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ABSTRACT 
 
 
Federated learning has emerged as a solution to the challenges faced by traditional 

centralized machine learning approaches, such as data privacy, security, ownership, and 

computational bottlenecks. However, federated learning itself introduced new challenges, 

including system heterogeneity and scalability. Existing federated learning approaches, 

such as hierarchical and heterogeneous federated learning, address some of these 

challenges but have limitations in real-world scenarios where multiple issues coexist, 

particularly in large-scale, heterogeneous environments like mobile applications and IoT 

devices. This work proposes a new federated learning architecture that combines 

heterogeneous federated learning and hierarchical federated learning into a unified 

architecture. The proposed approach aims to address the limitations of existing 

architectures by building clusters of models based on their types and usage of in-cluster 

models’ weights averaging to create an ensemble of heterogeneous models for further 

knowledge distillation into student models of different types that are to be distributed into 

respective clusters to continue training. The created implementation of the proposed 

architecture showed accuracy comparable with accuracy of FedDF chosen as a baseline 

heterogeneous federated learning architecture within the same environment with slight 

advantage in convergence speed in some cases. 
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CHAPTER ONE 
 

INTRODUCTION 
 
 

Background and motivation 

Machine learning has made significant advancements in recent years in many 

domains such as computer vision and natural language processing. However, traditional 

centralized machine learning approaches when all the data is gathered in one storage and 

used to train one or several models face challenges related to data privacy, security, data 

ownership, and computational bottlenecks. There are multiple scenarios where data cannot 

be placed into one silo due to legal or business reasons, or due to physical limitations of 

communication channels or storage itself. E.g., in many countries, healthcare institutions 

have quite a limited ability, if any, to share patients’ data that significantly affects the 

ability to use that data for training machine learning models although it could improve the 

healthcare services quality and patients experience. 

Federated learning emerged as a solution to these limitations, enabling 

collaborative learning across distributed clients while keeping data localized. In a typical 

federated learning setup, a central server coordinates the training process by aggregating 

local model updates from participating clients. However, while in theory federated learning 

provides an ideal solution for distributed settings, in practice it collided with reality and 

introduced new challenges, such as system heterogeneity as computational resources vary 

significantly among clients, non-IID data as the data in real scenarios typically is not 

distributed perfectly equally across clients, communication efficiency as it is required to 
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take into account how much and how often model data should be transferred among clients 

and the server, privacy leakage as in some cases it is possible to restore some training data 

from just changes of trained models, adversarial attacks as even small percentage of hostile 

clients in a system can poison the training process and models, incentive mechanisms as 

the contribution among clients can vary significantly, and scalability as in some scenarios 

the number of clients can be quite large. Thus, with growing connectivity of the world, 

increasing with each day amount of data, dynamically changing laws in the sphere of 

artificial intelligence and variety in data handling practices in different countries and 

companies federated machine learning and consequently its challenges are becoming a 

more and more important topic in the field of artificial intelligence. 

To address these challenges, various federated learning architectures have been 

proposed. For example, hierarchical federated learning introduced multiple levels of 

aggregation to improve scalability and handle data heterogeneity, ensemble federated 

learning combined multiple models to enhance performance and robustness of the system, 

heterogeneous federated learning incorporated ensemble federated learning and knowledge 

distillation to support models with different architectures within one federated setup. 

Problem definition 

However, existing approaches have limitations in real-world scenarios where 

multiple challenges coexist. In domains like mobile applications or IoT devices, the 

number of model instances can reach millions or billions, data cannot be gathered in one 

place due to privacy issues and physical limitations, and models may have different 

architectures due to hardware heterogeneity or business requirements. In such scenarios 
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federated learning approaches with multiple clients connected directly to a central server 

struggle with scalability, while hierarchical approaches solving the scalability issue do not 

support heterogeneous models. 

Consequently, there is a need for a federated learning architecture that combines 

the benefits of existing approaches while addressing their limitations. The desired 

architecture should allow different model architectures within a single federated setup, be 

highly scalable, and ensure coverage of all data during training to avoid situations where 

some features are underrepresented due to data being non-IID. By developing such an 

architecture, the aim is to enable effective and efficient federated learning in large-scale, 

heterogeneous environments. 

Solution Approach 

The approach chosen to address the challenge is to combine heterogeneous 

federated learning built with ensemble federated learning and knowledge distillation, and 

hierarchical federated learning into a unified architecture. Different types of models are 

trained on different subsets of data allowing to match models’ complexity with clients’ 

computational resources. Ensemble federated learning is used to combine different types 

of the models providing the ability to utilize all the heterogeneous models for inference. 

Knowledge distillation enables the transfer of knowledge from a heterogeneous ensemble 

acting as a teacher model to student models, allowing to create new models for each type 

using all collected knowledge from all types of the models. Hierarchical federated learning 

introduces multiple levels of aggregation, grouping clients into clusters based on the model 

types instead of spatial proximity or data features, and performing local aggregation before 
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sending updates to the central server. It improves scalability by reducing the 

communication burden on the central server and enables more efficient learning in large-

scale federated networks. 

Results 

To validate the proposed approach, experiments were conducted using the CIFAR-

10 dataset. The proposed architecture and several architectures (FedAvg, HierFAVG, and 

FedDF) used as baseline ones were implemented, trained, and evaluated based on accuracy 

and convergence speed. While the proposed architecture with heterogeneous models 

showed lower performance compared to FedAvg and HierFAVG with homogeneous 

models, its accuracy was comparable to FedDF with heterogeneous models, and in some 

cases, it converged faster than FedDF on a similar setup. 

However, the conducted experiments have some limitations, including sparse 

model architecture and hyperparameter tuning, the relatively small scale of the emulated 

distributed system, limiting the application domains to image classification and the use of 

IID data only that should be addressed in future research along with employing less data-

hungry models and evaluating the communication overhead in comparison to other 

architectures to investigate the potential advantages of the proposed architecture as the 

achieved during the experimentations results are only slightly and not always better than 

existing solutions. 
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CHAPTER TWO 
 

BACKGROUND AND RELATED WORK 
 
 

Machine Learning and Deep Learning 

Machine learning is a field of study that develops algorithms and models to perform 

tasks by learning from data, instead of being explicitly programmed. Its ability to extract 

insights and discover patterns from data caused wide adoption across multiple domains. 

Machine learning techniques are typically split into three main approaches based on the 

nature of feedback available during the learning process. 

Supervised Learning [1] fits a mapping function from input data to target output 

labels based on labeled training examples. It’s applicable in the cases where historical or 

known data is used to make predictions on unseen data. Supervised learning is widely used 

in tasks such as email filtering [2], image classification [3], voice recognition [4] or 

diagnostics [5]. Common algorithms include linear/logistic regression [6][7], decision trees 

[8], kernel methods [9], ensemble techniques [10], and neural networks [11]. 

In contrast, Unsupervised Learning [12] is used for discovering patterns and 

clusters directly from unlabeled data without any supervision. It captures important 

features in the data and uncover underlying structure through methods like clustering [13], 

dimensionality reduction [14] and association analysis [15]. Unsupervised learning allows 

to extract information from raw data that is critical for exploratory analysis, clustering [13], 

anomaly detection [16] and extracting features for downstream tasks. 
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Another paradigm, Reinforcement Learning [17], is a paradigm where an agent 

learns to take optimal actions to maximize a reward signal by interacting with an 

environment. Unlike supervised learning's static datasets, reinforcement learning agents 

improve through trial-and-error, making it suitable for systems control and decision-

making in dynamic environments. Reinforcement learning achieved significant results in 

game-playing [18], robotics [19] and recommendation systems [20] with techniques like 

Q-learning [21], policy gradients [22] and actor-critic methods [23]. 

Finally, Deep Learning [24], a subfield of machine learning inspired by the brain 

structure, brought advances into many domains. Deep neural networks, composed of 

multiple layers of simple units, learn features directly from raw data unlike traditional 

machine learning algorithms that perform better when the important features are found, 

extracted and preprocessed in advance. This allows to automate the feature engineering 

process and to improve performance on highly complex, real-world datasets. Deep learning 

achieved notable success in areas like computer vision with convolutional neural networks 

[25], natural language processing with transformer models [26], and generative modeling 

with variational autoencoders [27] and diffusion models [28]. However, key limitations of 

deep learning models include the need for large, labeled datasets, poor interpretability, 

adversarial vulnerabilities and encoding societal biases [29]. 

However, while the capabilities of machine learning systems have grown rapidly 

during the last decade, several challenges have to be addressed for real-world deployment. 

One challenge is data bottlenecks. Many techniques are data-hungry and require 

labeled examples which can be costly and impractical to acquire. Data-centric approaches 
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like transfer learning, active learning, weak supervision, and self-supervision are promising 

directions. 

Another one is interpretability. Complex models often lack transparency, making it 

difficult to understand the reasoning behind their outputs. It reduces trust, accountability, 

and adoption in high-stakes domains [32]. Explainable artificial intelligence approach aims 

to provide insights into these "black box" models. 

Robustness is also a concern. Machine learning systems can be vulnerable to 

distribution shifts [33], adversarial attacks [34] and compounding errors [35]. Improving 

robustness is crucial for safe usage. 

Another issue is that most models excel at capturing correlations but struggle with 

causal reasoning, limiting their ability to generalize or extrapolate. 

A significant challenge is encoding social biases. Since machine learning models 

learn from data, they can often absorb and integrate societal biases like gender, racial or 

age discrimination that may be presented in the training datasets [36]. These encoded biases 

can lead to unfair and discriminatory outcomes when deployed in decision-making systems 

impacting people's lives. Careful data curation, bias measurement techniques and bias 

mitigation algorithms are needed to make models fairer and more inclusive. 

Lastly, adversarial vulnerabilities. Deep neural networks have been shown to be 

susceptible to small, carefully crafted perturbations to inputs designed to cause 

misclassification. These adversarial examples expose blind spots and lack of robust 

reasoning in models. Adversarial training, defensive distillation and certifiable robustness 

are areas of research aiming to make models more secure against such attacks. 
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Federated Machine Learning 

However, despite the undeniable advancements in machine learning, the traditional 

centralized approach has several challenges. 

Data privacy is a significant concern in centralized training as it often requires 

storing all the data in one location. This raises issues of data privacy, especially when 

dealing with sensitive data like healthcare information or financial records [37]. Data 

breaches or unauthorized access can have severe consequences for individuals. 

Closely related to privacy is the issue of data security. Centralized data storage also 

presents security vulnerabilities. Malicious actors may attempt to steal, modify, or corrupt 

the data, compromising the integrity of the trained model, and to do so they need to breach 

into only one location. 

Moreover, data ownership and governance raise questions about control and access. 

Issues arise regarding who owns the data, who can access it, and how the benefits from 

having the data are distributed [38]. 

From a technical perspective, centralized learning can face computational 

bottlenecks. Training on massive datasets often requires significant computational 

resources. Centralized servers can become overloaded, leading to bottlenecks, and 

hindering the training process. 

Lastly, centralized approaches can straggle with limited data availability. In some 

cases, data may be siloed across different organizations or individuals due to privacy 

regulations such as General Data Protection Regulation in the European Union or 
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ownership restrictions. Centralized approaches struggle to use this fragmented data for 

model training. 

These challenges highlight the need for alternative approaches that prioritize data 

privacy, security, and ownership while enabling collaborative learning from distributed 

data sources. Federated learning [30] was created as a solution to address the limitations of 

centralized learning. It is a distributed machine learning paradigm where the model training 

occurs collaboratively across multiple devices or silos while keeping data localized. In a 

typical naive federated setup, the generalized workflow can be described with the next 

steps: 

1. Global Model Distribution. A central server broadcasts a global model to all 

participating clients. This initial model can be pre-trained on a general dataset or a 

smaller set of aggregated data. 

2. Local Model Training. Each client downloads the global model and trains it locally 

on its own private data. This training process updates the model weights based on 

the local data. 

3. Model Update Aggregation. Clients upload only the trained model updates to the 

central server, not the data itself. 

4. Global Model Update. The central server aggregates these model updates from 

multiple clients using various techniques. The aggregated update is then applied to 

the global model, improving its overall performance. 
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5. Iterative Training. This process of model distribution, local training, update 

aggregation, and global model update is repeated for multiple rounds, iteratively 

improving the model's performance. 

 

While federated learning can be beneficial in some circumstances, it also brings 

new challenges.  

One of them is system’s heterogeneity as in federated settings the participating 

devices can have significant system’s heterogeneity in terms of compute capabilities, 

available memory, network connectivity, energy constraints, and software environments. 

This system's heterogeneity needs to be taken into account during the architecture design. 

For example, embedded devices like sensors and IoT gadgets may be very constrained in 

the sense of computational power compared to cloud servers. Naive federated 

implementations could lead to stragglers and bottlenecks. Asynchronous and adaptive 

communication strategies [39], lossy compression techniques [40], and heterogeneity-

aware optimization methods [41] may be required. 

Another challenge in federated learning is dealing with non-independent and 

identically distributed (non-IID) data. A key premise of federated learning is using the 

distributed data across devices to achieve better generalization compared to models trained 

in isolation. However, the non-IID data distributions resulting from different device usage 

patterns and biases can lead to data heterogeneity. Naively aggregating model updates from 

such heterogeneous data can degrade performance or cause convergence issues [31]. 
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Communication efficiency is also a critical consideration in federated learning due 

to the repeated exchange of models/updates between the server and devices. Efficient 

communication strategies [42] are critical, especially when dealing with bandwidth 

constraints and devices with limited connectivity like mobile phones. Methods like 

gradient compression [43], model quantization [40] and more intelligent update scheduling 

[41] can help reduce the overall communication overhead. 

Privacy leakage is another concern in federated environments as while the core idea 

of federated learning is to avoid direct sharing of data, care must be taken to prevent 

information leakage through the parameter updates exchanged during training [44]. 

Approaches like differential privacy [45] can inject the right amount of noise to model 

updates to achieve strong privacy guarantees. However, these privacy-preserving methods 

can impact model performance and add computational overhead, requiring careful analysis 

of the privacy-accuracy trade-offs. 

Federated learning also faces challenges related to adversarial attacks. In open 

federated settings, there are concerns around the reliability, security and integrity of the 

end devices participating in the training process. Adversaries could inject malicious 

updates to degrade the global model, honest devices could drop out due to failures or low 

connectivity, and hardware faults could lead to corrupted updates [46]. Federated solutions 

need methods to detect and filter out such poisoned updates, handle device failures 

gracefully, and provide resilience against a range of attacks like model poisoning, backdoor 

insertion, and reconstruction attacks. 
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Incentive mechanisms is another important consideration for federated learning across 

independent entities like organizations or individuals as having effective incentive 

structures and monetization models is important to inspire participation [47]. There are 

concerns that participants with more resources could disproportionately impact the global 

model. Reputation-based updates weighting, proof-of-stake mechanisms, along with 

pricing schemes and contractual obligations can influence desired participant behavior. 

Lastly, scalability remains a significant challenge in federated learning. Many 

federated use cases like personalized content recommendations involve extremely large 

and dynamic populations of participating devices. Handling such a massive scale with 

potentially millions of unreliable nodes poses scalability challenges. Hierarchical 

architectures, sharding approaches [48], efficient sampling/sketching [49], and gossiping 

protocols [50] are some solutions being explored to enable scalable federated learning 

solutions. 

In summary, while federated learning provides an elegant solution, there are 

multiple challenges that need to be taken into account for real-world deployments. 

Hierarchical Federated Learning 

As it was mentioned earlier, among the key challenges in federated learning settings 

there are, especially at large scale with numerous client devices, the communication 

bottleneck caused by the models’ parameters transfer between the central server and client 

nodes, latency in communications between client nodes and the central server that emerges 

due to geographical distribution of nodes and aggregation process bottleneck that can be 
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caused by storage I/O limitations on the central server. To address these limitations and 

improve scalability, hierarchical federated architectures have been proposed. 

In a hierarchical federated setup [51], there are at least two levels of parameter 

aggregation instead of a single central server. Client nodes are clustered into groups with 

each group having an intermediate server that first aggregates model updates from its local 

cluster. The intermediate model updates are then passed up to a global server for final 

aggregation. 

For hierarchical federated learning, the generalized workflow can be described as 

follows: 

1. Global Model Distribution. The global server initializes and broadcasts the global 

model to a set of intermediate cluster servers/coordinators. These cluster servers 

can be geo-distributed edge servers or selected participants with higher compute 

capabilities. 

2. Cluster-level Model Distribution. Each cluster server then distributes the global 

model to the participating client nodes within its local cluster. 

3. Local Model Training. Similar to traditional federated learning, each client device 

trains the model locally using its private data. 

4. Cluster-level Aggregation. Clients upload their locally trained model updates to 

their respective cluster servers. The cluster servers then aggregate these updates 

from clients within their cluster, using various techniques. 

5. Cluster-to-Global Aggregation. The intermediate cluster updates are then sent back 

to the global server for another round of aggregation across all clusters. Various 
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algorithms can be employed here as well, accounting for cluster weights, 

reputations, or data characteristics. 

6. Global Model Update. The global server applies the aggregated cluster updates to 

the global model. 

7. Iterative Training. Steps 1 through 6 are repeated for multiple communication 

rounds until the global model converges or other criteria are met. 

 

Beyond the initial communication efficiency motivation, hierarchical architectures 

have also been explored for handling additional challenges. 

One such challenge is handling data heterogeneity. Intelligent clustering strategies 

can group statistically similar client data distributions together. The intermediate 

aggregations help mitigate client drift caused by heterogeneous data distributions - often a 

key challenge in cross-silo federated settings. 

Other advantages of hierarchical architectures are the possibility to implement 

asynchronous training updates relatively easily [52] and tolerance to node faults or 

dropouts. The global server can proceed with aggregation from available intermediate 

clusters without stalling with fewer issues than synchronous centralized approaches. 

Recent works [53][54][55] have explored hierarchical federated learning 

architectures for on-device intelligence and continual learning applications on edge devices 

like mobile phones and IoT nodes. Intermediate model aggregation at edge servers can help 

combine real-time learned updates from fast model evolution at the edge with periodic 

consolidation and updating of global cloud models. 
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However, while Hierarchical Federated Learning offers better scalability than naive 

Federated Learning architectures, it still keeps some issues and introduces new challenges. 

One challenge is determining the optimal cluster configuration [56][57] which 

involves factors like data similarity, communication costs, privacy constraints, and 

fairness. Sub-optimal clustering can lead to poor performance and inefficiency. 

Another challenge is intra-cluster concept drift, where the intermediate model 

aggregations within clusters can cause the cluster-level model to diverge from the global 

model over time [58]. Finding a balance between frequent global aggregations and 

preventing intra-cluster representation drift can be a dynamic trade-off. 

Privacy and security are also concerns in Hierarchical Federated Learning as the 

multi-level aggregation exposes more opportunities for potential privacy leakage compared 

to traditional federated learning. Rigorous privacy-preserving and security mechanisms are 

required to protect against attacks across the hierarchy. 

Additionally, in cross-silo settings, designing effective incentive mechanisms that 

ensure fair participation, honest contributions, and fair reward sharing across the cluster 

hierarchy can be more challenging, especially in the presence of dynamic clustering. 

Communication-efficiency trade-offs also need to be considered as while 

Hierarchical Federated Learning can help to reduce overall communication cost, it 

introduces additional overhead for intra-cluster and inter-cluster communication. Efficient 

communication strategies and trade-offs between model compression, update frequency, 

and convergence need to be analyzed for each individual case. 
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Cluster heterogeneity and fairness are also important considerations, as 

heterogeneity in cluster sizes, capabilities, and data distributions can lead to fairness 

concerns and disproportionate influence on the global model [59]. Techniques for fair 

resource allocation, weighted aggregation, and ensuring equitable contributions are 

important considerations. 

Lastly, Hierarchical Federated Learning primarily focuses on aggregating local 

updates to a shared global model, assuming all clients train compatible models. However, 

in real-world scenarios, clients may have distinct data characteristics, system’s constraints, 

or application requirements demanding diverse model architectures or hyperparameters. 

Enforcing strict global model consistency across all levels of the hierarchy can lead to 

suboptimal performance for clients with unique model requirements and hinder the ability 

to use specialized local models. 

In summary, Hierarchical Federated Learning offers a promising approach to 

address scalability challenges in large-scale federated learning settings. By introducing 

multiple levels of aggregation and clustering strategies, it can help mitigate issues like 

client drift and fault tolerance. However, it also introduces new challenges related to 

optimal cluster configuration, intra-cluster concept drift, privacy risks, incentive 

misalignments, communication-efficiency trade-offs, cluster heterogeneity, fairness, and 

model heterogeneity. Addressing these challenges requires careful design considerations 

and novel techniques that balance the benefits of hierarchical architectures with the unique 

requirements and constraints of specific federated learning scenarios. 
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Ensemble Federated Learning 

Still, one of key challenges of hierarchical federated learning is inefficiency with a 

heterogeneous system. To address the issue, several other concepts should be considered, 

and the first one is ensemble learning [60] that combines multiple base models to improve 

prediction accuracy and robustness compared to using a single model. The key idea behind 

ensemble learning is that the combination of diverse models can lead to better 

generalization performance by leveraging the strengths of individual models and mitigating 

their weaknesses. Ensemble learning has been widely used in various domains and has 

achieved state-of-the-art performance in many machine learning tasks. The success of 

ensemble learning can be attributed to its ability to reduce overfitting, improve 

generalization, and handle complex data distributions, which is a combination that is 

critical for federated learning. 

Ensemble federated learning [61] is an approach that combines the principles of 

federated learning and ensemble learning to improve the performance and robustness of 

federated learning systems. The main idea behind ensemble federated learning is to 

leverage the benefits of ensemble learning in the federated setting by training multiple 

diverse models on distributed data and combining their predictions. 

There are several motivations for usage of ensemble techniques in federated 

learning. 

First, ensemble learning can help improve the generalization performance of 

federated learning models by reducing overfitting and taking into account diverse patterns 

in the decentralized data [62]. 
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Second, federated learning often involves non-IID (non-independently and 

identically distributed) data across clients, which can lead to performance degradation. 

Ensemble methods can mitigate the impact of data heterogeneity by combining models 

trained on different data distributions. 

Third, federated learning systems are vulnerable to adversarial attacks, such as data 

poisoning or model update manipulations. Ensemble techniques can enhance the 

robustness of federated learning by reducing the influence of individual malicious clients 

or models. 

In ensemble federated learning, a central server distributes ensemble models to 

clients, who train and update them locally using ensemble techniques. Clients send only 

model updates to the server, which aggregates them to improve the global ensemble while 

preserving privacy. This process is repeated iteratively until the desired performance is 

achieved, and the final ensemble is used for inference on new data. In a typical ensemble 

setup, the generalized workflow can be described with the next steps: 

1. Global Model Distribution. A central server initializes several global models to 

form an ensemble. These models can be diverse in architecture, initialized 

randomly, or pre-trained on various datasets to ensure diversity. The server 

distributes the ensemble of models to all participating clients. Depending on the 

strategy, clients may receive all models or a subset to reduce computational and 

communication overhead. 
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2. Local Model Training. Each client receives one or more models from the ensemble. 

Locally, clients train each model on their private data. Post-training, clients 

generate updates for each model they trained. 

3. Model Update Aggregation. Clients send their model updates back to the central 

server. The central server aggregates updates for each model separately. 

4. Global Ensemble Update. The updated models are integrated into the global 

ensemble. Integration techniques can vary, including simple averaging, weighted 

voting, or meta-learning models that learn how to best combine the ensemble's 

outputs. 

5. Iterative Training. The process of distributing the updated ensemble, local training 

on clients, updating aggregation, and global ensemble updating repeats for multiple 

rounds. With each iteration, the ensemble models are trained, improving the overall 

predictive performance and robustness against diverse data distributions. 

 

While ensemble federated learning is showing good results, there are several 

challenges. 

One challenge is ensemble weight optimization, particularly in the presence of data 

heterogeneity and client variability. Designing efficient and adaptive weight optimization 

methods that can handle the federated learning setting can be case-by-case and not a trivial 

problem. 

Another challenge is data heterogeneity and non-IID data. Although ensemble 

federated learning can help mitigate the impact of data heterogeneity to some extent by 
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combining models trained on different local datasets, it does not completely solve the 

problem of non-IID data across clients. The performance of ensemble models can still be 

affected by significant differences in data distributions, and specialized techniques for 

handling non-IID data may be necessary. 

Communication bottlenecks are also a concern in ensemble federated learning as 

the learning process can suffer from communication bottlenecks as the number of clients 

increases, due to the need to exchange model updates between the clients and the server. 

Ensemble federated learning does not inherently solve the scalability issue and can even 

worsen the situation due to multiple models needing to be trained on each client. 

Another one is models’ heterogeneity. While Ensemble Federated Learning in 

theory allows the use of heterogeneous models, heterogeneity is quite limited as it typically 

requires each client to train a subset of models. 

Lastly, ensemble federated learning increases the workload for each client as each 

client should train a set of models. This increased workload can be problematic for clients 

without powerful hardware, limiting their ability to effectively participate in the federated 

learning process. 

Knowledge Distillation 

The second concept that is used to address the system heterogeneity problem is 

knowledge distillation [63] that is used for transferring the knowledge from a large and 

complex model (teacher) to a smaller and simpler model (student), without directly sharing 

the raw data between the models. The key idea is to train the student model to mimic the 

behavior or outputs of the teacher model, by minimizing the divergence between their 
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predictions, while also fitting the student model to the local data on each client in the case 

of federated setting. Knowledge distillation in federated learning is motivated by the fact 

that the global model learned by federated learning may be too large or complex to be 

deployed to resource-constrained devices, such as mobile phones, IoT sensors, or 

wearables. In addition to the deployment benefits, there are several other reasons why 

knowledge distillation is gaining traction in machine learning. 

First, knowledge distillation can lead to improved performance for smaller models. 

By using the knowledge of a well-performing teacher model, even a smaller student model 

can achieve competitive accuracy on the target task [64]. 

Second, knowledge distillation can significantly reduce the training time and 

computational resources required for the student model compared to training it from 

scratch [65]. This is especially valuable when dealing with limited training data for the 

target task. 

Third, knowledge distillation can potentially improve the robustness of the student 

model by helping it learn from the teacher's knowledge, which might encompass a wider 

range of patterns or scenarios compared to the limited target data [63]. 

The typical knowledge distillation workflow involves the following steps: 

1. Teacher Model Pre-training. A complex model (teacher) is trained on a potentially 

large dataset relevant to the source task. This teacher model is assumed to capture 

rich and effective knowledge for the task. 
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2. Student Model Selection. A smaller and less complex model (student) is chosen for 

the target task. This model architecture might be specifically designed for 

deployment on resource-constrained devices. 

3. Joint Loss Optimization. During the student model training process, two main loss 

functions are typically optimized: 

○ Target Task Loss. This loss measures the student model's performance on 

the target task using labeled data. 

○ Distillation Loss. This loss encourages the student model to mimic the 

behavior of the teacher model. This can be achieved by comparing the 

student's predictions with the teacher's predictions (soft targets). 

4. Knowledge Transfer and Model Improvement. Through the combined optimization 

of both loss functions, the student model gradually learns not only from the target 

data but also from the distilled knowledge of the teacher model, leading to 

improved performance. 

 

While knowledge distillation is a useful technique for transferring knowledge from 

a large and complex model to a smaller and simpler model, it also has several problems 

and limitations that need to be considered. 

One of the main challenges of knowledge distillation is the capacity gap between 

the teacher model and the student model. If the student model is too small or simple 

compared to the teacher model, it may not be able to fully capture and retain the knowledge 

distilled from the teacher model, leading to a significant performance gap between the two 
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models [66]. On the other hand, if the student model is too large or complex, it may not 

provide significant advantages in terms of model compression, eliminating the purpose of 

knowledge distillation. 

Another problem of knowledge distillation is the potential inconsistency between 

the knowledge distilled from the teacher model and the true knowledge required for the 

target task. This can happen when the teacher model is not well-suited for the target task, 

or when the distillation process introduces noise or bias into the transferred knowledge. In 

such cases, the student model may learn to mimic the behavior of the teacher model but 

fail to generalize well to new data or situations. 

The success of knowledge distillation heavily depends on the quality and quantity 

of the data used for distillation. If the data is noisy, biased, or insufficient, the distilled 

knowledge may be inaccurate or incomplete, leading to poor performance of the student 

model. In federated learning scenarios, this problem can be aggravated by the data 

heterogeneity and imbalance across different clients, making it difficult to ensure 

consistent and reliable knowledge distillation. 

Computational overhead is another consideration in knowledge distillation. While 

knowledge distillation can help to reduce the computational cost of large models, the 

distillation process itself can be computationally expensive, especially when dealing with 

complex models and large datasets. 

Additionally, the performance of knowledge distillation can be sensitive to the 

choice of hyperparameters, such as the temperature scaling factor, the distillation loss 

weight, or the learning rate. Finding the optimal hyperparameters for a given task and 
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dataset can be challenging and time-consuming, especially in federated learning scenarios 

where the data and models are distributed across multiple clients. 

Lastly, knowledge distillation can make the resulting student model less 

interpretable and explainable, as the distilled knowledge may not have a clear 

correspondence to the original features or concepts of the task. This can be problematic in 

applications where model interpretability is important, such as healthcare or finance, where 

the decisions made by the model need to be transparent and justifiable. 

In summary, even with all its caveats knowledge distillation is a powerful technique 

for transferring knowledge from large and complex models to smaller and simpler models, 

which is particularly useful in federated learning scenarios where the global model may be 

too large or complex to be deployed on resource-constrained devices. However, to 

implement knowledge distillation it is required to define a loss function that would measure 

the difference in outputs between a teacher model and a student model. 

Kullback-Leibler divergence 

Kullback-Leibler (KL) divergence [67] is a measure that quantifies how much one 

probability distribution diverges from a reference probability distribution. 

 

DKL(P(x) || Q(x)) = ∑ P(x) ln(P(x) / Q(x)) 

 

 It is widely used in statistics, data science and machine learning as it can be applied 

in anomaly and fraud detection, model and data monitoring, model selection, clustering, 
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and many other domains. However, there are several limitations and properties that should 

be taken into account: 

● KL divergence is asymmetric, so in many cases DKL(P || Q) ⧣ DKL(Q || P) 

● KL divergence is not a distance and cannot be used to define a metric space. 

Consequently, it cannot be used to measure how far apart distributions from 

each other 

● KL divergence is non-negative, equals to zero only if P(x) = Q(x) for each 

x and is undefined if Q(x) = 0 

 

 Due to its properties, Kullback-Leibler divergence was used for knowledge 

distillation as KL divergence allows to measure a difference in distributions between 

teacher model output logits and student model output logits. Therefore, KL divergence is 

utilized as a loss function with weighted inputs from a teacher and a student model forcing 

the student model to mimic the teacher up to some degree. This weighted approach also 

allows to have and balance different objectives for the teacher and the student models. 

Additionally, to provide the student model with richer information and transfer nuances in 

teacher’s predictions revealing more information about the teacher’s uncertainty and the 

relative likelihood of non-maximum classes, the distribution of those teacher model output 

logits can be smoothed by applying a temperature scaling factor. 

In summary, KL divergence is a crucial component of knowledge distillation, 

where it quantifies and helps minimize the difference between the teacher and student 

models' predictions.  
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Heterogeneous Federated Learning 

Federated learning has emerged as a promising approach for collaborative machine 

learning across distributed clients without compromising data privacy. By allowing the 

clients to train models locally on their own data and only share the model updates with a 

central server, federated learning can mitigate the risks of data breaches and privacy 

violations. However, naive federated learning frameworks assume that all clients have 

similar data distributions and model architectures. This assumption is often violated in 

practice due to the inherent diversity of the clients. 

One aspect of this diversity is data heterogeneity, where clients may have different 

data distributions, such as different feature spaces, label spaces, or data volumes. This can 

lead to significant variations in the local models trained by each client, making it difficult 

to aggregate them into a global model that performs well for all clients. 

Another aspect is model heterogeneity, where clients may have different 

computational resources and system constraints, such as different memory sizes, 

processing speeds, or energy budgets. This can lead to the need for different model 

architectures or hyperparameters for each client, making it challenging to maintain a 

consistent global model across all clients. 

Lastly, objective heterogeneity can arise when clients may have different learning 

objectives or tasks, such as different target domains, cost functions, or fairness criteria. 

This can lead to conflicting or incompatible goals among the clients, making it hard to find 

a global model that satisfies all clients. 
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These heterogeneities can significantly degrade the performance and convergence 

of traditional federated learning algorithms, leading to suboptimal models, slow 

convergence, or even divergence. Moreover, they can also introduce fairness and 

robustness issues, where some clients may benefit more from the global model than others, 

or the global model may be biased towards certain clients or data distributions. 

To address these challenges, the field of heterogeneous federated learning [68] has 

emerged, where a central server coordinates a learning process across clients with diverse 

computational resources, data distributions, and differing model architectures. The 

objective is to optimize a global model or a set of personalized models that perform well 

across all clients, accommodating the inherent diversity in the federated network. The 

typical workflow for heterogeneous federated learning can be described through the 

following steps. 

1. Central Models Distribution. The central server prepares a central model, or a set 

of models tailored to the heterogeneity in the client devices and data. This could 

involve varying model architectures designed to be compatible with the 

computational capabilities of different clients. The server distributes the central 

model(-s) to all participating clients. 

2. Local Model Training. Each client receives a model that best fits their local 

environment. Clients train the received model on their local datasets. 

3. Model Update Aggregation. After local training, clients prepare and send their 

model updates back to the central server. Depending on the chosen approach, the 

server might distill the knowledge from an ensemble of the client models into the 
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central model and then distill it from the central model to the models with 

architectures that corresponds to the clients’ model architectures or distill it directly 

from the ensemble of the client models into the models with architectures that 

corresponds to the clients’ model architectures. 

4. Iterative Training. The process of model distribution, local training, update 

contribution and server-side heterogeneity handling is repeated iteratively for 

multiple rounds. 

 

 While Heterogeneous Federated Learning combines advantages of Ensemble 

Federated Learning and Knowledge Distillation, it also inherits many of their problems, 

such as the need for ensemble weight optimization, a limited ability to handle data 

heterogeneity and non-IID distributions, teacher-student capacity gap, knowledge 

inconsistency, data quality and quantity for knowledge distillation, computational 

overhead, knowledge distillation hyperparameter sensitivity, and potential deterioration in 

model interpretability. In addition, Heterogeneous Federated Learning keeps the traditional 

for non-hierarchical potential scalability issue. 
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CHAPTER THREE 
 

PROBLEM STATEMENT 
 
 
 As we can see, there are multiple approaches to federated machine learning 

addressing different issues. A naive federated learning approach solves the problem of 

model training on distributed data in a setting where it is not possible to access all the data 

from one place. Hierarchical federated learning allows to scale federated learning almost 

indefinitely by introducing multiple layers of intermediate aggregators. Ensemble 

federated learning lets us improve the performance by adding ensembles into the federated 

environment. And heterogeneous federated learning combines ensemble federated learning 

and knowledge distillation to create an architecture where it is possible to utilize models 

with different architectures in the same federated system. 

 However, while the mentioned approaches address separate issues, many real-

world systems typically meet multiple issues at the same time. For example, it may be 

sufficient to use naive federated learning approach in the environment with several or even 

dozens of clients, but in the world of mobile and IoT devices this approach is becoming 

virtually unfeasible as we would need to aggregate billions of models on each aggregation 

round, and for that we need to communicate with billions of clients that is limited by the 

network throughput and store all the models in the central storage that is limited by its 

capacity and I/O. One of solutions for this problem is to utilize for aggregation only a 

random subset of the client models on each round, but taking into account the potential 

scale of the problem in many cases an acceptable subset would include just a fraction of a 

percent of all clients that can lead to slow convergence, a lower achievable performance 
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and underrepresentation of some data during the training. Hierarchical federated learning 

solves this problem, but by its nature it demands each single client model to have the same 

architecture. This demand can significantly affect models in an environment with huge 

differences in client devices’ performance and make federated learning virtually 

impossible in some cases such as changing models’ architecture in the mobile applications 

during application updates as those updates in most cases initiated by users and are not 

guaranteed that leads to the situation where different groups of devices can have dozens of 

different versions of the application installed. If different versions contain different model 

architectures, it makes the setup incompatible with hierarchical federated learning 

approach. This particular problem is solved by heterogeneous and ensemble federated 

learning, but as well as a naive federated learning approach, neither heterogeneous 

federated learning nor ensemble federated learning is capable of scaling without taking a 

hit on convergence speed and the maximum achievable performance. 

 Thus, we can clearly see the case where the existing approaches to federated 

learning are potentially suboptimal - domains such as mobile applications or IoT / network 

devices where the count goes into millions or billions of models’ instances, the data cannot 

be shared, and models should have different architectures due to devices hardware 

heterogeneity, a business cycle or environment limitations. If we combine the approaches 

into one table considering this case, we will see it distinctly. 

 

 Scalability Heterogeneity 

Naive FL no no 
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Hierarchical FL yes no 

Ensemble FL no limited 

Heterogeneous FL no yes 
 

Table 1.1. Architectures feature comparison 

 

Therefore, our task is to try to compose an architecture that would allow different 

models’ architectures within one federated setup, be virtually indefinitely scalable and 

cover all the data during training to avoid the situation where some data is randomly 

underrepresented during the training. 
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CHAPTER FOUR 
 

PROPOSED ARCHITECTURE AND BASELINE MODELS 
 
 

As the main task of the new architecture is to resolve the conflict between 

heterogeneity and scalability in the existing approaches, three architectures were chosen as 

baseline ones. 

FedAvg 

 The first baseline architecture, FedAvg introduced in 2017 [69], is the most 

fundamental and well-known approach in federated learning that serves as a commonly 

used benchmark for evaluating the effectiveness of more complex architectures in the sense 

of accuracy, convergence speed, and communication overhead. Despite its simplicity, 

FedAvg has achieved good performance in many applications and has been widely 

adopted. Comparing against FedAvg allows for a clear assessment of whether the new 

architecture brings significant improvements over this basic approach. 

 For this work a set of clients was created with appointing each client to a separate 

subset of the data. At each round a random subset of clients were trained on the respective 

data subsets, after which the trained clients were collected on a central server and averaged. 

The resulting model was spread among all clients for further training. The algorithm can 

be written as follows. 
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Server executes: 

 initialize model M 

 for each round do 

  K <- (random subset of clients) 

  for each client k in K do 

   M’ <- ClientUpdate(k) 

  M <- (average weights across M’) 

 

ClientUpdate(k): 

 receive model Mk 

 for each local epoch do 

  M’ <- (train Mk on the local dataset) 

 send M’ to server 

 
Listing 1.1. FedAvg algorithm 

 

HierFAVG 

 As one of two factors in the addressed issue is scalability, the second baseline 

architecture should represent hierarchical federated learning as it allows to scale a system 

virtually indefinitely. While there are a lot of variations in this approach that address 

different aspects such as decreasing latency across cellular networks by M.S.H. Abad et al. 

[70], improving performance on non-IID data via automated hierarchical clustering by 

Cristopher Briggs et al. [57], decreasing network workload with models quantization by 

Lumin Lui et al. [71] or with cluster formation in respect to data distribution by YongHeng 

Deng et al. [72], increasing the convergence speed via cluster formation based on the 

computational resources similarity and asynchronous communications by Zhiyuan Wang 

et al. [73], increasing privacy with adding random noise by Lu shi et al. [74], and many 
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others, the architecture that represents hierarchical federated learning in its purest form and 

introduced the concept per se is HierFAVG created in 2020 by Lumin Liu et al. [51]. As 

the goal is to compare the proposed architecture with baseline ones, HierFAVG was chosen 

as it reflects the fundamental principles of all hierarchical federated learning architectures 

and does not contain additional factors that can interfere with fairness of the comparison. 

 For this work the HierFAVG was implemented according to the description in the 

original paper with one difference - in the original paper clients were randomly assigned 

to edge-servers and correspondingly clusters at each round while in this baseline 

implementation they were assigned statically at the beginning of training and stayed within 

the same clusters. There are two reasons behind this decision. The first one is that typically 

one of factors for assigning is a spatial proximity to minimize the latency in 

communications within clusters, and on a truly large scale when clients are spread across 

countries, continents, or the globe random reassignment of clients among clusters will 

potentially increase the latency. The second reason is keeping the differences between 

baseline architectures and the proposed architecture minimal as the proposed architecture 

contains heterogeneous models that cannot be randomly joined into clusters due to their 

incompatibilities. Thus, a set of clients was created with appointing each client to a separate 

subset of data. All clients were assigned randomly to several clusters with an edge-server 

within each cluster and one cloud server. At each edge round, client models were trained 

on the local data and were collected by the cluster edge-server for averaging and spreading 

a produced model within cluster clients. After several edge rounds, edge-servers send 
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produced models to the cloud server for averaging and spreading back to edge-servers and 

consequently within respective clusters. The algorithm can be written as follows. 

 

Server executes: 

 initialize model M 

 for each cloud round do 

  for each edge server e in E do 

   for each edge round do 

    for each client k in K do 

     M’ <- ClientUpdate(k) 

    Me <- (average weights across all M’ within e) 

  M <- (average weights across all Me) 

 

ClientUpdate(k): 

 receive model Mk 

 for each local epoch do 

  M’ <- (train Mk on the local dataset) 

 send M’ to server 

 
Listing 2.1. HierFAVG algorithm 

 

FedDF 

 The second factor in the addressed issue is heterogeneity, and one of the first 

approaches to heterogeneity in federated learning is ensemble federated learning. However, 

ensemble federated learning implies each client training the full set of models and 

addresses not the differences in client devices’ variability in available computational 

resources, but the accuracy of models’ predictions due to ensembling. The first architecture 
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that truly focused on heterogeneity of models itself and incorporated knowledge distillation 

allowing adjustment of the system to variety in devices and bridge the gap between 

different models was FedDF introduced in 2020 by Tao Lin et al. [75]. Some other works 

were introduced addressing specific aspects of the architecture such as replacing 

knowledge distillation to small local models with knowledge distillation to one large model 

by Yae Jee Cho et al. [76] or reducing network workload via shifting knowledge distillation 

from a cloud server to local clients by Sohei Itihara et al. [77], but in the fundamental sense 

they were knowledge distillation-based variations of FedDF. FedMD [78] and Cronus [79], 

both are knowledge distillation-based architectures for heterogeneous federated learning 

and published before FedDF, were rejected as baseline candidates as they require 

knowledge distillation not only on a public dataset, ut also on all local ones that can lead 

to unpredictable consequences in performance and makes the results highly dependent on 

the local data. As the goal is to compare the proposed architecture with baseline ones, 

FedDF was chosen as it reflects the core principles of heterogeneous federated architecture 

and does not include additional factors that can affect the fairness of the comparison. 

 However, in the original work the authors mentioned the ability of the architecture 

to handle heterogeneous models, but virtually homogeneous setups only were tested and 

evaluated. For this work FedDF was implemented with heterogeneous models as the main 

purpose of it is to create a baseline for heterogeneity. At each round a random subset of 

clients was chosen in a way that the subset would include all types of the models the same 

number of times to provide an equal representation for better fairness in evaluating. As the 

next step, that subset was combined into an ensemble that was used to train new models - 
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one per type - with a separate dataset via knowledge distillation. The resulting models were 

spread across corresponding clients for further training. The algorithm can be written as 

follows. 

 

Server executes: 

 initialize models M of types T 

 for each round do 

  K <- (random subset of clients) 

  for each client k in K do 

   M’ <- ClientUpdate(k) 

  for each model type t in T do 

   Mt <- KnowledgeDistillation(t, all M’) 

  (update M with Mt) 

 

ClientUpdate(k): 

 receive model Mk 

 for each local epoch do 

  M’ <- (train Mk on the local dataset) 

 send M’ to server 

 

KnowledgeDistillation(t, all M’): 

 for each local epoch do 

  Mt <- (train Mt with inference of all M’) 

 return Mt 

 

Listing 3.1. FedDF algorithm 
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Proposed architecture 

 To address the issue, the proposed architecture should combine advantages of both 

heterogeneous and hierarchical federated learning in order to negate their respective 

disadvantages. To do so, for providing scalability hierarchical multi-layer structure is taken 

as a basis as it allows to scale the system varying the number of clusters and layers. But, 

unlike the typical approach where clusters in the hierarchical structure are created based 

on spatial proximity to minimize the latency in communications within each cluster, the 

clusters are composed based on model types that allows to combine all models within each 

cluster seamlessly. To enable heterogeneity, combined models from the clusters are used 

as an ensemble for knowledge distillation into new models, one per existing in the system 

model type, that are spread within corresponding clusters. 

 It allows us to create an infinitely scalable heterogeneous system. However, it 

contains two potential flaws that should be addressed carefully during each 

implementation. The first one is potential increased communication overhead overall in 

comparison to non-hierarchical heterogeneous federated architectures as a representation 

of heterogeneous federated learning due to an increased number of elements within the 

system and accordingly an increased number of communications among them. The second 

flaw is potential increased latency in the communications within clusters in comparison to 

hierarchical non-heterogeneous federated architectures as the primary factor for grouping 

clients into clusters is not spatial proximity but a model type. The third flaw is virtually 

unavoidable in the most cases and is larger energy consumption within the system overall 

in comparison to non-hierarchical heterogeneous federated architectures based on selecting 
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random subset of clients as in the case of the proposed architecture all clients should spend 

energy on training in contract to training of only subsets of clients. 

 Thus, a set of clients was created with appointing each client to a separate subset of 

data. All clients were assigned based on the model type to several clusters with an edge-

server within each cluster and one cloud server. At each edge round, client models were 

trained on the local data and were collected by the cluster edge-server for averaging and 

spreading a produced model within cluster clients. After several edge rounds, edge-servers 

send produced models to the cloud server where those were combined into an ensemble 

that was used to train new models - one per type - with a separate dataset via knowledge 

distillation. The resulting models were spread across corresponding clusters for further 

training. The algorithm can be written as follows. 

 

Server executes: 

 initialize models M of types T 

 for each cloud round do 

  for each edge server e in E do 

   for each edge round do 

    for each client k in K do 

     M’ <- ClientUpdate(k) 

    Me <- (average weights across all M’ within e) 

  for each model type t in T do 

   Mt <- KnowledgeDistillation(t, all Me) 

  (update M with Mt) 

 

ClientUpdate(k): 

 receive model Mk 
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 for each local epoch do 

  M’ <- (train Mk on the local dataset) 

 send M’ to server 

 

KnowledgeDistillation(t, all M’): 

 for each local epoch do 

  Mt <- (train Mt with inference of all M’) 

 return Mt 

 
Listing 4.1. Proposed architecture algorithm 
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CHAPTER FIVE 
 

IMPLEMENTATION AND EXPERIMENTAL RESULTS 
 
  

As it was mentioned in chapter 4, many details of the reference implementations in 

the original works for the chosen baseline models have not been disclosed, and those that 

have been disclosed vary among models. In conjunction with the variety of other aspects 

such as data splitting, data preprocessing and model architectures it makes it next to 

impossible to find a definitive overlap between the experiments in the original works for 

the baseline models or reproduce them in the limited timeline as they heavily rely on 

hyperparameter tuning within unknown search spaces and on unknown seeds. We can see 

it clearly from the pivot tables. 

 

 FedAvg HierFAVG FedDF 

datasets MNIST 
CIFAR-10 

custom text dataset 

MNIST 
CIFAR-10 

CIFAR-10 
CIFAR-100 
ImageNet 
AG News 

SST2 

data preprocessing crop to 24x24 
horizontal flips 

contrast adjusting 
brightness adjusting 
whitening adjusting 

normalization 
random crop 

padding 
horizontal flips 

n/a 

non-IID no 
yes 

 
yes 

 
yes 

non-IID details n/a partially n/a 

data split n/a n/a partially 
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batch size 10 
50 

100% 

20 n/a 

local epochs 1 
5 
20 
25 
50 
100 
200 

5 
6 
10 
15 
25 
30 
50 
60 

20 
40 

edge epochs -/- 1 
2 
4 
5 
10 

-/- 

clients 100 50 20 

participation rate 1 client 
0.1 
0.2 
0.5 
1.0 

-/- 0.2 
0.4 
0.8 

edges -/- 10 -/- 

edge assignment -/- dynamic -/- 

models custom MLP 
custom CNN 

custom LSTM 

custom CNN ResNet-8 
ResNet-20 
ResNet-32 

ShuffleNetV2 
DistilBERT 

seed n/a n/a n/a 

optimizer n/a SGD SGD 
Adam 

scheduler n/a 0.992 / epoch 
0.995 / epoch 

1 
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learning rate n/a 0.01 
0.1 

0.00001 
0.05 
0.1 

weight decoy rate n/a n/a 1 

KD dataset -/- -/- CIFAR-100 
ImageNet 

BigGAN-generated 

KD batch -/- -/- 128 

KD optimizer -/- -/- Adam 

KD learning rate -/- -/- 0.001 

KD function -/- -/- Kullback-Leibler 

target metric epochs time 
local energy 

accuracy 
epochs 

 
Table 2.1. Reference architectures’ details 

 

In addition, in some cases where the original implementation was available it was 

designed for a cluster structure that is incompatible with the experimental setup. For 

example, the reference implementation of FedDF is created to be executed on a Kubernetes 

cluster with MPI interactions between pods, which would require reimplementing a 

significant part of it to adapt to the available infrastructure. 

Thus, in order to maximize the integrity of the setup across the baseline 

architectures and the proposed architecture by standardization of data handling, data 

preprocessing, results evaluation and some aspects of model training, baseline architectures 

were implemented from scratch. By doing so, it was possible to minimize the impact of 

variations in the experimental setup or external dependencies. While some hyperparameter 

tuning has been executed in order to maximize the performance of the models, limitations 
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in the timeline and computational resources constrained the thoroughness of the tuning. 

Therefore, it is not expected to achieve the maximum possible performance and is expected 

to achieve the results lower than the shared in the original works. However, as the main 

goal is to compare the proposed architecture with the baseline models, the relative results 

are more important in our case than absolute numbers. 

Dataset 

As some of baseline architectures were evaluated on image classification and text 

classification tasks with variety of dataset in the original works, the next factors were taken 

into considerations: 

● number of samples in the dataset 

● number of classes in the dataset 

● feature variability 

● acceptance 

due to the following reasons.  

As the main reason for the proposed architecture is scalability, it is important to 

have enough clients that leads to splitting the dataset into multiple pieces. Thus, it’s 

becoming important to have the ratio “samples per class” as large as possible to be able to 

scale the experimental setup. 

At the same time, it’s important to have a decent diversity in classes that would 

require models to develop robust feature extraction capabilities, ensuring that successful 

approaches are genuinely effective in recognizing a wide range of patterns. 
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Another factor is the number of samples itself as while it is important to have 

enough samples for scalability, out of practical reasons it is better to find a balance between 

the scalability potential and the training time that will increase with increasing the number 

of samples. 

Assessing different machine learning architectures using datasets with complex, 

high-dimensional features allows us to directly compare their abilities to process and 

organize data. However, when the tasks involve additional feature variability, it adds extra 

layers of complexity. This can make it harder to see how changes in the architecture affect 

the model's performance. 

Finally, if there are no specific requirements to a dataset, it’s important to utilize 

ones that are widely accepted by other researchers within the field for the sake of 

reproducibility, comparability, and data quality. 

In the following table we can see the most popular datasets for image and text 

classification. 

Text classification tasks can introduce additional complexities compared to image 

classification. These complexities include handling variable-length sequences, dealing 

with text preprocessing steps like tokenization and lemmatization, and potentially word 

embeddings. While these complexities are manageable, they introduce additional 

variability. Thus, out of this it was decided to limit the comparison by image classification 

only that excluded IMDb [80], 20 Newsgroups [81], Reuters-21578 [82], AG News [83], 

DBpedia [84] and Yahoo! Answers datasets. 
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Out of datasets for image classification LSUN [85] and MS Coco [86] were 

excluded as each of them contains images with complex content that can be classified in 

multiple ways that can lead to mistraining the models and therefore require additional effort 

for preventing it. 

Out of the rest datasets CIFAR-100 [87] was excluded as it contains only 600 

samples per class that makes it less convenient for scaling the system that is the main point 

of the experimental setup. For the same reason, in combination with a significantly larger 

number of samples that makes every experiment noticeably longer, ImageNet dataset was 

excluded. 

Thus, for the experimental setup for all architectures and models CIFAR-10 [87] 

was used. 

 

Dataset Samples Classes Samples / class Feature variability 

CIFAR-10 60000 10 6000 low 

CIFAR-100 60000 100 600 low 

ImageNet 1431167 1000 1431 low 

MS Coco 328000 80 4100 high 

LSUN 59000000+ 10 / 20 varies high 

IMDb 50000 2 25000 high 

20 Newsgroups 18000 20 900 high 

Reuters-21578 10369 118 87 high 

AG News 1000000+ 4 250000+ high 

DBpedia 630000 14 45000 high 
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Yahoo! Answers 1460000 10 146000 high 
 

Table 3.1. Datasets’ feature comparison 
  

Out of IID and non-IID data distributions for the experimental setup IID 

distribution was chosen due to the following reasons. 

Using IID data distribution provides a controlled and balanced setting for 

evaluating the performance of different architectures. It helps to isolate the impact of the 

architectures themselves and minimize the influence of data heterogeneity on the 

performance results. 

IID data distribution serves as a baseline and a starting point for evaluating 

federated learning architectures. It represents an ideal scenario where the data is 

homogeneously distributed across clients, and the architectures can be assessed under 

optimal conditions. By comparing different architectures on IID data, we can establish a 

benchmark for their performance that later can be used for experiments with non-IID data. 

 As usage of a completely unrelated dataset showed unsatisfactory results for 

knowledge distillation, the test subset of CIFAR-10 containing 1000 images per class was 

randomly split into 300 images for final validation, 560 images for knowledge distillation 

training and 140 images for knowledge distillation testing per class. The training subset of 

CIFAR-10 was randomly split into 18 partitions each of which contained 222 images for 

local training and 55 images for local testing per class. 

As the main goal was not to achieve the maximum possible performance, but to 

compare achieved performance among selected and constructed architectures, the data 
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preprocessing was limited by standard for CIFAR-10 normalization where the mean = 

[0.4914, 0.4822, 0.4465] and the standard deviation = [0.2023, 0.1994, 0.2010]. 

Models 

In order to include the heterogeneity factor within the FedDF architecture and the 

proposed architecture, it can be critical to select an appropriate number of different models. 

This choice can significantly impact the experimental setup and the ability to simulate real-

world scenarios accurately. 

On one hand, increasing the number of models naturally leads to a higher number 

of participating clients in the architectures with random client choice at each round such as 

FedDF, as each model requires at least one corresponding client. In federated learning 

settings, it is desirable to keep the participation ratio relatively low to imitate real-world 

scenarios, where only a subset of clients may be available or willing to participate in each 

round of training. 

On the other hand, having too few models and clients may not sufficiently represent 

the federated nature of the setting. Federated learning is designed to use the collective 

knowledge and data from multiple clients while saving their privacy. If the number of 

clients is too small, it may not capture the diversity and heterogeneity present in real-world 

federated environments. Additionally, a limited number of models may not provide enough 

variety in terms of model architectures, capacities, and learning capabilities, which is a key 

aspect of heterogeneous federated learning. 

In this case, three different models have been chosen as a reasonable compromise. 

This choice allows for a sufficient level of heterogeneity in terms of model architectures 
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while keeping the ratio of participating clients manageable. While three clients out of 

eighteen that is equal to ~0.16 participating rate is suboptimal in the sense of modeling a 

real-world high-scale scenario, the dataset size imposes restrictions on the maximal number 

of clients that limits the minimal participation rate. 

 For the choosing specific models for the federated setting, one of the most 

important factors was required computational resources as it was crucial to iterate through 

hyperparameter tuning and experiments with limited computational resources and within a 

limited timeline. An additional factor was modeling a potential diversity in models due to 

variety in computational resources available for different clients. As a result, the three 

chosen models are a simple custom CNN, ResNet-8 [88] and DenseNet [89] that are often 

used for image classification, quite effective and at the same time noticeably different in 

the required computational resources. 

 The custom CNN is composed of three convolutional blocks each of which contains 

a convolutional layer, ReLU as an activation function, a pooling layer and batch 

normalization, and a sequential block with two fully connected layers, ReLU as an 

activation function and batch normalization. 

 The used variation of ResNet-8 is composed of a convolutional layer, batch 

normalization and ReLU as an activation function for the convolutional base, three residual 

layers with each layer doubling the number of filters and reducing the spatial dimensions 

of the feature maps through strided convolutions for downsampling, and average pooling. 

Outside of hyperparameters, an optimizer and a scheduler, the architecture is identical to 

the one that was used in the reference implementation of FedDF. 
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 The implementation of DenseNet is composed of a simple convolutional layer 

followed by 3 dense blocks with multiple layers containing batch normalization, ReLU as 

an activation function, a convolutional layer and a dropout layer each with transitional 

layers composed of batch normalization, ReLU as an activation function, a convolutional 

layer and a dropout layer. Finally, global average pooling is applied to obtain a fixed-size 

representation of the feature maps, followed by a fully connected layer for classification. 

Outside of hyperparameters, an optimizer and a scheduler, the architecture is identical to 

the one that was used in the reference implementation of FedDF. 

 The used variation of MobileNetV2 [90] is composed of an initial convolutional 

layer, batch normalization and ReLU as an activation function, ten block each of which 

contains from two to three convolutional layers and batch normalizations, and the final 

section with average pooling, and a fully connected layer. Outside of hyperparameters, an 

optimizer and a scheduler, the architecture is identical to the one that was used in the 

reference implementation of FedDF. 

Hyperparameters 

 Hyperparameter tuning via random grid search has been conducted separately for 

the proposed architecture with heterogeneous models, FedDF with heterogeneous models, 

for HierFAVG and FedAvg with each mode and for knowledge distillation. The optimal 

parameters and the respective results of the experiments are listed below in the 

corresponding sections of the chapter. 
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Training 

 For each heterogeneous architecture and for each model in homogeneous 

architectures three experiments were conducted with different seeds. The results were 

averaged across all three seeds within each heterogeneous architecture and each model in 

homogeneous architectures to minimize a potential impact of seeds on the comparison. 

 As the architectures contain from 2 to 3 layers that consist of clients, edge-services, 

and cloud-services, to provide a fair comparison, the number of epochs was calculated 

based on the total number of local epochs for the lowest level of architectures that includes 

clients reflecting organization or devices. Each architecture was trained for 200 local 

epochs in order to compare the speed of convergence and the achieved accuracy. 

FedAvg 

 FedAvg architecture was trained with a custom CNN, ResNet-8 and DenseNet with 

the parameters listed in the table 4. The listed parameters for the reference implementation 

correspond to the best achieved in the paper result. For each of 18 partitions a separate 

client with a model was created. At each round random 3 clients were chosen for training 

during the round. Each model of the chosen three ones was trained for 3 local epochs after 

which models were shared to a central server that averaged their weights and distributed a 

new produced model back to all clients. The process continued until the number of local 

epochs reached 200. 
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 reference experiment 
(CNN) 

experiment 
(ResNet-8) 

experiment 
(DenseNet) 

batch size 50 64 64 64 

local epochs 5 3 3 3 

clients 100 18 18 18 

participation 
rate 

0.1 
 

0.17 0.17 0.17 

models custom CNN custom CNN ResNet-8 DenseNet 

optimizer n/a Adam Adam Adam 

scheduler n/a 0.11 / 2 epochs 0.99 / epoch 1 / 1 epoch 

learning rate n/a 0.0007 0.001 0.0007 

weight decoy 
rate 

n/a 0.001 0.001 0.001 

target metric epochs accuracy 
convergence 

accuracy 
convergence 

accuracy 
convergence 

 
Table 4.1. FedAvg training parameters 

 

 The achieved accuracy within 200 local epochs is reflected in table 5 and figures 1, 

2, and 3. 

 

 CNN ResNet-8 DenseNet average 

Accuracy 75.31% 68.36% 68.72% 70.8% 
 

Table 4.2. FedAvg accuracy 
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Figure 1.1. FedAvg with CNN accuracy 
 

 

Figure 1.2. FedAvg with ResNet-8 accuracy 
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Figure 1.3. FedAvg with DenseNet accuracy 

 

HierFAVG 

HierFAVG architecture was trained with a custom CNN, ResNet-8 and DenseNet 

with the parameters listed in the table 6. The listed parameters for the reference 

implementation correspond to the best achieved in the paper result. For each of 18 

partitions a separate client with a model was created. All the clients were splitted into 3 

clusters each of which contained 6 clients. Each cluster contained an edge server 

responsible for averaging weights within the respective cluster. The cloud server was 

appointed for averaging the models produced at the edge servers. At each client the model 

was trained for 3 local epochs. After that trained models were sent to respective edge 

servers where they were averaged within the cluster, and the produced model was sent back 

to clients within the same cluster. After 3 rounds at the edge servers, the produced at the 

edge servers were sent to the cloud server that averaged the received models and sent it 
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back to the edge servers that in its turn sent it back to clients within the respective clusters. 

The process continued until the number of local epochs reached 200. 

 

 reference 
(CNN) 

experiment 
(CNN) 

experiment 
(ResNet-8) 

experiment 
(DenseNet) 

batch size 20 64 64 64 

local epochs 5 3 3 3 

edge epochs 10 3 3 3 

clients 50 18 18 18 

edges 5 3 3 3 

edge 
assignment 

dynamic constant constant constant 

optimizer SGD Adam Adam Adam 

scheduler 0.992 / epoch 0.11 / 2 epochs 0.99 / epoch 0.11 / 2 epochs 

learning rate 0.1 0.0007 0.001 0.0007 

weight decoy 
rate 

n/a 0.001 0.001 0.001 

target metric time 
local energy 

accuracy 
convergence 

accuracy 
convergence 

accuracy 
convergence 

 
Table 5.1. HierFAVG training parameters 

 

The achieved accuracy within 200 local epochs is reflected in table 7 and figures 4, 

5, and 6. 
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 CNN ResNet-8 DenseNet average 

Accuracy 75.78% 70.07% 67.4% 71.08% 
 

Table 5.2. HierFAVG accuracy 
 

 
 

Figure 2.1. HierFAVG with CNN accuracy 
 
 
 

 
 

Figure 2.2. HierFAVG with ResNet-8 accuracy 
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Figure 2.3. HierFAVG with DenseNet accuracy 
 
 
 

FedDF 

 FedDF architecture was trained with a custom CNN, ResNet-8 and DenseNet with 

the parameters listed in the table 8. The listed parameters for the reference implementation 

correspond to the best achieved in the paper result for the heterogeneous setup. For each of 

18 partitions a separate client with a model was created. At each round, 3 clients were 

chosen in a way that every time all models were represented equally among the chosen 

clients. Each model of the chosen three ones was trained for 5 local epochs after which 

models were sent to a central server. The central server combined the received models into 

an ensemble and used a knowledge transfer data subset to train 3 new models, each of 

CNN, ResNet-8 and DenseNet, based on averaged outputs of the ensemble, outputs of the 

training model and Kullback-Leibler divergence. After that the produced models were sent 

back to all clients. The process continued until the number of local epochs reached 200. 
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 reference experiment 

CNN ResNet-8 DenseNet 

batch size n/a 64 64 64 

local epochs 80 5 5 5 

clients 21 18 

participation 
rate 

0.4 0.17 

models ResNet-20 
ResNet-32 

ShuffleNetV2 

custom CNN ResNet-8 DenseNet 

optimizer n/a Adam Adam Adam 

scheduler n/a 0.11 / 2 epochs 0.99 / epoch 0.11 / 2 epochs 

learning rate 0.1 0.0007 0.001 0.0007 

weight decoy 
rate 

n/a 0.001 0.001 0.001 

KD dataset CIFAR-100 CIFAR-10 CIFAR-10 CIFAR-10 

KD batch 128 64 64 64 

KD optimizer Adam Adam Adam Adam 

KD learning 
rate 

0.001 0.0007 0.001 0.0007 

KD function Kullback-
Leibler 

Kullback-
Leibler 

Kullback-
Leibler 

Kullback-
Leibler 

target metric accuracy 
epochs 

accuracy 
convergence 

accuracy 
convergence 

accuracy 
convergence 

 
Table 6.1. FedDF with DenseNet training parameters 

 

The achieved accuracy within 200 local epochs is reflected in table 9 and figure 7. 
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 CNN ResNet-8 DenseNet average 

Accuracy 67.57% 67.97% 62.7% 66.08% 
 

Table 6.2. FedDF with DenseNet accuracy 
 

 
 

Figure 3.1. FedDF with DenseNet accuracy 
 

Proposed architecture 

The proposed architecture was trained with a custom CNN, ResNet-8 and DenseNet 

with the parameters listed in table 10. For each of 18 partitions a separate client with a 

model was created, 6 clients per each model type. All the clients were split into 3 equal 

clusters grouped by the model type. Each cluster contained an edge server responsible for 

averaging weights within the respective cluster. A cloud server was appointed for 

knowledge transfer from the models produced by edge servers into new models. At each 

client the model was trained for 2 local epochs. After that trained models were sent to 

respective edge servers where they were averaged within the cluster, and the produced 
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model was sent back to clients within the same cluster. After 5 rounds at the edge servers, 

the produced at the edge servers were sent to the cloud server. The cloud server combined 

the received models into an ensemble and used a knowledge transfer data subset to train 3 

new models, each of CNN, ResNet-8 and DenseNet, based on averaged outputs of the 

ensemble, outputs of the training model and Kullback-Leibler divergence. After that the 

produced models were sent back to the respective edge servers that in turn sent it back to 

clients within the respective clusters. The process continued until the number of local 

epochs reached 200. 

 

 experiment 

CNN ResNet-8 DenseNet 

batch size 64 64 64 

local epochs 2 2 2 

edge epochs 5 5 5 

clients 18 18 18 

edges 3 3 3 

edge assignment constant constant constant 

optimizer Adam Adam Adam 

scheduler 0.11 / 2 epochs 0.99 / epoch 0.11 / 2 epochs 

learning rate 0.0007 0.001 0.0007 

weight decoy rate 0.001 0.001 0.001 

KD dataset CIFAR-10 CIFAR-10 CIFAR-10 



 

 
 

61 

KD batch 64 64 64 

KD epochs 10 10 10 

KD optimizer Adam Adam Adam 

KD learning rate 0.0007 0.001 0.0007 

KD function Kullback-Leibler Kullback-Leibler Kullback-Leibler 

target metric accuracy accuracy accuracy 
 

Table 7.1. Proposed architecture with DenseNet training parameters 
 

The achieved accuracy within 200 local epochs is reflected in table 11 and figures 

8, 9, 10 and 11. 

 

 CNN ResNet-8 DenseNet average 

Accuracy 70.37% 66.07% 59% 65.17% 
 

Table 7.2. Proposed architecture with DenseNet accuracy 
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Figure 4.1. Proposed architecture with DenseNet accuracy in respect to FedAvg 
 
 
 

 
 

Figure 4.2. Proposed architecture with DenseNet accuracy in respect to HierFAVG 
  

As it is clearly visible from the figures 8 and 9, the implementation of the proposed 

architecture is noticeably lagging behind more simple and homogeneous architectures 
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without knowledge distillation for a custom CNN and DenseNet and is slightly lagging 

behind for ResNet-8. 

 

 
Figure 4.3. Proposed architecture with DenseNet accuracy in respect to FedDF 

 

 
 

Figure 4.4. Proposed architecture with DenseNet average accuracy in respect to FedDF 
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However, when the proposed architecture is compared with FedDF, another 

architecture with knowledge transfer, the situation is not so clear. There is still a gap 

between models in the proposed architecture and FedDF for DenseNet models and ResNet-

8 instances are quite close to each other, but a custom CNN is the proposed architecture 

clearly performs better than in FedDF. After averaging the accuracy across different 

models in the proposed architecture and FedDF it is visible that on average the proposed 

architecture is quite close to FedDF in terms of accuracy and convergence speed. 

The possible reasons of the worse performance are the following: 

● In FedDF architecture at each round the knowledge is extracted from a random and 

every time different subset of clients which leads to more dynamic data coverage 

and less biased models while in the proposed architecture the clusters are assigned 

permanently which can lead to worse or at least slower generalization even with 

sharing the knowledge among clusters via knowledge distillation. Potentially, it can 

be compensated with dynamic cluster reassignment during training, but in some 

real-world scenarios it may be not feasible. 

● The participation rate for clients in the experiments is ~0.17 which can be high 

enough for random client selections in FedDF to cover most of the data quite fast. 

In the setups with a larger scale, such as million clients, where an expected 

participation rate can drop lower than 0.01 we can expect a faster convergence rate 

for the proposed architecture than for FedDF as the data coverage with a low 

participation rate can also be low in comparison to the proposed architecture that 
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covers all the data due to its structure, especially if the data varies significantly 

among clients. 

Additional experiments 

 As it is clearly visible from the results of the experiments, the DenseNet is 

noticeable behind other models in the term of accuracy in FedDF and the proposed 

architecture that can affect the relative comparison.  To decrease this effect another series 

of experiments was conducted for FedDF and the proposed architecture after replacing 

DenseNet with MobileNetV2. 

FedDF architecture was trained with a custom CNN, ResNet-8 and MobileNetV2 

with the parameters listed in table 12. 

 

 reference experiment 

CNN ResNet-8 MobileNetV2 

batch size n/a 64 64 64 

local epochs 80 5 5 5 

clients 21 6 6 6 

participation 
rate 

0.4 0.17 

models ResNet-20 
ResNet-32 

ShuffleNetV2 

custom CNN ResNet-8 MobileNetV2 

optimizer n/a Adam Adam Adam 

scheduler n/a 0.11 / 2 epochs 0.99 / epoch 0.11 / 2 epochs 
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learning rate 0.1 0.0007 0.001 0.0007 

weight decoy 
rate 

n/a 0.001 0.001 0.001 

KD dataset CIFAR-100 CIFAR-10 CIFAR-10 CIFAR-10 

KD batch 128 64 64 64 

KD optimizer Adam Adam Adam Adam 

KD learning 
rate 

0.001 0.0007 0.001 0.0007 

KD function Kullback-
Leibler 

Kullback-
Leibler 

Kullback-
Leibler 

Kullback-
Leibler 

target metric accuracy 
epochs 

accuracy 
convergence 

accuracy 
convergence 

accuracy 
convergence 

 
Table 8.1. FedDF with MobileNetV2 training parameters 

 

The achieved accuracy within 200 local epochs is reflected in table 13 and figure 

12. 

 

 CNN ResNet-8 MobileNetV2 average 

Accuracy 67.3% 67.9% 63.5% 66.23% 
 

Table 8.2. FedDF with MobileNetV2 accuracy 
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Figure 5.1. FedDF with MobileNetV2 accuracy 
 
 
 

The proposed architecture was trained with a custom CNN, ResNet-8 and 

MobileNetV2 with the parameters listed in table 14. 

 

 experiment 

CNN ResNet-8 MobileNetV2 

batch size 64 64 64 

local epochs 2 2 2 

edge epochs 5 5 5 

clients 18 18 18 

edges 3 3 3 

edge assignment constant constant constant 

optimizer Adam Adam Adam 
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scheduler 0.11 / 2 epochs 0.99 / epoch 0.11 / 2 epochs 

learning rate 0.0007 0.001 0.0007 

weight decoy rate 0.001 0.001 0.001 

KD dataset CIFAR-10 CIFAR-10 CIFAR-10 

KD batch 64 64 64 

KD epochs 10 10 10 

KD optimizer Adam Adam Adam 

KD learning rate 0.0007 0.001 0.0007 

KD function Kullback-Leibler Kullback-Leibler Kullback-Leibler 

target metric accuracy accuracy accuracy 
 

Table 8.3. Proposed architecture with MobileNetV2 training parameters 
 

The achieved accuracy within 200 local epochs is reflected in table 15 and figures 

13 and 14. 

 

 CNN ResNet-8 MobileNetV2 average 

Accuracy 69.83% 67.87% 61.13% 66.28% 
 

Table 8.4. Proposed architecture with MobileNetV2 accuracy 
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Figure 5.2. Proposed architecture with MobileNetV2 accuracy in respect to FedDF 
 
 
 

 
 

Figure 5.3. Proposed architecture with MobileNetV2 average accuracy in respect to FedDF 
 

While MobileNetV2 models are still lagging behind the rest of them, their 

performance is better than the performance of DenseNet implementation used in the 

experiments. The replacement led to reduction of the gaps between the same types of 

models within FedDF and the proposed architecture and equalizing the accuracy of these 
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two architectures at 200 local epochs. However, while the final accuracy at 200 local 

epochs is equal between architectures, the proposed architecture converges slightly faster.  

It allows us to speculate that with a) increasing an average accuracy, b) decreasing the 

difference between different models’ performance, c) decreasing the clients participation 

rate for FedDF, the gap in convergence speed between architectures will grow in favor of 

the proposed architecture. 
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CHAPTER SIX 
 

CONCLUSIONS AND FUTURE WORK 
 

 
While various approaches to federated machine learning address specific 

challenges, many real-world scenarios present a combination of issues that existing 

methods struggle to fully resolve. For example, in domains like mobile applications or 

IoT/network devices, where the number of model instances can reach millions or billions, 

data cannot be shared, and models should have different architectures due to hardware 

heterogeneity, business cycles, or environment limitations, the existing approaches may be 

suboptimal. Naive and ensemble federated learning approaches struggle with scalability, 

hierarchical federated learning does not support heterogeneous models, and heterogeneous 

federated learning, while supporting different architectures, lacks scalability. Therefore, 

there is a need for a new architecture that combines the benefits of these approaches, 

allowing different model architectures within a single federated setup, being virtually 

infinitely scalable, and covering all data during training to avoid underrepresentation of 

certain subsets of data. 

 The proposed architecture combines such approaches as ensemble federated 

learning, knowledge distillation and hierarchical federated learning into one structure 

where models are grouped into clusters based not on spatial proximity or data features, but 

on model types. In combination with knowledge distillation from an ensemble of different 

models it allows to create a system where models of different types can coexist and learn 

from each other. At the same time, employment of principles of hierarchical federated 

learning allows the structure to scale virtually indefinitely. 
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 In this work several architectures such as FedAvg, HierFAVG and FedDF were 

implemented to create a baseline for a new architecture. CIFAR-10 used as a dataset for 

the experiments was split into a test and a train parts. The test part was split into test and 

knowledge transfer parts where the test part was used exclusively for evaluating the 

models’ performance and the knowledge transfer was used exclusively for training new 

models via knowledge distillation. The train part was split into 18 partitions that 

represented different clients or devices. After that the splitted data was used to train 

baseline architectures and the proposed one for 200 local epochs in total per architecture 

with 3 distinctive seeds. All measurements were averaged across seeds and evaluated based 

on the achieved accuracy and the convergence speed. 

 While in the conducted experiments the proposed architecture with heterogeneous 

models showed less performance than FedAvg and HierFAVG with homogeneous models, 

its accuracy is comparable with FedDF with heterogeneous models and in some cases the 

proposed architecture converges faster than FedDF on a similar setup. It allows to assume 

optimistically that with increasing the scale of the system and consequent decreasing the 

client participation rate the gap in convergence speed between the proposed architecture 

and architectures that allow having heterogeneous models within the same system by 

extracting knowledge from a limited subset of clients will grow in favor to the proposed 

architecture. It would allow to a) improve scalability, b) improve data coverage in systems 

with heterogeneous models. 

 Based on that work it is possible to claim that in at least some setups the proposed 

architecture is at least not worse than FedDF in terms of accuracy and better in terms of 
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convergence speed. However, additional research with extensive hyperparameter tuning is 

needed in order to validate this statement on a larger scale. 

 However, the work has some limitations, many of which are caused by limited 

available computational resources and by a limited timeline. For example, the authors of 

FedAvg, the simplest architecture out of four implemented in this work, conducted more 

than 2000 experiments to find the optimal model architecture and hyperparameters. Taking 

into account a significantly larger computational cost of experiments in this work, it is 

expected to have models not reaching the SOTA performance. As a result, while in the 

given setup the proposed architecture showed decent results, the situation can change after 

more thorough model architecture and hyperparameter tuning. 

 Another major limitation of this work is the scale of the implemented system. The 

key point of the proposed architecture is a potential ability to handle cases where the 

number of clients reached millions better than non-hierarchical architectures with 

heterogeneous models. However, emulating such cases requires datasets of the 

corresponding scale that can be quite hard to obtain outside of some private entities in the 

industry. As a result, the experiments were conducted on quite a small dataset that led to 

inability to create a scenario that would be close to the intended use of the proposed 

architecture. Thus, on a large scale it can show better results. Another potential approach 

would be usage of less data-hungry or pre-trained models to decrease the required for 

model training number of samples per client. 

 One more limitation of the work is restricting the experiment’s domain by image 

classification only in order to narrow the scope down. Employment of other domains such 
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as text classification in the experiments can give a more holistic view on the architecture 

applicability. 

 In the real-world situations the data is virtually never distributed independently and 

identically across all the clients. However, in this work the experimental environment was 

constructed with the data distributed evenly to create a baseline potential future research. 

Usage of non-IID data on a large scale can show different relative results for the proposed 

and baseline architectures. 

 In some cases, in the real-world clients are permanently assigned to clusters, in 

some others they migrate between clusters and in some they can be reassigned randomly 

at each training round. In this work the only tested scenario is permanent assignment. Thus, 

the effectiveness of reassignment of clients between clusters in comparison to permanent 

assignment and the degree of dependency between the percentage of the reassigned clients 

and reassignment scheme, and the performance of the architecture is still an open question. 

 Another limitation of the experiments was employment of only one data splitting 

and only one cluster configuration. While all architectures were tested in virtually identical 

environments with some unavoidable differences conditioned by the differences in the 

architectures, different cluster configuration could produce different results so it would be 

useful to investigate potential tendencies in the proposed architecture performance affected 

by the cluster configurations, and usage of different data splitting with averaging results 

across them could give more precise evaluation of the performance. 

 Summarizing, the potential directions of future research would be 
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● more extensive and thorough model architecture and hyperparameter tuning in 

order to compare architecture at the level of their respective maximum performance 

● exploring the relative performance in a close to real-world scenario with 

significantly bigger number of clients with a corresponding level of data splitting 

granularity 

● employment of less data-hungry models with more granular data splitting on order 

to compensate the available size of the datasets 

● exploring the proposed architecture applicability within the domains besides image 

classification 

● experiments with non-IID data that can lead to better in comparison to at least some 

baselines architecture performance of the proposed architecture due to potentially 

better data coverage 

● exploring different cluster configurations in order to identify the most and the least 

applicable scenarios for the proposed architecture applicability 

● investigating an effect of clients reassignment between clusters on the proposed 

architecture performance 

● evaluation of the overhead in overall communications conditioned by the 

hierarchical nature of the proposed architecture in comparison to architectures with 

choosing a random subset of clients each round and identification of scenarios 

where that overhead would be acceptable 

Additionally, three trade-offs of the proposed architecture should be mentioned. 

The first one is potentially increased communication cost of the system overall in 
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comparison to non-hierarchical heterogeneous federated architectures that stems from 

increased number of entities in the system and increased number of communications 

among them. The second one is potentially increased latency within clusters in comparison 

to non-heterogeneous hierarchical federated architectures that emerges due to the need to 

group clients into clusters based on model types instead of spatial proximity. As a result, 

each production system should be carefully analyzed in order to find the optimal 

architecture and the optimal trade-offs. The third trade-off is virtually always increased 

energy consumption in the system overall in comparison to architectures based on random 

client subset selection for training at each round as in the proposed architecture each client 

should participate in training at each round. 

The future of federated learning lies in the development of solutions that effectively 

address the challenges of heterogeneity and scalability. The proposed architecture, 

combining ensemble federated learning, knowledge distillation, and hierarchical federated 

learning, while the conducted experiments didn’t show a significant advantage in the given 

environment, still can represent a promising direction for scalable heterogeneous systems. 

As research progresses, advancements in clustering techniques, knowledge distillation 

methods, and aggregation strategies will optimize the performance, efficiency, and 

robustness of federated learning systems. 
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