traveling costs of vehicles and is commonly used in commercial and 

humanitarian logistics [17][18]. In SDVRP, a fleet of vehicles with identical capacity 

serves a set of customers with a given cost to travel between nodes [17]. A customer’s 

demand can be greater than the vehicle capacity, meaning a demand node may need to be 

visited by multiple vehicles, and its demand may be split among the vehicles [17]. If 

beneficial, demand may be split among different vehicles, even if the demand is not 

greater than the vehicle capacity [17]. The cost of SDVRP is reduced compared to the 

Vehicle Routing Problem, where a single visit to each demand node is imposed [17].  
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A Branch and Cut algorithm can be used to calculate the bounds of an SDVRP. 

Munari and Savelsbergh (2022) introduced two Branch and Cut formulations that use 

vehicle indexing: MTZ and Commodity-Flow [18]. Achietti et al. (2014) also presents 

two formulations referred to as compact formulations because they are not based on 

variables indexed by vehicle or by the visit number [17]. These compact formations are 

titled Two-Index Vehicle Flow and Single-Commodity Flow [17].  

Multiple Trip Vehicle Routing Problem 

The multiple trip vehicle routing problem (MTVRP) is a vehicle routing problem 

that allows for multiple trips when considering continuous time [19]. A trip or loop is a 

sequence of visits to demand nodes preceded and followed by a stop at a depot or 

warehouse [19]. Sequences of trips performed by the same vehicle are referred to as 

journeys [19].  

The most common formulation across previous literature is the four-index 

formulation [19]. This formulation allows for the time of each trip and each journey to be 

constrained [19]. In this model, decision variables related to the arc travel decision or the 

load in a vehicle when traveling an arc are indexed over the vehicle, trip, and two nodes 

which travel occurs between[19]. 

Time-Expanded Network 

Ford and Fulkerson (1958) published Flows in Networks, a research study on  

time-expanded networks, and more specifically, the maximal flow problem and the 

minimum cost flow problem. For a time-expanded network, time is discretized, meaning 

the planning horizon must be partitioned into discrete time intervals [20]. The shorter the 
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interval selected, the higher the quality of the approximation of the continuous-time 

problem, but a shorter time interval also increases the computational difficulty of the 

problem [20]. 

The benefits of a time-expanded network are that it can model time-dependent arc 

capacities, costs, and transit times [21]. In their paper, Ford and Fulkerson assume 

commodity flow originates from one source node and flows through transshipment nodes 

to a sink node where all commodities are destined [22]. 

Minimum Cost Flow Problem 

 The objective of the minimum cost network flow problem is to, as the title 

conveys, minimize the cost of flows over time [21]. An example of a time-expanded 

network can be seen in Figure 2.1. On the left of this figure is network 𝐴, with a node set 

of N={s,v,w,t} and listed travel times. The right side of the figure shows the time-

expanded network 𝐴𝑇 where the set of time periods is T={0,1, … 4}. The time-expanded 

network has a node for each interval [t, t+1) where 𝑡 ∈ 𝑇. The colored arrows in Figure 

2.1 correlate between networks 𝐴 and 𝐴𝑇, and in the depiction of 𝐴𝑇, show when arrival 

occurs based on the time period of departure. 
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Figure 2.1: Time Expanded Network Example [21] 

 

Fairness in Modeling 

Fairness and utility are generally considered conflicting objectives in operations 

research, specifically when modeling a process that will be paid for by taxpayers [23]. 

Fairness, or equity, maximizes the minimum utility of a population, where utility is a 

parameter that assigns the usefulness of an action in aiding an individual or group of 

individuals [23]. Models focusing on utilitarianism maximize the total utility of the aid, 

regardless of differences in the amount of aid provided to each individual [23]. Focusing 

on utility generally attempts to achieve the “most good” or seek the most benefit from an 

investment [23]. 

Singh’s 2019 paper discusses how fairness can be implemented when considering 

scarce resources. In this model, if there is less than 100% coverage for any individual or 

population, that user or population should be allocated what they are considered eligible 



 15 

to receive [24]. In a scenario of scarce resources, the sum of demand (𝑥𝑖𝑘) for resources 

(𝑘 ∈ 𝐾) over individuals seeking that resource (𝑖 ∈ 𝐼𝑘) is less than the total number of 

resources available (𝑏𝑘), while in a scenario with abundance, the sum of demand equals 

the total resources [24]. While there is abundance, the entity of demand is met, while 

scarcity generally allows for only a proportion (𝑦𝑖) of demand to be met [24]. 

Abundant Scenario: ∑ 𝑥𝑖𝑘 < 𝑏𝑘𝑖∈𝐼𝑘
 and  𝑦𝑖 = 1 ∀𝑖 ∈ 𝐼𝑘  

  Scarcity Scenario: ∑ 𝑥𝑖𝑘 = 𝑏𝑘𝑖∈𝐼𝑘
 and  𝑦𝑖 < 1 ∀𝑖 ∈ 𝐼𝑘 

 Singh’s paper also discusses the difference between priority, fairness, 

balance, and proportional fairness. Priority occurs when the weight assigned to a 

population’s proportion of demand met is higher for one population (𝑦𝑖′) than 

another (𝑦𝑖)[24]. Fairness occurs when appropriate priority is achieved and 𝑦𝑖′ > 𝑦𝑖 

[24]. Balance happens when the two populations’ marginal losses are inversely 

proportional to their weights [24]. Finally, Singh’s definition of proportional fairness 

occurs when both populations have a need for the same resource (𝑘 ∈ 𝐾𝑖 ∩ 𝐾𝑖′) and 

both are provided some of that resource while their demand is not completely 

fulfilled (𝑦𝑖′ < 1 and 𝑥𝑖′𝑘 > 0 while 𝑦𝑖 < 1 and 𝑥𝑖𝑘 > 0) [24]. Population 𝑖′ has a 

justifiable reason for complaint when considering proportional fairness if 𝑖′ has less 

than 100% coverage, 𝑖 has received a positive allocation of a resource shared with 𝑖′, 

the coverages are balanced, and 𝑖′ did not receive any of the shared resource or 𝑖 

achieved full coverage [24]. 
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CHAPTER THREE 

 

A PRE-DISASTER LOGISTICS PLANNING MODEL FOR HURRICANE 

EVACUATION SHELTERS IN SOUTH CAROLINA 

 

 

This chapter discusses the assumptions, data inputs, and formulation of a pre-

disaster logistics model and includes a sensitivity analysis for a scenario where a 

Category 3 hurricane hits the entire coast of South Carolina. The model was built using a 

four-index formulation for the multiple trip vehicle routing problem, where priority for 

life-saving commodities is given to the most socially vulnerable. The primary purpose of 

the multi-objective model is to minimize the penalty cost of the logistics plan. 

Minimizing financial costs and the time consumed are the secondary objectives.  

Data Collection and Formulation for Input 

Data was collected from federal and state government documents and resources. 

The South Carolina Emergency Management Division (SCEMD) has also supplied their 

data and provided insights into the current demand forecasting process and decision-

making procedure.  

Discrete Shelter Demand 

The first step to determining the shelter demand was to find the total impacted 

persons for each county, taken from the listed population in the 2020 census [25]. Next, 

the number of persons needing essential commodities is calculated by multiplying the 

number of impacted persons by the social vulnerability index (SVI) of the county, which 

was collected in 2020 and reported by the Center for Disease Control and the Agency for 

Toxic Substances and Diseases Registry [26]. The SVI value used for the calculations is 
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referred to as “RPL Themes,” which represents the overall percentile ranking for SVI, 

according to documentation. SVI for the counties considered in this model can be seen in 

Table 3.1. The number of persons affected in shelters was then calculated by multiplying 

the persons needing basic commodities by the regional percent likely to evacuate and the 

regional percent likely to evacuate to a public shelter (region assumptions can be seen in 

Appendix A, Figure A-1) (percentage values by conglomerate listed in Appendix A, 

Table A-1) [27]. The number of emergency workers must also be calculated to determine 

the total need at the shelters. Emergency workers required per shelter was calculated as 

done in the SCEMD DMP 2023 Workbook, which specifies 2.5 workers are required per 

100 displaced households, or one worker per 100 persons affected in shelters (a 

household is assumed to be 2.5 people). The sum of the number of emergency workers 

and the number of persons affected in shelters is the worst-case deterministic demand for 

hurricanes category 3+. The entire calculation of demand can also be seen in Equation 

3.1. 

Table 3.1: SVI for Counties Considered [26] 

County SVI 

Berkeley 0.2444 

Charleston 0.1111 

Colleton 0.7111 

Dorchester 0.3111 

Georgetown 0.2889 

Horry 0.3556 

Jasper 0.8222 
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Equation 3.1: County Shelter Demand Calculation 

𝐷𝑐 = 𝑇 𝑝𝑐 𝐸𝑃𝑆 𝐸 (1 + 𝑅)  

  where: 

𝐷𝑐: County demand for shelters  

𝑇: Total impacted persons [25] 

𝑝𝑐: SVI of county (SVI is interpreted as the percentage of vulnerable 

population) [26] 

𝐸𝑃𝑆: Percentage of population likely to evacuate to a public shelter [27] 

𝐸: Percentage of population likely to evacuate [27] 

𝑅: Ratio of emergency workers (1/100) 

 Demand is calculated for each county but will be satisfied at shelter locations. 

Shelters within a county can fulfill the demand for that county, but demand is not 

assigned to shelters individually. 

Truck Capacity in Kits 

 Truck capacity was determined in kits, which contain everything an individual 

would need to survive in a shelter for three days. This three-day assumption is because, 

after 72 hours, persons in the shelter require twice as much space, changing the entire 

sheltering strategy and creating a population shift [7]. According to the SCEMD DMP 

2023 Workbook, a person requires three liters of water per day, two meals per day, two 

blankets, and one cot, so a kit contains nine liters of water, six meals, two blankets, and 

one cot. Each unit of demand (a person arriving at a shelter) requires one kit (materials to 

survive for three days) to be considered satisfied.  

 The truck capacity was calculated by looking at the percentage of the truck each 

pallet of a commodity uses. These percentages were correlated to how much demand that 

space could then satisfy. For example, one pallet of water takes up 3.85% of a truck and 
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can serve 112 people. An ideal ratio of the four commodity pallets was determined 

heuristically to find that 768 kits fit on a truck. The values used for this calculation were 

provided in the SCEMD DMP 2023 Workbook and can be seen, along with calculated kit 

values, in Table 3.2 (it is important to note that SCEMD does not have to meet truck 

weight restrictions during emergency scenarios). 

Table 3.2: Kit Calculations per Truck for Three Day Supply 

Commodity Pieces per 

Pallet 

Pallets per Truck 

per Commodity 

People Served 

per Truck 

Percent of Truck 

Used by Commodity 

Water 1008 L 7 784 26.92% 

Meals 576 MRE 8 768 16.67% 

Blankets 120 units 13 780 25.00% 

Cots 48 units 16 768 30.77% 

  Sum: 44 Minimum: 768 Sum: 99.36% 
 

Network Calculations 

The time and distance between the shelters and the starting warehouse in the 

network as well as the shelter’s capacity were also required as an input. Firstly, a 

reference file was created with each shelter’s county, name, address, coordinates, and 

capacity level. This data was found using Annex H to SCEMD’s Hurricane Plan General 

Population and Shelter Management [7]. The distance and time between all nodes in the 

network were calculated using the Google Map API. 

Assumptions 

Two types of assumptions are made to model this scenario: model constraint and 

value. The model constraint assumptions take the form of assumptions modeled through a 
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constraint or are assumptions involved in the overall formulation of the model. The value 

assumptions are parameter values input into the program and are easily adjustable. 

Model Constraint Assumptions 

The first model constraint assumption is that sourcing and packaging have already 

occurred, which means the model only considers routing, delivery, and shelter opening 

decisions. It is also assumed that a perfect storm forecast is provided, and the affected 

population’s decision to evacuate to a shelter can be perfectly predicted, thereby allowing 

the model to be deterministic. The next assumption is that delivery quantities must meet 

shelter capacity, which in some cases exceeds demand, and that there are an unlimited 

number of kits to distribute located at McEntire Joint Base.  

The financial cost is modeled as a sum of the delivery cost and the cost of opening 

a shelter. The delivery cost is based on the fuel and personnel costs associated with the 

determined logistics plan. The cost of opening a shelter is modeled as the salary of the 

required emergency workers (based on the capacity of the shelter) for the period 

beginning when the decision is made to start the delivery process and ending when the 

disaster strikes (this period of time is a decision variable).  

It is assumed that the trucks will make “loops” over the delivery strategy 

following the four-index formulation of the Multi-Trip Vehicle Routing Problem. The 

loops occur when the truck returns to the warehouse to change shifts or reload with more 

kits. 

The final notable assumption within the model is that deliveries can only be made 

to open shelters and that only one truck may visit each shelter. With the given data, some 
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shelters had larger capacities than the truck size, meaning the shelter capacity demand for 

kits is greater than the number of kits that could fit on a truck. In these cases, the shelters 

are “split,” meaning duplicate shelters are made with the exact truck quantity, and the 

difference is put in the original shelter. For example, if a shelter has a capacity of 2,000, 

it would be split twice, resulting in two “new” shelters with a capacity equivalent to the 

truck capacity of 768, and the original shelter will remain with an adjusted capacity of 

464 (2000 − 2(768) = 464). The “new” shelter duplicates would be marked with no 

distance from the original location.  

Value Assumptions 

The penalty cost is a vector of values assumed to be the social vulnerability index 

(SVI) per county. It is used in the objective to encourage the needs of the most vulnerable 

to be met first but does not account for fairness between counties (SVI of relevant 

counties can be seen in Table 3.1). 

The model also requires assumptions for the trucking aspect of the delivery of the 

kits. The first assumption is that four workers would be on each truck, and the workers 

could not work shifts of more than 10 hours. It is also assumed that it would take 30 

seconds to load and unload each kit and that a truck would spend 30 minutes per stop on 

paperwork. 

Value assumptions were also made to calculate and limit the financial cost of 

delivery. The salary assumption is $15 per hour for emergency workers while working 

either in a shelter or on a truck. The next cost assumption is that the truck fuel used for 

delivery costs $0.1 per mile. 
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Shelters have different priority levels, so the state would prefer to open level one 

shelters before opening level two shelters. The available data contains five levels of 

shelters [7]. It is assumed that, within a county, the previous level must have 70% of 

shelters open to open shelters in the next level. 

Some assumptions have been discussed in the previous data collection section, 

such as the use of a kit as a unit that can provide for an individual’s needs while at a 

shelter for three days. The budget of time is assumed to be three days due to the 

sheltering policy’s reallocation of space [7]. Other previously described assumptions 

include the demand calculation and truck capacity. The demand calculation is a 

multiplication of the total impacted people, the SVI, the percentage of the population 

likely to evacuate, and the percentage of the population likely to go to a public shelter 

(seen in Equation 3.1). The truck capacity was determined to be 768 kits using Table 3.2, 

given the three-day supply period. 

Defining the Network   

The network nodes are in set V, with the base location being the cot storage 

location near Columbia, McEntire Joint Base, which is called location 0. The set 𝑉0 is the 

set including only the shelters (all nodes but the base location). Location 0 in set V is the 

source node for the entire network and the sink nodes are the set 𝑉0. The model allows for 

travel between all nodes with arc set A of links (i,j) when i,j ∈V. 

Prepositioning Logistics Model 

This section introduces the prepositioning optimization model for shelter logistics 

planning. 
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Sets: 

𝑐 ∈ 𝐶 Set of counties 

𝑉 

𝑖, 𝑗 ∈ 𝑉 

Set of shelters with base location 0 (SCEMD Warehouse) 

(𝑖, 𝑗) ∈ 𝐴 Set of links from i to j (𝑖, 𝑗 ∈ 𝑉) 

𝑉0 Set V not including location 0;  𝑉0 = 𝑉\{0}  

𝑉(𝑐) ⊆ 𝑉 Set of all shelters in county 𝑐 ∈ 𝐶 

𝑘 ∈ 𝐾 Set of trucks 

𝑟 ∈ 𝑅 Set of loops available to trucks 

𝑛 ∈ 𝑁 Set of shelter priority levels 

 

Parameters:  

𝑞𝑖 Full capacity at each shelter 𝑖 ∈ 𝑉 

𝑇𝑏𝑒𝑓 Time before landfall (Assumed 3 days) 

𝑑𝑐 Demand of county 𝑐 ∈ 𝐶 

𝑝𝑐 Penalty cost of unfulfilled demand per county 𝑐 ∈ 𝐶 

𝐵𝑚𝑎𝑥 Monetary budget limit 

𝑡𝑖𝑗 Time to travel link (𝑖, 𝑗) ∈ 𝐴 

𝑒𝑖𝑗 Distance to travel link (𝑖, 𝑗) ∈ 𝐴 

𝑡𝑢 Unit time to unload or load truck (Assumed 30 sec per kit) 

𝑡𝑝 Unit time to compete paperwork at stop (Assumed 30 min per stop) 

𝑤𝑘 Number of people on truck 𝑘 ∈ 𝐾 (Assumed 4 people) 

𝑄 Truck capacity (Assumed 768 kits) 

𝑙𝑚𝑎𝑥 Maximum loop length in time (Assumed 10 hrs.) 

𝑚𝑠 Salary cost (Assumed $15 per hour) 
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𝑚𝑓 Fuel cost (Assumed $0.10 per mile) 

𝑤𝑐 Weighted financial cost 

𝑤𝑡 Weighted time 

𝑢𝑖𝑛 Binary: 1 if shelter 𝑖 ∈ 𝑉0 is in priority level 𝑛 ∈ 𝑁 

             0 otherwise 

𝐺 Priority between levels of shelters (Assumed 70%) 

 

Decision Variables: 

𝑥𝑖𝑗𝑟
𝑘  Binary: 1 if truck 𝑘 ∈ 𝐾 travels arc (𝑖, 𝑗) ∈ 𝐴 on loop 𝑟 ∈ 𝑅 

             0 otherwise  

𝑦𝑖𝑟
𝑘  Binary: 1 if truck 𝑘 ∈ 𝐾 reaches node 𝑖 ∈ 𝑉 on loop 𝑟 ∈ 𝑅 

             0 otherwise 

𝑓𝑖𝑗𝑟
𝑘  Load on truck 𝑘 ∈ 𝐾 while traveling arc (𝑖, 𝑗) ∈ 𝐴 on loop 𝑟 ∈ 𝑅 

𝑧𝑖 Binary: 1 if shelter 𝑖 ∈ 𝑉0 is open 

             0 otherwise 

𝑡 Amount of time delivery optimization takes 

𝑡𝑘 Amount of time each truck 𝑘 ∈ 𝐾 requires 

𝑏 Amount of money delivery strategy requires to complete 

𝑠𝑐 Demand shortage in county 𝑐 ∈ 𝐶 

 

Formulation: 

𝑚𝑖𝑛 ∑ 𝑝𝑐 𝑠𝑐 + 𝑏 ∙ 𝑤𝑐
𝑐∈𝐶 + 𝑡 ∙ 𝑤𝑡      (1) 

s.t. 𝑦𝑖𝑟
𝑘 = ∑ 𝑥𝑖𝑗𝑟

𝑘
𝑗∈𝑉  𝑗≠𝑖  ∀𝑘 ∈ 𝐾, ∀𝑖 ∈ 𝑉, ∀𝑟 ∈ 𝑅   (2) 

∑ ∑ 𝑡𝑖𝑗𝑥𝑖𝑗𝑟
𝑘

𝑟∈𝑅 + ∑ ∑ (
2𝑞𝑖𝑡𝑢

𝑤𝑘
+ 𝑡𝑝) 𝑦𝑖𝑟

𝑘 ≤  𝑡𝑘𝑟∈𝑅𝑖∈𝑉0𝑖,𝑗∈𝑉 𝑖≠𝑗  ∀𝑘 ∈ 𝐾 (3) 

𝑡𝑘 ≤ 𝑡 ≤ 𝑇𝑏𝑒𝑓  ∀𝑘 ∈ 𝐾      (4) 
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∑ 𝑥𝑖𝑗𝑟
𝑘 𝑡𝑖𝑗 +𝑖,𝑗∈𝑉 𝑖≠𝑗 ∑ (

2𝑞𝑖𝑡𝑢

𝑤𝑘 + 𝑡𝑝) 𝑦𝑖𝑟
𝑘

𝑖∈𝑉0
≤ 𝑙𝑚𝑎𝑥   ∀𝑘 ∈ 𝐾, ∀𝑟 ∈ 𝑅  (5) 

∑ ∑ ∑ 𝑥𝑖𝑗𝑟
𝑘 (𝑒𝑖𝑗𝑚𝑓

𝑘∈𝐾𝑟∈𝑅 + 𝑡𝑖𝑗𝑤𝑘𝑚𝑠)𝑖,𝑗∈𝑉 𝑖≠𝑗 + ∑ (
𝑧𝑖𝑞𝑖𝑚𝑠

100
+𝑖∈𝑉0

2𝑞𝑖𝑡𝑢𝑧𝑖𝑚
𝑠 + 𝑡𝑝𝑧𝑖𝑚

𝑠𝑤𝑘) ≤ 𝑏      (6) 

𝑏 ≤ 𝐵𝑚𝑎𝑥           (7) 

  ∑ 𝑓𝑗𝑖𝑟
𝑘

𝑗∈𝑉 𝑗≠𝑖 − 𝑓𝑖𝑗𝑟
𝑘 = 𝑞𝑖𝑦𝑖𝑟

𝑘   ∀𝑘 ∈ 𝐾, ∀𝑖 ∈ 𝑉0, ∀𝑟 ∈ 𝑅  (8) 

  𝑞𝑗𝑥0𝑗𝑟
𝑘 ≤ 𝑓0𝑗𝑟

𝑘 ≤ 𝑄𝑥0𝑗𝑟
𝑘    ∀𝑘 ∈ 𝐾, ∀𝑗 ∈ 𝑉 𝑖 ≠ 𝑗, ∀𝑟 ∈ 𝑅  (9) 

  𝑓𝑖0𝑟
𝑘 ≤ (𝑄 − 𝑞𝑖)𝑥𝑖0𝑟

𝑘    ∀𝑘 ∈ 𝐾, ∀𝑖 ∈ 𝑉 𝑖 ≠ 𝑗, ∀𝑟 ∈ 𝑅  (10) 

  𝑞𝑗𝑥𝑖𝑗𝑟
𝑘 ≤ 𝑓𝑖𝑗𝑟

𝑘 ≤ (𝑄 − 𝑞𝑖)𝑥𝑖𝑗𝑟
𝑘   ∀𝑘 ∈ 𝐾, ∀𝑖, 𝑗 ∈ 𝑉 𝑖 ≠ 𝑗, ∀𝑟 ∈ 𝑅 (11) 

  ∑ ∑ 𝑦𝑖𝑟
𝑘 = 𝑧𝑖𝑟∈𝑅𝑘∈𝐾   ∀𝑖 ∈ 𝑉0      (12) 

  ∑ 𝑞𝑖𝑧𝑖 + 𝑠𝑐 ≥ 𝑑𝑐𝑖∈𝑉(𝐶)     ∀𝑐 ∈ 𝐶     (13) 

  ∑ 𝑢𝑖,𝑛−1𝑖∈𝑉(𝑐) 𝐺𝑧𝑖 ≤ ∑ 𝑢𝑖𝑛𝑖∈𝑉(𝑐) 𝑧𝑖, ∀𝑐 ∈ 𝐶, ∀𝑛 ∈ 𝑁\{1}  (14) 

  𝑥𝑖𝑗𝑟
𝑘 ∈ {0,1}   ∀𝑖, 𝑗 ∈ 𝑉, ∀𝑘 ∈ 𝐾, ∀𝑟 ∈ 𝑅    (15) 

  𝑓𝑖𝑗𝑟
𝑘 ≥ 0    ∀𝑖, 𝑗 ∈ 𝑉, ∀𝑘 ∈ 𝐾, ∀𝑟 ∈ 𝑅     (16) 

  𝑦𝑖𝑟
𝑘 ∈ {0,1}   ∀𝑖 ∈ 𝑉, ∀𝑘 ∈ 𝐾, ∀𝑟 ∈ 𝑅    (17) 

  𝑧𝑖 ∈ {0,1}   ∀𝑖 ∈ 𝑉0       (18) 

  𝑡 ≥ 0            (19) 

  𝑡𝑘 ≥ 0   ∀𝑘 ∈K       (20) 

  𝑏 ≥ 0         (21) 

  𝑠𝑐 ≥ 0   ∀𝑐 ∈ 𝐶       (22) 
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 The objective function (1) is a multi-objective function with the primary purpose 

of minimizing the penalty cost of the logistics plan. The penalty cost is the SVI, 

multiplied by the demand shortage within each county, to prioritize commodity delivery 

under scarcity to the most vulnerable populations. The secondary objectives are to 

minimize financial cost and time consumed. This will allow for the conservation of 

financial resources and allow the SCEMD team to delay the start of the delivery process 

based on the time required by the delivery strategy (waiting to start delivery allows for 

more certainty in demand). Both time and financial cost have budgets that must be 

enforced, so their inclusion in the objective ensures that the most efficient logistics plan 

is chosen if there is a surplus. 

 Constraint (2) ensures the arrival at a destination cannot occur unless travel occurs 

to that node. The following three constraints relate to time. Constraint (3) limits the time 

each truck spends delivering, and constraint (4) ensures the total time is longer than the 

longest truck and shorter than the time budget. The next constraint (5) guarantees that 

each loop made by a truck consumes less time than an assumed shift length. 

The amount of financial resources spent is constrained by constraints (6) and (7). 

Constraint (6) ensures the sum of the costs of delivery (gas and salary of workers on the 

vehicle) and the shelter opening costs (salary of emergency workers required per location 

to staff for three days) is smaller than the funds spent on the prepositioning strategy. 

Constraint (7) is the financial budget constraint and ensures the delivery strategy does not 

exceed the state’s allocated budget for the disaster event.  
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 The following constraints regulate the flow within the network. Constraint (8) 

constrains the flow balance of commodities, as depicted in Figure 3.1. Constraints (9), 

(10), and (11) limit the flow capacity through the arcs. The next constraint (12) 

guarantees that each shelter is visited by one truck and that a truck arrives only if the 

shelter is open.  

Figure 3.1: Commodity Flow Balance 

 

 The next constraint defines the demand shortage for each county. Constraint (13) 

forces the demand shortage to be more than the difference between the county’s demand 

and the demand met within that county, as seen in Figure 3.2. Constraint (14) guarantees 

ordered opening of shelters based on the prioritization percentage (ensures 70% of 
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shelters within a county and level open before any shelters of the next level within the 

county open) and the shelter’s assigned priority level. The final constraints, (15) through 

(22), define the appropriate domains for each decision variable.  

Figure 3.2: Demand Satisfaction and Shortage 

 

Sensitivity Analysis 

A sensitivity analysis was conducted to measure how variation in the inputs 

affects the solution to the model. The two inputs evaluated were the budget available, 

ranging from $100,000 to $350,000 in increments of $50,000, and the number of trucks 

available, ranging from four to seven in increments of one. Weights 𝑤𝑐=10⁻⁸ and 

𝑤𝑡=10⁻⁴ where the cost and time scalars used in the objective to ensure the penalty cost is 

the primary objective and time and financial cost are secondary objectives. The 

sensitivity analysis results can be seen in Figure 3.3 and Table 3.3. 
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Figure 3.3: Results of Sensitivity Analysis 
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Table 3.3: Results of Sensitivity Analysis 

Objective Value (OV) 

Max Budget (𝐵𝑚𝑎𝑥) OV (nT=4) OV (nT=5) OV (nT=6) OV (nT=7) 

100,000 11,210.24 11,207.50 11,199.30 11,205.67 

150,000   9,897.49   9,893.91   9,905.83   9,906.97 

200,000   8,825.18   8,741.58   8,739.16   8,741.20 

250,000   8,087.78   7,773.43   7,776.32   7,812.49 

300,000   8,087.78   7,457.85   7,307.37   7,303.97 

350,000   8,102.09   7,463.79   7,291.86   7,288.20 

 

Penalty Cost (PC) 

Max Budget (𝐵𝑚𝑎𝑥) PC (nT=4) PC (nT=5) PC (nT=6) PC (nT=7) 

100,000 11,198.75 11,197.81 11,191.50 11,198.75 

150,000   9,880.53   9,879.94   9,893.42   9,893.42 

200,000   8,801.97   8,723.16   8,723.16   8,727.91 

250,000   8,061.86   7,749.44   7,755.89   7,794.66 

300,000   8,061.86   7,431.98   7,283.49   7,283.49 

350,000   8,076.18   7,437.92   7,267.27   7,267.27 

 

Financial Cost ($b) 

Max Budget (𝐵𝑚𝑎𝑥) b (nT=4) b (nT=5) b (nT=6) b (nT=7) 

100,000 $  99,937.48 $  99,949.20 $  99,982.04 $  99,995.03 

150,000 $149,994.38 $149,998.34 $149,946.35 $149,971.02 

200,000 $199,978.58 $199,998.26 $199,994.56 $199,949.54 

250,000 $232,571.74 $249,971.73 $249,380.71 $249,449.20 

300,000 $232,570.03 $284,565.99 $299,362.41 $299,305.91 

350,000 $232,089.10 $282,080.58 $301,526.39 $301,261.11 

 

Time Required (T hrs.) 

Max Budget (𝐵𝑚𝑎𝑥) T (nT=4) T (nT=5) T (nT=6) T (nT=7) 

100,000 31.93 26.91 21.67 19.24 

150,000 47.09 38.80 34.48 37.64 

200,000 64.47 51.16 44.44 36.88 

250,000 71.97 66.62 56.75 49.52 

300,000 71.96 71.82 66.30 56.86 

350,000 71.97 71.85 68.28 58.12 
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The results of the sensitivity analysis were analyzed based on how they affect four 

model outputs: objective value, total penalty cost, financial cost, and time required (each 

has its own graph in Figure 3.3 and its own sub-table in Table 3.3). All outputs followed 

the predicted trends. The objective value and penalty cost (upper left and upper right) are 

almost identical because penalty cost is the primary objective. These graphs (upper left 

and upper right) also reach limits when the penalty cost approaches 7267.2695 because 

the shelters have reached their maximum capacity in the counties with remaining 

demand. Approximately $300,000 is the limit for the financial cost (bottom left), 

indicating that as the penalty cost reaches its limit, the remaining budget is not utilized. 

Finally, the time required for the logistics plan (bottom right) reaches a limit of 72 hours, 

the maximum time possible before the event’s landfall. 

Ability to Meet Demand 

 Demand was met unevenly over the counties throughout the various budget levels 

and truck quantities used in the sensitivity analysis. To show how demand is met based 

on the SVI prioritization, two cases have been further visualized: four trucks with a 

$200,000 budget and six trucks with a $350,000 budget. 

 The first case was run with four trucks and a budget of $200,000 to depict a case 

where the penalty cost was not reduced to the minimum possible value based on the 

limitations of the scenario. In this scenario, Colleton, Dorchester, and Jasper’s demand 

have been fulfilled fully because of the counties’ high SVI values. Conversely, 

Charleston has the lowest SVI value, so it has one of the lowest percentages of demand 

fulfilled. Figure 3.4 shows a comparison between the percentage of demand fulfilled and 
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the number of people with needs that are unsatisfied in this scenario for every county. A 

noticeable issue of fairness between counties can be seen in Figure 3.4; both Berkeley 

and Charleston County have similar demand shortages (5,876 vs. 6,540) but differing 

percentages of the population served (21% vs. 0%). This means Charleston’s needy 

population is not being served because their county, as a whole, is less socially 

vulnerable. 

In Figures 3.4 and 3.6, Horry County is seen as an outlier with a significantly 

higher quantity of demand than other counties because of the use of SVI in demand 

estimation (Horry has an average SVI and a larger population). Further investigation of 

the demand estimation to evaluate this high value’s appropriateness is out of the scope of 

this research. 

Figure 3.5 allows for a visualization of the logistics plan for this scenario. It 

depicts the starting location, the locations of shelters, truck routing, and shading 

indicating the proportion of demand fulfilled. 
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Figure 3.4: Comparison of Unserved Population Count and the Percentage  

of Population Served with Four Trucks and Budget of $200,000 

 

 

Table 3.4: Unserved Population Count and the Percentage of Population Served  

with Four Trucks and Budget of $200,000 

County Persons Un-Served % of Needy Pop. Served 

Berkeley 5876   21.01% 

Charleston 6540     0.03% 

Colleton 0 100.00% 

Dorchester 36   99.50% 

Georgetown 624   79.99% 

Horry 18133     9.36% 

Jasper 0 100.00% 
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Figure 3.5: Logistics Plan with Four Trucks and Budget of $200,000 

 

The second case was run with six trucks and a budget of $350,000 to depict the 

case in this sensitivity analysis with the fewest number of trucks and lowest budget to 

achieve the lowest possible penalty cost. The lowest possible penalty cost value is 

7267.2695 because, as previously discussed, the shelters have reached their maximum 

capacity in the counties with remaining demand. It can be seen in Figure 3.6 that all 

counties, excluding Horry, have unserved demand reduced below 2,000 people and have 

percentages of demand served above 70%. Again, Horry is an outlier due to how demand 

was calculated. 
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Figure 3.7 allows for a visualization of the logistics plan for this scenario and 

depicts the starting location, the locations of shelters, truck routing, and shading 

indicating the proportion of fulfilled demand. The shading in Figure 3.7 shows the drastic 

increase in demand able to be fulfilled compared to Figure 3.5. SCEMD has confirmed 

that their department’s focus is fulfilling demand rather than achieving strict budget 

constraints, so the scenario depicted in Figures 3.6 and 3.7 more accurately represents the 

government’s logic when considering the problem. 

Figure 3.6: Comparison of Unserved Population Count and the Percentage 

 of Population Served with Six Trucks and Budget of $350,000 
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Table 3.5: Unserved Population Count and the Percentage of Population Served  

with Six Trucks and Budget of $350,000 

County Persons Un-Served % of Needy Pop. Served 

Berkeley 1771   76.19% 

Charleston 1793   72.59% 

Colleton 0 100.00% 

Dorchester 23   99.67% 

Georgetown 623   79.99% 

Horry 18133     9.36% 

Jasper 0 100.00% 

 

Figure 3.7: Logistics Plan with Six Trucks and Budget of $350,000 
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Evaluation of Fairness 

Figure 3.8 shows demand satisfaction through the percentage of demand fulfilled 

for the scenario where there are five trucks across the budget range of $100,000 to 

$350,000 with intervals of $25,000. Demand satisfaction occurs more rapidly in counties 

with high SVI, and in most scenarios, some counties have fully met demand before other 

counties receive any commodities. An example can be seen in Figure 3.8, where Colleton 

and Jasper have their demand fully met before Berkeley and Georgetown counties receive 

any kits. This is an issue of fairness because the objective is focused on maximizing the 

utility of the commodities.  

In some cases, demand fulfilled for a county is higher at a lower budget level. In 

the example shown in Figure 3.8, Charleston has 58% of its demand fulfilled with the 

budget capped at $325,000, but when the budget increases to $350,000, the demand 

fulfilled is 49%. This is because some funds used to meet the demand at the lower budget 

level are redirected to meet demand in Horry County as the budget increases. 
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Figure 3.8: Percentage of Need Fulfilled with Five Trucks Over Budget Range  

$100,000 to $350,000 with Intervals of $25,000 

 

Map Interactivity and Solution Visualization 

 Interactive maps like Figures 3.5, 3.7, and 3.8 were made to allow decision-

makers to visualize viable solutions further. Two types of maps were created to show 
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static budget logistics and dynamic demand satisfaction. Both maps types function 

similarly to other maps users would be familiar with as it is intuitive to move and zoom. 

Static Budget Visualizations 

The Folium Python library was used for static budget visualization like Figures 

3.5 and 3.7 [28]. It allows layers to be turned on and off to focus on relevant data. As 

seen in Figure 3.9, each truck has a layer, and the shading can also be turned off. Another 

feature of the interactive maps is that each node and arc can be selected and coded to 

contain pertinent information to the node or arc. In the example shown in Figure 3.10, the 

node marker contains the node’s index and name. 

Figure 3.9: Layers in Static Budget Map 
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Figure 3.10: Node Labels in Static Budget Map 

 

Dynamic Budget Visualization 

The Plotly Python library was used for dynamic budget visualization like the 

example seen in Figure 3.8 [28]. It allows for a draggable sliding budget scale to evaluate 

various budget levels for a constant number of trucks, as visible in Figure 3.11. Also 

pictured in Figure 3.11 are the start and stop buttons, which allow the map to progress 

through budget levels automatically. Similarly to the static budget maps’ node selection, 

the dynamic budget map allows county selection and provides the ability to code 

pertinent information into a popup. In the example pictured in Figure 3.12, the county 

marker contains the county’s index, name, and the percent of demand fulfilled for the 

selected budget level. 

  



 41 

Figure 3.11: Sliding Scale and Legend in Dynamic Budget Map 

 

 

Figure 3.12: Node Labels in Dynamic Budget Map 
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CHAPTER FOUR 

 

A TIME-EXPANDED NETWORK OPTIMIZATION MODEL FOR INTEGRATED 

PRE- AND POST-DISASTER LOGISTICS PLANNING  

 

 

The multi-objective model described in this chapter is an extension of the pre-

disaster sheltering model discussed in Chapter Three. The model’s primary objective is to 

satisfy commodity demand as soon as possible, with the secondary objective of 

minimizing logistics costs. The model now accounts for two decisions, creating a pre-

disaster and post-disaster strategy. It is beneficial for these decisions to be made in the 

same timeline rather than sequentially because it allows for the pre-positioning of PoD 

materials. Pre-positioning at PoD locations increases logistical efficiency and avoids 

post-landfall distribution when possible due to the potential for increased delivery costs 

(in terms of time and potential financial resources). The model is also indexed by time, 

allowing for scenario-specific supply chain disruptions and the introduction of staging 

areas and suppliers. These changes to the model increase the detail of operational-level 

decisions for the overarching tactical planning decisions, meaning the detailed 

operational-level decisions act as an optimization-based simulator. This model aims to 

assess differences between mixed load and single-commodity delivery, evaluate the 

decision maker’s preference of objective prioritization, analyze fairness under scarcity, 

and identify bottlenecks in South Carolina’s current logistics plan. 

Hard Assumptions: Constraining the Model 

Hard assumptions take the form of assumptions modeled through a constraint or 

are assumptions involved in the overall formulation of the model. 
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The first hard assumptions are related to when commodities and trucks become 

available at a node. It is assumed that commodities delivered become available upon the 

truck’s arrival at a location, while the truck is not available until after a delay window 

designated for unloading, loading, and paperwork.  

The next assumption is that a location’s capacity is not considered in the model. 

This means that, in many cases, more individuals are arriving and receiving supplies at a 

shelter than the capacity of that shelter or cluster of shelters. Capacity is not considered in 

this model to reduce the number of constraints, thereby reducing the computational 

difficulty of the problem and allowing for short time periods to be considered. 

It is also assumed that a perfect storm forecast is provided, and the decision to 

evacuate to a shelter by the affected population can be perfectly predicted, thereby 

allowing the model to be deterministic. 

Timely satisfaction of demand is prioritized as the model distributes life-saving 

supplies. The minimized penalty cost is multiplied by each unit of unmet demand and 

summed for every hour to incentivize the satisfaction of demand as quickly as possible. 

Another demand assumption is that fraction satisfaction can occur as long as all 

commodities to achieve the fraction are included.  

The financial cost is assumed to be the sum of the delivery cost and suppliers’ 

commodity purchasing cost. The delivery cost is based on the fuel and personnel costs 

associated with the optimized logistics plan. Purchasing costs are based on the quantity of 

commodities in pallets that leave a supplier. In this model, the opening cost was not 

considered, as all locations included are considered “open.” 
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Finally, the model assumes mixed commodity distribution, where there is no limit 

on the type of commodity in the truck, only on the space capacity within the truck. The 

model is adapted towards the end of this chapter, which includes the adjusted variable 

and constraints for single-commodity distribution.  

Soft Assumptions: Data Collection and Formulation for Input 

Clustering Shelter Nodes Using K-Means 

The shelters in the Charleston area are close to one another, and the time to travel 

between them is too short to lead to a realistic time-expanded model, so the shelters were 

clustered. The clustering algorithm K-means was used because of its ability to cluster 

data by splitting the nodes into k groups and minimizing each cluster’s sum of squares 

[29]. K was selected to be 20 (the starting warehouse was one of the clusters but was not 

paired with any other locations), and the result was 21 clusters of shelters because of the 

decision to separate the generated clusters based on the county boundaries due to demand 

being determined by county and not by shelter location. The reduction from 47 shelters to 

21 clusters will also increase the efficiency of the model. A comparison between the 

nodes before and after clustering can be seen in Figures 4.1 and 4.2. 
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Figure 4.1: Nodes Before Clustering on Map 

 

Figure 4.2: Clustered Nodes on Map 

 

A representative location was selected as a shelter within the cluster because the 

truck would visit all locations regardless during the truck’s delay period, making the 



 46 

shelter selected as the representative location insignificant. The capacities for all shelters 

in a cluster were summed, and this sum became the cluster’s capacity. In this model, 

shelter groups relating to opening order are not considered due to the model’s complexity 

and the inability to keep the integrity of the rankings when clustering.  

Node Specific Data 

 The list of nodes is broken into four categories: suppliers/warehouses, clustered 

shelters, RSAs (regional staging areas or transshipment nodes), and PoDs. The supplier 

locations were provided by SCEMD and the warehouse locations were selected from 

Attachment 2 to the Cot Distribution Mission CONOP and Attachment A of the Logistics 

Plan in the South Carolina Emergency Operations Plan [2] [3]. The shelters were 

collected as described in Chapter 3 and clustered as discussed in the previous section. 

The RSA locations were taken from the SCEMP DMP 2023 Workbook. One PoD 

location was assumed for each county according to guidance from SCEMD; this location 

was selected as the shelter with the highest capacity. With the small size of the counties 

and the length of the time period considered, the exact location of a PoD within the 

county would not affect the solution. 

 Each node has relevant data which was collected or assumed that includes its 

geographical location (address, longitude, and latitude), capacity (for shelters only), the 

starting inventory of all commodities, the purchasing cost (for suppliers only), the starting 

quantity of trucks, the delay for trucks to load/unload, and the penalty cost (for PoDs and 

shelters only).  
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 The geographical location is either listed in Annex H of the Hurricane Plan or was 

found using Google Maps. In some cases, when it came to suppliers and RSAs, an exact 

location could not be identified so an informed assumption was made. Shelter capacity is 

also found in Annex H, and for clustered shelters, the sum of individual shelter capacities 

is used as the cluster’s capacity (capacity was used for data pre-processing, not in the 

model). 

The SCEMD team communicated that they kept no perishable inventory in their 

warehouse, so the suppliers’ starting inventory of food and water is an assumption based 

on the total commodities required to satisfy demand. There are two suppliers and the 

FEMA warehouse which could supply water. It is assumed that the starting location for 

half of the material required is the FEMA warehouse, while the two suppliers have a 

starting quantity of a quarter of the water required to meet demand. For food, there is one 

MRE supplier and the FEMA warehouse. It is assumed that one-third of the MREs come 

from the supplier and the other two-thirds of the food required to fulfill demand comes 

from the FEMA warehouse. The starting location and quantity of cots and blankets are 

taken from Attachment 2 to the Cot Distribution Mission [2]. The state has 12,000 cots, 

and according to the SCEMD, twice the quantity of blankets to accompany the cots. It is 

assumed for simplicity that all these cots are located at the McEntire Joint Base [2] 

The purchasing cost from suppliers is assumed from averages of pallet prices 

taken from Amazon. The cost assumption for supplier water pallets is $361, which was 

calculated as an average of the price of the first ten results on Amazon. The assumption 

for the cost of MRE pallets to satisfy food demand is $1800, which was calculated as the 
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average of the only four results on Amazon. Cots and blankets are borrowed from the 

Red Cross and not purchased, so their purchasing cost is $0 [2]. The cost assumption to 

supply from the FEMA Warehouse is assumed to be 150% of the cost from suppliers as 

FEMA is assumed to have a surcharge for counties to supply through them in exchange 

for commodities with a low lead time. 

The starting location for all trucks is assumed to be the cot storage location at the 

McEntire Joint Base [2]. The assumption for truck quantity is 20, which was evaluated 

using a sensitivity analysis. The delay for trucks to load and unload is one time period for 

all locations that are not clustered, and for clustered locations, the delay was based on 

how many stops were required. If the cluster has two to three locations, two time periods 

are assumed to load/unload and if the cluster includes more than three locations, three 

time periods are assumed to load/unload. 

Finally, the penalty cost is the SVI based on the county where the demand nodes 

are located. The same penalty cost is used for shelters and PoDs, and the values can be 

seen in Table 3.1 [26]. 

Scenario Generation Based on Hurricane Florence’s Trajectory 

The trajectory of Hurricane Florence, a 2018 storm making landfall in North 

Carolina, was the basis for the scenario used to generate demand. The windspeed was 

generated using HURREVAC’s deterministic wind forecast at the time of landfall: 8 am 

on Friday, September 14th [30]. To increase the complexity of the required response, the 

level of the listed windspeed was raised by 35 mph to adjust each listed storm category 

by 2 (a Category 1 storm in HURREVAC became a Category 3 storm in the generated 
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scenario, a strong tropical storm became a Category 2 storm, and a tropical storm became 

a Category 1 storm) [31]. Each county was assigned the highest hurricane category within 

its county lines. A map of windspeeds for Hurricane Florence can be seen in Figure 4.3 

and the hurricane category levels for the counties relevant to this model’s data set can be 

seen in Table 4.1. 

Figure 4.3: Hurricane Florence Predicted Windspeed at Landfall [30] 

 

Table 4.1: Hurricane Category Level 

County Hurricane Category 

Berkeley Cat 2 

Charleston Cat 2 

Colleton Cat 1 

Dorchester Cat 1 

Georgetown Cat 3 

Horry Cat 3 

Jasper No Impact 
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Demand Calculation 

 The most intensive calculation required for each node was its demand calculation. 

The calculations used to calculate the worst-case deterministic demand for each county 

for a Category 3 storm can be seen in Equations 4.1 and 4.2. For more background on 

these calculations see the Chapter 3 section on Discrete Shelter Demand and Appendix A. 

Equation 4.1: County Shelter Demand Calculation 

𝐷𝑐 = 𝐼 𝑝𝑐 𝐸𝑃𝑆 𝐸 (1 + 𝑅)  

  where: 

𝐷𝑐: County demand for shelters  

𝐼: Total impacted persons [25] 

𝑝𝑐: SVI of county [26] 

𝐸𝑃𝑆: Percentage of population likely to evacuate to a public shelter [27] 

𝐸: Percentage of population likely to evacuate [27] 

𝑅: Ratio of emergency workers (1/100) 

Equation 4.2: County PoD Demand Calculation 

𝐷𝑃𝑜𝐷 = 𝐼 𝑝𝑐 (1 − 𝐸)  

  where: 

𝐷𝑃𝑜𝐷: County demand for shelters 

𝐼: Total impacted persons [25] 

𝑝𝑐: SVI of county [26] 

𝐸: Percentage of population likely to evacuate [27] 

 After Category 3 demand was found for both Shelters and PoDs, demand was 

translated into different hurricane category levels using the assumption that the number of 

persons needing basic commodities (𝐼 × 𝑝𝑐) increases or decreases by 20% as the 

category moves away from Category 3 (persons needing basic commodities in a Category 

1 storm is 20% less than Category 2, Category 2 is 20% less than Category 3, Category 3 
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is calculated using Equation 4.1 and 4.2, Category 4 is 20% more than Category 3, 

Category 5 is 20% more than Category 4). The demand values for the category level 

relevant to the current scenario, shown in Table 4.1, were used for the remaining 

calculations. 

 The demand of each county arrives over time (total time = T = 144 hrs), so the 

total demand for each county must be split over a distribution representing shelter arrival 

trends and pod pick-up arrival trends. Shelter arrival was distributed to time periods using 

an S-curve seen in Equation 4.3, and the curves for relevant counties can be seen in 

Figure 4.4 [32] [33]. PoD pick-up arrival was modeled using the assumption of a normal 

distribution where time post-disaster (T/2) was distributed into equal segments (quantity 

of segments = number of time periods in T/2) and then scaled to the size of the county’s 

demand. This normal distribution assumes that most demand arrives at the middle of the 

time period and that PoD pick-up for commodities occurs once per disaster per person, 

meaning the area under the curve equals total demand as compared to if pick-up occurred 

once daily, as seen in Figure 4.5. 

Equation 4.3: S-curve for Shelter Arrival 

𝐿

1 + 𝑒−𝑘(𝑥−𝑥0)
 

  where: 

L: Total county demand for shelters to distribute  

𝑘: Steepness of curve (assumed 0.2) 

𝑥: Equally spaced points in time 

𝑥0: Inflection point (assumed halfway through pre-positioning (T/4)) 
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Figure 4.4: S-curve for Shelter Arrival 

 

Figure 4.5: PoD Normal Distribution Modeling Options 

 

The county demand per time period arriving at individual shelter clusters is 

proportional to the shelter’s capacity in comparison to the total shelter capacity in that 

county. The calculation to find a cluster of shelters’ demand can be seen in Equation 4.4. 
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A similar calculation was not required for PoD locations because there is only one PoD 

location per county, and all demand is assigned to that location. 

Equation 4.4: Shelter’s Capacity-based Demand 

𝑑𝑖𝑡 = 𝑑𝑐𝑡

𝑞𝑖

∑ 𝑞𝑖𝑖∈𝑉1(𝑐)
∀𝑖 ∈ 𝑉1 ∀𝑡 ∈ 𝑇 

  where: 

𝑉1: Set of shelters 

𝑉1(𝑐): Set of shelters in county 𝑐 ∈ 𝐶 

𝑑𝑖𝑡: Shelter demand for shelter i ∈ V1 per time period t ∈ TBef 

𝑑𝑐𝑡: Total county demand for county 𝑐 ∈ 𝐶 per time period 𝑡 ∈ 𝑇𝐵𝑒𝑓 

𝑞𝑖: Shelter capacity in terms of pallets for shelter i ∈ V1 

Commodity Calculations 

 Demand for commodities in a shelter is considered for a three-day period due to 

the additional space necessary to meet requirements after three days, changing the 

sheltering scenario entirely [7]. According to the SCEMP DMP 2023 Workbook, an 

individual staying in a shelter requires three liters of water per day, two meals per day, 

two blankets, and one cot, so to fulfill the three-day demand, they must receive nine liters 

of water, six meals, two blankets, and one cot. All materials must be supplied to the 

individual before their demand can be considered met. From the logistics delivery 

standpoint, mixed commodity delivery is comparable to the kit delivery modeled in 

Chapter 3. 

 Demand for commodities at a PoD is again considered for three days after 

discussion with SCEMD officials. Water and meals are the only commodities in this 

model allocated at a PoD, as they are the most frequently and regularly required 
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commodities distributed, according to SCEMD. To fulfill one unit of PoD demand, an 

individual must receive nine liters of water and six meals.  

 The number of pallet units per truck and commodities required to meet demand in 

fractional units of pallets can be seen in Table 4.2. The pallets per truck and average units 

per pallet were provided for the commodities in the SCEMD DMP 2023 Workbook. 

Factional units of pallets required to fulfill demand at the two types of demand nodes for 

each of the commodities seen in Table 4.2 were calculated using Equation 4.5.  

Table 4.2: Demand Fulfillment and Vehicle Considerations per Commodity 

Commodity Pallet Units 

on Truck 

Pieces per 

pallet 

Fractional Pallet to 

meet Shelter Demand 

Fractional Pallet to 

meet PoD Demand 

Water 26 1008 L 0.008929 0.008929 

Meals 48 576 MRE 0.010417 0.010417 

Blankets 52 120 units 0.016667 0 

Cots 52 48 units 0.020833 0 

 

Equation 4.5: Fractional Pallet Units to Meet Demand 

𝑔𝑖𝑟 =
1

𝑝𝑟/𝑑𝑖𝑟
 

  where: 

𝑔𝑖𝑟: Fractional pallet unit of commodity r to fulfill demand for location  

        type i 

𝑝𝑟: Pieces per pallet of commodity r (pieces units: water in L, meals in  

       MRE, blankets in blankets, and cots in cots) 

𝑑𝑟𝑖: Pieces of commodity r required for 3-day survival for location type i 
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Network Calculations 

The distance and time between all nodes in the network were calculated using a 

Google Map API. The time values were converted to hours, then divided by the length of 

time in the time period, and rounded up as seen in Equation 4.6. 

Equation 4.6: Travel Time 

𝑡𝑖𝑗 = ⌈

𝑇𝑖𝑗

3600
𝑡𝑝𝑒𝑟𝑖𝑜𝑑

⌉ 

  where: 

𝑡𝑖𝑗: Time required in time periods to travel link (𝑖, 𝑗) ∈ 𝐴 

𝑡𝑝𝑒𝑟𝑖𝑜𝑑: Length in hours of time period 

𝑇𝑖𝑗: Time required (seconds) to travel link (𝑖, 𝑗) ∈ 𝐴  

 

The cost to travel each link is based on the fuel cost to travel the distance as well 

as the salary of employees on the truck for the travel and delay time periods. It is 

assumed that four workers per truck were paid $15 per hour and that the fuel cost per 

mile was 10 cents. The calculation to determine the travel cost can be seen in Equation 

4.7. 

Equation 4.7: Travel Cost 

𝑚𝑖𝑗 = 𝑑𝑖𝑗𝑚𝑓 + (𝑡𝑖𝑗 + ℎ𝑗)𝑚𝑠𝑊 

  where: 

𝑚𝑖𝑗: Transportation cost of traveling link (𝑖, 𝑗) ∈ 𝐴 

𝑑𝑖𝑗: Distance in miles to travel link (𝑖, 𝑗) ∈ 𝐴 

𝑡𝑖𝑗: Time required in time periods to travel link (𝑖, 𝑗) ∈ 𝐴 

ℎ𝑗: Truck delay in time periods at location j 

𝑊: Number of workers on truck 

𝑚𝑠: Salary cost per time period 

𝑚𝑓: Cost of fuel per mile 
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Defining the Network 

In this model, warehouses and shelters act the same as discussed in the model 

described in Chapter 3. There are three additional types of nodes in this model: Points of 

Distribution, Regional Staging Areas, and Suppliers. Arcs will now span periods of time, 

and flow between all nodes will follow the theory of the time-expanded network for the 

minimum cost network flow problem. 

The post-disaster supply distribution occurs at nodes assigned as points of 

distribution (PoDs), each with a predicted demand. The PoDs distribute MREs and water 

to the stay-back population (affected individuals who chose not to evacuate). These 

supplies are considered lifesaving and must be delivered to prevent health crises [11].  

Regional staging areas (RSAs) are another additional node type in this network. 

In the model, RSAs act as transshipment nodes. 

The final type of new node is suppliers. The supplier nodes act similarly to the 

warehouses, but each has a cost associated with purchasing the commodity. 

The arc set includes all links except those between PoDs and shelters, links that 

connect to PoDs and shelters with no demand, and links where 𝑖 = 𝑗. Figure 4.6 depicts 

how material flows and the subsets of locations used in the model. Additionally, before 

and after the disaster’s landfall, some arcs within the network may become unavailable in 

certain time periods for various reasons such as flooding, high winds, or evacuation 

traffic. In this scenario, it is assumed that no arcs become unavailable but the model is 

designed to accommodate this in a more complex scenario. 
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Figure 4.6: Commodity Distribution Flow and Location Subsets [3] 

 

It takes a few days to establish a shelter, staging area, or PoD, and in this model, it 

is assumed that the opening process occurs prior to the start of commodity distribution.  

Pre- and Post-Disaster Time-Expanded Network Model 

This section introduces the pre- and post-disaster optimization model with a time-

expanded network.  

Sets: 

𝑉 

𝑖, 𝑗 ∈ 𝑉 

Set of nodes 

𝑉0 

𝑉1 

𝑉2 

𝑉3 

Subset of V including warehouses and suppliers 

Subset of V including shelters 

Subset of V including staging areas 

Subset of V including PoDs 

(𝑖, 𝑗) ∈ 𝐴 Set of links from i to j (𝑖, 𝑗 ∈ 𝑉) 

𝑟 ∈ 𝑅 Set of commodities  

𝑡 ∈ 𝑇 Set of time periods 

𝑇𝑏𝑒𝑓 

𝑇𝑎𝑓𝑡 

Subset of time periods before landfall (Assumed 3 days) 

Subset of time periods after landfall (Assumed 3 days) 



 58 

Parameters:  

𝑑𝑖𝑡 Demand at time 𝑡 ∈ 𝑇 at location 𝑖 ∈ 𝑉1, 𝑉3 

𝑁𝑖𝑟0 Starting inventory of commodities 𝑟 ∈ 𝑅 at location 𝑖 ∈ 𝑉 

𝐶𝑖0 Starting number of trucks at location 𝑖 ∈ 𝑉 

𝑝𝑖 Penalty cost of unfulfilled demand per location 𝑖 ∈ 𝑉1, 𝑉3 

𝑡𝑖𝑗𝑡 Time periods to travel link (𝑖, 𝑗) ∈ 𝐴 at departure time 𝑡 ∈ 𝑇 

ℎ𝑖 Truck delay time at location 𝑖 ∈ 𝑉 

𝑡𝑝𝑒𝑟𝑖𝑜𝑑 Time (in hours) in each time period 

𝑚𝑖𝑗 Transportation cost of traveling link (𝑖, 𝑗) ∈ 𝐴 

𝑤𝑟 Unit weight (capacity of truck taken) by commodity 𝑟 ∈ 𝑅 

𝑤𝑏 Weight of financial cost in objective 

𝑐𝑖𝑟 Unit procurement cost of commodity 𝑟 ∈ 𝑅 from location 𝑖 ∈ 𝑉0 

𝑔𝑖𝑟 Factor of demand per commodity 𝑟 ∈ 𝑅 for location type 𝑖 ∈ 𝑉 

 

Decision Variables: 

𝑓𝑖𝑗𝑟𝑡 Quantity of commodity 𝑟 ∈ 𝑅 traveling link (𝑖, 𝑗) ∈ 𝐴 starting at time period 

𝑡 ∈ 𝑇 

𝐼𝑖𝑟𝑡 Inventory of commodity 𝑟 ∈ 𝑅 at the start of time period 𝑡 ∈ 𝑇 at node 𝑖 ∈ 𝑉 

𝐽𝑖𝑡 Number of vehicles at location 𝑖 ∈ 𝑉 at the start of time period 𝑡 ∈ 𝑇 

𝐾𝑖𝑗𝑡 Number of vehicles traveling link (𝑖, 𝑗) ∈ 𝐴 starting at time 𝑡 ∈ 𝑇 

𝑈𝑖𝑡 Demand shortage at location 𝑖 ∈ 𝑉 at time 𝑡 ∈ 𝑇 (includes unsatisfied demand 

from previous time periods) 

𝑆𝑖𝑡 Demand satisfied at location 𝑖 ∈ 𝑉 at time 𝑡 ∈ 𝑇 

𝑏 Financial Resources delivery strategy requires to complete 
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Formulation: 

𝑚𝑖𝑛 ∑ ∑ 𝑝𝑖𝑈𝑖𝑡𝑡∈𝑇𝑖∈𝑉 𝑡𝑝𝑒𝑟𝑖𝑜𝑑 + 𝑤𝑏 ∙ 𝑏      (1) 

s.t. 𝑈𝑖𝑡 = 𝑈𝑖𝑡−1 − 𝑆𝑖𝑡 + 𝑑𝑖𝑡  ∀𝑖 ∈ 𝑉  ∀𝑡 ∈ 𝑇\{0}    (2) 

 𝑈𝑖0 = 𝑑𝑖0  ∀𝑖 ∈ 𝑉       (3) 

 𝑆𝑖𝑡 ≤ 𝑈𝑖𝑡  ∀𝑖 ∈ 𝑉  ∀𝑡 ∈ 𝑇      (4) 

𝐼𝑖𝑟𝑡+1 = 𝐼𝑖𝑟𝑡 − ∑ 𝑓𝑖𝑗𝑟𝑡𝑗∈𝑉:(𝑖,𝑗)∈𝐴 + ∑ 𝑓𝑗𝑖𝑟,𝑡−𝑡
𝑗𝑖𝑡′+1𝑗∈𝑉:(𝑖,𝑗)∈𝐴: 𝑡−𝑡𝑗𝑖𝑡′+1≥0 −

𝑆𝑖𝑡𝑔𝑖𝑟  ∀𝑖 ∈ 𝑉   ∀𝑟 ∈ 𝑅  ∀𝑡 ∈ {0,1, … 𝑇 − 1}      (5) 

𝐼𝑖𝑟0 = 𝑁𝑖𝑟0  ∀𝑖 ∈ 𝑉  ∀𝑟 ∈ 𝑅      (6) 

𝐼𝑖𝑟𝑡 ≥ ∑ 𝑓𝑖𝑗𝑟𝑡 + 𝑆𝑖𝑡𝑔𝑖𝑟𝑗∈𝑉:(𝑖,𝑗)∈𝐴  ∀𝑖 ∈ 𝑉  ∀𝑟 ∈ 𝑅  ∀𝑡 ∈ 𝑇  (7) 

𝐽𝑖𝑡+1 = 𝐽𝑖𝑡 − ∑ 𝐾𝑖𝑗𝑡𝑗∈𝑉:(𝑖,𝑗)∈𝐴 +

∑ 𝐾𝑗𝑖,𝑡−𝑡
𝑗𝑖𝑡′+1−ℎ𝑖𝑗∈𝑉:(𝑖,𝑗)∈𝐴: 𝑡−𝑡𝑗𝑖𝑡′+1−ℎ𝑖≥0  ∀𝑖 ∈ 𝑉  ∀𝑡 ∈ {0,1, … 𝑇 − 1} (8) 

𝐽𝑖0 = 𝐶𝑖0  ∀𝑖 ∈ 𝑉       (9) 

𝐽𝑖𝑡 ≥ ∑ 𝐾𝑖𝑗𝑡𝑗∈𝑉:(𝑖,𝑗)∈𝐴   ∀𝑖 ∈ 𝑉  ∀𝑡 ∈ 𝑇    (10) 

∑ ∑ 𝑚𝑖𝑗𝐾𝑖𝑗𝑡𝑡∈𝑇𝑖,𝑗∈𝑉: (𝑖,𝑗)∈𝐴 + ∑ ∑ 𝑐𝑖𝑟(𝐼𝑖𝑟0 − 𝐼𝑖𝑟𝑇)𝑟∈𝑅𝑖∈𝑉0
≤ 𝑏  (11) 

∑ 𝑤𝑟𝑓𝑖𝑗𝑟𝑡𝑟∈𝑅 ≤ 𝐾𝑖𝑗𝑡 ∀𝑖, 𝑗 ∈ 𝑉: (𝑖, 𝑗) ∈ 𝐴  ∀𝑡 ∈ 𝑇   (12) 

  𝑓𝑖𝑗𝑟𝑡 ≥ 0  ∀𝑖, 𝑗 ∈ 𝑉: (𝑖, 𝑗) ∈ 𝐴  ∀𝑟 ∈ 𝑅  ∀𝑡 ∈ 𝑇   (13) 

  𝐼𝑖𝑟𝑡 ≥ 0  ∀𝑖 ∈ 𝑉  ∀𝑟 ∈ 𝑅  ∀𝑡 ∈ 𝑇     (14) 

  𝐽𝑖𝑡 ≥ 0, 𝑖𝑛𝑡𝑒𝑔𝑒𝑟  ∀𝑖 ∈ 𝑉  ∀𝑡 ∈ 𝑇     (15) 

  𝐾𝑖𝑗𝑡 ≥ 0, 𝑖𝑛𝑡𝑒𝑔𝑒𝑟  ∀𝑖, 𝑗 ∈ 𝑉: (𝑖, 𝑗) ∈ 𝐴  ∀𝑡 ∈ 𝑇   (16) 

𝑈𝑖𝑡 ≥ 0  ∀𝑖 ∈ 𝑉  ∀𝑡 ∈ 𝑇      (17) 

𝑆𝑖𝑡 ≥ 0  ∀𝑖 ∈ 𝑉  ∀𝑡 ∈ 𝑇      (18) 

𝑏 ≥ 0         (19) 
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The objective function (1) is multi-objective, with the primary purpose of 

minimizing the penalty cost of the logistics plan by satisfying the demand for 

commodities as quickly as possible. The penalty cost is the SVI for the relevant county, 

multiplied by the time in each period to allow for the comparison of different lengths of 

periods and by the demand shortage at each location in every time period. This primary 

objective prioritizes commodity delivery to the most vulnerable populations. The 

secondary objective is to minimize financial costs, ensuring fiscal efficiency. 

Constraints (2) through (4) regulate demand shortages and satisfaction. Constraint 

(2) defines the relationship between unmet demand, satisfied demand, and the demand of 

the current time period as seen in Figure 4.7. The next constraint (3) initializes the 

demand shortage. Constraint (4) guarantees that the demand satisfied is not greater than 

the unmet demand in the current time period. 

 

Figure 4.7: Demand Flow Balance 
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Constraints (5) through (7) constrain the flow of commodities in the network. 

Constraint (5) balances the flow of commodities while allowing commodities to leave the 

system as demand is met, which is depicted in Figure 4.8. The next constraint (6) 

provides the initial location of commodities in pallet quantities. Constraint (7) ensures the 

quantity of commodities leaving a location (to travel or to satisfy demand) in each time 

period is not greater than the current inventory.  

Figure 4.8: Commodity Flow Balance 

 

Constraints (8) through (10) constrain the flow of vehicles. Constraint (8) 

balances the flow of vehicles while accounting for the time to travel and the delay time 

required to complete paperwork as well as load and unload the truck. Figure 4.9 is a 
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visualization of constraint (8). Constraint (9) provides the initial location of the trucks. 

The next constraint (10) guarantees the number of trucks leaving a node is not greater 

than the number currently located there. 

Figure 4.9: Vehicle Flow Balance 

 

Constraint (11) ensures the cost of the solution is less than the funds spent on the 

logistics plan. The cost is broken into two parts: travel and purchasing costs. The travel 

cost (𝑚𝑖𝑗) is based on the gas required to travel the distance from node i to j, the salary 

for employees to staff the vehicle for the time periods required for traveling the arc, and 

the delay to load and unload the vehicle. The purchasing cost is calculated based on the 

quantity of commodities leaving the suppliers and the commodity cost of each supplier. 
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The next constraint (12) guarantees that the truck capacity is not exceeded by 

limiting the number of pallets traveling an arc in each time period based on the number of 

trucks traveling that arc for each commodity. The final constraints (13) through (19) 

define the appropriate domains for each decision variable. 

Adjusting for Single-Commodity Transit 

 The model was adjusted to allow only a singular commodity to be transported in a 

truck. The efficiency of mixed load and single-commodity distribution is compared later 

in this chapter. This affects the decision variable 𝐾𝑖𝑗𝑡 which becomes 𝐾𝑖𝑗𝑟𝑡 and 

constraints (8), (10)-(12), and (16). 

Adjusted Decision Variable: 

𝐾𝑖𝑗𝑟𝑡 Number of vehicles traveling (𝑖, 𝑗) ∈ 𝐴 starting at time 𝑡 ∈ 𝑇 carrying 

commodity 𝑟 ∈ 𝑅 

 

Adjusted Constraints: 

𝐽𝑖𝑡+1 = 𝐽𝑖𝑡 − ∑ ∑ 𝐾𝑖𝑗𝑟𝑡𝑟∈𝑅𝑗∈𝑉:(𝑖,𝑗)∈𝐴 +

∑ ∑ 𝐾𝑗𝑖𝑟,𝑡−𝑡
𝑗𝑖𝑡′+1−ℎ𝑖𝑟∈𝑅𝑗∈𝑉:(𝑖,𝑗)∈𝐴: 𝑡−𝑡𝑗𝑖𝑡′+1−ℎ𝑖≥0  ∀𝑖 ∈ 𝑉  ∀𝑡 ∈ {0,1, … 𝑇 − 1} (8) 

𝐽𝑖𝑡 ≥ ∑ ∑ 𝐾𝑖𝑗𝑟𝑡𝑟∈𝑅𝑗∈𝑉:(𝑖,𝑗)∈𝐴   ∀𝑖 ∈ 𝑉  ∀𝑡 ∈ 𝑇     (10) 

∑ ∑ ∑ 𝑚𝑖𝑗𝐾𝑖𝑗𝑟𝑡𝑟∈𝑅𝑡∈𝑇𝑖,𝑗∈𝑉: (𝑖,𝑗)∈𝐴 + ∑ ∑ 𝑐𝑖𝑟(𝐼𝑖𝑟0 − 𝐼𝑖𝑟𝑇)𝑟∈𝑅𝑖∈𝑉0
≤ 𝑏  (11) 

𝑤𝑟𝑓𝑖𝑗𝑟𝑡 ≤ 𝐾𝑖𝑗𝑟𝑡 ∀𝑖, 𝑗 ∈ 𝑉: (𝑖, 𝑗) ∈ 𝐴  ∀r ∈ R  ∀𝑡 ∈ 𝑇    (12) 

𝐾𝑖𝑗𝑟𝑡 ≥ 0, 𝑖𝑛𝑡𝑒𝑔𝑒𝑟  ∀𝑖, 𝑗 ∈ 𝑉: (𝑖, 𝑗) ∈ 𝐴  ∀𝑟 ∈ 𝑅  ∀𝑡 ∈ 𝑇   (16) 
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Constraints (8), (10), (11), and (16) are structured the same as in the previous 

model; the only update is the change to variable K. In constraint (12), the left-hand side 

of the equation is no longer summed over set R and the constraint now applies to every 

commodity in set R, ensuring there is no mixing of commodities on trucks. 

Analysis of Objective Weights 

 A decision maker’s preference on the priority of minimizing penalty cost or 

financial cost impacts the solution. To evaluate the impact of a decision maker’s 

prioritization, objective weights for the financial cost were analyzed, but first, an ideal 

time period must be determined. 

Time Period Length Analysis 

 The problem was tested with a two- and four-hour time period for the case of 20 

trucks to evaluate the ease and overall ability to find a solution (Table 4.3) (weight of 

financial cost used was 𝑤𝑏=1/100). The time period selected from this evaluation to be 

used in the following tests was four hours, as lengthening the time period drastically 

reduced the computational complexity of the problem. 

Table 4.3: Time Period Length Analysis 

Time 

Period 

Objective  Penalty 

Cost 

Financial 

Cost 

% Gap From 

Lower Bound 

Time to find 

Solution 

2 hours 787812.20 763051.23 2476096.60 0.66% 9 hrs. 

4 hours 873093.61 848142.60 2495101.04 0.03% 1 hr. 
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Analysis of Objective Weights 

A trade-off curve of Pareto-optimal points was generated to test the weight of 

spending in the objective. SCEMD prefers to meet as much demand as possible, so the 

weight of the cost (𝑤𝑏) of the logistics plan in the objective should allow for the cost to 

be minimized in a way that does not interfere with the primary objective of minimizing 

the socially vulnerable population’s unmet demand. Weights smaller than 1/100 were 

found to have no significant effect on the objective and were not evaluated further. 

Various weights larger than 1/100 were evaluated to determine their effect on the primary 

and secondary objectives. The comparison between the primary and secondary objectives 

in a trade-off curve can be seen graphed in Figure 4.10 for various sampled weights. The 

total objective value, as well as all graphed values, can be seen in Table 4.4.  

 As seen in Figure 4.10, there is a drastic increase in penalty cost and a significant 

decrease in financial cost with values larger than 𝑤𝑏=1/4. This increased penalty cost 

shows a major shift in the priority balance between the two objectives. 

SCEMD has indicated its primary priority is delivering life-saving supplies and 

that the cost of distribution is of much lower priority, meaning the government would 

favor a smaller weight, such as 𝑤𝑏=1/100 or 𝑤𝑏=1/10. Through this analysis, the weight 

of 𝑤𝑏=1/100 was found to be optimal for the scale of the model being considered, and 

this weight will be used throughout the subsequent tests. 
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Figure 4.10: Weights of Objectives for Mixed Load Distribution 

 

Table 4.4: Weights of Objectives for Mixed Load Distribution 

Weight of Solution 

Cost (𝑤𝑏) 

 

Objective  
 

Penalty Cost 
 

Financial Cost 

1/100    873,093.61    848,142.60 2,495,101.04 

1/10 1,093,660.38    859,236.55 2,344,238.27 

1/8 1,150,841.04    871,538.82 2,234,417.70 

1/6 1,240,181.32    893,805.77 2,078,253.26 

1/4 1,396,452.47    973,069.28 1,693,532.79 

1/2 1,622,263.16 1,473,362.34    297,801.62 

1 1,684,300.93 1,616,080.65      68,220.29 
 

Comparing Mixed Load vs Single-Commodity Distribution 

Two versions of the model, mixed load vs. single-commodity routing, were 

compared to determine optimality. Mixed load (kit-like delivery strategy) was thought to 
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be a more efficient alternative, while single-commodity delivery is the current practice of 

SCEMD. This analysis will provide background on which routing strategy is most 

efficient and can be used to defend or adapt the current practice. In observing the optimal 

strategy, the sensitivity of both models has been tested with varying quantities of trucks.  

As seen in Figure 4.11, there is the most separation between the objectives at the 

lowest truck quantities. It was determined that single-commodity delivery generally has a 

higher objective value and that as the number of trucks in the system increases, the 

objective value of single-commodity delivery approaches mixed load delivery (Figure 

4.11).  

Figure 4.11: Objective Values of Sensitivity Analysis with  

Varying Truck Starting Quantities 
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Table 4.5: Objective Value of Sensitivity Analysis with 

Varying Truck Starting Quantities 

Delivery Strategy 14 16 18 20 22 24 

Mixed Load 880,841 873,271 873,150 873,094 873,190 872,881 

Single-Commodity 948,929 903,955 887,466 877,968 877,244 876,366 
 

Figure 4.12 shows the penalty cost values resulting from the sensitivity analysis, 

and the graph’s shape is identical to that in Figure 4.11 due to the high priority of penalty 

cost in the objective (see Table 4.6 for data graphed). The financial cost of logistics is 

depicted in Figure 4.13, showing a significantly less clear trend, but as the number of 

trucks increases and the penalty cost decreases, the cost of delivery increases (see Table 

4.7 for data graphed). The inconsistencies seen in the graph are due to the cost being the 

secondary objective. While the cost of single-commodity distribution appears more 

economical in Figure 4.13, less demand is met, so fewer commodities are being 

purchased from suppliers. This indicates that single-commodity distribution is not more 

affordable because, as shown in Figure 4.14, the ratio of purchasing cost to logistics cost 

is consistent across solutions. An aspect of logistics unaccounted for in these models is 

the cost of labor required for loading, unloading, and packaging materials, which would 

be more difficult with the mixed load strategy.  
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Figure 4.12: Penalty Cost of Sensitivity Analysis with Varying  

Truck Starting Quantities 

 

 

Table 4.6: Penalty Cost of Sensitivity Analysis with Varying Truck Starting Quantities 

Delivery Strategy 14 16 18 20 22 24 

Mixed Load 856,594 848,320 848,188 848,143 848,233 847,946 

Single-Commodity 925,057 880,237 862,639 853,004 852,223 851,412 
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Figure 4.13: Logistics Cost of Sensitivity Analysis with Varying  

Truck Starting Quantities 

 

Table 4.7: Logistics Cost of Sensitivity Analysis with Varying Truck Starting Quantities 

Delivery Strat. 14 16 18 20 22 24 

Mixed Load 2,424,649 2,495,217 2,496,128 2,495,101 2,495,711 2,493,598 

Single-Comm. 2,264,247 2,371,963 2,482,688 2,496,381 2,502,046 2,495,404 
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Figure 4.14: Ratio of Financial Cost Parts 

 

The conclusion from Figures 4.11, 4.12, and 4.13 is that mixed delivery is more 

effective for disaster logistics planning in South Carolina with the given inputs. 

In the tests conducted so far, the penalty cost has approached a high value (see 

Figure 4.12), meaning there is a limiting factor preventing the solution from further 

reducing the penalty cost. This factor is not the number of trucks, as increasing the 

vehicle quantity does not drastically affect the penalty cost. For this model, the starting 

quantities of cots and blankets are considered the limiting factor in further reducing 

unmet demand. The number of cots used as an input was based on actual data rather than 

a quantity which would allow for all the demand to be met [2]. In the next sections, a case 

will be considered where there are enough cots to meet demand. 

Purchasing Cost Logistics Cost



 72 

Analysis of Objective Weights with No Cot Limitations 

The input values for the starting quantities at suppliers and warehouses must be 

adjusted to consider a model where all demand could be met. Table 4.8 shows the 

minimum quantity that could be used to meet demand with a limited number of cots and 

the actual model input in the first two columns (the true quantity used is slightly higher to 

ensure all demand has the chance to be satisfied). The final two columns in Table 4.8 

show the minimum quantity which could be used to meet demand with an “unlimited” 

supply of cots and the value used as an input for the model. 

Table 4.8: Starting Quantities (in Pallets) of Commodities in the Model 

Commodity Min. Quantity Model Input Min. Quantity 

with no Cot Lim. 

Model Input 

with no Cot Lim. 

Water 768 778 1019 1024 

Meals 896 907 1189 1194 

Blankets - 250 850 855 

Cots - 200 680 684 
 

The objectives’ weights were measured again to determine the optimal weight of 

financial cost in the objective function; the trade-off curve and results can be seen in 

Figure 4.15 and Table 4.9. Figure 4.15 resembles Figure 4.10, so the same conclusions 

were drawn, and 𝑤𝑏=1/100 will again be the weight used throughout the subsequent tests. 
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Figure 4.15: Weights of Objectives with No Cot Limitation for Mixed Load Distribution 

 

Table 4.9: Weights of Objectives with No Cot Limitations for Mixed Load Distribution 

Weight of Solution 

Cost (𝑤𝑏) 

 

Objective  
 

Penalty Cost 
 

Financial Cost 

1/10    503,423.72    204,253.45 2,991,702.62 

1/8    585,981.89    209,273.14 3,013,670.06 

1/6    705,335.13    242,629.62 2,776,233.06 

1/4    922,535.58    318,560.51 2,415,900.29 

1/2 1,328,173.44    855,198.54    945,948.81 

1 1,573,934.60 1,558,899.16      15,035.43 
 

Comparing Mixed vs Single-Commodity Distribution with No Cot Limitations 

 The sensitivity of the quantity of trucks was re-evaluated under the condition that 

there were enough cots to fulfill all demand; the graph and table of objective values can 
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be seen in Figure 4.16 and Table 4.10. This trend is much more dramatic, indicating that 

additional cots in the starting value allows the number of trucks to become the bottleneck. 

Truck quantities were not tested beyond 20 because, at this point, practically all demand 

is satisfied.  

 Figure 4.16 shows that mixed load and single-commodity distribution strategies 

follow parallel curves rather than converging curves, as seen in the scenarios with limited 

cots. This is because there is no longer a limit on the ability to meet demand. Figures 4.16 

and 4.17 show that the mixed load strategy is again more efficient at fulfilling demand 

with a limited number of trucks. 

Figure 4.16: Objective Values of Sensitivity Analysis with Varying Truck  

Starting Quantities and No Cot Limitations 
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Table 4.10: Objective Value of Sensitivity Analysis with Varying Truck  

Starting Quantities and No Cot Limitations 

Delivery Strategy 8 Trucks 12 Trucks 16 Trucks 20 Trucks 

Mixed Load 795,866.9 497,599.1 287,265.2 206,079.8 

Single-Commodity 877,149.8 594,881.8 546,994.7 308,294.9 
 

Figure 4.17 depicts the penalty cost values from the sensitivity analysis. The 

graph’s shape is practically identical to that in Figure 4.16 because penalty cost has a 

high priority in the objective (see Table 4.11 for data graphed). The financial cost of 

logistics is shown in Figure 4.18. As the number of trucks increases and the penalty cost 

decreases, the cost of delivery increases (see Table 4.12 for the graphed data). 

Figure 4.17: Penalty Cost of Sensitivity Analysis with Varying Truck  

Starting Quantities and No Cot Limitations 
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Table 4.11: Penalty Cost of Sensitivity Analysis with Varying Truck  

Starting Quantities and No Cot Limitations 

Delivery Strategy 8 Trucks 12 Trucks 16 Trucks 20 Trucks 

Mixed Load 746,491.3 470,558.5 255,328.8 173,356.2 

Single-Commodity 860,537.5 569,402.3 517,592.2 277,078.6 

 

Figure 4.18: Logistics Cost of Sensitivity Analysis with Varying Truck  

Starting Quantities and No Cot Limitations 

 

Table 4.12: Logistics Cost of Sensitivity Analysis with Varying Truck  

Starting Quantities and No Cot Limitations 

Delivery Strategy 8 Trucks 12 Trucks 16 Trucks 20 Trucks 

Mixed Load 1,937,560 2,704,066 3,193,639 3,272,360 

Single-Commodity    166,128 2,547,952 2,940,242 3,121,627 
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 The solution to the model, when it has all the cots and blankets required to meet 

demand, has a large gap from the lower bound. The gaps can be seen in Table 4.13. This 

analysis has been based on the best solution found, but the best solution could be lower 

because of the gap. The gap does not influence the trends identified in this section but 

does affect the specific data values listed in Tables 4.10, 4.11, and 4.12. 

Table 4.13: Solution Gap from Lower Bound for Sensitivity Analysis 

Delivery Strategy 8 Trucks 12 Trucks 16 Trucks 20 Trucks 

Mixed Load 7.45% 34.16% 37.54% 13.28% 

Single-Commodity 19.68% 44.57% 67.17% 41.97% 
 

Evaluation of Fairness 

Figures 4.19 and 4.20 show demand satisfaction through the percentage of 

demand fulfilled for the scenario where there are enough cots to fulfill all demand across 

a range of trucks available to distribute using mixed load delivery. Demand satisfaction 

occurs more rapidly in counties with a high SVI, and in some scenarios, some counties 

have fully met demand before other counties receive any commodities. This is considered 

an issue of fairness because the social vulnerability of a community does not represent 

individual vulnerability. For example, there could be highly vulnerable individuals and 

families in counties that do not receive any aid in their county due to their affluent and 

resilient neighbors. This issue of fairness occurs because the objective is focused on 

maximizing the utility of the commodities. 
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The unmet demand was determined using the demand unmet in the final time 

period, so while Figures 4.19 and 4.20 may indicate that all demand was met, it does not 

indicate if that demand was met for all time periods in the time horizon. 

Figure 4.19: Shelter Demand Satisfaction using Mixed  

Truck Distribution and No Cot Limitations 

 

In rare cases, demand fulfilled for a county is higher with a lower truck quantity 

than it is with a higher truck quantity. In the example shown in Figure 4.20, Charleston 

County has 96% of its demand fulfilled with 16 trucks, but when the number of trucks 

increases to 20, the demand fulfilled is 78%. This occurs because some trucks used to 

meet demand when there were 16 trucks are redirected to meet demand in Dorchester 

County as the number of trucks increases. 
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Figure 4.20: PoD Demand Satisfaction using Mixed  

Truck Distribution and No Cot Limitations 

 

 Figures 4.21 and 4.22 are similar to Figures 4.19 and 4.20 but depict a single-

commodity distribution strategy. Figure 4.21 shows a drastic example of shifting demand 

fulfillment between truck quantities 12, 16, and 20. 
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Figure 4.21: Shelter Demand Satisfaction using Single-Commodity  

Distribution and No Cot Limitations 

   

In the 20-truck scenario of Figure 4.22, it appears as if all PoD demand is met 

when, in actuality, the model does fulfill the PoD demand which appears in the final time 

period of the model.  
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Figure 4.22: PoD Demand Satisfaction using Single-Commodity  

Distribution and No Cot Limitations 

 

Map Interactivity and Solution Visualization 

 Interactive maps depicting the results in Figures 4.19, 4.20, 4.21, and 4.22 allow 

decision-makers to visualize viable solutions and dynamic demand satisfaction. The 

Plotly Python library was used to generate visualizations that intuitively zoom and allow 

for movement within the map. It allows for a draggable, sliding scale to evaluate various 

truck quantities and their effect on the solution (Figure 3.11). The visualization also 

allows for county selection and provides the ability to code pertinent information into a 
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popup (Figure 3.12). Solution visualization is an important desire of SCEMD as it can 

allow them to see the numbers they work with and can help them better understand the 

consequences of logistical decisions.  
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CHAPTER FIVE 

 

CONCLUSION 

 

Conclusions  

This paper presents models that optimize scenario-dependent logistics plans, 

provides options for the visualization of logistic solutions, and suggests alternatives to 

some aspects of the government’s current logistics plan, which can aid in the efficiency 

of the distribution of life-saving supplies. The study found that a mixed load distribution 

strategy favors SCEMD’s prioritization of meeting as much demand as possible, but the 

difficulty of the mixed load strategy increases depending on suppliers’ scenario-

dependent distribution. Another conclusion is that the quantity of cots and blankets 

located in the state could be considered a bottleneck, and future state plans could include 

the identification of more available cots for disaster scenarios. An overarching finding is 

that the utility of commodities to demand units when using a social vulnerability-based 

penalty does not lead to fair distribution. Based on these conclusions, SCEMD could 

consider adjusting its comprehensive plans to accommodate mixed truck distribution, 

include additional available cots, and account for fairness under commodity scarcity. 

While the models were designed and constrained to accommodate perfect storm 

and evacuation predictions, they have applications beyond that assumption for post-

disaster delivery. There will be demand scenarios in which the models are applicable 

where decision makers have full knowledge of demand, such as post-disaster sheltering 

and commodity requirements for hurricanes, earthquakes, or wildfires. The model can 
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also be used with a rolling-horizon approach, solving the problem day by day with 

realized demand. 

Limitations 

The main limitation to the accuracy of the model’s solutions is the accuracy of the 

demand inputs. Previous state assumptions were based on the same percentage of demand 

across all counties, which has been improved upon in this study but is still an assumption 

input for the model, which affects the results. Inaccuracy in the time-expanded model is 

related to the long time period utilized to reduce the model’s computational complexity. 

Another limitation of the models is that they do not have SCEMD’s expertise in 

disaster logistics. These models should be used as a starting point in logistics planning or 

for practice scenarios but do not replace the experienced decision-makers on the SCEMD 

team. 

Future work 

Future work could include creating a stochastic adaptation of the model to account for 

the uncertainty of if, when, where, and with what magnitude a hurricane could impact 

South Carolina. It would also be beneficial if options for ensuring fairness under scarcity 

were further explored. Finally, discussions with SCEMD should continue to determine 

how the models can be adapted or further constrained to model their decision-making 

more accurately.  
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Appendix A 

Conglomerate Data 

 
 

Figure A-1: Regional Boundaries Used When Referencing Conglomerate Data: These conglomerates were 

used when referring to data which referenced conglomerates. 

 

Cat 3+ Regional Percentages 

Conglomerate % Evacuate to 

public shelter 

% Unlikely to 

evacuate 

% Likely to 

evacuate  

Southern 0.109 0.066 0.857 

Central 0.19 0.128 0.742 

Northern 0.227 0.165 0.707 

State 0.178 0.121 0.767 
Table A-1: Regional Percentages of Evacuation Actions Based on Conglomerates.[27] 
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