
Clemson University Clemson University

TigerPrints TigerPrints

All Theses Theses

5-2024

Heterogeneous Federated Learning at Scale Heterogeneous Federated Learning at Scale

Dmitry Lukyanov
dlukyan@clemson.edu

Follow this and additional works at: https://tigerprints.clemson.edu/all_theses

 Part of the Artificial Intelligence and Robotics Commons

Recommended Citation Recommended Citation
Lukyanov, Dmitry, "Heterogeneous Federated Learning at Scale" (2024). All Theses. 4211.
https://tigerprints.clemson.edu/all_theses/4211

This Thesis is brought to you for free and open access by the Theses at TigerPrints. It has been accepted for
inclusion in All Theses by an authorized administrator of TigerPrints. For more information, please contact
kokeefe@clemson.edu.

https://tigerprints.clemson.edu/
https://tigerprints.clemson.edu/all_theses
https://tigerprints.clemson.edu/theses
https://tigerprints.clemson.edu/all_theses?utm_source=tigerprints.clemson.edu%2Fall_theses%2F4211&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/143?utm_source=tigerprints.clemson.edu%2Fall_theses%2F4211&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_theses/4211?utm_source=tigerprints.clemson.edu%2Fall_theses%2F4211&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:kokeefe@clemson.edu

HETEROGENEOUS FEDERATED LEARNING AT SCALE

A Thesis
Presented to

the Graduate School of
Clemson University

In Partial Fulfillment
of the Requirements for the Degree

Master of Science.
Computer Science

by
Dmitry Lukyanov

May 2024

Accepted by:
Carlos Toxtli Hernandez, Committee Chair

Rong Re
Nina Hubig
Mitch Shue

ii

ABSTRACT

Federated learning has emerged as a solution to the challenges faced by traditional

centralized machine learning approaches, such as data privacy, security, ownership, and

computational bottlenecks. However, federated learning itself introduced new challenges,

including system heterogeneity and scalability. Existing federated learning approaches,

such as hierarchical and heterogeneous federated learning, address some of these

challenges but have limitations in real-world scenarios where multiple issues coexist,

particularly in large-scale, heterogeneous environments like mobile applications and IoT

devices. This work proposes a new federated learning architecture that combines

heterogeneous federated learning and hierarchical federated learning into a unified

architecture. The proposed approach aims to address the limitations of existing

architectures by building clusters of models based on their types and usage of in-cluster

models’ weights averaging to create an ensemble of heterogeneous models for further

knowledge distillation into student models of different types that are to be distributed into

respective clusters to continue training. The created implementation of the proposed

architecture showed accuracy comparable with accuracy of FedDF chosen as a baseline

heterogeneous federated learning architecture within the same environment with slight

advantage in convergence speed in some cases.

iii

ACKNOWLEDGMENTS

I wish to express my gratitude to those whose support was critical in the completion

of this thesis. Firstly, I am thankful to my thesis advisor, Dr. Carlos Toxtli Hernandez, for

his guidance and support throughout this endeavor. Also, I would like to express my

gratitude to my committee members, Dr. Rong Ge, Dr. Nina Hubig and Prof. Mitch Shue,

for their valuable input.

Finally, I am grateful to the members of the faculty whose classes I have taken for

their contributions to my academic growth and development. Their knowledge and

expertise have enriched my understanding of the subject matter.

I would especially like to thank Prof. Carrie Russel for her support and advice

during my journey through the program.

iv

TABLE OF CONTENTS

Page

TITLE PAGE .. i

ABSTRACT ... ii

ACKNOWLEDGMENTS .. iii

LIST OF TABLES .. vi

LIST OF FIGURES ... vii

LIST OF LISTINGS ... viii

CHAPTER

 I. INTRODUCTION ... 1

 Background and motivation ... 1
 Problem definition ... 2
 Solution approach .. 3
 Results .. 4

 II. BACKGROUND AND RELATED WORK ... 5

 Machine Learning and Deep Learning .. 5
 Federated Learning .. 8
 Hierarchical Federated Learning .. 12
 Ensemble Federated Learning .. 17
 Knowledge Distillation .. 20
 Kullback-Leibler divergence ... 24
 Heterogeneous Federated Learning ... 26

 III. PROBLEM STATEMENT .. 29

 IV. PROPOSED ARCHITECTURE AND BASELINE
 MODELS ... 32

 FedAvg ... 32
 HierFAVG .. 33
 FedDF .. 35

v

Table of Contents (Continued) Page

 Proposed architecture ... 37

 V. IMPLEMENTATION AND EXPERIMENTAL
 RESULTS .. 41

 Dataset .. 44
 Models.. 48
 Hyperparameters .. 50
 Training .. 51
 FedAvg ... 51
 HierFAVG .. 54
 FedDF .. 57
 Proposed architecture ... 59
 Additional experiments .. 65

 VI. CONCLUSIONS AND FUTURE WORK .. 71

REFERENCES .. 77

vi

LIST OF TABLES

Table Page

 1.1 Architectures feature comparison .. 31

 2.1 Reference architectures’ details ... 41

 3.1 Datasets feature comparison .. 46

 4.1 FedAvg training parameters ... 52

 4.2 FedAvg accuracy ... 52

 5.1 HierFAVG training parameters .. 55

 5.2 HierFAVG accuracy .. 56

 6.1 FedDF with DenseNet training parameters .. 58

 6.2 FedDF with DenseNet accuracy .. 59

 7.1 Proposed architecture with DenseNet training parameters 60

 7.2 Proposed architecture with DenseNet accuracy ... 61

 8.1 FedDF with MobileNetV2 training parameters ... 65

 8.2 FedDF with MobileNetV2 accuracy .. 66

 8.3 Proposed architecture with MobileNetV2 training
 parameters .. 67

 8.4 Proposed architecture with MobileNetV2 accuracy 68

vii

LIST OF FIGURES

Figure Page

 1.1 FedAvg with CNN accuracy .. 53

 1.2 FedAvg with ResNet-8 accuracy ... 53

 1.3 FedAvg with DenseNet accuracy ... 54

 2.1 HierFAVG with CNN accuracy ... 56

 2.2 HierFAVG with ResNet-8 accuracy .. 56

 2.3 HierFAVG with DenseNet accuracy ... 57

 3.1 FedDF with DenseNet accuracy .. 59

 4.1 Proposed architecture with DenseNet accuracy in
 respect to FedAvg .. 62

 4.2 Proposed architecture with DenseNet accuracy in
 respect to HierFAVG ... 62

 4.3 Proposed architecture with DenseNet accuracy in
 respect to FedDF .. 63

 4.4 Proposed architecture with DenseNet average accuracy
 in respect to FedDF .. 63

 5.1 FedDF with MobileNetV2 accuracy .. 67

 5.2 Proposed architecture with MobileNetV2 accuracy in
 respect to FedDF .. 69

 5.3 Proposed architecture with MobileNetV2 average
 accuracy in respect to FedDF ... 69

viii

LIST OF LISTINGS

Listing Page

 1.1 FedAvg algorithm .. 33

 2.1 HierFAVG algorithm ... 35

 3.1 FedDF algorithm .. 37

 4.1 Proposed architecture algorithm .. 39

1

CHAPTER ONE

INTRODUCTION

Background and motivation

Machine learning has made significant advancements in recent years in many

domains such as computer vision and natural language processing. However, traditional

centralized machine learning approaches when all the data is gathered in one storage and

used to train one or several models face challenges related to data privacy, security, data

ownership, and computational bottlenecks. There are multiple scenarios where data cannot

be placed into one silo due to legal or business reasons, or due to physical limitations of

communication channels or storage itself. E.g., in many countries, healthcare institutions

have quite a limited ability, if any, to share patients’ data that significantly affects the

ability to use that data for training machine learning models although it could improve the

healthcare services quality and patients experience.

Federated learning emerged as a solution to these limitations, enabling

collaborative learning across distributed clients while keeping data localized. In a typical

federated learning setup, a central server coordinates the training process by aggregating

local model updates from participating clients. However, while in theory federated learning

provides an ideal solution for distributed settings, in practice it collided with reality and

introduced new challenges, such as system heterogeneity as computational resources vary

significantly among clients, non-IID data as the data in real scenarios typically is not

distributed perfectly equally across clients, communication efficiency as it is required to

2

take into account how much and how often model data should be transferred among clients

and the server, privacy leakage as in some cases it is possible to restore some training data

from just changes of trained models, adversarial attacks as even small percentage of hostile

clients in a system can poison the training process and models, incentive mechanisms as

the contribution among clients can vary significantly, and scalability as in some scenarios

the number of clients can be quite large. Thus, with growing connectivity of the world,

increasing with each day amount of data, dynamically changing laws in the sphere of

artificial intelligence and variety in data handling practices in different countries and

companies federated machine learning and consequently its challenges are becoming a

more and more important topic in the field of artificial intelligence.

To address these challenges, various federated learning architectures have been

proposed. For example, hierarchical federated learning introduced multiple levels of

aggregation to improve scalability and handle data heterogeneity, ensemble federated

learning combined multiple models to enhance performance and robustness of the system,

heterogeneous federated learning incorporated ensemble federated learning and knowledge

distillation to support models with different architectures within one federated setup.

Problem definition

However, existing approaches have limitations in real-world scenarios where

multiple challenges coexist. In domains like mobile applications or IoT devices, the

number of model instances can reach millions or billions, data cannot be gathered in one

place due to privacy issues and physical limitations, and models may have different

architectures due to hardware heterogeneity or business requirements. In such scenarios

3

federated learning approaches with multiple clients connected directly to a central server

struggle with scalability, while hierarchical approaches solving the scalability issue do not

support heterogeneous models.

Consequently, there is a need for a federated learning architecture that combines

the benefits of existing approaches while addressing their limitations. The desired

architecture should allow different model architectures within a single federated setup, be

highly scalable, and ensure coverage of all data during training to avoid situations where

some features are underrepresented due to data being non-IID. By developing such an

architecture, the aim is to enable effective and efficient federated learning in large-scale,

heterogeneous environments.

Solution Approach

The approach chosen to address the challenge is to combine heterogeneous

federated learning built with ensemble federated learning and knowledge distillation, and

hierarchical federated learning into a unified architecture. Different types of models are

trained on different subsets of data allowing to match models’ complexity with clients’

computational resources. Ensemble federated learning is used to combine different types

of the models providing the ability to utilize all the heterogeneous models for inference.

Knowledge distillation enables the transfer of knowledge from a heterogeneous ensemble

acting as a teacher model to student models, allowing to create new models for each type

using all collected knowledge from all types of the models. Hierarchical federated learning

introduces multiple levels of aggregation, grouping clients into clusters based on the model

types instead of spatial proximity or data features, and performing local aggregation before

4

sending updates to the central server. It improves scalability by reducing the

communication burden on the central server and enables more efficient learning in large-

scale federated networks.

Results

To validate the proposed approach, experiments were conducted using the CIFAR-

10 dataset. The proposed architecture and several architectures (FedAvg, HierFAVG, and

FedDF) used as baseline ones were implemented, trained, and evaluated based on accuracy

and convergence speed. While the proposed architecture with heterogeneous models

showed lower performance compared to FedAvg and HierFAVG with homogeneous

models, its accuracy was comparable to FedDF with heterogeneous models, and in some

cases, it converged faster than FedDF on a similar setup.

However, the conducted experiments have some limitations, including sparse

model architecture and hyperparameter tuning, the relatively small scale of the emulated

distributed system, limiting the application domains to image classification and the use of

IID data only that should be addressed in future research along with employing less data-

hungry models and evaluating the communication overhead in comparison to other

architectures to investigate the potential advantages of the proposed architecture as the

achieved during the experimentations results are only slightly and not always better than

existing solutions.

5

CHAPTER TWO

BACKGROUND AND RELATED WORK

Machine Learning and Deep Learning

Machine learning is a field of study that develops algorithms and models to perform

tasks by learning from data, instead of being explicitly programmed. Its ability to extract

insights and discover patterns from data caused wide adoption across multiple domains.

Machine learning techniques are typically split into three main approaches based on the

nature of feedback available during the learning process.

Supervised Learning [1] fits a mapping function from input data to target output

labels based on labeled training examples. It’s applicable in the cases where historical or

known data is used to make predictions on unseen data. Supervised learning is widely used

in tasks such as email filtering [2], image classification [3], voice recognition [4] or

diagnostics [5]. Common algorithms include linear/logistic regression [6][7], decision trees

[8], kernel methods [9], ensemble techniques [10], and neural networks [11].

In contrast, Unsupervised Learning [12] is used for discovering patterns and

clusters directly from unlabeled data without any supervision. It captures important

features in the data and uncover underlying structure through methods like clustering [13],

dimensionality reduction [14] and association analysis [15]. Unsupervised learning allows

to extract information from raw data that is critical for exploratory analysis, clustering [13],

anomaly detection [16] and extracting features for downstream tasks.

6

Another paradigm, Reinforcement Learning [17], is a paradigm where an agent

learns to take optimal actions to maximize a reward signal by interacting with an

environment. Unlike supervised learning's static datasets, reinforcement learning agents

improve through trial-and-error, making it suitable for systems control and decision-

making in dynamic environments. Reinforcement learning achieved significant results in

game-playing [18], robotics [19] and recommendation systems [20] with techniques like

Q-learning [21], policy gradients [22] and actor-critic methods [23].

Finally, Deep Learning [24], a subfield of machine learning inspired by the brain

structure, brought advances into many domains. Deep neural networks, composed of

multiple layers of simple units, learn features directly from raw data unlike traditional

machine learning algorithms that perform better when the important features are found,

extracted and preprocessed in advance. This allows to automate the feature engineering

process and to improve performance on highly complex, real-world datasets. Deep learning

achieved notable success in areas like computer vision with convolutional neural networks

[25], natural language processing with transformer models [26], and generative modeling

with variational autoencoders [27] and diffusion models [28]. However, key limitations of

deep learning models include the need for large, labeled datasets, poor interpretability,

adversarial vulnerabilities and encoding societal biases [29].

However, while the capabilities of machine learning systems have grown rapidly

during the last decade, several challenges have to be addressed for real-world deployment.

One challenge is data bottlenecks. Many techniques are data-hungry and require

labeled examples which can be costly and impractical to acquire. Data-centric approaches

7

like transfer learning, active learning, weak supervision, and self-supervision are promising

directions.

Another one is interpretability. Complex models often lack transparency, making it

difficult to understand the reasoning behind their outputs. It reduces trust, accountability,

and adoption in high-stakes domains [32]. Explainable artificial intelligence approach aims

to provide insights into these "black box" models.

Robustness is also a concern. Machine learning systems can be vulnerable to

distribution shifts [33], adversarial attacks [34] and compounding errors [35]. Improving

robustness is crucial for safe usage.

Another issue is that most models excel at capturing correlations but struggle with

causal reasoning, limiting their ability to generalize or extrapolate.

A significant challenge is encoding social biases. Since machine learning models

learn from data, they can often absorb and integrate societal biases like gender, racial or

age discrimination that may be presented in the training datasets [36]. These encoded biases

can lead to unfair and discriminatory outcomes when deployed in decision-making systems

impacting people's lives. Careful data curation, bias measurement techniques and bias

mitigation algorithms are needed to make models fairer and more inclusive.

Lastly, adversarial vulnerabilities. Deep neural networks have been shown to be

susceptible to small, carefully crafted perturbations to inputs designed to cause

misclassification. These adversarial examples expose blind spots and lack of robust

reasoning in models. Adversarial training, defensive distillation and certifiable robustness

are areas of research aiming to make models more secure against such attacks.

8

Federated Machine Learning

However, despite the undeniable advancements in machine learning, the traditional

centralized approach has several challenges.

Data privacy is a significant concern in centralized training as it often requires

storing all the data in one location. This raises issues of data privacy, especially when

dealing with sensitive data like healthcare information or financial records [37]. Data

breaches or unauthorized access can have severe consequences for individuals.

Closely related to privacy is the issue of data security. Centralized data storage also

presents security vulnerabilities. Malicious actors may attempt to steal, modify, or corrupt

the data, compromising the integrity of the trained model, and to do so they need to breach

into only one location.

Moreover, data ownership and governance raise questions about control and access.

Issues arise regarding who owns the data, who can access it, and how the benefits from

having the data are distributed [38].

From a technical perspective, centralized learning can face computational

bottlenecks. Training on massive datasets often requires significant computational

resources. Centralized servers can become overloaded, leading to bottlenecks, and

hindering the training process.

Lastly, centralized approaches can straggle with limited data availability. In some

cases, data may be siloed across different organizations or individuals due to privacy

regulations such as General Data Protection Regulation in the European Union or

9

ownership restrictions. Centralized approaches struggle to use this fragmented data for

model training.

These challenges highlight the need for alternative approaches that prioritize data

privacy, security, and ownership while enabling collaborative learning from distributed

data sources. Federated learning [30] was created as a solution to address the limitations of

centralized learning. It is a distributed machine learning paradigm where the model training

occurs collaboratively across multiple devices or silos while keeping data localized. In a

typical naive federated setup, the generalized workflow can be described with the next

steps:

1. Global Model Distribution. A central server broadcasts a global model to all

participating clients. This initial model can be pre-trained on a general dataset or a

smaller set of aggregated data.

2. Local Model Training. Each client downloads the global model and trains it locally

on its own private data. This training process updates the model weights based on

the local data.

3. Model Update Aggregation. Clients upload only the trained model updates to the

central server, not the data itself.

4. Global Model Update. The central server aggregates these model updates from

multiple clients using various techniques. The aggregated update is then applied to

the global model, improving its overall performance.

10

5. Iterative Training. This process of model distribution, local training, update

aggregation, and global model update is repeated for multiple rounds, iteratively

improving the model's performance.

While federated learning can be beneficial in some circumstances, it also brings

new challenges.

One of them is system’s heterogeneity as in federated settings the participating

devices can have significant system’s heterogeneity in terms of compute capabilities,

available memory, network connectivity, energy constraints, and software environments.

This system's heterogeneity needs to be taken into account during the architecture design.

For example, embedded devices like sensors and IoT gadgets may be very constrained in

the sense of computational power compared to cloud servers. Naive federated

implementations could lead to stragglers and bottlenecks. Asynchronous and adaptive

communication strategies [39], lossy compression techniques [40], and heterogeneity-

aware optimization methods [41] may be required.

Another challenge in federated learning is dealing with non-independent and

identically distributed (non-IID) data. A key premise of federated learning is using the

distributed data across devices to achieve better generalization compared to models trained

in isolation. However, the non-IID data distributions resulting from different device usage

patterns and biases can lead to data heterogeneity. Naively aggregating model updates from

such heterogeneous data can degrade performance or cause convergence issues [31].

11

Communication efficiency is also a critical consideration in federated learning due

to the repeated exchange of models/updates between the server and devices. Efficient

communication strategies [42] are critical, especially when dealing with bandwidth

constraints and devices with limited connectivity like mobile phones. Methods like

gradient compression [43], model quantization [40] and more intelligent update scheduling

[41] can help reduce the overall communication overhead.

Privacy leakage is another concern in federated environments as while the core idea

of federated learning is to avoid direct sharing of data, care must be taken to prevent

information leakage through the parameter updates exchanged during training [44].

Approaches like differential privacy [45] can inject the right amount of noise to model

updates to achieve strong privacy guarantees. However, these privacy-preserving methods

can impact model performance and add computational overhead, requiring careful analysis

of the privacy-accuracy trade-offs.

Federated learning also faces challenges related to adversarial attacks. In open

federated settings, there are concerns around the reliability, security and integrity of the

end devices participating in the training process. Adversaries could inject malicious

updates to degrade the global model, honest devices could drop out due to failures or low

connectivity, and hardware faults could lead to corrupted updates [46]. Federated solutions

need methods to detect and filter out such poisoned updates, handle device failures

gracefully, and provide resilience against a range of attacks like model poisoning, backdoor

insertion, and reconstruction attacks.

12

Incentive mechanisms is another important consideration for federated learning across

independent entities like organizations or individuals as having effective incentive

structures and monetization models is important to inspire participation [47]. There are

concerns that participants with more resources could disproportionately impact the global

model. Reputation-based updates weighting, proof-of-stake mechanisms, along with

pricing schemes and contractual obligations can influence desired participant behavior.

Lastly, scalability remains a significant challenge in federated learning. Many

federated use cases like personalized content recommendations involve extremely large

and dynamic populations of participating devices. Handling such a massive scale with

potentially millions of unreliable nodes poses scalability challenges. Hierarchical

architectures, sharding approaches [48], efficient sampling/sketching [49], and gossiping

protocols [50] are some solutions being explored to enable scalable federated learning

solutions.

In summary, while federated learning provides an elegant solution, there are

multiple challenges that need to be taken into account for real-world deployments.

Hierarchical Federated Learning

As it was mentioned earlier, among the key challenges in federated learning settings

there are, especially at large scale with numerous client devices, the communication

bottleneck caused by the models’ parameters transfer between the central server and client

nodes, latency in communications between client nodes and the central server that emerges

due to geographical distribution of nodes and aggregation process bottleneck that can be

13

caused by storage I/O limitations on the central server. To address these limitations and

improve scalability, hierarchical federated architectures have been proposed.

In a hierarchical federated setup [51], there are at least two levels of parameter

aggregation instead of a single central server. Client nodes are clustered into groups with

each group having an intermediate server that first aggregates model updates from its local

cluster. The intermediate model updates are then passed up to a global server for final

aggregation.

For hierarchical federated learning, the generalized workflow can be described as

follows:

1. Global Model Distribution. The global server initializes and broadcasts the global

model to a set of intermediate cluster servers/coordinators. These cluster servers

can be geo-distributed edge servers or selected participants with higher compute

capabilities.

2. Cluster-level Model Distribution. Each cluster server then distributes the global

model to the participating client nodes within its local cluster.

3. Local Model Training. Similar to traditional federated learning, each client device

trains the model locally using its private data.

4. Cluster-level Aggregation. Clients upload their locally trained model updates to

their respective cluster servers. The cluster servers then aggregate these updates

from clients within their cluster, using various techniques.

5. Cluster-to-Global Aggregation. The intermediate cluster updates are then sent back

to the global server for another round of aggregation across all clusters. Various

14

algorithms can be employed here as well, accounting for cluster weights,

reputations, or data characteristics.

6. Global Model Update. The global server applies the aggregated cluster updates to

the global model.

7. Iterative Training. Steps 1 through 6 are repeated for multiple communication

rounds until the global model converges or other criteria are met.

Beyond the initial communication efficiency motivation, hierarchical architectures

have also been explored for handling additional challenges.

One such challenge is handling data heterogeneity. Intelligent clustering strategies

can group statistically similar client data distributions together. The intermediate

aggregations help mitigate client drift caused by heterogeneous data distributions - often a

key challenge in cross-silo federated settings.

Other advantages of hierarchical architectures are the possibility to implement

asynchronous training updates relatively easily [52] and tolerance to node faults or

dropouts. The global server can proceed with aggregation from available intermediate

clusters without stalling with fewer issues than synchronous centralized approaches.

Recent works [53][54][55] have explored hierarchical federated learning

architectures for on-device intelligence and continual learning applications on edge devices

like mobile phones and IoT nodes. Intermediate model aggregation at edge servers can help

combine real-time learned updates from fast model evolution at the edge with periodic

consolidation and updating of global cloud models.

15

However, while Hierarchical Federated Learning offers better scalability than naive

Federated Learning architectures, it still keeps some issues and introduces new challenges.

One challenge is determining the optimal cluster configuration [56][57] which

involves factors like data similarity, communication costs, privacy constraints, and

fairness. Sub-optimal clustering can lead to poor performance and inefficiency.

Another challenge is intra-cluster concept drift, where the intermediate model

aggregations within clusters can cause the cluster-level model to diverge from the global

model over time [58]. Finding a balance between frequent global aggregations and

preventing intra-cluster representation drift can be a dynamic trade-off.

Privacy and security are also concerns in Hierarchical Federated Learning as the

multi-level aggregation exposes more opportunities for potential privacy leakage compared

to traditional federated learning. Rigorous privacy-preserving and security mechanisms are

required to protect against attacks across the hierarchy.

Additionally, in cross-silo settings, designing effective incentive mechanisms that

ensure fair participation, honest contributions, and fair reward sharing across the cluster

hierarchy can be more challenging, especially in the presence of dynamic clustering.

Communication-efficiency trade-offs also need to be considered as while

Hierarchical Federated Learning can help to reduce overall communication cost, it

introduces additional overhead for intra-cluster and inter-cluster communication. Efficient

communication strategies and trade-offs between model compression, update frequency,

and convergence need to be analyzed for each individual case.

16

Cluster heterogeneity and fairness are also important considerations, as

heterogeneity in cluster sizes, capabilities, and data distributions can lead to fairness

concerns and disproportionate influence on the global model [59]. Techniques for fair

resource allocation, weighted aggregation, and ensuring equitable contributions are

important considerations.

Lastly, Hierarchical Federated Learning primarily focuses on aggregating local

updates to a shared global model, assuming all clients train compatible models. However,

in real-world scenarios, clients may have distinct data characteristics, system’s constraints,

or application requirements demanding diverse model architectures or hyperparameters.

Enforcing strict global model consistency across all levels of the hierarchy can lead to

suboptimal performance for clients with unique model requirements and hinder the ability

to use specialized local models.

In summary, Hierarchical Federated Learning offers a promising approach to

address scalability challenges in large-scale federated learning settings. By introducing

multiple levels of aggregation and clustering strategies, it can help mitigate issues like

client drift and fault tolerance. However, it also introduces new challenges related to

optimal cluster configuration, intra-cluster concept drift, privacy risks, incentive

misalignments, communication-efficiency trade-offs, cluster heterogeneity, fairness, and

model heterogeneity. Addressing these challenges requires careful design considerations

and novel techniques that balance the benefits of hierarchical architectures with the unique

requirements and constraints of specific federated learning scenarios.

17

Ensemble Federated Learning

Still, one of key challenges of hierarchical federated learning is inefficiency with a

heterogeneous system. To address the issue, several other concepts should be considered,

and the first one is ensemble learning [60] that combines multiple base models to improve

prediction accuracy and robustness compared to using a single model. The key idea behind

ensemble learning is that the combination of diverse models can lead to better

generalization performance by leveraging the strengths of individual models and mitigating

their weaknesses. Ensemble learning has been widely used in various domains and has

achieved state-of-the-art performance in many machine learning tasks. The success of

ensemble learning can be attributed to its ability to reduce overfitting, improve

generalization, and handle complex data distributions, which is a combination that is

critical for federated learning.

Ensemble federated learning [61] is an approach that combines the principles of

federated learning and ensemble learning to improve the performance and robustness of

federated learning systems. The main idea behind ensemble federated learning is to

leverage the benefits of ensemble learning in the federated setting by training multiple

diverse models on distributed data and combining their predictions.

There are several motivations for usage of ensemble techniques in federated

learning.

First, ensemble learning can help improve the generalization performance of

federated learning models by reducing overfitting and taking into account diverse patterns

in the decentralized data [62].

18

Second, federated learning often involves non-IID (non-independently and

identically distributed) data across clients, which can lead to performance degradation.

Ensemble methods can mitigate the impact of data heterogeneity by combining models

trained on different data distributions.

Third, federated learning systems are vulnerable to adversarial attacks, such as data

poisoning or model update manipulations. Ensemble techniques can enhance the

robustness of federated learning by reducing the influence of individual malicious clients

or models.

In ensemble federated learning, a central server distributes ensemble models to

clients, who train and update them locally using ensemble techniques. Clients send only

model updates to the server, which aggregates them to improve the global ensemble while

preserving privacy. This process is repeated iteratively until the desired performance is

achieved, and the final ensemble is used for inference on new data. In a typical ensemble

setup, the generalized workflow can be described with the next steps:

1. Global Model Distribution. A central server initializes several global models to

form an ensemble. These models can be diverse in architecture, initialized

randomly, or pre-trained on various datasets to ensure diversity. The server

distributes the ensemble of models to all participating clients. Depending on the

strategy, clients may receive all models or a subset to reduce computational and

communication overhead.

19

2. Local Model Training. Each client receives one or more models from the ensemble.

Locally, clients train each model on their private data. Post-training, clients

generate updates for each model they trained.

3. Model Update Aggregation. Clients send their model updates back to the central

server. The central server aggregates updates for each model separately.

4. Global Ensemble Update. The updated models are integrated into the global

ensemble. Integration techniques can vary, including simple averaging, weighted

voting, or meta-learning models that learn how to best combine the ensemble's

outputs.

5. Iterative Training. The process of distributing the updated ensemble, local training

on clients, updating aggregation, and global ensemble updating repeats for multiple

rounds. With each iteration, the ensemble models are trained, improving the overall

predictive performance and robustness against diverse data distributions.

While ensemble federated learning is showing good results, there are several

challenges.

One challenge is ensemble weight optimization, particularly in the presence of data

heterogeneity and client variability. Designing efficient and adaptive weight optimization

methods that can handle the federated learning setting can be case-by-case and not a trivial

problem.

Another challenge is data heterogeneity and non-IID data. Although ensemble

federated learning can help mitigate the impact of data heterogeneity to some extent by

20

combining models trained on different local datasets, it does not completely solve the

problem of non-IID data across clients. The performance of ensemble models can still be

affected by significant differences in data distributions, and specialized techniques for

handling non-IID data may be necessary.

Communication bottlenecks are also a concern in ensemble federated learning as

the learning process can suffer from communication bottlenecks as the number of clients

increases, due to the need to exchange model updates between the clients and the server.

Ensemble federated learning does not inherently solve the scalability issue and can even

worsen the situation due to multiple models needing to be trained on each client.

Another one is models’ heterogeneity. While Ensemble Federated Learning in

theory allows the use of heterogeneous models, heterogeneity is quite limited as it typically

requires each client to train a subset of models.

Lastly, ensemble federated learning increases the workload for each client as each

client should train a set of models. This increased workload can be problematic for clients

without powerful hardware, limiting their ability to effectively participate in the federated

learning process.

Knowledge Distillation

The second concept that is used to address the system heterogeneity problem is

knowledge distillation [63] that is used for transferring the knowledge from a large and

complex model (teacher) to a smaller and simpler model (student), without directly sharing

the raw data between the models. The key idea is to train the student model to mimic the

behavior or outputs of the teacher model, by minimizing the divergence between their

21

predictions, while also fitting the student model to the local data on each client in the case

of federated setting. Knowledge distillation in federated learning is motivated by the fact

that the global model learned by federated learning may be too large or complex to be

deployed to resource-constrained devices, such as mobile phones, IoT sensors, or

wearables. In addition to the deployment benefits, there are several other reasons why

knowledge distillation is gaining traction in machine learning.

First, knowledge distillation can lead to improved performance for smaller models.

By using the knowledge of a well-performing teacher model, even a smaller student model

can achieve competitive accuracy on the target task [64].

Second, knowledge distillation can significantly reduce the training time and

computational resources required for the student model compared to training it from

scratch [65]. This is especially valuable when dealing with limited training data for the

target task.

Third, knowledge distillation can potentially improve the robustness of the student

model by helping it learn from the teacher's knowledge, which might encompass a wider

range of patterns or scenarios compared to the limited target data [63].

The typical knowledge distillation workflow involves the following steps:

1. Teacher Model Pre-training. A complex model (teacher) is trained on a potentially

large dataset relevant to the source task. This teacher model is assumed to capture

rich and effective knowledge for the task.

22

2. Student Model Selection. A smaller and less complex model (student) is chosen for

the target task. This model architecture might be specifically designed for

deployment on resource-constrained devices.

3. Joint Loss Optimization. During the student model training process, two main loss

functions are typically optimized:

○ Target Task Loss. This loss measures the student model's performance on

the target task using labeled data.

○ Distillation Loss. This loss encourages the student model to mimic the

behavior of the teacher model. This can be achieved by comparing the

student's predictions with the teacher's predictions (soft targets).

4. Knowledge Transfer and Model Improvement. Through the combined optimization

of both loss functions, the student model gradually learns not only from the target

data but also from the distilled knowledge of the teacher model, leading to

improved performance.

While knowledge distillation is a useful technique for transferring knowledge from

a large and complex model to a smaller and simpler model, it also has several problems

and limitations that need to be considered.

One of the main challenges of knowledge distillation is the capacity gap between

the teacher model and the student model. If the student model is too small or simple

compared to the teacher model, it may not be able to fully capture and retain the knowledge

distilled from the teacher model, leading to a significant performance gap between the two

23

models [66]. On the other hand, if the student model is too large or complex, it may not

provide significant advantages in terms of model compression, eliminating the purpose of

knowledge distillation.

Another problem of knowledge distillation is the potential inconsistency between

the knowledge distilled from the teacher model and the true knowledge required for the

target task. This can happen when the teacher model is not well-suited for the target task,

or when the distillation process introduces noise or bias into the transferred knowledge. In

such cases, the student model may learn to mimic the behavior of the teacher model but

fail to generalize well to new data or situations.

The success of knowledge distillation heavily depends on the quality and quantity

of the data used for distillation. If the data is noisy, biased, or insufficient, the distilled

knowledge may be inaccurate or incomplete, leading to poor performance of the student

model. In federated learning scenarios, this problem can be aggravated by the data

heterogeneity and imbalance across different clients, making it difficult to ensure

consistent and reliable knowledge distillation.

Computational overhead is another consideration in knowledge distillation. While

knowledge distillation can help to reduce the computational cost of large models, the

distillation process itself can be computationally expensive, especially when dealing with

complex models and large datasets.

Additionally, the performance of knowledge distillation can be sensitive to the

choice of hyperparameters, such as the temperature scaling factor, the distillation loss

weight, or the learning rate. Finding the optimal hyperparameters for a given task and

24

dataset can be challenging and time-consuming, especially in federated learning scenarios

where the data and models are distributed across multiple clients.

Lastly, knowledge distillation can make the resulting student model less

interpretable and explainable, as the distilled knowledge may not have a clear

correspondence to the original features or concepts of the task. This can be problematic in

applications where model interpretability is important, such as healthcare or finance, where

the decisions made by the model need to be transparent and justifiable.

In summary, even with all its caveats knowledge distillation is a powerful technique

for transferring knowledge from large and complex models to smaller and simpler models,

which is particularly useful in federated learning scenarios where the global model may be

too large or complex to be deployed on resource-constrained devices. However, to

implement knowledge distillation it is required to define a loss function that would measure

the difference in outputs between a teacher model and a student model.

Kullback-Leibler divergence

Kullback-Leibler (KL) divergence [67] is a measure that quantifies how much one

probability distribution diverges from a reference probability distribution.

DKL(P(x) || Q(x)) = ∑ P(x) ln(P(x) / Q(x))

 It is widely used in statistics, data science and machine learning as it can be applied

in anomaly and fraud detection, model and data monitoring, model selection, clustering,

25

and many other domains. However, there are several limitations and properties that should

be taken into account:

● KL divergence is asymmetric, so in many cases DKL(P || Q) ⧣ DKL(Q || P)

● KL divergence is not a distance and cannot be used to define a metric space.

Consequently, it cannot be used to measure how far apart distributions from

each other

● KL divergence is non-negative, equals to zero only if P(x) = Q(x) for each

x and is undefined if Q(x) = 0

 Due to its properties, Kullback-Leibler divergence was used for knowledge

distillation as KL divergence allows to measure a difference in distributions between

teacher model output logits and student model output logits. Therefore, KL divergence is

utilized as a loss function with weighted inputs from a teacher and a student model forcing

the student model to mimic the teacher up to some degree. This weighted approach also

allows to have and balance different objectives for the teacher and the student models.

Additionally, to provide the student model with richer information and transfer nuances in

teacher’s predictions revealing more information about the teacher’s uncertainty and the

relative likelihood of non-maximum classes, the distribution of those teacher model output

logits can be smoothed by applying a temperature scaling factor.

In summary, KL divergence is a crucial component of knowledge distillation,

where it quantifies and helps minimize the difference between the teacher and student

models' predictions.

26

Heterogeneous Federated Learning

Federated learning has emerged as a promising approach for collaborative machine

learning across distributed clients without compromising data privacy. By allowing the

clients to train models locally on their own data and only share the model updates with a

central server, federated learning can mitigate the risks of data breaches and privacy

violations. However, naive federated learning frameworks assume that all clients have

similar data distributions and model architectures. This assumption is often violated in

practice due to the inherent diversity of the clients.

One aspect of this diversity is data heterogeneity, where clients may have different

data distributions, such as different feature spaces, label spaces, or data volumes. This can

lead to significant variations in the local models trained by each client, making it difficult

to aggregate them into a global model that performs well for all clients.

Another aspect is model heterogeneity, where clients may have different

computational resources and system constraints, such as different memory sizes,

processing speeds, or energy budgets. This can lead to the need for different model

architectures or hyperparameters for each client, making it challenging to maintain a

consistent global model across all clients.

Lastly, objective heterogeneity can arise when clients may have different learning

objectives or tasks, such as different target domains, cost functions, or fairness criteria.

This can lead to conflicting or incompatible goals among the clients, making it hard to find

a global model that satisfies all clients.

27

These heterogeneities can significantly degrade the performance and convergence

of traditional federated learning algorithms, leading to suboptimal models, slow

convergence, or even divergence. Moreover, they can also introduce fairness and

robustness issues, where some clients may benefit more from the global model than others,

or the global model may be biased towards certain clients or data distributions.

To address these challenges, the field of heterogeneous federated learning [68] has

emerged, where a central server coordinates a learning process across clients with diverse

computational resources, data distributions, and differing model architectures. The

objective is to optimize a global model or a set of personalized models that perform well

across all clients, accommodating the inherent diversity in the federated network. The

typical workflow for heterogeneous federated learning can be described through the

following steps.

1. Central Models Distribution. The central server prepares a central model, or a set

of models tailored to the heterogeneity in the client devices and data. This could

involve varying model architectures designed to be compatible with the

computational capabilities of different clients. The server distributes the central

model(-s) to all participating clients.

2. Local Model Training. Each client receives a model that best fits their local

environment. Clients train the received model on their local datasets.

3. Model Update Aggregation. After local training, clients prepare and send their

model updates back to the central server. Depending on the chosen approach, the

server might distill the knowledge from an ensemble of the client models into the

28

central model and then distill it from the central model to the models with

architectures that corresponds to the clients’ model architectures or distill it directly

from the ensemble of the client models into the models with architectures that

corresponds to the clients’ model architectures.

4. Iterative Training. The process of model distribution, local training, update

contribution and server-side heterogeneity handling is repeated iteratively for

multiple rounds.

 While Heterogeneous Federated Learning combines advantages of Ensemble

Federated Learning and Knowledge Distillation, it also inherits many of their problems,

such as the need for ensemble weight optimization, a limited ability to handle data

heterogeneity and non-IID distributions, teacher-student capacity gap, knowledge

inconsistency, data quality and quantity for knowledge distillation, computational

overhead, knowledge distillation hyperparameter sensitivity, and potential deterioration in

model interpretability. In addition, Heterogeneous Federated Learning keeps the traditional

for non-hierarchical potential scalability issue.

29

CHAPTER THREE

PROBLEM STATEMENT

 As we can see, there are multiple approaches to federated machine learning

addressing different issues. A naive federated learning approach solves the problem of

model training on distributed data in a setting where it is not possible to access all the data

from one place. Hierarchical federated learning allows to scale federated learning almost

indefinitely by introducing multiple layers of intermediate aggregators. Ensemble

federated learning lets us improve the performance by adding ensembles into the federated

environment. And heterogeneous federated learning combines ensemble federated learning

and knowledge distillation to create an architecture where it is possible to utilize models

with different architectures in the same federated system.

 However, while the mentioned approaches address separate issues, many real-

world systems typically meet multiple issues at the same time. For example, it may be

sufficient to use naive federated learning approach in the environment with several or even

dozens of clients, but in the world of mobile and IoT devices this approach is becoming

virtually unfeasible as we would need to aggregate billions of models on each aggregation

round, and for that we need to communicate with billions of clients that is limited by the

network throughput and store all the models in the central storage that is limited by its

capacity and I/O. One of solutions for this problem is to utilize for aggregation only a

random subset of the client models on each round, but taking into account the potential

scale of the problem in many cases an acceptable subset would include just a fraction of a

percent of all clients that can lead to slow convergence, a lower achievable performance

30

and underrepresentation of some data during the training. Hierarchical federated learning

solves this problem, but by its nature it demands each single client model to have the same

architecture. This demand can significantly affect models in an environment with huge

differences in client devices’ performance and make federated learning virtually

impossible in some cases such as changing models’ architecture in the mobile applications

during application updates as those updates in most cases initiated by users and are not

guaranteed that leads to the situation where different groups of devices can have dozens of

different versions of the application installed. If different versions contain different model

architectures, it makes the setup incompatible with hierarchical federated learning

approach. This particular problem is solved by heterogeneous and ensemble federated

learning, but as well as a naive federated learning approach, neither heterogeneous

federated learning nor ensemble federated learning is capable of scaling without taking a

hit on convergence speed and the maximum achievable performance.

 Thus, we can clearly see the case where the existing approaches to federated

learning are potentially suboptimal - domains such as mobile applications or IoT / network

devices where the count goes into millions or billions of models’ instances, the data cannot

be shared, and models should have different architectures due to devices hardware

heterogeneity, a business cycle or environment limitations. If we combine the approaches

into one table considering this case, we will see it distinctly.

 Scalability Heterogeneity

Naive FL no no

31

Hierarchical FL yes no

Ensemble FL no limited

Heterogeneous FL no yes

Table 1.1. Architectures feature comparison

Therefore, our task is to try to compose an architecture that would allow different

models’ architectures within one federated setup, be virtually indefinitely scalable and

cover all the data during training to avoid the situation where some data is randomly

underrepresented during the training.

32

CHAPTER FOUR

PROPOSED ARCHITECTURE AND BASELINE MODELS

As the main task of the new architecture is to resolve the conflict between

heterogeneity and scalability in the existing approaches, three architectures were chosen as

baseline ones.

FedAvg

 The first baseline architecture, FedAvg introduced in 2017 [69], is the most

fundamental and well-known approach in federated learning that serves as a commonly

used benchmark for evaluating the effectiveness of more complex architectures in the sense

of accuracy, convergence speed, and communication overhead. Despite its simplicity,

FedAvg has achieved good performance in many applications and has been widely

adopted. Comparing against FedAvg allows for a clear assessment of whether the new

architecture brings significant improvements over this basic approach.

 For this work a set of clients was created with appointing each client to a separate

subset of the data. At each round a random subset of clients were trained on the respective

data subsets, after which the trained clients were collected on a central server and averaged.

The resulting model was spread among all clients for further training. The algorithm can

be written as follows.

33

Server executes:

 initialize model M

 for each round do

 K <- (random subset of clients)

 for each client k in K do

 M’ <- ClientUpdate(k)

 M <- (average weights across M’)

ClientUpdate(k):

 receive model Mk

 for each local epoch do

 M’ <- (train Mk on the local dataset)

 send M’ to server

Listing 1.1. FedAvg algorithm

HierFAVG

 As one of two factors in the addressed issue is scalability, the second baseline

architecture should represent hierarchical federated learning as it allows to scale a system

virtually indefinitely. While there are a lot of variations in this approach that address

different aspects such as decreasing latency across cellular networks by M.S.H. Abad et al.

[70], improving performance on non-IID data via automated hierarchical clustering by

Cristopher Briggs et al. [57], decreasing network workload with models quantization by

Lumin Lui et al. [71] or with cluster formation in respect to data distribution by YongHeng

Deng et al. [72], increasing the convergence speed via cluster formation based on the

computational resources similarity and asynchronous communications by Zhiyuan Wang

et al. [73], increasing privacy with adding random noise by Lu shi et al. [74], and many

34

others, the architecture that represents hierarchical federated learning in its purest form and

introduced the concept per se is HierFAVG created in 2020 by Lumin Liu et al. [51]. As

the goal is to compare the proposed architecture with baseline ones, HierFAVG was chosen

as it reflects the fundamental principles of all hierarchical federated learning architectures

and does not contain additional factors that can interfere with fairness of the comparison.

 For this work the HierFAVG was implemented according to the description in the

original paper with one difference - in the original paper clients were randomly assigned

to edge-servers and correspondingly clusters at each round while in this baseline

implementation they were assigned statically at the beginning of training and stayed within

the same clusters. There are two reasons behind this decision. The first one is that typically

one of factors for assigning is a spatial proximity to minimize the latency in

communications within clusters, and on a truly large scale when clients are spread across

countries, continents, or the globe random reassignment of clients among clusters will

potentially increase the latency. The second reason is keeping the differences between

baseline architectures and the proposed architecture minimal as the proposed architecture

contains heterogeneous models that cannot be randomly joined into clusters due to their

incompatibilities. Thus, a set of clients was created with appointing each client to a separate

subset of data. All clients were assigned randomly to several clusters with an edge-server

within each cluster and one cloud server. At each edge round, client models were trained

on the local data and were collected by the cluster edge-server for averaging and spreading

a produced model within cluster clients. After several edge rounds, edge-servers send

35

produced models to the cloud server for averaging and spreading back to edge-servers and

consequently within respective clusters. The algorithm can be written as follows.

Server executes:

 initialize model M

 for each cloud round do

 for each edge server e in E do

 for each edge round do

 for each client k in K do

 M’ <- ClientUpdate(k)

 Me <- (average weights across all M’ within e)

 M <- (average weights across all Me)

ClientUpdate(k):

 receive model Mk

 for each local epoch do

 M’ <- (train Mk on the local dataset)

 send M’ to server

Listing 2.1. HierFAVG algorithm

FedDF

 The second factor in the addressed issue is heterogeneity, and one of the first

approaches to heterogeneity in federated learning is ensemble federated learning. However,

ensemble federated learning implies each client training the full set of models and

addresses not the differences in client devices’ variability in available computational

resources, but the accuracy of models’ predictions due to ensembling. The first architecture

36

that truly focused on heterogeneity of models itself and incorporated knowledge distillation

allowing adjustment of the system to variety in devices and bridge the gap between

different models was FedDF introduced in 2020 by Tao Lin et al. [75]. Some other works

were introduced addressing specific aspects of the architecture such as replacing

knowledge distillation to small local models with knowledge distillation to one large model

by Yae Jee Cho et al. [76] or reducing network workload via shifting knowledge distillation

from a cloud server to local clients by Sohei Itihara et al. [77], but in the fundamental sense

they were knowledge distillation-based variations of FedDF. FedMD [78] and Cronus [79],

both are knowledge distillation-based architectures for heterogeneous federated learning

and published before FedDF, were rejected as baseline candidates as they require

knowledge distillation not only on a public dataset, ut also on all local ones that can lead

to unpredictable consequences in performance and makes the results highly dependent on

the local data. As the goal is to compare the proposed architecture with baseline ones,

FedDF was chosen as it reflects the core principles of heterogeneous federated architecture

and does not include additional factors that can affect the fairness of the comparison.

 However, in the original work the authors mentioned the ability of the architecture

to handle heterogeneous models, but virtually homogeneous setups only were tested and

evaluated. For this work FedDF was implemented with heterogeneous models as the main

purpose of it is to create a baseline for heterogeneity. At each round a random subset of

clients was chosen in a way that the subset would include all types of the models the same

number of times to provide an equal representation for better fairness in evaluating. As the

next step, that subset was combined into an ensemble that was used to train new models -

37

one per type - with a separate dataset via knowledge distillation. The resulting models were

spread across corresponding clients for further training. The algorithm can be written as

follows.

Server executes:

 initialize models M of types T

 for each round do

 K <- (random subset of clients)

 for each client k in K do

 M’ <- ClientUpdate(k)

 for each model type t in T do

 Mt <- KnowledgeDistillation(t, all M’)

 (update M with Mt)

ClientUpdate(k):

 receive model Mk

 for each local epoch do

 M’ <- (train Mk on the local dataset)

 send M’ to server

KnowledgeDistillation(t, all M’):

 for each local epoch do

 Mt <- (train Mt with inference of all M’)

 return Mt

Listing 3.1. FedDF algorithm

38

Proposed architecture

 To address the issue, the proposed architecture should combine advantages of both

heterogeneous and hierarchical federated learning in order to negate their respective

disadvantages. To do so, for providing scalability hierarchical multi-layer structure is taken

as a basis as it allows to scale the system varying the number of clusters and layers. But,

unlike the typical approach where clusters in the hierarchical structure are created based

on spatial proximity to minimize the latency in communications within each cluster, the

clusters are composed based on model types that allows to combine all models within each

cluster seamlessly. To enable heterogeneity, combined models from the clusters are used

as an ensemble for knowledge distillation into new models, one per existing in the system

model type, that are spread within corresponding clusters.

 It allows us to create an infinitely scalable heterogeneous system. However, it

contains two potential flaws that should be addressed carefully during each

implementation. The first one is potential increased communication overhead overall in

comparison to non-hierarchical heterogeneous federated architectures as a representation

of heterogeneous federated learning due to an increased number of elements within the

system and accordingly an increased number of communications among them. The second

flaw is potential increased latency in the communications within clusters in comparison to

hierarchical non-heterogeneous federated architectures as the primary factor for grouping

clients into clusters is not spatial proximity but a model type. The third flaw is virtually

unavoidable in the most cases and is larger energy consumption within the system overall

in comparison to non-hierarchical heterogeneous federated architectures based on selecting

39

random subset of clients as in the case of the proposed architecture all clients should spend

energy on training in contract to training of only subsets of clients.

 Thus, a set of clients was created with appointing each client to a separate subset of

data. All clients were assigned based on the model type to several clusters with an edge-

server within each cluster and one cloud server. At each edge round, client models were

trained on the local data and were collected by the cluster edge-server for averaging and

spreading a produced model within cluster clients. After several edge rounds, edge-servers

send produced models to the cloud server where those were combined into an ensemble

that was used to train new models - one per type - with a separate dataset via knowledge

distillation. The resulting models were spread across corresponding clusters for further

training. The algorithm can be written as follows.

Server executes:

 initialize models M of types T

 for each cloud round do

 for each edge server e in E do

 for each edge round do

 for each client k in K do

 M’ <- ClientUpdate(k)

 Me <- (average weights across all M’ within e)

 for each model type t in T do

 Mt <- KnowledgeDistillation(t, all Me)

 (update M with Mt)

ClientUpdate(k):

 receive model Mk

40

 for each local epoch do

 M’ <- (train Mk on the local dataset)

 send M’ to server

KnowledgeDistillation(t, all M’):

 for each local epoch do

 Mt <- (train Mt with inference of all M’)

 return Mt

Listing 4.1. Proposed architecture algorithm

41

CHAPTER FIVE

IMPLEMENTATION AND EXPERIMENTAL RESULTS

As it was mentioned in chapter 4, many details of the reference implementations in

the original works for the chosen baseline models have not been disclosed, and those that

have been disclosed vary among models. In conjunction with the variety of other aspects

such as data splitting, data preprocessing and model architectures it makes it next to

impossible to find a definitive overlap between the experiments in the original works for

the baseline models or reproduce them in the limited timeline as they heavily rely on

hyperparameter tuning within unknown search spaces and on unknown seeds. We can see

it clearly from the pivot tables.

 FedAvg HierFAVG FedDF

datasets MNIST
CIFAR-10

custom text dataset

MNIST
CIFAR-10

CIFAR-10
CIFAR-100
ImageNet
AG News

SST2

data preprocessing crop to 24x24
horizontal flips

contrast adjusting
brightness adjusting
whitening adjusting

normalization
random crop

padding
horizontal flips

n/a

non-IID no
yes

yes

yes

non-IID details n/a partially n/a

data split n/a n/a partially

42

batch size 10
50

100%

20 n/a

local epochs 1
5
20
25
50
100
200

5
6
10
15
25
30
50
60

20
40

edge epochs -/- 1
2
4
5
10

-/-

clients 100 50 20

participation rate 1 client
0.1
0.2
0.5
1.0

-/- 0.2
0.4
0.8

edges -/- 10 -/-

edge assignment -/- dynamic -/-

models custom MLP
custom CNN

custom LSTM

custom CNN ResNet-8
ResNet-20
ResNet-32

ShuffleNetV2
DistilBERT

seed n/a n/a n/a

optimizer n/a SGD SGD
Adam

scheduler n/a 0.992 / epoch
0.995 / epoch

1

43

learning rate n/a 0.01
0.1

0.00001
0.05
0.1

weight decoy rate n/a n/a 1

KD dataset -/- -/- CIFAR-100
ImageNet

BigGAN-generated

KD batch -/- -/- 128

KD optimizer -/- -/- Adam

KD learning rate -/- -/- 0.001

KD function -/- -/- Kullback-Leibler

target metric epochs time
local energy

accuracy
epochs

Table 2.1. Reference architectures’ details

In addition, in some cases where the original implementation was available it was

designed for a cluster structure that is incompatible with the experimental setup. For

example, the reference implementation of FedDF is created to be executed on a Kubernetes

cluster with MPI interactions between pods, which would require reimplementing a

significant part of it to adapt to the available infrastructure.

Thus, in order to maximize the integrity of the setup across the baseline

architectures and the proposed architecture by standardization of data handling, data

preprocessing, results evaluation and some aspects of model training, baseline architectures

were implemented from scratch. By doing so, it was possible to minimize the impact of

variations in the experimental setup or external dependencies. While some hyperparameter

tuning has been executed in order to maximize the performance of the models, limitations

44

in the timeline and computational resources constrained the thoroughness of the tuning.

Therefore, it is not expected to achieve the maximum possible performance and is expected

to achieve the results lower than the shared in the original works. However, as the main

goal is to compare the proposed architecture with the baseline models, the relative results

are more important in our case than absolute numbers.

Dataset

As some of baseline architectures were evaluated on image classification and text

classification tasks with variety of dataset in the original works, the next factors were taken

into considerations:

● number of samples in the dataset

● number of classes in the dataset

● feature variability

● acceptance

due to the following reasons.

As the main reason for the proposed architecture is scalability, it is important to

have enough clients that leads to splitting the dataset into multiple pieces. Thus, it’s

becoming important to have the ratio “samples per class” as large as possible to be able to

scale the experimental setup.

At the same time, it’s important to have a decent diversity in classes that would

require models to develop robust feature extraction capabilities, ensuring that successful

approaches are genuinely effective in recognizing a wide range of patterns.

45

Another factor is the number of samples itself as while it is important to have

enough samples for scalability, out of practical reasons it is better to find a balance between

the scalability potential and the training time that will increase with increasing the number

of samples.

Assessing different machine learning architectures using datasets with complex,

high-dimensional features allows us to directly compare their abilities to process and

organize data. However, when the tasks involve additional feature variability, it adds extra

layers of complexity. This can make it harder to see how changes in the architecture affect

the model's performance.

Finally, if there are no specific requirements to a dataset, it’s important to utilize

ones that are widely accepted by other researchers within the field for the sake of

reproducibility, comparability, and data quality.

In the following table we can see the most popular datasets for image and text

classification.

Text classification tasks can introduce additional complexities compared to image

classification. These complexities include handling variable-length sequences, dealing

with text preprocessing steps like tokenization and lemmatization, and potentially word

embeddings. While these complexities are manageable, they introduce additional

variability. Thus, out of this it was decided to limit the comparison by image classification

only that excluded IMDb [80], 20 Newsgroups [81], Reuters-21578 [82], AG News [83],

DBpedia [84] and Yahoo! Answers datasets.

46

Out of datasets for image classification LSUN [85] and MS Coco [86] were

excluded as each of them contains images with complex content that can be classified in

multiple ways that can lead to mistraining the models and therefore require additional effort

for preventing it.

Out of the rest datasets CIFAR-100 [87] was excluded as it contains only 600

samples per class that makes it less convenient for scaling the system that is the main point

of the experimental setup. For the same reason, in combination with a significantly larger

number of samples that makes every experiment noticeably longer, ImageNet dataset was

excluded.

Thus, for the experimental setup for all architectures and models CIFAR-10 [87]

was used.

Dataset Samples Classes Samples / class Feature variability

CIFAR-10 60000 10 6000 low

CIFAR-100 60000 100 600 low

ImageNet 1431167 1000 1431 low

MS Coco 328000 80 4100 high

LSUN 59000000+ 10 / 20 varies high

IMDb 50000 2 25000 high

20 Newsgroups 18000 20 900 high

Reuters-21578 10369 118 87 high

AG News 1000000+ 4 250000+ high

DBpedia 630000 14 45000 high

47

Yahoo! Answers 1460000 10 146000 high

Table 3.1. Datasets’ feature comparison

Out of IID and non-IID data distributions for the experimental setup IID

distribution was chosen due to the following reasons.

Using IID data distribution provides a controlled and balanced setting for

evaluating the performance of different architectures. It helps to isolate the impact of the

architectures themselves and minimize the influence of data heterogeneity on the

performance results.

IID data distribution serves as a baseline and a starting point for evaluating

federated learning architectures. It represents an ideal scenario where the data is

homogeneously distributed across clients, and the architectures can be assessed under

optimal conditions. By comparing different architectures on IID data, we can establish a

benchmark for their performance that later can be used for experiments with non-IID data.

 As usage of a completely unrelated dataset showed unsatisfactory results for

knowledge distillation, the test subset of CIFAR-10 containing 1000 images per class was

randomly split into 300 images for final validation, 560 images for knowledge distillation

training and 140 images for knowledge distillation testing per class. The training subset of

CIFAR-10 was randomly split into 18 partitions each of which contained 222 images for

local training and 55 images for local testing per class.

As the main goal was not to achieve the maximum possible performance, but to

compare achieved performance among selected and constructed architectures, the data

48

preprocessing was limited by standard for CIFAR-10 normalization where the mean =

[0.4914, 0.4822, 0.4465] and the standard deviation = [0.2023, 0.1994, 0.2010].

Models

In order to include the heterogeneity factor within the FedDF architecture and the

proposed architecture, it can be critical to select an appropriate number of different models.

This choice can significantly impact the experimental setup and the ability to simulate real-

world scenarios accurately.

On one hand, increasing the number of models naturally leads to a higher number

of participating clients in the architectures with random client choice at each round such as

FedDF, as each model requires at least one corresponding client. In federated learning

settings, it is desirable to keep the participation ratio relatively low to imitate real-world

scenarios, where only a subset of clients may be available or willing to participate in each

round of training.

On the other hand, having too few models and clients may not sufficiently represent

the federated nature of the setting. Federated learning is designed to use the collective

knowledge and data from multiple clients while saving their privacy. If the number of

clients is too small, it may not capture the diversity and heterogeneity present in real-world

federated environments. Additionally, a limited number of models may not provide enough

variety in terms of model architectures, capacities, and learning capabilities, which is a key

aspect of heterogeneous federated learning.

In this case, three different models have been chosen as a reasonable compromise.

This choice allows for a sufficient level of heterogeneity in terms of model architectures

49

while keeping the ratio of participating clients manageable. While three clients out of

eighteen that is equal to ~0.16 participating rate is suboptimal in the sense of modeling a

real-world high-scale scenario, the dataset size imposes restrictions on the maximal number

of clients that limits the minimal participation rate.

 For the choosing specific models for the federated setting, one of the most

important factors was required computational resources as it was crucial to iterate through

hyperparameter tuning and experiments with limited computational resources and within a

limited timeline. An additional factor was modeling a potential diversity in models due to

variety in computational resources available for different clients. As a result, the three

chosen models are a simple custom CNN, ResNet-8 [88] and DenseNet [89] that are often

used for image classification, quite effective and at the same time noticeably different in

the required computational resources.

 The custom CNN is composed of three convolutional blocks each of which contains

a convolutional layer, ReLU as an activation function, a pooling layer and batch

normalization, and a sequential block with two fully connected layers, ReLU as an

activation function and batch normalization.

 The used variation of ResNet-8 is composed of a convolutional layer, batch

normalization and ReLU as an activation function for the convolutional base, three residual

layers with each layer doubling the number of filters and reducing the spatial dimensions

of the feature maps through strided convolutions for downsampling, and average pooling.

Outside of hyperparameters, an optimizer and a scheduler, the architecture is identical to

the one that was used in the reference implementation of FedDF.

50

 The implementation of DenseNet is composed of a simple convolutional layer

followed by 3 dense blocks with multiple layers containing batch normalization, ReLU as

an activation function, a convolutional layer and a dropout layer each with transitional

layers composed of batch normalization, ReLU as an activation function, a convolutional

layer and a dropout layer. Finally, global average pooling is applied to obtain a fixed-size

representation of the feature maps, followed by a fully connected layer for classification.

Outside of hyperparameters, an optimizer and a scheduler, the architecture is identical to

the one that was used in the reference implementation of FedDF.

 The used variation of MobileNetV2 [90] is composed of an initial convolutional

layer, batch normalization and ReLU as an activation function, ten block each of which

contains from two to three convolutional layers and batch normalizations, and the final

section with average pooling, and a fully connected layer. Outside of hyperparameters, an

optimizer and a scheduler, the architecture is identical to the one that was used in the

reference implementation of FedDF.

Hyperparameters

 Hyperparameter tuning via random grid search has been conducted separately for

the proposed architecture with heterogeneous models, FedDF with heterogeneous models,

for HierFAVG and FedAvg with each mode and for knowledge distillation. The optimal

parameters and the respective results of the experiments are listed below in the

corresponding sections of the chapter.

51

Training

 For each heterogeneous architecture and for each model in homogeneous

architectures three experiments were conducted with different seeds. The results were

averaged across all three seeds within each heterogeneous architecture and each model in

homogeneous architectures to minimize a potential impact of seeds on the comparison.

 As the architectures contain from 2 to 3 layers that consist of clients, edge-services,

and cloud-services, to provide a fair comparison, the number of epochs was calculated

based on the total number of local epochs for the lowest level of architectures that includes

clients reflecting organization or devices. Each architecture was trained for 200 local

epochs in order to compare the speed of convergence and the achieved accuracy.

FedAvg

 FedAvg architecture was trained with a custom CNN, ResNet-8 and DenseNet with

the parameters listed in the table 4. The listed parameters for the reference implementation

correspond to the best achieved in the paper result. For each of 18 partitions a separate

client with a model was created. At each round random 3 clients were chosen for training

during the round. Each model of the chosen three ones was trained for 3 local epochs after

which models were shared to a central server that averaged their weights and distributed a

new produced model back to all clients. The process continued until the number of local

epochs reached 200.

52

 reference experiment
(CNN)

experiment
(ResNet-8)

experiment
(DenseNet)

batch size 50 64 64 64

local epochs 5 3 3 3

clients 100 18 18 18

participation
rate

0.1

0.17 0.17 0.17

models custom CNN custom CNN ResNet-8 DenseNet

optimizer n/a Adam Adam Adam

scheduler n/a 0.11 / 2 epochs 0.99 / epoch 1 / 1 epoch

learning rate n/a 0.0007 0.001 0.0007

weight decoy
rate

n/a 0.001 0.001 0.001

target metric epochs accuracy
convergence

accuracy
convergence

accuracy
convergence

Table 4.1. FedAvg training parameters

 The achieved accuracy within 200 local epochs is reflected in table 5 and figures 1,

2, and 3.

 CNN ResNet-8 DenseNet average

Accuracy 75.31% 68.36% 68.72% 70.8%

Table 4.2. FedAvg accuracy

53

Figure 1.1. FedAvg with CNN accuracy

Figure 1.2. FedAvg with ResNet-8 accuracy

54

Figure 1.3. FedAvg with DenseNet accuracy

HierFAVG

HierFAVG architecture was trained with a custom CNN, ResNet-8 and DenseNet

with the parameters listed in the table 6. The listed parameters for the reference

implementation correspond to the best achieved in the paper result. For each of 18

partitions a separate client with a model was created. All the clients were splitted into 3

clusters each of which contained 6 clients. Each cluster contained an edge server

responsible for averaging weights within the respective cluster. The cloud server was

appointed for averaging the models produced at the edge servers. At each client the model

was trained for 3 local epochs. After that trained models were sent to respective edge

servers where they were averaged within the cluster, and the produced model was sent back

to clients within the same cluster. After 3 rounds at the edge servers, the produced at the

edge servers were sent to the cloud server that averaged the received models and sent it

55

back to the edge servers that in its turn sent it back to clients within the respective clusters.

The process continued until the number of local epochs reached 200.

 reference
(CNN)

experiment
(CNN)

experiment
(ResNet-8)

experiment
(DenseNet)

batch size 20 64 64 64

local epochs 5 3 3 3

edge epochs 10 3 3 3

clients 50 18 18 18

edges 5 3 3 3

edge
assignment

dynamic constant constant constant

optimizer SGD Adam Adam Adam

scheduler 0.992 / epoch 0.11 / 2 epochs 0.99 / epoch 0.11 / 2 epochs

learning rate 0.1 0.0007 0.001 0.0007

weight decoy
rate

n/a 0.001 0.001 0.001

target metric time
local energy

accuracy
convergence

accuracy
convergence

accuracy
convergence

Table 5.1. HierFAVG training parameters

The achieved accuracy within 200 local epochs is reflected in table 7 and figures 4,

5, and 6.

56

 CNN ResNet-8 DenseNet average

Accuracy 75.78% 70.07% 67.4% 71.08%

Table 5.2. HierFAVG accuracy

Figure 2.1. HierFAVG with CNN accuracy

Figure 2.2. HierFAVG with ResNet-8 accuracy

57

Figure 2.3. HierFAVG with DenseNet accuracy

FedDF

 FedDF architecture was trained with a custom CNN, ResNet-8 and DenseNet with

the parameters listed in the table 8. The listed parameters for the reference implementation

correspond to the best achieved in the paper result for the heterogeneous setup. For each of

18 partitions a separate client with a model was created. At each round, 3 clients were

chosen in a way that every time all models were represented equally among the chosen

clients. Each model of the chosen three ones was trained for 5 local epochs after which

models were sent to a central server. The central server combined the received models into

an ensemble and used a knowledge transfer data subset to train 3 new models, each of

CNN, ResNet-8 and DenseNet, based on averaged outputs of the ensemble, outputs of the

training model and Kullback-Leibler divergence. After that the produced models were sent

back to all clients. The process continued until the number of local epochs reached 200.

58

 reference experiment

CNN ResNet-8 DenseNet

batch size n/a 64 64 64

local epochs 80 5 5 5

clients 21 18

participation
rate

0.4 0.17

models ResNet-20
ResNet-32

ShuffleNetV2

custom CNN ResNet-8 DenseNet

optimizer n/a Adam Adam Adam

scheduler n/a 0.11 / 2 epochs 0.99 / epoch 0.11 / 2 epochs

learning rate 0.1 0.0007 0.001 0.0007

weight decoy
rate

n/a 0.001 0.001 0.001

KD dataset CIFAR-100 CIFAR-10 CIFAR-10 CIFAR-10

KD batch 128 64 64 64

KD optimizer Adam Adam Adam Adam

KD learning
rate

0.001 0.0007 0.001 0.0007

KD function Kullback-
Leibler

Kullback-
Leibler

Kullback-
Leibler

Kullback-
Leibler

target metric accuracy
epochs

accuracy
convergence

accuracy
convergence

accuracy
convergence

Table 6.1. FedDF with DenseNet training parameters

The achieved accuracy within 200 local epochs is reflected in table 9 and figure 7.

59

 CNN ResNet-8 DenseNet average

Accuracy 67.57% 67.97% 62.7% 66.08%

Table 6.2. FedDF with DenseNet accuracy

Figure 3.1. FedDF with DenseNet accuracy

Proposed architecture

The proposed architecture was trained with a custom CNN, ResNet-8 and DenseNet

with the parameters listed in table 10. For each of 18 partitions a separate client with a

model was created, 6 clients per each model type. All the clients were split into 3 equal

clusters grouped by the model type. Each cluster contained an edge server responsible for

averaging weights within the respective cluster. A cloud server was appointed for

knowledge transfer from the models produced by edge servers into new models. At each

client the model was trained for 2 local epochs. After that trained models were sent to

respective edge servers where they were averaged within the cluster, and the produced

60

model was sent back to clients within the same cluster. After 5 rounds at the edge servers,

the produced at the edge servers were sent to the cloud server. The cloud server combined

the received models into an ensemble and used a knowledge transfer data subset to train 3

new models, each of CNN, ResNet-8 and DenseNet, based on averaged outputs of the

ensemble, outputs of the training model and Kullback-Leibler divergence. After that the

produced models were sent back to the respective edge servers that in turn sent it back to

clients within the respective clusters. The process continued until the number of local

epochs reached 200.

 experiment

CNN ResNet-8 DenseNet

batch size 64 64 64

local epochs 2 2 2

edge epochs 5 5 5

clients 18 18 18

edges 3 3 3

edge assignment constant constant constant

optimizer Adam Adam Adam

scheduler 0.11 / 2 epochs 0.99 / epoch 0.11 / 2 epochs

learning rate 0.0007 0.001 0.0007

weight decoy rate 0.001 0.001 0.001

KD dataset CIFAR-10 CIFAR-10 CIFAR-10

61

KD batch 64 64 64

KD epochs 10 10 10

KD optimizer Adam Adam Adam

KD learning rate 0.0007 0.001 0.0007

KD function Kullback-Leibler Kullback-Leibler Kullback-Leibler

target metric accuracy accuracy accuracy

Table 7.1. Proposed architecture with DenseNet training parameters

The achieved accuracy within 200 local epochs is reflected in table 11 and figures

8, 9, 10 and 11.

 CNN ResNet-8 DenseNet average

Accuracy 70.37% 66.07% 59% 65.17%

Table 7.2. Proposed architecture with DenseNet accuracy

62

Figure 4.1. Proposed architecture with DenseNet accuracy in respect to FedAvg

Figure 4.2. Proposed architecture with DenseNet accuracy in respect to HierFAVG

As it is clearly visible from the figures 8 and 9, the implementation of the proposed

architecture is noticeably lagging behind more simple and homogeneous architectures

63

without knowledge distillation for a custom CNN and DenseNet and is slightly lagging

behind for ResNet-8.

Figure 4.3. Proposed architecture with DenseNet accuracy in respect to FedDF

Figure 4.4. Proposed architecture with DenseNet average accuracy in respect to FedDF

64

However, when the proposed architecture is compared with FedDF, another

architecture with knowledge transfer, the situation is not so clear. There is still a gap

between models in the proposed architecture and FedDF for DenseNet models and ResNet-

8 instances are quite close to each other, but a custom CNN is the proposed architecture

clearly performs better than in FedDF. After averaging the accuracy across different

models in the proposed architecture and FedDF it is visible that on average the proposed

architecture is quite close to FedDF in terms of accuracy and convergence speed.

The possible reasons of the worse performance are the following:

● In FedDF architecture at each round the knowledge is extracted from a random and

every time different subset of clients which leads to more dynamic data coverage

and less biased models while in the proposed architecture the clusters are assigned

permanently which can lead to worse or at least slower generalization even with

sharing the knowledge among clusters via knowledge distillation. Potentially, it can

be compensated with dynamic cluster reassignment during training, but in some

real-world scenarios it may be not feasible.

● The participation rate for clients in the experiments is ~0.17 which can be high

enough for random client selections in FedDF to cover most of the data quite fast.

In the setups with a larger scale, such as million clients, where an expected

participation rate can drop lower than 0.01 we can expect a faster convergence rate

for the proposed architecture than for FedDF as the data coverage with a low

participation rate can also be low in comparison to the proposed architecture that

65

covers all the data due to its structure, especially if the data varies significantly

among clients.

Additional experiments

 As it is clearly visible from the results of the experiments, the DenseNet is

noticeable behind other models in the term of accuracy in FedDF and the proposed

architecture that can affect the relative comparison. To decrease this effect another series

of experiments was conducted for FedDF and the proposed architecture after replacing

DenseNet with MobileNetV2.

FedDF architecture was trained with a custom CNN, ResNet-8 and MobileNetV2

with the parameters listed in table 12.

 reference experiment

CNN ResNet-8 MobileNetV2

batch size n/a 64 64 64

local epochs 80 5 5 5

clients 21 6 6 6

participation
rate

0.4 0.17

models ResNet-20
ResNet-32

ShuffleNetV2

custom CNN ResNet-8 MobileNetV2

optimizer n/a Adam Adam Adam

scheduler n/a 0.11 / 2 epochs 0.99 / epoch 0.11 / 2 epochs

66

learning rate 0.1 0.0007 0.001 0.0007

weight decoy
rate

n/a 0.001 0.001 0.001

KD dataset CIFAR-100 CIFAR-10 CIFAR-10 CIFAR-10

KD batch 128 64 64 64

KD optimizer Adam Adam Adam Adam

KD learning
rate

0.001 0.0007 0.001 0.0007

KD function Kullback-
Leibler

Kullback-
Leibler

Kullback-
Leibler

Kullback-
Leibler

target metric accuracy
epochs

accuracy
convergence

accuracy
convergence

accuracy
convergence

Table 8.1. FedDF with MobileNetV2 training parameters

The achieved accuracy within 200 local epochs is reflected in table 13 and figure

12.

 CNN ResNet-8 MobileNetV2 average

Accuracy 67.3% 67.9% 63.5% 66.23%

Table 8.2. FedDF with MobileNetV2 accuracy

67

Figure 5.1. FedDF with MobileNetV2 accuracy

The proposed architecture was trained with a custom CNN, ResNet-8 and

MobileNetV2 with the parameters listed in table 14.

 experiment

CNN ResNet-8 MobileNetV2

batch size 64 64 64

local epochs 2 2 2

edge epochs 5 5 5

clients 18 18 18

edges 3 3 3

edge assignment constant constant constant

optimizer Adam Adam Adam

68

scheduler 0.11 / 2 epochs 0.99 / epoch 0.11 / 2 epochs

learning rate 0.0007 0.001 0.0007

weight decoy rate 0.001 0.001 0.001

KD dataset CIFAR-10 CIFAR-10 CIFAR-10

KD batch 64 64 64

KD epochs 10 10 10

KD optimizer Adam Adam Adam

KD learning rate 0.0007 0.001 0.0007

KD function Kullback-Leibler Kullback-Leibler Kullback-Leibler

target metric accuracy accuracy accuracy

Table 8.3. Proposed architecture with MobileNetV2 training parameters

The achieved accuracy within 200 local epochs is reflected in table 15 and figures

13 and 14.

 CNN ResNet-8 MobileNetV2 average

Accuracy 69.83% 67.87% 61.13% 66.28%

Table 8.4. Proposed architecture with MobileNetV2 accuracy

69

Figure 5.2. Proposed architecture with MobileNetV2 accuracy in respect to FedDF

Figure 5.3. Proposed architecture with MobileNetV2 average accuracy in respect to FedDF

While MobileNetV2 models are still lagging behind the rest of them, their

performance is better than the performance of DenseNet implementation used in the

experiments. The replacement led to reduction of the gaps between the same types of

models within FedDF and the proposed architecture and equalizing the accuracy of these

70

two architectures at 200 local epochs. However, while the final accuracy at 200 local

epochs is equal between architectures, the proposed architecture converges slightly faster.

It allows us to speculate that with a) increasing an average accuracy, b) decreasing the

difference between different models’ performance, c) decreasing the clients participation

rate for FedDF, the gap in convergence speed between architectures will grow in favor of

the proposed architecture.

71

CHAPTER SIX

CONCLUSIONS AND FUTURE WORK

While various approaches to federated machine learning address specific

challenges, many real-world scenarios present a combination of issues that existing

methods struggle to fully resolve. For example, in domains like mobile applications or

IoT/network devices, where the number of model instances can reach millions or billions,

data cannot be shared, and models should have different architectures due to hardware

heterogeneity, business cycles, or environment limitations, the existing approaches may be

suboptimal. Naive and ensemble federated learning approaches struggle with scalability,

hierarchical federated learning does not support heterogeneous models, and heterogeneous

federated learning, while supporting different architectures, lacks scalability. Therefore,

there is a need for a new architecture that combines the benefits of these approaches,

allowing different model architectures within a single federated setup, being virtually

infinitely scalable, and covering all data during training to avoid underrepresentation of

certain subsets of data.

 The proposed architecture combines such approaches as ensemble federated

learning, knowledge distillation and hierarchical federated learning into one structure

where models are grouped into clusters based not on spatial proximity or data features, but

on model types. In combination with knowledge distillation from an ensemble of different

models it allows to create a system where models of different types can coexist and learn

from each other. At the same time, employment of principles of hierarchical federated

learning allows the structure to scale virtually indefinitely.

72

 In this work several architectures such as FedAvg, HierFAVG and FedDF were

implemented to create a baseline for a new architecture. CIFAR-10 used as a dataset for

the experiments was split into a test and a train parts. The test part was split into test and

knowledge transfer parts where the test part was used exclusively for evaluating the

models’ performance and the knowledge transfer was used exclusively for training new

models via knowledge distillation. The train part was split into 18 partitions that

represented different clients or devices. After that the splitted data was used to train

baseline architectures and the proposed one for 200 local epochs in total per architecture

with 3 distinctive seeds. All measurements were averaged across seeds and evaluated based

on the achieved accuracy and the convergence speed.

 While in the conducted experiments the proposed architecture with heterogeneous

models showed less performance than FedAvg and HierFAVG with homogeneous models,

its accuracy is comparable with FedDF with heterogeneous models and in some cases the

proposed architecture converges faster than FedDF on a similar setup. It allows to assume

optimistically that with increasing the scale of the system and consequent decreasing the

client participation rate the gap in convergence speed between the proposed architecture

and architectures that allow having heterogeneous models within the same system by

extracting knowledge from a limited subset of clients will grow in favor to the proposed

architecture. It would allow to a) improve scalability, b) improve data coverage in systems

with heterogeneous models.

 Based on that work it is possible to claim that in at least some setups the proposed

architecture is at least not worse than FedDF in terms of accuracy and better in terms of

73

convergence speed. However, additional research with extensive hyperparameter tuning is

needed in order to validate this statement on a larger scale.

 However, the work has some limitations, many of which are caused by limited

available computational resources and by a limited timeline. For example, the authors of

FedAvg, the simplest architecture out of four implemented in this work, conducted more

than 2000 experiments to find the optimal model architecture and hyperparameters. Taking

into account a significantly larger computational cost of experiments in this work, it is

expected to have models not reaching the SOTA performance. As a result, while in the

given setup the proposed architecture showed decent results, the situation can change after

more thorough model architecture and hyperparameter tuning.

 Another major limitation of this work is the scale of the implemented system. The

key point of the proposed architecture is a potential ability to handle cases where the

number of clients reached millions better than non-hierarchical architectures with

heterogeneous models. However, emulating such cases requires datasets of the

corresponding scale that can be quite hard to obtain outside of some private entities in the

industry. As a result, the experiments were conducted on quite a small dataset that led to

inability to create a scenario that would be close to the intended use of the proposed

architecture. Thus, on a large scale it can show better results. Another potential approach

would be usage of less data-hungry or pre-trained models to decrease the required for

model training number of samples per client.

 One more limitation of the work is restricting the experiment’s domain by image

classification only in order to narrow the scope down. Employment of other domains such

74

as text classification in the experiments can give a more holistic view on the architecture

applicability.

 In the real-world situations the data is virtually never distributed independently and

identically across all the clients. However, in this work the experimental environment was

constructed with the data distributed evenly to create a baseline potential future research.

Usage of non-IID data on a large scale can show different relative results for the proposed

and baseline architectures.

 In some cases, in the real-world clients are permanently assigned to clusters, in

some others they migrate between clusters and in some they can be reassigned randomly

at each training round. In this work the only tested scenario is permanent assignment. Thus,

the effectiveness of reassignment of clients between clusters in comparison to permanent

assignment and the degree of dependency between the percentage of the reassigned clients

and reassignment scheme, and the performance of the architecture is still an open question.

 Another limitation of the experiments was employment of only one data splitting

and only one cluster configuration. While all architectures were tested in virtually identical

environments with some unavoidable differences conditioned by the differences in the

architectures, different cluster configuration could produce different results so it would be

useful to investigate potential tendencies in the proposed architecture performance affected

by the cluster configurations, and usage of different data splitting with averaging results

across them could give more precise evaluation of the performance.

 Summarizing, the potential directions of future research would be

75

● more extensive and thorough model architecture and hyperparameter tuning in

order to compare architecture at the level of their respective maximum performance

● exploring the relative performance in a close to real-world scenario with

significantly bigger number of clients with a corresponding level of data splitting

granularity

● employment of less data-hungry models with more granular data splitting on order

to compensate the available size of the datasets

● exploring the proposed architecture applicability within the domains besides image

classification

● experiments with non-IID data that can lead to better in comparison to at least some

baselines architecture performance of the proposed architecture due to potentially

better data coverage

● exploring different cluster configurations in order to identify the most and the least

applicable scenarios for the proposed architecture applicability

● investigating an effect of clients reassignment between clusters on the proposed

architecture performance

● evaluation of the overhead in overall communications conditioned by the

hierarchical nature of the proposed architecture in comparison to architectures with

choosing a random subset of clients each round and identification of scenarios

where that overhead would be acceptable

Additionally, three trade-offs of the proposed architecture should be mentioned.

The first one is potentially increased communication cost of the system overall in

76

comparison to non-hierarchical heterogeneous federated architectures that stems from

increased number of entities in the system and increased number of communications

among them. The second one is potentially increased latency within clusters in comparison

to non-heterogeneous hierarchical federated architectures that emerges due to the need to

group clients into clusters based on model types instead of spatial proximity. As a result,

each production system should be carefully analyzed in order to find the optimal

architecture and the optimal trade-offs. The third trade-off is virtually always increased

energy consumption in the system overall in comparison to architectures based on random

client subset selection for training at each round as in the proposed architecture each client

should participate in training at each round.

The future of federated learning lies in the development of solutions that effectively

address the challenges of heterogeneity and scalability. The proposed architecture,

combining ensemble federated learning, knowledge distillation, and hierarchical federated

learning, while the conducted experiments didn’t show a significant advantage in the given

environment, still can represent a promising direction for scalable heterogeneous systems.

As research progresses, advancements in clustering techniques, knowledge distillation

methods, and aggregation strategies will optimize the performance, efficiency, and

robustness of federated learning systems.

77

REFERENCES

[1] Hastie, T., Tibshirani, R., Friedman, J., Hastie, T., Tibshirani, R., & Friedman, J. (2009).
Overview of supervised learning. The elements of statistical learning: Data mining, inference, and
prediction, 9-41.

[2] Dada, E. G., Bassi, J. S., Chiroma, H., Adetunmbi, A. O., & Ajibuwa, O. E. (2019). Machine
learning for email spam filtering: review, approaches and open research problems. Heliyon, 5(6).

[3] Singh, A., & Singh, P. (2020). Image classification: a survey. Journal of Informatics Electrical
and Electronics Engineering (JIEEE), 1(2), 1-9.

[4] Tandel, N. H., Prajapati, H. B., & Dabhi, V. K. (2020, March). Voice recognition and voice
comparison using machine learning techniques: A survey. In 2020 6th International Conference on
Advanced Computing and Communication Systems (ICACCS) (pp. 459-465). IEEE.

[5] Kaur, S., Singla, J., Nkenyereye, L., Jha, S., Prashar, D., Joshi, G. P., ... & Islam, S. R. (2020).
Medical diagnostic systems using artificial intelligence (ai) algorithms: Principles and perspectives.
IEEE Access, 8, 228049-228069.

[6] Montgomery, D. C., Peck, E. A., & Vining, G. G. (2021). Introduction to linear regression
analysis. John Wiley & Sons.

[7] Berkson, J. (1944). Application of the logistic function to bio-assay. Journal of the American
statistical association, 39(227), 357-365.

[8] Song, Y. Y., & Ying, L. U. (2015). Decision tree methods: applications for classification and
prediction. Shanghai archives of psychiatry, 27(2), 130.

[9] Hofmann, T., Schölkopf, B., & Smola, A. J. (2008). Kernel methods in machine learning.

[10] Dong, X., Yu, Z., Cao, W., Shi, Y., & Ma, Q. (2020). A survey on ensemble learning. Frontiers
of Computer Science, 14, 241-258.

[11] Dongare, A. D., Kharde, R. R., & Kachare, A. D. (2012). Introduction to artificial neural
network. International Journal of Engineering and Innovative Technology (IJEIT), 2(1), 189-194.

78

[12] Celebi, M. E., & Aydin, K. (Eds.). (2016). Unsupervised learning algorithms (Vol. 9, p. 103).
Cham: Springer.

[13] Saxena, A., Prasad, M., Gupta, A., Bharill, N., Patel, O. P., Tiwari, A., ... & Lin, C. T. (2017).
A review of clustering techniques and developments. Neurocomputing, 267, 664-681.

[14] Sorzano, C. O. S., Vargas, J., & Montano, A. P. (2014). A survey of dimensionality reduction
techniques. arXiv preprint arXiv:1403.2877.

[15] Ceglar, A., & Roddick, J. F. (2006). Association mining. ACM Computing Surveys (CSUR),
38(2), 5-es.

[16] Samariya, D., & Thakkar, A. (2023). A comprehensive survey of anomaly detection
algorithms. Annals of Data Science, 10(3), 829-850.

[17] Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction. MIT press.

[18] Berner, C., Brockman, G., Chan, B., Cheung, V., Dębiak, P., Dennison, C., ... & Zhang, S.
(2019). Dota 2 with large scale deep reinforcement learning. arXiv preprint arXiv:1912.06680.

[19] Brunke, L., Greeff, M., Hall, A. W., Yuan, Z., Zhou, S., Panerati, J., & Schoellig, A. P. (2022).
Safe learning in robotics: From learning-based control to safe reinforcement learning. Annual
Review of Control, Robotics, and Autonomous Systems, 5, 411-444.

[20] Afsar, M. M., Crump, T., & Far, B. (2022). Reinforcement learning based recommender
systems: A survey. ACM Computing Surveys, 55(7), 1-38.

[21] Watkins, C. J., & Dayan, P. (1992). Q-learning. Machine learning, 8, 279-292.

[22] Sutton, R. S., McAllester, D., Singh, S., & Mansour, Y. (1999). Policy gradient methods for
reinforcement learning with function approximation. Advances in neural information processing
systems, 12.

[23] Grondman, I., Busoniu, L., Lopes, G. A., & Babuska, R. (2012). A survey of actor-critic
reinforcement learning: Standard and natural policy gradients. IEEE Transactions on Systems,
Man, and Cybernetics, part C (applications and reviews), 42(6), 1291-1307.

79

[24] LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. nature, 521(7553), 436-444.

[25] Albawi, S., Mohammed, T. A., & Al-Zawi, S. (2017, August). Understanding of a
convolutional neural network. In 2017 international conference on engineering and technology
(ICET) (pp. 1-6). Ieee.

[26] Wolf, T., Debut, L., Sanh, V., Chaumond, J., Delangue, C., Moi, A., ... & Rush, A. M. (2020,
October). Transformers: State-of-the-art natural language processing. In Proceedings of the 2020
conference on empirical methods in natural language processing: system demonstrations (pp. 38-
45).

[27] Kingma, D. P., & Welling, M. (2019). An introduction to variational autoencoders.
Foundations and Trends® in Machine Learning, 12(4), 307-392.

[28] Yang, L., Zhang, Z., Song, Y., Hong, S., Xu, R., Zhao, Y., ... & Yang, M. H. (2023). Diffusion
models: A comprehensive survey of methods and applications. ACM Computing Surveys, 56(4), 1-
39.

[29] Zohuri, B., & Moghaddam, M. (2020). Deep learning limitations and flaws. Mod. Approaches
Mater. Sci, 2, 241-250.

[30] Zhang, C., Xie, Y., Bai, H., Yu, B., Li, W., & Gao, Y. (2021). A survey on federated learning.
Knowledge-Based Systems, 216, 106775.

[31] Zhao, Y., Li, M., Lai, L., Suda, N., Civin, D., & Chandra, V. (2018). Federated learning with
non-iid data. arXiv preprint arXiv:1806.00582.

[32] Linardatos, P., Papastefanopoulos, V., & Kotsiantis, S. (2020). Explainable ai: A review of
machine learning interpretability methods. Entropy, 23(1), 18.

[33] Quiñonero-Candela, J., Sugiyama, M., Schwaighofer, A., & Lawrence, N. D. (Eds.). (2008).
Dataset shift in machine learning. Mit Press.

[34] de Mello, F. L. (2020). A survey on machine learning adversarial attacks. Journal of
Information Security and Cryptography (Enigma), 7(1), 1-7.

80

[35] Lambert, N., Pister, K., & Calandra, R. (2022). Investigating compounding prediction errors
in learned dynamics models. arXiv preprint arXiv:2203.09637.

[36] Mehrabi, N., Morstatter, F., Saxena, N., Lerman, K., & Galstyan, A. (2021). A survey on bias
and fairness in machine learning. ACM computing surveys (CSUR), 54(6), 1-35.

[37] Liu, B., Ding, M., Shaham, S., Rahayu, W., Farokhi, F., & Lin, Z. (2021). When machine
learning meets privacy: A survey and outlook. ACM Computing Surveys (CSUR), 54(2), 1-36.

[38] Asswad, J., & Marx Gómez, J. (2021). Data ownership: a survey. Information, 12(11), 465.

[39] Wang, J., & Joshi, G. (2019). Adaptive communication strategies to achieve the best error-
runtime trade-off in local-update SGD. Proceedings of Machine Learning and Systems, 1, 212-229.

[40] Underwood, R., Calhoun, J. C., Di, S., & Cappello, F. (2024). Understanding The
Effectiveness of Lossy Compression in Machine Learning Training Sets. arXiv preprint
arXiv:2403.15953.

[41] Narayanan, D., Santhanam, K., Kazhamiaka, F., Phanishayee, A., & Zaharia, M. (2020).
{Heterogeneity-Aware} cluster scheduling policies for deep learning workloads. In 14th USENIX
Symposium on Operating Systems Design and Implementation (OSDI 20) (pp. 481-498).

[42] Sattler, F., Wiedemann, S., Müller, K. R., & Samek, W. (2019). Robust and communication-
efficient federated learning from non-iid data. IEEE transactions on neural networks and learning
systems, 31(9), 3400-3413.

[43] Lin, Y., Han, S., Mao, H., Wang, Y., & Dally, W. J. (2017). Deep gradient compression:
Reducing the communication bandwidth for distributed training. arXiv preprint arXiv:1712.01887.

[44] Yin, X., Zhu, Y., & Hu, J. (2021). A comprehensive survey of privacy-preserving federated
learning: A taxonomy, review, and future directions. ACM Computing Surveys (CSUR), 54(6), 1-
36.

[45] Wei, K., Li, J., Ding, M., Ma, C., Yang, H. H., Farokhi, F., ... & Poor, H. V. (2020). Federated
learning with differential privacy: Algorithms and performance analysis. IEEE transactions on
information forensics and security, 15, 3454-3469.

81

[46] Bhagoji, A. N., Chakraborty, S., Mittal, P., & Calo, S. (2019, May). Analyzing federated
learning through an adversarial lens. In International Conference on Machine Learning (pp. 634-
643). PMLR.

[47] Zhan, Y., Zhang, J., Hong, Z., Wu, L., Li, P., & Guo, S. (2021). A survey of incentive
mechanism design for federated learning. IEEE Transactions on Emerging Topics in Computing,
10(2), 1035-1044.

[48] Madill, E., Nguyen, B., Leung, C. K., & Rouhani, S. (2022, May). ScaleSFL: a sharding
solution for blockchain-based federated learning. In Proceedings of the Fourth ACM International
Symposium on Blockchain and Secure Critical Infrastructure (pp. 95-106).

[49] Chen, W., Horvath, S., & Richtarik, P. (2020). Optimal client sampling for federated learning.
arXiv preprint arXiv:2010.13723.

[50] Hu, C., Jiang, J., & Wang, Z. (2019). Decentralized federated learning: A segmented gossip
approach. arXiv preprint arXiv:1908.07782.

[51] Liu, L., Zhang, J., Song, S. H., & Letaief, K. B. (2020, June). Client-edge-cloud hierarchical
federated learning. In ICC 2020-2020 IEEE international conference on communications (ICC)
(pp. 1-6). IEEE.

[52] Nguyen, J., Malik, K., Zhan, H., Yousefpour, A., Rabbat, M., Malek, M., & Huba, D. (2022,
May). Federated learning with buffered asynchronous aggregation. In International Conference on
Artificial Intelligence and Statistics (pp. 3581-3607). PMLR.

[53] Mills, J., Hu, J., & Min, G. (2019). Communication-efficient federated learning for wireless
edge intelligence in IoT. IEEE Internet of Things Journal, 7(7), 5986-5994.

[54] Akter, M., Moustafa, N., Lynar, T., & Razzak, I. (2022). Edge intelligence: Federated learning-
based privacy protection framework for smart healthcare systems. IEEE Journal of Biomedical and
Health Informatics, 26(12), 5805-5816.

[55] Wang, X., Han, Y., Wang, C., Zhao, Q., Chen, X., & Chen, M. (2019). In-edge ai:
Intelligentizing mobile edge computing, caching and communication by federated learning. Ieee
Network, 33(5), 156-165.

82

[56] Sattler, F., Müller, K. R., & Samek, W. (2020). Clustered federated learning: Model-agnostic
distributed multitask optimization under privacy constraints. IEEE transactions on neural networks
and learning systems, 32(8), 3710-3722.

[57] Briggs, C., Fan, Z., & Andras, P. (2020, July). Federated learning with hierarchical clustering
of local updates to improve training on non-IID data. In 2020 International Joint Conference on
Neural Networks (IJCNN) (pp. 1-9). IEEE.

[58] Jothimurugesan, E., Hsieh, K., Wang, J., Joshi, G., & Gibbons, P. B. (2023, April). Federated
learning under distributed concept drift. In International Conference on Artificial Intelligence and
Statistics (pp. 5834-5853). PMLR.

[59] Cui, Y., Cao, K., Zhou, J., & Wei, T. (2022). Optimizing training efficiency and cost of
hierarchical federated learning in heterogeneous mobile-edge cloud computing. IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems.

[60] Dong, X., Yu, Z., Cao, W., Shi, Y., & Ma, Q. (2020). A survey on ensemble learning. Frontiers
of Computer Science, 14, 241-258.

[61] Shi, N., Lai, F., Kontar, R. A., & Chowdhury, M. (2021). Fed-ensemble: Improving
generalization through model ensembling in federated learning. arXiv preprint arXiv:2107.10663.

[62] Shi, N., Lai, F., Al Kontar, R., & Chowdhury, M. (2023). : Ensemble Models in Federated
Learning for Improved Generalization and Uncertainty Quantification. IEEE Transactions on
Automation Science and Engineering.

[63] Gou, J., Yu, B., Maybank, S. J., & Tao, D. (2021). Knowledge distillation: A survey.
International Journal of Computer Vision, 129(6), 1789-1819.

[64] Hong, Y. W., Leu, J. S., Faisal, M., & Prakosa, S. W. (2022). Analysis of model compression
using knowledge distillation. IEEE Access, 10, 85095-85105.

[65] Yim, J., Joo, D., Bae, J., & Kim, J. (2017). A gift from knowledge distillation: Fast
optimization, network minimization and transfer learning. In Proceedings of the IEEE conference
on computer vision and pattern recognition (pp. 4133-4141).

83

[66] Zhu, Y., & Wang, Y. (2021). Student customized knowledge distillation: Bridging the gap
between student and teacher. In Proceedings of the IEEE/CVF International Conference on
Computer Vision (pp. 5057-5066).

[67] Kullback, S., & Leibler, R. A. (1951). On information and sufficiency. The annals of
mathematical statistics, 22(1), 79-86.

[68] Gao, D., Yao, X., & Yang, Q. (2022). A survey on heterogeneous federated learning. arXiv
preprint arXiv:2210.04505.

[69] McMahan, B., Moore, E., Ramage, D., Hampson, S., & y Arcas, B. A. (2017, April).
Communication-efficient learning of deep networks from decentralized data. In Artificial
intelligence and statistics (pp. 1273-1282). PMLR.

[70] Abad, M. S. H., Ozfatura, E., Gunduz, D., & Ercetin, O. (2020, May). Hierarchical federated
learning across heterogeneous cellular networks. In ICASSP 2020-2020 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP) (pp. 8866-8870). IEEE.

[71] Liu, L., Zhang, J., Song, S., & Letaief, K. B. (2022). Hierarchical federated learning with
quantization: Convergence analysis and system design. IEEE Transactions on Wireless
Communications, 22(1), 2-18.

[72] Deng, Y., Lyu, F., Ren, J., Zhang, Y., Zhou, Y., Zhang, Y., & Yang, Y. (2021, July). SHARE:
Shaping data distribution at edge for communication-efficient hierarchical federated learning. In
2021 IEEE 41st International Conference on Distributed Computing Systems (ICDCS) (pp. 24-34).
IEEE.

[73] Wang, Z., Xu, H., Liu, J., Xu, Y., Huang, H., & Zhao, Y. (2022). Accelerating federated
learning with cluster construction and hierarchical aggregation. IEEE Transactions on Mobile
Computing.

[74] Shi, L., Shu, J., Zhang, W., & Liu, Y. (2021, December). HFL-DP: Hierarchical federated
learning with differential privacy. In 2021 IEEE Global Communications Conference
(GLOBECOM) (pp. 1-7). IEEE.

[75] Lin, T., Kong, L., Stich, S. U., & Jaggi, M. (2020). Ensemble distillation for robust model
fusion in federated learning. Advances in Neural Information Processing Systems, 33, 2351-2363.

84

[76] Cho, Y. J., Manoel, A., Joshi, G., Sim, R., & Dimitriadis, D. (2022). Heterogeneous ensemble
knowledge transfer for training large models in federated learning. arXiv preprint
arXiv:2204.12703.

[77] Itahara, S., Nishio, T., Koda, Y., Morikura, M., & Yamamoto, K. (2021). Distillation-based
semi-supervised federated learning for communication-efficient collaborative training with non-iid
private data. IEEE Transactions on Mobile Computing, 22(1), 191-205.

[78] Li, D., & Wang, J. (2019). Fedmd: Heterogeneous federated learning via model distillation.
arXiv preprint arXiv:1910.03581.

[79] Chang, H., Shejwalkar, V., Shokri, R., & Houmansadr, A. (2019). Cronus: Robust and
heterogeneous collaborative learning with black-box knowledge transfer. arXiv preprint
arXiv:1912.11279.

[80] Maas, Andrew L. and Daly, Raymond E. and Pham, Peter T. and Huang, Dan and Ng, Andrew
Y. and Potts, Christopher. (2011). Learning Word Vectors for Sentiment Analysis. In Proceedings
of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language
Technologies (pp. 142-150). Association for Computational Linguistics.

[81] Mitchell,T. (1999). Twenty Newsgroups. UCI Machine Learning Repository

[82] Lewis,David. (1997). Reuters-21578 Text Categorization Collection. UCI Machine Learning
Repository.

[83] Gulli, A. (2004). http://groups.di.unipi.it/~gulli/AG_corpus_of_news_articles.html

[84] Hasibi, Faegheh and Nikolaev, Fedor and Xiong, Chenyan and Balog, Krisztian and Bratsberg,
Svein Erik and Kotov, Alexander and Callan, Jamie. (2017). DBpedia-Entity V2: A Test Collection
for Entity Search. In Proceedings of the 40th International ACM SIGIR Conference on Research
and Development in Information Retrieval (SIGIR '17) (pp. 1265-1268). ACM

[85] Yu, F., Seff, A., Zhang, Y., Song, S., Funkhouser, T., & Xiao, J. (2015). Lsun: Construction
of a large-scale image dataset using deep learning with humans in the loop. arXiv preprint
arXiv:1506.03365.

85

[86] Lin, T. Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., ... & Zitnick, C. L.
(2014). Microsoft coco: Common objects in context. In Computer Vision–ECCV 2014: 13th
European Conference, Zurich, Switzerland, September 6-12, 2014, Proceedings, Part V 13 (pp.
740-755). Springer International Publishing.

[87] Krizhevsky, A., & Hinton, G. (2009). Learning multiple layers of features from tiny images.

[88] He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In
Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 770-778).

[89] Huang, G., Liu, Z., Van Der Maaten, L., & Weinberger, K. Q. (2017). Densely connected
convolutional networks. In Proceedings of the IEEE conference on computer vision and pattern
recognition (pp. 4700-4708).

[90] Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., & Chen, L. C. (2018). Mobilenetv2:
Inverted residuals and linear bottlenecks. In Proceedings of the IEEE conference on computer
vision and pattern recognition (pp. 4510-4520).

	Heterogeneous Federated Learning at Scale
	Recommended Citation

	tmp.1713539332.pdf.sF8v9

