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Abstract

Given a tree T and a field k, we define the open neighborhood ideal N(T )

of T in k[V ] to be the ideal generated by the open neighborhoods of all vertices

in the graph. If T is unmixed with respect to the total domination problem, then

it is known that N(T ) is Cohen-Macaulay. Our goal is to compute the (Cohen-

Macaulay) type of k[V ]/N(T ) using graph theoretical properties of T . We achieve

this by using homological algebra and properties of monomial ideals. Along the way,

we also provide a different characterization of unmixed trees and a generalization of

the total dominating problem with the corresponding decomposition theorem.
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Chapter 1

Introduction

Combinatorial Commutative Algebra is a branch of mathematics that uses

combinatorics and graph theory to understand algebraic constructions. Consider a

polynomial ring R = k[X1, . . . , Xd] over some field k with d variables. Given an ideal

I ≤ R whose generators are monomials, we want to understand properties of the

quotient ring R/I. Specifically, we can ask questions like “how can I be written as

an intersection of irreducible ideals in R just like the prime factorization of integers,”

and “how do various types of algebraic invariants change when we modify I.” One

way to study these ideals is by realizing a combinatorial structure that hides in R and

R/I. It is not hard to see that the set of all monomials in R with a partial ordering

defined by division (for monomials f and g in R, f < g if and only if f divides g)

forms a poset; let’s denote this poset by (P,<). Hence the monomials in the ideal

I can be viewed as a subposet (PI , <) of (P,<), whose minimal elements are the

minimal monomial generators of I. In particular, the monomials in R/I correspond

to the monomials in P that are not in PI .

Much is known when the monomial generators of I are squarefree, using sim-

plicial complexes. A simplicial complex on the set V := {X1, . . . , Xd} is a nonempty
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collection of subsets of V that is closed under the subset relation ⊆. Treating each

squarefree monomial as a subset of V (for instance, the monomial X1X2X4 corre-

sponds to the set {X1, X2, X4}), the set P \PI restricted to the squarefree monomials

gives a simplicial complex. In fact, there is a one-to-one correspondence between the

squarefree monomial ideals of R and the simplicial complexes on V . This intuition

gave rise to Stanley-Reisner theory and many properties of R/I have been studied

this way. For instance, the irreducible decomposition of I can be explicitly given in

terms of the facets (i.e., the maximal elements) of the simplicial complex.

In this thesis, we study squarefree monomial ideals from a slightly different

approach. Instead of simplicial complexes, we use finite simple graphs. Given a graph

G = (V,E) with the vertex set V defined as before, we define the open neighborhood

ideal of G denoted N(G) to be the ideal generated by the open neighborhoods of each

vertex in G. The ideal N(G) is a squarefree monomial ideal of R. The decomposition

of N(G) can be computed directly from G by solving the total domination problem

for G [7, Theorem 4.1.5]. Also, in the case when every minimal solution for the total

dominating problem has the same size (such graphs are called domination-unmixed),

if G is a tree, then N(G) is Cohen-Macaulay [7, Theorem 4.3.14].

The goal of this thesis is to compute one of the algebraic invariants called

the (Cohen-Macaulay) type of the quotient R/N(G) if G is an unmixed tree. The

type of N(G) is a measure of the complexity of N(G). More specifically, it measures

the number of ideals in the irreducible decomposition of the image of N(G) in an

appropriate quotient ring of R. We achieve our goal in Theorem 3.3.9 below, where

we show that the computation of this algebraic invariant only requires the graph

theoretic properties of G. In Chapter 2, we provide some definitions and preliminary

results from homological algebra, commutative algebra, and graph theory that are

used in the proof of our main result.
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Chapter 2

Main Definitions and Background

In this chapter, we give the necessary background to prove the main results in

Chapter 3. Most of the definitions and facts in the following sections are from [10],

[11], [12], [13], and [14].

Conventions throughout this thesis. Let R be a commutative ring with identity,

and let M be an R-module. Let I ⊆ R be an ideal; signified as I ≤ R. Assume that

N := {1, 2, 3, . . . }, and N0 := N ∪ {0}. For n ∈ N, set [n] := {1, 2, . . . , n}. Given

S ⊆ R, we denote the ideal generated by S in R by (S)R, or simply ⟨S⟩ if the ring

is clear from context. If the elements are given explicitly, say f1, . . . , fn, we write

(f1, . . . , fn)R instead of ({f1, . . . , fn})R. Similarly, we write ⟨f1, . . . , fn⟩ instead of

⟨{f1, . . . , fn}⟩. For a given set S, we denote the power set of S by 2S. The ideal

generated by the empty set is just the zero ideal; i.e., ⟨∅⟩ = 0. Given I ≤ R and

f ∈ R, we sometimes use the bar notation f := f + I ∈ R/I.

2.1 Localization and Regular Sequences

In this section, we briefly introduce ‘localization’ and ‘regular sequence.’
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Definition 2.1.1. We say R is local if R has a unique maximal ideal m. The residue

field of R is R/m. The tuples (R,m, k) or (R,m) denote the local ring R with maximal

ideal m and k := R/m.

Given an arbitrary ring R that is not local, we can use ‘localization,’ defined

next, to construct a local ring.

Definition 2.1.2. Let U ⊆ R be a multiplicatively closed set, meaning U is closed

under multiplication and contains 1. Set

U−1M := {equivalence classes of ∼}

where ∼ is the equivalence relation onM×U defined by (m,u) ∼ (n, v) if there exists

w ∈ U such that w(vm − un) = 0. We denote the equivalence class of (m,u) as m
u

or m/u. The localization of M at U is an R-module U−1M with addition and scalar

multiplication defined by

m

u
+
n

v
:=

vm+ un

uv
and r · m

u
:=

rm

u
.

for all r ∈ R, m, n ∈M, u, v ∈ U .

Since R itself is an R-module, we can localize R at U in the same way, equipped

with the multiplication defined by

r

d
· r

′

d′
:=

rr′

dd′

for all r, r′ ∈ R, d, d′ ∈ U . It is straightforward to show that U−1R is also a ring and
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U−1M is a U−1R-module via the multiplication

r

u
· m
v

=
rm

uv
.

Fact 2.1.3. For any prime ideal p ≤ R, the set R \ p is multiplicatively closed.

Notation 2.1.4. Set Mp := (R\p)−1M for any prime ideal p ≤ R. Also, for an ideal

I ≤ R, we denote

IM :=

{
n∑
i=1

rimi : n ∈ N0, ∀i ∈ [n], ri ∈ I and mi ∈M

}
.

If I = ⟨r1, . . . , rn⟩, then write (r1, . . . , rn)M := IM .

Fact 2.1.5 ([3, Proposition 15.38]). Let U be a multiplicatively closed set of R. Then

there is a bijection f

f : {I : I ≤ R, I ∩ U = ∅} →
{
I ′ : I ′ ≤ U−1R

}
given by

f(I) = U−1I :=
{a
b
: a ∈ I, b ∈ U

}
.

By Fact 2.1.5 and Fact 2.1.3, for any prime ideal p ≤ R, the localization Rp

has a unique maximal ideal pp = (R \ p)−1p; hence the process is called localization.

The next result for modules over local rings is used several times below.

Fact 2.1.6 (Nakayama’s lemma [11, Lemma 4.8]). Let (R,m) be a local ring and let

M be a finitely generated R-module. Then the following conditions are equivalent:

(a) M = 0

(b) mM =M
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(c) M/mM = 0 .

Next, we introduce the notion of ‘regular sequences.’ These are used below to

define the ‘depth’ of rings and modules.

Definition 2.1.7. An element r ∈ R is a non-zero divisor on M if m ∈ M and

rm = 0 implies m = 0. Set

NZDR(M) := {r ∈ R : r is a non-zero divisor on M} .

Equivalently, r ∈ R is a non-zero divisor if the multiplication by r map M
·r−−−→ M

is injective.

Definition 2.1.8. An element r ∈ R is M -regular, if

(a) r ∈ NZDR(M) and

(b) rM ̸=M .

A sequence r1, . . . , rn ∈ R is regular on M , or M-regular for short, if

(a) r1 is M -regular, and

(b) ri is
M

(r1,...,ri−1)M
-regular for all i ∈ {2, 3, . . . , n}.

Remark. Note that for r1, . . . , ri ∈ R with i ≥ 2, we have

M

(r1, . . . , ri)M
∼= M/(r1, . . . , ri−1)M

(r1, . . . , ri)M/(r1, . . . , ri−1)M
∼= M/(r1, . . . , ri−1)M

riM/(r1, . . . , ri−1)M

where the first isomorphism follows from the third isomorphism theorem for modules.

Hence riM/(r1, . . . , ri−1)M ̸= M/(r1, . . . , ri−1)M if and only if M/(r1, . . . , ri)M ̸= 0

if and only if M ̸= (r1, . . . , ri)M . This gives the following equivalent definition of

M -regular sequences.
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Fact 2.1.9 ([14, Discussion II.C.5.1.]). The sequence r1, . . . , rn ∈ R is M-regular if

and only if

(a) r1 ∈ NZDR(M),

(b) ri ∈ NZDR(M/(r1, . . . , ri−1)M) for all i ∈ {2, 3, . . . , n}, and

(c) (r1, . . . , rn)M ̸=M .

Remark. Condition (c) in Fact 2.1.9 is automatically satisfied if (R,m) is local,

r1, . . . , rn ∈ m, and M ̸= 0 is finitely generated: by Nakayama’s lemma, we have

(r1, . . . , rn)M ⊆ mM ̸=M since M ̸= 0.

Definition 2.1.10. An M -regular sequence r1, . . . , rn ∈ I ≤ R is maximal in I if for

any rn+1 ∈ I, the sequence r1, . . . , rn, rn+1 is not M -regular.

2.2 Exact Sequences and Projective Modules

In this section, we state some definitions and facts to describe the equivalent

conditions in Fact 2.2.8 to define ‘projective modules.’ This is a preliminary section

for Section 2.3.

Definition 2.2.1. Let M ′ and M ′′ be R-modules. Then a sequence of R-module

homomorphisms

M M ′ M ′′f g

is exact (at M ′) if Im f = Ker g. In general, a sequence of R-module homomorphisms

. . . Mi Mi−1 . . .
di+1 di di−1

is exact if Im di+1 = Ker di for all relevant i.

7



Fact 2.2.2. We have the following facts: Let f : M → M ′ and g : M ′ → M ′′ be

R-module homomorphisms.

(a) A sequence 0 M M ′f
is exact if and only if f is injective.

(b) A sequence M ′ M ′′ 0
g

is exact if and only if g is surjective.

(c) A sequence 0 M M ′ M ′′ 0
f g

is exact if and only if f

is injective, g is surjective, and Im f = Ker g.

Definition 2.2.3. When the sequence in Fact 2.2.2 (c) above is exact, it is called a

short exact sequence.

Fact 2.2.4 (The short five lemma). Given the following commutative diagram of

R-module homomorphisms

0 A B C 0

0 A′ B C ′ 0

f

α

g

β γ

f ′ g′

we have:

(a) If α and γ are injective, so is β.

(b) If α and γ are surjective, so is β.

(c) If α and γ are isomorphisms, so is β.

Definition 2.2.5. Given R-modules A, B, and C, a short exact sequence

0 A B C 0
ψ ϕ

8



is said to be split if there is a commutative diagram

0 A A⊕ C C 0

0 A′ B C ′ 0

ε

∼=

ρ

Γ ∼=

ψ ϕ

where ε and ρ are natural injection and surjection, respectively. In this case Γ is an

isomorphism by the short five lemma, hence B ∼= A⊕ C.

Notation 2.2.6. Let A,B,N be R-modules. We denote the set of all R-module

homomorphisms from A to B by

HomR(A,B) = {f : A→ B | f is an R-module homomorphism}

which is an R-module since R is commutative. For each f ∈ HomR(A,B), we define

f∗ := HomR(N, f) : HomR(N,A) → HomR(N,B)

ϕ 7→ f ◦ ϕ

Then f∗ is an R-module homomorphism.

Fact 2.2.7. If N is an R-module, then HomR(N,−) is a ‘covariant functor,’ i.e.,

(a) HomR(N,−) respects identity maps: HomR(N, idM) = idHomR(N,M)
, and

(b) HomR(N,−) respects compositions: for all R-module homonomorphisms

A B C
f g

we have

HomR(N, g ◦ f) = HomR(N, g) ◦ HomR(N, f).
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Equivalently, we have (g ◦ f)∗ = g∗ ◦ f∗, i.e., the following diagram commutes.

HomR(N,−) : HomR(N,A) HomR(N,B)

HomR(N,C)

f∗

(g◦f)∗
g∗

Fact 2.2.8 ([3, Proposition 10.30]). Let P be an R-module. Then the following are

equivalent:

(a) The covariant functor HomR(P,−) transforms short exact sequences into short

exact sequences.

(b) For any R-modules M and N , if M N 0
φ

is exact, then every R-

module homomorphism from P into N “lifts” to an R-module homomorphism

into M , i.e., given f ∈ HomR(P,N), there is a lift F ∈ HomR(P,M) making

the following diagram commute:

P

M N 0

f
∃F

φ

(c) If P is a quotient of the R-moduleM , then P is isomorphic to a direct summand

of M , i.e., every short exact sequence 0 → L→M → P → 0 splits.

(d) P is a direct summand of a free R-module.

Definition 2.2.9. An R-module P satisfying the equivalent conditions in Fact 2.2.8

is called projective.

10



2.3 Ext via Projective Resolutions

In this section, we define the ‘Ext functor’ using ‘projective resolutions.’

Definition 2.3.1. A chain complex or an R-complex is a sequence of R-module

homomorphisms

C = · · · Ci Ci−1 · · ·∂Ci+1 ∂Ci ∂Ci−1

such that ∂Ci ◦ ∂Ci+1 = 0 for all i ∈ Z. The map ∂Ci is called the ith differential of C.

We say Ci is the module in degree i in the R-complex C. The ith homology module

of C is the R-module

Hi(C) :=
Ker(∂Ci )

Im(∂Ci+1)
.

Definition 2.3.2. Suppose that we are given the following chain complex

P+ = · · · Pi Pi−1 · · · P1 P0 M 0
∂Pi+1 ∂Pi ∂Pi−1 ∂P2 ∂P1 τ

where Pi’s are R-modules. If the sequence is exact and all Pi’s are projective, then we

say P+ is a projective resolution of M over R, or simply an R-projective resolution of

M . Given the R-projective resolution P+ above, the truncated projective resolution

of M associate to P+ is the chain complex

P = · · · Pi Pi−1 · · · P1 P0 0
∂Pi+1 ∂Pi ∂Pi−1 ∂P2 ∂P1

which is exact at Pi for all i > 0, but not necessarily exact at P0.

Notation 2.3.3. Let A,B be R-modules. Given f ∈ HomR(A,B), we denote

f ∗ := HomR(f,N) : HomR(B,N) → HomR(A,N)

ϕ 7→ ϕ ◦ f

11



which is an R-module homomorphism.

Fact 2.3.4. If N is an R-module, then HomR(−, N) is a ‘contravariant functor,’ i.e.,

(a) HomR(−, N) respects identity maps: HomR(idM , N) = idHomR(M,N)
, and

(b) HomR(−, N) respects compositions but with the order reversed: for all R-

module homonomorphisms A B C
f g

, we have

HomR(g ◦ f,N) = HomR(f,N) ◦ HomR(g,N).

Equivalently, we have (g ◦ f)∗ = f ∗ ◦ g∗, i.e., the following diagram commutes:

HomR(−, N) : HomR(A,N) HomR(B,N)

HomR(C,N)

f∗

g∗
(g◦f)∗

Fact 2.3.5 ([3, Theorem 10.33]). Let A, B, and C be R-modules. If

0 A B C 0
f g

is exact, then so is

0 HomR(C,N) HomR(B,N) HomR(A,N)
g∗ f∗

.

Definition 2.3.6. Let P+ be a R-projective resolution of M as in Definition 2.3.2,

and let N be an R-module. We define the R-complex HomR(P
+, N) as follows: For

all i ≥ 0, we set P ∗
i := HomR(Pi, N) and set M∗ := HomR(M,N). Then we define

12



HomR(P
+, N) = (P+)∗ as

(P+)∗ := 0 M∗ P ∗
0 P ∗

1 · · · P ∗
i−1 P ∗

i · · ·τ∗ (∂P1 )∗ (∂P2 )∗ (∂Pi−1)
∗ (∂Pi )∗ (∂Pi+1)

∗

.

For the truncated projective resolution P of P+, we define HomR(P,N) = P ∗ as

P ∗ := 0 P ∗
0 P ∗

1 · · · P ∗
i−1 P ∗

i · · ·(∂P1 )∗ (∂P2 )∗ (∂Pi−1)
∗ (∂Pi )∗ (∂Pi+1)

∗

.

Remark. Let P+ be an R-projective resolution of M . The sequences (P+)∗ and P ∗

defined in Definition 2.3.6 are indeed R-complexes since ∂Pi ◦ ∂Pi+1 = 0 for i ≥ 0 by

definition of chain complex, and by Fact 2.2.7, we get

(∂Pi+1)
∗ ◦ (∂Pi )∗ = (∂Pi ◦ ∂Pi+1)

∗ = 0∗ = 0, and (∂P1 )
∗ ◦ (τ)∗ = (τ ◦ ∂P1 )∗ = 0∗ = 0.

Notation 2.3.7. Let P+ be an R-projective resolution of M . Set (P ∗)−i := P ∗
i for

all i ≥ 0. and ∂P
∗

−i+1 := (∂Pi )
∗ for all i ≥ 1. Graphically, we get

P ∗ = 0 P ∗
0 P ∗

1 · · · P ∗
i−1 P ∗

i · · ·

P ∗ = 0 (P ∗)0 (P ∗)−1 · · · (P ∗)−i+1 (P ∗)−i · · ·

(∂P1 )∗ (∂P2 )∗ (∂Pi−1)
∗ (∂Pi )∗ (∂Pi+1)

∗

∂P
∗

0
∂P

∗
−1 ∂P

∗
−i+2 ∂P

∗
−i+1 ∂P

∗
−i

All we are doing here is defining the degree of modules in P ∗ so that as we move along

the differentials, the degree of the module goes down by 1. Also, we define (∂P
∗
)i to

be the 0 map for all i ≤ −1.

Definition 2.3.8. Let P+ be an R-projective resolution of M . For all i ≤ 0, we

define the Ext module by

ExtiR(M,N) := H−i(P
∗) =

Ker(∂P
∗

−i )

Im(∂P
∗

−i+1)
=

Ker((∂Pi+1)
∗)

Im((∂Pi )
∗)

.

13



Fact 2.3.9. Let P+ be a projective resolution of M . By Fact 2.3.5, the rows in the

following commutative diagram are exact.

0 M∗ P ∗
0 P ∗

1

0 M∗ (P ∗)0 (P ∗)−1

τ∗ (∂P1 )∗

τ∗ ∂P
∗

0

Then we have

Ext0R(M,N) = H0(P
∗) =

Ker(∂P
∗

0 )

Im(0 → (P ∗)0)
(by Definition 2.3.8)

= Ker(∂P
∗

0 ) (since Im(0 → (P ∗)0) = {0})

= Im(τ ∗) (by the exactness)

∼= M∗ (since τ ∗ is injective)

= HomR(M,N). (by definition of M∗)

For all i ≤ −1, the map ∂P
∗

i is the 0 map whose image and kernel are both {0} since

its domain is the 0 module. Thus we get ExtiR(M,N) = 0 for all i ≤ −1.

Remark. ExtiR(M,N) exists and is well-defined, i.e., M has a projective resolution

and ExtiR(M,N) is independent of the choice of the projective resolution of M ; see

[11, Theorem 5.2].

2.4 Tensor Products of Modules and Algebras

We introduce the notion of ‘tensor product’ and give a case where it behaves

pretty well with the Ext modules.

Definition 2.4.1. Given R-modules A, B, and C, a function f : A×B → C is called
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R-bilinear if for all a, a′ ∈ A, b, b′ ∈ B, and r ∈ R, we have

f(a+ a′, b) = f(a, b) + f(a′, b)

f(a, b+ b′) = f(a, b) + f(a, b′)

f(ar, b) = f(a, rb) = rf(a, b).

Let F be the free abelian group on the set A × B, and let K be the subgroup of F

generated by all elements of the form

(1) (a+ a′, b)− (a, b)− (a′, b)

(2) (a, b+ b′)− (a, b)− (a, b′)

(3) (ra, b)− (a, rb)

The quotient F/K is denoted by A⊗RB. ‘Simple tensors’ in A⊗RB are the elements

a⊗ b := (a, b) +K ∈ F/K. Then A⊗R B is an R-module and the natural injection

ι : A×B → A⊗R B given by (a, b) 7→ a⊗ b is R-bilinear.

Let k be a field. We can also define the tensor product of ‘k-algebras’ which

is natural for our setting when R = k[V ], a polynomial ring over k whose variables

are the vertices of a given graph.

Definition 2.4.2. Let R be a commutative ring with identity which is also a k-vector

space. Then R is a k-algebra if for all x, y ∈ R and a, b ∈ k, we have (ax) · (by) =

(ab) · (xy).

Remark. Let R and S be k-algebras. Then R and S are k-modules, hence R ⊗k S

is a k-module. In fact, multiplication on R⊗k S given by (r⊗ s) · (r′ ⊗ s′) = rr′ ⊗ ss′

turns R⊗k S into a k-algebra.

15



Example 2.4.3. Let R = k[X] and S = k[Y ]. Then both R and S are k-algebras.

Also, one can show that R ⊗k S ∼= k[X, Y ] which is also a k-algebra. In general, if

R = k[X1, . . . , Xn] and S = k[Y1, . . . , Ym], then we have

k[X1, . . . , Xn, Y1, . . . , Ym] ∼= R⊗k S.

Example 2.4.4. Let k be a field, R = k[X1, . . . , Xn] and S = k[Y1, . . . , Ym] for some

m,n ∈ N. Let I ≤ R and J ≤ S be monomial ideals. Then we can treat I + J as

a monomial ideal in k[X1, . . . , Xn, Y1, . . . , Ym] ∼= R ⊗k S. Furthermore, we can show

that

k[X1, . . . , Xn, Y1, . . . , Ym]

I + J
∼= R

I
⊗k

S

J

as k-algebras: note that every element in k[X1, . . . , Xn, Y1, . . . , Ym]/(I + J) can be

written as the sum
∑t

i=1 rifigi where ri ∈ k, fi ∈ R and gi ∈ S for all i ∈ [t]. One

can show that

L :
k[X1, . . . , Xn, Y1, . . . , Ym]

I + J
→ R

I
⊗k

S

J

given by

L

(
t∑
i=1

rifigi

)
=

t∑
i=1

ri
(
fi ⊗k gi

)
is an isomorphism.

Now we state a fact that is used in Theorem 3.3.9:

Fact 2.4.5 ([13, Proposition A.1.5]). Let R and S be k-algebras. Let B and B′ be

R-modules where B is finitely generated, and let C and C ′ be S-modules such that

C is finitely generated. Then for all i ≥ 0, there are R⊗k S-module isomorphisms

ExtiR⊗kS
(B ⊗k C,B

′ ⊗k C
′) ∼=

i⊕
j=0

(
ExtjR(B,B

′)⊗k Ext
i−j
S (C,C ′)

)
.
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Example 2.4.6. With the same assumptions in Fact 2.4.5, we have

Ext0R⊗kS
(B ⊗k C,B

′ ⊗k C
′) ∼=

0⊕
j=0

(
ExtjR(B,B

′)⊗k Ext
i−j
S (C,C ′)

)
= Ext0R(B,B

′)⊗k Ext
0
S(C,C

′).

2.5 Krull Dimension, Depth, and Type

In this section, we define three invariants: ‘Krull dimension,’ ‘depth,’ and

‘type.’ The Krull dimension and depth are used to define the ‘Cohen-Macaulay’

property, and the type of a module is the main invariant that we investigate in this

thesis.

Definition 2.5.1. We define the following sets:

(a) The prime spectrum of R is the set Spec(R) := {prime ideals in R}.

(b) The variety of I is the set V (I) := {p ∈ Spec(R) : I ⊆ p}.

(c) The support of M is the set suppR(M) := {p ∈ Spec(R) :Mp ̸= 0}.

Fact 2.5.2. It is not hard to show that suppR(R) = Spec(R) and suppR(R/I) = V (I).

Definition 2.5.3. The Krull dimension of M is

dimR(M) := sup {n ∈ N0 : ∃ a chain p0 ⊊ p1 ⊊ · · · ⊊ pn in suppR(M)} .

Using Fact 2.5.2, we can compute the Krull dimension of R and R/I as follows.

Fact 2.5.4. We compute the Krull dimension of R and R/I by

(a) dim(R) := dimR(R) = sup {n : ∃ a chain p0 ⊊ p1 ⊊ · · · ⊊ pn in Spec(R)}.
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(b) dim(R/I) := dimR(R/I) = sup {n : ∃ a chain p0 ⊊ p1 ⊊ · · · ⊊ pn in V (I)}.

Example 2.5.5. Let R1 := k[X1, . . . , Xd]⟨X1,...,Xd⟩ and R2 = k[X, Y ]⟨X,Y ⟩/ ⟨X2, XY ⟩.

First, note that the Krull dimension of k[X1, . . . , Xd] is d, given by the chain

0 ⊊ ⟨X1⟩ ⊊ ⟨X1, X2⟩ ⊊ · · · ⊊ ⟨X1, . . . , Xd⟩ .

By Fact 2.1.5, we must have dim(R1) ≤ dim(k[X1, . . . , Xd]) = d. But also, the prime

ideals in the chain above survive the localization since ⟨X1, . . . , Xk⟩ ⊆ ⟨X1, . . . , Xd⟩

for k ∈ [d]. Thus we have dim(R1) = d using the same chain above, but localized.

For R2, consider k[X, Y ]/ ⟨X2, XY ⟩. Since we have ⟨X2, XY ⟩ = ⟨X⟩ ∩ ⟨X2, Y ⟩, by

Fact 2.6.15 we get dim(k[X, Y ]/ ⟨X2, XY ⟩) = 2 − 1 = 1. Again by Fact 2.1.5, we

have dim(R2) ≤ dim(k[X, Y ]/ ⟨X2, XY ⟩) = 1. On the other hand, the chain of prime

ideals
〈
X
〉
⊊
〈
X,Y

〉
shows that dim(R2) ≥ 1.

Next, we define the ‘depth’ of a finitely generated R-module M using the

length of maximal M -regular sequences.

Assumptions. For the remainder of the section, we assume that R is Noetherian

and M is finitely generated.

Fact 2.5.6 ([2, Theorem 1.2.5]). Let I ≤ R be an ideal such that IM ̸= M . Then

all maximal M -regular sequences in I have the same length n given by

n = min
{
i : ExtiR(R/I,M) ̸= 0

}
.

By Fact 2.5.6, the following definition of depth of M in I is now well-defined.

Definition 2.5.7. Given an ideal I ≤ R such that IM ̸= M , the depth of M in I
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(also called the grade of I on M) is

depthR(I,M) :=“length of a maximal M -regular sequences in I”

=min {n : ExtnR(R/I,M) ̸= 0} . (Fact 2.5.6)

If IM =M , then we set depthR(I,M) := ∞.

Notation 2.5.8. If (R,m) is local, then we set depthR(M) := depthR(m,M). If

M ̸= 0, then mM ̸= M by Nakayama’s lemma (Fact 2.1.6). If M = R or M = R/I,

then we omit the subscript R and write depth(R) := depthR(R) and depth(R/I) :=

depthR(R/I).

Example 2.5.9. Let R1 and R2 be the rings from Example 2.5.5. The sequence

X1, . . . , Xd in R1 forms a regular sequence. It is maximal since R1/ ⟨X1, . . . , Xd⟩ ∼= k

which has no regular element since every element is either 0 or a unit. Thus we get

depth(R1) = d. Alternatively, one can check directly that ExtiR1
(k,R1) = 0 for all

i < d and ExtdR1
(k,R1) ∼= k. For the depth of R2, we show that any element r ∈ R2 is

either 0, or a unit, or a zero-divisor; hence depth(R2) = 0. If r ̸∈
〈
X,Y

〉
, then r is a

unit in R2 by localization. So suppose that 0 ̸= r ∈
〈
X,Y

〉
. Then there are elements

f, g ∈ R2 such that r = fX+gY . Since we haveXr = X(fX+gY ) = fX
2
+gXY = 0

in R2, the element r must be a zero-divisor. Thus R2 has no regular elements, and

therefore we conclude that depth(R2) = 0.

Now, we are ready to define ‘Cohen-Macaulay-ness’ if R is a local ring. The

importance of ‘Cohen-Macaulay modules’ is described, e.g., in [10, p. 175], [2, p. 57].

Definition 2.5.10. Let (R,m) be a local ring, and assume M ̸= 0. We say M is

Cohen-Macaulay if dimR(M) = depthR(M). If R is a Cohen-Macaulay module over

itself, then we say R is a Cohen-Macaulay ring.
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Example 2.5.11. Let R1 and R2 be the rings from Example 2.5.9, and set R =

k[X, Y ]. From Examples 2.5.5 and 2.5.9, we get

dim(R1) = d = depth(R1) and dim(R2) = 1 ̸= 0 = depth(R2).

Hence R1 is Cohen-Macaulay while R2 is not Cohen-Macaulay.

Finally, we present the definition of ‘Cohen-Macaulay type’ (or just ‘type’)

for a special case when R is local. ‘Type’ will be redefined for the case when R is a

polynomial ring over a field in Section 2.7.

Definition 2.5.12. Let (R,m, k) be a local ring. Assume depthR(M) = n. The type

of M is the positive integer

typeR(M) := dimk(Ext
n
R(R/m,M)) = dimk(Ext

n
R(k,M)).

Example 2.5.13. Let R = k[X1, . . . , Xd]⟨X1,...,Xd⟩. Then we have typeR(R) = 1,

which can be shown using Facts 2.7.4, 2.7.7, and 2.7.10 below, or by checking directly

that ExtdR(k,R)
∼= k.

2.6 Parametric Decomposition

In this section, we discuss a way to compute the type of a quotient ring if the

relative ideal has a ‘parametric decomposition.’ For more details on monomial ideals,

see [10].

Assumptions. Unless stated otherwise, in this section R := k[X1, . . . , Xd] where k

is a field with d ∈ N, and X := (X1, . . . , Xd)R.

20



Definition 2.6.1. A monomial in the elements X1, . . . , Xd ∈ R is an element in R of

the form Xn1
1 · · ·Xnd

d where ni ∈ N0 for all i ∈ [d]. An ideal I in R is called monomial

ideal if I can be generated by a (possibly empty) set of monomials in R.

Example 2.6.2. The trivial ideals 0 and R are monomial ideals since (∅)R = 0 and

R = (1)R = (X0
1 · · ·X0

d)R. If d = 3, the elements X1X2, X
3
1X2X

6
3 , and X2

1X
4
3 are

monomials in R.

The following fact is a useful tool when dealing with monomial ideals, used in

Proposition 2.6.28.

Fact 2.6.3 ([10, Lemma 1.1.10]). Let I ≤ R be an ideal. Then I is a monomial ideal

if and only if for all f ∈ I, every monomial occurring in f is in I.

Here is a handy, non-standard notation.

Notation 2.6.4. For n := (n1, . . . , nd) ∈ Nd
0, we set Xn := Xn1

1 · · ·Xnd
d . For any

S ⊆ R, we set JSK :=
{
Xn : Xn ∈ S, n ∈ Nd

0

}
the set of all monomials in S.

The following fact is used in Lemma 2.6.27.

Fact 2.6.5 ([10, Theorem 1.1.4]). Let I, J ≤ R be monomial ideals.

(a) I ⊆ J if an only if JIK ⊆ JJK.

(b) I = J if and only if JIK = JJK.

The existence of ‘m-irreducible decomposition’ of monomial ideals, which will

be used to define the ‘parametric decomposition,’ arise from the fact that every mono-

mial ideal in a polynomial ring is generated by finitely many monomials [10, Theorem

1.3.1].
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Definition 2.6.6. Let I ≤ R. The radical of I is the ideal

rad(I) := {x ∈ R : ∃n ∈ N s.t. xn ∈ I} .

The monomial radical of a monomial ideal I ≤ R is the monomial ideal m-rad(I) :=

(rad(I) ∩ JRK)R.

Definition 2.6.7. Let I ≤ R be a monomial ideal. We say I is m-reducible if there

are monomial ideals J, L ≤ R such that I = J ∩ L with J ̸= I and L ̸= I. The ideal

I is m-irreducible if I is not m-reducible.

Remark. There is a notion of ‘reducible’ and ‘irreducible’ of ideals (without the ‘m-’)

by assuming that the factors J, L above are not necessarily monomial ideals. But if

R is a polynomial ring over a field, the two notions coincide for monomial ideals; see

[10, Theorem 3.2.4].

The following fact describes precisely what are the m-irreducible ideals in R.

Fact 2.6.8 ([10, Theorem 3.1.4]). The monomial ideal 0 is m-irreducible. A non-zero

monomial ideal I ≤ R is m-irreducible if and only if I = (Xa1
i1
, . . . , Xat

it
)R for some

t ∈ [d] and ai ≥ 1 for all i ∈ [t].

Definition 2.6.9. An m-irreducible decomposition of a monomial ideal I ≤ R is an

expression I =
⋂n
i=1 Ji with n ∈ N such that J1, . . . , Jn are m-irreducible monomial

ideals of R.

Fact 2.6.10 ([10, Theorem 3.3.3]). Every monomial ideal I ≤ R has an m-irreducible

decomposition.

Definition 2.6.11. Let J ⊊ R be a monomial ideal generated by f1, . . . , fk ∈ JRK

with m-irreducible decomposition J =
⋂n
i=1 Ii. We say f1, . . . , fk is an irredundant
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monomial generating sequence for J if ⟨f1, . . . , fi−1, fi+1, . . . , fk⟩ ̸= J for all i ∈ [k].

We say
⋂n
i=1 Ii is irredundant if

⋂
i∈[n]\{j} Ii ̸= J for all j ∈ [n]. The generating

sequence is redundant if it is not irredundant, and similarly for the decomposition.

The irredundant m-irreducible decomposition of monomial ideal is unique up

to permutation, stated next.

Fact 2.6.12 ([10, Theorem 3.3.9] ). Let I ≤ R be a monomial ideal with irredun-

dant m-irreducible decompositions
⋂m
i=1 Ii and

⋂n
j=1 Jj. Then m = n and there is a

permutation σ on [n] so that Ii = Jσ(i) for all i ∈ [n].

One can compute an m-irreducible decomposition of a monomial ideal by ap-

plying the following fact repeatedly.

Fact 2.6.13 ([10, Lemma 3.1.3]). Let I ≤ R be a monomial ideal with monomial

generating sequence f1, . . . , fk ∈ JRK. Suppose that there exists l ∈ [d] such that

fk = Xe
l g where e ≥ 1, g ∈ JRK, and Xe+1

l ∤ fk. Set I ′ := ⟨f1, . . . , fk−1, X
e
1⟩ and

I ′′ := ⟨f1, . . . , fk−1, g⟩. Then we have I = I ′ ∩ I ′′ with I ′ ̸= I and I ′′ ̸= I. In

particular, I is m-reducible.

Example 2.6.14. Let R = k[X1, . . . , X7] and let I = ⟨X1X3, X3X5, X5X7⟩. We will

use Fact 2.6.13 to compute the irredundant m-irreducible decomposition of I:

I = ⟨X1X3, X3X5, X5X7⟩

= ⟨X1, X3X5, X5X7⟩ ∩ ⟨X3, X3X5, X5X7⟩ (Fact 2.6.13)

= ⟨X1, X3X5, X5X7⟩ ∩ ⟨X3,����X3X5 , X5X7⟩ (redundant generator)

= (⟨X1, X3, X5X7⟩ ∩ ⟨X1, X5, X5X7⟩) ∩ (⟨X3, X5⟩ ∩ ⟨X3, X7⟩) (Fact 2.6.13)

= ⟨X1, X3, X5X7⟩ ∩ ⟨X1, X5,����X5X7 ⟩ ∩ ⟨X3, X5⟩ ∩ ⟨X3, X7⟩ (redundant gen.)

= (⟨X1, X3, X5⟩ ∩ ⟨X1, X3, X7⟩) ∩ ⟨X1, X5⟩ ∩ ⟨X3, X5⟩ ∩ ⟨X3, X7⟩ (Fact 2.6.13)
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= ⟨X1, X5⟩ ∩ ⟨X3, X5⟩ ∩ ⟨X3, X7⟩

where the last equality holds since ⟨X1, X3, X5⟩ ⊃ ⟨X1, X5⟩ and ⟨X1, X3, X7⟩ ⊃

⟨X3, X7⟩.

The next fact states that, in the monomial setting, Krull dimension can be

computed using m-irreducible decompositions as in Fact 2.5.4.

Fact 2.6.15 ([10, Theorem 5.1.2]). Let I ≤ R be a monomial ideal with m-irreducible

decomposition I =
⋂n
i=1 Ji. Then dim(R/I) = d−m where m is the smallest number

of generators needed for one of the Ji’s.

Example 2.6.16. Recall the Krull dimension computation of R2 in Example 2.5.5.

The Krull dimension of k[X, Y ]/ ⟨X2, XY ⟩ is computed using Fact 2.6.15. The m-

irreducible decomposition of the ideal ⟨X2, XY ⟩ is given by

〈
X2, XY

〉
=
〈
X2, X

〉
∩
〈
X2, Y

〉
= ⟨X⟩ ∩

〈
X2, Y

〉
.

Since k[X, Y ] has 2 variables and the smallest number of generators for the ideals ⟨X⟩

and ⟨X2, Y ⟩ in the decomposition is 1, we get dim(k[X, Y ]/ ⟨X2, XY ⟩) = 2− 1 = 1.

Next, consider I and R from Example 2.6.14. The m-irreducible decomposition

of I is given by

I = ⟨X1, X5⟩ ∩ ⟨X3, X5⟩ ∩ ⟨X3, X7⟩ .

Hence the smallest number of generators of the ideals in the decomposition is 2. Since

R has 7 variables, we get dim(R/I) = 7− 2 = 5.

Next, we define ‘parametric decomposition’ of monomial ideals after defining

‘parameter ideals.’
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Definition 2.6.17. A parameter ideal in R is an ideal of the form ⟨Xa1
1 , . . . , X

ad
d ⟩

with ai ≥ 1 for all i ∈ [d]. For Xn ∈ R with n ∈ Nd
0, we denote

PR(X
n) :=

〈
Xn1+1

1 , . . . , Xnd+1
d

〉
which is a parameter ideal by construction. If a monomial ideal I ≤ R, has an

(irredundant) m-irreducible decomposition I =
⋂n
i=1 Ji with each Ji being a parameter

ideal in R, then we call
⋂n
i=1 Ji an (irredundant) parametric decomposition of I in R.

Example 2.6.18. Let R = k[X1, X2, X3, X4]. If n = (2, 3, 1, 2), then we have

PR(X
n) = ⟨X3

1 , X
4
2 , X

2
3 , X

3
4 ⟩. The ideal ⟨X5

1 , X
2
2 , X

2
3 , X

3
4 ⟩ is a parameter ideal, but

⟨X1, X3, X
3
4 ⟩ is not a parameter ideal since it is missing the variable X2.

Example 2.6.19. The ideal I in Example 2.6.14. does not have a parametric de-

composition in k[X1, . . . , X7]. Indeed, the irredundant m-irreducible decomposition

I = ⟨X1, X5⟩ ∩ ⟨X3, X5⟩ ∩ ⟨X3, X7⟩

is not a parametric decomposition. Since every parametric decomposition is an m-

irreducible decomposition, the uniqueness in Fact 2.6.12 implies that I does not have

a parametric decomposition.

On the other hand, let R = k[X, Y, Z] and set J = ⟨XY, Y Z,X2, Y 2, Z2⟩ ≤ R.

The irredundant m-irreducible decomposition of J is J = ⟨X, Y 2, Z⟩ ∩ ⟨X2, Y, Z2⟩

which is a parametric decomposition in R.

When I ≤ R is a monomial ideal with a parametric decomposition, we can

compute the type of a quotient ring R/I by looking at the parametric decomposition

of I. For this purpose, we define the ‘I-corner’ elements in R.
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Definition 2.6.20. Let I ≤ R be a monomial ideal. A monomial f ∈ JRK is an

I-corner element if f ̸∈ I and Xif ∈ I for all i ∈ [d]. We denote the set of all

I-corner elements in R by CR(I).

Example 2.6.21. Let R = k[X, Y ] and I = ⟨Y 3, X2Y 2, X3Y,X5⟩. Consider the

monomials XY 2, X2Y , and X4. These monomials are not in I as no monomial

generators divide them in R. Since we have

X ·XY 2 = X2Y 2 ∈ I Y ·XY 2 = XY 3 ∈ I

X ·X2Y = X3Y ∈ I Y ·X2Y = X2Y 2 ∈ I

X ·X4 = X5 ∈ I Y ·X4 = X ·X3Y ∈ I

the monomials XY 2, X2Y , and X4 are I-corner elements. In fact, these are the only

I-corner elements. Indeed let

f ∈ JRK \ JIK =
{
1, X, Y,X2, XY, Y 2, X3, X2Y,XY 2, X4

}
be such that Xf and Y f are in I. Inspecting the elements of JRK\JIK we deduce that

f ∈ {XY 2, X2Y,X4}. Hence we have CR(I) = {XY 2, X2Y,X4}. Given a monomial

XaY b for some a, b ∈ N, we can graphically plot XaY b to the point (a, b) on the

XY -plane. Figure 2.1 is a plot of I and CR(I) on the XY -plane, where the I-corner

elements are the “circled C’s” in the figure.

It is straightforward to show that the I-corner elements are the maximal el-

ements in JRK \ JIK under the product order (componentwise order). The following

theorem relates I-corner elements to the parametric decomposition of I if I has a

parametric decomposition.
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Figure 2.1: I and CR(I) plotted

Fact 2.6.22 ([10, Theorem 6.2.9 and Proposition 6.2.11]). Let I ≤ R be a monomial

ideal and f1, . . . , ft ∈ JRK. Then I =
⋂t
i=1 PR(fi) is an irredundant parametric

decomposition of I if and only if CR(I) = {f1, . . . , ft} and m-rad(I) = X.

Example 2.6.23. Consider R = k[X, Y ] and I = ⟨Y 3, X2Y 2, X3Y,X5⟩ as in Exam-

ple 2.6.21. Since m-rad(I) = ⟨X, Y ⟩ = X and CR(I) = {XY 2, X2Y,X4}, we get the

following parametric decomposition of I immediately using Fact 2.6.22:

I = PR(XY
2) ∩ PR(X2Y ) ∩ PR(X4) =

〈
X2, Y 3

〉
∩
〈
X3, Y 2

〉
∩
〈
X5, Y

〉
.

Proposition 2.6.28 below is used in the proof of Fact 2.7.10. We start with the

definition of the ‘colon ideal.’

Definition 2.6.24. Let I ≤ R and S ⊆ R. The ideal quotient or colon ideal is the set

(I :R S) := {r ∈ R : rs ∈ I ∀s ∈ S} .

The following fact shows that colon ideals are monomial ideals if the inputs

are monomial ideals as well.
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Fact 2.6.25 ([10, Theorem 2.5.1]). If I, J ≤ R are monomial ideals of R, then (I :R J)

is a monomial ideal of R.

Given a monomial ideal I ≤ R, the corner elements of I and the colon ideal

(I :R X) have a close relation shown next.

Fact 2.6.26 ([10, Proposition 6.2.3]). Let I ≤ R be a monomial ideal.

(a) CR(I) = J(I :R X)K \ JIK.

(b) CR(I) is finite.

Lemma 2.6.27 ([10, Exercise 6.2.31]). Let I ≤ R be a monomial ideal. Then

(I :R X) = I + (CR(I))R.

Proof. (⊇) By definition of the I-corner elements, we have XCR(I) ⊆ I. Hence by the

definition of colon ideal, we get (I :R X) ⊇ CR(I), which implies (I :R X) ⊇ (CR(I))R.

Since (I :R X) ⊇ I, we also have (I :R X) ⊇ I + (CR(I))R.

(⊆) By Fact 2.6.5, it suffices to show that J(I :R X)K ⊆ JI + (CR(I))RK. So,

let f ∈ J(I :R X)K. Then we have fX ⊆ I. If f ∈ JIK, we are done. So suppose that

f ̸∈ JIK. Since fX ⊆ I, we get f ∈ CR(I) = JCR(I)K ⊆ JI + (CR(I))RK.

In the next result, we use Fact 2.6.26 (b) to see that the list of corner elements

for a given monomial ideal is finite.

Proposition 2.6.28 ([17, Proposition 2.80]). Let I ≤ R be a monomial ideal. If

f1, . . . , ft are the distinct I-corner elements in R, then f1, . . . , ft is a basis of the

vector space (I :R X)/I over R/X ∼= k.

Proof. Since (I :R X) ≤ R (by Fact 2.6.25), (I :R X) is an R-module. In particular,

we can treat (I :R X)/I ≤ R/I as a vector space over k ⊆ R. Furthermore, the
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condition X · (I :R X) ⊆ I implies X · (I :R X)/I = 0, so the action f · r = fr gives

a well-defined (R/X)-module structure on (I :R X)/I that is compatible with the

isomorphism R/X ∼= k. (See also the proof of Fact 2.7.10 below.)

Now let f ∈ (I :R X)/I with f ∈ (I :R X). Since CR(I) = {f1, . . . , ft} by the

assumption, we get that (I :R X) = I+(f1, . . . , ft)R by Lemma 2.6.27. Since we have

(I :R X)

I
=
I + (f1, . . . , ft)R

I

we see that (I :R X) is generated as an R-module by f 1, . . . , f t. So, there exist

r1, . . . , rt ∈ R such that f = r1f1 + · · · + rtft in R/I. By the definition of I-corner

element, we have Xifj ∈ I for any i, j ∈ [t]. So without loss of generality, we may

assume that ri ∈ k for all i ∈ [t]. Thus f1, . . . , ft spans (I :R X)/I over k.

Let a1, . . . , at ∈ k be such that a1f1 + · · ·+ atft = 0 in (I :R X)/I. Assume by

way of contradiction that not all the ai’s are 0. Since we have

0 = a1f1 + · · ·+ atft = a1f1 + · · ·+ atft = a1f1 + · · · atft ,

this implies that a1f1 + · · · atft ∈ I. Then the I-corner elements fi such that ai ̸= 0

are monomials occurring in a1f1 + · · · + atft. Hence by Fact 2.6.3, we have fi ∈ I

for all such i since I is a monomial ideal, contradicting the definition of I-corner

element.

We end this section with two more lemmas. Lemma 2.6.29 is used below in

Theorem 3.2.9, and Lemma 2.6.30 is used in Theorems 3.3.7 and 3.3.9 for the Krull

dimension computation. Both lemmas are corollary of Lemma 7.3.2 in [10].

Lemma 2.6.29 ([10, Lemma 7.3.2]). Let U :=
〈
Xk1

1 , . . . , X
kd
d

〉
where ki ≥ 2 for all
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i ∈ [d]. Let D1, . . . , Dt ⊆ {X1, . . . , Xd} for some t ≥ 1. Then we have

(
t⋂
i=1

PDi

)
+ U =

t⋂
i=1

(PDi
+ U).

Lemma 2.6.30 ([10, Lemma 7.3.2]). Let R1 = k[X1, . . . , Xd1 ], R2 = k[Y1, . . . , Yd2 ].

Let I ≤ R1 and J ≤ R2 be monomial ideals. Then we have

dim

(
R1

I
⊗k

R2

J

)
= dim

(
R1

I

)
+ dim

(
R2

J

)
.

Proof. Suppose that I and J have the following irredundant m-irreducible decompo-

sitions: I =
⋂n
i=1 Ii and J =

⋂m
j=1 Ji. Set

R := R1 ⊗k R2 = k[X1, . . . , Xd1 , Y1, . . . , Yd2 ].

Then by Lemma 7.3.2 in [10], the ideal IR + JR ≤ R has the m-irreducible decom-

position

IR + JR =
n⋂
i=1

m⋂
j=1

(IiR + JjR).

Then we have

dim

(
R1

I
⊗k

R2

J

)
= dim

(
R

IR + JR

)
(Example 2.4.4)

= (d1 + d2)− t (Fact 2.6.15)

where t is the smallest number of generators needed for one of the IiR+JjR’s. Since

the irredundant generators of I and J share no variable in common, the same is true

for Ii and Jj. Hence we get t = t1 + t2 where t1 and t2 are the smallest number of
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generators needed for Ii and Jj, respectively. Therefore, we have

dim

(
R1

I
⊗k

R2

J

)
= (d1 + d2)− t

= (d1 + d2)− (t1 + t2)

= (d1 − t1) + (d2 − t2)

= dim

(
R1

I

)
+ dim

(
R2

J

)
(Fact 2.6.15)

as desired.

2.7 Cohen-Macaulayness and Type for Monomial

Quotient Rings

In this section, we first define the concepts of depth and type for rings R/I

where R is a polynomial ring over a field and I ≤ R is a monomial ideal. Also, regular

sequences will be used to simplify the computation of the type.

Assumptions. Throughout this section, unless stated otherwise, assume that R :=

k[X1, . . . , Xd] where k is a field with d ∈ N, and set X := (X1, . . . , Xd)R.

Fact 2.7.1 ([2, Proposition 1.5.15]). Let I ≤ R be a monomial ideal. Then we have

depthR(X, R/I) = depthRX
(RX/IX).

Furthermore, the length of any maximal (homogeneous) (R/I)-sequence in X is unique
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and is given by the depth of RX/IX.

Definition 2.7.2. Let I ≤ R be a monomial ideal. The depth of R/I is

depth(R/I) = depthR(R/I) := depthRX
(RX/IX).

If dim(R/I) = depth(R/I), then we say that R/I and I are Cohen-Macaulay.

Without Definition 2.7.2, the notation depth(R/I) is not well-defined, since

R = k[X1, . . . , Xd] is not local. For the same reason, we need to define the type of

R/I over R, which we do next.

Definition 2.7.3. Let I ≤ R be a monomial ideal. The type of R/I is

typeR(R/I) := dimk(Ext
n
R(k,R/I))

where n = depth(R/I).

The following fact justifies Definition 2.7.3.

Fact 2.7.4. Let I ≤ R be a monomial ideal. Then

typeR(R/I) = typeRX
(RX/IX).

Remark. The polynomial ring R = k[X1, . . . , Xd] is not local. However, we use X in

Definition 2.7.2 and 2.7.3 because X is the unique maximal homogeneous ideal in R;

so R is “local” with respect to homogeneous ideals.

We state some facts about dimension, depth, type, and regular sequences, then

we give a proof that relates the type of R/I (where I ≤ R is a monomial ideal) and

irredundant parametric decomposition of I.
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Fact 2.7.5 ([2, Theorem 2.1.2]). Let I ≤ R be a monomial ideal and let f1, . . . , fr ∈

R. If f1, . . . , fr is a homogeneous R/I-regular sequence, then

depth(R/(I + (f1, . . . , fr)R)) = depth(R/I)− r

and

dim(R/(I + (f1, . . . , fr)R)) = dim(R/I)− r.

If I is Cohen-Macaulay, then f1, . . . , fr is an R/I-regular sequence if and only if

dim(R/(I + (f1, . . . , fr)R)) = dim(R/I)− r;

when these conditions hold, R/(I + (f1, . . . , fr)R) is Cohen-Macaulay. In particular,

if I is Cohen-Macaulay and the sequence f1, . . . , fr is a maximal (R/I)-regular, then

depth(R/I) = r and hence dim(R/(I + (f1, . . . , fr)R)) = 0.

Example 2.7.6. Let R = k[X, Y, Z] and I = ⟨XY Z⟩ ≤ R. Fact 2.7.5 shows that

the ideal I is Cohen-Macaulay with depth(R/I) = dim(R/I) = 2. (Alternatively,

we can observe that I is an “odd open neighborhood ideal of a height 1 unmixed

∆-tree with 3 leaves X,Y , and Z”, and apply Theorem 3.1.17.) We claim that

X − Y,X − Z ∈ ⟨X, Y, Z⟩ is a maximal R/I-regular sequence. Indeed, since

R

I + (X − Y,X − Z)R
∼= R

⟨X3⟩

has dimension 0, Fact 2.7.5 implies that X − Y,X − Z is a maximal R/I-regular

sequence.

Fact 2.7.7 ([8, Proposition A.6.2]). Let I ≤ R be a monomial ideal such that R/I is

Cohen-Macaulay, and let f1, . . . , fr ∈ R be a maximal homogeneous regular sequence
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for R/I. Then we have

type(R/I) = type(R/(I + (f1, . . . , fr)R)).

Example 2.7.8. Let R and I be as in Example 2.7.6. Then we have

type(R/I) = type(R/(I + ⟨X − Y,X − Z⟩)) = type
(
k[X]/

〈
X3
〉)
.

Since k[X]/ ⟨X3⟩ has depth 0, we get

type
(
k[X]/

〈
X3
〉)

= dimk

(
Ext0k[X]

(
k,
k[X]

⟨X3⟩

))
.

Fact 2.7.10 will help us compute the type of k[X]/ ⟨X3⟩ from the example

above without computing the Ext functor explicitly. The following lemma will be

used in the proof of Fact 2.7.10.

Lemma 2.7.9. Let I ≤ R be an ideal that has a parametric decomposition I =⋂t
i=1Qi. Then we have depth(R/I) = 0.

Proof. By definition of depth(R/I) it suffices to show that there is no R/I-regular

element in X. Since Qi is a parameter ideal for all i ∈ [t], there exists ni =

(ni,1, . . . , ni,d) ∈ Nd
0 for all i ∈ [t] such that Qi =

〈
X
ni,1

1 , . . . , X
ni,d

d

〉
. Now let f ∈ X \ I

which is not a unit element. Then f is a polynomial in d variable with no constant

term. Hence we can write

f = c1X
a1 + · · ·+ cℓX

aℓ

where ℓ ∈ N, ai = (ai,1, . . . , ai,d) ∈ Nd
0 and ci ∈ k for all i ∈ [t]. We show that there

is a monomial Xm ∈ [[R]] such that Xm ̸= 0 and f ·Xm = 0 in R/I. We prove this
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by inducting on ℓ.

Base case: ℓ = 1. Then f = c1X
a1 . Then there exists some index j ∈ [d] such

that 1 ≤ a1,j < max {n1,j, . . . , nt,j}; else f ∈ I since the element X
max{n1,j ,...,nt,j}
j ∈ Qi

for all i ∈ [t] hence f ∈ ⋂t
i=1Qi = I. Now set mj := max {n1,j, . . . , nt,j} − a1,j.

Then the monomial X
mj

j ̸∈ I since max {n1,j, . . . , nt,j} − a1,j < max {n1,j, . . . , nt,j}

as ai,j ≥ 1. Thus f ·Xmj

j = c1X
a1,1
1 · · ·Xmax{n1,j ,...,nt,j}

j · · ·Xa1,d
d ∈ I so f ·Xm = 0 in

R/I.

Inductive case: ℓ > 1. Consider g = c1X
a1+· · ·+cℓ−1X

aℓ−1 . By our implied in-

ductive hypothesis, there exists some monomial Xm ∈ [[R]] with m = (m1, . . . ,md) ∈

Nd
0 so that g · Xm = 0 ̸= Xm in R/I. By the same argument in the base case,

there is some index j ∈ [d] so that 1 ≤ aℓ,j < max {n1,j, . . . , nt,j}. Now set m′
j :=

max {mj,max {n1,j, . . . , nt,j} − aℓ,j} and m′ = (m1, . . . ,mj−1,m
′
j,mj+1, . . . ,md) ∈

Nd
0. Note that Xm′ ̸= 0 since Xm ̸= 0 and m′

j < max {n1,j, . . . , nt,j}. Hence we

get

f ·Xm′
= (g + cℓX

aℓ) ·Xm′
= g ·Xm′

+ cℓX
ak ·Xm′ ∈ I

since Xm ·g ∈ I with Xm|Xm′
andm′

j+ak,j ≥ max {n1,j, . . . , nt,j} hence X
m′

j+aℓ,j
j ∈ I.

Thus f ·Xm′
= 0 in R/I.

Thus there is no R/I -regular element in X, therefore the length of a maximal

R/I-regular sequence in X is 0.

Remark. Another proof of Lemma 2.7.9 can be given once we know that depth is

bounded above by dimension. Indeed, since I has a parametric decomposition, every

ideal in the decomposition has d generators, so Fact 2.6.15 implies 0 ≤ depth(R/I) ≤

dimR(R/I) = 0.
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Fact 2.7.10. Let I ≤ R be a monomial ideal with irredundant parametric decompo-

sition I =
t⋂
i=1

PR(fi) where fi ∈ JRK for all i ∈ [t]. Then we have type(R/I) = t.

Proof. By Fact 2.6.22 and the uniqueness of irredundant m-irreducible decomposi-

tions, the monomials f1, . . . , ft are the distinct I-corner elements in R, and we get

|CR(I)| = t. Then we have

type(R/I) = dimk(Ext
0
R(k,R/I)) (Lemma 2.7.9)

= dimk(HomR(k,R/I)). (Fact 2.3.9)

Hence it suffices to show that |CR(I)| = dimk(HomR(k,R/I)). By Proposition 2.6.28,

the k-vector space (I :R X)/I has f1, . . . , ft as a basis. For each i ∈ [t], define the

map µi : R/X → R/I via µi(r) = rfi. We show that the µi’s are well-defined. Fix

some i ∈ [t], and let r1, r2 ∈ R such that r1 = r2 in R/X. Then r1 − r2 ∈ X, so we

get (r1 − r2)fi ∈ I since fi ∈ CR(I). Thus

µi(r1)− µi(r2) = r1fi − r2fi = r1fi − r2fi = (r1 − r2)fi = 0

which gives µi(r1) = µi(r2). With this, it is straightforward to show that the µi’s

are in HomR(R/X, R/I). Now set CR(I) =
{
f1, . . . , ft

}
⊆ (I :k X)/I, and define

a map Φ : CR(I) → HomR(A,R/I) by Φ(fi) = µi. Since CR(I) ⊆ (I :R X)/I and

HomR(A,R/I) are finite dimensional k-vector spaces (by [12, Remark IX.3.4]), by the

universal mapping property for k-vector spaces, the map Φ induces a k-linear map Φ̂
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such that

Φ̂ : (I :R X)/I HomR(k,R/I)

fi µi , ∀i ∈ [t]

t∑
i=1

aifi
t∑
i=1

aiµi.

Now we show that Φ̂ is a bijection.

Let x =
∑t

i=1 aifi ∈ (I :R X)/I such that x ∈ ker(Φ̂). Then we have

0 = (Φ̂(x))(1) =

(
Φ̂

(
t∑
i=1

aifi

))
(1) =

(
t∑
i=1

aiµi

)
(1) =

t∑
i=1

aiµi(1) =
t∑
i=1

aifi.

Since the fi’s are linearly independent over A, we must have a1 = · · · = at = 0. Thus

x = 0 so Φ̂ is injective.

Let ψ ∈ HomR(R/X, R/I). If ψ = 0, then ψ = Φ̂(0) since Φ̂ is linear. So

suppose that ψ ̸= 0. Let s ∈ R be such that ψ(1+X) = s+ I. We claim that sX ⊆ I.

Assume not, then there is some index i ∈ [d] such that Xis ̸∈ I. Then we have

0 + I = ϕ(0 + X) = ϕ(Xi + X) = Xis+ I ̸= 0 + I

a contradiction. Thus, we have sX ⊆ I. Hence we have s ∈ (I :R X) = I +

(CR(I))R = I + (f1, . . . , ft)R by definition of colon ideals and Lemma 2.6.27. So,

there are a1, . . . , at ∈ R such that s =
∑t

i=1 ai(fi + I). For any r ∈ R we have

ψ(r + X) = rs+ I = r

(
t∑
i=1

ai(fi + I)

)
= r

(
t∑
i=1

aiµi(1 + X)

)

=
t∑
i=1

raiµi(1 + X) =
t∑
i=1

aiµi(r + X) =

(
t∑
i=1

aiµi

)
(r + X)
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= Φ̂

(
t∑
i=1

aifi

)
(r + X).

Therefore, Φ̂
(∑t

i=1 aifi
)
= ψ so Φ̂ is surjective.

Example 2.7.11. Let R and I be as in Example 2.7.6. By Example 2.7.8, we get

type(R/I) = type(k[X]/
〈
X3
〉
).

Since ⟨X3⟩ is a parameter ideal in k[X], the ideal ⟨X3⟩ is its own irredundant para-

metric decomposition (with a single ideal in the intersection). Thus by Fact 2.7.10,

we get

type(R/I) = type(k[X]/
〈
X3
〉
) = 1.

2.8 Total Dominating Sets and Open Neighbor-

hood Ideals

This section contains some graph theoretic results that are related to the main

result of the thesis.

Assumptions. For the entire section, assume that G is a finite simple graph and

k is a field. We denote the vertex set and the edge set of G by V (G) and E(G),

respectively. If the graph we consider is clear from context, then we write V := V (G)

and E := E(G). Since the graph is simple, every edge e ∈ E will be denoted as uv

(or vu) where u, v ∈ V are the vertices incident to e. Denote k[V (G)] = k[V ] by the

polynomial ring over k whose variables are the vertices of G.

In order to define the main algebraic object related to graphs in this thesis,

we collect a few more graph theoretic definitions.
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Definition 2.8.1. For v ∈ V , consider the open neighborhood of v in G,

NG(v) := {u ∈ V : uv ∈ E(G)}

and for V ′ ⊆ V , we set

NG(V
′) :=

⋃
v∈V ′

NG(v).

For U ⊆ V , define the monomial of U in k[V ] by

XU :=
∏
v∈U

v, and define PU := ⟨{v : v ∈ U}⟩ .

If the graph G is clear in the context, then we may drop the G in the subscript of N .

Example 2.8.2. Let T be the following graph with vertex set {v1, v2, . . . , v8}:

v2v1 v3

v4 v5

v6 v7

v8

Then k[V ] = k[v1, . . . , v8]. We have NT (v4) = {v1, v2, v6}, NT (v8) = {v6, v7}, and

NT ({v4, v5, v8}) = {v1, v2, v3, v6, v7}. Setting U = NT (v4), we get XU = v1v2v6 and

PU = ⟨v1, v2, v6⟩ in R.

Definition 2.8.3. The open neighborhood ideal of G in k[V ] is the ideal generated

by the monomials of the open neighborhoods of the vertices of G:

N(G) :=
({
XNG(v) | v ∈ V

})
R =

〈{
XNG(v) | v ∈ V

}〉
.
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Example 2.8.4. Consider the graph T and the ring R in Example 2.8.2. Then we

have

N(T ) =
({
XNT (v) : v ∈ V

})
R

=
(
XNT (v1), . . . , XNT (v8)

)
R

= (v4, v5, v1v2v6, v3v7, v4v8, v5v8, v6v5)R

= (v4, v5, v1v2v6, v3v7, v6v5)R.

Remark. By Definition 2.8.1, open neighborhood ideals are always monomial ideals

generated by ‘square-free’ monomials; a monomial f ∈ k[X1, . . . , Xd] is square-free if

f =
∏n

i=1X
εi
i where εi ∈ {0, 1} for all i ∈ [d].

Next, we define some special type of trees that will be used to characterize

‘unmixed trees’ with respect to ‘total domination.’

Definition 2.8.5. Let C be a finite set of colors. A graph coloring (or simply coloring)

of G is a function χ : V → C such that for all uv ∈ E, we have χ(u) ̸= χ(v); that is,

no two adjacent vertices share the same color. If |C| = n ∈ N, then we say χ is an

n-coloring of G. A coloring χ is a minimal graph coloring of G if n is the minimum

cardinality of C such that a coloring exists.

Fact 2.8.6. It is straightforward to show that every bipartite graph has a 2-coloring.

Hence, every tree has a 2-coloring.

Example 2.8.7. Consider the graph T from Example 2.8.2. A minimal color-

ing χ with C = {blue, red} is the graph in Figure 2.2 below. In this case, we

have χ({v1, v2, v3, v6, v7}) = {blue} and χ({v4, v5, v8}) = {red}. Hence we have

χ−1(blue) = {v1, v2, v3, v6, v7} and χ−1(red) = {v4, v5, v8}.
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v2v1 v3

v4 v5

v6 v7

v8

Figure 2.2: A 2-coloring of T from Example 2.8.2

Assumptions. Since we only consider trees, we always assume that χ is a 2-coloring

with the set of colors C = {blue, red} =: {B,R}.

Definition 2.8.8. Let n ∈ N. For v0, vn ∈ V , a path from v0 to vn in G is a sequence

of distinct vertices P := v0v1 · · · vn such that vi−1vi ∈ E for all i ∈ [n]. The value

l(P ) := n is the length of P . For u, v ∈ V , the distance between u and v is

dG(u, v) := min {l(P ) : P is a path from u to v} .

Definition 2.8.9. Let T be a finite simple graph. The degree of v ∈ V , denoted by

degT (v), is the number of vertices v is adjacent to in T . A vertex ℓ ∈ V is a leaf if

deg(ℓ) = 1, and every vertex adjacent to ℓ is called a support vertex. Suppose that T

is a tree. Set heightT (ℓ) = 0 for all leaves ℓ ∈ V . For each non-leaf v ∈ V , the height

of v is

heightT (v) := min {dT (v, ℓ) : ℓ ∈ V, deg(ℓ) = 1} .

The height of T is

height(T ) := max {heightT (v) : v ∈ V } .
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For t ∈ N0, we set

Vt = Vt(T ) := {v ∈ V : heightT (v) = t} .

For isolated vertices, i.e., vertices v ∈ V with deg(v) = 0, we set height(v) = 0. Hence

if T is a graph with a single vertex, then set height(T ) = 0.

Example 2.8.10. Consider the tree T from Example 2.8.7. The set of all leaves in

T is V0(T ) = {v1, v2, v3}, the set of support vertices is V1(T ) = {v4, v5}. Additionally,

we have V2(T ) = {v6, v7} and V3(T ) = {v8}. Thus the height of T is height(T ) = 3.

Now we are ready to define the ‘∆-trees.’

Definition 2.8.11. A tree T is a ∆-tree if no two vertices of the same height are

adjacent.

Fact 2.8.12 ([7, Proposition 4.2.23]). Let T be a tree with a 2-coloring. The follow-

ings are equivalent:

(a) T is a ∆-tree.

(b) Any two vertices of the same height have the same color.

(c) Every leaf has the same color (hence |χ(V0)| = 1).

Example 2.8.13. Consider the following trees with 2-coloring:

The trees T1 and T2 are not ∆-trees since v1, v2 ∈ V (T1) have height 1 but are

adjacent, and u1, u2 ∈ V (T2) have height 3 but are adjacent. Also, using Fact 2.8.12,

T1 and T2 are not ∆-trees since the leaves in each tree do not have the same color. On

the other hand, T3 and the tree from Example 2.8.7 are both ∆-trees by definition,

or since all of their leaves share the same color.
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T1 T2 T3

v1 v2

u1 u2

Now we define ‘total dominating sets’ and ‘unmixed graphs.’ The ‘total domi-

nating sets’ of G and the open neighborhood ideal of G have a close connection which

will be stated in Fact 2.8.16.

Definition 2.8.14. Let D ⊆ V . Then D is a total dominating set of G (or TD-set of

G, for short) if NG(D) = V . We say D is minimal if there does not exists any proper

subset D′ ⊊ D such that N(D′) = V , i.e., if D does not properly contain another

TD-set of G. The graph G is unmixed (with respect to TD-sets) if every minimal

TD-set of G has the same size. If G is a graph with a single vertex, then we declare

the empty set ∅ to be its unique minimal TD-set.

Example 2.8.15. Consider the following ∆-trees T and T ′:

T T ′

s1 s2 s3 s′1 s′2 s′3

ℓ1 ℓ2 ℓ3 ℓ4 ℓ′1 ℓ′2 ℓ′3

u1 u2 u′
1 u′

2 u′
3

r1 r′1 r′2

A TD-set of T is S := {s1, s2, s3, u1, u2, ℓ3}. But S is not minimal since the proper
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subset {s1, s2, s3, u1, ℓ3} =: S ′ ⊊ S is also a TD-set. Moreover, the set S ′ is a minimal

TD-set of T since no proper subset of S ′ is a TD-set. The tree T is mixed since

S ′′ := {s1, s2, s3, ℓ1, ℓ2, u3} is also a minimal TD-set of T with size 6, but S ′ is a

minimal TD-set of T of size 5.

On the other hand, the minimal TD-sets of T ′ are:

V1(T
′) ∪ {u′1, u′2, u′3} V1(T

′) ∪ {u′1, ℓ′2, u′3} V1(T
′) ∪ {ℓ′1, u′2, ℓ′3}

V1(T
′) ∪ {u′1u′2, ℓ′3} V1(T

′) ∪ {ℓ′1, u′2, u′3}

where V1(T
′) = {s′1, s′2, s′3}. Since all minimal TD-sets of T ′ have size 6, T ′ is unmixed.

Fact 2.8.16 ([7, Theorem 4.1.5]). The open neighborhood ideal of G in R has the

following m-irreducible decomposition

N(G) =
⋂
V ′

PV ′ =
⋂

V ′ min

PV ′

where the first intersection is taken over all TD-sets of G, and the second intersec-

tion is taken over all minimal TD-sets of G. Moreover, the second decomposition is

irredundant.

Example 2.8.17. We demonstrate Fact 2.8.16 for the tree T ′ from the previous

example. With V1 := V1(T
′), set

D1 := V1 ∪ {u′1, u′2, u′3} D2 := V1 ∪ {u′1, ℓ′2, u′3} D3 := V1 ∪ {ℓ′1, u′2, ℓ′3}

D4 := V1 ∪ {u′1u′2, ℓ′3} D5 := V1 ∪ {ℓ′1, u′2, u′3}

44



Using Fact 2.6.13 we have

N(T ′) =
〈
s′1, s

′
2, s

′
3, ℓ

′
1u

′
1, ℓ

′
2u

′
2, ℓ

′
3u

′
3, �

��s′1r
′
1 , ��

��r′1r
′
2s

′
2 , �

��r′2s
′
3 , u

′
1u

′
2, u

′
2u

′
3

〉
= ⟨s′1, s′2, s′3, ℓ′1u′1, ℓ′2u′2, ℓ′3u′3, u′1u′2, u′2u′3⟩

= ⟨s′1, s′2, s′3, ℓ′1, ℓ′2u′2, ℓ′3u′3, u′1u′2, u′2u′3⟩

∩ ⟨s′1, s′2, s′3, u′1, ℓ′2u′2, ℓ′3u′3, �
��u′1u

′
2 , u

′
2u

′
3⟩

= ⟨s′1, s′2, s′3, ℓ′1, ℓ′2u′2, ℓ′3u′3, u′1u′2, u′2u′3⟩

∩ ⟨s′1, s′2, s′3, u′1, ℓ′2u′2, ℓ′3u′3, u′2u′3⟩

= ⟨s′1, s′2, s′3, ℓ′1, ℓ′2, ℓ′3u′3, u′1u′2, u′2u′3⟩

∩ ⟨s′1, s′2, s′3, ℓ′1, u′2, ℓ′3u′3, ���u′1u
′
2 , ���u′2u

′
3 ⟩

∩ ⟨s′1, s′2, s′3, u′1, ℓ′2, ℓ′3u′3, u′2u′3⟩ ∩ ⟨s′1, s′2, s′3, u′1, u′2, ℓ′3u′3, ���u′2u
′
3 ⟩

= ⟨s′1, s′2, s′3, ℓ′1, ℓ′2, ℓ′3u′3, u′1u′2, u′2u′3⟩ ∩ ⟨s′1, s′2, s′3, ℓ′1, u′2, ℓ′3u′3⟩

∩ ⟨s′1, s′2, s′3, u′1, ℓ′2, ℓ′3u′3, u′2u′3⟩ ∩ ⟨s′1, s′2, s′3, u′1, u′2, ℓ′3u′3⟩

= ⟨s′1, s′2, s′3, ℓ′1, ℓ′2, ℓ′3u′3, u′1u′2, u′2u′3⟩ ∩ PD3 ∩ PD5

∩ ⟨s′1, s′2, s′3, u′1, ℓ′2, ℓ′3u′3, u′2u′3⟩ ∩ PD1 ∩ PD4

= PD1 ∩ PD3 ∩ PD4 ∩ PD5 ∩ ⟨s′1, s′2, s′3, ℓ′1, ℓ′2, ℓ′3u′3, u′1u′2, u′2u′3⟩

∩ ⟨s′1, s′2, s′3, u′1, ℓ′2, ℓ′3u′3, u′2u′3⟩

= PD1 ∩ PD3 ∩ PD4 ∩ PD5 ∩ ⟨s′1, s′2, s′3, ℓ′1, ℓ′2, ℓ′3u′3, u′1u′2, u′2u′3⟩

∩ ⟨s′1, s′2, s′3, u′1, ℓ′2, ℓ′3, u′2u′3⟩ ∩ ⟨s′1, s′2, s′3, u′1, ℓ′2, u′3, ���u′2u
′
3 ⟩

= PD1 ∩ PD3 ∩ PD4 ∩ PD5 ∩ ⟨s′1, s′2, s′3, ℓ′1, ℓ′2, ℓ′3u′3, u′1u′2, u′2u′3⟩

∩ ⟨s′1, s′2, s′3, u′1, ℓ′2, ℓ′3, u′2u′3⟩ ∩ PD2

=

(
5⋂
i=1

PDi

)
∩ ⟨s′1, s′2, s′3, ℓ′1, ℓ′2, ℓ′3u′3, u′1u′2, u′2u′3⟩

∩ ⟨s′1, s′2, s′3, u′1, ℓ′2, ℓ′3, u′2u′3⟩
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=

(
5⋂
i=1

PDi

)
∩ ⟨s′1, s′2, s′3, ℓ′1, ℓ′2, ℓ′3u′3, ���u′1u

′
2 , u

′
2⟩

∩ ⟨s′1, s′2, s′3, ℓ′1, ℓ′2, �
��ℓ′3u
′
3 , u

′
1u

′
2, u

′
3⟩ ∩ ⟨s′1, s′2, s′3, u′1, ℓ′2, ℓ′3, u′2u′3⟩

=
5⋂
i=1

PDi

where the last equality holds since

⟨s′1, s′2, s′3, ℓ′1, ℓ′2, ℓ′3u′3, u′2⟩ ⊇ PD3 ∩ PD5

⟨s′1, s′2, s′3, ℓ′1, ℓ′2, u′1u′2, u′3⟩ ⊇ PD2 ∩ PD5

⟨s′1, s′2, s′3, u′1, ℓ′2, ℓ′3, u′2u′3⟩ ⊇ PD2 ∩ PD4 .

At the end of this section, we provide a way to “decompose” any tree into two

∆-trees with a given 2-coloring. First, we describe some useful properties of ∆-trees.

Fact 2.8.18 ([7, Theorem 4.2.36]). Let T be a ∆-tree. Then T is unmixed if and

only if

(a) height(T ) ≤ 3,

(b) ∀ℓ1, ℓ2 ∈ V0, dT (ℓ1, ℓ2) ̸= 4, and

(c) ∀v ∈ V1, |NT (v) ∩ V2| ≤ 1.

Example 2.8.19. We verify Fact 2.8.18 for the trees from Example 2.8.15, resketched

in Figure 2.3 below. The tree T ′ satisfies all the conditions in Fact 2.8.18 and indeed

we saw in 2.8.15 that T ′ is unmixed. On the other hand, the tree T fails to satisfy

condition (b) since dT (ℓ1, ℓ2) = 4 and indeed we saw in 2.8.15 that T is mixed.

The unmixedness condition for ∆-trees in Fact 2.8.18 can be restated using

the following lemma.
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T T ′

s1 s2 s3 s′1 s′2 s′3

ℓ1 ℓ2 ℓ3 ℓ4 ℓ′1 ℓ′2 ℓ′3

u1 u2 u′
1 u′

2 u′
3

r1 r′1 r′2

Figure 2.3: Trees from Example 2.8.15

Lemma 2.8.20. Let T be a ∆-tree. Then for all leaves ℓ1, ℓ2 ∈ V0, dT (ℓ1, ℓ2) ̸= 4 if

and only if for all v ∈ V2, we have |N(v) ∩ V1| = 1.

Proof. (⇒) Assume by way of contradiction that there is a vertex v ∈ V2 such that

|N(v) ∩ V1| ̸= 1. By definition of height, we must have |NT (v) ∩ V1| ≥ 1. So, there

are distinct s1, s2 ∈ N(v)∩V1. Then there are leaves ℓ1, ℓ2 ∈ V0 such that ℓ1s1, ℓ2s2 ∈

E. Thus this forms a path between ℓ1 and ℓ2, namely ℓ1s1vs2ℓ2, contradicting the

assumption that there is no path of length 4 between any two leaves.

(⇐) Let ℓ1, ℓ2 ∈ V0 be two leaves. Then there are support vertices s1, s2 ∈ V1

such that ℓ1s1, ℓ2s2 ∈ E. If s1 = s2, then ℓ1s1ℓ2 forms a path of length 2 between

ℓ1 and ℓ2. Thus by the uniqueness of path between two vertices in a tree, we get

dT (ℓ1, ℓ2) = 2 ̸= 4. Now suppose that s1 ̸= s2. Since T is a ∆-tree, there is no

edge between s1 and s2. Thus we must have dT (ℓ1, ℓ2) > 3. Assume by way of

contradiction that dT (ℓ1, ℓ2) = 4. Then there exists v ∈ V2 such that ℓ1s1vs2ℓ2 forms

a path of length 4. This implies that s1, s2 ∈ N(v), so |N(v) ∩ V1| ≥ 2, contradicting

the assumption that |N(v) ∩ V1| = 1 as v ∈ V2. Thus dT (ℓ1, ℓ2) ̸= 4.

Now we state a new characterization of unmixed ∆-trees.

Theorem 2.8.21. Let T be a ∆-tree. Then T is unmixed if and only if

(a) height(T ) ≤ 3,
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(b) ∀v ∈ V2, |NT (v) ∩ V1| = 1,

(c) ∀v ∈ V1, |NT (v) ∩ V2| ≤ 1.

Proof. Apply Lemma 2.8.20 to condition (b) in Fact 2.8.18.

Remark 2.8.22. Given an unmixed ∆-tree T of height 3, condition (c) in Theo-

rem 2.8.21 becomes an equality. If the conditions (b) and (c) in Theorem 2.8.21 hold

for T , then the set {uv ∈ E : u ∈ V1, v ∈ V2} describes a bijection between V1 and V2

by the pigeonhole principle. Also, the inequality in condition (c) becomes an equality

in this setting.

Example 2.8.23. Here we give some intuition of unmixed ∆-trees with respect to

their heights. Let T be an unmixed ∆-tree. If height(T ) = 0, then T must be the

graph with a single isolated vertex. If height(T ) = 1, then Theorem 2.8.21 shows that

T must be a “star graph” shown in Figure 2.4, i.e., T has a unique height 1 vertex

s1, and has n0 leaves with n0 ≥ 2. (If n0 = 1, then T is a path of 2 vertices which is

not a ∆-tree since both vertices are leaves).

s1

ℓ1,1 ℓ1,2 ℓ1,n0

· · ·
· · ·

Figure 2.4: Unmixed Tree of height 1, “Star graph”.

There is no height 2 unmixed ∆-tree. Indeed, let T ′ be a ∆-tree of height-

2, and let u ∈ V2(T
′). If deg(u) = 1, then u becomes a leaf, contradicting our

assumption that height(u) = 2. So, deg(u) ≥ 2. Since T ′ is a ∆-tree of height 2, we

have N(u) ⊆ V1(T
′). Hence |N(u) ∩ V1(T ′)| ≥ 2, violating condition (b) in Theorem

2.8.21. Hence the only unmixed ∆-trees have heights 0,1, and 3.
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Next, we give a way to “decompose” any given tree into two “∆-forests;” see

Fact 2.8.28 below.

Definition 2.8.24. Let S ⊆ V . The subgraph of G induced by S, denoted GS, is the

subgraph of G such that V (GS) = S and E(GS) = {uv : u, v ∈ S, uv ∈ E(G)}.

Definition 2.8.25. Let T be a tree with a 2-coloring χ : V (T ) → {B,R}. We define

the blue interior graph of T to be the subgraph TB of T induced by the set

V \N [V1 ∩ χ−1(B)]

where N [S] := N(S) ∪ S is the closed neighborhood of S for any S ⊆ V ; i.e., TB is

the subgraph of T induced by deleting all blue support vertices together with their

neighbors. Similarly, we define TR to be the red interior graph of T induced by the

set

V \N [V1 ∩ χ−1(R)].

Example 2.8.26. Figure 2.5 shows a 2-colored tree T , and Figure 2.6 below shows

its blue and red interior graphs.

T

ℓ3

s3

u3

r2

u4

s4

ℓ4ℓ2

s2

u2

r1

u1

s1

ℓ1

r3

u5

s5

ℓ5

Figure 2.5: A 2-coloring of a tree T

This example shows that the interior graphs can be forests.
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TB

ℓ3

s3

u3

r2

u4

s4

ℓ4

r1 r3

u5

s5

ℓ5

TR

r2

ℓ2

s2

u2

r1

u1

s1

ℓ1

r3

Figure 2.6: Interior graphs of T from Figure 2.5

Example 2.8.27. Consider the tree T in Figure 2.7. Its interior graphs TB and TR

are shown in Figure 2.8. For this specific tree T , its interior graphs are isomorphic.

v1 v2 v3 v4 v5 v6 v7

v8
v9 v10

v11

v12
v13

v14 v15
v16 v17

v18 v19
v20 v21 v22

v23 v24

Figure 2.7: A tree T

v1 v2 v4 v5

v8

v9

v12
v13

v14

v19
v20

v23 v24

v3 v6 v7v10

v11

v15

v16 v17

v18

v21 v22

v23 v24

Figure 2.8: TB (left) and TR (right) of T in Figure 2.7

All connected components of the interior graphs in Examples 2.8.27 and 2.8.26

are ∆-trees. This is true in general and is proved in the following fact.
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Fact 2.8.28. Every connected component of TB and TR is a ∆-tree. Hence we say

that TB and TR are “∆-forests.”

Proof. Without loss of generality, consider the blue interior graph TB. By Defini-

tion 2.8.25, we delete all blue support vertices with their neighboring vertices (that

are red colored) in T when we construct TB. Hence the leaves and the isolated vertices

in TB must be blue color, implying that the connected components of TB must be

∆-trees by Fact 2.8.12.

Now we state the unmixedness condition for a general tree.

Fact 2.8.29 ([7, Theorem 4.2.37]). Let T be a tree with a given 2-coloring. Then T

is unmixed if and only if both TB and TR are unmixed.

Example 2.8.30. Let T be the tree in Figure 2.5. Since its interior graphs TB and

TR in Figure 2.6 are unmixed, T is unmixed by Fact 2.8.29.

2.9 Simplicial Complexes and Monomial Ideals

In this section, we introduce the basic notions used in Stanley-Reisner Theory.

Assumptions. We set V = {v1, . . . , vd} with d ∈ N and let k be a field.

Definition 2.9.1. A simplicial complex on V is a non-empty collection ∆ ⊆ 2V such

that for any F,G ⊆ V , if F ⊆ G and G ∈ ∆, then F ∈ ∆; i.e., ∆ is closed under

subsets. Each element of ∆ is called a face of ∆. A maximal element of ∆ with

respect to containment is a facet of ∆. We say ∆ is pure if every facet of ∆ has the

same size.

Notation 2.9.2. Let ∆ be a simplicial complex with facets F1, . . . ,Fn. Since sim-

plicial complexes are closed under taking subsets, to describe a simplicial complex it

is sufficient to list the facets. In this case, we write ∆ =: ⟨F1, . . . ,Fn⟩.
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Example 2.9.3. For each n ∈ N, the power set 2[n] is a simplicial complex with

unique facet [n]. For instance, the simplicial complexes 2[3] and 2[4] can be viewed as

a solid triangle and a solid tetrahedron, respectively, as in Figure 2.9.

2

1

3

4

1

2 3

Figure 2.9: Geometric realization of 2[3] and 2[4]

Now set V := {x1, x2, x3, x4}, and let

∆ :={{x1, x2, x3} , {x1, x2, x4} , {x2, x3, x4} , {x1, x2} , {x1, x3} , {x1, x4} , {x2, x3} ,

{x2, x4} , {x3, x4} {x1} , {x2} , {x3} , {x4} , ∅}.

One checks readily that the set ∆ is a simplicial complex on V . Since {x1, x2, x3},

{x1, x2, x4}, and {x2, x3, x4} are the facets of ∆, we get

∆ = ⟨{x1, x2, x3} , {x1, x2, x4} , {x2, x3, x4}⟩ .

Figure 2.10 shown below is a geometric realization of ∆, as three shaded triangles

{x1, x2, x3}, {x1, x2, x4}, and {x2, x3, x4} glued together along edges.

One can use simplicial complexes to construct square-free monomial ideals as

in the following definition.
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x1

x3 x4

x2

Figure 2.10: Simplicial complex ∆

Definition 2.9.4. Let ∆ be a simplicial complex on V , and set R = k[V ]. The

Stanley-Reisner ideal of R associated to ∆ is the ideal “generated by the non-faces

of ∆:”

J∆ := ({XU : U ⊆ V and U ̸∈ ∆})R

where XU is the monomial in R given in Definition 2.8.1. The quotient ring

A[∆] := R/J∆

is called the Stanley-Reisner ring of ∆ over A.

Example 2.9.5. Let ∆ be the simplicial complex from Example 2.9.3. Then

J∆ = ⟨x1x2x3x4, x1x3x4⟩ = ⟨x1x3x4⟩ .

From the second equality, we see that the generators of J∆ correspond to the “minimal

non-faces of ∆.”

The Stanley-Reisner ideal has the following m-irreducible decomposition.

Fact 2.9.6 ([10, Theorem 4.5.4]). Let ∆ be a simplicial complex on V = {v1, . . . , vd}

and set R = k[V ]. Let F be the set of facets of ∆. The Stanley-Reisner ideal J∆ ⊆ R
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has the following irredundant m-irreducible decomposition

J∆ =
⋂
F∈F

PV \F .

One important property of simplicial complex is ‘shellability.’ Determining

whether a given pure simplical complex is shellable is known to be an NP-complete

problem [6]. For us, shellability is used as a tool to determine if a Stanley-Reisner

ring of a given simplicial complex is Cohen-Macaulay (see Theorem 2.9.10).

Definition 2.9.7 ([2, Definition 5.1.11]). Let ∆ be a pure simplicial complex on V .

We say ∆ is shellable if one of the following equivalent conditions is satisfied: the

facets of ∆ can be totally ordered, say F1, . . . , Fm, so that

(a) ⟨Fi⟩ ∩ ⟨F1, . . . , Fi−1⟩ is generated by a non-empty set of maximal proper faces

of ⟨Fi⟩ for all 2 ≤ i ≤ m, or

(b) for all i, j with 1 ≤ j < i ≤ m, there exist some v ∈ Fi \Fj and some k ∈ [i− 1]

with Fi \ Fk = {v}.

Any total ordering satisfying the conditions above is called a shelling of ∆.

Example 2.9.8. Let ∆ be the simplicial complex from Example 2.9.3. Set F1 :=

{x1, x2, x3}, F2 := {x1, x2, x4}, and F3 := {x2, x3, x4}. We show that ∆ is shellable

using condition (b) in Definition 2.9.7 with the total order on the facets given by their

indexing:

Case 1 : j = 1, i = 2. Then {x4} = F2 \ F1 hence k = 1 = j.

Case 2 : j = 1, i = 3. Then {x4} = F3 \ F1, hence k = 1.

Case 3 : j = 2, i = 3. Then {x3} = F3 \ F2, hence k = 2.
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In fact, any ordering of the facets of ∆ will be a shelling. The cases above have the

following geometric realization shown in Figure 2.11 (cases from left to right); the

lighter color vertices are the ones being removed in Fi \ Fj for each cases.

x1

x3 x4

x2

F1 F2

x1

x3 x4

x2

F1

F3

x1

x3 x4

x2

F2

F3

Figure 2.11: Shelling of ∆ using condition (b)

Example 2.9.9. Let ∆ be a simplicial complex on V := {x1, . . . , x5} generated by

F1 := {x1, x2, x3} and F2 := {x1, x4, x5}; see Figure 2.12. As F1 \ F2 = {x2, x3}

x2

x3

x1

x4

x5

Figure 2.12: Simplicial complex ∆ = ⟨{x1, x2, x3} , {x1, x4, x5}⟩

and F2 \ F1 = {x4, x5}, no total order on the facets will satisfy condition (b) in

Definition 2.9.7. Thus ∆ is not shellable.

The following fact explains our interest in shellability. It gives a combinatorial

criterion for the Cohen-Macaulay property that is quite useful in practice as we see

in Theorem 3.1.17 below.

Fact 2.9.10 ([2, Theorem 5.1.13]). The Stanley-Reisner ring of a shellable simplicial

complex is Cohen-Macaulay over every field.
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Next, we introduce an operation that can be performed on simplicial complexes

to obtain another simplicial complex. We will use this operation to prove shellability

of a simplicial complex in Theorem 3.1.17 below.

Definition 2.9.11. Let V ′ := {v′1, . . . , v′n} with V ∩ V ′ = ∅. Let ∆ and ∆′ be

simplicial complexes on V and V ′, respectively. The join of ∆ and ∆′ is a simplicial

complex on V ∪ V ′

∆ ∗∆′ := {U ∪ U ′ : U ∈ ∆, U ′ ∈ ∆′} .

The following fact shows how the join operator behaves with respect to shella-

bility.

Fact 2.9.12 ([1, Remark 10.22]). Let ∆ and ∆′ be simplicial complexes as in the

previous definition. Then ∆ ∗∆′ is shellable if and only if ∆ and ∆′ are shellable.

In particular, Facts 2.9.10 and 2.9.12 are used in [7] to prove that the open

neighborhood ideal of any unmixed tree is Cohen-Macaulay by realizing that the

open neighborhood ideal of an unmixed tree is a Stanley-Reisner ideal of a shellable

simplicial complex called the “ruled complex.”

Definition 2.9.13 ([7, page 65]). Let G = (V,E) be a graph. Let D be the set of all

minimal TD-sets of G. Set FG = {V \D : D ∈ D}. The ruled complex of G is the

simplicial complex on V generated by the sets in FG, denoted ∆G := ⟨FG⟩.

Example 2.9.14. Let T be the graph from Example 2.8.2. The set of minimal

TD-sets D of T is

D = {{v1, v4, v5, v7} , {v2, v4, v5, v7} , {v3, v4, v5, v7} , {v4, v5, v6, v7}} .
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Hence the ruled complex of T is

∆T = ⟨{v2, v3, v6, v8} , {v1, v3, v6, v8} , {v1, v2, v6, v8} , {v1, v2, v3, v8}⟩ .

Observe that very facet of ∆T contains v8.

Using Fact 2.9.6, we show next that the Stanley-Reisner ideal of the ruled

complex of a graph G is the open neighborhood ideal of G.

Theorem 2.9.15. Let G = (V,E) be a graph and let ∆G be its ruled complex. Then

J∆G
= N(G).

Proof. Let F be the set of facets of ∆G and let D be the set of minimal TD-sets of

G. Then we have

J∆G
=
⋂
F∈F

PV \F (Fact 2.9.6)

=
⋂
D∈D

PD (Definition 2.9.13)

= N(G) (Fact 2.8.16)

as desired.

We end the section with a fact stating that the open neighborhood ideal of an

unmixed tree is Cohen-Macaulay. It is proved using Fact 2.9.10 and Theorem 2.9.15

by showing that the ruled complex ∆T is shellable.

Fact 2.9.16 ([7, Theorem 4.3.14]). Let T = (V,E) be an unmixed tree and let

R = k[V ]. Then R/N(T ) is Cohen-Macaulay over any field.
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Chapter 3

Cohen-Macaulay Type of Open

Neighborhood Ideals

In this chapter, we compute the type of open neighborhood ideals of unmixed

trees, accomplished in Theorem 3.3.9.

Assumptions. Throughout this chapter, k is a field.

3.1 Various Total Dominating Sets

In this section, we generalize the notion of total dominating sets which will be

applied to the interior graphs of unmixed trees.

Definition 3.1.1. Let G = (V,E) be a graph and let S ⊆ V . A set D ⊆ V is an

S-totally dominating set of G (S-TD-set of G) if NG(D) ⊇ S, and D is a minimal

S-TD-set of G if there is no proper subset D′ of D such that NG(D
′) = S, i.e., if D

does not properly contain another S-TD-set of G.

We define a special type of TD-set for unmixed ∆-trees using the above defi-

nition.

58



Definition 3.1.2. Let T = (V,E) be an unmixed ∆-tree. Set Vodd := V1 ∪ V3 and

Veven := V0 ∪ V2. A set D ⊆ V is a minimal odd TD-set of T if D is a minimal

Vodd-TD-set of T .

Remark 3.1.3. Let T be a tree and let TB and TR be the blue and red interior graphs

of T , respectively. Since all leaves and isolated vertices of TB are blue color, we have

χ(V0(TB) ∪ V∞(TB)) = {B}. Hence by Fact 2.8.12 with Definition 2.8.5, we get

Veven(TB) ⊆ {v ∈ V (TB) : χ(v) = B} .

We claim that equality holds. Indeed, let v ∈ V (TB) such that χ(v) = B. By way of

contradiction, assume that height(v) is odd. Then by Fact 2.8.12, leaves of TB must

be colored red, a contradiction. Hence we get the equality

Veven(TB) = {v ∈ V (TB) : χ(v) = B} .

Similarly, we have

Veven(TR) = {v ∈ V (TR) : χ(v) = R}

i.e., the even-height vertices of TB are the blue vertices of TB, and the even-height

vertices of TR are the red vertices of TR.

Example 3.1.4. Consider T from Example 2.8.7. Then we have Vodd = {v4, v5, v8},

the red-colored vertices. It is straightforward to show that the minimal odd TD-sets

of T are exactly: {v6, v7}, {v6, v3}, {v1, v7}, and {v2, v7}. On the other hand, the set

{v1, v3} is not an odd TD-set of T since Vodd ̸⊆ NT ({v1, v3}).

Lemma 3.1.5. Let T = (V,E) be an unmixed ∆-tree. For any minimal TD-set D of

T , we have D ∩ V3 = ∅.
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v2v1 v3

v4 v5

v6 v7

v8

Proof. Since T is unmixed, we have height(T ) ∈ {0, 1, 3}. If height(T ) < 3, then

the claim holds as V3 = ∅. Now suppose that height(T ) = 3. Assume by way of

contradiction that there exists v ∈ D ∩ V3. Then we have N(v) ⊆ V2 ⊆ N(V1). Since

V1 is the set of support vertices of G, we have V1 ⊆ D; then v ∈ D ∩ V3 implies

V1 ⊊ D. Thus, we get N(D) = N(D \ {v}), contradicting the minimality of D.

Corollary 3.1.6. Let T = (V,E) be an unmixed ∆-tree. Then every minimal TD-set

of T is a union of V1 and a minimal odd TD-set of T .

Remark. Corollary 3.1.6 is a direct application of Lemma 3.1.5 and its proof; consider

the minimal TD-sets of T ′ given in Example 2.8.15 for an example.

Definition 3.1.7. Let T = (V,E) be an unmixed ∆-tree. The odd open neighborhood

ideal of T in k[V ] is the ideal

Nodd(T ) :=
〈{
XN(v) : v ∈ Vodd

}〉
.

If V = {v} (in case height(T ) = 0), then Vodd = ∅ so Nodd(T ) = 0.

Example 3.1.8. Let T be the tree from Example 3.1.4. Then Vodd = {v4, v5, v8}.

Hence the odd open neighborhood ideal of T in k[V ] is given by

Nodd(T ) =
〈
XN(v4), XN(v5), XN(v8)

〉
= ⟨v1v2v6, v3v7, v6v7⟩ .
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For later use, we give an irredundant m-irreducible decomposition theorem for

the “S-open neighborhood ideal,” defined next. The proof is almost identical to the

one for the “edge ideals” (see [10, Section 4.3]).

Definition 3.1.9. Let G = (V,E) be a graph and let S ⊆ V . The S-open neighbor-

hood ideal of G is the ideal in k[V ]

NS(G) :=
〈{
XN(v) : v ∈ S

}〉
.

Example 3.1.10. Let T = (V,E) be the ∆-tree (forest) TB from Example 2.8.26

(see Figure 3.1):

ℓ3

s3

u3

r2

u4

s4

ℓ4

r1 r3

u5

s5

ℓ5

Figure 3.1: TB from Example 2.8.26

Set S = V3 = {r2, r3}. (Note that r1 ̸∈ V3 since height(r1) = 0). Then the

S-open neighborhood ideal of T is given by

NS(T ) = NV3(T ) =
〈{
XN(v) : v ∈ V3

}〉
= ⟨u3u4, u4u5⟩ .

Fact 3.1.11 and Lemma 3.1.12 are used in the proof of our decomposition result

Theorem 3.1.13.

Fact 3.1.11. Let G = (V,E) be a graph and let S ⊆ V . Then
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(1) For any V ′, V ′′ ⊆ V , if V ′ is an S-TD-set and V ′ ⊆ V ′′, then V ′′ is an S-TD-set.

(2) Every S-TD-set contains a minimal S-TD-set.

Proof. This follows readily from the definition of S-TD-set and the finiteness of V .

Lemma 3.1.12. Let G = (V,E) be a graph with V = {v1, . . . , vd}, let S ⊆ V , and

let R = k[V ]. Let V ′ ⊆ V . Then V ′ is an S-TD-set if and only if NS(G) ⊆ PV ′.

Proof. Write S = {s1, . . . , sn} with n ∈ N. For the forward implication, assume that

V ′ is an S-TD-set. Consider XN(si) for some i ∈ [n]. Since si ∈ S and V ′ is an S-

TD-set, there exists some vertex v ∈ V ′ such that v ∈ N(si). Hence we get v|XN(si),

so XN(si) ∈ (v)R ⊆ ⟨{u : u ∈ V ′}⟩ = PV ′ . Thus NS(G) ⊆ PV ′ .

For the converse implication, assume that NS(G) ⊆ PV ′ . Let u ∈ S. Then

XN(u) ∈ NS(G) ⊆ PV ′ . Hence there exists some v ∈ V ′ such that v|XN(u). By

definition of XN(u), we must have v ∈ N(u). Thus u ∈ N(v) ⊆ N(V ′). Since u is an

arbitrary vertex in S, we get S ⊆ N(V ′).

Theorem 3.1.13. Let G = (V,E) be a graph, let S ⊆ V , and R = k[V ]. The S-open

neighborhood ideal has the following m-irreducible decomposition

NS(G) =
⋂
D

PD =
⋂

D min

PD

where the first intersection is taken over all S-TD-sets of G, and the second intersec-

tion is taken over all minimal S-TD-sets of G. Moreover, the second decomposition

is irredundant.

Proof. For any A,B ⊆ V , we have PA ⊆ PB if and only if A ⊆ B. Hence the

second intersection is irredundant. Now let V ′ ⊆ V be an S-TD-set which is not

minimal. Then V ′ contains a minimal S-TD-set by Fact 3.1.11. So, we have
⋂
D PD =
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⋂
D ̸=V ′ PD. Since V is finite, by repeating the same argument finitely many times, we

can conclude that
⋂
D PD =

⋂
D min PD.

By Lemma 3.1.12, we get NS(G) ⊆ ⋂
D PD. For the containment NS(G) ⊇⋂

D PD, since NS(G) is a square-free monomial, there are subsets D1, . . . , Dk ⊆ V

such that NS(G) =
⋂k
i=1 PDi

. For any index j ∈ [k], we have NS(G) ⊆ PDj
, which

implies that Dj is an S-TD-set by Lemma 3.1.12. Thus we get NS(G) =
⋂k
i=1 PDi

⊇⋂
D PD.

Example 3.1.14. Let T = (V,E) be the tree from Example 3.1.10 and set S = V3.

Then we have

NS(T ) = ⟨u3u4, u4u5⟩ = ⟨u3, u5⟩ ∩ ⟨u4⟩ .

The sets {u3, u5} and {u4} are the minimal S-TD-sets of T .

The following result is a corollary of Theorem 3.1.13 and Corollary 3.1.6 with

G being a ∆-tree and S = Vodd.

Corollary 3.1.15. Let T = (V,E) be a ∆-tree and R = k[V ]. The odd open neigh-

borhood ideal of T has the following irredundant m-irreducible decomposition

Nodd(T ) =
⋂
D′⊆V
minimal

PD′ =
⋂
D⊆V

minimal

PD\V1

where the first intersection is taken over the set of all minimal odd TD-sets of T and

the second intersection is taken over the set of all minimal TD-sets of T .

Example 3.1.16. In Example 3.1.8, the odd open neighborhood ideal of T is given

by Nodd(T ) = ⟨v1v2v6, v3v7, v6v7⟩. By applying Fact 2.6.13, we obtain

Nodd(T ) = ⟨v1, v7⟩ ∩ ⟨v2, v7⟩ ∩ ⟨v3, v6⟩ ∩ ⟨v6, v7⟩ .
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The ideals in the decomposition are exactly the ones generated by minimal odd TD-

sets of T found in Example 3.1.4.

Theorem 3.1.17. Let T = (V,E) be an unmixed ∆-tree (forest). Then the odd

open-neighborhood ideal Nodd(T ) of T is Cohen-Macaulay over any field k.

Proof. Set

Dodd := {D ⊆ V : D is a minimal odd TD-set of T}

and let

FT := {Veven \D : D ∈ Dodd} .

Let ∆odd
T be the simplicial complex generated by FT . Then by Fact 2.9.12 and

Corollary 3.1.15, Nodd(T ) is the Stanley-Reisner ideal of ∆odd
T . Thus, it suffices by

Fact 2.9.10 to show that ∆odd
T is shellable. Consider the simplex 2V3 , which is a

shellable simplicial complex because it has a single facet V3. By Corollary 3.1.6, we

get ∆T = ∆odd
T ∗2V3 where ∆T is the ruled complex of T from Definition 2.9.13 (the sim-

plicial complex whose Stanley-Reisner ideal is N(T )). Fact 2.9.16 says ∆T is shellable

by the unmixedness of T . Hence the complex ∆odd
T is shellable by Fact 2.9.12.

Example 3.1.18. Here is an example that demonstrates the proof of Theorem 3.1.17.

Let T be the tree from Example 3.1.4. Then we have

Dodd = {{v1, v7} , {v2, v7} , {v3, v7} , {v6, v7}} .

Hence the simplicial complex ∆odd
T is given by

∆odd
T = ⟨{v2, v3, v6} , {v1, v3, v6} , {v1, v2, v6} , {v1, v2, v3}⟩ .
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By Example 2.9.14, the ruled complex of T is given by

∆T = ⟨{v2, v3, v6, v8} , {v1, v3, v6, v8} , {v1, v2, v6, v8} , {v1, v2, v3, v8}⟩ .

The facets of ∆T are the facets of ∆odd
T unioned with {v8}. Thus we have

∆T = ∆odd
T ∗ ⟨{v8}⟩ = ∆odd

T ∗ 2{v8} = ∆odd
T ∗ 2V3

as V3 = {v8} in T .

The following corollary will be used in Lemmas 3.2.3 and 3.2.6.

Corollary 3.1.19. Let T = (V,E) be an unmixed ∆-tree. Then k[Veven]/Nodd(T ) is

also Cohen-Macaulay.

Proof. We know that k[V ]/Nodd(T ) is Cohen-Macaulay by Theorem 3.1.17. Be-

cause the generators of Nodd(T ) only use Veven, the set of variables Vodd forms a

k[V ]/Nodd(T )-regular sequence. Thus k[V ]/(Nodd(T ) + ⟨Vodd⟩) ∼= k[Veven]/Nodd is

Cohen-Macaulay by Fact 2.7.5.

3.2 Cohen-Macaulay Type of ∆-trees

We will use the Cohen-Macaulay type results for unmixed ∆-trees to compute

the type of general unmixed trees.

Assumptions. In this section, we assume that T = (V,E) is an unmixed ∆-tree,

and set R = k[Veven] and (Veven)R =: X, unless otherwise stated. If T is a graph with

single vertex v, then set R := k[v] and X := (v)R.

We begin with a vertex labeling that will be used throughout the proofs in

this chapter for simplicity.
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Notation 3.2.1. Assume T has height 3. For ℓ = 0, 1, 2, 3, set nℓ := |Vℓ|. Theo-

rem 2.8.21 and Remark 2.8.22 allow us to denote the vertices of T as follows:

(1) write V1 := {s1, . . . , sn1} and V3 := {r1, . . . , rn3};

(2) for i ∈ [k] write ui for the unique height 2 vertex adjacent to si; and

(3) write ℓi,1, . . . , ℓi,mi
for the leaves adjacent to si (mi ≥ 1).

Since T is unmixed of height 3, we have n1 = n2 by Remark 2.8.22.

Example 3.2.2. Using Notation 3.2.1, we can label the vertices of an unmixed ∆-tree

T of height 3 as in Figure 3.2.

ℓ1,3ℓ1,2

s1

u1

r1

u2

s2

ℓ2,1

r2

u3

s3

ℓ3,1 ℓ3,2ℓ1,1

Figure 3.2: Example of a vertex labeling on a ∆-tree using Notation 3.2.1.

Here, n1 = |V1| = 3, n3 = |V3| = 2, m1 = 3, m2 = 1, and m3 = 2. The labeling rule

(2) in Notation 3.2.1 is well-defined by Theorem 2.8.21. Also, we have |V1| = |V2| = n2

(for height-3 unmixed ∆-trees), |V3| = n3, and for i ∈ [n1], there aremi leaves adjacent

to si. Thus, we have

|Veven| = n2 +

n2∑
i=1

mi = n2 + n0 (3.1)

e.g., for the tree in Figure 3.2, we have

9 = |Veven| = 3 + (3 + 1 + 2) = 3 + 6.
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To compute type(R/Nodd(T )), we first identify a maximal (R/Nodd(T ))-regular

sequence. First, we consider unmixed ∆-trees of height 0 and 1.

Lemma 3.2.3. Suppose that height(T ) ≤ 1. Let Z ⊆ R be defined as followings:

(1) If height(T ) = 0, set V = {v} and Z := {v};

(2) If height(T ) = 1, set V1 = {s}, V0 = {ℓ1, . . . , ℓn0} with n0 ≥ 2, and Z :=

{ℓ1 − ℓj : 2 ≤ j ≤ n0}.

Then Z is a maximal R/Nodd(T )-regular sequence in X.

Proof. (1) If height(T ) = 0, then T is a graph with a single vertex, and we have

R = k[v] and Nodd(T ) = 0. Thus R/Nodd(T ) ∼= R = k[v] and {v} = Z is a maximum

regular sequence for k[v] by Example 2.5.9.

(2) Now suppose that height(T ) = 1. We use Fact 2.7.5 to show that Z is

a maximal R/Nodd(T )-regular sequence. We have R = k[Veven] = k[ℓ1, . . . , ℓn0 ] and

Nodd(T ) =
〈
XN(s)

〉
= ⟨ℓ1 · · · ℓn0⟩. Since the m-irreducible decomposition of Nodd(T )

is

Nodd(T ) = ⟨ℓ1 · · · ℓn0⟩ =
n0⋂
i=1

⟨ℓi⟩ ,

we have dim(R/Nodd(T )) = n0 − 1 by Fact 2.6.15. Then we have

R

Nodd(T ) + ⟨Z⟩ =
k[ℓ1, . . . , ℓn0 ]

⟨ℓ1 · · · ℓn0⟩+ ⟨{ℓ1 − ℓj : 2 ≤ j ≤ n0}⟩
∼= k[ℓ1]

⟨ℓn0
1 ⟩ .

Since the ideal ⟨ℓn0
1 ⟩ is an m-irreducible decomposition, we get that dim(k[ℓ1]/ ⟨ℓn0

1 ⟩) =

1 − 1 = 0 by Fact 2.6.15. Since R/Nodd(T ) is Cohen-Macaulay by Corollary 3.1.19

and |Z| = n0 − 1, the elements in Z form a maximal (R/Nodd(T ))-regular sequence

by Fact 2.7.5.

The following is a quick corollary of Lemma 3.2.3.
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Corollary 3.2.4. Suppose that height(T ) ≤ 1. Then

depth(R/Nodd(T )) =


1 if height(T ) = 0

|V0| − 1 if height(T ) = 1

.

Next, we consider unmixed ∆-trees of height 3; recall that no height-2 unmixed

∆-tree exists by Example 2.8.23. We begin with a short lemma about the depth of

R/Nodd(T ) when height(T ) = 3.

Lemma 3.2.5. Let height(T ) = 3. Using Notation 3.2.1, we have

depth(R/Nodd(T )) = n0.

Proof. Recall that R = k[Veven]. Since T is unmixed, Corollary 3.1.6 implies that

every minimal odd TD-set of T has the same size; moreover, they all have size n2

since the set V2 is a minimal odd TD-set of T . Thus we get

depth(R/Nodd(T )) = dim(R/Nodd(T )) (Corollary 3.1.19)

= |Veven| − n2 (Fact 2.6.15)

=

n2∑
i=1

mi (Example 3.2.2)

=

n1∑
i=1

mi (n1 = n2)

= n0.

Now we exhibit a maximal R/Nodd(T )-regular sequence when height(T ) = 3.
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Lemma 3.2.6. Let height(T ) = 3. Set

Z := {ui − ℓi,j : 1 ≤ i ≤ n1, 1 ≤ j ≤ mi} ⊆ R

Then Z is a maximal R/Nodd(T )-regular sequence in X.

Proof. Set R′ := k[u1, . . . , un2 ]. Then we have

R

Nodd(T ) + ⟨Z⟩
∼= R′(

u
|N(s1)|
1 , . . . , u

|N(sn1 )|
n2 , XN(r1), . . . , XN(rn3 )

)
R′

(∗)

because every leaf ℓi,j is identified with its closest height 2 vertex ui and n1 = |V1| =

|V2| = n2 by Remark 2.8.22 since T is an unmixed ∆-tree of height 3. Set

I :=
(
u
|N(s1)|
1 , . . . , u

|N(sn1 )|
n1 , XN(r1), . . . , XN(rn3 )

)
R′.

Since I contains positive powers of all the ui’s, and theXN(ri) are non-unit monomials,

we get m-rad(I) = (u1, . . . , un1)R
′. This implies that dim(R′/I) = 0 by Fact 2.6.15.

Since R/Nodd(T ) is Cohen-Macaulay of depth n0 by Corollary 3.1.19 and Lemma 3.2.5,

the condition

|Z| =
n2∑
i=1

mi = n0,

implies that Z is a maximal regular sequence by Fact 2.7.5.

Example 3.2.7. Let T be the tree from Example 3.2.2 and let R = k[Veven]; see

Figure 3.3, some vertices are colored for guidance. Then the maximal R/Nodd(T )-

regular sequence from Lemma 3.2.6 is

Z = {u1 − ℓ1,1, u1 − ℓ1,2, u1 − ℓ1,3, u2 − ℓ2,1, u3 − ℓ3,1, u3 − ℓ3,2} .
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ℓ1,3ℓ1,2

s1

u1

r1

u2

s2

ℓ2,1

r2

u3

s3

ℓ3,1 ℓ3,2ℓ1,1

Figure 3.3: Tree T from Example 3.2.2

We have

Nodd(T ) = ⟨u1ℓ1,1ℓ1,2ℓ1,3, u2ℓ2,1, u3ℓ3,1ℓ3,2, u1u2, u2u3⟩

hence

R

Nodd(T ) + ⟨Z⟩ =
k[u1, u2, u3, ℓ1,1, ℓ1,2, ℓ1,3, ℓ2,1, ℓ3,1, ℓ3,2]

⟨u1ℓ1,1ℓ1,2ℓ1,3, u2ℓ2,1, u3ℓ3,1ℓ3,2, u1u2, u2u3⟩+ ⟨Z⟩

=
k[u1, u2, u3]

⟨u14, u22, u33, u1u2, u2u3⟩
.

The ideal ⟨u14, u22, u33, u1u2, u2u3⟩ is the ideal J from the proof of Lemma 3.2.6.

Now we compute the type of R/Nodd(T ) when T is an unmixed ∆-tree. We first

take care of the cases when height(T ) < 3. Note that this result says that R/Nodd(T )

is “Gorenstein” in this case.

Theorem 3.2.8. If height(T ) < 3, then type(R/Nodd(T )) = 1.

Proof. First, let height(T ) = 0; hence we write V = {v}. Then R = k[v] and

Nodd(T ) = 0. Hence we have

type(R/Nodd(T )) = type(R) (Nodd(T ) = 0)

= type(R/ ⟨v⟩) = 1. (Facts 2.7.7 and 2.7.10)
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Now suppose that height(T ) = 1. Let Z be the maximal R/Nodd(T )-regular sequence

from Lemma 3.2.3. Then we have

type(R/Nodd(T )) = type

(
R

Nodd(T ) + ⟨Z⟩

)
(Fact 2.7.7)

= type(k[ℓ1,1]/
〈
ℓm1
1,1

〉
) ((1) in Lemma 3.2.3)

= 1 (Fact 2.7.10)

as desired.

Now we consider T with height(T ) = 3. The ideal I from Lemma 3.2.6

has a parametric decomposition in k[u1, . . . , un2 ] since m-rad(I) = ⟨u1, . . . , un2⟩.

Lemma 3.2.9 gives us the decomposition of I explicitly.

Lemma 3.2.9. Assume that height(T ) = 3. Let J ≤ R′ = k[u1, . . . , un2 ] be the ideal

from the proof of Lemma 3.2.6. Set

U :=
(
u
|N(s1)|
1 , . . . , u

|N(sn1 )|
n2

)
R′.

The irredundant parametric decomposition of I in R′ is

I =
⋂

D min

(PD + U)

where the intersection is taken over all minimal V3-TD-sets of T .

Proof. Notice that the ideal
(
XN(r1), . . . , XN(rn3 )

)
R′ is the V3-open neighborhood
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ideal of T since V3 = {r1, . . . , rn3}. Thus by Theorem 3.1.13, we get

(
XN(r1), . . . , XN(rn3 )

)
R′ =

⋂
D min

PD

where the intersection is taken over all minimal V3-TD-set of T . Thus we get

I =
(
XN(r1), . . . , XN(rn3 )

)
R′ + U =

( ⋂
D min

PD

)
+ U =

⋂
D min

(PD + U)

where the last equality comes from Lemma 2.6.29.

Example 3.2.10. Let T = (V,E) be the tree from Example 3.2.2 and let J be the

ideal from Example 3.2.7. Setting

U =
〈
u
|N(s1)|
1 , u

|N(s2)|
2 , u

|N(s3)|
3

〉
=
〈
u41, u

2
2, u

3
3

〉
,

we get

J =
〈
u41, u

2
2, u

3
3, u1u2, u2u3

〉
=
〈
u41, u

2
2, u

3
3, u1, u3

〉
∩
〈
u41, u

2
2, u

3
3, u2

〉
= (⟨u1, u3⟩+ U) ∩ (⟨u2⟩+ U) .

Sets {u1, u3} and {u2} are minimal V3-TD-sets of T .

Now we can describe the type(R/Nodd(T )) for an unmixed ∆-tree of any height

using minimal V3-TD-sets.

Theorem 3.2.11. Let R = k[Veven]. Then

type(R/Nodd(T )) = “number of minimal V3-TD-sets of T.”
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Proof. If height(T ) < 3, then the empty set is the unique minimal V3-TD-set, so

type(R/Nodd(T )) = 1 (Theorem 3.2.8)

= | {∅} |

= “number of minimal V3-TD-sets of T.”

Now suppose that height(T ) = 3. Let Z, R′, and I as in Lemma 3.2.6. Then we have

type(R/Nodd(T )) = type

(
R

Nodd(T ) + ⟨Z⟩

)
(Fact 2.7.7)

= type (R′/I) ((∗) in Lemma 3.2.6)

= “number of ideals in the parametric decomp. of I” (Fact 2.7.10)

= “number of minimal V3-TD-sets of T” (Lemma 3.2.9)

as desired.

Example 3.2.12. Let T = (V,E) be the tree from Example 3.2.2. Then by Theo-

rem 3.2.11 with Example 3.2.10, we get

type(k[Veven]/Nodd(T )) = “number of minimal V3-TD-set of T” = 2.
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3.3 Cohen-Macaulay Type of Unmixed Trees

Assumptions. Let T = (V,E) be an unmixed tree and let TR and TB be the two

interior trees (forests) of T derived from a 2-coloring χ; see Definition 2.8.5. Set

NB(v) := NTB(v) and NR(v) := NTR(v) for all v ∈ V .

Theorem 3.3.1 gives us a connection between open neighborhood ideal of T

and the odd open neighborhood ideals of T ’s interior graphs.

Theorem 3.3.1. We have

N(T ) = Nodd(TB)R +Nodd(TR)R + PV1(T )

= Nodd(TB)R +Nodd(TR)R + (V1(T ))R.

Proof. (⊆) It suffices to show that XNT (v) ∈ Nodd(TB)R +Nodd(TR)R + PV1(T ) for all

v ∈ V . Let v ∈ V . By symmetry, assume that χ(v) = R.

Case 1: v ̸∈ V (TB). Then by Definition 2.8.25, there exists some blue support

vertex s ∈ V (T ) that is adjacent to v. Suppose that v is a leaf in T . Then

NT (v) = {s}. Since s ∈ PV1(T ), we have XNT (v) = s ∈ PV1(T ). Now suppose that v

is not a leaf. Since s is a support vertex, there exists some leaf ℓ ∈ V (T ) that is

adjacent to s. Then XNT (ℓ) = s divides XNT (v) since s ∈ NT (v). Hence XNT (v) is a

redundant generator of N(T ).

Case 2: v ∈ V (TB). Then NTB(v) ⊆ NT (v). Thus XNB(v)|XNT (v), so XNT (v) ∈

N(TB).

(⊇) Every support vertex of T is a generator of N(T ), being the open neighborhood

of each leaf it is adjacent to, so we get PV1(T ) ⊆ N(T ). To complete the proof, by

symmetry, we show that N(T ) ⊇ Nodd(TB). Note that all we need to show is that
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XNB(v) ∈ N(T ) for all v ∈ Vodd(TB) as this shows that the generators of Nodd(TB)

are in N(T ). So, let v ∈ Vodd(TB). We show that NB(v) = NT (v) which will imply

that XNB(v) = XNT (v) ∈ N(T ). To this end, assume by way of contradiction that

NB(v) ⊊ NT (v). Since height(v) ∈ {1, 3} by the definition of Vodd(TB) along with

Facts 2.8.18 and 2.8.29, we get χ(v) = R as v ∈ V (TB). Since NB(v) ⊊ NT (v), there

exists a vertex u ∈ V such that u ∈ NT (v) \ V (TB) and uv ∈ E(T ). Since χ(v) = R,

we have χ(u) = B. Since u ̸∈ V (TB), u must be a vertex that is deleted from T while

constructing TB. By definition of TB, u must be a support vertex since χ(u) = B.

But, this implies that v ̸∈ V (TB) since v must be deleted from T while constructing

TB as v ∈ NT (u), a contradiction.

Example 3.3.2. Let T , TB, and TR be the graphs from Example 2.8.26 and set

R = k[V ]. Then we have

Nodd(TB) = ⟨ℓ3u3, ℓ4u4, ℓ5u5, u3u4, u4u5⟩ ,

Nodd(TR) = ⟨ℓ1u1, ℓ2u2, u1u2⟩ ,

(V1(T ))R = ⟨s1, s2, s3, s4, s5⟩ .

The variables are colored using the same coloring of T from Example 2.8.26. The

open neighborhood ideal of T is given by

N(T ) = ⟨s1, s2, s3, s4, s5, ℓ1u1, ℓ2u2, ℓ3u3, ℓ4u4, ℓ5u5, s1r1, s2u3r1, s3u2r2, s4r2r3,

s5r3, u1u2, u3u4, u4u5⟩

= ⟨s1, s2, s3, s4, s5, ℓ1u1, ℓ2u2, ℓ3u3, ℓ4u4, ℓ5u5, u1u2, u3u4, u4u5⟩ .

Notice that the minimal set of generators of N(T ) is exactly the union of the gener-
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ating sets for Nodd(TB), Nodd(TR), and (V1(T ))R. Thus we get

N(T ) = Nodd(TB) +Nodd(TR) + (V1(T ))R.

Remark. By the construction of the interior graphs TB and TR, we have Nodd(TB) ⊆

(χ−1(B) \ V1(T ))R and Nodd(TR) ⊆ (χ−1(R) \ V1(T ))R; that is, the variables of the

generators of Nodd(TB) and Nodd(TR) are blue and red, respectively. Hence the ideals

Nodd(TB), Nodd(TR), and (V1(T ))R use pairwise disjoint sets of variables for their

generators.

The following lemma tells us how the vertex set of T is partitioned by the

vertices of its interior graphs which is used in Theorem 3.3.9.

Lemma 3.3.3. The set V (T ) can be partitioned by

V (T ) = Veven(TB) ∪ Veven(TR) ∪ V1(T ).

Proof. The inclusion V (T ) ⊇ Veven(TB) ∪ Veven(TR) ∪ V1(T ) is by construction, so we

consider the other inclusion. Let v ∈ V (T ). By symmetry, assume that χ(v) = B;

i.e., v is colored blue. Suppose that v ∈ V (TB). Then by Remark 3.1.3, v ∈ Veven(TB).

So suppose that v ̸∈ V (TB). Then by the construction of TB, the blue vertex v is a

support vertex in T since we only delete the blue support vertices of T and their red

neighbors to obtain TB. Thus v ∈ V1(T ). Thus we get V (T ) ⊆ Veven(TB)∪Veven(TR)∪

V1(T ).

Now we show that the sets Veven(TB), Veven(TR), and V1(T ) are pairwise dis-

joint. By Remark 3.1.3, Veven(TB) is colored blue and Veven(TR) is colored red; hence

Veven(TB)∩Veven(TR) = ∅. By symmetry, it suffices to show that V1(T )∩Veven(TB) = ∅.

Let v ∈ V1(T ). If χ(v) = B, then v ̸∈ V (TB) ⊆ Veven(TB) by construction of TB. If
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χ(v) = R, then v ̸∈ Veven(TB) since every vertex in Veven(TB) is colored blue.

Example 3.3.4. Consider the trees from Example 2.8.27. We have

Veven(TB) = {v1, v2, v4, v5, v9, v14, v19, v20, v24}

Veven(TR) = {v3, v6, v7, v10, v15, v18, v21, v22, v23}

V1(T ) = {v8, v11, v12, v13, v16, v17}

Since V (T ) = {v1, . . . , v24}, we can see that V (T ) is partitioned by the three

sets above.

The following result is used for Corollary 3.3.6 which shows that the odd

open neighborhood ideal of an unmixed ∆-forest is also Cohen-Macaulay. The depth

computation is used in Theorem 3.3.7.

Lemma 3.3.5. Let T1 and T2 be unmixed ∆-trees with V (T1) ∩ V (T2) = ∅. Let

T = (V (T1) ∪ V (T2), E(T1) ∪ E(T2)). Then k[Veven(T )]/Nodd(T ) is Cohen-Macaulay

over any field, and

depth

(
k[Veven(T )]

Nodd(T )

)
= depth

(
k[Veven(T1)]

Nodd(T1)

)
+ depth

(
k[Veven(T2)]

Nodd(T2)

)
.

Proof. Let D1 and D2 be the set of all minimal odd TD-sets of T1 and T2, respectively.

Let F1 := {Veven(T1) \D : D ∈ D1} and F2 := {Veven(T2) \D : D ∈ D2}. Let ∆1 and

∆2 be simplicial complexes generated by F1 and F2 respectively. In the proof of

Theorem 3.1.17, we showed that ∆1 and ∆2 are shellable. Now let D be the set

of all minimal odd TD-sets of T , let F = {Veven(T ) \D : D ∈ D}, and let ∆ be

the simplicial complex generated by F . By the construction of T , the minimal odd

TD-sets of T are the unions of the minimal odd TD-sets of T1 and T2. So, we have

D = {D1 ∪D2 : D1 ∈ D1, D2 ∈ D2}
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hence

F = {F1 ∪ F2 : F1 ∈ F1, F2 ∈ F2} .

This implies that ∆ = ∆1 ∗ ∆2, so ∆ is shellable by Fact 2.9.12. Therefore, by

Fact 2.9.10, k[Veven(T )]/Nodd(T ) is Cohen-Macaulay.

Next, we show the equality for depth. Let D ∈ D, and let D1 ∈ D1 and

D2 ∈ D2 be so that D = D1 ∪D2. Since T is unmixed, we get

dim

(
k[Veven(T )]

Nodd(T )

)
= |Veven(T )| − |D|

by Corollary 3.1.15 and Fact 2.6.15. Similarly, for i ∈ {1, 2} we have

dim

(
k[Veven(Ti)]

Nodd(Ti)

)
= |Veven(Ti)| − |Di|.

Thus we get

dim

(
k[Veven(T )]

Nodd(T )

)
= |Veven(T )| − |D|

= |Veven(T1) ∪ Veven(T2)| − |D1 ∪D2|

= |Veven(T1)|+ |Veven(T2)| − |D1| − |D2|

= dim

(
k[Veven(T1)]

Nodd(T1)

)
+ dim

(
k[Veven(T2)]

Nodd(T2)

)
.

Since the odd open neighborhood ideal for T , T1, and T2 are all Cohen-Macaulay, we

get

depth

(
k[Veven(T )]

Nodd(T )

)
= dim

(
k[Veven(T )]

Nodd(T )

)
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= dim

(
k[Veven(T1)]

Nodd(T1)

)
+ dim

(
k[Veven(T2)]

Nodd(T2)

)

= depth

(
k[Veven(T1)]

Nodd(T1)

)
+ depth

(
k[Veven(T2)]

Nodd(T2)

)
.

Corollary 3.3.6. Let T be an unmixed ∆-forest with connected components T1,. . . ,Tc.

Then k[Veven(T )]/Nodd(T ) is Cohen-Macaulay and

depth

(
k[Veven(T )]

Nodd(T )

)
=

c∑
i=1

depth

(
k[Veven(Ti)]

Nodd(Ti)

)
.

Proof. Induct on c, and apply Lemma 3.3.5.

Next, we state and proof a result on a maximal k[Veven]/Nodd(T )-regular se-

quence of an unmixed ∆-forest T that is used in Theorem 3.3.9.

Theorem 3.3.7. Let T be an unmixed ∆-forest with connected components T1, . . . , Tc.

Let R = k[Veven] and Ri = k[Veven(Ti)] for all i ∈ [c]. For each i ∈ [c], using

Notation 3.2.1 for each Ti, let Zi be the maximal regular sequence constructed in

Lemmas 3.2.3 and 3.2.6. Set Z =
⋃c
i=1 Zi. Then

(1) Z is a maximal R/Nodd(T )-regular sequence in ⟨Veven⟩.

(2) type(R/Nodd(T )) = “number of minimal V3-TD-sets in T.”

Proof. Since T is a forest with connected components T1, . . . , Tc, we have Vodd =⋃c
i=1 Vodd(Ti) and Veven =

⋃c
i=1 Veven(Ti). So, by Definition 3.1.7, we get

Nodd(T ) =
〈{
XNT (v) : v ∈ Vodd(T )

}〉
=

〈
c⋃
i=1

{
XNTi

(v) : v ∈ Vodd(Ti)
}〉
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=
c∑
i=1

〈{
XNTi

(v) : v ∈ Vodd(Ti)
}〉

=
c∑
i=1

Nodd(Ti).

Hence we have

R

Nodd(T ) + ⟨Z⟩ =
R∑c

i=1Nodd(Ti) +
∑c

j=1 ⟨Zj⟩

=
R∑c

i=1 (Nodd(Ti) + ⟨Zi⟩)

=
c⊗
i=1

Ri

Nodd(Ti) + ⟨Zi⟩
(Example 2.4.4)

where the tensor product is taken over k. Since dim (Ri/(Nodd(Ti) + ⟨Zi⟩)) = 0 for

all i, we get dim(R/(Nodd(T ) + ⟨Z⟩)) = 0 by Lemma 2.6.30. Note that we have

depth

(
k[Veven(T )]

Nodd(T )

)
=

c∑
i=1

depth

(
k[Veven(Ti)]

Nodd(Ti)

)
(Corollary 3.3.6)

=
c∑
i=1

|Zi| (definition of Zi)

= |Z|.

So, k[Veven(T )]/Nodd(T ) is Cohen-Macaulay (Corollary 3.3.6) of depth |Z|, hence Z is

a maximal regular sequence by Fact 2.7.5.
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Noting that R ∼= ⊗c
i=1Ri (tensoring over k), the type of R/Nodd(T ) is given by

type

(
R

Nodd(T )

)
= type

(
c⊗
i=1

Ri

Nodd(Ti)

)

= dimk

(
Ext0⊗c

i=1Ri

(
k,

c⊗
i=1

Ri

Nodd(Ti)

))

= dimk

(
c⊗
i=1

Ext0Ri

(
k,

Ri

Nodd(Ti)

))
(Fact 2.4.5)

=
c∏
i=1

dimk

(
Ext0Ri

(
k,

Ri

Nodd(Ti)

))

=
c∏
i=1

type(Ri/Nodd(Ti)).

By Theorem 3.2.11, type(Ri/Nodd(Ti)) is given by the number of minimal V3(Ti)-TD-

sets of Ti for each i. Since T is the union of the connected components T1, . . . , Tc,

the number of minimal V3-TD-set of T is the product of the number of minimal

V3(Ti)-TD-sets of Ti for all i. Thus we get

type

(
R

Nodd(T )

)
=

c∏
i=1

type(Ri/Nodd(Ti))

= “number of minimal V3-TD-sets in T”.

Example 3.3.8. We demonstrate the computations in Theorem 3.3.7. Consider TB

from Example 2.8.27 shown below in Figure 3.4. For each connected component,
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v1 v2 v4 v5

v8

v9

v12
v13

v14

v19
v20

v23 v24

Figure 3.4: TB from Example 2.8.27

labeling them as T1, T2, and T3 from left to right, we get

R1

Nodd(T1)
=
k[v1, v2, v9]

⟨v1v2v9⟩

R2

Nodd(T2)
=

k[v4, v5, v14, v19, v20]

⟨v4v19, v5v14v20, v19v20⟩

R3

Nodd(T3)
=
k[v24]

⟨v24⟩
.

Also, we have

R

Nodd(TB)
=

k[v1, v2, v9, v4, v5, v14, v19, v20, v24]

⟨v1v2v9, v4v19, v5v14v20, v19v20, v24⟩
.

Thus we get

R

Nodd(TB)
=

k[v1, v2, v9, v4, v5, v14, v19, v20, v24]

⟨v1v2v9, v4v19, v5v14v20, v19v20, v24⟩

=
k[v1, v2, v9]

⟨v1v2v9⟩
⊗k

k[v4, v5, v14, v19, v20]

⟨v4v19, v5v14v20, v19v20⟩
⊗k

k[v24]

⟨v24⟩
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=
R1

Nodd(T1)
⊗k

R2

Nodd(T2)
⊗k

R3

Nodd(T3)
.

The only minimal V3-TD-set for T1 and T3 is the empty set since V3(T1) = ∅ = V3(T3),

and the minimal V3-TD-sets for T2 are {v19} and {v20}. Thus by Theorem 3.2.11, we

get

type(R1/Nodd(T1)) = 1 type(R2/Nodd(T2)) = 2 type(R3/Nodd(T3)) = 1.

Therefore, the type of R/Nodd(TB) is

type(R/Nodd(TB)) = type(R1/Nodd(T1)) · type(R2/Nodd(T2)) · type(R3/Nodd(T3)) = 2.

Here is the main result of this thesis. It shows how to compute the Cohen-

Macaulay type of R/N(T ) for unmixed trees using only graph-theoretic information

about T .

Theorem 3.3.9. Let R = k[V ], RB = k[Veven(TB)], and RR = k[Veven(TR)]. Let

mB and mR be the numbers of minimal V3-TD-sets in TB and TR, respectively. The

Cohen-Macaulay type of R/N(T ) is

type(R/N(T )) = type(RB/Nodd(TB)) · type(RR/Nodd(TR))

= mB ·mR.

Proof. Let ZB and ZR be the maximal regular sequences for k[Veven(TB)]/Nodd(TB)

and k[Veven(TR)]/Nodd(TR) computed in Theorem 3.3.7, respectively, and let Z =
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ZB ∪ ZR. Then we have

R

N(T ) + ⟨Z⟩ =
R

Nodd(TB) +Nodd(TR) + PV1(T ) + ⟨Z⟩ (Theorem 3.3.1)

=
k[Veven(TB) ∪ Veven(TR) ∪ V1(T )]

Nodd(TB) +Nodd(TR) + PV1(T ) + ⟨Z⟩ (Lemma 3.3.3)

∼= k[Veven(TB) ∪ Veven(TR)]
Nodd(TB) +Nodd(TR) + ⟨Z⟩

=
k[Veven(TB)]

Nodd(TB) + ⟨ZB⟩
⊗k

k[Veven(TR)]

Nodd(TR) + ⟨ZR⟩
.

Note that we have

dim

(
k[Veven(TB)]

Nodd(TB) + ⟨ZB⟩

)
= 0 = dim

(
k[Veven(TR)]

Nodd(TR) + ⟨ZR⟩

)

by Theorem 3.3.7 and Fact 2.7.5. Hence we get

dim

(
R

N(T ) + ⟨Z⟩

)
= 0

by Lemma 2.6.30, so

depth

(
R

N(T ) + ⟨Z⟩

)
= 0.

Let D be the set of minimal TD-sets of T , let DB and DR be the sets of minimal

odd TD-sets of TB and TR, respectively. Then [7, Lemma 4.2.15] and Corollary 3.1.6

gives us that D ∈ D if and only if D = DB ∪ DR ∪ V1(T ) for some DB ∈ DB and

DR ∈ DR; note that the sets DB, DR, and V1(T ) are pairwise disjoint by Lemma 3.3.3

since DB ⊆ Veven(TB) and DR ⊆ Veven(TR). Fix D ∈ D, DB ∈ DB, and DR ∈ DR
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such that D = DB ∪DR ∪ V1(T ). Then we have

dim

(
R

N(T )

)
= |V (T )| − |D| (Facts 2.8.16, 2.6.15)

= |Veven(TB) ∪ Veven(TR) ∪ V1(T )| − |D| (Lemma 3.3.3)

= |Veven(TB) ∪ Veven(TR) ∪ V1(T )| − |DB ∪DR ∪ V1(T )|

= |Veven(TB)|+ |Veven(TR)| − |DB| − |DR|

= dim

(
RB

Nodd(TB)

)
+ dim

(
RR

Nodd(TR)

)

= depth

(
RB

Nodd(TB)

)
+ depth

(
RR

Nodd(TR)

)
(Corollary 3.3.6)

= |ZB|+ |ZR|

= |Z|.

Thus Z is a maximal R/N(T )-regular sequence by Facts 2.7.5 and 2.9.16.

Writing VB := Veven(TB) and VR := Veven(TR), we get

type (R/N(T ))

= type

(
R

N(T ) + ⟨Z⟩

)
(Fact 2.7.7)
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= type

(
k[VB]

Nodd(TB) + ⟨ZB⟩
⊗k

k[VR]

Nodd(TR) + ⟨ZR⟩

)

= dimk

(
Ext0k[VB∪VR]

(
k,

k[VB]

Nodd(TB)
⊗k

k[VR]

Nodd(TR)

))
(Example 2.4.3)

= dimk

(
Ext0k[VB ]

(
k,

k[VB]

Nodd(TB) + ⟨ZB⟩

)
⊗k Ext0k[VR]

(
k,

k[VR]

Nodd(TR) + ⟨ZR⟩

))
(Fact 2.4.5)

= dimk

(
Ext0k[VB ]

(
k,

k[VB]

Nodd(TB) + ⟨ZB⟩

))
· dimk

(
Ext0k[VR]

(
k,

k[VR]

Nodd(TR) + ⟨ZR⟩

))

= type

(
k[VB]

Nodd(TB) + ⟨ZB⟩

)
· type

(
k[VR]

Nodd(TR) + ⟨ZR⟩

)

= type(R/Nodd(TB)) · type(R/Nodd(TR)) (Fact 2.7.7)

= mB ·mR (Theorem 3.3.7)

as desired.

We end this chapter with some examples applying Theorem 3.3.9.

Example 3.3.10. Let T be the tree from Example 2.8.26. Consider its blue and red

interior graphs TB and TR in Figure 3.5. The minimal V3-TD-sets of TB are {u3, u5}

and {u4}. The minimal V3-TD-sets of TR are {u1} and {u2}. Therefore, we have

type(R/N(T )) = 2 · 2 = 4 .

Example 3.3.11. Let T be the tree in Example 2.8.27 and let R = k[V (T )]. We
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TB

ℓ3

s3

u3

r2

u4

s4

ℓ4

r1 r3

u5

s5

ℓ5

TR

r2

ℓ2

s2

u2

r1

u1

s1

ℓ1

r3

Figure 3.5: TB and TR from Example 2.8.26

have

type(k[Veven(TB)]/Nodd(TB)) = 2

from Example 3.3.8. Since TB and TR are isomorphic graphs, we get

k[Veven(TB)]/Nodd(TB) ∼= k[Veven(TR)]/Nodd(TR)

which gives

type(k[Veven(TR)]/Nodd(TR)) ∼= type(k[Veven(TB)]/Nodd(TB)) = 2.

Thus we get

type(R/N(T )) = type(k[Veven(TB)/Nodd(TB)]) · type(k[Veven(TR)]/Nodd(TR))

= 2 · 2 = 4.
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Chapter 4

Future Work

4.1 Other Families of Graphs

We first define two different types of graphs.

Definition 4.1.1. Let G = (V,E) be a finite simple graph. Then G is bipartite if G

has a 2-coloring. An induced cycle of G is an induced subgraph of G that forms a

cycle graph. And G is chordal if every induced cycle of G is a 3-cycle.

Example 4.1.2. Every tree is bipartite and chordal (vacuously). Consider the fol-

lowing graphs.

G1

v

G2

Then G1 is not chordal since the induced cycle formed by all the vertices but v is a

4-cycle. On the other hand, G2 is chordal.
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The notion of “edge ideal” (instead of taking the open neighborhood of a vertex

as the monomial generator, take edges) was first introduced by Villarreal in [16]. He

investigated trees whose corresponding edge ideals are Cohen-Macaulay. Later, people

extended his work by looking at different family of graphs such as bipartite graphs

and chordal graphs [4, 9]. Similar to the edge ideal case, we can ask a similar question:

Question 4.1.3. What are the characterizations of unmixed bipartite graphs and

unmixed chordal graphs?

Once we have an answer to Question 4.1.3, we can ask the Cohen-Macaulayness

of such families of graphs as well.

In general, answering Question 4.1.3 is not obvious. Hence answering Ques-

tion 4.1.4 is not trivial as well.

Question 4.1.4. Are the families of graphs from Question 4.1.3 Cohen-Macaulay?

4.2 Sequential Cohen-Macaulayness

An alternative question we can ask is to characterize a family of trees, chordal

graphs, or bipartite graphs whose open neighborhood ideals are “sequentially Cohen-

Macaulay.” This is due to the following theorem.

Theorem 4.2.1 ([5, Lemma 3.6]). Let I be a squarefree monomial ideal in R =

k[x1, ..., xn] where k is a field. Then R/I is Cohen-Macaulay if and only if R/I is

sequentially Cohen-Macaulay and I is unmixed.

Since we are interested in the open neighborhood ideals that are Cohen-

Macaulay, we could look at the ones that are sequentially Cohen-Macaulay. The

following is the definition of sequentially Cohen-Macaulay modules.
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Definition 4.2.2. Let R = k[X1, . . . , Xn] be a polynomial ring over a field k. Let M

be a graded R-module. We say M is sequentially Cohen-Macaulay (over R) if there

exists a finite filtration of graded R-submodules

0 =M1 ⊂M2 ⊂ · · · ⊂Mr =M

such that for all i ∈ [r], Mi/Mi−1 is Cohen-Macaulay, and

dimk(M2/M1) < dimk(M3/M2) < · · · < dimk(Mr/Mr−1) .

A graded ideal I ≤ R is sequentially Cohen-Macaulay if the quotient R/I is sequen-

tially Cohen-Macaulay as an R-module.

We state some results about sequentially Cohen-Macaulay edge ideals.

Theorem 4.2.3 ([15, Theorem 2.13]). Let G be a chordal graph and let I(G) be its

edge ideal. Then I(G) is sequentially Cohen-Macaulay, hence I(G) is sequentially

Cohen-Macaulay if G is a forest.

Theorem 4.2.4 ([15, Theorem 3.10]). Let G be a bipartite graph, I(G) its edge ideal,

and ∆G the “independence complex” of G. Then I(G) is sequentially Cohen-Macaulay

if and only if ∆G is shellable.

This leads to the following question.

Question 4.2.5. (When) are the open neighborhood ideals of trees, chordal graphs,

and bipartite graphs sequentially Cohen-Macaulay?

4.3 Minimal Free Resolutions

Consider the following theorem.
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Theorem 4.3.1 (Hilbert’s Syzygy Theorem). Let R = k[X1, . . . , Xd] where k is a

field.

(1) If I = ⟨f1, . . . , fβ1⟩ ≤ R, then there exists an exact sequence

0 Rβd · · · Rβ2 Rβ1 R R/I 0
∂d ∂β3 ∂2 ∂1 ν

where ∂1 = (f1 · · · fβ1) and βi ∈ N for all i ∈ [d]. The sequence above is called

an (augmented) free resolution of R/I over R.

(2) If fi is homogeneous for all i ∈ [d] in (1), then this resolution can be built

minimally and the βj’s are independent of the choice of minimal free resolution.

The integer βj is the jth Betti number of R/I over R.

From Theorem 4.3.1, it turns out that the dth (highest degree) Betti number

is the Cohen-Macaulay type of R/I over R . Hence computing the minimal free

resolution of open neighborhood ideals of unmixed trees can generalize Theorem 3.3.9.

There is a general formula for finding the Betti numbers of R/I when I is a squarefree

monomial ideal known as Hochster’s formula. But we would like to find a graph

theoretical way to compute the Betti numbers just like Theorem 3.3.9.

Question 4.3.2. How to compute the minimal free resolutions (hence the Betti

numbers) of open neighborhood ideals of unmixed trees directly from the trees.
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