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ABSTRACT 

Hyperspectral imaging is a non-invasive imaging method capable of collecting 

both spatial and spectral information. However, because of the large volume of data 

collected, much of it is redundant or not useful for classification. Deep learning is a 

subset of machine learning that uses artificial neurons in a multilayered structure to learn 

representations from data. One of the main advantages of deep learning is the powerful 

feature extraction capabilities, which allow the model to learn both high- and low-level 

features. Convolutional neural networks are a type of deep learning model that have 

alternating convolutional and pooling layers capable of extracting features while also 

downsampling the input image to remove unimportant features, retain important features 

and reduce the computational load of the deep learning model. 

CNNs can be combined with hyperspectral imaging to rapidly process the large 

amounts of data while removing unnecessary features. Thus, CNNs can be used to 

classify different hyperspectral images of bacteria and determine which bacteria are 

present in the image based on their spectral responses. From the output of the network, 

false color images can be generated from the input hyperspectral images to enhance 

visualization and provide spatial information. 

In this thesis, we explained the goal of this project to design a deep learning 

model capable of processing hyperspectral images of bacteria and outputting 

classifications with high accuracy. We described a detailed procedure of the development 

of a three-layer convolutional neural network capable of generating predictions with 
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approximately 96% accuracy and producing false color images of the hyperspectral 

inputs. 
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CHAPTER ONE 

 

INTRODUCTION AND BACKGROUND 

 

 

Unmanned underwater vehicles are submerged underwater for extended periods 

of time. Once a substrate or structure is exposed to seawater, a biofouling process 

immediately starts at a micro-scale and expands to a macro-scale over time [1]. This 

biofouling process results in waterborne organisms, such as barnacles, beginning to grow 

which can result in unwanted effects such as drag occurring [2]. This unwanted effect 

requires the unmanned underwater vehicles to be brought back to be cleaned more often 

than they should need to be which undermines the idea of them being considered 

unmanned. A potential solution to this problem is growing a single bacterium or a 

combination of bacteria on the outside of these unmanned underwater vehicles to create a 

smooth, stable biofilm comparable to a hydraulically smooth surface. However, this 

solution requires being able to determine the presence of bacteria in a flow setup with 

conditions comparable to what the unmanned underwater vehicle would typically 

experience. Using hyperspectral imaging and deep learning, this can be achieved. 

1.1 Hyperspectral Imaging  

1.1.1 Hyperspectral Imaging Introduction 

Hyperspectral imaging is a noninvasive imaging modality that images a target 

sample over a range of wavelengths to collect a 3-dimensional dataset containing both 

spatial (X and Y) and spectral (λ) information to produce a dataset with dimensions of 

(X, Y, λ) which typically is referred to as a data cube or hypercube [3, 4]. As seen in 
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Figure 1.1, this can be compared to other imaging methods such as microscopy, optical 

coherence tomography (OCT), ultrasound, x-ray, computed tomography (CT), and 

magnetic resonance imaging (MRI). Hyperspectral imaging, however, comes with a 

unique dimension compared to the other imaging methods. While standard imaging 

methods tend to focus on penetration depth and spatial resolution, hyperspectral imaging 

also deals with spectral range. 

1.2 Deep Learning 

Deep learning is a subset of AI that loosely mimics human neurons that consists 

of interconnected neurons or nodes in a multilayered structure to learn representations 

from data such as video or images to predict what the output is based on the input [5-7]. 

Deep learning uses powerful feature extraction methods by transforming the input at a 

low level (starting with the raw input) to a higher, more abstract level [8]. These higher 

layers of representation are types of patterns that a human would be unable to notice such 

Figure 1.1 Diagram from Y. Zhang et al. [4] illustrating the differences between different 

imaging modalities characteristics. 
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as specific combinations of shapes, patterns, edges, and/or colors. These predictions 

could be predicting gene expression, predicting the activation of drug molecules, or the 

prediction of a single bacterium or combination of bacteria based on reflected 

wavelengths [8].  

Deep learning is loosely based on the biological neuron. The neuron’s dendrites 

accept some weighted input, the nucleus decides if the information is relevant, and will 

pass it down through the axon if it is onto the next neuron through the synapse in which 

the process repeats [9]. A mathematical model of the biological neuron was created 

Warren McCulloch and Walter Pitts called a perceptron or McCulloch-Pitts neuron as 

seen in Figure 1.2. This model works similarly to the biological as it accepts some 

weighted inputs, performs a weighted sum of the inputs, sees if the weighted sum crosses 

the threshold of the activation function, and then produces an output depending on if it 

crosses the threshold. Convolutional neural networks contain these artificial neurons 

along with kernels or filters that represent different receptors that respond to different 

features, activation functions that require a signal that exceeds a certain threshold to pass 

Figure 1.2 Illustration from [9] showing the mathematical perceptron model. 
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on to the next neuron, and loss functions and optimizers to allow for the model to learn 

[10]. 

Deep learning can be broken up into a few types of learning: supervised learning, 

unsupervised learning, semi-supervised learning, reinforcement learning, self-supervised 

learning, and transfer learning with unsupervised and supervised learning being the more 

well-known types.  

1.2.1 Unsupervised Learning 

Unsupervised deep learning is a learning method where a model is designed and 

only includes inputs [11]. This method involves unlabeled data being used and the model 

learns how to best classify the output bases on patterns that it learns during training. 

There are no defined output labels at the beginning of training and validating the model 

as the model needs to undergo the process to determine what the outputs are. This can be 

done through clustering data based on similarity, detecting anomalies in the data, or 

learning patterns in the data [11]. 

1.2.2 Supervised Learning 

Supervised deep learning is a learning method where a model is designed based 

on a dataset containing labeled inputs. In this method, the input data is input into the 

model and an output is provided. During the training process, this output would be cross 

referenced with the ground truth label and a loss will be calculated. A lower loss value 

corresponds to a more accurate model. The model will then go through a process of 

updating different learnable parameters (referred to as weights and biases) within the 

model to better minimize the calculated loss vale to increase the accuracy of predictions. 
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A common type of supervised learning methods used for image classification are 

convolutional neural networks.  

1.2.3 Convolutional Neural Networks 

Convolutional neural networks are a deep learning model that tend to be a 

supervised deep learning model. They are widely used for image classification because of 

their ability to process large amounts of data while also producing accurate predictions 

[12]. As previously mentioned, hyperspectral image can generate lots of useful data to 

help us differentiate different types of bacteria from one another, however it will also 

generate a large amount of redundant or useless data. Convolutional neural networks are 

a feedforward type of deep learning neural network that uses a combination of 

convolutional layers and pooling layers to learn the differences between the different 

input images to generate a probabilistic output for each input image. 

As seen in Figure 1.3, the convolutional neural network model is a multilayered 

model consisting of convolutional layers that accepts the input and performs feature 

extraction along with fully connected layers where the model begins to make predictions 

Figure 1.3 Diagram from Z. Li et al. [13] of convolutional layers and fully connected 

layers. 
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which is then shown at the output layer where the classification is made. There are a few 

important parts of a convolutional neural network: the input layer, the hidden layers, and 

the output layers. The input layer is where the model accepts the input, which would be 

hyperspectral images in our case. The hidden layers are where the convolutional layers, 

pooling layers, and fully connected layers are located. This is where the bulk of the 

feature extraction occurs. The convolutional layer is where a kernel of a predetermined 

size is placed over the input as some weight matrix. In the case of image classification, 

the inputs are pixels, which means that each location in the weight matrix is placed over 

each point in the input image. An element-wise multiplication followed by summation is 

performed which is where the feature map begins to be formed. Information can be lost 

on the border with this convolution, so padding is used to make the input slightly larger 

with zero value. Some stride of a preset size is then used to move the convolution kernel 

Figure 1.4 Diagram demonstrating a basic convolution that would happen in a 

convolutional neural network. An input matrix followed by padding is convolved with a 

kernel of size 3 and a stride of 1. Two numerical examples showing the generation of the 

feature map are shown underneath. After the feature map is generated, max pooling is 

applied with a size of 2 and a stride of 1 until the final feature map is output.  
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once the convolution is performed. This is done over the entire input until the feature map 

is generated. This will then be followed by a pooling function to downsample the data 

while making sure to keep track of important features. Figure 1.4 demonstrates a basic 

example of a padded input matrix undergoing a convolutional to generate a feature map 

followed by max pooling. 

This process of convolutions and pooling is continued based on the depth of the 

model until the information reaches the fully connected layer which is where predictions 

are made. The output is then shown at the output layer which is where the classification is 

made. Figure 1.5 demonstrates a typical convolutional neural network workflow starting 

from the input and ending at the output classification based on the input.  

1.3 Deep Learning Optimization 

The goal of a typical deep learning model is to minimize some loss function, and 

this is done as the model is learning. Convolutional neural networks consist of both 

learnable parameters and non-learnable parameters.  

Figure 1.5 Illustration from Guo et al. [14] demonstrating a typical convolutional neural 

network workflow.  



 8 

1.3.1 Learnable Parameters 

The learnable parameters in the model are the randomly initialized weights and 

biases that are updated during backpropagation. Backpropagation is performed during 

training of the model and occurs after the forward pass. The forward pass is where the 

input image is input into the model, the information is passed through the convolutional 

layers, fully connected layers, and a class prediction is output along with a loss value. 

Backpropagation is where the gradient of the loss function is calculated with respect to 

each weight [15]. The gradients that are calculated are computed with the use of the chain 

rule and is performed layer by layer. The gradient will tell the user how much the error 

will change when a certain neuron is changed. The gradients are scaled by the learning 

rate of the optimizer function with higher learning rates meaning that the model takes 

larger steps to converge at ideal error values but could potentially overshoot. A smaller 

learning rate can remove the risk of overshooting but may get stuck at local minima. The 

originally randomly initialized weights and biases will then be updated based on the loss 

value with respect to the calculated gradient until the information has successfully made 

it all the way through the network. The model will then enter a validation mode and use 

the validation data to see how the model performed with the updates to the network. After 

this, the model will reenter the training mode and this process will repeat for the 

remaining epochs of training and validation. 

1.3.2 Non-learnable Parameters 

The non-learnable parameters are referred to as hyperparameters and the 

performance of Convolutional neural networks and other deep learning methods depend 
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on the configurations of these hyperparameters [16]. However, many published studies 

perform a grid search method to determine optimal hyperparameters, or they arbitrarily 

try different hyperparameters to determine the best options [16-18]. Depending on the 

number of hyperparameters you want to adjust, size of the dataset, depth of the model, 

width of the model, or the variability of the dataset, arbitrarily choosing hyperparameters 

or performing a grid search may be optimal. However, this may not always be the case 

based on how many hyperparameters you are looking to tune between runs and how fast 

the model trains and validates. Hyperparameters may also be optimized for a specific 

project such as detecting lung cancer but may need to be changed entirely for another 

project such as detecting bronchus cancer. 
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CHAPTER TWO 

PROJECT APPROACH 

2.1 Project Overview 

Preventing the growth of biofouling does not only apply to unmanned underwater 

vehicles, but this can be extended to any object that encounters sea water such as ships, 

docks, oil rigs, etc. While it may not be necessary for something like docks to experience 

minimal drag because they are not moving, it can help ensure that the structural integrity 

stays intact over time. The goal of this project was to use deep learning combined with 

hyperspectral imaging to help create a smooth, stable biofilm on the outside of these 

unmanned underwater vehicles to prevent biofouling such as barnacles from growing on 

the outside and producing drag. This includes determining if a single bacterium or 

multiple bacteria produces the optimal results. 

2.1 Project Justification 

 Hyperspectral imaging is a unique imaging method that combines typical imaging 

considerations (image depth and image resolution) while adding a new consideration 

(spectral range). This new consideration provides new and useful information; however, 

it also provides useless and redundant information. Convolutional neural networks are 

used widely for image classification because of their ability or process large amounts of 

data while also providing accurate predictions [12]. Using a convolutional neural network 

with hyperspectral imaging will allow for the use of hyperspectral imaging while 

minimizing the downsides that come with it. Combining these two methods should allow 

for the analysis of the different spectral responses of bacteria to be analyzed and help us 
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best determine the single bacteria or multiple bacteria that results in a smooth, stable 

biofilm to prevent biofouling from occurring on the outside of unmanned underwater 

vehicles. 

2.1 Project Aims 

 The first aim of this project is to design a deep learning model able to process and 

classify hyperspectral images of different types of bacteria. This deep learning model 

should be able to differentiate between the different types of input bacteria with an 

accuracy rate of at least 80%. The model should be able to accept inputs of greyscale 

hyperspectral images of size 2048x4096 pixels at least based on the input file format. To 

achieve an accuracy of at least 80%, we will need a sufficient dataset size to train and 

validate the model on. We will be using a lab-built hyperspectral imaging system to 

collect the data samples. Deep learning can be used in combination with HSI to process 

the large amounts of data and learn which features are important for determining the type 

of bacteria present in the image if there is any or if there is just empty space present. 

 The second aim of this project is to optimize the model and analyze the data to 

yield spatial information and false color images to provide morphological and topological 

information. Deep learning can be used to process the large amount of data present in 

hyperspectral images. While the first aim deals with designing a model able to process 

and classify hyperspectral images, we are looking to obtain spatial information so that we 

know where the individual bacterium or multiple bacteria are present on the culture plate. 

With this information, we can then generate a false color image of the input to show 
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where the individual bacterium or multiple bacteria are present on the culture plate to 

provide morphological and topological information. 
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CHAPTER THREE 

 

LITERATURE REVIEW 

 

 

3.1 Hyperspectral Imaging Review 

Hyperspectral imaging is a unique imaging method because of the spectral data 

acquired from it. Depending on the hyperspectral imaging setup, a sample can be imaged 

from ultraviolet light to longwave infrared light, or from below 400 nm to fourteen µm 

[19]. However, hyperspectral imaging has several issues that must be addressed while 

using it: 1) there is a large number of spectral channels (often referred to as the curse of 

dimensionality), 2): the large spatial variability of the spectral signatures, and 3): the 

limited number of training samples [20, 21].  

Utilizing hyperspectral imaging to help determine the presence of a single 

bacterium or multiple bacteria is important to creating the smooth, stable biofilm for the 

unmanned underwater vehicle. The reason that it is important is that hyperspectral 

imaging works on the principle that everything reflects light differently based on the 

chemical makeup of the target. This means that different bacterium will reflect light 

differently based on the type of bacterium. However, while standard imaging techniques 

can be used to tell individual bacterium apart or even a combination of bacterium apart, 

this depends on the type being looked at. While two different bacteria may look red (620-

750 nm), one may have peak reflection at 647 nm and the other may have peak reflection 

at 649 nm. Hyperspectral imaging can capture the peak reflectance of both along with 



 14 

subtle differences as seen in Figure 3.1 and deep learning can then be used to process and 

classify these images. 

 While hyperspectral imaging is a great tool for capturing the subtle differences 

between bacteria that reflect light at similar wavelengths, it can be hard for humans to 

interpret this data without aid from other tools. For example, hyperspectral images 

captured with a linear CCD camera can be presented as a greyscale 1-dimensional image 

(1xλ) while it is still a 3-dimensional dataset (1x1xλ) where λ is the range of wavelengths 

captured by the camera. A human will be unable to view this image and gain any 

information as it is only a greyscale image one unit (i.e., one pixel) in height.  

Figure 3.1 Illustration from G. Foca et al. [22] of how hyperspectral imaging can be used 

to capture subtle differences in peak reflectance in the spectral dimension. While the two 

different bacteria have similar reflectance peaks, hyperspectral imaging shows that there 

are differences between the two example bacteria. 
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3.1.1 Hyperspectral Imaging Modes 

Hyperspectral imaging setups can be designed with a few different approaches in 

mind: snapshot, staring, pushbroom, and whiskbroom.  

The snapshot imaging mode, also referred to as a single-shot method, is a setup 

that is used to acquire spatial and spectral information all at once. This acquires the entire 

hypercube at once but comes at the cost of low spatial and spectral information. This is 

because the method images the dispersed image zones and remapping onto a CCD at the 

same time but is limited by the number of voxels as the number of voxels cannot exceed 

the number of pixels [23]. 

The staring imaging mode, also referred to as a band sequential method, is a setup 

that acquires a single wavelength image with full spatial information at once [23]. This 

means that the entire area of the object is scanned with a single wavelength at a time and 

is followed by the wavelengths changing for each subsequent image. This allows for the 

user to be more specific with the spectral data being acquired as they determine each 

wavelength image and has a short data acquisition time, but this twenty-three is generally 

more high cost compared to the other methods and has a low throughput [24].  

The pushbroom imaging mode, also referred to as a line-scan method, is a setup 

that involves simultaneously collecting spectral information along with a slit of spatial 

information which would be a (X, λ) or (Y, λ) image [23]. This can acquire more light 

than the whiskbroom method as it can stay in an area for longer, however the frame 

acquisition rate of the detector will need to be synchronized with the camera or object 

moving as one line is acquired at a time [23]. If this is not considered, it is possible that 
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the user will not obtain a smooth image. This method is faster than the whiskbroom 

method, but you do not obtain as much data per point. 

The whiskbroom imaging mode, also referred to as a point-scan method, is a 

setup that involves a single point being scanned in the two spatial dimensions (X and Y) 

with the reflected light being dispersed by a prism and then using a linear array detector 

to record the information [23]. This is the most time-consuming mode as it requires a 

point-by-point scan of the data, but results in the most amount of data being generated for 

the user. A comparison chart of snapshot, staring, pushbroom, and whiskbroom can be 

seen in Figure 3.2. Each of these hyperspectral imaging modes can acquire unique data 

based on the method used which can be processed using a deep learning algorithm. 

 

Figure 3.2 Illustration from Q. Li et al. [23] comparing the differences in imaging 

between the whiskbroom, pushbroom, staring, and snapshot hyperspectral imaging 

methods. 
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3.2 Deep Learning Review 

Deep learning is a subset of machine learning that has made many advancements 

in the last decade that have helped solve problems that have been challenging the 

artificial intelligence community for years. Deep learning has turned out to perform very 

well at extracting and discovering different patterns and structures in high-dimensional 

data. This has resulted in deep learning being applied to not only just image 

classification, image recognition, and speech recognition, but many other types of 

applications such as analyzing particle accelerator data, determining the activity of drug 

molecules, and even reconstructing brain circuits [8, 24-34]. 

While there are many different applications for deep learning models, an 

important thing to note is that no model is the same. This means that the architecture for 

each model being different depending on the project such as having a model with seven 

Table 3.1 Summary table from [35] comparing different convolutional 

neural networks on the ImageNet challenge. 
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layers versus three layers, having a different amount of feature maps generated for each 

layer, different padding values for the images, different kernel sizes for each layer, etc. 

Table 3.1 shows the difference between popular image classification models tested on the 

popular ImageNet Large Scale Visual Recognition Challenge. ImageNet is a popular 

image database used primarily for object recognition software and has become very 

popular within the deep learning community. There are more than fourteen million 

images that have had at least one million of them hand annotated. This database also 

contains more than 20,000 categories with typical categories containing a few hundred 

images. The challenge uses a smaller list with only 1,000 total classes being prevalent. In 

2015, AlexNet was outperformed by Microsoft’s deep network with one hundred layers 

[36]. 

It is important to note that just because a model has more parameters than other 

does not necessarily mean that the model will perform better overall. VGG Net(16) 

placed second in the competition with 138 million parameters in 2014 compared to 

GoogLeNet(19) which placed first with only four million parameters. While more 

parameters, more layers, etc. can result in more features being extracted, this can lead to 

the model learning patterns that are not there which results in overfitting.  

When designing a from scratch deep learning model, there are many things that 

need to be taken into consideration. Some things that need to be thought of, for example, 

include what is the input, what does the input image look like (image height, image 

width, number of color channels), what is the output layer expected to produce, what 
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information should be extracted and stored for either the model to use or for personal use, 

and hyperparameters.  

3.2.1 HyperOPT 

 As previously mentioned, hyperparameters are non-learnable parameters that are 

defined before the model is defined, trained, and validated. These parameters will not be 

updated during training and validation and can only be changed between these runs of 

training and validation. When dealing with more than a couple hyperparameters, standard 

grid searches or arbitrary choices may not work well. It is possible that even random 

searches may be competitive with experts [37]. HyperOPT is a Python library that 

conducts hyperparameter optimization through providing an optimization interface [38]. 

This interface distinguishes between an evaluation function and a configuration space. 

This evaluation function will assign loss values to points within the defined configuration 

space [38].  

Three algorithms are currently provided with HyperOPT – simulated annealing, 

random search, and Tree-of-Parzen-Estimators (TPE). Random search is the simplest 

method and is where a random set of values for the hyperparameters are picked from the 

specified hyperparameter space. While this method is simple, it does not use previous 

evaluation results to make informative choices on future searches. Simulated annealing 

starts at a random point in the defined space. This will then make small and random 

changes to the hyperparameters. This method is ideal for escaping from a local minimum 

by being able to accept worse changes, but this is also its biggest problem as it can make 

some worse overall changes. Finally, TPE is an approach that allows for the algorithm to 
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distinguish between good and bad choices. This method builds a density function for 

hyperparameters that result in optimal outcomes and one density function for the rest. 

When the next set of hyperparameters is suggested for evaluation, this method will 

choose the value or values that maximize the ratio between the densities of the two 

functions. This method is more efficient than methods such as random search but depends 

on how well the model is designed and can require a large amount of trials to outperform 

the other methods [39]. 

The user can define a configuration space of hyperparameters they are looking to 

change with the model training. There are a few examples of the expressions recognized 

by the optimization algorithm which are hp.uniform, hp.choice, and hp.loguniform. The 

first argument accepted is the label, or hyperparameter, the user wants optimized and 

must be input as a string. The second argument depends on the expression being used. 

The hp.uniform function will draw uniformly between two values: a low value and a high 

value. The hp.loguniform function will draw between a low value and a high value, but 

the interval that it is constrained to is [log(low value), log(high value)] rather than [low 

value, high value] that is seen in the hp.uniform function. The final function shown is 

hp.choice which will use a value shown in the list. 

F1 score is the harmonic mean of precision and recall where precision is the ratio 

of true positives to the sum of true positives and false positives and recall is the ratio of 

true positives to the sum of true positives and false negatives. When performing a binary 

classification, true positives, false positives, true negatives, and false negatives are 
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important when it comes to evaluating the experiment as we can see why the model is 

performing poorly or performing well.  

3.2.2 F1 Score for Optimization 

It is important to note that when evaluating a deep learning model, evaluation in 

the training phase is not the same as evaluating the final model [40]. When a model is 

being trained, a dataset is usually divided into a training subset and a validation subset 

with a common split being an 80/20 training/validation split where 80% of the dataset is 

used to train and the remaining 20% is used to validate. Once training has been 

completed, the next step is to evaluate the model on a new dataset to see how the model 

performs on entirely unseen data. 

The goal of a deep learning image classification algorithm is to minimize some 

loss function or objective. While a model can output training loss and validation loss, 

there are other metrics that can provide information on how the model is performing. 

Examples of evaluation metrics include accuracy, Area Under the Receiver Operating 

Characteristics (ROC) curve (AUC), and Precision/Recall (PRC) plots [40]. When 

choosing an evaluation metric to include with training and validation loss, it is important 

to note what type of model is being evaluated. A common model for image classification 

are binary classifiers. Binary classifiers are models that divide a dataset into two groups: 

positive and negative [40]. When the classifier makes the prediction, it can produce one 

of four outcomes: true positive, false positive, true negative, or false negative. A table can 

be developed showing the four outputs are referred to as a confusion matrix.  
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True positives, true negatives, false positives, and false negatives are the basis for 

the basic evaluation measures of binary classifiers [40]. Common measures for binary 

classifier performance include error rate and accuracy rate with sensitivity and specificity 

being popular [41, 42]. Another type of evaluation metric is the Fβ where β is 0.1, 1, or 2 

[40]. The F1 score is the harmonic mean between precision and recall, or  

𝐹1 =  
2∗𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
      [40] 

where precision is defined as 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠+𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
    [40] 

and recall is defined as 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠+𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
    [40] 

This value will be between 0 or 1 with one meaning perfect precision and recall and zero 

meaning poor precision and recall.  

 Each metric has their own advantages and disadvantages, and their usage needs to 

be determined on a case-by-case basis as each metric behaves differently on balanced 

datasets compared to imbalanced datasets. F1 scores are a synthetic indicator used to 

measure how well a model is performing [43]. It combines both precision and recall 

providing a value between 0 and 1 to show how well a model is performing and tends to 

be used more often on imbalanced datasets. Using training loss, validation loss, confusion 

matrices, and F1 scores, an image classification convolutional neural network can be 

evaluated properly when it comes to classifying images on an imbalanced dataset.  
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3.3 Visualization 

 Deep learning models are generally considered a black box because of the amount 

of matrix math used in addition to the high-level features that a model uses to learn. It is 

possible to visualize what the deep learning model is using to learn as well as visualize 

the output. Gradient-weighted Class Activation Mappings (Grad-CAMs) can be used to 

visualize what the model believes to be important during training and validation and false 

color images can be generated based on the input and can be beneficial if the user is 

working with greyscale input data [44, 45]. 

3.3.1 CAMs 

 Convolutional neural networks are popular for image classification because of 

their feature extraction capabilities and ability to produce accurate predictions. However, 

an issue with deep learning models, especially from scratch models, is that they can fail 

with no notice [46]. It is imperative that a model is designed so that perform well and can 

Figure 3.3 Illustration from Zhou et al. [44] showing an input image of brushing 

teeth and the corresponding CAM indicating the area of interest for the 

convolutional neural network. 
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also be explainable so that the user can know why it worked or why it failed. Class 

Activation Mapping (CAM) is a process that allows for the user to see why certain 

images were classified as one output class compared to a different class [46]. Figure 3.3 

demonstrates an example of a CAM indicating the areas of interest for a model able to 

indicate brushing teeth.  

 When generating CAMs for data, it is important to note that CAMs can look 

different for different dimensions of input data. While the image in Figure 3.3 shows a 

CAM for a 2-dimensional input image as a heat map centered around the toothbrush, a 

CAM will look different for a 1-dimensional input image or a 3-dimensional input image. 

For a 1-dimensional input image, it will correspond to pixel intesnity assuming that is the 

information of interest with pixels of higher importance corresponding to a higher 

activation intensity. CAMs are a great tool for helping visualize and explain what a deep 

learning model is viewing as important, but CAMs are just one method to help visualize 

when it come to deep learning. 

3.3.2 False Color Images 

 The final thing to consider when designing a deep learning image classification 

model is what should the output produce besides a prediction of the output based on the 

input. When dealing with greyscale input images, it can be hard to differentiate between 

different objects or structures. For example, looking at an MRI image and trying to 

determine what the image is showing can be hard and generally requires someone 

specialized in interpreting MRI images to be able to accurately identify different 

structures and produce a diagnosis.  
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False color images are images that use a specific color mapping to map different 

objects or structures to certain colors and then reconstruct the original input with this new 

color scheme. If looking at an MRI image of the brain, the user could map the frontal 

lobe to red, the hypothalamus to blue, and a tumor on the hypothalamus to yellow. Once 

the MRI image goes through the deep learning model, the model would make predictions 

on what the different structures are (such as the frontal lobe, hypothalamus, etc.) and 

where a tumor is located (such as on the hypothalamus). The information used for the 

output classifications could then be used to reconstruct the input MRI image with the new 

color mapping to help better differentiate between the areas of the brain and where the 

tumor is located. This can be beneficial as it would allow for the user to obtain margins of 

the tumor separated by color and help with forming a plan of action.  

This can be extended to other areas such as reconstructing hyperspectral images 

of different types of bacteria. While a hyperspectral imaging system may image from 500 

nm through 850 nm with 1 nm bandwidth, the output image may not necessarily be a file 

with 350 bands. It could be a greyscale image, or one band, with the spectral data 

corresponding to pixel index on the x-axis and the wavelength increasing across the 

image from left to right. This may not be useful to the user when attempting to 

differentiate between multiple bacteria in the same image, so mapping each bacterium to 

a color can be important as it helps the user differentiate between different bacteria in the 

same file or same image. This can then help with providing morphological and 

topological information in an easy to visualize and understand format. 
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 CHAPTER FOUR 

 

DESIGN OF CONVOLUTIONAL NEURAL NETWORK 

4.1 Design Needs 

4.1.1 Hyperspectral Imaging Design Needs 

 Hyperspectral imaging setups are designed to acquire a 3-dimensional dataset 

with two spatial dimensions (X and Y) and one spatial dimension (λ). While the primary 

focus is designing a from scratch deep learning model capable of analyzing hyperspectral 

images of bacteria, the design of the hyperspectral imaging setup influences how the 

model is designed. The hyperspectral imaging setup needs to be able to image a sample 

from 550 nm to 850 nm. This imaging range is necessary for the setup for three reasons: 

1) the filter we have does not go past 850 nm meaning there is an upper limit of 850 nm, 

2) as we approach ultraviolet light (<400 nm), samples can become damaged, and 3) 

research on biofilms indicate peak spectral responses are usually around 660-680 nm, so 

having the range go slightly below 660 nm and being unable to exceed 850 nm should 

provide enough spectral information [47-50]. The design should also have a way to 

indicate where the hyperspectral image is obtained from. The input images will need to 

be obtained from a 0.25 mm by 0.25 mm field of view. 

4.1.2 Deep Learning Design Needs 

 Deep learning models tend to be referred to as a black box due to the amount of 

heavy computation that is performed to help the model train and learn. This becomes 

even more complicated by the fact that each deep learning model created depends on the 

task the user is looking to perform. A convolutional neural network is a deep learning 
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model that consists of alternating convolutional and pooling layers able to perform 

feature extraction on high level features while still producing accurate classifications. In 

order to design a convolutional neural network that can properly process hyperspectral 

images and be properly optimized, there are several design requirements that must be 

taken into consideration. 

 The model must be able to accept input hyperspectral images obtained from the 

hyperspectral imaging system. This means that the model must be able to accept 1-

dimensional greyscale files with a pixel size of 2048x4096 or 1024x4096 as that is how 

the imaging system formats them. The model must be able to process files with the .bmp 

or .TIF file type. The model must be able to deconstruct the input files into the respective 

x-scans acquired by the imaging system. The model must be able to normalize the images 

to prevent cases where a vanishing or exploding gradient could occur during 

backpropagation. This will allow for pixel intensities to be set between values of 0 and 1 

across the entire dataset. One-hot encoded vectors must be used for the multi-label 

classification being performed by the model which means a label dictionary must be 

created to work with the input images. The model must be able to split the training data 

into a randomly shuffled 80/20 train/validation split.  

 Once the model has been defined and has been able to preprocess the data, there 

are also several needs for the model to perform training and validation as well as store 

specific information regarding the data. The model must be able to store and print 

training loss, validation loss, F1 scores for each class, and total training time. The model 

must be able to store what file the input image came from, what row in the file the input 
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image came from, and what the prediction for the input image was. The model must be 

able to store the ground truth label for the input image during the training and validation 

stage. With this information, the model should be able to also keep track of the true 

positives, true negatives, false positives, and false negatives for each class during training 

and validation to produce confusion matrices for each class. The model should also be 

able to log the training loss, validation loss, and F1 scores for each class.  

 Finally, the code has a few more needs to provide practical information and so 

that the model can be explained properly. The code should be able to convert the input 

images into pixel intensity graphs so that the user is able to determine which wavelengths 

used for imaging are the most important for each class. The pixel intensity graphs will 

need to be summed together for each class for ease of reading. Wavelength will then be 

determined so that we can see what increase in wavelength occurs for each pixel. This 

information will be applied to the pixel intensity graphs. Grad-CAMs must also be able to 

be produced for each convolutional layer so that the user can see which wavelengths the 

model uses to determine the difference between the different bacteria classes. Lastly, a 

color mapping must be defined to map different predictions to different colors. As the 

images are 1-dimensional greyscale inputs, this means that each bacteria will look 

visually the same in each x-scan to the user. Mapping different bacteria to different colors 

and then using that information to reconstruct the images as a false color image will 

allow for the user to easily distinguish between different types of bacteria in each image. 
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4.2 Design Phases 

 When designing something new, there are many things to consider. After the 

project has been determined and the objective has been defined, this will usually be 

followed by a literature review and background research. This is done to determine what 

is currently available and where the gaps in the research are. For deep learning, the gaps 

can be easier to determine as deep learning models are all very specific to their respective 

projects. This will then be followed by determining how to design the new model, how 

the model works, and what the model should be returning to the user. Feedback will be 

provided, and updates can be made based on the feedback. This will then return the 

project to the research and literature review phase as the feedback may be information 

that was not previously considered. 

4.2.1 Literature Review and Background Research 

Extensive literature review was performed to determine the objective of the 

project and the gaps in literature regarding the use of convolutional neural networks 

Table 4.1 Table showing the data used for training and validation. This table indicates 

the class names (both individual and combinations), the amount of 2048x4096 and 

1024x4096 data for each class, and the total amount of images for each class. 
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combined with hyperspectral imaging. From the review, it was determined that a model 

must be designed to: 1) accept the specific inputs based on the file type, 2) have enough 

layers to properly learn the features, but not too many as to avoid overfitting, and 3) 

proper metrics for dealing with binary classification. 

The first necessary portion of the design is to create a Python class that has access 

to the path of the directory that contained the dataset. It must also be able to break down 

each file of size 1024x4096 or 2048x4096 pixels into their respective 1x4096 images, 

store the location information for each image so that their original location could be 

determined (including folder name, file name, and the row index in the file), list the 

bacteria classes to be determined, and process the files stored as .bmp or .TIF. This class 

is given the name BacteriaData. 

The second necessary portion was to define a convolutional neural network 

capable of accepting the greyscale 1-dimensional inputs obtained from the BacteriaData 

class. The convolutional neural network requires the number of input bands from the 

Table 4.1 Table showing the data used for training and validation. This table indicates 

the class names (both individual and combinations), the amount of 2048x4096 and 

1024x4096 data for each class, and the total amount of images for each class. 
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input image to be specified. Our goal was to have this able to accept our input data, seen 

in Table 4.1, process the information through feature extraction, and capable of 

predicting one of the ten classes. It was decided to use three convolutional layers and one 

fully connected layer. 

The final necessary portion was determining proper metrics for binary 

classification. As previously mentioned, F1 scores were chosen for this deep learning 

model due to the binary classification nature of this project. The ratio of true positives, 

false positives, true negatives, and false negatives were important as they allow for us to 

determine how the model is classifying, but they also allow for easy cross checking when 

generating false color images. This is because if a specific bacterium is misidentified as 

another type of bacteria for the false color images, we can still tell what the bacteria most 

likely is as we can look at the surrounding bacteria as well as what was imaged and make 

inferences based on the information. 

4.2.2 Model Design 

With the understanding of the basics of setting up a convolutional neural network 

and how to evaluate the model, we were able to design a convolutional neural network 

Figure 4.1 Basic diagram illustrating the design of the convolutional neural network 

using software from [51]. 
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capable of accepting the individual hyperspectral input images and processing them 

through the network. The basic design flow can be seen in Figure 4.1.  

This model design would use three convolutional layers followed by max pooling 

to reduce the dimensionality of the images. The output of the final pooling layer would be 

flattened into a 1-dimensional vector. This would then be followed by the output 

classification layer where the predictions are made.  

4.3.1 Model Design Specifics  

 Using the basic design flow as seen in Figure 4.1, we designed a convolutional 

neural network that can be used to analyze hyperspectral images of bacteria. We needed 

to define a convolutional neural network capable of accepting the greyscale 1-

dimensional inputs obtained from the BacteriaData class previously mentioned. The 

model required the number of bands to be specified. As the images were greyscale, the 

number of input bands was set to 1. The input width and height had to be specified which 

was 4096 and 2048, respectively. Most of the data files were 2048x4096, but the 2048 

image height was able to work with data that was 1024 pixels in height. The number of 

labels/classes had to be specified. As seen in Table 4.1, some data consists of both 

1024x4096 and 2048x4096 data, so it was important the model could work with both file 

sizes. Because the data would be downsized through pooling layers, the new height and 

width after pooling had to be defined for use by the model to manage the decreased 

dimensions. 

A convolutional neural network class was defined with the name myBacteria that 

inherits from the nn.Module which is the base class for all PyTorch neural networks. This 
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class then had the layers initialized which consisted of two convolutional layers followed 

by a fully connected layer. The convolutional layers consisted of the nn.Conv1d( ) 

convolutional function, nn.LeakyReLU( ) activation function, nn.MaxPool1d( ) pooling 

function, and the nn.Dropout( ) dropout function.  

The nn.Conv1d( ) function performs a 1-dimensional convolution and is 

necessary due to the 1-dimensional input data. This function accepts the number of bands 

for the input image and then allows for the defining of the output channels, kernel size, 

and padding [52]. For the first convolutional layer, the number of output channels (also 

referred to a feature maps or activation maps) was set to 32. The kernel size was set to 5 

with a stride of one which means each randomly initialized kernel matrix would have a 

size of 1x5 because of the 1-dimensional nature of the data. Padding was added around 

the input images with a size of two. The output from this function is 256x4096x32 with 

256 representing the batch size, 4096 representing the length of the output, and thirty-two 

representing the number of output channels. 

 The nn.LeakyReLU( ) assigns the Leaky ReLU activation function to this layer. 

The Leaky ReLU activation function is an activation function based on the ReLU 

activation function. The ReLU function is one of the most used activation functions in 

neural networks and is popular because of its fast convergence rate, linear operation, and 

calculation speed [53]. However, ReLU comes with a downsize called the dead neuron 

because for the ReLU function, any negative value as an input is always set to zero. This 

results in the first derivative being zero which does not allow for parameters to update 

properly. The Leaky ReLU was designed to work like the ReLU activation function but 
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was designed to help overcome the downside of the ReLU function [54, 55]. Any input 

value above 0 would be output as whatever the input value was, but any value below zero 

would be set to a value of -0.1 multiplied by the input value as to introduce a small slope 

to the negative input to help avoid the dead neuron problem [53]. Figure 4.2 shows the 

graphical difference between the two activation functions.  

 The nn.MaxPool1d( ) function is used to pool the output feature maps and follows 

a convolution. This works by first accepting an argument stating the pooling kernel size 

which is set to a value of 2 [56]. Like the kernel size, this is a 1x2 kernel size as the input 

information is 1-dimensional. This works by sliding the 1x2 kernel over the information 

output to the feature maps following the convolutional and choosing the maximum of the 

two values. This maximum is output to the final feature map of the first layer. This 

reduces the dimensionality to increase the computation speed, but also reduces the 

amount of redundant or irrelevant information. Following pooling, the final feature map 

size for this layer is 256x2048x32. 

Figure 4.2 Illustration from Nair and Hinton [53] demonstrating the difference 

graphically between ReLU and LeakyReLU where k is a leak correction set to -0.1.  
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 The nn.Dropout( ) function is used to add a regularization technique to the model 

to prevent overfitting from occurring and is only present during the training portion of 

training and validation [57]. This function accepts a numerical probability argument 

between a value of 0 and 1 and is set to 0.25179056283341855 for this project. This 

works by randomly zeroing out elements during the training process at each update step 

to help prevent the model from relying on specific inputs for classification. This allows 

for the model to become more robust and still provide good outputs with potentially 

suboptimal inputs. The amount of elements zeroed out during the update steps is based on 

the numerical probability input and is viewed as a percentage. This means that a value of 

0.25179056283341855 will zero out 25.179056283341855% of the elements during each 

training step. The value chosen depends on the input data and could be significantly 

larger or smaller than the chosen value depending on the project or even the layer the 

function is located in. 

 Following the first convolutional layer, the output from the nn.MaxPool1d( ) 

function is fed into the input of the second convolutional layer. This has a similar setup to 

the first layer, but with a few notable changes. The first difference is that the input for 

this layer is set to accept thirty-two channels as the previous layer output thirty-two 

feature maps. This layer will use a kernel size of seven with a stride of one. This layer 

contains the same nn.Conv1d( ), nn.LeakyReLU( ), nn.MaxPool1d( ), and nn.Dropout 

functions as the previous layer. The convolution for this layer will happen slightly 

different from the first convolution layer. The kernel will still start at the left side of the 

input; however, it will perform a convolution over the entire input at the same time. This 
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is because the input is thirty-two feature maps stacked on top of each other giving the 

input a shape of 256x2048x32. The kernel of size seven will do an element wise 

multiplication and summation of all thirty-two channels at the same time for the first 

seven elements. This layer will output sixty-four feature maps with size 256x1024x64 

after pooling. 

 The third convolutional layer is set up the same as the second convolutional layer. 

The main difference between this layer and the previous layer is that the input will be of 

size 256x1024x64 rather than 256x2048x32. This layer will output sixty-four feature 

maps as well, but with a size of 256x512x64 after pooling.  

 Following the third convolutional layer is what is known as the fully connected 

layer. This layer is where the output 256x512x64 tensor is flattened into a 1-dimensional 

vector which will have a size of 1x32,768 for each item in the batch. This allows for the 

model to make predictions. Once the data has been flattened, the features need to be 

mapped to the output classes and is done using a linear transformation. The flattened 

vector will be multiplied by a randomly initialized weight matrix with a randomly 

initialized bias to produce values referred to as a logit or raw logit. There are 256 

1x32,768 vectors processed at a time with each batch being independently processed. The 

output of the fully connected layer will be of size 256x10 representing the batch size and 

number of classes. These raw logits will be put through a sigmoid function from the 

BCEWithLogitsLoss loss function to set the values between 0 and 1. A dropout value of 

0.25179056283341855 is used for this layer as well.  
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Figure 4.1 indicates how the data flows through the model and how it is 

downsized during pooling. The input starts at 4096 pixels in width and is subsequently 

reduced to 2048, 1024, and 512 pixels. The figure also shows how the kernel sizes differ 

for the pooling layers and the convolutional layers. The data is then flattened into a vector 

of size 1x32,768 which is then fed to the output layer containing the ten classes. The 

image height stays the same for each layer. 

 In addition to the three convolutional layers, the myBacteria class contains a few 

other functions necessary to help the model process the data. A helper function is used to 

calculate the number of elements that are present in the output tensor that is produced by 

the convolutional layers. This is done so that the input is correctly sized for the fully 

connected layer so that the flattened output from the convolutional layers is the same size 

as the linear layer’s input features. 

 The class also contains a forward method. This allows for the input to be passed 

through the convolutional layers so it can be transformed by the convolution functions, 

activation function, and the pooling function. This method also allows for the data to be 

flattened and passed through the fully connected layers. This will be followed by the 

classification. After this forward method is defined, the model is instantiated, moved to 

the GPU, and monitored by the Weights and Biases tool.  

 The Weights and Biases tool is a monitoring tool designed to be used with deep 

learning. It has its own Python library called wandb. This is a logging tool where the user 

can specify what they are looking to track, and it will track each run as well as provide 

graphical representation methods. The user can track metrics such as training loss, 
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validation loss, F1 score, and confusion matrices. WandB is a popular tool used by many 

large names such as NVIDIA, OpenAI, and Co:here.  

4.3.2 Data Preprocessing and Data Preparation 

As previously mentioned, the BacteriaData class is defined to accept our input 

data, process the information through feature extraction, and capable of predicting one of 

the ten classes. Figure 4.3 shows an example image of the type of input the model would 

see. For illustration purposes, the image was stretched vertically for visibility as the input 

image is one pixel in height. The spectral pixel index indicates the pixel location with 

pixels closer to the color white meaning they are reflecting more light and pixels closer to 

the color black meaning they are reflecting little to no light. The wavelengths being used 

to illuminate the image is indicated in the file name with Figure 4.3 being imaged from 

800 to 820 nm. Each image, however, is from 550 nm to 850 nm with 550 nm located at 

pixel index 0 and 850 nm being located at pixel index 4095. This means that the image in 

Figure 4.3 will have the 800 to 820 nm range primarily illuminated.  

Each input image can be seen as a pixel intensity graph. Starting from the left side 

of the image at pixel index zero, a line can be drawn with the height increasing as the 

Figure 4.3 Example input image from file B27-1_800-820.bmp indicating the input image 

was bacteria B 27 from row 615. 
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shade of the image becomes lighter and decreasing as the shade becomes darker. This 

was done for every image and an example of B 27 can be seen in Figure 4.4. Unlike the 

input image example, this is a combination of all the B 27 images over the entire 550 to 

850 nm spectrum. This was done for every input image with Figure 4.5 showing the 

different bacteria on the same plot. This plot shows that there are subtle differences 

between the individual bacterium and the combinations of bacteria. For example, the 

Figure 4.4 Pixel intensity graph of bacterium B 27. 

Figure 4.5 Summed pixel intensity graphs for each bacterium/bacteria class. 
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combinations of ATL 1 and ATL 28 as well as ATL 3 and B 27 look similar to each other 

with similar shapes, peaks, and minimums. However, the model can spot the subtle 

differences between the light reflected between the two and make proper classification 

predictions. These plots are not used for image processing, but primarily for visualization 

purposes to incorporate explainable AI into the project. It is important to note for Figure 

4.5 that the 550 nm is located at pixel index 820 and 850 nm is located at pixel index 

3450.  

In addition to the BacteriaData class, another class, named MeanStdDataset, is 

defined to calculate the mean and standard deviation of the pixels across all images in the 

dataset. This code will iterate over every image within the dataset and will update mean 

and standard deviation accumulators with both the mean and standard deviation of the 

images while also keeping count of the total number of images processed. Any value 

within the standard deviation tensor equal to zero will be set to 1.0 to avoid any issues 

with division by zero later during future computations. It will then output the mean and 

standard deviation of the dataset. This is used to normalize the dataset by performing a z-

score normalization which causes the normalized dataset to have a mean of 0 and 

standard deviation of 1. Any value below the mean will be negative and any value above 

will be positive. This is how the y-axis values are obtained in Figure 4.5. 

In addition to calculating the mean and standard deviation of the images in the 

dataset, a custom collate function is defined. Collate functions are used to combine 

individual data samples into batches during the data loading process. This is used when 

the user wants to batch data in a specific way. This function is used to store what folder 
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the input image came from, what file the input image came from, what row the input 

image came from, and what the label the input image has. This function is used creating a 

data loader. 

To prepare and preprocess the data, a label dictionary must also be created. This is 

used for multilabel classification. The label dictionary is a dictionary of one-hot encoded 

vectors with each key in the dictionary representing a class label. Each label corresponds 

to a vector with the format [X, X, X, X, X, X, X, X, X, X] where X is either a 0 or 1. 

Figure 4.6 shows the different classes and their corresponding vectors. This label 

dictionary works by applying a sigmoid function to the raw logit outputs. This sigmoid 

function sets the output logit to a value between 0 and 1. A threshold value is applied 

during the training and validation of the model where any value greater than 0.5 is set to a 

one whereas any value less than or equal to 0.5 is set to 0. This means that an output 

vector could look like [0.9, 0.3, 0.1, 0.2, 0.4, 0.5, 0.2, 0.1, 0.1, 0.4] which would translate 

Figure 4.6 Figure showing the label dictionary with the different one-hot encoded 

vectors and their corresponding classes. 
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to [1, 0, 0, 0, 0, 0, 0, 0, 0, 0] which corresponds to bacteria ATL 1. Each prediction 

follows this setup and is how the model differentiates between the ten different classes.  

 Following the label dictionary, transformations are applied to the image. 

Transformations are common for deep learning networks and can include cropping, 

rotating, changing contrast, and flipping. This allows for the model to see diverse types of 

input data to produce so the model can produce correct outputs even if the inputs are 

suboptimal. Transformations applied to the hyperspectral data include transforming the 

input data to a PyTorch tensor, converting the tensor to a float32 datatype, and 

normalizing the images. The normalization is applied using the mean and standard 

deviation values calculated earlier. The mean and standard deviation values for the data 

are 0.04443 and 0.02066, respectively. 

 The data is then loaded from the file directory and each image is opened, 

preprocessed, labeled, and stored in a dictionary where the keys for each image are the 

folder name and the values are a list of images. The data is then split into a training 

dataset and a validation dataset where 80% of the data is used to train the model and the 

remaining 20% is used to validate the model during the training process. The data is 

randomly shuffled for the 80/20 train/validation split. DataLoaders are then used to load 

the data for the model. These DataLoaders handle batching the data, randomly shuffling 

the data, and applying the previously defined collate function to keep track of the 

information for each input. The batch size used is 256 images per batch while making 

sure to not drop the final batch in case the final batch does not have a total of 256 images. 
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 The final step for data preprocessing and data preparation includes the defining of 

a validation function. This function is designed and used to evaluate a model on the 

validation dataset and gather information on how the model is performing and on the 

processed data. This function will set the model to evaluation mode to disable training-

only functions such as the nn.Dropout( ) function. It will also disable gradient 

computation to speed up computation while also reducing the memory being used 

because gradient calculations are not necessary while the model is being evaluated. The 

data batches provided by the DataLoader will be iterated over. This is where the inputs 

and labels are processed, and the information is stored in “infos” for the collate function. 

This function will also move the inputs and labels to the graphics processing unit (GPU) 

for computational purposes. The function will send the batched inputs through the model 

to generate output predictions for the classes. The function will extract the true labels 

from the label’s tensor generated previously as well as the predictions from the model 

output. This is done to help calculate the F1 scores for each class and obtain the 

information for the confusion matrices for each class (true positives, true negatives, false 

positives, and false negatives). The results will be accumulated in a dictionary that stores 

the details for each true label as a tuple that contains the folder, file, and row index the 

image came from. When the processing is finished for this step, the total number of rows 

processed are printed as a sanity check. This function is used for both training and 

validation datasets to see how well the model performs on both sets of data.  
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4.4 Hyperparameter Optimization 

 Following data preprocessing and preparation, the next necessary step was to 

perform a hyperparameter optimization. The hyperparameters defined for the model 

included the dropout rate for each layer, batch size, learning rate and weight decay for the 

Adam optimizer, kernel sizes for the layers, the number of kernels for each layer, and the 

pooling kernel sizes for each layer. A similar code to the previously mentioned steps 

above was used, however the primary difference was that the optimization code did not 

generate confusion matrices. This is because the main goal of hyperparameter 

optimization using the HyperOPT library is to perform a sweep to determine what 

hyperparameters will minimize some loss function.  

 In the case of this deep learning model, the goal was to determine the optimal F1 

score to obtain an accuracy of at least 80% for each class. However, the goal with F1 

scores is to get a value as close to one as possible and as far from zero as possible 

because a value of 1 indicates perfect precision and recall. Because of this, the goal of 

using HyperOPT will be to obtain a negative F1 score. This will result in the model 

attempting to get as close to negative one as it can. This can then be converted to a 

positive value which will result in the most positive F1 score, or a value as close to 

positive one as possible.  
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 A hyperparameter space needs to be defined so that the model knows what 

parameters are necessary. Figure 4.7 shows a code snippet of how the hyperparameter 

space is defined. As previously mentioned, there are three different function types used 

for this model. Dropout rate uses hp.uniform which is a set of continuous values ranging 

from 0.25 to 0.75. Kernel sizes for the three convolutional layers use the hp.choice 

function and are a set of discrete values that are chosen randomly from the values of 3, 5, 

and 7. The pooling size hyperparameter uses hp.choice which will randomly choose from 

the values of 2, 3, and 4. The number of filters/number of kernels also use hp.choice and 

randomly chooses from the values 16, 32, and 64. The batch size hyperparameter uses 

hp.choice and randomly selects from the values 64, 128, and 256.  

Learning rate and weight decay use hp.loguniform where learning rate is a set of 

continuous values that ranges from values of log(0.001) to log(0.1) and the weight decay 

ranges from log(1*10-6) to log(1*10-4). The learning rate and weight decay use the 

hp.loguniform function rather than hp.choice or hp.uniform primarily because these 

Figure 4.7 Code snippet indicating the defined hyperparameter space for HyperOPT 

hyperparameter optimization. 
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values can affect how training the model will happen. This is because these values are 

multiplicative increases for the Adam optimizer rather than an additive increase. Using a 

logarithm allows for the values to be samples from a log-uniform distribution to ensure 

that the model will cover a large range of values that vary over orders of magnitude and 

allows for a more nuanced choice of values. The Adam optimizer is very sensitive to 

changes in learning rate and weight decay, so it is important that the values to be 

explored do not have a drastic increase in range. This is because the learning rate helps to 

converge at the global minima rather than a local minima and the weight decay helps the 

model prevent overfitting by penalizing large weights. 

Following the hyperparameter space being defined and the model being setup to 

perform the hyperparameter sweep, the hyperparameter sweep optimization will be setup. 

A Trials object is initialized and is used to store the information about each trial. It stores 

all the information about the hyperparameters, the status of each trial, the F1 score for the 

hyperparameters, and the time taken. An fmin function will be called to and contains 

arguments regarding the objective function to be minimized, the hyperparameter space, 

the number of evaluations, and the search algorithm being used. This information will all 

be stored in the Trials object. The output for this code will print out the best 

hyperparameters obtained and the corresponding negative F1 score. In the case of this 

code, the model is attempting to determine the most negative F1 score over two hundred 

trials using the TPE suggest algorithm which was previously explained. 
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4.5 Image Visualization 

4.5.1 Grad-CAMs 

 As previously mentioned, CAMs are a visualization technique to demonstrate 

areas of the input data that are of interest to the deep learning model. Gradient-weighted 

Class Activation Maps (Grad-CAMs) are a generalized CAM approach that uses the 

gradient information from the output of the convolutional layers to determine what areas 

within the input image are of interest to the model. The gradients of the output with 

respect to the activation maps are pooled to obtain the weights which are then used to 

generate a weighted sum of the feature maps. Grad-CAMs can vary based on the input 

data. Because our input data is 1-dimensional, these maps will show the difference 

between pixel activation intensity and can show how features affect the model’s output 

layer by layer. Because the input images differ based on the present bacterium/bacteria 

classes and the bandwidth they are imaged at, there is no individual Grad-CAM for each 

class. There are, however, Grad-CAMs for each of the images. This means that the model 

can show the areas of interest for each image and which parts of the image are more 

important for classification. It is important to note that not only bright portions of the 

images are important for classification. Areas with little to no reflection can also be 

important for image classification in addition to the wavelengths producing a spectral 

response. 

4.5.2 False Color Images 

 The next step for image visualization is the usage of false color images. Because 

our input images are 1-dimensonal x-scans, they can be difficult to visualize and interpret 
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by just looking at the raw input images. As shown in Figure 5.2, the images can be 

stretched vertically to show light being reflected, but they are still difficult to differentiate 

between. A solution to this is using false color images. False color images are where you 

apply a color map to the predictions so you can assign different colors to different 

classes. This is done by first creating a prediction map that has the information regarding 

the prediction, the file name the prediction came from, and the row the prediction came 

from. Following this step, a dictionary is initialized and maps each class, also known as a 

key, to a tuple of three integers that represent a color. Figure 4.8 indicates the color 

mapping used.  

Once the color mapping is defined, the next step is to generate and save false 

color images. This is done by creating and setting up the save directory for the files and 

then defining the image dimensions. The image dimensions used are 2048x4096 pixels, 

but this can also manage to create false colors of the 1024x4096 images. The files and 

Figure 4.8 Code snippet indicating the defined color mapping. Each 

bacterium/combination of bacteria is mapped to a specific color which will be used to 

create a false color image. 
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predictions will be iterated over which can then create a false color image that has three 

color channels and is suitable for the RGB color mapping. The color selected is based on 

the prediction and is applied to the row the prediction came from. Once all the predictions 

for that file have been iterated over, the new false color image file will then be saved with 

the prefix “false_color_ ” followed by the original file name. The information regarding 

which files had which predictions can be printed out to specifically show which row 

contains which predictions.  

4.6 Wavelength 

 Following optimization and visualization technique, determining the wavelength 

corresponding to the spectral pixel index is the final necessary step to obtain useful 

information from the images.  One goal of this project is to determine what wavelengths 

are important for determining the difference between individual bacterium and 

combinations of bacteria. This is because light is differently for individual bacterium 

compared to the combinations of bacteria. It can be assumed that the increase of light is 

linear. Because of the way the imaging setup was designed, and the images were 

captured, the 550 nm wavelength is located at pixel index 820 and the 850 nm 

wavelength is located at pixel index 3450. 
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CHAPTER FIVE 

 

TRAINING, VALIDATION, AND OPTIMIZATION OF CONVOLUTIONAL 

NEURAL NETWORK 

 

5.1 Deep Learning Model Training and Validation 

 After data preparation and preprocessing, model definition and initialization, 

picking the initial hyperparameters, and creating the image visualization techniques, 

model training and validation was conducted. The 3 convolutional layer deep learning 

model was trained and validated over 10 epochs with a patience of 5 being used. A 

patience of 5 means that after 5 epochs of the model not improving, the training will stop 

early. Variables were created to store training loss, validation loss, accuracy, and training 

time for each epoch as well as overall training loss, validation loss, accuracy, and training 

time. Counters were used to store true positives, false negatives, and false positives for 

each of the 10 classes. Lists were used to store true and predicted labels to help analyze 

how the model was performing.  

 The model will iterate through the training loop and validation loop for each 

epoch. The training loop works by setting the model to training mode using the function 

model.train( ) which ensures certain training functions are used such as nn.Dropout( ). 

The training loop will make sure to reset the gradients and move the inputs and labels to 

the GPU. The input data will undergo the forward pass through the network followed by 

loss caluclation, backpropagation, and the updating of weights and biases within the 

model. This will track the training loss for each epoch and store it to help calculate the 

overall training loss. 80% of the randomly shuffeld data was used here for training. 
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 Following the training loop, the model was then be set to evaluation mode using 

the function model.eval( ). This will turn functions used only for training off such as 

nn.Dropout( ). It will also disable gradient computation as this was only necessary for 

backpropagation which occurs during training. This loop also ensures the inputs and 

labels were moved to the GPU. The input data will undergo the forward pass through the 

network followed by loss calulcation and validation loss computation. This will apply a 

threshold that helps determine the predicted labels for to data. Any logit value greater 

than 0.5 will be set to a 1 and any logit value less than or equal to 0.5 will be set to 0. 

This is used with the one-hot encoded vectors. This loop also appends the true labels to 

the true label list and the predicted labels to the predicted label lost. This loop will track 

the validation loss for each epoch and store it to help calculate the overall validation loss. 

The remaining 20% of the randomly shuffled data was used here for validation. 

 Following training and validation, the data was analyzed using information stored 

during training and validation. Confusion matrices were generated by converting the true 

and predicted label lists to a numpy array and then plotted to show true labels versus the 

predicted labels. The Seaborn library was used to plot the confusion matrices.  

 The evaluation metrics were then calculated by using the true positives, false 

negatives, and false positives for each class. Precision and recall were calculated using 

the previously listed formulas to calculate the F1 score for each class. An F1 score for 

each class was caclculated in addition to a macro F1 score so that way we could see if a 

certain class had more incorrect predictions than others to see what was affecting model 
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performance. Metrics were then logged to wandb.com. The model’s state dictionary was 

saved to a file so that way the trained and validated model could be used on future data. 

5.2 Deep Learning Model Optimization 

Once the original model was implemented and we obtained output F1 scores, the 

model then had to be optimized. HyperOPT was used to optimize the following 

hyperparameters: batch size, dropout rate, kernel size, learning rate, number of filters, 

pooling size, and weight decay. Using the hyperparameter space shown in Figure 5.6, a 

hyperparameter sweep was performed over one hundred evaluations using the TPE 

suggestion algorithm to determine best F1 score. From the hyperparameter sweep, the 

following hyperparameter values were chosen: a batch size of 256, learning rate of 

0.0013122122803649067, a weight decay of 8.74914341195787*10-6, a pooling size of 2 

for each layer, a dropout rate of 0.25179056283341855 for each layer, a kernel size of 5 

for the first layer, 32 kernels for the first layer, a kernel size of 7 for the second layer, and 

64 filters for the second layer. The sweep was originally performed on a model with two 

convolutional layers to obtain the values. The F1 macro score calculated was -

0.9523260613091292. However, since we were looking for the lowest -F1 score, this 

means the actual score would be 0.9523260613091292. This sweep took 23 hours, 34 

minutes, and 14 seconds. 

The following step was to use the given hyperparameters on the model to obtain 

F1 scores per class and confusion matrices for each class as the determined F1 score was 

the macro score rather than the individual class score. The new hyperparameter values 

were used and the model was trained and validated over 10 epochs and was performed 
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ten times. Table 5.1 shows the F1 scores for each class for each run. A macro F1 score 

was also shown for each run to show the overall model performance in addition to the 

individual class performance. The individual and macro scores were averaged, and the 

standard deviation was calculated for both the individual and macro scores. An average 

macro F1 score of 0.9582 with a standard deviation of 0.0114 across the ten runs was 

calculated which was similar to the score obtained from the HyperOPT sweep.  

After this was done to get a baseline hyperparameter sweep of the model, the 

number of layers were changed to try different architectures on the input data. There were 

ten training and validation runs over 10 epochs done for a model with one convolutional 

layer, three convolutional layers, and four convolutional layers. Changing the number of 

layers involved adding or removing four lines of code: a dropout function, convolution 

function, pooling function, and activation function. Each layer used the same dropout 

rate, pooling size, and activation function. The three- and four-layer models used kernels 

of size seven with a total of sixty-four kernels for the layer. The one-layer model used a 

kernel size of five with a total of thirty-two filters. Nothing was changed for the first 

Table 5.1 Summary table showing the individual and macro F1 scores for a two-layer 

convolutional neural network with the average and standard deviation for each. 
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layer for the one-layer model besides the removal of the following layers. Table 5.2, 

Table 5.3, and Table 5.4 show the individual and macro F1 scores for the one-layer, three-
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layer, and four-layer models respectively across the ten training and validation runs. The 

average macro F1 scores and standard deviation for the one-layer, three-layer, and four-

Table 5.2 Summary table showing the individual and macro F1 scores for a one-layer 

convolutional neural network with the average and standard deviation for each. 

Table 5.3 Summary table showing the individual and macro F1 scores for a three-layer 

convolutional neural network with the average and standard deviation for each. 

Table 5.4 Summary table showing the individual and macro F1 scores for a four-layer 

convolutional neural network with the average and standard deviation for each. 
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layer models are 0.8558 and 0.0087, 0.9681 and 0.0016, and 0.9527 and 0.0024 

respectively. This indicates that while similar, the three-layer model performed the best 

overall. An example of confusion matrices for the three-layer model is shown in Figure 

5.1. This set of confusion matrices shows true negatives, false positives, false negatives, 

and true positives for individual classes.  

Each model seemed to perform better on the images with combinations of bacteria 

rather than the individual bacterium images. This is because of the amount of data for 

Figure 5.1 Figure showing confusion matrices for classes ATL 1, ATL 3, ATL 28, and B 

27. 
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each class and the similarities between data. As seen in Figure 4.5, the individual 

bacterium reflect light similarly with slight differences. The combination of bacteria also 

reflect light similarly, but they are not all overlapped as the individual bacterium are. 

Table 4.1 indicates the amount of data used for each class with the individual bacterium 

having a larger amount of data compared to the combinations. The model performing 

better on the combinations is most likely because the model has more images to train and 

validate on for the individual bacterium which allows it to learn what is and what is not 

the individual bacterium. 

5.3 Image Visualization 

5.3.1 Grad-CAMs 

 Grad-CAMs were generated for a portion of the entire dataset following the first, 

second, and third convolutional layer. The Grad-CAM images indicate which areas in the 

images are of interest. A higher Activation Intensity indicates a more important feature. 

The original input is 1x4096. Following the first convolutional layer, a Grad-CAM is 

output showing which areas of the image are of interest. Feature Index is a 1 to 1 with 

Pixel Index on the input images. Following the convolutional layer, pooling occurs to 

downsample the image while still keeping track of important features. That means the 

input for the next layer will be 1x2048. Following the convolutional layer, another Grad-

CAM is generated indicating the reduced size. Another pooling occurs to downsample 
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again meaning the next input is 1x1024. Another Grad-CAM is generated. Figure 5.2 

shows an input image of bacteria ATL 28 on row 291 from file ATL28-3_580-600.bmp, 

bacteria B 27 on row 898 from file B27-2_580-600.bmp, and a combination of bacteria 

ATL 28 and B 27 on row 819 from file A28-B27_580-600.bmp. The three different 

images were imaged from 580 nm to 600 nm to show the similarities beteween the three 

at the same wavelenght range. Each image was stretched vertically for visualization 

purposes. The lighter the color in the image indicates more light being reflected. Grad-

Figure 5.2 Figure showing three different input images from three different classes. 
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CAMs were generated for each of the input images in Figure 5.2 following the first, 

second, and third convolutional layers. Figure 5.3 shows the Grad-CAM for each of the 

three classes following the first convolutional layer, Figure 5.4 shows the Grad-CAMs for 

each of the three classes following the second convolutional layer, and Figure 5.5 shows  
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Figure 5.3 Grad-CAMs for class ATL 28, B 27, and ATL28_and_B27 for the first 

convolutional layer. 
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Figure 5.4 Grad-CAMs for class ATL 28, B 27, and ATL28_and_B27 for the second 

convolutional layer. 
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Figure 5.5 Grad-CAMs for class ATL 28, B 27, and ATL28_and_B27 for the third 

convolutional layer. 
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the Grad-CAMs for each of the three classes following the third convolutional layer. 

Figure 5.3, Figure 5.4, and Figure 5.5 show that the input images from Figure 5.2 look  

very similar, but there are a few differences between the images that the model can 

distinguish between.  

Figure 5.3 and Figure 5.4 indicate that around Feature Index 400-500 seem to be 

very important information to the model when differentiating between the three classes. 

For bacteria ATL 28 and B 27, there seems to be some information the model finds 

somehwat important outside of the 400-500 Feature Index range. However, for the 

ATL28_and_B27 class, the information outside of the 400-500 Feature Index range 

seems to be more important to the model for classification compared to the individual 

bacterium imges. Figure 5.4 shows the Grad-CAMs right before classification is made 

and indicates the features that are important when it comes to classification. For example, 

bacteria B 27 tends to only have high activation intensity between the 400-500 Feature 

Index, but there is a larger range of high activation intensity following the third 

convolutional layer. However, ATL 28 in comparison still has relatively low activation 

intensity for a majority of the image following the third convolutional layer.  

For the ATL28_and_B27 class, there seems to be higher activation intensity 

across the entire image for each of the three convolutional layers. The importance of 

deeep learning with these images show that while the input images look similar, the 

model is still able to differentiate between them even with subtle differences. 
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5.3.2 False Color Images 

 The final step for image visualization was the generation of false color images. As 

previously mentioned, false color images are important for our data as the input images 

are 1-dimensional greyscale images. A color mapping was assigned to each class with the 

information regarding each image and their prediction being stored and saved by the 

model during training and validation. Figure 5.6 shows an example of a false color image 

generated by the model using the color mapping shown in Figure 4.8. The false color 

images were generated from the validation dataset, or only 20% of the total input data. 

This means that some files were recreated with very few amounts of false color images. 

Figure 5.6, for example, only shows a false color of bacteria B 27 which has yellow 

assigned to it.  

Figure 5.6 Example of a false color image of input file B27-2_580.600.bmp. 
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It is very important to note that the purpose of false color images was to recreate 

the input image to obtain spatial information about the input image. Due to the nature of 

our input data, only the first column of pixels contains spatial information within the 

files. The remaining 4095 pixels contain spectral information. That means that when the 

false color images were created, only the first pixel is relevant for the false color images. 

For visualization purposes, the entire row of the false color image has the color of the 

labeled bacteria as our eyes cannot see an object that is one pixel in width and be able to 

distinguish between different colors.  

While Figure 5.6 shows an example of a false color image from the input file 

B27-2_580-600.bmp, it still only shows one false color image within a file that is size 

2048x4096. To better demonstrate and understand the false color images, false color 

images were created with the entire dataset. However, the model can make both correct 

and incorrect predictions which means some of the false color images will look correct 

and some will look incorrect. This can be a result of the quality of the input data, how 

similar the images are, or how unsure the model was with the prediction. This means that 

when looking at the false color images, sometimes and inference will need to be made to 

determine what bacteria is where in the image and what the most logical outcome is. This 

is because that while deep learning models can make accurate predictions, they are still 

algorithms capable of making mistakes. Figure 5.7 shows an example of a filled out false 

color image that was created as expected whereas Figure 5.8 shows an example of a filled 

out false color image, but there are many incorrect predictions made for the image. It is 
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still important to note that with these images, the first column is the only column that 

currently provides spatial information. Figure 5.7 shows a mostly correct false color 

image, and the user can infer that the misclassifications were most likely to be the class 

ATL28_and_B27, but Figure 5.8 is harder to tell because of the amount of 

misclassifications. 

5.4 Wavelength 

 After the creation of the false color images, the final step was to determine the 

corresponding wavelengths. While different images were captured using different 

Figure 5.7 Example of a false color image of input file A28-B27_600-650.bmp 

indicating the presence of ATL 28 and B 27 imaged from 600 to 650 nm. 

Figure 5.8 Example of a false color image of input file A28-B27_700-720.bmp 

indicating the presence of ATL 28 and B 27 imaged from 700 to 720 nm. 
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bandwidths, the increase of wavelength from pixel to pixel was the same for each image. 

The hyperspectral imaging system was calibrated and obtained an equation of 

𝜆(𝑝) = 536.537540 + 0.080543𝑝 − 0.000003𝑝2 

where p is the pixel and λ is wavelength in nm. To determine the wavelength change per 

pixel, the difference was calculated between the wavelength at pixel p and pixel p+1. 

Substituting the values p and p+1 into the equation, the two following equations were 

obtained. 

𝜆(𝑝) = 536.537540 + 0.080543𝑝 − 0.000003𝑝2 

𝜆(𝑝 + 1) = 536.537540 + 0.080543(𝑝 + 1) − 0.000003(𝑝 + 1)2 

The difference between the two equations is calculated using the equation 

𝛥𝜆 =  𝜆(𝑝 + 1) −  𝜆(𝑝) 

which results in  

𝛥𝜆 =  0.080540 − 0.000006𝑝 

and indicates that the change in wavelength is not constant when increasing in pixel index 

values. As the pixel index increases, the increase in wavelength decreases slightly per 

pixel because of this calibration curve. Figure 5.9 shows the wavelength for each pixel 

using the calibration curve equation and Figure 5.10 shows the derivative of the 

calibration curve to indicate the change in wavelength per pixel. 
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It is important to note that while the images are 1x4096 pixels, 550 nm is located 

at pixel index 820 and 850 nm is located at pixel 3450. The starting pixel value, or pixel 

index 820, is subtracted from the pixel of interest to normalize the pixel index. Figure 5.9 

shows the wavelength change per pixel from pixel index 820 to pixel index 3450. The 

wavelength change for each image is the same regardless of the bandwidth being used. 

Figure 5.9 Graph showing the relationship between wavelength and pixel index using the 

calibration curve equation. 

Figure 5.10 Graph showing change in wavelength per pixel based on the derivative of 

the calibration curve. 
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The different bandwidths being used indicates the range of wavelengths that each 

individual pixel can detect. Larger bandwidths will indicate more light being reflected for 

within that range of light being used to illuminate the sample. 
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CHAPTER SIX 

 

CONCLUSIONS AND FUTURE WORKS 

 

 Hyperspectral imaging is a unique imaging method that allows for the collection 

and analysis of information that can help with uniquely identifying different objects 

based on their spectral reflectance. Deep learning has recently become a standard 

approach for image classification tasks; however, there are some issues that must be 

considered and addressed when designing a model from scratch or using a pretrained 

model. The combination of these two methods allows for the processing of spectral data 

and obtaining accurate predictions in the classification of different types of bacteria. The 

results above show that this designed from scratch deep learning model has the following 

capabilities: 

1. Accepting 1-diemnsional hyperspectral imaging data imaged from 550 to 850 nm. 

2. Preprocess and prepare the data to pass the data through the network. 

3. Generate predictions for the input data with an overall model accuracy of 96.81%. 

4. Ability to have hyperparameters optimized using the TPE suggestion algorithm 

from HyperOPT indicating the model is well designed. 

5. Generate training loss, validation loss, F1 scores, and confusion matrices for each 

class.  

6. Generate Grad-CAMs for each convolution layer for each bacteria class. 

7. Generate false color images of the input hyperspectral images. 

 While the model can create false color images, the input hyperspectral images are 

still 1-dimensional. This means that the false colors images as of now are unable to 
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provide much spatial information. A future step for this project is to update the 

hyperspectral imaging system to generate 2- or 3-dimensional images. This will require 

the model to be updated as many of the functions used, such as nn.Conv1d( ), are only 

usable on 1-dimensional inputs. If the information is 2- or 3-dimensional, the functions 

will need to be changed to their higher dimension counterparts, such as nn.Conv2d( ) or 

nn.Conv3d( ). This will require substantial changes in the model. 

 In addition to updating the functions within the model, another future step with 

the updated hyperspectral images will be to have file names indicate not only the 

wavelength, but also the location the image was captured. This can be used for the model 

for future false color images as we will be able to stitch together the false color images to 

better show and understand the topology and morphology of the samples. This will also 

allow for us to create images that will be outside the field of view of one scan and get a 

better picture of the bacteria. 

 Finally, the goal will be to also update the Grad-CAM outputs as they are 

currently for 1-dimensional images. With the 1-dimensional Grad-CAMs, only the pixel 

activation intensity is shown. However, with updates to the data collection process, future 

Grad-CAMs will be shown more as heat maps than pixel activation intensity plots. That 

will help indicate which areas of the image are more important for bacteria classification 

and will provide more information about how the model classifies the different bacteria. 
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