
Clemson University Clemson University

TigerPrints TigerPrints

All Theses Theses

5-2024

Multi-Domain Secure DDS Networks for Aerial and Ground Vehicle Multi-Domain Secure DDS Networks for Aerial and Ground Vehicle

Communications Communications

Daniel Pendleton
dpendle@clemson.edu

Follow this and additional works at: https://tigerprints.clemson.edu/all_theses

 Part of the Digital Communications and Networking Commons, and the Robotics Commons

Recommended Citation Recommended Citation
Pendleton, Daniel, "Multi-Domain Secure DDS Networks for Aerial and Ground Vehicle Communications"
(2024). All Theses. 4327.
https://tigerprints.clemson.edu/all_theses/4327

This Thesis is brought to you for free and open access by the Theses at TigerPrints. It has been accepted for
inclusion in All Theses by an authorized administrator of TigerPrints. For more information, please contact
kokeefe@clemson.edu.

https://tigerprints.clemson.edu/
https://tigerprints.clemson.edu/all_theses
https://tigerprints.clemson.edu/theses
https://tigerprints.clemson.edu/all_theses?utm_source=tigerprints.clemson.edu%2Fall_theses%2F4327&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/262?utm_source=tigerprints.clemson.edu%2Fall_theses%2F4327&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/264?utm_source=tigerprints.clemson.edu%2Fall_theses%2F4327&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_theses/4327?utm_source=tigerprints.clemson.edu%2Fall_theses%2F4327&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:kokeefe@clemson.edu

Multi-Domain Secure ROS2/DDS Networks For Aerial
And Ground Vehicle Communications.

A Dissertation

Presented to

the Graduate School of

Clemson University

In Partial Fulfillment

of the Requirements for the Degree

Electrical Engineering

Master of Science

by

Daniel Scott Pendleton

May 2024

Accepted by:

Dr. Kuang-Ching Wang, Committee Chair

Dr. Linke Guo

Dr. Harlan Russell

Abstract

According to the U.S. Department of Defense, it’s estimated that there are over 11,000 units

of Unmanned Aerial Vehicles/Systems (UAVs/UASs) deployed for both domestic and international

operations[10]. To keep up with modern warfare and emerging threats, the next generation of

unmanned systems must address these drawbacks with improvements in networked communications

and security. UAV networks must be secure and be able to detect and remove malicious agents

in the event of an infiltration. They must also be able to produce large amount of data without

creating bottlenecks or slowdowns in order to maintain real-time capabilities.

The military and other industries have shown increased interest in implementing Robot

Operating System 2 (ROS 2) as the application-level control for their autonomous UAVs. The

network layer is controlled by the Data Distribution System (DDS) which manages the messaging

system for each robot. There are still questions regarding DDS’ ability to meet the needs of military

applications, specifically with respect to the system’s security features and potential for scalability.

For military expectations, DDS must be able to transmit secure data across multiple Wide Area

Networks (WANs), a task of past DDS’s original implementation.

This thesis, we will analyze the security and scalability capabilities of DDS through the

application of a ROS 2 ecosystem. This work explores the network performance impacts of multiple

DDS-facilitated network topologies. These topologies include Local Area Networks (LANs) and

WANs connected together via multi-hop routing. We investigate the effects of scaling network size

and increasing the payload size of the transmitted data. These experiments will also reveal the

impacts of varying topologies on ROS 2 performance. This work contributes an evaluation testbed

for DDS networks to show its limitations and suggests ways to create accurate mission scenarios for

military devices.

ii

Dedication

First and foremost, I want to dedicate this thesis to my Mom and Dad. They knew my

dream was always to come to Clemson since I was young and I’ve always wanted to make them

proud even if I have to work twice as hard to get there. I also would love to dedicate this to my

fiancée and soon-to-be wife Caitlyn. She has been with me through thick and thin on my academic

journey going back to high school together, to our first year of college together, and then doing long

distance for three more years until now. She’s my best friend and I’m happy to dedicate this thesis

to her. I also want to share love with my sister Kate and my brother Buck, I always try to make

you proud in anything I do and appreciate the constant love you guys give me. Thank you for the

opportunity.

iii

Acknowledgments

First, I cannot thank my advisor, Dr. KC Wang, enough for the guidance and leadership

needed in this incredible academic journey. He has done so much to help my development as a

graduate student and network researcher. I appreciate all the extra time he’s given to help me think

out these challenging problems and push me to grow, not only as an engineer but as a professional

in all facets of my life. I’m extremely grateful for the opportunity to work closely with him on the

VIPR-GS project.

I would also like to give many thanks to Dr. Guo and Dr. Russell as well. These two

were pivotal in getting me to come to Clemson for graduate school, and I would not have been here

without them. I greatly appreciate the opportunity Dr. Guo gave me as an undergraduate to begin

my research career, which propelled me to this point. I would also like to thank my entire committee

for giving their time and wisdom on my research. The entire ECE department deserves recognition

because none of this would be possible without them.

Also, I would like to thank all my fellow students and researchers throughout this process.

Without the guidance and help of people like Brandon Rice, Ben Formby, Acheme Acheme, and

Charles Kowalski this project would not have been possible in the time it was done. I will forever

be grateful for their help and hope the best for their futures in whatever they pursue.

Finally, I would like to thank my family and friends for supporting me from the very begin-

ning. Especially my fiance Caitlyn and my entire family, who have given me the drive to make them

as proud as I possibly can with their unconditional love. I finally want to say thank you, God, for

giving me this opportunity in life. Nothing would be possible without Him opening doors like this

in my life.

iv

Table of Contents

Title Page . i

Abstract . ii

Dedication . iii

Acknowledgments . iv

List of Tables . vi

List of Figures . vii

1 Introduction . 1
1.1 Robot Operating System (ROS) . 2
1.2 ROS2 and Data Distributive Systems . 4
1.3 ROS 2 Security . 7
1.4 RTPS secure submessage . 10
1.5 DDS Routing via ROS 2 . 12
1.6 Contributions . 14

2 Related Work . 15
2.1 Background . 15
2.2 Performance of Robot Operating System 2 with QoS and Cyber Security Configurations 16
2.3 Router Design for DDS: Architechture and performance evaluation 20

3 Multi-Hop SROS Analysis . 25
3.1 Network Topology and Set-up . 26
3.2 ROS 2 security results . 28
3.3 Fine Tuning DDS Transmitting Large Data Loads in ROS 2 41

4 Conclusions and Discussion . 45
4.1 ROS 2 Security Considerations . 45
4.2 Future Works . 47

Appendices . 48
A ROS 2 custom talker with Custom QoS. 49
B ROS 2 Repeater Code with Custom QoS . 52
C ROS 2 custom listener with Custom QoS. 55

Bibliography . 58

v

List of Tables

2.1 Quality of Service table used to pick out testing parameters in results from [19]. . . . 18

vi

List of Figures

1.1 ROS1 and ROS2 architechture [25] . 3
1.2 ROS2 Architechture for Data-centric publisher and subscribers [25] 4
1.3 DDS security model from [26]. 9
1.4 DDS security model from [26]. 11

2.1 System setup with RTPS from [19]. 18
2.2 Question List Sent to Past Format Editors as Electronic Interview 21
2.3 Local Recovery Process . 23
2.4 Overlay Multicast Strategy . 23

3.1 Extended-LAN for testing Multi-Hop performance. 27
3.2 Example Image of testing topology. 28
3.3 Example Image of testing topology. 29
3.4 The throughput analysis for each Hop with 1 Subscriber with varying payloads. . . . 30
3.5 The throughput analysis for each Hop with 5 Subscribers with varying payloads. . . 31
3.6 The throughput analysis for each Hop with 10 Subscribers with varying payloads. . . 31
3.7 The latency analysis for each Hop with 1 Subscriber with varying payloads. 33
3.8 The latency analysis for each Hop with 5 Subscribers with varying payloads. 33
3.9 The latency analysis for each Hop with 10 Subscribers with varying payloads. 34
3.10 Packet transmission success rate for each Hop with 1 Subscriber with varying payloads. 35
3.11 Packet transmission success rate for each Hop with 5 Subscriber with varying payloads. 36
3.12 Packet transmission success rate for each Hop with 10 Subscribers with varying payloads. 36
3.13 Latency analysis of 1 Subscriber comparing different QoS policies. 38
3.14 Latency analysis of 1 Subscriber comparing different QoS policies. 39
3.15 Latency analysis of 1 Subscriber comparing different QoS policies. 39
3.16 UDP fragmentation on the DDS level from [34]. 40
3.17 Latency analysis of 1 Subscriber comparing different QoS policies. 43
3.18 Latency analysis of 10 Subscribers comparing different QoS policies. 44

vii

Chapter 1

Introduction

The development of Unmanned Systems has been greatly shaped by technological progress

and strategic requirements. The U.S. Department of Defenses Unmanned System Integrated Roadmap

(2017–2042) emphasizes the importance of interoperability and network security when deploying

these systems in domains like air, surface and subsurface [10]. Thanks to advancements in miniatur-

ization, autonomous, and networking technologies, these systems have expanded their roles in these

domains while boosting capabilities and adapting to the challenges of modern warfare.

Mini UAVs represent an advancement due to their cost-effectiveness, ease of deployment, and

ability to access areas that larger systems cannot reach. However, their smaller size does come with

limitations, such as reduced payload capacity and shorter communication ranges. Overcoming these

obstacles has been made possible through the use of swarm tactics, enabling UAVs to collaborate

towards a shared goal and increasing their effectiveness in missions requiring extensive reconnaissance

and search operations.

Integrating UAVs into activities has presented its own set of obstacles. A noteworthy in-

cident during a conflict that involved a breach in security where Ukrainian intelligence successfully

infiltrated the controls of a UAV [5]. This breach not only exposed information but also led to direct

targeting and destruction of a Russian base through artillery strikes. In the realm of aerial vehicle

operations, it is imperative to address vulnerabilities in communication links and data security as

they pose significant risks to mission integrity and personnel safety.

As the use of drones continues to grow in civilian settings, ensuring communication channels

and preventing unauthorized access are top priorities. Traditional systems like the Robot Operating

1

System (ROS) have historically lacked security measures such as encrypted communications. Our

study presents an approach to enhancing security in ROS 2 nodes by implementing a Public Key

Infrastructure (PKI) in DDS Secure. This strategy helps encrypt data transmissions to nodes,

bolstering the security framework needed for robotic system operations in environments where robust

security features are essential.

The reliability of network communications is crucial for vehicles’ effectiveness in modern

warfare reconnaissance and defense strategies. This thesis examines ROS 2 and DDS network capa-

bilities within a Wide Area Network (WAN) setup. It focuses on understanding how hops between

sites impact network performance under security measures. By conducting tests to send sizes of data

packets through network setups, our goal is to identify potential bottlenecks and evaluate how well

the real-time systems can handle slowdowns. More interest from the industrial sector in using ROS

2 for managing vehicle fleets, along with DDS’s role in managing the messaging system, highlights

the need for a network that not only focuses on security but also demonstrates efficient scalability

beyond what DDS was initially designed for.

This study focuses on examining the security features of DDS middleware within a ROS

2 environment, especially looking at how it scales and performs in scenarios involving multi-hop

routing across local area networks (LANs) and wide area networks (WANs). We will also explore how

different data packet sizes affect the network and how removing compromised devices dynamically

impacts its operation. Our goal is to provide a testing platform for DDS networks, pinpointing their

constraints and proposing ways to create mission scenarios for military use. This research emphasizes

the role of network management and security measures in ensuring that future unmanned systems

operate effectively and securely.

1.1 Robot Operating System (ROS)

The Robot Operating System (ROS) is an modular framework created by Robotics, previ-

ously known as the Open Source Robotics Foundation [28]. It aims to speed up the development of

applications and has gained popularity in the robotics community due to its flexibility in supporting

software and libraries for a wide range of projects. The initial version, ROS 1, introduced a network

architecture with a central master node that handles tasks like managing application registration,

execution, storage of parameters, and logging message traffic [31]. This setup allows for the deploy-

2

Figure 1.1: ROS1 and ROS2 architechture [25]

ment of software nodes tailored for functions such as executing commands, processing data, and

managing sensor information [39]. These nodes communicate with each other through an XML

RPC based API for activities like publishing topics, subscribing to them, and updating parameters

[39]. Despite its use and the development of versions like ROS I for industrial use and ROS M for

military applications to meet specific needs in different sectors, ROS 1 had certain limitations.

Its initial design, which was tailored for use on machines or small groups, faced challenges

when it came to scaling up for distributed systems. The centralized network setup resulted in

performance issues and made the system vulnerable to failure at points. Additionally, the lack

of built-in security and the less-than-optimal messaging system for real-time operations severely

restricted its usefulness in critical scenarios [32] [33].

To address these shortcomings, ROS 2 introduces an approach by utilizing the Object Man-

agement Groups (OMG) Data Distribution Service (DDS) to create a real time and secure commu-

nication framework. DDS is a recognized standard for real-time systems to missions and integrates

the eProsima Fast RTPS protocol to enable efficient communication between publishers and sub-

scribers even over unreliable channels like UDP [17]. This transition not only boosts scalability

and reliability but also brings significant security enhancements, expanding ROS 2s potential ap-

plications across various sectors, including government and industry. With these advancements in

3

Figure 1.2: ROS2 Architechture for Data-centric publisher and subscribers [25]

place, ROS 2 successfully surpasses the limitations of its predecessor establishing a standard for the

development of systems. The focus on security, the ability to process data in time, and scalability

highlight how ROS has developed into a tool in the field of robotics. It is well-equipped to handle

the requirements of security-conscious applications.

1.2 ROS2 and Data Distributive Systems

ROS 2’s backbone for its communication for decentralized and distributed systems is DDS,

which allows for a rich set of Quality of Services (QoS) policy that enables it to cater to specific

needs for each robot fleet that specifies throughput, latency, and best-effort reliability. DDS utilizes

the Data-centric Publish-Subcribe (DCPS) model to create a ”global databus” that can be reached

by any independent entity. This allows for efficient data distribution between each node that is

referred to as a participant in DDS.

1.2.1 DDS layer

DomainParticipant: serves as a gateway and organizational entity in DDS, enabling

applications to interact within a designated domain. Domains are established to separate and

enhance communication, among application groups guaranteeing both isolation and streamlined

data sharing. Publisher: serves the distributing data mechanism for transmitting information. It

4

manages DataWriters, each tasked with sharing data on specific Topics, facilitating the spread of

information to interested individuals.

Subscriber: Opposite of the Publisher, it’s designed to receive data from the network. It

represents one or more DataReaders, allowing a DomainParticipantto collect and handle various

types of data.

DataWriter: Essential for publishing, a DataWriter is an object that is always used by

the DomainParticipant to write data via the publisher. The DataWriter publishes predefined data

types.

DataReader: Connects a Subscriber as an object and plays a crucial role in receiving

and accessing published data. Data types coming from the DataWriter must match the data type

expected at the DataReader for accuracy and compatibility.

Topic: Describes the classes used to define communication topics and data types between

the DataWriter and DataReader. Each Topic is uniquely identified by a name and is associated with

a specific data type, establishing a clear and structured data communication channel.

1.2.2 Public key infrastructure (PKI)

In 1970, Feistel [18] designed the first automated, computerbased cypher system for securing

the digital connection between two computers (called a data bank) for IBM Research. As this

was just a concept, the following year, Smith [37], another IBM Research employee, implemented

a cryptographicsystem named Lucifer, heavily influenced by Feistel’s work. Lucifer introduced a

single 128-bit cipher key that enciphers (encrypts) and deciphers (decrypts) messages in blocks of

16 bytes. Using Smith’s system, for the first time, two computers connected together could have

data sent between them without the fear of bad actors viewing the plaintext data stream. Even

worse, the compromised data stream could be recorded as a copy on tape for later illicit use. These

works introduced a technology still used today: symmetric keys, mechanisms that both encrypt and

decrypt data using the same transformation. Symmetric keys, such as the Data Encryption Standard

(DES) [23] [27] (a successor to Lucifer that also uses a Feistel network [38]) and its successor, the

Advanced Encryption Standard (AES) [9], are used to provide confidentiality and integrity of data

[7] [22].

Although symmetric keys are computationally efficient, they are severely limited in providing

authenticity between two computers. One challenge is the single key-value must be distributed (and

5

is hence susceptible to being compromised) to the computer receiving the message [22]. To combat

this issue and develop a method for providing authentication, Diffie and Hellman [11] developed a

public key distribution system, later to be recognized as the Diffie-Hellman key exchange. Their

concept was to have each computer use a keypair, consisting of a public key and a private (or secret)

key, rather than to share a single cipher key. Computers can use these keys in two notable ways,

each independently insignificant for providing broad security. However, when these methods are

combined in a single system, they provide a vast amount of security. This system, called a Public

Key Infrastructure, is the basis of modern cybersecurity tools such as SSL/TLS, which is used to

secure users’ connections to over 88.5 million websites [3].

In the following scenarios, we describe two networked computers named Sender and Receiver.

The public keys of all computers are public, and thus can be accessed or distributed to each other.

1) Encryption Using a Public Key: The first method in which keypairs can be used is to have

Sender encrypt a plaintext message using Receiver’s public key. The message is now ciphertext and

Receiver’s private key is the only key that can decrypt the message. Assuming Receiver’s private key

is not compromised, the message can be sent while providing confidentiality. Receiver decrypts the

message using Receiver’s private key. This is similar to how symmetric encryption works, although

the issue of distributing the symmetric key is avoided. Like symmetric encryption, this method fails

to provide authenticity and integrity of the message.

2) Signing Using a Private Key: Unlike the first method, Sender now signs (encrypts) a

plaintext message using its own private key. The message is now ciphertext and Sender’s public key is

the only key that can decrypt the message. Since all computers have access to Sender’s public key, the

message can be received and decrypted (and thus verified that Sender sent the message), providing

authenticity and integrity to the system. The message could not have been created or modified by

anyone other than Sender assuming Sender’s private key has not been compromised. These two

methods, and additional features, are combined to create a Public Key Infrastructure (PKI). A PKI

additionally uses certificates, ideated by Kohnfelder [24], to digitally sign each public key, providing

a mechanism for a computer to establish trust with other computers through a mutually agreed

centralized entity called a Certification Authority (CA) [20]. Standards such as X.500 [1], and later

X.509 [2] (used in this paper), were created by the International Telecommunication Union (ITU)

to define the creation, structure, and functionality of certificates. In addition to providing trust to

the system, a PKI’s CA can revoke a computer’s trust by adding the computer’s certificate to a

6

Certificate Revocation List (CRL) as proposed originally in 1994 by Berkovits et al [8]. CRLs are

public, that is either accessible or distributed to each computer in the network, so other computers

can be notified not to trust the computer with the revoked certificate.

In the following example, we add a computer to act as the CA, to our previous example

scenario. This CA has the ability to create and distribute a CRL to Receiver.

3) An Example Use of PKI: When entering the network, both Sender and Receiver share

their public keys with the CA. The CA creates a X.509 certificate for each public key and signs both

certificates with its (the CA’s) private key. Thus, each public key contained in the certificate cannot

be modified unless the CA’s private key has been compromised. Each certificate is transmitted back

to the computer with ownership of the respective public key. To establish trust and authentication

of Sender, Sender sends both its certificate and its public key to Receiver. If Receiver determines

the certificate to match with a revoked certificate found in the CRL, it will prevent the request to

establish trust from succeeding. Otherwise, this process will continue. Using the CA’s public key,

Receiver then decrypts the public key contained in the certificate and compares it with the public key

changed by Sender. If both keys are identical, Receiver can confirm the messages transmitted from

Sender have both authenticity and data integrity. This process is repeated, now having Receiver

send Sender its (Receiver’s) certificate and public key. If both Sender and Receiver succeed in

establishing trust, Sender can then create a symmetric key and encrypt it with Receiver’s public

key. If Receiver’s public key has not been compromised, the only computer that can decipher the

symmetric key sent over the network is Receiver. Upon receiving the encrypted symmetric key,

Receiver decrypts the symmetric key and is ready to receive incoming messages encrypted with the

symmetric key. Sender can then send these encrypted messages over the network securely, providing

confidentiality

1.3 ROS 2 Security

Recognizing the importance of security, in the changing world of robotics particularly as

systems become more integrated into critical environments requires a thorough exploration of the

improvements brought about by ROS2. Although ROS1 set a foundation it failed to address the

intricate cybersecurity needs of advanced applications leaving unmanned systems vulnerable to dif-

ferent security risks. This realization led to the development of ROS2, which not prioritizes network

7

security through measures such as identity verification and resource access control but also seam-

lessly incorporates the functionalities of Secure ROS (SROS) software package directly into its core

system, a feature that was previously an addition in ROS1.

The introduction of ROS2 marks a shift towards a robotic environment where the collabora-

tion between Registration Authority (RA) and Certificate Authority (CA) serves as the cornerstone

of its security architecture. The RA has the ability to automate or supervise identity verification

through methods ranging from email based registration to more stringent in person verification pro-

cesses similar to passport issuance. Similarly the CA plays a role, in digitally signing certificates

like a would ensuring their legitimacy and integrity. These certificates are stored in a directory, for

access to a phone directory enhancing the systems security by providing verifiable credentials.

Key to the effectiveness of the DDS security extension in ROS2 are two core policies; the

Domain Governance Policy and the Participant Policy. The Domain Governance Policy utilizes

XML file structures to manage domain and topic elements using values to activate or deactivate

security features. Once signed digitally by a CA, this policy serves as a cornerstone for guaranteeing

authorized access and securing communication channels. Participant Policy outlines permissions for

domain participation and access controls requiring signatures from a CA for implementation. This

unique dual CA structure in the model introduces a degree of flexibility in identity verification and

policy enforcement ensuring a secure and resilient network.

Furthermore plugins are integrated into the DDS framework, for authentication, access

control, cryptography, logging and data tagging. These plugins support messaging and thorough

activity monitoring to enhance ROS2s security landscape further. In this environment both keystore

management systems and enclaves play roles in establishing a robust security framework. The

keystore is designed with private directories to effectively manage security credentials.

Authentication: Allows for the identity of the Publishers/Subscribers on the network

participating.

Access Control: Allows which topics are able to access the published topic or who can

subscribe to certain topics as well.

Cryptographic: Implements of cryptographic operations including encryption, decryption,

hashing, digital signatures, etc.

Data Tagging: Offers the ability to give extra tagging details to data samples issued by

the data writer.

8

Figure 1.3: DDS security model from [26].

Logging: Enables the auditing of all security-related events within DDS.

The public folder acts as a place where certificates, from Certificate Authorities such as

identity CA and permissions CA are stored in a read only manner for all ROS nodes to access. This

setup ensures the widespread sharing of identity verification information. On the hand the private

folder contains materials, like the CAs private keys, which must be deleted before installing the

keystore on a target device to prevent unauthorized access risks.

The enclaves directory in SROS2 is significant as it holds security details for security en-

claves—defined as processes or groups of processes that share the same identity and permissions.

This approach of compartmentalization enables control over security credentials and permissions

within the ROS2 system. When initializing the keystore security keys and governance documents

are created for these enclaves, including files like identity certificate permissions for verifying enclave

identities along with permissions certificate, governance documents (governance.p7s) and permission

documents (permissions.p7s). Together these files. Enforce security policies and access controls for

each enclave strengthening the security framework.

Crucial elements like certificates for identifying participants, RSA or ECDSA algorithms

for encryption and Diffie Hellman Key Agreement, for symmetric key exchange all play essential

9

roles in this context. The access controls regulate what participants can do while the cryptographic

functions, like encryption, decryption and key generation play a role in maintaining data security.

Logging mechanisms keep track of security events with timestamps and data tagging to add layers

of protection to data samples. This detailed setup, which will be visually explained in the figure

supports exploration and secure communication between publishers and subscribers in the DDS

network ensuring both data integrity and participant verification. With these enhancements ROS2

not addresses the security issues of its predecessor. Also establishes a higher cybersecurity standard

for robotics leading the path towards safer and more dependable unmanned system deployments, in

various fields.

1.4 RTPS secure submessage

Securing messages in DDS involves adding information to inform the recipient about the

security measures (Transformation Kind) and the key identifiers (Sender Key ID) used, enclosed in

a Crypto Header. Subsequently the Crypto Content submessage component serves as a cover for

Serialized Payloads, RTPS submessages or entire RTPS messages depending on the level of security

implemented. The applied transformation produces the Crypto Content, which is then supplemented

by a Crypto Footer containing the Common MAC for ensuring message integrity. In cases where

Origin Authentication Protection is enabled Receiver Specific MACs are also integrated into the

Crypto Footer. Message security in DDS varies depending on how protection’s applied affecting the

secure delivery of messages. Here are detailed adjustments, within the RTPS protocol to facilitate

entity communication and their associated implications.

1.4.1 Architecture of RTPS for Secure Traffic

The essence of the RTPS protocol lies in an RTPS message, which consists of a header and

various submessages each with its unique header and elements. These submessages within a RTPS

message can encompass a wide range of content including user data, heartbeat signals, acknowl-

edgments and more. Security measures can be implemented at levels to protect specific message

components.When the Governance Rule for data protection kind is set to a level than NONE Seri-

alized Data Protection comes into play focusing on safeguarding the DataWriter. In this scenario

the DataWriter ensures the security of the sample payload after serialization by storing it in a

10

Figure 1.4: DDS security model from [26].

queue until it’s ready for dispatch. This protection covers the payload within DATA submessages.

Transforms the Serialized Payload into a secure format that comprises a Crypto Header, Serial-

ized Payload/Crypto Content and Crypto Footer. Activating Submessage Protection by configuring

the metadata protection kind Governance Rule affects messages from both DataWriters and

DataReaders. Certain RTPS submessages undergo security measures before transmission through

elements like Secure Prefix Submessage (SEC PREFIX) Secure Body Submessage (SEC BODY) with

Crypto Content and Secure Postfix Submessage (SEC POSTEFIX), with Crypto Footer. RTPS Pro-

tection comes into effect by setting the rtps protection kind Governance Rule to secure not individual

components but also the entire RTPS message before it is transmitted over the network. This thor-

ough security protocol maintains the RTPS header encloses the complete message and the secure

packet that is generated consists of an SRTPS Prefix, with the Crypto Header, a Crypto Content

filled SRTPS Body and a Crypto Footer containing SRTPS Postfix.

11

1.4.2 Cryptographic Labeling in RTPS Messaging

When the sender prepares a message they add components like the Crypto Header and

Crypto Footer which include MACs and important details for the recipient to generate the Session

Key. The Crypto Header informs the recipient about the encryption method used and the specific

keys utilized for message security. It consists of transformation id, which combines Transformation

Type with Sender Key ID, session id for encryption operations and initialization vector suffix

for AES-GCM (encryption) and AES-GMAC(authentication) methods. The Crypto Content con-

tains data for messages that require both integrity and confidentiality protection (ENCRYPT) while

the Serialized Payload carries plain text data for integrity protection only (SIGN). Completing the

message structure the Crypto Footer includes the Common MAC and Receiver Specific MACs where

necessary. The Common MAC ensures message integrity while Receiver Specific MACs offer origin

authentication, crucial for communication, in multicast settings.

1.5 DDS Routing via ROS 2

DDS protocol is known for its ability to support UDP/IP multicast facilitating interaction,

between diverse vendor source codes and enabling both wireless interoperability. This feature creates

an ecosystem where applications can communicate efficiently regardless of their hardware or software

origins. However when extending communication beyond a Local Area Network (LAN) to Wide

Area Network (WAN) environments DDS faces challenges due to limitations imposed by Internet

Service Providers (ISPs) in WANs. These limitations often restrict UDP flows and multicast traffic

to prevent network flooding and maintain stability. Additionally the prevalent use of TCP for

network traffic adds complexity by requiring TCP connections, between publishers and subscribers.

This could potentially impact the efficiency of DDS core discovery mechanisms— the Participant

Discovery Protocol (PDP) and Endpoint Discovery Protocol (EDP).These guidelines play a role, in

how participants interact within the DDS network. PDP helps detect participants while EDP allows

them to find each others topics of interest. When a publisher wants to share information across

networks having to create TCP connections with each subscriber on a peer to peer basis can hinder

the efficiency and scalability of the DDS framework.

To overcome these obstacles, recent studies and advancements from DDS vendors have led to

the development of DDS routers. These routers act as bridges that enable communication between

12

network domains without requiring direct TCP connections. By routing DDS traffic these routers

maintain the protocols efficiency. Expand its usability beyond single LAN setups. One notable

solution among these innovations is eProsimas DDS Router, which offers an architecture for handling

network DDS communication complexities. This router not overcomes limitations imposed by ISP

regulations and TCPs prevalence outside LANs but also boosts the scalability and adaptability of

DDS applications, across networking environments.

When it comes to DDS routing, both the Participant Discovery Phase and Endpoint Discov-

ery Phase are particularly significant. During the Participant Discovery Phase, DomainParticipant

sends periodic announcement messages that contain metadata, such as IP and port, about the par-

ticipant. This phase plays a role in building a network of participants that can communicate with

each other. In the Endpoint Discovery Phase, each participant learns about the data sharing and

subscription details of other nodes so they gain insights into data topics and network structure [16].

These discovery phases are crucial in DDS’s communication model allowing participants to efficiently

locate and exchange information without setup requirements.

While DDS routers have advanced in connecting network domains and facilitating commu-

nication across environments there are still hurdles to overcome. One key issue revolves around the

quality and dependability of documentation provided by vendors. Although routers like those from

eProsima have enhanced DDS functionality in LANs and WANs their accompanying documentation

may lack the depth required for understanding and successful implementation. This deficiency in

guidance could hinder system architects and developers in harnessing the capabilities of DDS routers

potentially impacting the deployment of DDS based systems in intricate network setups.

Moreover, ensuring seamless DDS communication across multiple network hops remains a

challenge. The utilization of DDS routers to facilitate data transmission across diverse network

segments each with its distinct characteristics and potential failure points presents a significant ob-

stacle. The complexities involved in traversing hops become particularly pronounced when dealing

with fluctuating network topologies and conditions underscoring the importance of routing solu-

tions and clear implementation guidelines. The issues pertaining to documentation quality and

the varying reliability of DDS routers in hop scenarios underscore the necessity for research efforts

and community engagement aimed at enhancing these tools to optimize their effectiveness, within

modern networking landscapes.

13

1.6 Contributions

In this thesis, we take a dive into examining the strengths and limitations of the DDS and

ROS 2 in secure environments specifically looking at how well they handle transmitting messages

across multiple devices from edge to edge in varying scenarios. Our goal is to assess how effective

these technologies are, in real time situations that demand timely data delivery.

To accomplish this we establish a testing framework that replicates real world conditions

enabling us to assess the performance, scalability and resilience of DDS and ROS 2 networks under

various security constraints and network setups. This framework not only showcases the capabilities

of these systems but also identifies potential weak points that could hinder their use in critical

settings.

Additionally, we delve into the nature of security management in these distributed systems.

By introducing a mechanism for adjusting security permissions in time we showcase the ability

to swiftly isolate and remove compromised nodes from the network. This feature is essential for

safeguarding the confidentiality and integrity of exchanged data, within the network in environments

where security threats are constantly evolving. Also, our study adds to the development of guidelines

and best practices, for setting up and managing DDS and ROS 2 systems in hop environments. These

suggestions are aimed at helping system designers and developers optimize their setups for security,

performance and resilience.

Moreover, our research findings have implications that go beyond DDS and ROS 2 tech-

nologies. By tackling the challenges of communication in hop networks we offer valuable insights

into the wider realm of secure distributed systems. This work opens doors for research efforts and

technological advancements that could strengthen the reliability and security of infrastructure and

secure robotic ecosystems.

To sum up this thesis is not just highlights the capabilities of DDS and ROS 2 in secure

multi-hop scenarios but also lays the groundwork for continuous enhancements and innovations in

secure real-time communication, for essential applications.

14

Chapter 2

Related Work

2.1 Background

Recent research has focused on studying the impact of DDS security protocols, on com-

munication efficiency in ROS 2 environments. Previous studies have looked into the latency and

throughput effects of these protocols in both wire and wireless setups aiming to find a balance be-

tween performance and security. This research has provided insights for ROS 2 developers within

LAN setups. At the time innovative work has introduced new router designs for DDS that help

distribute data across Wide Area Networks (WAN). This advancement highlights the benefits of us-

ing DDS routers for network communication but does not fully address the complexities of security

overhead and transmitting encrypted data across different networks.

A detailed examination outlined in [12] appraised DDS alongside ROS 2 contrasting data

transfer with data that was safeguarded using encryption techniques like Rivest Shamir Adleman

(RSA) 2048 bit and Elliptic Curve Cryptography (ECC) 256 bit. The results demonstrated a

rise in delay and packet transmission overhead averaging 137 percent and 132 percent respectively

when security measures were activated. This emphasizes the influence of security protocols on

network performance a point also raised in observations from the 2018 ROSCon, where researchers

underscored the latency increase linked to the integration of security features by DDS provider Real

Time Innovations (RTI) [29].

Expanding on the research in [36] which examined ROS 2s ability to secure communications

between UAVs and a ground control station (GCS) without concentrating on network performance

15

our study broadens this investigation to include the DDS security structure and the various service

delivery configurations accessible, through ROS 2. While earlier studies often separated QoS from

security considerations our research strives to combine these aspects. We aim to explore how the

combination of QoS and security protocols affects the performance of ROS 2 networks delving into

areas that have not been extensively covered in existing research. The next following papers are the

ones that we felt had the most valuable information from so it would be best to explain in detail

what they considered important in the security aspect and the DDS Routing Architecture.

2.2 Performance of Robot Operating System 2 with QoS and

Cyber Security Configurations

The paper referred in [19] goes into investigating how well the ROS 2 performs, especially

when combined with the DDS as its middleware. The main focus is, on how Quality of Service

(QoS) settings in the middleware interface impact meeting strict delivery requirements across a dy-

namic network of unmanned systems. By conducting experiments under scenarios with different

QoS configurations the study aims to understand how latency and throughput affect data trans-

mission while also considering the effects of activating DDS security measures. This comparative

evaluation against performance benchmarks aims to reveal the balance, between security measures

and operational efficiency within ROS 2 networks.

The tests carried out on a ROS 2 network, which includes both a publisher and a subscriber

offer insights, into how various QoS profiles and security configurations impact network efficiency.

This study is groundbreaking in its examination of ROS 2s effectiveness in terms of service provision

and security aspects. The key highlights of the study involve:

Analysis and experimentation: ROS 2 performance of various QoS profile combination

for plaintext data traffic, focusing on latency, packet loss, throughput and overhead generation.

Security study: ROS 2 performance with different QoS profile combinations for encrypted

traffic data traffic, they measured for packet loss, latency, throughput, and overhead generation.

This research doesn’t focus on giving suggestions for using ROS 2 in scenarios. Rather

it presents a collection of performance metrics, across QoS and security configurations. The goal

of this material is to support developers and researchers in enhancing ROS 2 performance helping

them make decisions that consider cybersecurity requirements alongside the need for data transfer,

16

in autonomous robotic systems.

2.2.1 QoS Profiles

ROS 2 was designed to be used in a lossy network scenarios which utilizes User Datagram

Protocol (UDP). UDP creates room for DDS to allow Quality of Services (QoS) policies that allows

for fine-tuning data communication. Each data transaction is configurable at various levels of gran-

ularity that can effect our Throughput, Bandwidth, Redundancy, and Persistance. The following

major policies are Liveliness, Lifespan, History, Depth, Reliability, Durability, and Deadline will be

shown below.The ROS 2 version discussed in this paper is Crystal Clemmys includes the first three

QoS policies that play a crucial role in customizing communication features, within a DDS setting.

The others will also be described as well. Working together with DDS vendor Eprosima FastRTPS

the specifics of these QoS policies have been outlined as follows:

HISTORY: This policy conserves message retention is divided into two approaches for

handling sample or data storage. The ’KEEP ALL’ method keeps all messages in memory regardless

of quantity whereas the ’KEEP LAST’ approach retains messages up, to a specified queue depth,

which can be adjusted within DDS to meet specific storage needs [4].

Reliability: Two different strategies are used in this policy to ensure message delivery

reliability. The ’BEST EFFORT’ approach sends messages without needing confirmation from the

recipient making delivery faster but risking message loss. In contrast the ’RELIABLE’ approach

waits for acknowledgments, from the receiver to minimize message loss even if it means a delivery

speed [4].

Durability: This guideline outlines the way nodes handle messages that were sent before

a subscriber joined a discussion. There are three approaches mentioned; ’VOLATILE’ ignores any

messages and only sends new information after subscription; ’TRANSIENT LOCAL’ refills a new

subscribers queue with previously saved messages on the local node; and ’TRANSIENT’ gives a new

subscriber access, to historical messages from storage ensuring that they have a complete history

when they join [4].

Depth: Allows for the for a queue size to be activated for previous data samples only if

’history’ is set to keep last and will store the specified samples.

Lifespan: The maximum amount of time between the publishing and the receiving the

message without the message being considered to be expired. Expired messages are dropped without

17

Case Participant History Depth Reliability Durability

a All KEEP LAST 5 BEST EFFORT VOLATILE
b All KEEP ALL N/A BEST EFFORT TRANSIENT LOCAL
c All KEEP LAST 5 RELIABLE VOLATILE
d All KEEP LAST 1000 RELIABLE VOLATILE
e All KEEP ALL N/A RELIABLE TRANSIENT LOCAL

Table 2.1: Quality of Service table used to pick out testing parameters in results from [19].

Figure 2.1: System setup with RTPS from [19].

logging of the drop [4].

Liveiness: Two different modes can be considered for this policy is which the first is the

’Automatic’ which considers all of the nodes publishers to be alive for another ”lease duration” when

any of the publishers publish a message. Lease duration is the max period of time a publisher has

to indicate that it is alive before it is considered down. The other is set ’manual’ which sets which

topics to which the publisher has to manually say it is still operational [4].

For the experiments and practical assessments, we used a basic ROS 2 network setup. This

configuration, shown in Figure 2.1, consisted of a single topic with one participant, comprising both

a publisher and a subscriber node. The tests made use of the standard ROS Middleware (RMW)

called eProsima Fast RTPS to maintain consistency and relevance in line with commonly used ROS 2

setups. The researchers made sure to simplify the experimental setup to concentrate on how the QoS

policies and security settings affected ROS 2’s performance. This straightforward approach made

it easier to link any performance differences directly to adjustments in QoS profiles and security

setups, providing useful guidance for optimizing ROS 2 communication in various unmanned system

scenarios.

18

2.2.2 Simulation Parameters and Results

When evaluating the strength and effectiveness of DDS security in the ROS 2 framework,

they carefully outlined different simulation parameters to gauge how well the system performs.

These parameters helped us grasp how the system behaves across various QoS profiles and security

configurations.

Total Packets: This measurement captures the overall count of packets recorded by Wire-

shark, beginning with the first transmission of an RTPS message fragment and ending with the last

one. It encompasses all associated information, like heartbeats (HBs), acknowledgment negation

messages (ACKNACKs) and any messages related to the discovery protocol that come after the

initial fragment.

Message (MSG) Fragment Packets: Fixed in size, these packets, counted within Wire-

shark, encompass solely the RTPS message fragments, excluding other forms of traffic or metadata.

Overhead Packets %: Represented as a percentage, this metric is the ratio of packets

classified as overhead (those beyond the essential message fragments) to the total number of packets

transmitted.

MSGs Lost: This is the tally of messages that the subscriber node failed to receive, which

could stem from several issues such as lost fragments, entire messages going astray, data collisions,

or other network anomalies.

MSG Fragment Latency (µs): The latency for each transmitted RTPS fragment is

calculated by taking the difference in timestamps between the current message fragment and the

preceding one.

MSG Latency (µs): The complete latency incurred in transmitting a single message is

derived by summing the latencies of all RTPS fragments. This aggregate figure is then averaged

over the totality of messages sent, which includes a consideration for retransmitted fragments and

other messages that were not fully delivered.

MSG Throughput (Gbps): The throughput for each message is calculated by dividing

the total bit size of the message by its latency in microseconds. The size of the message is the sum

of all the constituent message fragments’ sizes.

∆ %: : The throughput for each message is calculated by dividing the total bit size of the

message by its latency in microseconds. The size of the message is the sum of all the constituent

19

message fragments’ sizes.

The data tables and visual representations provided offer a detailed analysis of how different

QoS settings and security setups affect DDS communication in the context of ROS 2. However,

noteworthy findings from the simulation outcomes are:

1.) In instances where the file sizes of 0.25MB to 0.5MB, there was a notable difference in

the loss of messages between unencrypted and encrypted scenarios, as encrypted cases encountered

a surprisingly elevated rate of lost messages. 2.) As the sizes of files grew to 1MB and 2MB, there

was a noticeable decrease in message loss during secure data transmission, suggesting that reliability

in secure transmission varied based on the size. 3.) The delay went up for all file sizes especially

when using consistent QoS settings indicating a balance, between data accuracy and delay. 4.) The

throughput displayed a general decrease with increasing file size, which aligns with expectations

considering the increased time required for larger file transmission.

The results clearly show that adding security features has an impact, on system performance

than adjusting QoS settings. This finding is crucial for designers working on DDS networks those

aiming for real time communication, in Cyber Physical Systems (CPS).

2.3 Router Design for DDS: Architechture and performance

evaluation

The research paper referenced in [21] delves into an issue within the field of data distribution

for real time systems for routing to multiple networks. The Data Distribution Service (DDS) for

Real Time Systems is primarily tailored for communication within a domain, on a network. However

this specific design orientation creates challenges when applications based on DDS aim to expand

their communication capabilities to cover wide area networks (WANs). In cases limitations imposed

by internet service providers (ISPs) on multicast and UDP traffic can present obstacles.

The research introduces a router model specifically created for DDS with the goal of preserv-

ing the protocols meaning while enabling data distribution, over wide area networks. This innovative

design utilizes recovery methods and an overlay multicast approach to overcome the restrictions of

unicast communication and ISP barriers. The brilliance of this proposed DDS router lies in its abil-

ity to improve system performance by managing messages and making use of resources. By giving

priority to messages based on link expenses the router enhances speed. Maintains the QoS standards

20

Figure 2.2: Question List Sent to Past Format Editors as Electronic Interview

to DDS.

By conducting simulations, with NS-3 the research offers real world proof of the effectiveness

of the DDS router compared to traditional communication approaches. The findings show that

integrating the DDS router significantly enhances system scalability and resilience which could have

implications for implementing DDS, in wide area network settings. The contributions of this paper

include:

1.) Introducing a cutting edge DDS router design that goes beyond the boundaries of

network domains making data distribution, over WAN more effective, through the integration of

recovery and overlay multicast techniques within the DDS framework.

2.) Through NS-3 simulations a thorough assessment showcases the effectiveness of systems

that utilize the DDS router. This specifically emphasizes progress, in scalability and resilience

compared to communication methods.

This study sets the foundation for future advancements in DDS networking, which could

enhance the effectiveness and scope of real time data distribution systems. The findings of this

research have broad implications across various sectors in IoT, industry, or military missions.

2.3.1 DDS Router Design

The unique design of the DDS router plays a role in addressing the challenges associated

with distributing data across wide area networks (WAN). By preserving the aspects of the DDS and

integrating features tailored for data distribution, over WAN the DDS router is able to streamline

operations. This segment details the functions and structural elements of the DDS router.

Overview: The DDS router operates much, like a DDS participant integrating topic man-

21

agers and discovery modules for both the Participant Discovery Protocol (PDP) and Endpoint

Discovery Protocol (EDP). It enables the transfer of topics over a WAN without compromising

DDS semantics thanks, to its use of recovery and overlay multicast strategies. The design of the

router not ensures message delivery. Also upholds time related QoS standards ensuring dependable

communication.

Topic Manager: In charge of managing topics in the DDS router is responsible for handling

topics from both distant domains. It’s crucial for the DDS router to be aware of the topics, in

networks and its local network to efficiently handle data distribution. This task is accomplished by

utilizing the discovery module.

Discovery Module: Like DomainParticipants, in the DDS system the discovery module

enables the DDS router to handle topics in various network areas. By creating domain participants,

publishers and subscribers according to topic needs the DDS router guarantees that all routers and

DDS entities share information, for topic publishing and subscription across the WAN.

QoS Provisioning Manager: When it comes to ensuring effective communication, the

DDS router includes a local recovery plan to tackle problems like ACKNACK overload and too much

TCP traffic. By functioning as a virtual publisher, the DDS router can recover and resend topic

instances locally using ACKNACK messages, which helps make better use of network resources and

decreases delays.

Overlay Multicast: To overcome the challenges presented by the inability to utilize

UDP/IP multicast over an area network the DDS router utilizes an overlay multicast approach.

It establishes a multicast tree using link costs facilitating data transmission routes, throughout the

network. This technique notably minimizes the need for TCP connections and session messages

providing an advantage, for real-time applications that depend on rapid data distribution.

Figures 2.3 and 2.4 show how the recovery and overlay multicast strategies are put into

practice. In Figure 2.3 you can see the steps involved in recovery starting from sending topic

instances to aggregating and re-transmitting ACKNACK messages. Figure 2.4 illustrates how the

overlay multicast tree is created and the paths, for transmission explaining how the DDS router

improves data flow, between network domains.

The design of the DDS router showcases how the DDS standard has been creatively applied

to tackle networking obstacles. Through incorporating these features the router not only boosts

DDS effectiveness in WAN setups but also paves the way for improved simultaneous data sharing,

22

Figure 2.3: Local Recovery Process

Figure 2.4: Overlay Multicast Strategy

23

across geographically distant networks.

This thorough examination does not tackles the requirement for strong security measures in

multi-hop DDS networks but also adds to the ongoing conversation about improving DDS and ROS

2 systems for real-time critical applications. By assessing how QoS and security interact within these

frameworks we strive to provide insights and approaches that can enhance the deployment of DDS

networks ensuring their effectiveness and dependability on working towards evolving cybersecurity

challenges.

Our research aims to bridge this gap by exploring the setup of DDS networks and analyz-

ing how transmitting types of data, with active security protocols impacts a multi-hop network.

Additionally we plan to simulate data flow in a networking testbed environment to understand the

performance capabilities of DDS networks particularly in scenarios resembling battlefield conditions.

This method intends to assess the viability of DDS systems, as real time Cyber Physical Systems

(CPS) in security conscious settings.

24

Chapter 3

Multi-Hop SROS Analysis

This chapter show our unique design approach for DDS Routing in Secure ROS 2 robot fleets

and the implications of implementing it across various networks and seeing the impacts of multi-

hopping. Our study is structured to cover a range of perspectives with a focus on ensuring packet

transmissions between publishers and subscribers in DDS’s communication protocols. We examine

the reliability of these transmissions while maintaining the security of packets as they travel through

networks. Our approach involves analyzing network performance, particularly looking at subscriber

throughput and latency when different payload sizes are sent by the publisher. This analysis is

crucial for understanding how payload sizes affect network behavior, such as node responsiveness and

message handling efficiency. Through capture analysis, we investigate how message fragmentation

occurs with varying payload sizes in both LAN and WAN.

The experiments are based on a network setup that mimics real-time ROS 2 configurations.

This simulation allows us to adjust variables such as payload sizes and observe their impacts in a

controlled yet scalable environment, giving us insights supported by empirical evidence instead of

just theory. After providing an overview of the architecture, we will showcase the data collected from

our experiments using the graphs and tables presented below. These visual aids will demonstrate how

network performance metrics interact with payload characteristics, giving a picture of the patterns

and anomalies observed during the tests.

Following that, we will analyze the results to uncover the reasons behind phenomena such

as packet loss, latency spikes, or fluctuations in throughput. Our thorough assessment aims to

highlight current limitations and obstacles and spark conversations about potential improvements.

25

We intend to propose strategies for experiments that could enhance the DDS Routing process,

strengthen network security protocols, and streamline data transmission in robot fleets operating

across large-scale LAN and WAN setups.

3.1 Network Topology and Set-up

Our test environment is designed to support the communication between ROS 2 robot fleets

across LANs. Key to this setup are the basestations, which act as nodes responsible for facilitating

message exchange between networks. Each basestation is connected to its LAN and is also linked

with one or more peer basestations creating a network that connects all individual fleets. This mesh

network layout is illustrated in the diagram offering a visual representation of the network structure.

To overcome the limitation of DDS’s inability to multicast across networks for the discovery

protocol, we developed a ROS 2 repeater application that will be the middle man between the wanted

networks. This application subscribes to topics within its LAN and republishes them, ensuring that

the original data packet integrity from the initial publisher is maintained. This innovative solution

utilizes DDS’s capabilities within LANs and demonstrates our system’s adaptability in handling

various data types required for inter-network communication.

In order to measure and evaluate data transmission accuracy we have integrated logging

tools into each ROS 2 node. These tools record timestamps indicating when a packet is sent by the

publisher and successfully received and reassembled by the subscriber allowing us to obtain latency

measurements and processing time for the repeaters. We also keep track of the data received by

each node to calculate the average speed at the end of the test. Moreover, we carefully log the

transmission of packets, keeping track of how many are sent out by the sender and received by each

recipient. These measurements show that they play a crucial role in assessing how effective and

dependable our message-handling system is across large LAN/WAN networks. Each experiment

will show the throughput, latency, packet success rate, and processing observed for one, two, and

three network hops, correspondingly. The intention behind incrementing the number of hops is to

simulate the practical scenarios where data must traverse multiple network segments, such as in

distributed robotic systems applications that span across different geographical locations. The next

part will discuss in detail the network simulator we used for our experiments, explaining how it

mimics real-world networking conditions and contributes to the strength of our analysis.

26

Figure 3.1: Extended-LAN for testing Multi-Hop performance.

3.1.1 Network Simulator: Fabric

This experiment was conducted on the FABRIC Testbed [6], a National Science Founda-

tion (NSF) funded research project. FABRIC is a “testbed-of-testbeds” [35] for computer network

research, providing researchers sandboxed access to an international network built with cutting-

edge network infrastructure and hardware. FABRIC is interconnected with many other popular

research testbeds and networks such as Chameleon Cloud, CloudLab, the PAWR testbed, and Inter-

net2 [6], allowing researchers to instantiate experiments on each testbed and measure the network

performance of transmitting data between testbeds and between nodes on the FABRIC network.

Such flexibility allows researchers the ability to create and experiment with novel network protocols,

routing, and cybersecurity techniques. FABRIC also provides a Measurement Framework (MF),

allowing network performance to be monitored and analyzed in real-time using dashboard tools

such as Grafana and Kibana. Although neither the ability to connect to other testbeds nor using

FABRIC’s MF to analyze the network were implemented in our work presented in this paper, we

expect to use these tools in the future.

FABRIC provides users with a JupyterHub account, where users can create and store

27

Figure 3.2: Example Image of testing topology.

Python-based Jupyter Notebooks. Using these notebooks, users can instantiate FABRIC experi-

ments called slices, which contain any number of nodes (virtual machines) across any number of

FABRIC sites (the locations of servers connected to the FABRIC network). Users can choose how

nodes are networked; FABRIC provides both layer 2 (L2) and layer 3 (L3) connections. Many flavors

of operating systems are provided for the user to choose from for each node.

3.2 ROS 2 security results

In this detailed section, we outline the results of our networking tests that were carefully

planned to assess the performance of our DDS routing architecture in extended LAN/WAN setups.

The results presented here form a solid basis for evaluating the speed and delay across a daisy-chained

network of ROS 2 robot fleets and their corresponding basestations.

Our analysis begins by looking at the speed across various payload sizes, ranging from 1K to

1M. These payloads are gradually increased to mimic different operational needs and travel through

multiple hops each leading to a specific network or efficiently relayed by our custom ROS 1-3 re-

28

Figure 3.3: Example Image of testing topology.

peaters. These repeaters play a crucial role in our experiment setup by facilitating the smooth

transfer of data packets across different network areas. To avoid potential congestion points and

ensure the reliability of our data gathering process, each publisher in our network is set to send

messages at timed intervals of 500 milliseconds. This timing is chosen deliberately to prevent over-

whelming the publisher’s sender buffer, which could result in artificial delays or packet loss that

might affect our findings.

The experiments are not only aimed at measuring speed but also at observing how payload

size and hopping through repeaters impact packet delivery intricately. This involves closely exam-

ining the time it takes for data packets to move through each connection point and how it affects

the overall efficiency of communication.

After looking at the data transfer rate, we shift our focus to analyzing the success rates of

packet deliveries. This means diving into the percentages of successfully delivered packets across

different sizes. By breaking down these percentages, we can understand how well our network per-

forms under varying data loads. We also assess how well the DDS routing system handles increased

data demands and whether the repeater nodes effectively maintain accurate data transmission.

In addition to these numerical findings, we engage in a qualitative conversation about how

the network behaves in reality. This covers potential reasons for lost packets, irregularities in data

transfer rates, and fluctuations in latency, offering a comprehensive view of how well the network

functions. We also suggest possible explanations for observed trends in the data and provide a

detailed discussion on what they mean for future improvements to network designs.

Overall, this section evaluates our DDS routing approach, paving the way for subsequent

29

Figure 3.4: The throughput analysis for each Hop with 1 Subscriber with varying payloads.

sections that will delve deeper into specific aspects of network performance. As we move forward,

we aim to draw meaningful insights from the data that can offer valuable perspectives on enhancing

communication systems for networked robots.

3.2.1 Throughput for Payload sizes each Hop

Our research thoroughly explores how efficiently ROS 2 publishers transfer data through

network connections to assess the reliability of secure data transmission. This analysis is vital for

understanding if the DDS routing system, which is meant for safe communication performs well when

sending messages of different sizes between network points. The graphs shown visually represent the

data transfer rates achieved for payload sizes ranging from 1K to 1M bytes giving us insights into

how network scalability impacts our ROS 2 setups robustness. Our experiments involved sending

messages from ROS 2 nodes with increasing payloads to mimic real-world data loads. To prevent

overwhelming the publisher’s buffer and causing loss or delays, we sent messages at regular intervals

of 500 milliseconds. This approach allowed us to evaluate how well the network handled packets

without disrupting the flow of information.

Interestingly, we observed a decrease in data transfer speeds across all tests once the payload

30

Figure 3.5: The throughput analysis for each Hop with 5 Subscribers with varying payloads.

Figure 3.6: The throughput analysis for each Hop with 10 Subscribers with varying payloads.

31

size reached 64kB, falling within a bandwidth range of 35,000 to 40,000 bytes per second or lower.

This consistent pattern across network hops suggests a potential limit in the DDS routing system’s

capacity based on our current settings. Upon examination, it appears that smaller data loads move

smoothly through the network, maintaining high speeds. However, when larger data packets are

transmitted, a decrease in performance is observed. This decrease becomes more noticeable as the

number of network connections increases highlighting the importance of having a network structure

or optimizing how messages are queued and managed.

Moving forward, our goal is to investigate why this performance degradation is happening.

We will analyze factors like network congestion, buffer capacities, and how well the transport proto-

cols are working. By gaining insights into these aspects, we aim to suggest improvements that can

enhance performance levels and ensure data transmission across LAN/WAN networks over longer

distances regardless of payload sizes.

3.2.2 Latency for Payload sizes each Hop.

In our second section, we introduced the latency analysis by the DDS routing/repeater

mechanism across multiple network hops; we directed our attention to the delays encountered by

messages as they transfer messages across each extended network. The statistics of the ROS 2

publishers’ performance, in relation to the number of repeaters and the size of the payloads, are

visualized in the series of graphs presented. A discernible pattern emerges, with latency maintaining

a general incline as payload sizes increase, only to experience a steep surge beyond the 128kB mark.

Throughout all scenarios, we can see a pattern from just one user in the system to more crowded

environments with five or ten users. The graphs clearly show how latency changes for each of these

setups and point out an increase in latency when dealing with larger data packets.

For 1 Subscriber/LAN: The graph demonstrates a rise in latency up to a payload size of

16kB. However, once we surpass the 128kB mark, there is a significant spike in latency indicating

potential network architecture or DDS configuration challenges when handling larger data loads.

For 5 Subscribers/LAN: The trend mirrors what we observed with one subscriber. The

spike in latency is more pronounced. This suggests that having more subscribers could impact the

network’s efficiency in processing payloads.

For 10 Subscribers/LAN: This scenario further confirms the trend as latency increases more

significantly with a higher number of subscribers. It shows how network scale directly influences

32

Figure 3.7: The latency analysis for each Hop with 1 Subscriber with varying payloads.

Figure 3.8: The latency analysis for each Hop with 5 Subscribers with varying payloads.

33

Figure 3.9: The latency analysis for each Hop with 10 Subscribers with varying payloads.

34

Figure 3.10: Packet transmission success rate for each Hop with 1 Subscriber with varying payloads.

latency.

These patterns in latency provide insights into how payload size, network connections, and

subscriber count interplay within the ROS 2 communication framework. As the amount of data

being transmitted increases, the network’s response time changes significantly, showing how dealing

with and delivering large data over a wider LAN/WAN infrastructure becomes more challenging.

Although the response times for amounts of data initially meet the requirements for real-time

tasks the significant increase in response times for larger amounts raises important questions about

how well DDS routing can handle heavy data loads. This finding is crucial for shaping research and

improvement efforts to reduce sudden spikes in response times and improve the overall effectiveness

of DDS based communication in large-scale and distributed systems.

3.2.3 Packet Success rate for Payload sizes each Hop.

Our examination of success rates plays a crucial role in assessing how messages are reliably

transmitted within a DDS based system. In this study, we measured the success rates of packets sent

from the sender to the receiver across message sizes ranging from small 1kB messages to larger 1MB

loads. The accompanying visuals illustrate how success rates change with the number of network

hops emphasizing how larger payloads and network intricacies affect data transmission reliability.

The data shows a trend that success rates remain consistently high for smaller message sizes

35

Figure 3.11: Packet transmission success rate for each Hop with 5 Subscriber with varying payloads.

Figure 3.12: Packet transmission success rate for each Hop with 10 Subscribers with varying pay-
loads.

36

regardless of the number of hops. However, as we surpass the 16kB threshold, we start to see a drop

in success rates, especially with larger payloads.

For setups with 1 Subscriber/LAN, smaller payloads have perfect success rates regardless

of hop count. As payload sizes increase, success rates decrease noticeably, particularly in the 64kB

to 512kB range. For setups with 5 Subscribers/LAN, a similar pattern emerges. The dropoff is

more abrupt. Multiple hops further amplify this decline, indicating challenges in handling larger

payloads across various network segments. With 10 Subscribers/LAN, the impact of payload sizes

becomes more evident as the success rates decrease significantly as the payloads increase. The

scenario involving 3 hops shows a notable effect on transmission reliability.

The relationship between the number of hops, payload size, and packet success rates high-

lights the difficulties in maintaining communication across extensive networks. The consistently

high success rates for messages indicate an efficient system under lighter workloads. However, the

significant drop in success rates for messages suggests strain on potential limitations in the current

DDS transport setup.

This observed pattern calls for an examination of network resource allocation buffer sizes,

message queue management, and transport protocols to pinpoint and address packet loss causes.

These improvements are essential for applications where large payloads and extensive networks

across expansive robotic operations.

Recognizing and resolving these challenges is crucial, for advancing DDS-based systems to

ensure they can effectively handle the demands of modern communication networks. These insights

will inform optimizations that enhance DDS’s resilience and effectiveness in meeting increasing data

needs.

3.2.4 Processing times for Repeaters

This section goes over the processing duration at the repeater nodes. We calculated the

mean sum of the processing times for each repeater, which reflects the interval required to accept a

published message, strip its original topic header, and then broadcast it under a new topic with the

corresponding payload and timestamp from the original publisher. The provided figures highlight

a stark escalation in processing times correlating with increasing payload sizes, potentially creating

significant delays within the system. As we introduce additional repeaters, the cumulative processing

time extends further due to each repeater’s need to modify the topic header for its respective network.

37

Figure 3.13: Latency analysis of 1 Subscriber comparing different QoS policies.

These findings point to a considerable processing bottleneck impacting the efficiency of our ROS 2

nodes.

3.2.5 Discussions of Results:

The extensive tests we conducted in our network setup provided an insight into performance

concerning data size. While our testing setup with hops did cause some delays, the network resilience

stood out, especially considering the security measures like key exchange authentication that had

minimal impact on the overall performance of the ROS nodes. However, when it came to transmitting

data loads, we noticed a significant impact on network efficiency. This highlights limitations within

the Fast DDS system, particularly its default message size limit of 64kB which aligns with standard

TCP/UDP payload sizes [13].

The reasons behind the observed drop in performance seem to stem from two issues. Firstly

there’s a concern about network packet loss due to socket buffer overflow. When the amount of

data being transmitted reaches capacity and saturates the buffer packets are dropped, creating a

bottleneck. This is most noticeable at the repeater node, where the buffer has to handle a surge of

RTPS messages from the publisher node, resulting in decreased throughput and success rate.

Secondly, as data sizes surpass the Maximum Transmission Unit (MTU) of the underlying

38

Figure 3.14: Latency analysis of 1 Subscriber comparing different QoS policies.

Figure 3.15: Latency analysis of 1 Subscriber comparing different QoS policies.

39

Figure 3.16: UDP fragmentation on the DDS level from [34].

network IP level fragmentation becomes an issue. When data gets broken up, the system uses a

buffer to keep the pieces until the entire message can be put back together into UDP datagrams so

the DDS level can process [30]. If this process is not met in the timeframe set in the QoS policy

’lifespan’ then the message will be dropped [4]. Also, this process of putting things back is both

demanding on resources and fragile; and if an IP fragment is lost, then the NIC cannot reassemble

the UDP packet, and the DDS payload will be lost[13] [34].

This vulnerability to losing packets is clearly seen in our test results. As we increased the

payload sizes there was a drop in successful packet transmission rates. This pattern aligns with the

idea that larger payloads are more likely to break into fragments and face the risk of losing those

fragments.

Based on these findings it appears that DDS based systems may need two strategies to

maintain high performance when dealing with large amounts of data especially in secure scenarios.

On one hand adjustments, in the DDS setup should be considered, like increasing socket buffer size

and tuning message size settings. On the hand effective management of IP level fragmentation is

crucial; this could involve using advanced QoS mechanisms to ensure that large fragmented payloads

are delivered intact and reliably.

In summary, this research highlights the significance of optimizing systems when expanding

DDS-based communication networks. Tackling the issues of buffer control and IP fragmentation is

essential to guaranteeing the reliability of DDS systems in managing data loads, especially crucial

in intricate distributed systems across multiple networks.

40

3.3 Fine Tuning DDS Transmitting Large Data Loads in

ROS 2

In the section, we found that our network setup, with standard Quality of Service (QoS)

rules and security measures, effectively handles data packets of up to 32kB. However, this setup

struggles when dealing with expanded subscriber memory buffers, resulting in more than optimal

performance. This situation calls for a transport protocol to ensure smooth packet delivery across

network stages.

We focus on improving our data transmission approach to manage packet sizes more effi-

ciently. We suggest a customized DDS QoS setup aimed at enlarging the buffer and switching our

transport protocol from UDP to TCP. This change is intended to enhance delivery reliability and

reduce delays associated with larger data loads.

Additionally, we plan to adjust the message sizes at the DDS layer as a proactive step to

avoid IP fragmentation issues that can arise when payloads surpass the MTU limit, especially in

Ethernet networks, while also taking in mind the security overhead for RTPS must included for each

packet. By tweaking these settings our goal is to establish a robust and effective network structure

capable of meeting the demands of modern distributed systems where handling large data loads is

increasingly common.

3.3.1 Experiment setup

In our efforts to strengthen our network’s ability to manage extensive data transfers, we have

refined our experimental configuration to concentrate solely on optimizing the transmission of large

payloads. Similar to setups, our network spans across multiple points, but this time around, the key

focus is on skillfully applying Quality of Service (QoS) policies and utilizing strategic configurations

derived from FastDDS capabilities for handling large data exchanges [14].

In this test run, we go into fine-tuning the QoS parameters by carefully tailoring each ROS

2 node’s policies to ensure smooth operational performance. We lost the first couple of messages

by selecting a best effort durability setting to streamline processes within the somewhat slower

TCP transport but decreases message delay. Additionally, we set a ten-second deadline for message

delivery to prevent messages from being dropped due to potential buffer congestion.

To improve how the transport layer manages data loads, we activated Fast DDSs large data

41

mode, a feature that provides various adjustments aimed at facilitating the seamless transfer of

sizable datasets. This mode allows for flow control between an asynchronous publisher and its

subscribers to avoid traffic congestion at the read and write buffers [15][30]. This mode plays a role,

in overcoming standard message size limitations and steering clear of fragmentation issues that often

arise when handling robust data streams.

We started by adjusting the max msg size parameter from 1MB to 2MB to avoid message

fragmentation and ensure that complete messages fit within this size limit. At the time, we increased

the socket size first to 2MB and then to 4MB making sure that this buffer could handle messages

larger than the maximum size thus preventing buffer overflow. Additionally, we enabled blocking

sockets by setting the non blocking parameter to true in our setup. This decision was intentional;

although it does pose a risk of losing messages when buffers are full, it helps maintain data flow

without causing the application to hang, prioritizing continuous data transfer over absolute reliability

[14]. Lastly, we established a tcp negotiation timeout of 50 seconds. This setting ensures that

the logical port is ready before starting data transmission reducing the chances of losing messages

during the negotiation phase. However, this extended timeout may lead to delays in the discovery

process while enhancing reliability, when best effort reliability is active.

By increasing message and socket buffer sizes and implementing blocking sockets our con-

figuration is optimized to take advantage of TCP transport capabilities. This setup aims to provide

a transmission experience similar to streaming videos, where seamless delivery is key. In making

tweaks to our DDS configuration, we aim to shape a network structure that can not just handle but

excel in meeting the challenges posed by high-volume data transmission requirements.

3.3.2 Latency analysis

The experiment to optimize network robustness while maintaining security integrity often

leads to an intricate balance, particularly when scaling payload sizes. Our recent experiments delved

into the latency implications of transmitting increasingly larger payloads across a ROS 2 network

using TCP. This setup, inherently demanding Acknowledgments (ACKs) from subscribers, unveiled

a tangible deceleration in message delivery times, spotlighting the trade-offs when prioritizing secure

and reliable data transmission.

Figures 3.17 and 3.18 show the latency disparities across scenarios with one subscriber per

LAN and ten subscribers per LAN, respectively. The experiments, designed to explore the bounds

42

Figure 3.17: Latency analysis of 1 Subscriber comparing different QoS policies.

of Fast DDS’s large data mode, show latency landscape as payloads expand from 64kB to 1MB.

This analysis reveals a pronounced latency increase, especially at payload thresholds where TCP’s

reliability checks—in the form of ACKs introduce a significant overhead. The result of the delay

scales in relation to the message size, with the largest payloads incurring up to fourfold increases

in latency. This observation underscores the inherent latency cost that comes with the assurance

of TCP’s delivery guarantees, a cost that becomes more acute as the payload size crosses certain

thresholds.

With a single subscriber, the system maintains a relatively stable latency profile until pay-

loads exceed the 256kB mark. Beyond this point, we observe a steep incline in latency, reflective

of the system’s strain under heftier data burdens. As we introduce more subscribers, the latency

impact magnifies, as evidenced by the inflection points in Figure 3.14.

43

Figure 3.18: Latency analysis of 10 Subscribers comparing different QoS policies.

3.3.3 Throughput analysis

In our efforts to enhance the communication setup in ROS 2 for handling data transfers, we

concentrated on boosting the network node’s capacity for throughput. The test results indicate an

enhancement in maintaining throughput even when we increased the testing data sizes to 1 MB. This

can be seen in Figures 3.19 and 3.20, where the throughput with default message sizes drops below

10 kB/s after reaching the 512 kB payload threshold. On the hand using large data modes has

proved effective in keeping a steady throughput of around 30 kB/s even with hefty 1 MB payloads.

The significant stability in performance achieved through employing large data modes can

be mainly attributed to their ability to prevent overwhelming the repeaters receive buffer. When

this buffer gets overloaded it results in dropped packets, a challenge effectively handled by using

large data configurations. As a result, it ensures that our ’deadline best effort QoS policy

is maintained intact guaranteeing dependable throughputs throughout the network. This crucial

aspect of network performance highlights the usefulness of

44

Chapter 4

Conclusions and Discussion

This chapter summarizes the achievements and core objectives outlined in this thesis. The

most important was the analysis of ROS 2 security performance across varied network domains,

with the ultimate goal of developing a network architecture reflective of real-world autonomous

system applications. Leveraging the inherent DDS framework, we established interconnected net-

work segments, facilitating seamless communication and data relay across active ports within the

FABRIC testbed environment. This strategic setup enabled a critical evaluation of ROS’s network

performance under a spectrum of payload conditions.

Custom ROS nodes were crafted and deployed, serving as testbeds to evaluate and refine

Quality of Service (QoS) policies, thereby enhancing network efficiency. The investigation further

delved into the limitations posed by ROS 2’s default UDP protocol when handling substantial

payload sizes, leading to the discovery and implementation of alternatives that markedly bolstered

network robustness. The enhancements were tested against different scenarios, simulating conditions

in which ROS 2 mechanisms/networks that would be best fitted for battlefield conditions, thus

ensuring the developed system’s reliability and readiness for high-stakes deployment.

4.1 ROS 2 Security Considerations

The results of our first batch of testing revealed the effects between payload sizes and

network performance for ROS 2 systems, particularly the limitation of the 64kB and above which is

inherent to UDP datagrams. This limit became a pivotal point, above which the data fragmentation

45

due to Ethernet’s MTU limitations precipitated a marked degradation in throughput, latency, and

packet success rates. Considering this reason, we address the bottlenecks by being able to handle

payload sizes bigger than 64kB by implementing large datamode that uses TCP. This enhancement

showcases its proficiency in ensuring data integrity through improved flow control mechanisms. This

switch to TCP effectively mitigated the packet loss and maintained consistent throughput across

varied payload sizes. However, it introduced increased latency, as the protocol’s dependence on

acknowledgment receipts from subscribers inherently slows down the data transmission process.

The findings we discovered have implications for future works as well. First, they show the

balance between data accuracy and speed, especially when dealing with large amounts of information

which becomes more crucial as autonomous systems become more complex. Secondly, our results

provide insights for designing networks in ROS 2 emphasizing the importance of effectively managing

flow control to meet different performance needs.

Moreover, it’s essential to consider the roles of TCP and UDP protocols in ROS 2 systems.

Unlike ROS 1 that depended on a ROS master for discovery the large data feature in ROS 2

maintains an automatic and decentralized discovery process while benefiting from TCP’s reliability

without sacrificing server endpoint transparency.

However, this feature isn’t activated by default because of reasons we will discuss. One

key consideration is ensuring compatibility with DDS based RMWs—an essential aspect of ROS 2s

adaptability. Also UDPs real-time responsiveness remains critical for a range of applications within

and beyond robotics. The capability to send data samples over potentially unreliable networks

without excessive overhead marks a significant advancement, for ROS 2. However the effectiveness

of this function depends on the application it is used for. Choosing between TCP and UDP should

be based on the needs and goals of each project.

As a result, while this study shows that TCP improves the reliability of transmitting amounts

of data it also highlights the importance of UDP in situations where real-time data sharing is

crucial. The discussion in the ROS community should acknowledge the roles played by both protocols

allowing for a more adaptable and resilient network structure, within ROS 2 environments.

46

4.2 Future Works

As our analysis has laid the groundwork for understanding ROS 2 system performance, the

next logical step is to integrate real-time data from autonomous aerial and ground vehicles. This

integration will not only test the effectiveness of our established policies but also edge us closer to

realizing a secure DDS network capable of simulating a variety of threat scenarios, including DDoS

and other forms of cyber-attacks. The resilience and responsiveness of ROS fleets to such adversities

remain a critical area for future research.

Additionally, we must explore and create the blend use of UDP and TCP protocols within

ROS 2 to optimize network performance. Envision a hybrid network where UDP’s immediacy

benefits local domain communications, while TCP ensures the integrity of extensive data transmitted

across multiple domains, preserving every critical frame from loss.

Presently, the DDS specification doesn’t allow different QoS policies for separate topics

within ROS, a limitation that constrains the adaptability of data transfer. This represents a signifi-

cant opportunity for enhancement. By developing a system that supports dual QoS policies tailored

to the specific needs of each data topic, we can significantly enhance the DDS layer’s flexibility. Such

an advancement would permit simultaneous execution of real-time operations and reliable large-scale

data transmission, heralding a new era of robustness and versatility in multi-hop DDS networks.

47

Appendices

48

Appendix A ROS 2 custom talker with Custom QoS.

#include <chrono>

#include <cstdio>

#include <memory>

#include <sstream>

#include <string>

#include "rclcpp/rclcpp.hpp"

#include "std_msgs/msg/string.hpp"

class CustomTalker : public rclcpp::Node {

public:

CustomTalker(const std::string & topic_name, int payload_size_kb)

: Node("custom_talker"), topic_name_(topic_name), payload_size_kb_(payload_size_kb), total_bytes_sent_(0), start_time_(std::chrono::steady_clock::now()), i_(0) {

// Define custom QoS profile for the publisher

auto custom_qos = rclcpp::QoS(rclcpp::KeepLast(10)).best_effort().durability_volatile().deadline(std::chrono::milliseconds(10000)); // Adjust to match the subscriber’s QoS

// Initialize the publisher with custom QoS

publisher_ = this->create_publisher<std_msgs::msg::String>(topic_name_, custom_qos);

timer_ = this->create_wall_timer(

std::chrono::milliseconds(500),

[this]() { publish_message(); });

}

~CustomTalker() {

auto end_time = std::chrono::steady_clock::now();

std::chrono::duration<double> elapsed_seconds = end_time - start_time_;

double throughput = total_bytes_sent_ / elapsed_seconds.count();

RCLCPP_INFO(this->get_logger(), "Total Messages Published: %d, Total Bytes Sent: %ld, Elapsed Time: %f seconds, Throughput: %f Bytes/sec",

i_, total_bytes_sent_, elapsed_seconds.count(), throughput);

49

}

private:

void publish_message() {

auto now = std::chrono::system_clock::now();

auto timestamp = std::chrono::duration_cast<std::chrono::milliseconds>(now.time_since_epoch()).count();

int payload_size_bytes = payload_size_kb_ * 1024;

total_bytes_sent_ += payload_size_bytes;

std::string payload(payload_size_bytes, ’a’);

std_msgs::msg::String message;

message.data = "Seq: " + std::to_string(i_) + ", Time: " + std::to_string(timestamp) + ", " + payload;

publisher_->publish(message);

RCLCPP_INFO(this->get_logger(), "%s Publishing sequence %d with timestamp %ld and payload size %d bytes",

topic_name_.c_str(), i_, timestamp, payload_size_bytes);

i_++;

}

rclcpp::Publisher<std_msgs::msg::String>::SharedPtr publisher_;

rclcpp::TimerBase::SharedPtr timer_;

std::string topic_name_;

int payload_size_kb_;

long total_bytes_sent_;

std::chrono::steady_clock::time_point start_time_;

int i_;

};

50

int main(int argc, char * argv[]) {

rclcpp::init(argc, argv);

if (argc < 3) {

std::cerr << "Usage: ./custom_talker <topic_name> <payload_size_kb>" << std::endl;

return 1;

}

std::string topic_name = argv[1];

int payload_size_kb = std::stoi(argv[2]);

auto node = std::make_shared<CustomTalker>(topic_name, payload_size_kb);

rclcpp::spin(node);

rclcpp::shutdown();

return 0;

}

51

Appendix B ROS 2 Repeater Code with Custom QoS

#include <chrono>

#include <memory>

#include <string>

#include "rclcpp/rclcpp.hpp"

#include "std_msgs/msg/string.hpp"

class RepeaterNode : public rclcpp::Node {

public:

RepeaterNode(const std::string& subscription_topic, const std::string& publication_topic)

: Node("repeater_node"), total_bytes_processed_(0), start_time_(std::chrono::steady_clock::now()), total_processing_time_ms_(0.0), message_count_(0) {

// Define custom QoS profile for both subscription and publisher with BEST_EFFORT reliability

auto custom_qos = rclcpp::QoS(rclcpp::KeepLast(10)).best_effort().durability_volatile().deadline(std::chrono::milliseconds(10000)); // Adjust these settings as needed

// Subscribe with custom QoS

subscription_ = this->create_subscription<std_msgs::msg::String>(

subscription_topic,

custom_qos,

[this, subscription_topic](const std_msgs::msg::String::SharedPtr msg) {

auto receive_time = std::chrono::steady_clock::now();

size_t msg_size = msg->data.length();

total_bytes_processed_ += msg_size;

// Repeat (publish) the message with the same QoS

publisher_->publish(*msg);

auto publish_time = std::chrono::steady_clock::now();

std::chrono::duration<double, std::milli> processing_time = publish_time - receive_time;

total_processing_time_ms_ += processing_time.count();

message_count_++;

52

// Log for each message; consider removing or modifying for high throughput scenarios

RCLCPP_INFO(this->get_logger(), "Received %zu bytes from %s and processed in %f ms",

msg_size, subscription_topic.c_str(), processing_time.count());

});

// Initialize the publisher with custom QoS

publisher_ = this->create_publisher<std_msgs::msg::String>(publication_topic, custom_qos);

}

~RepeaterNode() {

auto end_time = std::chrono::steady_clock::now();

std::chrono::duration<double> elapsed_seconds = end_time - start_time_;

double throughput = total_bytes_processed_ / elapsed_seconds.count(); // Bytes per second

double average_processing_time_ms = message_count_ > 0 ? total_processing_time_ms_ / message_count_ : 0.0;

RCLCPP_INFO(this->get_logger(), "Total Bytes Processed: %ld, Elapsed Time: %f seconds, Throughput: %f Bytes/sec, Average Processing Time: %f ms per message",

total_bytes_processed_, elapsed_seconds.count(), throughput, average_processing_time_ms);

}

private:

rclcpp::Subscription<std_msgs::msg::String>::SharedPtr subscription_;

rclcpp::Publisher<std_msgs::msg::String>::SharedPtr publisher_;

long total_bytes_processed_;

std::chrono::steady_clock::time_point start_time_;

double total_processing_time_ms_; // Total processing time in milliseconds

long message_count_; // Number of messages processed

};

int main(int argc, char * argv[]) {

rclcpp::init(argc, argv);

53

if (argc < 3) {

RCLCPP_ERROR(rclcpp::get_logger("rclcpp"), "Usage: repeater <subscription_topic> <publication_topic>");

return 1;

}

auto node = std::make_shared<RepeaterNode>(argv[1], argv[2]);

rclcpp::spin(node);

rclcpp::shutdown();

return 0;

}

54

Appendix C ROS 2 custom listener with Custom QoS.

#include <chrono>

#include <iostream>

#include <memory>

#include <sstream>

#include "rclcpp/rclcpp.hpp"

#include "std_msgs/msg/string.hpp"

class CustomListener : public rclcpp::Node {

public:

CustomListener(const std::string& topic_name)

: Node("custom_listener"),

topic_name_(topic_name),

total_bytes_received_(0),

total_delay_ms_(0),

message_count_(0),

start_time_(std::chrono::steady_clock::now()) {

// Define custom QoS profile for the subscription

auto custom_qos = rclcpp::QoS(rclcpp::KeepLast(10)).best_effort().durability_volatile().deadline(std::chrono::milliseconds(10000)); // Adjust these settings as needed

// Subscribe with custom QoS

subscription_ = this->create_subscription<std_msgs::msg::String>(

topic_name_,

custom_qos,

[this](const std_msgs::msg::String::SharedPtr msg) {

auto receipt_time = std::chrono::system_clock::now();

auto receipt_timestamp = std::chrono::duration_cast<std::chrono::milliseconds>(

receipt_time.time_since_epoch()).count();

std::istringstream message_stream(msg->data);

55

std::string part;

long sent_sequence_num = 0;

std::getline(message_stream, part, ’,’); // Extract sequence number

sscanf(part.c_str(), "Seq: %ld", &sent_sequence_num);

long sent_timestamp = 0;

std::getline(message_stream, part, ’,’); // Extract sent timestamp

sscanf(part.c_str(), " Time: %ld", &sent_timestamp);

long delay_ms = receipt_timestamp - sent_timestamp;

total_delay_ms_ += delay_ms; // Accumulate delay

message_count_++; // Increment message count

total_bytes_received_ += msg->data.length(); // Update total bytes received

RCLCPP_INFO(this->get_logger(), "Listening: Received message with Seq. Num %ld, Delay: %ld ms, Total Bytes Received: %ld",

sent_sequence_num, delay_ms, total_bytes_received_);

});

}

~CustomListener() {

auto end_time = std::chrono::steady_clock::now();

std::chrono::duration<double> elapsed_seconds = end_time - start_time_;

double average_delay_ms = message_count_ > 0 ? static_cast<double>(total_delay_ms_) / message_count_ : 0;

double throughput = total_bytes_received_ / elapsed_seconds.count(); // Bytes per second

RCLCPP_INFO(this->get_logger(), "Session ended. Total Messages Received: %d, Average Delay: %f ms, Total Bytes Received: %ld, Throughput: %f Bytes/sec",

message_count_, average_delay_ms, total_bytes_received_, throughput);

}

private:

rclcpp::Subscription<std_msgs::msg::String>::SharedPtr subscription_;

std::string topic_name_;

56

std::chrono::steady_clock::time_point start_time_;

long total_bytes_received_;

long total_delay_ms_; // Accumulated total delay in milliseconds

int message_count_; // Number of messages received

};

int main(int argc, char * argv[]) {

rclcpp::init(argc, argv);

if (argc < 2) {

std::cerr << "Usage: custom_listener <topic_name>" << std::endl;

return 1;

}

std::string topic_name = argv[1];

auto node = std::make_shared<CustomListener>(topic_name);

rclcpp::spin(node);

rclcpp::shutdown();

return 0;

}

57

Bibliography

[1] Recommendation x.500. Technical report, International Telecommunication Union, Nov 1988.

[2] Recommendation x.509. Technical report, International Telecommunication Union, Nov 1988.

[3] Websites using ssl by default, Dec 2023. URL or organization details if available.

[4] About Quality of Service Settings. https://docs.ros.org/en/iron/Concepts/

Intermediate/About-Quality-of-Service-Settings.html, 2024. Accessed: 2024-03-
31.

[5] D. Axe. Ukrainian marines hacked a russian drone to locate its base—then blew up the base
with artillery, Nov 2023. Accessed: insert date of access.

[6] Ivan Baldin, Andy Nikolich, Jim Griffioen, Inder Monga, Kuang-Ching Wang, Tom Lehman,
and Paul Ruth. FABRIC: A national-scale programmable experimental network infrastructure.
IEEE Internet Computing, 23(6):38–47, 2019.

[7] E. Barker. Guideline for Using Cryptographic Standards in the Federal Government: Cryp-
tographic Mechanisms. National Institute of Standards and Technology, Gaithersburg, MD
20899-8930, Mar 2020. Federal Information Processing Standards Publication 46.

[8] S. Berkovits, S. Chokhani, J. Furlong, J. Geiter, and J. Guild. Public key infrastructure (final
report). Technical report, National Institute of Standards and Technology, Gaithersburg, MD,
Apr 1994. Federal Information Processing.

[9] J. Daemen and V. Rijmen. Aes proposal: Rijndael. Technical report, 1999.

[10] Department of Defense. Unmanned systems integrated roadmap: 2017–2042. https://www.

defensedaily.com/wp-content/uploads/post_attachment/206477.pdf, n.d. Accessed: in-
sert date of access.

[11] W. Diffie and M. Hellman. New directions in cryptography. IEEE Transactions on Information
Theory, 22(6):644–654, 1976.

[12] V. Diluoffo, W.R. Michalson, and B. Sunar. Robot operating system 2: The need for a holistic
security approach to robotic architectures. International Journal of Advanced Robotic Systems,
15(3):1–15, 2018.

[13] eProsima. Handling large data with fast dds. https://fast-dds.docs.eprosima.com/en/

latest/fastdds/use_cases/large_data/large_data.html, 2021. Accessed: 2023-03-31.

[14] eProsima. Tcp transport use case - large data. https://fast-dds.docs.eprosima.com/

en/latest/fastdds/use_cases/tcp/tcp_large_data_with_options.html, 2021. Accessed:
2023-04-01.

58

https://docs.ros.org/en/iron/Concepts/Intermediate/About-Quality-of-Service-Settings.html
https://docs.ros.org/en/iron/Concepts/Intermediate/About-Quality-of-Service-Settings.html
https://www.defensedaily.com/wp-content/uploads/post_attachment/206477.pdf
https://www.defensedaily.com/wp-content/uploads/post_attachment/206477.pdf
https://fast-dds.docs.eprosima.com/en/latest/fastdds/use_cases/large_data/large_data.html
https://fast-dds.docs.eprosima.com/en/latest/fastdds/use_cases/large_data/large_data.html
https://fast-dds.docs.eprosima.com/en/latest/fastdds/use_cases/tcp/tcp_large_data_with_options.html
https://fast-dds.docs.eprosima.com/en/latest/fastdds/use_cases/tcp/tcp_large_data_with_options.html

[15] eProsima. Large data. https://fast-dds.docs.eprosima.com/en/latest/fastdds/use_

cases/large_data/large_data.html#flow-controllers, 2023. Accessed: 2023-09-27.

[16] eProsima. Fast dds discovery documentation. https://fast-dds.docs.eprosima.com/en/

latest/fastdds/discovery/discovery.html, 2024. Accessed: 2024-3-15.

[17] eProsima Fast DDS. Ros 2 integration. https://fast-dds.docs.eprosima.com/en/latest/
fastdds/ros2/ros2.html, 2024. Accessed: 2024-02-28.

[18] Horst Feistel. Cryptographic coding for data-bank privacy. Technical Report RC2827, IBM
Thomas J. Watson Research Center, Yorktown Heights, New York, Mar 1970.

[19] J. Fernandez, B. Allen, P. Thulasiraman, and B. Bingham. Performance study of the robot
operating system 2 with qos and cyber security settings. In 2020 IEEE International Systems
Conference (SysCon), pages 1–6, 2020.

[20] W. Ford. Public-key infrastructure interoperation. In 1998 IEEE Aerospace Conference Pro-
ceedings, volume 4, pages 329–333, 1998.

[21] Kyu haeng Lee, Chong kwon Kim, Kyeong Tae Kim, and Won tae Kim. Router design for dds:
Architecture and performance evaluation. In 2014 International Conference on Big Data and
Smart Computing (BIGCOMP), pages 250–254, 2014.

[22] E. Hansen. Analysis of design for implementing confidentiality, integrity, authentication, and
non-repudiation solutions. SANS Institute, Jun 2003.

[23] Martin E Hellman and Whitfield Diffie. Special feature exhaustive cryptanalysis of the nbs data
encryption standard. Computer, 10(6):74–84, Jun 1977.

[24] L. M. Kohnfelder. Towards a practical public-key cryptosystem. Master’s thesis, MIT, May
1978.

[25] Yuya Maruyama, Shinpei Kato, and Takuya Azumi. Exploring the performance of ros2. In
Proceedings of the 13th International Conference on Embedded Software, EMSOFT ’16, New
York, NY, USA, 2016. Association for Computing Machinery.

[26] Object Management Group (OMG). Dds security, version 1.1. Technical report, Object Man-
agement Group, April 2018. OMG Document Number: formal/2018-04-01.

[27] National Bureau of Standards. Data encryption standard. Technical Report FIPS PUB 46,
National Technical Information Service, U.S. Department of Commerce, Springfield, Virginia
22161, Jan 1977.

[28] Open Robotics. Intrinsic acquires osrc and osrc sg. https://www.openrobotics.org/blog/

2022/12/15/intrinsic-acquires-osrc-and-osrc-sg, 12 2022. Accessed: 2024-02-28.

[29] G. Pardo and R. White. Leveraging dds security in ros2. In Presented at ROSCon 2018, 2018.

[30] Real-Time Innovations. Large Data and Fragmentation. Real-Time Innovations, 7.2.0 edition,
February 2022. Accessed: 2023-03-31.

[31] ROS Documentation. About logging. https://docs.ros.org/en/rolling/Concepts/

Intermediate/About-Logging.html, 2022. Accessed: 2024-02-28.

[32] ROS Industrial. Ros industrial. https://wiki.ros.org/Industrial, 2024. Accessed: 2024-
02-28.

[33] ROS Military. Ros military. https://rosmilitary.org/, 2024. Accessed: 2024-02-28.

59

https://fast-dds.docs.eprosima.com/en/latest/fastdds/use_cases/large_data/large_data.html#flow-controllers
https://fast-dds.docs.eprosima.com/en/latest/fastdds/use_cases/large_data/large_data.html#flow-controllers
https://fast-dds.docs.eprosima.com/en/latest/fastdds/discovery/discovery.html
https://fast-dds.docs.eprosima.com/en/latest/fastdds/discovery/discovery.html
https://fast-dds.docs.eprosima.com/en/latest/fastdds/ros2/ros2.html
https://fast-dds.docs.eprosima.com/en/latest/fastdds/ros2/ros2.html
https://www.openrobotics.org/blog/2022/12/15/intrinsic-acquires-osrc-and-osrc-sg
https://www.openrobotics.org/blog/2022/12/15/intrinsic-acquires-osrc-and-osrc-sg
https://docs.ros.org/en/rolling/Concepts/Intermediate/About-Logging.html
https://docs.ros.org/en/rolling/Concepts/Intermediate/About-Logging.html
https://wiki.ros.org/Industrial
https://rosmilitary.org/

[34] RTI. Who is chopping my application data and why should i care?, July 2017. Accessed: [Insert
access date here].

[35] Paul Ruth, Ivan Baldin, Koustubh Thareja, Tom Lehman, X. Yang, and Ezra Kissel. Fabric
network service model. In 2022 IFIP Networking Conference (IFIP Networking), pages 1–6,
2022.

[36] S. Sandoval and P. Thulasiraman. Cyber security assessment of the robot operating system 2
for aerial networks. In Proc. of IEEE International Systems Conference (SYSCON), 2019.

[37] J. L. Smith. The design of lucifer, a cryptographic device for data communications. Technical
Report RC3326, IBM Thomas J. Watson Research Center, Yorktown Heights, New York, Apr
1971.

[38] A. Sorkin. Lucifer, a cryptographic algorithm. Cryptologia, 8(1):22–42, 1984.

[39] Kai Weng Wong and Hadas Kress-Gazit. From high-level task specification to robot operat-
ing system (ros) implementation. In 2017 First IEEE International Conference on Robotic
Computing (IRC), pages 188–195, 2017.

60

	Multi-Domain Secure DDS Networks for Aerial and Ground Vehicle Communications
	Recommended Citation

	Title Page
	Abstract
	Dedication
	Acknowledgments
	List of Tables
	List of Figures
	Introduction
	Robot Operating System (ROS)
	ROS2 and Data Distributive Systems
	ROS 2 Security
	RTPS secure submessage
	DDS Routing via ROS 2
	Contributions

	Related Work
	Background
	Performance of Robot Operating System 2 with QoS and Cyber Security Configurations
	Router Design for DDS: Architechture and performance evaluation

	Multi-Hop SROS Analysis
	Network Topology and Set-up
	ROS 2 security results
	Fine Tuning DDS Transmitting Large Data Loads in ROS 2

	Conclusions and Discussion
	ROS 2 Security Considerations
	Future Works

	Appendices
	ROS 2 custom talker with Custom QoS.
	ROS 2 Repeater Code with Custom QoS
	ROS 2 custom listener with Custom QoS.

	Bibliography

