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ABSTRACT 

Radiologists use computer-aided detection (CAD) systems to assist with detecting 

and assessing breast cancers in mammograms, digital breast tomosynthesis (DBT), and 

other types of breast imaging; however, the usefulness of such automation aids has been 

debated since their implementation. Initial studies on CAD systems had mixed results, 

while more recent studies have shown that they can improve diagnostic outcomes (i.e., 

greater sensitivity and fewer false alarms) and decrease the reading time required for 

images. Three CAD types are currently in use: binary, analog, and interactive CAD. 

However, studies rarely explore the differences between the CAD methods. Additionally, 

recent work has suggested the benefit of including Breast Imaging Reporting and 

Database System (BI-RADS) ratings in CAD systems to help standardize assessments 

and improve diagnostic performance. The present study adds to the literature by 

comparing the three existing types of CAD (binary, analog, and interactive) and including 

a novel CAD system with BI-RADS ratings. Fifty undergraduate students completed a 

visual search task with mock DBT images and were assigned to either one of the CAD 

conditions or a control. Participants also completed surveys regarding their propensity to 

trust automation in general and their perceptions of the system’s usability and 

trustworthiness. Results suggested that the binary and analog CAD systems improved 

participants’ hit rate and sensitivity (d’). Additionally, participants in the analog and 

interactive CAD conditions appeared to trust their CAD aids more than those in the 

binary and BI-RADS conditions. Regarding perceived usability, participants in the 

binary, analog, and interactive CAD conditions rated their CAD aids with higher usability 
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scores than those in the BI-RADS CAD condition. Exploratory analyses provided support 

for the trust and usability findings in the present study and suggested that participants in 

the BI-RADS condition were more conservative than those in the other CAD conditions. 

Together, the results from the present study provide further support that the use of CAD 

aids, particularly those that provide additional information, can improve hit rate and 

sensitivity when assessing DBT images. Although the novel BI-RADS CAD aid did not 

perform as strongly as the other CAD systems, it is promising that this variation did not 

harm reader performance. More research is required to explore how different 

implementations of BI-RADS ratings within CAD systems may be beneficial in the 

assessment of DBT images. Findings from this research contribute to the development of 

more user-centered CAD systems to ultimately improve radiologists’ diagnostic 

performance, particularly for DBT images.     
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CHAPTER ONE 

INTRODUCTION 

The American Cancer Society estimates that there will be 300,590 new cases of 

breast cancer in the United States in 2023, with breast cancer projected to make up 31% 

of all new cancer cases in women and retain its rank as the second leading cause of 

female cancer deaths (Siegel et al., 2023). Despite breast cancer incidence rates steadily 

increasing since the early 2000s, improved screening and treatment options have led to a 

decline in breast cancer mortality rates (Berry et al., 2005; Giaquinto et al., 2022; Myers 

et al., 2015; Narayan et al., 2020; Nelson et al., 2016; Oeffinger et al., 2015; Siegel et al., 

2023). While breast cancer is typically thought of as a woman’s disease, men are also at 

risk of developing breast cancer: men have roughly 1% of the breast cancer diagnoses in 

America, with a lifetime risk of getting breast cancer at about 1 in 833 (Division of 

Cancer Prevention and Control, 2023; Siegel et al., 2023). With breast cancer becoming 

more prevalent in the population, finding ways to improve early breast cancer detection 

continues to be a pressing issue.  

Early breast cancer detection has primarily been accomplished in two ways: 

regular clinical breast exams (CBEs) and annual or biannual imaging screening after a 

woman reaches 40 or 50 years old (potentially earlier if she is deemed high-risk). While 

CBEs have long been recommended by doctors to identify potentially abnormal physical 

changes to the breasts that may indicate the presence of breast cancer, there is a lack of 

empirical support for this method as a reliable screening tool (Oeffinger et al., 2015). In 

contrast, imaging screening for breast cancer, primarily done via mammography or 
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digital breast tomosynthesis (DBT), is a highly recommended tool for catching breast 

cancer in the early stages, often before symptoms even begin to appear (Coleman, 2017; 

Siu & U.S. Preventive Services Task Force, 2016; Smith & Oeffinger, 2020). Research 

continues to show that participation in regular imaging screening, particularly for women 

after age 50, leads to substantial reductions in advanced and fatal breast cancer rates by 

catching the cancer early enough to begin treatment (Duffy et al., 2020; Jhangiani et al., 

2023; Myers et al., 2015; Narayan et al., 2020; Nelson et al., 2016; Oeffinger et al., 2015; 

Pace & Keating, 2014). Unfortunately, it appears likely that there will soon be additional 

observational support that regular screening is crucial to decreasing breast cancer 

mortality rates, due to the coronavirus disease 2019 (COVID-19) pandemic. Delays of 

breast cancer screening and diagnosis caused by disruptions in medical services during 

COVID-19 have been estimated to result in over 2,000 excess deaths caused by breast 

cancer by 2030 (Alagoz et al., 2021). As breast imaging technology continues to 

improve, it will remain an essential component of proactive care.  

Of course, early detection of breast cancer has benefits beyond reducing mortality 

rates. Catching signs of breast cancer early can have significant financial implications. 

Later-stage breast cancer treatments (e.g., chemotherapy and mastectomy) mean a greater 

financial burden on patients as well as a higher likelihood of job and wage loss post-

treatment, particularly for those patients who are part of a minority group, low-income, or 

self-employed (Blinder & Gany, 2020; Sun et al., 2018). The earlier breast cancer can be 

detected, diagnosed, and treated, the less financial impact it will have on the patient and 

their loved ones. Improvements in breast imaging technology will not only save lives, but 
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they will also ultimately reduce the financial burden for patients whose breast cancer 

would otherwise have progressed to the more harmful late stages. 

Detection and Assessment of Potential Anomalies in Breast Images 

When radiologists examine mammograms and DBT images, they are looking for 

abnormalities in the breast tissue such as calcifications, masses, asymmetries, 

architectural distortion, and other suspicious findings (American Cancer Society, 2022). 

Calcifications typically appear as small white spots that can be classified as either 

macrocalcifications (larger and typically non-cancerous) or microcalcifications (much 

smaller and can indicate cancer depending on shape and layout). Masses appear as 

abnormal areas in the breast tissue that can be classified as cysts (fluid-filled sacs that can 

indicate cancer depending on their size, shape, and edges) or solid masses (usually non-

cancerous). Asymmetries typically appear as white areas that have a different pattern than 

the surrounding normal breast tissue. Architectural distortion appears as pulled or 

otherwise contorted breast tissue. Distortions may be due to positioning during the 

imaging procedure, prior injury, previous breast procedures (e.g., surgery), or cancer. 

Although asymmetries and distortions are usually not cancer, it is likely that patients will 

require additional imaging. The ability to correctly distinguish between cancerous and 

non-cancerous abnormalities is essential to avoid unnecessary recalls of the patient for 

additional breast imaging that can be painful, costly, and expose the patient to additional 

radiation.  

The detection and assessment of anomalies in imaging from mammography and 
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DBT can be greatly impacted by breast density. Breast density is determined by the 

proportion of fibrous and glandular tissue to fatty tissue, with density increasing as the 

percentage of fibrous and glandular tissue rises. Dense breasts are normal but can have a 

slightly higher risk of cancer and can create more challenges when it comes to detecting 

signs of cancer in mammogram and DBT images (American Cancer Society, 2022). The 

fibrous and glandular tissue that is characteristic of dense breasts appears white on 

mammogram and DBT imaging, which can act as camouflage for some types of 

suspicious findings (Indian Radiologist, 2021). Density is such an important factor in the 

detection and assessment of potential anomalies that it has its own method of assessment 

and categorization in breast imaging reporting. The reports generated by radiologists and 

other breast imaging readers are used to further guide patient care.  

The Breast Imaging Reporting and Database System (BI-RADS) Scoring System 

The Breast Imaging Reporting and Database System (BI-RADS) is used by 

radiologists for patient case management. The original intent of BI-RADS was to 

improve standardization for reporting results for breast cancer imaging screening through 

a “living” document that can be adapted as technology evolves (Burnside et al., 2009; 

Magny et al., 2023). BI-RADS has overall classifications for breast imaging that include: 

“Category 0,” incomplete; “Category 1,” negative; “Category 2,” benign; “Category 3,” 

probably benign; “Category 4,” suspicion of malignancy; “Category 5,” highly suggestive 

of malignancy; and “Category 6,” known biopsy-proven malignancy (Liberman & 

Menell, 2002; Sickles et al., 2013). BI-RADS Category 4 is further divided into three 
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subcategories based on how likely it is that cancer is present: “4A,” low chance of cancer 

(2-10%); “4B,” moderate chance of cancer (10-50%); and “4C,” high chance of cancer 

(50-95%). While these three subcategories of Category 4 exist, their implementation 

varies depending on location, medical center, training, and other factors (Indian 

Radiologist, 2021; Mahfouz, 2016; Pijnappel et al., 2004). BI-RADS Category 3 has 

similar issues and is considered more proper to use after diagnostic rather than screening 

imaging to avoid unnecessary biopsies, delayed diagnoses, and confusion in both medical 

personnel and patients (Indian Radiologist, 2021; Pijnappel et al., 2004; Sickles et al., 

2013; Trieu et al., 2020). BI-RADS Category 6 is only used after an abnormality has been 

biopsy-proven to be malignant (Magny et al., 2023; Sickles et al., 2013). Although there 

continues to be some debate about how to apply BI-RADS in practice, one of the benefits 

of it being a “living” document is that with more research and discussion, it can be 

updated to reflect evidence-based best practices.  

There are several important components to imaging reports that support the 

overall BI-RADS classification for breast cancer images. Radiologists must account for 

patient history, breast composition, and any potential abnormalities that may be 

indicators of breast cancer to determine BI-RADS ratings for screening and diagnostic 

images (Barazi & Gunduru, 2023; Burnside et al., 2009). The BI-RADS rating provides 

further guidance for follow-up care, which can include recommendations for when the 

patient should come back for their next screening appointment and whether a biopsy 

should be performed. If an image set is classified incorrectly, the patient may be recalled 

for unnecessary further imaging or biopsies. Unfortunately, there is wide inter-observer 
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variability for BI-RADS ratings, and even intra-observer variability (Berg et al., 2000; 

Boumaraf et al., 2020; Geras et al., 2018; Lazarus et al., 2006; Melnikow et al., 2016; 

Obenauer et al., 2005; Pijnappel et al., 2004). The goals of implementing BI-RADS have 

only been partially realized: the structure and information to be included in reports has 

been standardized and the BI-RADS scores provide a quick way to communicate crucial 

details to other medical personnel, but radiologists and other breast imaging readers still 

need to develop a consensus for the determination of BI-RADS classifications in the 

interest of better patient outcomes. 

To that end, it has been proposed that the BI-RADS scale should be integrated 

into computer-aided detection (CAD) systems to assist with assessment standardization 

(Qian et al., 2015). While very little progress has been made on this front, there has been 

some success using machine learning and natural language processing (NLP) approaches 

to determine BI-RADS ratings for radiology reports (Banerjee et al., 2019; Bozkurt et al., 

2015; Bozkurt et al., 2016; Castro et al., 2017; Sippo et al., 2013). Although these NLP 

systems have largely been successful, they are not in wide use and are still in the initial 

exploration phase. It has been suggested that such NLP systems could be an integral part 

to automated decision support systems, continuing education, standardization of 

reporting, and the overall management of breast cancer screening (Bozkurt et al., 2016; 

Castro et al., 2017; Sippo et al., 2013). With this initial success in the automation of BI-

RADS ratings from written reports, as well as other improvements in automated detection 

and assessment technology, it is time to start preparing for how best to implement 

suggested BI-RADS ratings in CAD user interfaces for image assessment.  
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The Prevalence Effect 

While it is important to know what radiologists look for and how they assess 

breast screening images for potential malignancies, it is equally important to observe that 

an extraordinary amount of these images are negative for signs of cancer. Studies have 

found that less than 0.5% of breast screening images are positive for signs of breast 

cancer, making the detection and assessment of potential abnormalities in breast cancer 

imaging a rare-target visual search task (Biggs et al., 2014; Chan et al., 2019; Chen & 

Howe, 2016; Evans et al., 2013; Gur et al., 2004; Lehman et al., 2017; Nishikawa & Bae, 

2018; Pisano et al., 2005; Wolfe et al., 2005). Low target prevalence has been shown to 

impact visual search performance, via the prevalence effect, by making it more likely for 

participants to fail to detect a target when it is present, leading to an increase in errors and 

decrease in accuracy (Biggs et al., 2014; Chen & Howe, 2016; Evans et al., 2013; Wolfe 

et al., 2005). When applied to breast cancer imaging search tasks, the prevalence effect 

can have deadly consequences.  

Evaluating Performance: Diagnostic Performance 

Signal detection theory (SDT; Green & Swets, 1988; Tanner & Swets, 1954) is 

one of the most common ways to assess the performance of radiologists. SDT is typically 

applied to reader performance for breast cancer screening using the following definitions: 

hits are considered to be when a reader accurately detects cancer is present; correct 

rejections are considered to be when a reader accurately determines there is no cancer 

present; misses are considered to be when a reader does not detect that cancer is present; 
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and false alarms are considered to be when cancer is not present, but the reader 

determines that one has been detected. Misses are the least desirable outcome, as the 

stakes are high if a radiologist fails to detect signs of cancer, particularly when it is best 

to catch it early enough to be successfully treated (Duffy et al., 2020; Jhangiani et al., 

2023; Myers et al., 2015; Narayan et al., 2020; Nelson et al., 2016; Oeffinger et al., 2015; 

Pace & Keating, 2014). False alarms are more often referred to as “false positives” in 

breast cancer screening and, while not fatal like misses, are still not desirable because 

they often result in the need for additional imaging or biopsies and an increase in patient 

anxiety (Dustler, 2020; Geras et al., 2018; Pace & Keating, 2014; Qian et al., 2015). To 

maximize their chances of catching cancer in screening imaging, radiologists are trained 

to have a more liberal criterion so that they are more likely to say that cancer is present, 

resulting in fewer misses but more false alarms (Alberdi et al., 2004). Ideally, radiologists 

should have a high proportion of hits and correct rejections and a low proportion of 

misses and false alarms.  

To that end, and to simplify analyses for easier comparisons, sensitivity and 

specificity are two other important measures often used to assess radiologist performance. 

Sensitivity refers to the proportion of cancers that are correctly identified out of all 

cancers in the image set, and specificity refers to the proportion of normal cases (those 

without cancer) that are correctly identified out of all normal cases in the image set 

(Alberdi et al., 2004). Comparing these measures across studies allows researchers to 

evaluate how reader performance has changed over time, differs between populations or 

imaging methods, or is impacted by study manipulations (e.g., prevalence, types of 
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targets, number of readers, or the use of search aids). It should be noted that radiologists 

tend to have high specificity (i.e., they are good at correctly identifying normal cases) but 

have greater differences and deficits in sensitivity (i.e., ability to correctly identify 

cancers; Dustler, 2020; Kunar, 2022; Mann et al., 2020; Salim et al., 2020; Shoshan et al., 

2022; Qian et al., 2015). Regarding breast cancer screening with mammography, 

radiologists generally have at least 90% specificity while sensitivity has been found to 

range from as low as approximately 40% to as high as approximately 97%, though it 

should be noted that studies evaluating sensitivity measures do not consistently have 

radiologists assess images using the same scale and radiologists usually have a sensitivity 

of about 90% (Dustler, 2020; Katzen & Dodelson, 2018; Mushlin et al., 1998; Pisano et 

al., 2005; Qian et al., 2015). While research exploring how to improve radiologist 

diagnostic performance will usually report both sensitivity and specificity, sensitivity 

improvements tend to be the primary area of interest.  

Evaluating Performance: Reading/Response Time 

An additional measure of performance that is of particular interest to radiologists, 

breast imaging manufacturers and software developers, hospitals, and other breast 

screening centers is reading or response time. Response time is how long it takes 

radiologists or other image readers to classify the imaging they are evaluating. Studies 

have found that radiologists can use their expertise to make correct global assessments of 

normal or abnormal scans at a rate above chance (~70%) within 0.2s (Kundel & Nodine, 

1975; Drew et al., 2013), but it typically takes radiologists longer to complete their 
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evaluations of breast imaging in practice. However, there is wide variability in reported 

reading times: average reading time per case for digital mammography has been reported 

to take 33-240s and for DBT with 2D mammography the average reading time per case 

has varied from 64.1-168s, depending on radiologist specialty and experience (Bernardi 

et al., 2012; Conant et al., 2019; Dang et al., 2014; Haygood et al., 2009; Lee et al., 

2022). With such wide variability in reading times in mind, methods for bringing down 

the high end of the range are being investigated.   

The amount of breast imaging scans radiologists have to review is only increasing 

as the population gets older. In the United States, the U.S. Preventative Services Task 

Force recommends that women between the ages of 50 and 74 years get biennial 

screening mammography (Siu & U.S. Preventive Services Task Force, 2016). Breast 

cancer screening is firmly established as a regular part of medical care; exploring how to 

reduce response times while maintaining or improving diagnostic performance is 

essential for ensuring patients receive appropriate care in a timely fashion (Balleyguier et 

al., 2017; Benedikt et al., 2018; Chae et al., 2019; Conant et al., 2019; Gao et al., 2019; 

Mann et al., 2020; Shoshan et al., 2022). As breast imaging technology improves, 

particularly the development and implementation of automated aids, reading time can be 

expected to continue to be a measure of interest in radiologist performance studies. 

Computer-aided Detection (CAD) Systems in Breast Cancer Imaging 

The use of CAD systems to assist radiologists with identifying cancers in the 

screening of breast images such as mammograms and digital breast tomosynthesis (DBT) 
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imaging has been rapidly increasing since the United States Food and Drug 

Administration (FDA) approved the use of CAD technology for this purpose in 1998 

(Fazal et al., 2018; Fenton et al., 2011; Gao et al., 2019; Katzen & Dodelzon, 2018; Keen 

et al., 2018; Lehman et al., 2015; Richman et al., 2019). Currently, CAD is approved for 

use as a second reader for the assessment of breast cancer screening imaging to confirm 

the radiologist’s initial findings, though its implementation is not standardized so it is 

often used in single reader settings (Chan et al., 2019; Fazal et al., 2018; Henriksen et al., 

2019; Masud et al., 2019; Nishikawa & Bae, 2018). CAD systems use algorithms, 

machine learning, deep learning, and artificial intelligence (AI) techniques to mark 

suspicious features in breast images to bring them to the attention of the reader. Today, 

the majority of breast screening imaging assessment is performed with the assistance of a 

CAD system.  

SDT is one of the most common ways to assess the effectiveness of CAD as an 

automation aid for radiologists and other breast imaging readers. In particular, 

researchers are interested in how the use of CAD might influence measures of sensitivity 

(Alberdi et al., 2009; Chae et al., 2019; Conant et al., 2019; Fenton et al., 2011; Kunar, 

2022; Lehman et al., 2015; Salim et al., 2020; Shoshan et al., 2022). It is important to 

note that while specificity is often also reported when evaluating radiologists’ 

performance with the use of CAD, CAD systems were intended to aid radiologists in 

catching cancers they might otherwise miss; they were not designed with specificity as a 

priority (Nishikawa & Bae, 2018). For CAD systems, there is an additional concern as 

the number of false alarms for current CAD systems impedes radiologists’ diagnostic 
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performance (Fazal et al., 2018; Gao et al., 2019; Katzen & Dodelzon, 2018). As with 

radiologists, CAD systems are trained to have a more liberal criterion, meaning that they 

present readers with relatively more false positive indications (Alberdi et al., 2004; Chan 

et al., 2019; Kunar, 2022; Nishikawa & Gur, 2014). Researchers are working on 

developing better algorithms for CAD to decrease the number of false alarms while not 

sacrificing their sensitivity (Cortez et al., 2021; Gandomkar & Mello-Thoms, 2019; Fazal 

et al., 2018; Geras et al., 2018; Kohli & Saurabh, 2018; Kyono et al., 2018; Qian et al., 

2015). Currently, CAD systems and radiologists have approximately the same average 

accuracy (84%; Kohli & Saurabh, 2018), but advances in machine learning, AI, and 

image processing technology promise to lead to the development of CAD systems that 

will be able to identify underlying patterns and clues that radiologists, with the limitations 

of human performance capabilities, are blind to (Cortez et al., 2021; Fazal et al., 2018; 

Gao et al., 2019; Geras et al., 2018; Jairam & Ha, 2022; Kohli & Saurabh, 2018; Kyono 

et al., 2018; Qian et al., 2015). Whether currently or in the future, in the context of reader 

performance, the use of CAD should improve sensitivity.  

Despite the employment of CAD in most breast cancer screening assessments, a 

critical study by Lehman et al. (2015) found there to be no benefit to CAD use on any 

measure. In contrast, they found that the use of CAD significantly decreased sensitivity 

for the interpretation of mammograms compared to reviewing the images without CAD. 

Many other studies have reached similar conclusions that the use of CAD in the 

assessment of breast cancer imaging has no benefit, negatively impacts performance, or 

has such a wide range of potential impact on performance that it is impossible to 
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determine if it is truly a useful tool (Cole et al., 2014; Drew & Reback, 2017; Fazal et al., 

2018; Fenton et al., 2011; Jorritsma et al., 2015; Katzen & Dodelson, 2018; Keen et al., 

2018; Kunar et al., 2017; Taylor & Potts, 2008). Some of this conflict in outcomes may 

be due to how the use of CAD can impact radiologists’ confidence and how they deal 

with the false positive CAD information. Radiologists, especially novices, may become 

over-reliant on the CAD system instead of trusting their own judgment (Jorritsma et al., 

2015; Kunar et al., 2017; Nishikawa & Bae, 2018). This over-reliance on the CAD 

system can exacerbate the negative effects of CAD on diagnostic performance, especially 

since CAD systems are not yet (and may never be) 100% reliable. In contrast, some 

radiologists may completely disregard CAD information that they disagree with if they 

are confident in their own expertise or do not trust the system (Cole et al., 2014; Jorritsma 

et al., 2015; Katzen & Dodelson, 2018; Nishikawa & Bae, 2018; Nishikawa & Gur, 

2014). As mentioned previously, one of the major drawbacks of current CAD systems is 

that they have a high rate of false positives. False positives can cause readers to question 

themselves or to take extra time to determine that the false positive markings are 

incorrect (Katzen & Dodelzon, 2018; Kohli & Saurabh, 2018). A majority of past 

research suggests that CAD systems may be more of a hindrance than aid for radiologists. 

Continued CAD use in radiology may be surprising until observing that most 

studies showing little to no benefit or even harm from the use of CAD in the assessment 

of breast imaging were conducted at least five to ten years ago; the technology used for 

CAD systems has improved substantially since then. Recent research has shown that the 

use of CAD in breast cancer screenings can be at least as good as using a second reader 
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when considering recall rates, sensitivity, and cancer detection rates (Henriksen et al., 

2019). Concurrent CAD use with DBT images has been found to decrease reading time 

without degrading diagnostic performance (Balleyguier et al., 2017; Benedikt et al., 

2018; Chae et al., 2019; Conant et al., 2019; Gao et al., 2019). In fact, research exploring 

new machine learning, deep learning, and AI algorithms for CAD systems for breast 

imaging detection and assessment have found that not only is the CAD program 

improving in its diagnostic performance, its use is also resulting in improved 

performance for radiologists (Conant et al., 2019; Du-Crow et al., 2019; Dustler, 2020; 

Jairam & Ha, 2022; Kim et al., 2020; Lee et al., 2023). CAD use may also be able to 

mitigate the prevalence effect, though this largely depends on how information is 

presented and the accuracy (particularly in terms of lower false alarm rates) of the CAD 

systems (Drew et al., 2020; Kunar, 2022; Kunar et al., 2017; Tan et al., 2015). As the 

diagnostic performance of CAD systems continues to improve with advances in 

technology, it is becoming increasingly important to investigate how the presentation of 

pertinent information can impact reader performance as well.  

Types of CAD 

Diagnostic performance can also be influenced by the type of CAD 

implementation the radiologist uses in their work. The three most common types of CAD 

implementation are binary (traditional) CAD, analog CAD (aCAD), and interactive CAD 

(iCAD). Binary CAD automatically provides visual indicators of anomalies in the images 

if the area of interest passes a particular threshold of possibility to have a “target present” 
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(Cunningham et al., 2017; Du-Crow et al., 2020; Hupse et al., 2013; Samulski et al., 

2010). A slightly more advanced version of traditional CAD is aCAD, which 

automatically provides a visual indicator of a possible anomaly and a percentage-based 

suggestion of whether the target is present (Cunningham et al., 2017; Du-Crow et al., 

2020; iCAD, Inc., 2020). Quickly gaining traction is the third type of CAD, iCAD. While 

iCAD still provides a visual indicator of a possible anomaly with a percentage-based 

suggestion of whether the target is present, it only does so when the iCAD overlay is 

activated by the participant (Du-Crow et al., 2020; Hupse et al., 2013; Samulski et al., 

2010). All three types of CAD are currently in use in hospitals and other breast cancer 

screening centers.  

While new CAD algorithms continue to be developed to improve sensitivity, 

specificity, and false positive rates, little research has been done to examine the usability 

of these systems’ user interfaces, or how best to present information to radiologists to 

maximize their potential performance gains (Cortez et al., 2021; Drew et al., 2020; 

Gandomkar & Mello-Thoms, 2019; Geras et al., 2018; Kyono et al., 2018; Nishikawa & 

Bae, 2018; Nishikawa & Gur, 2014; Qian et al., 2015). It has been suggested that giving 

radiologists the option to activate a CAD overlay, as with iCAD, may improve diagnostic 

performance and response times, particularly if the CAD displays classification or other 

pertinent information, as with aCAD, that could be helpful for reader interpretation of the 

images (Drew et al., 2020; Gao et al., 2019; Nishikawa & Bae, 2018; Nishikawa & Gur, 

2014). Allowing users to activate the CAD overlay after they have had the opportunity to 

view the image by itself has also been found to mitigate the potential costs of the 
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distraction effect that traditional CAD can produce during low-prevalence target searches 

(Drew et al., 2020; Kunar, 2022). Studies comparing aCAD and iCAD systems to a 

binary CAD system have found that radiologists performed better when they used the 

aCAD and iCAD implementations (Cunningham et al., 2017; Drew et al., 2020; Du-Crow 

et al., 2020). Though CAD research has shown benefits to using all three types of CAD, 

what little research has been done comparing them has pointed to the most benefit 

coming from the use of iCAD, with aCAD close behind due to its presentation of 

additional pertinent information.  

Integrating BI-RADS with CAD Systems 

An essential step in developing CAD systems is choosing what information to 

show the reader and how to display that information. Researchers have suggested that 

providing radiologists with classification information may help with detection and 

assessment tasks (Nishikawa & Gur, 2014; Tan et al., 2017; Tan et al., 2015; Qian et al., 

2015). Integrating suggested BI-RADS classifications into the CAD system may provide 

such useful information that radiologists can consider when they make their final reports 

about the breast screening images. Although BI-RADS ratings specifically have not yet 

been integrated into CAD systems, there is evidence that the addition of case-based risk 

assessment scores can help radiologists determine which image sets they may need to 

examine more carefully (Tan et al., 2017; Tan et al., 2015; Qian et al., 2015). The tested 

case-based CAD systems were able to increase sensitivity while also decreasing the 

negative impact of false positives. Another argument to make for adding suggested BI-
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RADS classifications to CAD systems is that it could help address the inter- and intra-

observer variability issues the BI-RADS implementation currently has (Berg et al., 2000; 

Boumaraf et al., 2020; Geras et al., 2018; Lazarus et al., 2006; Melnikow et al., 2016; 

Obenauer et al., 2005; Pijnappel et al., 2004; Qian et al., 2015). By using CAD to give 

radiologists a starting point for a BI-RADS category assessment, the BI-RADS goal of 

standardization may be more readily achieved. With case-based risk assessment scores 

having promise as a way to improve radiologist performance with CAD and the desire to 

increase inter-observer reliability with BI-RADS use, investigating how best to present 

suggested BI-RADS ratings appears to be the next step. 

Trust in Automation 

The presentation of information by a CAD system can only impact the 

performance of the radiologist if the radiologist uses the CAD in their search and 

assessment of the breast screening imaging. As mentioned previously, it has been 

observed that radiologists often either under-trust or over-trust CAD aids, leading to 

disuse and misuse of the systems (Du-Crow et al., 2019; Jorritsma et al., 2015; Kunar et 

al., 2017; Nishikawa & Bae, 2018; Nishikawa & Gur, 2014). Disuse of CAD can occur 

when radiologists ignore the information provided by the CAD system or otherwise 

underutilize the CAD system (Dzindolet et al., 2003; Jorritsma et al., 2015; Parasuraman 

& Riley, 1997). In contrast, when radiologists misuse CAD, they may stop searching the 

breast imaging earlier, change their initial correct target-present determinations to target-

absent, and generally perform worse on diagnostic measures as a result of relying on the 
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CAD system too much (Du-Crow et al., 2019; Jorritsma et al., 2015; Kunar et al., 2017; 

Nishikawa & Bae, 2018; Parasuraman & Riley, 1997). The goal of CAD implementation 

is, therefore, for radiologists to trust the CAD aid enough to use it for the benefits it can 

provide while also trusting their own judgment enough to know which CAD cues may be 

unreliable and can be ignored.  

Usability of CAD Systems 

Understanding how radiologists perceive the usability of the CAD systems they 

partner with will be essential to the appropriate, long-term use of these automation aids. 

Trust in automation can be influenced by the design of the system and vice versa, with 

both elements influencing the adoption and use of CAD technology (Filice & Ratwani, 

2020; Hoff & Bashir, 2015; Jorritsma et al., 2015). While evaluations of CAD systems 

have primarily focused on their functionality, the lack of usability in these systems has 

led to confusion, disuse, and poorer outcomes than expected based on the performance of 

CAD algorithms, suggesting that usability testing will be crucial to the success of future 

CAD and AI tools (Filice & Ratwani, 2020; Jorritsma et al., 2014; Jorritsma et al., 2015; 

Lam Shin Cheung et al., 2023; Lekadir et al., 2023; Lekadir et al., 2021; Nishikawa & 

Bae, 2018). Yet, there are few usability studies of CAD systems for breast imaging. 

Improvements in the detection and assessment abilities of CAD imaging software and 

algorithms are virtually meaningless if the users of CAD systems are unable to 

appropriately take advantage of the information these automation aids provide due to 

poor UI design. By investigating how best to present information to radiologists, 
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improvements can be made to the UI to allow for even better diagnostic performance and 

patient outcomes.  

The Rise of Digital Breast Tomosynthesis (DBT) 

Mammography vs. DBT 

When people think about breast cancer screening imaging, what most people 

think about is mammography. Mammography is currently the most common type of 

breast cancer screening (Katzen & Dodelzon, 2018; Siu & U.S. Preventive Services Task 

Force, 2016). Recent mammography tends to be full-field digital mammography instead 

of film mammography and consists of 2D images of breast tissue. A full set of 

mammography images usually consists of two images per breast, a craniocaudal view and 

a mediolateral view. To take the images, the breast is compressed between two metal 

plates. A much less painful procedure for mammography called synthetic mammography 

has started to gain ground. This type of mammography is created by combining x-ray 

“slices” of the breast taken during DBT into one 2D image (Lowry et al., 2020; Rocha 

García & Mera Fernández, 2019; Zuckerman et al., 2016). Synthetic mammography 

taken with DBT removes the element of pain from mammography and substantially 

decreases the amount of radiation patients receive compared to the use of digital 

mammography with DBT, but there is not enough evidence yet to support it as a full 

replacement for digital mammography.      

DBT can be considered an evolution of mammography in that it is a compilation 

of multiple 2D image “slices” taken by an x-ray tube that rotates in an arc around the 
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breast. Radiologists can use this compiled image to “drill” through imaging of the breast 

and get a better idea of the breast tissue and the structure of potential anomalies in the 

breast. Due to the 3D information provided by DBT imaging, DBT is often referred to as 

“3D mammography,” but this term is incorrect; DBT creates a pseudo-third dimension 

using planar data (Sickles et al., 2013; Rocha García & Mera Fernández, 2019). DBT has 

been in use for many years now but has not been formally adopted as a screening or 

diagnostic tool. Current guidelines in both the United States and Europe mention DBT 

but note that more research needs to be done before DBT can be officially recommended 

for screening, let alone as a diagnostic method (Schünemann et al., 2020; Siu, A. L., & 

U.S. Preventive Services Task Force). Despite this, DBT’s popularity continues to 

increase and, as of March 2023, 86% of certified breast cancer screening facilities had 

DBT capabilities (Lee & Moy, 2023). It is anticipated that DBT will soon replace digital 

mammography as the primary method for breast screening imaging, with the use of DBT 

as a screening tool steadily rising since its introduction (Lee & Moy, 2023; Richman et 

al., 2019). With the adoption of DBT only expanding throughout the United States, it is 

not unreasonable to suggest that we might see a statistic within the next ten years that 

near 100% of certified breast cancer screening facilities will have DBT access.  

One of the areas where DBT is expected to perform well is in the screening of 

high-density breasts (Gur, 2007). Compared to mammography, DBT has significantly 

better sensitivity, cancer detection rates, and recall rates for high-density breasts (Chong 

et al., 2019; Houssami et al., 2023; Lee & Moy, 2023; Marinovich et al., 2018). Without 

DBT, patients with high-density breasts would need additional imaging with more 
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advanced screening equipment such as magnetic resonance imaging (MRIs) or 

ultrasound, both of which can be challenging to find (less facilities have access to these 

machines), have high costs, and are often considered uncomfortable for patients (Gur, 

2007). As DBT continues to be implemented in hospitals and other breast cancer 

screening centers, breast imaging practitioners become more familiar with using and 

interpreting DBT imaging, and research continues to support the improvement of 

diagnostic performance, DBT is likely to replace mammography as the primary method 

for breast screening imaging (Chong et al., 2019; Lowry et al., 2020; Zuckerman et al., 

2016). With the increasing use of DBT as a screening and diagnostic tool, it is crucial to 

ensure that radiologists are more helped than hindered by DBT.  

Reasons to Switch 

While studies generally indicate that one of the main benefits of mammography 

screening is a reduction of breast cancer mortality, it has been noted that screening 

mammography can also result in harms such as false positives, unnecessary recalls, 

overdiagnosis, and overtreatment (Friedewald et al., 2014; Geras et al., 2018; Jhangiani et 

al., 2023; Myers et al., 2015; Narayan et al., 2020; Pace & Keating, 2014; Schünemann et 

al., 2020). When a patient has more mammograms, especially when they begin regular 

screening at younger ages, their risk of a false positive increases. Although the impact of 

a false positive result can be highly individualized, studies have found that these results 

tend to exacerbate feelings of depression, anxiety, and worry as well as prompt 

unnecessary biopsies (Dustler, 2020; Geras et al., 2018; Jairam & Ha, 2022; Pace & 
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Keating, 2014; Qian et al., 2015). Overdiagnosis, though largely still under debate both in 

definition and in how it should be operationalized, can lead to women being diagnosed 

with breast cancer that would not have impacted their lives if it had not been detected and 

treated (Narayan et al., 2020; Pace & Keating, 2014; Ryser et al., 2022). Extraneous 

treatment, more commonly referred to as overtreatment, is also not well-studied but is 

estimated to occur in similar rates as overdiagnosis (Pace & Keating, 2014). Patients who 

undergo screening mammography are also exposed to radiation and pain during the 

procedure to take these breast images (Jhangiani et al., 2023; Qian et al., 2015). These 

physical risks can lead to a decrease in the likelihood that a patient will continue with 

appropriate screening over the course of their lifetime. Despite the potential harms of 

mammography screening, the benefits are considered to be great enough that it remains in 

common practice. 

With advances in breast imaging technology, though, such harms can be reduced. 

Compared to mammography, using DBT for breast cancer screening has been shown to 

result in lower breast cancer mortality, small increases in quality-adjusted life-years, and 

fewer false-positives (Lowry et al., 2020). There has also been evidence that the use of 

DBT may reduce unnecessary recall rates, though some studies have found that recall 

rates may be higher when DBT is used to assess breasts with high density (Chong et al., 

2019; Houssami et al., 2023; Marinovich et al., 2018; Melnikow et al., 2016). These 

differences may be attributed to differences in sensitivity and cancer detection rate 

measures. Multiple studies have found that sensitivity and cancer detection rates are 

significantly higher for DBT than mammography screening, particularly when evaluating 
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high-density breasts (Chong et al., 2019; Houssami et al., 2023; Kerlikowske et al., 2022; 

Lee & Moy, 2023; Marinovich et al., 2018). With the improvements that come from 

using DBT instead of mammography, the potential harms from false positives, 

unnecessary recalls, overdiagnosis, and overtreatment are reduced.  

Current State of DBT Research 

Compared to research on mammography, research on DBT is quite sparse. Much 

of the research investigating diagnostic performance outcomes with DBT does not solely 

look at DBT; rather, the researchers add or compare it to another method of breast cancer 

screening imaging. For example, several studies have explored the use of DBT either in 

tandem with or as opposed to digital mammography (Friedewald et al., 2014; 

Kerlikowske et al., 2022; Lee & Moy, 2023). When it comes to integrating CAD use with 

DBT and mammography imaging, several studies have found that radiologists have better 

diagnostic results using DBT with CAD than they do using mammography with CAD 

(Balleyguier et al., 2017; Katzen & Dodelzon, 2018). As far as CAD use in itself, the vast 

majority of the literature is focused on using CAD with mammography imaging rather 

than DBT. Similarly, for aspects specific to DBT such as search behavior when there are 

multiple layers to “drill” through, research is just beginning (Adamo et al., 2018; 

Aizenman et al., 2017). Overall, the consensus appears to be that more research is needed 

regarding the impact of DBT on diagnostic performance outcomes, with and without 

CAD and digital or synthetic mammography, with a longitudinal aspect, and including 

randomized trials (Schünemann et al., 2020; Siu, A. L., & U.S. Preventive Services Task 
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Force). To assist with gathering this data, the American College of Radiology (ACR) has 

begun recruiting for its Tomosynthesis Mammographic Imaging Screening Trial 

(TMIST), a randomized longitudinal study, and has already recruited over half the 

number of participants they need to reach their goal sample size (American College of 

Radiology, 2023). However, data from the TMIST and other longitudinal studies 

investigating the use of DBT is not expected to be available for many more years. As 

more data is collected about DBT, its impact on performance, longitudinal results, with 

mammography, and using CAD systems with DBT, more concrete determinations will be 

able to be made about the best practices for DBT in the breast cancer screening process.  

The Present Study 

To explore the effect of CAD systems on visual search performance, usability 

perceptions, and trust when evaluating DBT imaging, we investigated the three common 

types of CAD aids (binary, aCAD, and iCAD) as well as a novel CAD system that 

utilized an overall BI-RADS rating. The BI-RADS CAD system presented participants 

with a suggested classification for the image set from a modified BI-RADS rating scale 

that included 0 (need more information; similar to an error message), 1 (no target 

present), 2 (neutral or equal likelihood of target present), and 3 (target present). Similar 

modified BI-RADS scales are often used in studies investigating how researchers make 

BI-RADS determinations for breast scan images (Banerjee et al., 2019; Boumaraf et al., 

2020; Cortez et al., 2021; Geras et al., 2018; Narváez et al., 2017). 

Further contributions to the body of research regarding the usability of CAD 
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systems came from the study’s comparison of four types of CAD interfaces: binary CAD, 

BI-RADS CAD, aCAD, and iCAD. While past research has examined one to three CAD 

implementations per study, such comparative research is rare and tends to rely solely on 

SDT analyses rather than how specific elements of the CAD interfaces may influence 

diagnostic performance and reader speed (Cunningham et al., 2017; Drew et al., 2020; 

Du-Crow et al., 2020; Hupse et al., 2013; Kunar, 2022; Kunar et al., 2017; Samulski et 

al., 2010). To that end, the present study examined SDT, target absent response times, 

trust and usability outcomes while maintaining target consistency among the four CAD 

implementations and a control condition with no CAD. Reliability was held consistent 

among the CAD conditions. Reader performance was assessed in both high and low 

target prevalence blocks to mimic past research conditions.  

Hypotheses  

H1: Participants will have higher sensitivity (d’ and hit rate) and have faster target 

absent response times using a CAD interface than without one.  

H2: Participants will have higher sensitivity (d’ and hit rate) and have faster target 

absent response times using a CAD interface than without one in the low prevalence 

condition.  

H3: Participants will have the fewest false alarms and have the fastest target 

absent response times with iCAD aid. 

H4: Activation of the iCAD overlay will be more common in the low prevalence 

block than the high prevalence block.  
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H5: Participants in the binary CAD condition will have less trust in their 

automation aid than participants in other CAD conditions when controlling for propensity 

to trust automation in general.  

H6: Participants in the binary CAD condition will have lower usability scores 

than participants in the other CAD conditions.  

Exploratory Hypotheses 

H7: There will be significant positive correlations between usability scores and 

trust in the specific system for each CAD condition.   

H8: There will be no significant differences in response criterion between CAD 

conditions.    
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CHAPTER TWO 

METHODS 

Participants 

A total of 50 participants were recruited from Clemson University’s student 

population through the Sona system. A repeated measures ANOVA power analysis was 

conducted in G*Power (Faul et al., 2007) to determine the necessary sample size to detect 

an effect of CAD condition on diagnostic performance measures. An effect size of ηp
2 = 

.24 was estimated based on results from studies by Cunningham et al. (2017) and Kunar 

(2022) that found similar effects when comparing performance between CAD types. 

Thus, an ANOVA power analysis with the following parameters, a Cohen’s f of .56, 

power of 0.95, an alpha probability of 0.05, and 5 groups (control, binary CAD, BI-

RADS CAD, aCAD, and iCAD) was conducted. Based on this analysis, 50 participants 

(10 per group) should be sufficient to detect any differences in performance due to CAD 

condition.  

Participants were compensated with course credit. While undergraduates with 

minimal to no experience with radiology (i.e., non-professionals) provided the sample 

population in this study, previous research has indicated that such non-professional 

participants have comparable outcomes to professional participants and their results can 

be used to gain insight into the performance of experienced radiology imaging readers 

(Adamo et al., 2018; Du-Crow et al., 2020; Fleck et al., 2010; Samulski et al., 2010). All 

participants had self-reported normal or corrected-to-normal vision (20/32 or better 
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corrected vision on a Snellen eye chart) and normal cognitive function. The present study 

complied with the American Psychological Association Code of Ethics and was approved 

by the Institutional Review Board at Clemson University. Informed consent was obtained 

from each participant. 

The final sample of 50 undergraduate participants from Clemson University had 

an average age of 18.82 years old, 82% of participants identified as female, 16% as male, 

and 2% as genderqueer, nonbinary, or genderfluid, 70% of participants identified as 

White, 16% as Multiracial or Multiethnic, 6% as Hispanic, Latino/a/é, or Spanish, 6% as 

Black or African American, and 2% as Asian.  

Stimuli and Procedures 

The experiment was programmed and run using PsychoPy (Peirce et al., 2019, 

2023). Participants were seated approximately 44.45 cm away from the center of a Dell 

P2219H, 21.5-in. monitor with a resolution of 1,920 × 1,080 pixels and 60-Hz refresh 

rate. Experiment screens were presented at the same resolution. Participants were 

instructed to maintain contact between their chin and the provided chinrest throughout the 

experiment. While the chinrests were set to the same height across participants, 

adjustable chairs were provided to participants so that they could raise or lower the chair 

to accommodate different heights while maintaining consistency of head alignment with 

the monitor.  

Search displays combined features of traditional radiology research search 

displays and CAD displays used by professional readers. Features common across 
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conditions included a circular primary display, a slider with preview images that visually 

indicated where participants were in the image set, a layer counter that indicated which 

layer of the image set the participant was viewing, and a black background (see Figure 

2.1). Each image set was composed of 13 layers to approximate industry practice 

(Sechopoulos & Ghetti, 2009; Vedantham et al., 2015). Target-present image sets 

contained 99 L-shaped distractors and one T-shaped target randomly distributed 

throughout the 13 layers. Target-absent image sets contained 100 L-shaped distractors 

randomly distributed throughout the 13 layers. Adobe Photoshop was used to create the 

cloud background of the primary display as well as the T-shaped targets and L-shaped  

 

Figure 2.1 

Navigation Through Image Layers 

 

Note: Depiction of participants moving through layers to find a target in the binary CAD condition. 
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distractors. The cloud background used a 63-96% white range to mimic radiology 

imaging (Cain & Mitroff, 2012). The T-shaped targets had a visual angle of 1.3° x 1.3° at 

the widest points and were composed of rectangles with a width of 0.3° and a centered 

crossbar. The L-shaped distracters had the same dimensions as the target items but with 

crossbars offset by 0.3°. Targets and distractors had a slight separation between the 

perpendicular rectangles and were colored in a range of 47-63% white (Adamo et al., 

2018; Cain & Mitroff, 2012). Items had four possible orientations (a rotation of 0°, 90°, 

180°, or 270° along the y-axis) for every discrete value in the color range. Item positions, 

percent white, and rotation were randomized using an algorithm programmed in Python 

to generate layer, row, and column values in a 13 x 13 x 13 grid within the primary 

display with five pixels of jitter on the x- and y-axes.  

Participants used a slider presented to the right of the primary display to move 

through the 13 layers. The slider marker, a dark grey circle, could be moved up and down 

the slider. Thirteen preview images were presented to the right of the slider to provide a 

visual indication of where the participant was in the image set. Participants were able to 

move between layers by either moving the slider marker along the slider or clicking on 

the preview image of the layer they wanted to view. As the participant navigated the 

layers, the background of the preview image for the layer the participant was on changed 

from light grey to black. To provide additional layer orientation, the layer number was 

presented in the top left corner of the search display. Preview images were created in 

Adobe Photoshop using a blank cloud-filled primary display and black background and 
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were consistent across layers and conditions to avoid influencing search behavior.  

There were four practice trials and 80 experimental trials (84 trials total). Practice 

was one block with 50% (2) target-present trials. The order of the trials in the practice 

block remained static across participants and conditions. The experimental trials were 

separated into two blocks, a high prevalence block and a low prevalence block, with 40 

trials in each block. The high prevalence block had a target present in 50% (20) of the 

image sets. The low prevalence block had a target present in 10% (4) of the image sets. 

Block order was counterbalanced for the experimental blocks. Trial order within each 

experimental block remained static across participants and conditions. 

Participants were instructed to indicate, via button press, if a target was present 

(“1”) or absent (“0”) in each image set. Participants were directed to focus on a black 

fixation cross (1 s) at the beginning of each trial. For the practice trials, participants 

received feedback on their answers in the form of a green fixation cross if they were 

correct or a red fixation cross if they were incorrect. Participants did not receive feedback 

on the experimental trials. During the practice trials, study personnel ensured that 

participants were aware of how to navigate through the layers using the slider or practice 

images, knew what the target looked like, and understood how to use the CAD interface, 

as applicable. Participants were provided with two optional breaks, one after the practice 

block and one after the first experimental block.  

CAD Implementations 

Participants were randomly assigned to one of five user interface (UI) conditions: control, 
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binary CAD, BI-RADS CAD, aCAD, or iCAD. While the UIs for each condition are 

described in detail below, Figure 2.2 provides side-by-side comparisons of the UIs when 

there was a target present on the fourth layer. To ensure that the CAD implementations 

were foundationally equivalent and mimicked real-world CAD systems, all four CAD 

types were programmed to have a reliability of 80% (Kohli & Saurabh, 2018; Kyono et 

al., 2018; Parasuraman et al., 1993). To align with the liberal bias of CAD algorithms 

used in industry (Kunar 2022; Lehman et al., 2015), reliability was implemented so that 

CAD interfaces were considered unreliable when they incorrectly identified L-shaped 

distractors as possible targets. CAD aids were also considered unreliable when they 

indicated an error or did not appropriately produce a CAD cue. While the reliability  

  

Figure 2.2 

User Interfaces of Each Condition 

 

Note: The user interfaces for each condition: (a) control; (b) binary CAD; (c) BI-RADS CAD; (d) aCAD; 

(e) iCAD with the CAD overlay off; and (f) iCAD with the CAD overlay on. 
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programming for each CAD condition will be expanded on below, Appendix A provides 

additional information for the reliability programming differences between prevalence 

conditions for each CAD UI. For all CAD conditions, participants were advised that the 

CAD system may not be perfectly reliable and that it would be up to the participant to 

make the final classification of each image set. 

The control condition was limited to the base UI of the black background, primary 

display, layer counter, and slider with preview images, but no additional CAD interface 

components (see Figure 2.2a). Participants in the control condition should not have been 

influenced by the programmed reliability of the CAD systems because they did not 

receive any information from a CAD interface.  

The binary CAD interface had the base UI components and aided the participants 

by circling potential targets (see Figure 2.2b). For this condition, the system was 

considered reliable when it circled a T-shaped target on target-present trials or did not 

provide a circled target on target-absent trials and considered unreliable when it circled 

an L-shaped distractor on target-absent trials. A maximum of one item was circled in 

each image set.  

The BI-RADS CAD interface included the base UI components and provided the 

participants with a suggested overall rating on a modified BI-RADS scale for each image 

set (see Figure 2.2c). Participants received additional instruction that the system rated the 

image set as “0” (need more information; similar to an error message), “1” (no target 

present), “2” (neutral or equal likelihood of target present), or “3” (target present). The 

proposed rating was indicated by a red box around the classification the system was 
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recommending. The rating scale and CAD indicator appeared on all layers for each image 

set. For this condition, the system was considered reliable when it suggested Category 3 

or Category 2 on target-present trials or recommended Category 1 or Category 2 on 

target-absent trials and unreliable when it suggested Category 0 on target-absent trials 

(i.e., the system needed more information). 

The aCAD interface had the base UI components and aided the participants by 

both circling potential targets and providing an estimate of how likely the circled item is 

a target (see Figure 2.2d). For this condition, the system was considered to have been 

reliable when it circled and provided at least a 50% probability rating for T-shaped 

targets on target-present trials; circled and provided a 50% probability rating for L-

shaped distractors on target-absent trials; or circled and provided a 1-2% probability 

rating for L-shaped distractors on target-absent trials. The aCAD system was considered 

to have provided unreliable cues when it did not provide a CAD cue on target-absent 

trials. A maximum of one item was circled and given a probability rating in each image 

set.  

The iCAD interface had the base UI components with the option for participants 

to activate an aCAD overlay (see Figure 2.2e) that aided the participants by both circling 

potential targets and providing an estimate of how likely the circled item is to be a target 

(see Figure 2.2f). The reliability programming for this condition was the same as for the 

aCAD condition.  
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Surveys 

Before beginning the experiment and after verifying that they passed the 

exclusion criteria, participants were directed to complete a pre-study Qualtrics 

questionnaire. To assess participants’ trust in automation in general, they completed the 

6-item Propensity to Trust scale (Merritt et al., 2013). For this scale, participants were 

asked to consider their feelings about automation in general, then rate each statement on a 

5-point scale from “Strongly disagree” to “Strongly agree.” Items included statements 

such as “I usually trust machines until there is a reason not to” and “In general, I would 

rely on machines to assist me.” A modified version of this scale replacing “machines” 

with “automation” was used for this study to better reflect the use of an automated 

program rather than an automated machine (see Appendix B). The example items above 

became, “I usually trust automation until there is a reason not to” and “In general, I 

would rely on automation to assist me.” Upon completion of the Propensity to Trust 

scale, participants were led to the experiment station and instructed to use the chin rest 

throughout the duration of the study. Study personnel provided additional guidance as 

needed for the practice trials to ensure that participants understood how to perform the 

search task (e.g., use the slider to move through the layers; make a determination about 

target presence for the entire image set rather than each slide; search for a perfect T-

shaped target). After completing the four practice trials, participants had the option to 

take a break, then were instructed to complete the experimental trials.  

After completing the experimental trials, participants were redirected to a 

Qualtrics survey. Demographics information was collected first, including age and gender 
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identity. To gather information about how participants perceived the usability of each 

system for further comparisons between the conditions, participants completed the 10-

item System Usability Scale (SUS; see Appendix C; Brooke, 1996). For the SUS, 

participants were asked to consider the UI they had used and rate items on a 5-point scale 

from “Strongly disagree” to “Strongly agree.” Items included statements such as “I 

thought the system was easy to use” and “I thought there was too much inconsistency in 

this system.”  

Participants were then asked to consider their trust in the specific UI they used in 

the study as they completed the 12-item Trust Between People and Automation scale (see 

Appendix D; Jian et al., 2000). For this scale, participants were asked to select the 

number from a 7-point scale (1 = “Not at all,” 7 = “Extremely”) that best corresponded to 

their feelings or impressions about the UI they had used to view and assess the mock 

radiology images. Items included statements such as “I am suspicious of the system’s 

intent, action, or outputs” and “The system is reliable.”  

Finally, participants were presented with a qualitative survey that asked the 

participants for their thoughts on the UI they used and what, if any, changes they would 

make to it (see Appendix E). Items included questions such as “What did you like about 

the UI?” and “How would you improve the UI?”. Upon completion of the qualitative 

survey, participants were debriefed, thanked for their participation, and approved for their 

Sona credits.  
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CHAPTER THREE 

RESULTS 

The effectiveness of the CAD implementations was primarily assessed through 

SDT analyses. Hits were considered when a participant accurately detected a target was 

present. Correct rejections were considered when a participant accurately determined 

there was no target present. Misses were considered when a target was present, but the 

participant did not detect it. False alarms were considered when a target was not present, 

but the participant determined a target was detected. Hits and false alarms were used to 

calculate sensitivity (d’), the primary SDT measure of interest when assessing reader 

performance with and without the aid of a CAD system (Alberdi et al., 2009; Chae et al., 

2019; Conant et al., 2019; Fenton et al., 2011; Kunar, 2022; Lehman et al., 2015; Salim et 

al., 2020; Shoshan et al., 2022). Note, that given only a minority of the trials had a target 

present, participants’ response times were analyzed solely for target-absent trials, in line 

with previous research exploring visual searches in pseudo-3D images (Adamo et al., 

2018).   

Differences in Search Performance by Condition and Prevalence 

Several 5 x 2 mixed design ANOVAs were performed to evaluate the effects of 

automation condition (control [no CAD], binary CAD, BI-RADS CAD, aCAD, and 

iCAD) and prevalence level (low, 10%, and high, 50%) on hit rate, false alarm rate, 

sensitivity (d’), and target absent response times. The majority of the assumptions for the 

mixed design ANOVAs were not met: several outliers were found across some of the 
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automation conditions and prevalence blocks for hit rate and false alarm rate; Shapiro-

Wilk tests found that the normality assumption was violated for some of the automation 

conditions and prevalence levels for all variables; and Levene tests revealed we did not 

have homogeneity of variances across the automation conditions and prevalence blocks 

for hit rate and the low prevalence block for sensitivity (see Appendix F). Therefore, 

robust mixed design ANOVA (Mair & Wilcox, 2023) analyses were used instead.  

The robust mixed design ANOVA was performed using the R package WRS2, 

developed by Mair & Wilcox (2023). This package includes several functions for 

computing robust statistical analyses when the normality and homoscedasticity 

assumptions are violated, which can raise serious concerns if classical means-based 

inferential methods are used (e.g., ANOVAs). The function from this package used for 

computing a between-within subjects ANOVA on the trimmed means is bwtrim. The 

bwtrim function uses a between-within subjects ANOVA on the 20% trimmed means. 

Such percentage-based trims have been suggested to be a good solution to address 

violations of the normality and homoscedasticity assumptions and produce robust test 

statistics (Mair & Wilcox, 2023; Field & Wilcox, 2017).    

Prior to conducting the mixed design ANOVAs, planned contrasts were 

performed to explore if participants across the CAD conditions (binary CAD, BI-RADS 

CAD, aCAD, and iCAD) differed significantly in our outcomes of interest than 

participants in the control condition.  
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Control vs. CAD Aids 

Planned contrasts were conducted to check if there were differences in our 

measures of interest (hit rate, false alarm rate, sensitivity [d’], and target absent response 

time) when comparing participants in the control condition to those in the CAD 

conditions (binary CAD, BI-RADS CAD, aCAD, and iCAD). The results from the 

planned contrasts indicated that hit rate was significantly higher for the participants who 

used a CAD system (M = 0.80, SD = 0.25) than for participants in the control (M = 0.57, 

SD = 0.26), t(45) = -3.22, R2 = .19, p < .01 (see Figure 3.1). However, false alarm rate, 

sensitivity, and target absent response time were not significantly different for the CAD 

conditions compared to the control condition, t(45) = 0.55, p = .59; t(45) = -1.93, p = .06; 

and t(45) = 1.57, p = .12, respectively (see Table 3.1).  

Additional planned contrasts were performed to investigate if participants had 

higher sensitivity (d’), hit rate, and faster target absence response times when using a 

CAD aid than without one in the low prevalence block. Hit rate in the low prevalence 

block appeared to be significantly higher for the participants who used a CAD system (M 

= 0.75, SD = 0.33) than for participants in the control condition with no CAD assistance 

(M = 0.53, SD = 0.40), t(45) = -2.34, R2 = .45, p = .02 (see Figure 3.2). In contrast, 

neither sensitivity nor target absent response time were significantly different for the 

CAD conditions compared to the control condition for the low prevalence block, t(45) = -

1.81, p = .08, and t(45) = 1.15, p = .26, respectively (see Table 3.2). 

Following the planned contrasts, several robust 5 x 2 mixed design ANOVAs 

were performed to further compare performance between conditions.  
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Figure 3.1 

Comparing Hit Rate for Control Condition vs. CAD Conditions 

 

Note: “CAD” includes binary CAD, BI-RADS CAD, aCAD, and iCAD (error bars show standard errors). 

 

Table 3.1 

Descriptive Statistics for Control Condition vs. CAD Conditions 

Variable Condition n M SD 

Hit Rate Control 10 .57 .26 

CAD 40 .80 .25 

False Alarm Rate Control 10 .12 .23 

CAD 40 .09 .14 

Sensitivity (d’) Control 10 2.37 1.30 

CAD 40 3.25 1.56 

Target Absent 

Response Time 

Control 10 56.26 13.56 

CAD 40 43.73 20.14 

Note: “CAD” includes binary CAD, BI-RADS CAD, aCAD, and iCAD. 
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Figure 3.2 

Comparing Low Prevalence Block Hit Rate for Control Condition vs. CAD Conditions 

 

Note: “CAD” includes binary CAD, BI-RADS CAD, aCAD, and iCAD (error bars show standard errors). 

 

Table 3.2 

Descriptive Statistics for Control Condition vs. CAD Conditions, Low Prevalence 

Variable Condition n M SD 

Hit Rate Control 10 .53 .40 

CAD 40 .75 .33 

False Alarm Rate Control 10 .14 .31 

CAD 40 .09 .15 

Sensitivity (d’) Control 10 2.58 2.22 

CAD 40 3.52 1.95 

Target Absent 

Response Time 

Control 10 56.82 15.12 

CAD 40 45.68 22.70 

Note: “CAD” includes binary CAD, BI-RADS CAD, aCAD, and iCAD. 
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Hit Rate 

A robust 5 x 2 mixed design ANOVA suggested that there was not a significant 

interaction effect between automation condition and prevalence level on hit rate, F(4, 45) 

= 2.49, p = .10, or a significant main effect of prevalence level on hit rate, F(1, 45) = 

1.92, p = .19. However, there was a significant main effect of CAD type on hit rate, F(4, 

45) = 34.99, p < .001, η2 = .42 (see Figure 3.3). A robust method of post hoc comparisons 

(Mair & Wilcox, 2023) for differences in hit rate between automation conditions 

indicated that there was a significant difference between the overall averages for 

between-subjects group pairwise comparisons, p < .001.  

To further explore how the CAD types compared regarding hit rate, given that 

there was no significant interaction found in our robust mixed design ANOVA, a robust 

method of post hoc comparisons on trimmed means for a one-way ANOVA using a linear 

contrast expression (Mair & Wilcox, 2023) was performed. The function lincon from the 

R package WRS2 was used for this analysis. The results indicated that hit rates were 

significantly better for participants in the binary CAD (M = 0.97, SD = 0.06) condition 

than those in the control (M = 0.57, SD = 0.26) or BI-RADS CAD (M = 0.57, SD = 0.23) 

conditions,  = -0.45, p < .01, and  = 0.48, p < .001, respectively. Hit rates also 

appeared to be significantly better for participants in the analog CAD (M = 0.95, SD = 

0.05) condition than those in the control or BI-RADS CAD conditions,  = -0.43, p < 

.01, and  = -0.46, p < .001, respectively. There were no significant differences in hit rate 

between binary CAD and analog CAD (  = 0.02, p = .48), control and BI-RADS CAD  
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(  = 0.03, p = .84), or iCAD and any of the other automation conditions ( ’s < 0.22 or  

’s > 0.21, p’s > .05; see Table 3.3). 

 

Figure 3.3 

Hit Rate by Automation Condition 

 

Note: Hit rates for each automation condition are shown (error bars show standard errors). 

 

Table 3.3 

Descriptive Statistics for Hit Rate by Automation Condition 

Condition n M SD 

Control 10 .57 .26 

Binary CAD 10 .97 .06 

BI-RADS CAD 10 .57 .23 

aCAD 10 .95 .05 

iCAD 10 .71 .29 
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False Alarm Rate 

A robust 5 x 2 mixed design ANOVA suggested that there was not a significant 

interaction effect between automation condition and prevalence level on false alarm rate, 

F(4, 45) = 0.76, p = .57. There were also no significant main effects of CAD type or 

prevalence level on false alarm rate, F(4, 45) = 0.45, p = .77, and F(1, 45) = 0.85, p = .37, 

respectively (see Table 3.4). 

 

 Table 3.4 

Descriptive Statistics for False Alarm Rate by Automation Condition 

Condition n M SD 

Control 10 .12 .23 

Binary CAD 10 .04 .03 

BI-RADS CAD 10 .07 .10 

aCAD 10 .11 .14 

iCAD 10 .13 .22 

 

Sensitivity (d’) 

A robust 5 x 2 mixed design ANOVA suggested that there was not a significant 

interaction effect between automation condition and prevalence level on sensitivity (d’), 

F(4, 45) = 1.51, p = .26, or a significant main effect of prevalence level on sensitivity, 

F(1, 45) = 2.22, p = .15. However, there was a significant main effect of CAD type on 

sensitivity, F(4, 45) = 8.48, p < .01, η2 = .33 (see Figure 3.4). A robust method of post 
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hoc comparisons (Mair & Wilcox, 2023) for differences in sensitivity between 

automation condition indicated that there was a significant difference between the overall 

averages for between-subjects group pairwise comparisons, p < .001.  

To further explore how the CAD types compared regarding sensitivity, given that 

there was no significant interaction found in our robust mixed design ANOVA, a robust 

method of post hoc comparisons for a one-way ANOVA using a linear contrast 

expression (Mair & Wilcox, 2023) was performed. The results indicated that sensitivity 

was significantly better for participants in the binary CAD (M = 4.60, SD = 1.09) 

condition than those in the control (M = 2.37, SD = 1.30) or BI-RADS CAD (M = 2.23, 

SD = 1.14) conditions,  = -2.63, p < .01, and  = 2.78, p < .0001, respectively. 

 

Figure 3.4 

Sensitivity (d’) by Automation Condition 

 

Note: Sensitivity (d’) for each automation condition is shown (error bars show standard errors). 
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Sensitivity also appeared to be significantly better for participants in the analog CAD (M 

= 3.62, SD = 1.34) condition than those in the control or BI-RADS CAD conditions,  = 

-1.83, p = .02, and  = -1.98, p < .01, respectively. There were no significant differences 

in sensitivity between binary CAD and analog CAD (  = 0.80, p = .29), control and BI-

RADS CAD (  = 0.15, p = .79), or iCAD and any of the other automation conditions (  

< -0.55 or  > 1.27, p’s > .05; see Table 3.4). 

 

Table 3.5 

Descriptive Statistics for Sensitivity (d’) by Automation Condition 

Condition n M SD 

Control 10 2.37 1.30 

Binary CAD 10 4.60 1.09 

BI-RADS CAD 10 2.23 1.14 

aCAD 10 3.62 1.34 

iCAD 10 2.54 1.52 

  

Target Absent Response Time 

A robust 5 x 2 mixed design ANOVA suggested that there was not a significant 

interaction effect between automation condition and prevalence level on target absent 

response times, F(4, 45) = 0.88, p = .51. There were also no significant main effects of 

CAD type or prevalence level on target absent response times, F(4, 45) = 2.01, p = .16, 

and F(1, 45) = 3.24, p = .09, respectively (see Table 3.6). 
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Table 3.6 

Descriptive Statistics for Target Absent Response Times by Automation Condition 

Condition n M SD 

Control 10 56.26 13.56 

Binary CAD 10 48.15 19.72 

BI-RADS CAD 10 47.51 21.34 

aCAD 10 35.96 19.54 

iCAD 10 43.30 20.65 

 

Activation of iCAD  

A one-way within-subjects ANOVA was performed to evaluate if activation of 

the iCAD overlay was influenced by whether the participant was in the low prevalence 

block (M = 0.492, SD = 0.501) and the high prevalence block (M = 0.635, SD = 0.482). 

Our results indicated that the difference in iCAD activation was not statistically 

significant, F(1, 9) = 2.45, p = .15. These results suggest that target prevalence does not 

impact how much participants activate the iCAD overlay.   

Trust in the Specific CAD System 

Although an ANCOVA was initially proposed to explore if trust in the specific 

system (i.e., specific trust) differed depending on automation condition when controlling 

for propensity to trust automation in general (i.e., general trust), an initial calculation of 

Pearson’s correlation coefficient between specific trust and general trust indicated that 

they were not significantly correlated, r = -0.16, n = 40, p = .33. With the lack of 
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correlation between the intended covariate and dependent variable, this analysis was 

reconfigured to a one-way between-subjects ANOVA. 

The one-way between-subjects ANOVA was performed to evaluate the effect of 

the automation system (binary CAD, BI-RADS CAD, aCAD, and iCAD) on specific trust 

in the system. There was a significant difference between specific trust depending on 

CAD aid, F(3, 36) = 9.26, p < .001, η2 = .44. The large effect size indicated that 43.56% 

of the variance in specific trust could be explained by the type of CAD aid. 

To further explore this relationship, post hoc analyses were conducted using 

Tukey's HSD. The results indicated that participants in the aCAD (M = 42.57, SD = 5.76) 

and iCAD (M = 41.04, SD = 4.75) conditions had significantly greater trust in their  

 

Figure 3.5 

Average Trust in the Specific System by CAD Condition 

 

Note: Average specific trust scores for each CAD condition are shown (error bars show standard errors). 
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Table 3.7 

Descriptive Statistics for Average Specific Trust by CAD Condition 

Condition n M SD 

Binary CAD 10 31.18 8.70 

BI-RADS CAD 10 30.69 6.36 

aCAD 10 42.57 5.76 

iCAD 10 41.04 4.75 

 

specific system than participants in the binary (M = 31.18, SD = 8.70) and BI-RADS (M 

= 30.69, SD = 6.36) conditions (p < .01 for all noted comparisons; see Figure 3.5). In 

contrast, specific trust was not significantly different between participants in the binary 

and BI-RADS conditions (p = .998) or in the aCAD and iCAD conditions (p = .950; see 

Table 3.7). 

Perceptions of the Usability of CAD Systems 

A one-way between-subjects ANOVA was performed to evaluate if SUS scores 

(i.e., perceived usability) differed depending on automated aid (binary CAD, BI-RADS 

CAD, aCAD, and iCAD) condition. There was a significant difference between perceived 

usability for the CAD systems, F(3, 36) = 2.95, p = .045, η2 = .20. The large effect size 

indicated that 19.75% of the variance in SUS scores could be explained by the type of 

CAD aid.  

With this significant result, planned contrasts based on findings from the literature 

review and to study our novel BI-RADS CAD aid were conducted to explore if the SUS 

scores for the binary CAD condition differed from the other CAD systems (BI-RADS 
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CAD, aCAD, and iCAD); if SUS scores for the BI-RADS CAD condition differed from 

the other CAD systems (binary CAD, aCAD, and iCAD); and if SUS scores for the 

aCAD system differed from the iCAD system. The results from the planned contrasts 

indicated that SUS scores were significantly lower for the BI-RADS CAD system (M = 

52.75, SD = 20.15) than for the other CAD systems (binary CAD [M = 70.25, SD = 

13.67], aCAD [M = 68.50, SD = 18.30], and iCAD [M = 72.50, SD = 12.86]), t(36) = -

2.77, R2 = .18, p < .01 (see Figure 3.6). However, SUS scores were not significantly 

different for the binary CAD system compared to the other CAD implementations, t(36) 

= -0.04, p = .97. SUS scores were also not significantly different between the aCAD and 

iCAD systems, t(36) = -0.54, p = .59 (see Table 3.8). 

 

Figure 3.6 

Average SUS Score by CAD Condition 

 

Note: Average SUS scores for each CAD condition are shown (error bars show standard errors). 
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Table 3.8 

Descriptive Statistics for Average SUS Score by CAD Condition 

Condition n M SD 

Binary CAD 10 70.25 13.67 

BI-RADS CAD 10 52.75 20.15 

aCAD 10 68.50 18.30 

iCAD 10 72.50 12.86 

 

Exploratory Analyses 

Investigation of CAD UIs: Trust and Usability 

For the exploratory analysis to investigate if participants’ trust in the specific 

automated system related to the perceived usability of that system, Pearson’s correlation 

coefficients were calculated for the SUS and Trust Between People and Automation 

scores for each CAD condition (binary CAD, BI-RADS CAD, aCAD, and iCAD). None  

 

Table 3.9 

Correlations Between SUS and Specific Trust Scores by CAD Condition 

CAD Condition SUS and Trust  

Pearson’s Correlation 

P-Value 

Binary CAD .19 .60 

BI-RADS CAD .58 .08 

aCAD .29 .42 

iCAD .59 .07 
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of the correlations were significant (p’s > .05; see Table 3.9).   

Additionally, a one-way between-subjects ANOVA was performed to check if 

there were any significant differences in Propensity to Trust scores between CAD 

conditions (binary CAD, BI-RADS CAD, aCAD, and iCAD). The results indicated that 

participant’s general trust in automation did not differ between the automation conditions, 

F(3, 36) = 0.76, p = .52. 

Qualitative Usability Feedback 

Responses to the qualitative usability survey regarding participants’ impressions 

of the UI they used were distilled into main ideas for general use perceptions and 

suggestions for improvement (see Appendix G). Participant feedback was further 

processed by coding for positive comments (e.g., “It was easy to use”), negative 

comments (e.g., “My brain couldn't get past what it said sometimes and it felt like it 

compromised my searching for the target”), and neutral comments (e.g., “It circled the ts 

that were there but it also circled ls so yes and no”). Comments relating to the task itself 

instead of the UI (e.g., “Tedious”) were also considered as “neutral” comments as the 

participant was not considered to have felt positively or negatively about the UI itself. 

Proportions of positive to negative and neutral comments were compiled across the CAD 

conditions to provide additional context for the qualitative assessment.  

After gathering the main themes and coding participant responses for positive, 

negative, and neutral comments, findings from the qualitative survey reflected the results 

from the SUS survey. The aCAD (M = .75, SD = .00), iCAD (M = .75, SD = .12), and 
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binary CAD (M = .68, SD = .17) implementations received the highest proportion of 

positive responses while the mock BI-RADS CAD system (M = .63, SD = .18) received 

the lowest proportion of positive comments. Respondents commented that the aCAD, 

iCAD, and binary CAD aids were easy to use and helped them complete the task more 

efficiently but did not like having to use the mouse instead of the keyboard to move 

through the layers, that the circles were off-center for some items (see Appendix H), or 

the low percentages in the aCAD and iCAD implementations.  

It should be noted that upon review of trials with circled items, three circles (4%) 

were off-center in the binary CAD condition and two (3%) were off-center in the aCAD 

and iCAD conditions (grouped together because they had the same circle programming). 

Additionally, average accuracy was calculated for trials with circled items to investigate a 

measure of reader performance. While average accuracy was below .70 for four trials in 

the binary CAD condition and four trials in the aCAD and iCAD conditions, only two of 

the eight identified trials had circles that obscured portions of the enclosed items. The 

two identified trials with off-center circles were in the aCAD and iCAD conditions, one 

circling an L-shaped distractor with an indication of 50% likelihood of being a target and 

the other circling a T-shaped target with an indication of 98% likelihood of being a target. 

While these trials with off-center circles were also in the binary CAD condition, all but 

one participant in this condition correctly determined target presence in the image set. 

Considering this information, off-center circles were unlikely to have meaningfully 

impacted participant performance.  

For the BI-RADS CAD system, participants noted that the system was easy to use 
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and was a good guide for when the target would be present, but disagreed about whether 

the CAD aid increased their confidence or made them second-guess themselves. 

Unreliability of the system was a common negative comment across all CAD conditions. 

As an interesting note, the BI-RADS CAD system received more neutral than negative 

feedback (Mneg = .13, SDneg = .13; Mneu = .25, SDneu = .26) while the aCAD (Mneg = .18, 

SDneg = .12; Mneu = .08, SDneu = .12), iCAD (Mneg = .18, SDneg = .12; Mneu = .08, SDneu = 

.12), and binary CAD (Mneg = .18, SDneg = .12; Mneu = .15, SDneu = .13) implementations 

received more negative than neutral feedback.  

Suggestions for CAD aid improvements were primarily to improve the systems’ 

reliability and accuracy. Other suggestions for improvement included changing the 

colors, providing a better explanation for the percentages, and centering the circles over 

the items so that it would be easier for participants to determine if the crossbar was 

perfectly centered.  

SDT: Response Criterion 

Response criterion was assessed from hits and false alarms to determine how likely a 

participant was to say that a target is detected. A participant was considered to have a 

more liberal response criterion if they had a greater number of hits and false alarms (i.e., 

were more likely to say the target was present than not; a criterion of less than zero), and 

a more conservative response criterion if they had a greater number of misses and correct 

rejections (i.e., more likely to say the target was absent than not; a criterion of more than 

zero). Note that a participant would be considered to be unbiased if they had a criterion of 
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zero. A one-way between-subjects ANOVA was performed to evaluate if response 

criterion differed between the four CAD conditions (binary CAD, BI-RADS CAD, 

aCAD, and iCAD). The results suggested that response criterion changed as a function of 

automation condition, F(3, 36) = 8.29, p < .001, η2 = .41. The effect size indicated that 

40.85% of the variance in response criterion could be explained by the type of CAD aid. 

To further explore this relationship, post hoc analyses were conducted using 

Tukey's HSD. The results indicated that participants in the BI-RADS condition (M = 

1.11, SD = 0.92) had a significantly more conservative response criterion than 

participants in the binary CAD condition (M = -0.27, SD = 0.51; p < .001) and those in 

the aCAD condition (M = -0.18, SD = 0.56; p < .01; see Figure 3.7). A one-sample t-test  

 

Figure 3.7 

Average Response Criterion by CAD Condition 

 

Note: Average response criterion for each CAD condition is shown (error bars show standard errors).  
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found that the criterion shift for participants in the BI-RADS condition was both large 

and significantly different from a response criterion of zero, t(9) = 3.78, p < .01, d = 1.20. 

While the bar plot indicated that the criterion shift for participants in the iCAD condition 

may have also been significantly different than zero, a one-sample t-test found that it was 

not, t(9) = 1.71, p = .12. 
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CHAPTER FOUR 

DISCUSSION 

Differences in Search Performance by Condition and Prevalence 

The primary contributions of this study are the development of a novel CAD 

system with a BI-RADS implementation and an investigation of how four types of CAD 

systems (binary CAD, the novel BI-RADS CAD, aCAD, and iCAD) compare on search 

performance for DBT imaging. Although participants in the present study did not appear 

to have been impacted by the low prevalence effect (i.e., there were no significant 

differences in performance between the high and low prevalence blocks for any of the 

automation conditions in regard to hit rate, false alarm rate, sensitivity [d’], or target 

absence response time), the use of a CAD aid tended to improve or not harm hit rate and 

sensitivity. Specifically, participants who used the binary CAD or aCAD systems had 

higher hit rates and sensitivities than participants in the control or BI-RADS CAD 

conditions. These results partially support our initial hypothesis (H1) that participants 

would have higher sensitivity and faster target absent response times when using a CAD 

interface than without using one. However, further analyses suggested that participants 

did not have higher sensitivity and faster target absent response times when using a CAD 

interface than without one in the low prevalence block, failing to support our second 

hypothesis (H2). There also was no difference on any measure of interest between 

participants in the iCAD condition and those in the other automation conditions, failing to 

support our third hypothesis (H3).  



58 

 

Of particular interest in our analyses was the performance of participants in the 

BI-RADS CAD condition. With attention turning to the possibility of adding BI-RADS 

ratings to CAD systems, it is important to determine if such information would hinder or 

aid radiologists in their assessment of breast imaging. If the presentation of a 

classification has a negative impact on radiologists’ diagnostic performance, it would 

warrant significantly more caution when implementing such ratings or suggest not to 

implement them at all. The present study indicated that the BI-RADS CAD 

implementation was not significantly different from at least one of the other CAD 

conditions (iCAD) on any measure, nor did it lead to participants performing worse than 

they did in the control condition. This suggests that the addition of a recommended BI-

RADS classification for an image set at least does not measurably harm reader 

performance, supporting continued investigation into the best way to present this 

information to the reader. The addition of a global BI-RADS rating to CAD systems 

could significantly improve standardization and reduce intra- and inter-observer 

variability across radiologists in the interpretation of breast cancer imaging, leading to 

improved patient outcomes and supporting the goal of the BI-RADS implementation in 

radiological assessments (Burnside et al., 2009; Magny et al., 2023; Qian et al., 2015). 

Still, without strong quantifiable support that participants using the BI-RADS CAD 

system may perform as good as or better than when using other CAD systems, these 

results are tepid at best; the BI-RADS CAD system requires additional testing to 

determine if there are superior ways to present the information to assist radiologists in 

achieving the desired improvements of standardization and reliability of ratings.  
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With the continued use and improvement of CAD aids in radiology, it is 

imperative that the different CAD UIs are tested and directly compared with each other to 

ensure future CAD systems maximize their helpfulness to radiologists. What little past 

research has been done comparing CAD aids has typically only used two types of CAD 

implementations (e.g., binary CAD vs. aCAD [Cunningham et al., 2016] or binary CAD 

vs. iCAD [Drew et al., 2020; Kunar, 2022]) and has not always used direct comparison 

within the same study but rather comparison to previous research (e.g., Samulski et al., 

2010). Even less has been done to investigate how the use of CAD impacts visual search 

tasks with DBT imaging, which is, in itself, a relatively new area of study. The present 

study has already contributed to this body of research by comparing four types of CAD 

aids, three of which are already in use throughout the United States, as well as a novel 

BI-RADS CAD implementation. While we found that participants performed better with 

the binary CAD and aCAD systems than with the iCAD system, conflicting with past 

research (e.g., Drew et al., 2020; Kunar, 2022; Samulski et al., 2010), the present study 

was the first to explore how different types of CAD aids, including a novel BI-RADS 

CAD, are used with DBT rather than mammographic images, which may explain some of 

this discrepancy.  

Similarly, while readers in the novel BI-RADS CAD condition did not perform 

better than those in other CAD conditions, they did not perform worse than those in the 

control condition, indicating that providing a global classification did not harm reader 

performance. This is a promising first step for testing future CAD implementations with a 

global classification. It should be noted that in real world implementations, it is likely that 
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a global classification such as a suggested BI-RADS rating would be integrated with an 

aCAD or iCAD system, as these systems have already been proven to benefit radiologist 

performance and are increasing in popularity (Conant et al., 2019; iCAD, Inc., 2023; Tan 

et al., 2017; Tan et al., 2015; Qian et al., 2015). Given the neutral impact of our BI-

RADS CAD system on reader performance and the recent calls suggesting a BI-RADS 

classification may help with improving inter- and intra-rater reliability as well as 

important diagnostic outcomes (e.g., sensitivity), there remains reason to continue 

exploring how to best integrate BI-RADS ratings with CAD systems and what impact 

different implementations have on reader performance.  

The Lack of a Prevalence Effect 

Regarding the benefits of using CAD aids when assessing breast cancer screening 

imaging, recent research has suggested that the assistance of such automated systems 

may help to mitigate the prevalence effect, though this largely depends on the CAD 

implementation (e.g., binary CAD vs. iCAD or the addition of a global classification) and 

accuracy of the system (particularly regarding false positives; Drew et al., 2020; Kunar, 

2022; Tan et al., 2015). It is notable that participants in the present study did not appear 

to be impacted by the prevalence effect despite many previous studies demonstrating that 

its influence is very real even when the low prevalence condition in lab studies is 

designed with a 10% prevalence rather than the 0.5% prevalence level of breast screening 

images with signs of breast cancer (e.g., Hout et al., 2015; Taylor et al., 2022; Wolfe et 

al., 2005).  
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This may be explained by the “scanner” behavior of participants, likely an artifact 

of the design of the mock DBT image sets. In the little research that has been done 

comparing how radiologists search 2D images (e.g., mammography) versus pseudo-3D 

images (e.g., DBT), two dominant search strategies have emerged: “scanning” and 

“drilling” (Drew et al., 2013; Wen et al., 2016). “Scanners” tend to search each 2D slice 

in the pseudo-3D image set before moving on to the next one; “drillers” tend to keep their 

gaze focused on one area of the display as they move through the layers of the pseudo-3D 

image set before moving on to another area of the display to repeat the same “drilling” 

behavior. Unlike the Drew et al. (2013), Wen et al. (2016), or Adamo et al. (2018) 

studies, the present study did not use actual tomography images sources from a medical 

imaging database or ensure that items were spread across a certain number of slices to 

provide a sense of the items having depth (e.g., having an increase in clarity of the item 

as the participants “drilled” closer to it). Additionally, the primary focus of the present 

study was on the impact and comparison of CAD implementations across search 

outcomes, so ensuring there was a similar sense of depth in the image sets was not a 

priority in the creation of the stimuli.  

Together, these factors likely encouraged participants to engage in “scanning” 

behavior, turning each layer into a 2D image search. With this in mind, the target 

prevalence in our study might be interpreted differently: each block could theoretically be 

perceived to have 520 2D images, of which 20 would have a target present in the high 

prevalence block (3.80% prevalence) and four would have a target present in the low 

prevalence block (0.77% prevalence). From this perspective, both blocks would have 
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relatively low target prevalence. In other words, there would be essentially no high 

prevalence block to contrast with because participants would be experiencing the low 

prevalence effect in both blocks. It should also be noted that some previous research has 

suggested that the prevalence effect, if it exists in detection tasks, is so small as to not 

meaningfully affect outcomes or may otherwise be not as important as other factors for 

search tasks with low prevalence targets (Fleck & Mitroff, 2007). While the lack of a 

prevalence effect in the present study does not necessarily have a significant impact on 

the validity of the design of the mock CAD systems, it provides an intriguing addition to 

the small but growing body of research regarding visual search in pseudo-3D medical 

imaging.   

Activation of iCAD  

The defining component of iCAD systems is that the CAD overlay is only 

presented to participants if they activate it, such as by pressing a button or clicking in an 

area of interest. Previous research has suggested that this activation by the user is what 

allows readers to get the most benefit of the CAD system, as they will primarily use it to 

validate their findings (similar to a second reader, which was the original intent was for 

the use of CAD) and they will not be distracted by the false positive markings when they 

do not activate the system (Drew et al., 2020; Du-Crow et al., 2020; Kunar, 2022; 

Nishikawa & Bae, 2018; Nishikawa & Gur, 2014). However, the lack of activation of the 

CAD overlay may result in viewers missing the targets that were marked correctly by the 

iCAD system (Kunar, 2022). In one of the only other studies that investigated the use of 
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the CAD overlay in an iCAD system, Kunar (2022) found that participants only activated 

the iCAD aid in 34% of trials. Evaluating how often and when participants activate the 

iCAD system may provide insight into how to improve its UI to encourage its optimal 

use in practice.  

To that end, the present study explored how prevalence levels might impact iCAD 

activation. Although participants differed in how often they activated the iCAD overlay, 

49.2% in the low prevalence block and 63.5% in the high prevalence block, this was not a 

significant difference (56.4% activation across all trials). While all calculated iCAD 

activation percentages were higher than the 34% activation found by Kunar (2022), 

Kunar’s first experiment used modified mammogram images taken from the Digital 

Database for Screening Mammography (DDSM) as stimuli for 1,000 experimental trials 

and focused on the use of CAD in low prevalence conditions (10% target-present trials) 

compared to the present study’s use of mock DBT images in which participants searched 

for a T-shaped target among L-shaped distractors in both high (50% target present) and 

low (10% target present) prevalence conditions across 80 experimental trials. Such 

differences in stimuli, number of trials, and prevalence could account for some of the 

discrepancies in iCAD activation.  

Although the present study did not find a significant difference in how often 

participants activated the iCAD overlay between high and low prevalence blocks, there 

are some points of interest regarding patterns of iCAD use to note. Some participants 

never activated the iCAD overlay while other participants activated the CAD overlay for 

all or almost all of the trials (see Appendix I). Participants who never activated the CAD 
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overlay may have not felt the need to use the extra assistance it could have provided due 

to the simplicity of the search task or because they had confidence in their ability to 

complete the task without the use of the CAD aid. Participants who always activated the 

CAD overlay may have wanted extra assistance to make the task easier and faster or 

because they were not as confident in their ability to find the T-shaped target in the image 

sets. Despite the lack of significance in the results, examining the patterns of activation of 

the iCAD overlay at the participant level supports observations in existing literature that 

there are differences in how radiologists use CAD aids when assessing breast screening 

imaging (i.e., disuse and misuse of the CAD systems; Du-Crow et al., 2019; Jorritsma et 

al., 2015; Kunar et al., 2017; Nishikawa & Bae, 2018; Nishikawa & Gur, 2014).  

Perceived Usability and Trust in the Specific CAD Systems  

There has been a dearth of research looking at how the design of the CAD system 

UIs might impact user perceptions of the system. Key aspects under consideration are 

typically the system’s usability and how much users trust the CAD aid, two components 

that have been found to influence each other and impact the adoption and use of CAD 

systems in radiology (Filice & Ratwani, 2020; Hoff & Bashir, 2015; Jorritsma et al., 

2015). The present study found that while the binary, aCAD, and iCAD implementations 

were perceived to be more usable than the BI-RADS CAD system, the aCAD and iCAD 

systems were perceived as more trustworthy than both the binary and BI-RADS CAD 

aids. While these results failed to support our hypothesis (H6) that the binary CAD 

implementation would have lower SUS scores than the other CAD UIs, they provided 
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partial support for one of our other hypothesis (H5), that the binary CAD system would 

be perceived as less trustworthy than the other CAD aids when controlling for propensity 

to trust automation in general. Although these findings do not fully support our 

hypotheses, they provide a certain amount of support for findings from previous research 

that supplying more information and having higher perceived reliability may improve the 

perceived usability of and trust in a system. 

Perceived Reliability 

Previous research has suggested that trust in an automated aid may be influenced 

by how reliable the CAD system is perceived to be by the participant. If an automation 

aid’s reliability is perceived to be below a particular threshold (studies suggest 70%), 

they will be less likely to trust and use it (Parasuraman & Riley, 1997; Wickens & Dixon, 

2007). To mimic current CAD reliability and design, the CAD aids were programmed 

such that participants in the binary CAD condition had the highest proportion of 

objectively wrong cues (see Appendix A). Participants likely perceived the binary CAD 

system as unreliable when it circled a distractor, incorrectly indicating it may have been a 

target. To account for the greater variability in information provided to participants in the 

BI-RADS CAD, aCAD, or iCAD conditions, these systems were programmed to be 

considered “unreliable” if the system classified the image set as “Category 0” (i.e., the 

equivalent of an error message) or did not provide a CAD cue when the target was 

absent. It should be noted that this difference in programming was an attempt to mimic 

the real-world reliability of CAD systems and may have artificially influenced trust such 
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that participants using the binary CAD aid may have had less trust in the system because 

it may have appeared to be less reliable.  

Regarding the perceived trustworthiness of the BI-RADS CAD system, its 

similarity in programming to the aCAD and iCAD systems suggests that participants’ 

lesser trust in the BI-RADS CAD may have come from its implementation of the global 

ratings. While the aCAD and iCAD systems used direct and specific cues (i.e., the 

circling of an object and providing a “target likelihood” score), the BI-RADS CAD 

system used more indirect guidance (i.e., a suggested classification of the image set). 

Additionally, some participants said they were confused by the “0” rating of the BI-

RADS CAD (“how could it have known the target was present before but then not know 

if it is present another time?”). With these potential disadvantages when compared to the 

aCAD and iCAD aids, it is reasonable that participants had less trust in the binary and BI-

RADS CAD systems while also not differing in trust between these two aids. 

The influence of perceived reliability on perceived trustworthiness of automated 

aids has been suggested to impact the perceived usability of CAD systems (Filice & 

Ratwani, 2020; Jorritsma et al., 2015; Nishikawa & Bae, 2018). Further, International 

Organization for Standardization (ISO) usability standards such as ISO 9241-11:2018 

(2023) define usability as how much a system aids users to achieve their goals effectively 

and efficiently. The binary CAD implementation was not considered as trustworthy as the 

aCAD and iCAD aids, likely impacted by its presentation of a greater number of false 

positives to users compared to these CAD systems. It may be surprising, then, that this 

lack of trust in the system would not correspond to lower SUS scores for the binary CAD 
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aid. However, recall that participants in the binary CAD and aCAD conditions performed 

better on measures of hit rate and sensitivity (d’) than those in the iCAD and BI-RADS 

CAD conditions while also not differing significantly in terms of false alarm rate or target 

absent response time. Despite the perceived deficit in trustworthiness of the binary CAD 

system, users were still able to achieve their goals successfully and efficiently. The better 

performance of participants in the binary CAD condition likely contributed to their higher 

SUS scores and boosted the binary CAD implementation to be perceived as more usable 

than the BI-RADS CAD system, moving it closer to the aCAD and iCAD systems. 

Providing More Information 

The lower levels of trust in the binary CAD and BI-RADS CAD systems might 

also be attributed to the information provided by these systems in comparison to the 

aCAD and iCAD ones. Research has suggested that providing additional information 

(e.g., the probability ratings) may make the system more useful to the radiologist and the 

greater perceived usability may lead to greater trust in these systems (Drew et al., 2020; 

Filice & Ratwani, 2020; Gao et al., 2019; Jorritsma et al., 2015; Nishikawa & Bae, 2018; 

Nishikawa & Gur, 2014). While the binary CAD system indicated potential targets with a 

circle, it was programmed to sometimes circle distractors. Although the aCAD and iCAD 

systems also circled distractors, they indicated these items had a low likelihood of being a 

target. This additional information likely helped participants make their determination.  

While the BI-RADS CAD aid provided a global classification rating which some 

participants indicated helped them make a determination (“it helped me redirect my 
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focus”; “even if it wasn’t 100% accurate or had 100% certainty it still guided me to a 

conclusion”), it did not have the benefit of the more direct and specific visual cues of the 

circles and likelihood ratios that were part of the aCAD and iCAD implementations. This 

broader sort of assistance may have promise for the future in combination with other 

CAD implementations but did not seem to provide enough information on its own to 

make a difference in performance or inspire trust.  

It is important to note that in a real-world implementation, the BI-RADS rating 

would likely be integrated into an existing binary CAD, aCAD, or iCAD system as a way 

to provide even more information so that radiologists can make a BI-RADS 

determination for each image set (as is current standard practice) rather than a binary one 

(i.e., saying if a target is present or absent as in the present study). Such a rating on the 

BI-RADS scale is crucial for guiding patient care and can be challenging to determine 

even with the use of current CAD aids (i.e., binary CAD, aCAD, or iCAD systems; Berg 

et al., 2000; Boumaraf et al., 2020; Burnside et al., 2009; Geras et al., 2018; Lazarus et 

al., 2006; Magny et al., 2023; Melnikow et al., 2016; Obenauer et al., 2005; Pijnappel et 

al., 2004). While the BI-RADS classification may not have been seen as providing more 

information in the context of the task for this study, and thus was perceived to be less 

trustworthy and usable than the aCAD and iCAD systems, it may be considered 

beneficial information to have in real-world applications when radiologists must 

determine BI-RADS ratings for DBT image sets to guide patient care. 
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The Relationship Between Trust and Usability 

We have noted throughout this section that previous studies have suggested a 

connection between users’ trust in an automated aid system and how they perceive the 

usability of that system. Exploratory analyses were performed to verify that trust in 

specific systems is related to perceived usability across CAD conditions. However, 

despite an appearance that there may have been a correlation between perceived 

trustworthiness and usability of a system for at least the aCAD and iCAD systems, the 

present study found no relationship between participants’ trust in their specific CAD 

system (i.e., Trust Between People and Automation scores) and their perceived usability 

of that CAD system (i.e., SUS scores). This conflicts with previous research that has 

suggested a relationship between trust in and usability of automated aids.  

The lack of significant correlations between trustworthiness and usability of the 

CAD systems may have been due to having a small sample size (10 participants for each 

CAD condition). Although our participant recruitment aligned with that suggested by our 

power analysis, the effect of the CAD implementations on trust and usability may simply 

have been too small to be detected within our sample. We can also consider that some 

previous research has suggested that if a person gets to choose whether they use the 

system (such as for the iCAD aid or if they ignored the suggested classifications in the 

corner of the BI-RADS CAD UI), users may have their trust in the system influenced by 

factors other than usability (e.g., the environment or other contextual information; 

Acemyan & Kortum, 2012). Additionally, Nielsen (1993) set out that usability 

encompasses five aspects of a system: learnability, efficiency, memorability, errors, and 
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satisfaction. While trust and usability were likely impacted by the programmed errors of 

the CAD aids, participants expressed that the systems were easy to learn, use and 

understand as well as helped with finding the target faster (see Appendix G). Such 

responses may have been from the simplicity of the task (finding a “T” amongst “Ls”) or 

the interfaces. These positive qualities not explicitly related to how much a participant 

might trust the CAD system may have been factors that influenced the usability ratings, 

perhaps enough to nullify any underlying relationship between trust and usability that 

might have existed.  

SDT: Response Criterion 

The present study found that participants’ response criterion was influenced by 

the CAD condition they were assigned to, such that participants in the BI-RADS CAD 

condition were more conservative (i.e., more likely to say the target was absent than not) 

than participants in the binary CAD or aCAD conditions but did not differ from 

participants in the iCAD condition. This is mostly contrary to our hypothesis (H8) that 

response criterion would not be significantly different between the CAD conditions. It is 

also in contrast to previous research that has indicated that response criterion becomes 

more conservative with CAD use, particularly when using binary CAD implementations 

(Drew et al., 2020).  

Participants’ response criterion may have been influenced by the design of the 

CAD systems, specifically by the more direct visual cues in the binary CAD and aCAD 

systems. If a participant heavily relied on the presence or absence of a circle when 
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making their determination, given the programming of the study to favor false positives 

like real-world CAD systems, then they may have been more likely to say that the target 

was present even when there was no T-shaped target in the image set. In contrast, while 

participants in the iCAD condition had the option to activate the CAD overlay to provide 

them with the same information as in the aCAD system, some participants chose not to 

activate the overlay. By not activating the CAD overlay, participants in the iCAD 

condition essentially viewed the same display as those in the BI-RADS condition (i.e., 

there were no circles to indicate potential targets). Without the direct and specific visual 

indicator to draw their attention to potential targets, participants who did not activate the 

iCAD overlay could be expected to perform similarly to those in the BI-RADS condition.  

Although our results were largely contrary to our initial hypothesis for this 

exploratory analysis, they provide important insights into how the design of the 

automation may influence readers’ response criterion, which, in the case of breast cancer 

screenings, can mean the difference between catching signs of cancer in the early stages 

when it is easier and less expensive to treat rather than later when the consequences can 

be more severe.  
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CHAPTER FIVE 

LIMITATIONS AND FUTURE DIRECTIONS 

One of the primary contributions of the present study was the creation of a novel 

mock BI-RADS CAD system to begin addressing the recent interest in exploring the 

integration of the BI-RADS scale with CAD aids to improve standardization in the 

implementation of BI-RADS, decrease inter- and intra-rater variability, and improve 

accuracy (Berg et al., 2000; Boumaraf et al., 2020; Geras et al., 2018; Lazarus et al., 

2006; Melnikow et al., 2016; Obenauer et al., 2005; Pijnappel et al., 2004; Tan et al., 

2017; Tan et al., 2015; Qian et al., 2015). The present study was a first step in testing a 

BI-RADS CAD implementation and took a broad view into exploring if a suggested 

global classification for an image set could provide similar outcomes to the CAD systems 

that use more specific cues (i.e., binary CAD, aCAD, and iCAD). Although participant 

performance in the BI-RADS condition did not largely differ than those in the control or 

iCAD conditions, variations of BI-RADS CAD systems may find markedly different 

results. Additionally, with one of the main goals of a BI-RADS CAD implementation 

being to improve standardization and decrease inter- and intra-reader variability, future 

studies should investigate if changing the task to a multi-choice determination (i.e., 

mimicking how radiologists use the BI-RADS scale to guide patient care rather than 

simply determining the presence or absence of signs of cancer) that matches the BI-

RADS scale used in the BI-RADS CAD design would make the integration of BI-RADS 

with CAD systems more useful and thereby may produce an improvement in 

performance that was not seen in the present study.  
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As noted previously, the present study tested a stand-alone version of a BI-RADS 

CAD implementation when it is more likely that the BI-RADS scale will be integrated 

with existing and future aCAD or iCAD systems, thus providing both a global assessment 

rating of the image set (the suggested BI-RADS classification) and more specific, direct 

visual cues (e.g., circling potential targets and providing additional information about the 

circled item, such as a probability rating). Future studies might consider combining the 

suggested BI-RADS classification with an aCAD or iCAD implementation to get a more 

holistic picture of how the implementation of these systems might impact the 

performance of radiologists rather than isolating the global rating aspect.  

Another major contribution of the present study was its exploration of visual 

search performance with pseudo-3D images (i.e., DBT). To improve this aspect of the 

present study, future research could add a sense of depth to the items across multiple 

slides in each image set, change how participants move through the layers (e.g., allow 

scrolling with the mouse wheel), or use actual DBT images from one of the many breast 

imaging databases to make the pseudo-3D effect feel more realistic. By adding a sense of 

depth to the images, participants may search the image sets differently, which could also 

impact their use of the CAD systems.  

Given how little research has been done in comparing variations in CAD 

implementations with DBT imaging, there are many opportunities to extend the present 

study to continue adding to this body of literature. Further investigations into the 

presentation of global classifications for image sets could assist with the refinement of 

the BI-RADS CAD implementation and newer CAD systems that have started extending 
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the likelihood scores of analog CAD aids to case-level likelihood scores to help 

radiologists assess the complexity of cases and prioritize their workload (Conant et al., 

2019; iCAD, Inc., 2023; Tan et al., 2017; Tan et al., 2015; Qian et al., 2015). Future 

studies may also explore multiple-target searches to better compare to real-world DBT 

assessments. For example, BI-RADS ratings are determined based on an assessment of 

multiple factors such as type of abnormality (e.g., mass, calcification, asymmetry, or 

architectural distortion) and characteristics of an identified abnormality (e.g., for masses, 

their size, shape, and margins; American Cancer Society, 2022; Conant et al., 2019; 

Magny et al., 2022).  

Similarly, radiologists would typically have to provide localization information 

regarding identified abnormalities or areas of concern in real-world tasks. While the 

present study required a simple case-level determination of target presence, adding a 

localization component (i.e., requiring the participant to identify where they believe the 

target to be) would make the task more analogous to real-world assessments, mimic 

previous research, and provide a better measure of whether participants had correctly 

identified a target or mis-identified a distractor (Conant et al., 2019; Drew et al., 2013; 

Kunar, 2022; Wen et al., 2016). Localization could also be implemented in the iCAD 

system via its activation mechanism: future iterations could require participants to click 

on an area of suspicion to activate the CAD overlay for that specific area rather than a 

button that turns it on for the entire image set (Drew et al., 2020; Du-Crow et al., 2020; 

Hupse et al., 2013; Samulski et al., 2010).   

To explore more broad visual search applications, the addition of eye tracking 
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could add to the literature about scanning and drilling behaviors in pseudo-3D imaging, 

particularly as studies in this area have typically been done without the use of CAD aids 

(Drew et al., 2013; Wen et al., 2016). Changes to visual search instructions (e.g., time 

pressure, providing an expected target prevalence, or explaining different search 

strategies) have also been shown to influence search behavior; testing changes in 

instructions could provide insight into how CAD systems might be designed to guide 

radiologists in their assessment of DBT images (Clark et al., 2014; Cox et al., 2021; Wen 

et al., 2016). Finally, it could be expected that university students may not be as 

motivated to find their target(s) as radiologists are to find signs of breast cancer. Future 

studies could incorporate methods to try to increase participant motivation and effort, 

such as via a scoring system, to encourage more comparable performance to actual 

radiologists (Drew et al., 2020; Fleck et al., 2010; Miranda & Palmer, 2013).   
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CHAPTER SIX 

CONCLUSION 

The present study explored the effect of four types of CAD systems (binary CAD, 

aCAD, iCAD, and a novel mock BI-RADS CAD system) on visual search performance, 

usability perceptions, and trust when evaluating mock DBT imaging. Our results 

indicated that participants had better hit rate and sensitivity when using the binary CAD 

and aCAD aids compared to a control condition and the novel BI-RADS CAD condition. 

Participants in the iCAD condition did not differ significantly from the control or other 

CAD conditions on any of the measures of interest (hit rate, false alarm rate, sensitivity, 

or target absent response time), though this could be due to differences in patterns of 

activation of the iCAD overlay, given that some participants activated the CAD overlay 

on virtually all trials while other participants rarely, if ever, activated the CAD overlay. 

Regardless of CAD type or lack of CAD aid, there was no evidence of a prevalence effect 

on any of the outcomes of interest. This may have been because participants searched 

each layer as though it was a 2D image, effectively making both blocks low prevalence 

blocks. Such an effect may also have contributed to a lack of differentiation in activation 

of the iCAD overlay between the high and low prevalence blocks.  

Though trust in a system has previously been shown to be related to its perceived 

usability, the results of the present study did not fully support this. Participants in the 

aCAD and iCAD conditions had more trust in their specific automated systems than did 

participants in the binary CAD and BI-RADS CAD conditions, likely due to the addition 

of the proportion of likelihood information in the aCAD and iCAD conditions. However, 
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when it came to perceived usability, participants in the aCAD, iCAD, and binary CAD 

conditions had higher SUS scores than participants in the BI-RADS CAD condition. This 

may have been influenced by the greater specificity and directness in the visual CAD 

indicators of the binary CAD, aCAD, and iCAD systems as opposed to the vaguer global 

classification rating for each image set provided by the BI-RADS CAD system. Despite 

the agreement between higher trust and usability ratings for the aCAD and iCAD 

systems, exploratory analyses of correlations between trust in the specific system and 

SUS score were not related for any of the tested CAD aids. Such a lack of correlation 

may have been due to the task being too easy or if the CAD systems were all adequate for 

the task, but none particularly excelled.  

Future research can build on the UIs developed in the present study, particularly 

for the novel mock BI-RADS CAD aid, to explore variations in presentation of the CAD 

indicators, the BI-RADS rating scale, the mock DBT images, and other aspects of the 

display to investigate what and how these changes may impact visual search performance 

with different types of CAD systems and pseudo-3D imaging. The future of breast cancer 

screening imaging assessments lies in the use of aCAD and iCAD systems that integrate 

suggested BI-RADS ratings to further improve radiologists’ assessments of DBT 

imaging; it is imperative that more research is done to better understand how radiologists 

can take advantage of these CAD systems to produce better outcomes for patients as DBT 

imaging becomes the primary screening tool for breast cancer.  
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Appendix A 

Reliability-inspired Programming by Prevalence and CAD Conditions 

Table A.1 shows how the four CAD systems presented information to the 

participant based on whether a target was present or absent, the prevalence condition of 

the experimental block, and inspired by past research using an overall reliability of 80%.  

 

Table A.1 

Reliability-inspired Programming by Prevalence and CAD Conditions 

 Low Prevalence High Prevalence 

Total Trials 

# Trials 

Present 

# Trials 

Absent Total Trials 

# Trials 

Present 

# Trials 

Absent 

Binary CAD 

No circle 28 0 28 12 0 12 

Circle 12 4 8 28 20 8 

BI-RADS CAD 

Category 0 8 0 8 8 0 8 

Category 1 26 0 26 7 0 7 

Category 2 4 2 2 10 5 5 

Category 3 2 2 0 15 15 0 

aCAD and iCAD 

No % or 

circle 

8 0 8 8 0 8 

1-2% + circle 26 0 26 7 0 7 

50% + circle 4 2 2 10 5 5 

96-99% + 

circle 

2 2 0 15 15 0 
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Appendix B 

Propensity to Trust 

Merritt et al., 2013 

Instructions: Thinking about your feelings about automation in general, please 

rate the following items from Strongly Agree to Strongly Disagree: 

1. I usually trust automation until there is a reason not to. 

2. For the most part, I distrust automation. 

3. In general, I would rely on automation to assist me. 

4. My tendency to trust automation is high. 

5. It is easy for me to trust automation to do its job. 

6. I am likely to trust automation even when I have little knowledge about it. 
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Appendix C 

System Usability Scale (SUS) 

Brooke, 1996 

Instructions: Thinking about the user interface you just used to view the images, 

please rate the following items from Strongly Agree to Strongly Disagree: 

1. I think that I would like to use this system frequently.  

2. I found the system unnecessarily complex.  

3. I thought the system was easy to use.  

4. I think that I would need the support of a technical person to be able to use 

this system. 

5. I found the various functions in this system were well integrated. 

6. I thought there was too much inconsistency in this system. 

7. I would imagine that most people would learn to use this system very 

quickly. 

8. I found the system very cumbersome to use. 

9. I felt very confident using the system. 

10. I needed to learn a lot of things before I could get going with this system. 
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Appendix D 

Trust Between People and Automation 

Jian et al., 2000 

Instructions: Below is a list of statements for evaluating trust between people and 

automation. Please select the number that best corresponds to your feelings or 

impressions about the user interface you just used to view and rate the images (1 = Not at 

all, 7 = Extremely): 

1. The system is deceptive.  

2. The system behaves in an underhanded manner. 

3. I am suspicious of the system's intent, action, or outputs. 

4. I am wary of the system.  

5. The system’s actions will have a harmful or injurious outcome. 

6. I am confident in the system.  

7. The system provides security.  

8. The system has integrity.  

9. The system is dependable.  

10. The system is reliable.  

11. I can trust the system.  

12. I am familiar with the system.  
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Appendix E 

Qualitative Usability Questionnaire 

Instructions: Thinking about the user interface you just used to view the images, 

please answer the following questions: 

1. Did you have a positive experience using the user interface (UI)? 

2. What did you like about the UI? 

3. What did you not like about the UI? 

4. Did you feel like the UI aided you in your task? 

5. How would you improve the UI? 
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Appendix F 

Assumptions for the 5x2 Mixed Design ANOVAs 

Tables F.1 and F.2 show the results of tests for the assumptions of the 5x2 mixed 

design ANOVAs that were used to explore the first three hypotheses (i.e., differences in 

search performance by condition and prevalence). The normality assumption (see Table 

F.1) was tested using the Shapiro-Wilk test and the homoscedasticity assumption (see 

Table F.2) was tested using Levene’s test. It should be noted that means and standard 

deviations were the same for hit rate for all participants in the binary CAD condition for 

the low prevalence block.  

 

Table F.1 

Normality Assumption for the 5x2 Mixed Design ANOVAs 

Variable Condition 

Prevalence 

Block n 

Shapiro-Wilk 

Statistic P-Value 

Hit Rate Control Low 10 0.88 .14 

 High 10 0.88 .14 

Binary CAD Low 10 --* --* 

 High 10 0.62 < .001 

BI-RADS CAD Low 10 0.90 .24 

 High 10 0.85 .06 

aCAD Low 10 0.51 < .001 

 High 10 0.86 .07 

iCAD Low 10 0.85 .06 

 High 10 0.84 .04 
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Variable Condition 

Prevalence 

Block n 

Shapiro-Wilk 

Statistic P-Value 

False Alarm 

Rate 

Control Low 10 0.54 < .001 

 High 10 0.71 .001 

Binary CAD Low 10 0.86 .07 

 High 10 0.78 .008 

BI-RADS CAD Low 10 0.74 .002 

 High 10 0.51 < .001 

aCAD Low 10 0.78 .007 

 High 10 0.75 .004 

iCAD Low 10 0.69 < .001 

 High 10 0.48 < .001 

Sensitivity (d’) Control Low 10 0.94 .56 

 High 10 0.85 .06 

Binary CAD Low 10 0.78 .01 

 High 10 0.90 .20 

BI-RADS CAD Low 10 0.96 .75 

 High 10 0.85 .06 

aCAD Low 10 0.94 .58 

 High 10 0.92 .33 

iCAD Low 10 0.89 .18 

 High 10 0.95 .67 

Target Absent 

Response 

Time 

Control Low 10 0.90 .23 

 High 10 0.97 .85 

Binary CAD Low 10 0.86 .08 

 High 10 0.91 .29 

BI-RADS CAD Low 10 0.85 .06 

 High 10 0.83 .03 

     



112 

 

Variable Condition 

Prevalence 

Block n 

Shapiro-Wilk 

Statistic P-Value 

aCAD Low 10 0.85 .05 

 High 10 0.87 .09 

iCAD Low 10 0.92 .34 

 High 10 0.93 .49 

Note: *All means and standard deviations were the same for the binary CAD participants in the low 

prevalence block. Instead, a Q-Q plot was examined and indicated normality. 

 

Table F.2 

Homoscedasticity Assumption for the 5x2 Mixed Design ANOVAs 

Variable 

Prevalence 

Block n 

Levene 

Statistic* P-Value 

Hit Rate Low 50 8.80 < .001 

High 50 3.65 .01 

False Alarm 

Rate 

Low 50 0.73 .58 

High 50 0.12 .97 

Sensitivity (d’) Low 50 4.21 .006 

High 50 0.77 .55 

Target Absent 

Response 

Time 

Low 50 0.39 .82 

High 50 0.56 .70 

Note: *Levene’s test was used to check the homogeneity of variance of the 

between-subjects factor, automation, at each level of the within-subjects factor, 

prevalence block. 
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Appendix G 

Responses to the Qualitative Usability Questionnaire 

Table G.1 shows themes of positive and negative participant responses to the 

qualitative usability survey for the four CAD systems as well as participants’ suggestions 

for improvements to the CAD aids. Bolded themes were mentioned by multiple 

participants or otherwise emphasized in the responses. 

 

Table G.1 

Themes from Responses to the Qualitative Survey by CAD Condition 

Did you have a positive experience using the user interface (UI)? 

Automation Positive Negative 

Binary CAD Easy to use, made things go by 

quicker, concept was easy to 

understand, wouldn't rely on it 

Couldn't see the full letter, 

system was sometimes incorrect 

BI-RADS CAD Helped participants identify the 

target, easy to use 

-- 

aCAD Easy to navigate, user-friendly Wouldn't rely on it 

iCAD Good aid Wouldn't rely on it 

What did you like about the UI?/What did you not like about the UI? 

Automation Positive Negative 

Binary CAD Very thorough instructions; 

intuitive slider; straightforward; 

easy to understand; simple; 

helped find the T faster 

Would have preferred button vs 

slider; sometimes circle was 

off-center; unreliable; when 

nothing was circled, had to go 

through all slides 
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What did you like about the UI?/What did you not like about the UI? 

Automation Positive Negative 

BI-RADS CAD Easy to use; straightforward; 

good instructions; increased 

confidence; simple; guide for 

when target was there; user-

friendly; easy to navigate 

Hard to focus on so many 

shapes; unreliable; scrolling; 

made participants second 

guess themselves 

aCAD Easy to use; the percentages 

were helpful; red color to 

indicate a T; easy to learn 

The slider; circles would be 

off-center sometimes; 

unreliable; having to use the 

mouse instead of the 

keyboard to go through 

layers; slow and nonresponsive 

sometimes 

iCAD Easy to use; user-friendly; 

clear; focuses your attention; 

helped complete the task 

more efficiently; the slider 

The colors made it hard to see; 

unreliable; made participants 

second-guess themselves; 

scrolling; finicky and 

responded slow; the low 

percentages 

Did you feel like the UI aided you in your task? 

Automation Positive Negative 

Binary CAD Helped most of the time; 

helped a little; drew your eye 

to the right place most of the 

time 

Unreliable, which wasted time 

BI-RADS CAD Helped with making a final 

conclusion/check; redirected 

focus; somewhat helpful 

Occasionally wrong 
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aCAD Easier to find the Ts -- 

iCAD Sometimes inaccurate, but still 

helpful 

-- 

Automation How would you improve the UI? 

Binary CAD Change the slider to a button press; more accurate/reliable; 

center the circle; use a different color instead of red (e.g., green); 

different letters not just a T 

BI-RADS CAD More reliable/accurate; more contrast in the images; add ability 

to rotate the images; say "unsure" instead of "need more 

information" (makes more sense); button to go to next slide 

instead of scrolling 

aCAD Better explain what the percentages mean; more 

accurate/reliable; center the circles so it is easier to tell if the 

T is aligned 

iCAD More engaging; more accurate/reliable; add colors/highlight, 

showing which slide on the side has the T, don't ID items with 

lower than 70% 
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Appendix H 

Circle Trial Information 

Table H.1 below shows further information about the trials where participants 

may have been impacted by off-center circles. Tables H.2 and H.3 show screengrabs of 

the circled items in trials with off-center circles. Note that the aCAD and iCAD systems 

used the same programming for circle presentation, so they are grouped together. 

 

Table H.1 

Circle Trial Information 

Prevalence 

Block 

Off-Center 

Circle Trials 

Binary CAD 

Low 1 (0.03) 

High 2 (0.05) 

Total 3 (0.04) 

aCAD and iCAD 

Low 0 (0.00) 

High 2 (0.10) 

Total 2 (0.03) 
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Table H.2 

Screengrabs of Off-Center Circled Items in the Binary CAD Condition 

Trial 4, Low Block 

 

Trial 24, High Block 

 

Trial 33, High Block 

 

 

Table H.3 

Screengrabs of Off-Center Circled Items in the aCAD and iCAD Conditions 

Trial 24, High Block 

 

Trial 33, High Block 

 

 

Table H.4 below shows further information about trials with circles where 

participants had particularly low accuracy. Trials where participants in the selected 

conditions had an average accuracy of less than .70 in at least one block order condition 

are detailed below. Tables H.5 and H.6 show screengrabs of the circled items identified 

in Table H.4. Note that the aCAD and iCAD systems used the same programming for 

circle presentation, so they are grouped together. 
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Table H.4 

Circle Trial Information for Low-accuracy Trials 

Trial # 

Target 

Presence 

Clear View 

or Partial 

Coverage 

Prevalence 

Block 

Prevalence Order 

High-Low Low-High 

Binary CAD 

2 Absent Clear Low .80 .60 

13 Absent Clear High .60 1.00 

17 Present Clear High .40 .60 

17 Absent Clear Low .60 .60 

aCAD and iCAD 

24 Present Partial High 1.00 .42 

30 Absent Clear Low .50 .58 

33  Present Partial High .88 .67 

38  Present Clear High .75 .58 

Note: Proportions are of participants who correctly determined target presence grouped by the order of 

prevalence blocks. 

 

Table H.5 

Screengrabs of Circles for Identified Trials in the Binary CAD Condition 

Trial 2, Low Block 

Clear  

Trial 13, High Block 

Clear  

Trial 17, Low Block 

Clear  

Trial 17, High Block 

Clear  
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Table H.6 

Screengrabs of Circles for Identified Trials in the aCAD and iCAD Conditions 

Trial 24, High Block 

Partial  

Trial 30, Low Block 

Clear  

Trial 33, High Block 

Partial  

Trial 38, High Block 

Clear   
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Appendix I 

Descriptive Statistics for Total iCAD Activation 

Table I.1 shows the means and standard deviations for total iCAD overlay 

activation for each participant in the iCAD condition. 

 

Table I.1 

Descriptive Statistics for Total Activation of iCAD Overlay 

Participant M SD 

6 0.000 0.000 

9 0.613 0.490 

15 0.000 0.000 

18 0.925 0.265 

20 0.013 0.112 

25 1.000 0.000 

35 0.988 0.112 

43 0.625 0.487 

51 0.938 0.244 

57 0.538 0.502 
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