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ABSTRACT 

The construction industry has witnessed a significant surge in the daily volume of objective 

data (i.e., precise data sources representing actual project progress) accumulated across a 

project's lifecycle. This abundance of data presents an opportunity to extract valuable 

organizational insights and potential remedies for project management issues. The 

construction technology landscape is gradually evolving towards integrated software 

platforms to meet customer needs more effectively. However, the construction sector lacks 

comprehensive predictive analytics solutions for projects or industry-wide applications - a 

significant portion of descriptive analytics tools rely on trade association surveys or 

dashboards constructed from collected company data, suffering from infrequent updates or 

limited detail. Machine learning (ML) has been experiencing increased adoption within the 

construction sector. This technology is bringing transformations across various aspects of 

construction project management, such as risk assessment and mitigation, safety 

management on construction sites, cost estimation and forecasting, schedule management, 

and the prediction of building energy demand. The study's research objectives are to assess 

the efficacy of statistical models vis-à-vis ML-based approaches for prediction modeling 

in the construction industry by the following: 

(1) MEASURE the outcomes of the “customer satisfaction” (for the construction 

coatings sector) prediction model for both ST and ML approaches. 

(2) Compare ST vis-à-vis ML-based models predicting customer satisfaction in the 

construction coatings sector for a non-parametric dataset with limited dimensions. 
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(3) DEVELOP a norm for handling non-parametric data with limited dimensions for 

the construction coatings sector.  

The norms can assist in decision-making for selecting a method for prediction – statistical 

or machine learning based on the nature of the dataset, nature of independent variables, 

nature of factors contributing to the outcome, goal of analysis, and prediction, specifically 

non-parametric dataset with limited dimensions. These lessons learned can yield 

substantial advantages for businesses by improving the performance measures of 

construction projects—a critical measure of project success. This shall benefit industry data 

analysts conducting project feasibility studies, giving them insights for improved budget 

allocation and portfolio management plans.   



 

 

 

4 

DEDICATION 

The thesis is dedicated to my family's unwavering support and unconditional love, 

whose influence and guidance shaped my academic journey and personal growth. First, to 

my daughter, Tashya, who has been a faithful companion through this journey and has 

given me the strength and bolstered my belief in myself daily! To my mother, my role 

model, a distinguished Professor in Biochemistry at the Punjab University, India, whose 

passion for science and tireless dedication to education and research have been a constant 

source of inspiration. Her intellectual mentorship, resilience, and being my best friend 

through the rollercoaster of life have been my anchors throughout my endeavors. To my 

father, a retired scientist from the Department of Space, India, whose discipline and 

commitment to work have instilled in me essential skills and the willingness to excel in 

every project. His profound insights, visionary planning and excellence have set the 

benchmark for my aspirations. My brother and sister-in-law have been my constant 

cheerleaders and my dearest friends. They have taken the utmost care of me, sitting miles 

away in their unique ways. They have been my guardian angels, watching out for me and 

giving me more than one reason to be happy and joyous. My niece, Avya, deserves a special 

mention since her cutest videos have been most therapeutic, joy-giving and calming in 

stressful times. Above all, I am grateful to my guru, my light, who has guided, blessed, and 

graced me with hope, courage, and undying faith in myself.  



 

 

 

5 

ACKNOWLEDGMENTS 

 I sincerely thank my advisor, Dr. Vivek Sharma, for his unconditional support, 

insightful guidance, and encouragement throughout my research journey. His expertise and 

dedication have been instrumental in shaping this thesis and advancing my understanding 

of the subject matter. His feedback on my research and coursework has been invaluable, 

pushing me to strive for excellence and reach my full potential. I am profoundly grateful 

for his patience, constructive feedback, and the countless hours he invested in helping me 

navigate the complexities of my research. Working on research with Dr. Sharma has been 

an enriching experience since it urges the utmost development of skills, sharpening of 

analytics acumen and high quality. 

I would also like to sincerely thank my committee co-chair, Dr. Dhaval Gajjar, for 

his valuable insights and continuous support. His profound knowledge of the dataset 

employed in the study and his thoughtful suggestions have contributed significantly to the 

depth and rigor of this study. 

My heartfelt thanks go to Dr. Jackson, Dr. Lucas, and Dr. Yoon for serving on my 

committee. Their diverse perspectives, expertise, and constructive critiques have 

significantly enriched my research. I am truly thankful to each of my committee members 

- their collective wisdom has been pivotal in completing this thesis. 

  



 

 

 

6 

TABLE OF CONTENTS 

Page 

 

TITLE PAGE ................................................................................................................... 1 

 

ABSTRACT ..................................................................................................................... 2 

 

DEDICATION ................................................................................................................. 4 

 

ACKNOWLEDGMENTS ............................................................................................... 5 

 

LIST OF TABLES ........................................................................................................... 9 

 

LIST OF FIGURES ....................................................................................................... 11 

 

CHAPTER 

 

 I. INTRODUCTION ....................................................................................... 15 

 

   Data in the Construction Industry .......................................................... 15 

   Research Motivation .............................................................................. 18 

   Challenge or Opportunity ...................................................................... 20 

   Research Gap ......................................................................................... 22 

   Aim of the Research............................................................................... 23 

 

 II. RESEARCH OBJECTIVES AND QUESTIONS ....................................... 25 

 

   Research Question 1 .............................................................................. 25 

   Research Question 2 .............................................................................. 26 

   Research Question 3 .............................................................................. 26 

 

 III. METHODOLOGY ...................................................................................... 28 

 

   M1 – Research Development ................................................................. 28 

   RQ1 - MEASURE/EVALUATE – Synthesis ........................................ 29 

   RQ2 – COMPARE – Analysis ............................................................... 30 

   RQ3 – DEVELOP – Research Outcome ............................................... 31 

 

 IV. LITERATURE REVIEW- M1 .................................................................... 32 

 

   Predictions in the Construction Industry................................................ 32 



 

 

 

7 

Table of Contents (Continued)          Page 

   Data and Predictive Analytics ................................................................ 33 

   Prediction Modeling in the Construction Industry................................. 34 

   Performance Evaluation of Statistical  

    Prediction Models ............................................................................ 50 

   Performance Evaluation of ML Prediction 

    Models.............................................................................................. 51 

 

 V. RESULTS AND DISCUSSION .................................................................. 54 

 

   Data Understanding ............................................................................... 54 

   Statistical-Regular Prediction Modeling  

    Techniques ....................................................................................... 59 

   Machine Learning Prediction Modeling 

    Techniques ....................................................................................... 82 

   Summary of Prediction Modeling Techniques  

    Results ............................................................................................ 102 

 

 VI. CONCLUSIONS........................................................................................ 106 

 

   Conclusions for Research Objective 1 ................................................. 106 

   Conclusions for Research Objective 2 ................................................. 108 

   Conclusions for Research Objective 3 ................................................. 110 

   Norms on ST and ML Approaches ...................................................... 111 

   Limitations of the Study....................................................................... 119 

   Path Forward ........................................................................................ 120 

   

APPENDICES ............................................................................................................. 123 

 

 A: Code in RStudio - Factor Analysis/Principal  

   Component Analysis ............................................................................ 125 

 B: Code in RStudio – Linear Regression with  

   Ordinal DV (0, 1, 2) ............................................................................. 126 

 C: Code in RStudio – Linear Regression with  

   Ordinal DV (5 – 10) ............................................................................. 131 

 D: SPSS – Discriminant Function Analysis.................................................... 134 

 E: Code in RStudio – Discriminant Function Analysis .................................. 135 

 F: SPSS – Logistic Regression ....................................................................... 137 

 G: Code in RStudio – Ordinal Logistic Regression ........................................ 138 

 H: Code in RStudio – Naive-Bayes Classifier ................................................ 152 

 I: Code in RStudio – Support Vector Machine ............................................. 157 



 

 

 

8 

Table of Contents (Continued)         Page 

 J: Code in RStudio – Artificial Neural Network ........................................... 171 

 

REFERENCES ............................................................................................................ 176 

  



 

 

 

9 

LIST OF TABLES 

Table Page 

 

 1 Summary of Statistical Predictive Analytic Methods .................................. 37 

 

 2 Summary of Machine Learning Predictive Analytic  

   Methods.................................................................................................. 41 

 

 3 Confusion Matrix ......................................................................................... 52 

 

 4 Classification of Jobs per Region ................................................................ 55 

 

 5 Classification of Jobs per Season ................................................................. 55 

 

 6 Classification of Jobs per Installation Temperature  

   Range ..................................................................................................... 56 

 

 7 Results for model developed on FA/PCA .................................................... 62 

 

 8 Summary of Linear regression models with  

   ordinal DV (0, 1, 2) ................................................................................ 64 

 

 9 Predictor estimates (β) for LR models with  

   ordinal DV (0,1,2) .................................................................................. 65 

 

 10 Summary of LR models with ordinal DV (5-10) ......................................... 66 

 

 11 Predictor estimates (β) for LR models with  

   ordinal DV (5 – 10) ................................................................................ 66 

 

 12 Summary of results for LDA with Binary DV (Yes/No) ............................. 72 

 

 13 Results for OLR models with Ordinal DV  

   (Good, Neutral, Poor) ............................................................................ 75 

 

 14 Coefficients summary for OLR Model7 ...................................................... 76 

 

 15 Normality, Skewness and Kurtosis Test Results ......................................... 80 

 

 16 Summary of transformations for Overall  

   Customer Satisfaction ............................................................................ 81 



 

 

 

10 

List of Tables (Continued) 

 

Table Page 

 

 17 Class Conditional Probabilities-Region & Season- 

   Ordinal DV (5-10).................................................................................. 87 

 

 18 Class Conditional Probabilities-Temperature Range- 

   Ordinal DV (5-10).................................................................................. 87 

 

 19 Class Conditional Probabilities-Region & Season- 

   Ordinal DV (0,1,2) ................................................................................. 88 

 

 20 Class Conditional Probabilities- Temperature Range- 

   Ordinal DV (0,1,2) ................................................................................. 88 

 

 21 Class Conditional Probabilities- Region & Season- 

   Binary DV (0,1) ..................................................................................... 89 

 

 22 Class Conditional Probabilities- Temperature Range- 

   Binary DV (0,1) ..................................................................................... 89 

 

 23 Results for ANN Model Trials ................................................................... 101 

 

 24 Results for ST and ML Prediction Modeling Techniques ......................... 103 

 

 25 DFA - Group Statistics Table .................................................................... 135 

 

 26 DFA - Tests of Equality of Group Means .................................................. 135 

 

 27 LogR - Omnibus Tests of Model Coefficients ........................................... 138 

 

 28 LogR - Hosmer and Lemeshow Test ......................................................... 138 

 

 29 LogR - Model Summary ............................................................................ 138 

 

 30 LogR - Variables in the Equation .............................................................. 138 

 

 

 



 

 

 

11 

LIST OF FIGURES 

Figure Page 

 

 1 Sources and attributes of data in the construction 

   industry .................................................................................................. 15 

 

 2 Point of departure and scope of the research ............................................... 19 

 

 3 Prediction Model – Challenge ..................................................................... 20 

 

 4 The IDEA - An expanded look .................................................................... 21 

 

 5 Goal of the study .......................................................................................... 24 

 

 6 Research Objectives and Questions ............................................................. 27 

 

 7 Overall Research Framework ...................................................................... 28 

 

 8 Methodology - Research Development and Synthesis ................................ 29 

 

 9 Methodology - Analysis and Research Outcome ......................................... 31 

 

 10 Categories of data analytics with factors and  

   project’s lifecycle. .................................................................................. 34 

 

 11 Framework for Prediction Model................................................................. 35 

 

 12 Statistical Prediction Techniques ................................................................. 36 

 

 13 Overview of AI, ML and DL ....................................................................... 39 

 

 14 Categories of ML Models and Algorithms .................................................. 40 

 

 15 Conceptual Quadrant Study Map for ST and  

   ML Techniques ...................................................................................... 49 

 

 16 Methodology for ST and ML-based techniques for  

   the prediction model .............................................................................. 50 

 

 17 Equation for Mean Absolute Error .............................................................. 51 

    



 

 

 

12 

 

List of Figures (Continued) 

 

Figure Page 

 

 18 Equation for Mean Squared Error ................................................................ 52 

 

 19 Distribution of Overall Customer Satisfaction- 

   Job Regions ............................................................................................ 57 

 

 20 Distribution of Overall Customer Satisfaction-Seasons .............................. 57 

 

 21 Distribution of Overall Customer Satisfaction- 

   Temperature Ranges .............................................................................. 57 

 

 22 Distribution of Job regions........................................................................... 58 

 

 23 Distribution of Seasons ................................................................................ 58 

 

 24 Distribution-Temperature Range Levels ...................................................... 58 

 

 25 Distribution of Customer Satisfaction ......................................................... 58 

 

 26 Statistical-Regular Prediction Modeling Methods ....................................... 59 

 

 27 Scree plot and Parallel analysis scree plots for  

   PCA and FA ........................................................................................... 61 

 

 28 Q-Q Plot for Model 2 - Linear Regression .................................................. 68 

 

 29 Q-Q plot and histogram for IV - Average Temperature .............................. 70 

 

 30 Conceptual schematic for intuition behind LDA ......................................... 71 

 

 31 LDA Density Plot with Centroids for Binary DV  

   - Yes/No ................................................................................................. 72 

 

 32 Effect of IVs on Overall Customer Satisfaction .......................................... 77 

 

 33 Q-Q plot and Histogram for Average Temperature (℉) .............................. 79 

 

  



 

 

 

13 

List of Figures (Continued) 

 

Figure Page 

  

 34 Q-Q Plot and Histogram for Overall Customer  

   Satisfaction ............................................................................................. 80 

 

 35 Frequency Table - ML Algorithms - Construction DVs .............................. 84 

 

 36 CM Heatmap-NB Classifier-Ordinal DV (5-10) ......................................... 88 

 

 37 CM Heatmap-NB Classifier-Ordinal DV (0,1,2) ......................................... 89 

 

 38 CM heatmap-NB Classifier-Binary DV (0,1) .............................................. 90 

 

 39 SVM Model with "Red" and "Blue" classification ...................................... 93 

 

 40 CM Heatmap-SVM Classifier - Linear, Radial and PCA ............................ 94 

 

 41 SVM Classifier for Training Dataset on PC1 and PC2 ................................ 95 

 

 42 SVM Classifier for Testing Dataset on PC1 and PC2 ................................. 95 

 

 43 CM heatmap-SVM Classifier-Radial Kernel and  

   Ordinal DV............................................................................................. 96 

 

 44 CM heatmap-SVM-Balanced Dataset-Radial  

   Kernel & Binary DV .............................................................................. 97 

 

 45 CM heatmap-SVM-Balanced Dataset-Linear  

   Kernel & Binary DV .............................................................................. 97 

 

 46 An artificial neuron with N number of incoming  

   synapses ............................................................................................... 100 

 

 47 Model3 Output for ANN in RStudio ......................................................... 101 

 

 48 NORM 1-Attributes of Input Data ............................................................. 112 

 

 49 NORM 2-Nature of Variables .................................................................... 114 

 

 50 NORM 3-Goal of Prediction ...................................................................... 115 



 

 

 

14 

List of Figures (Continued) 

 

Figure                                                                                                                            Page 

 

 51 NORM 4-Performance and Accuracy ........................................................ 116 

 

 52 Norms Sheet-Selection of DV-"Satisfaction" ............................................ 118 

 

 53 Norms Sheet-Performance metrics-ML techniques- 

   “Satisfaction” ....................................................................................... 118 

 

 

  



 

 

 

15 

CHAPTER ONE - INTRODUCTION 

Data in the Construction Industry 

The construction industry has always been a data-intensive sector with sources from 

multiple disciplines and stakeholders integrated throughout the project lifecycle (Bilal et 

al., 2016). The construction industry has witnessed a significant surge in the daily volume 

of big data gathered with the easy availability of smartphones, computers, sensors, and day-

to-day usage gadgets (Munawar et al., 2022; Yu et al., 2020).  

 

Figure 1: Sources and attributes of data in the construction industry 

As illustrated in Fig. 1, data generated in the sector satisfies the five most important 

attributes of big data, namely, (1) volume, the amount of data, (2) variety, heterogeneous 

data from different sources, (3) velocity, the speed at which data is generated, (4) veracity, 

inconsistencies and uncertainty in data, (5) value, usefulness of data in terms of returns and 

revenue (Cali et al., 2021; Munawar et al., 2022; Yousif et al., 2021). Heightened 
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accessibility to technology with sensing-monitoring systems, wearable gadgets, and 

smartphones; favorable economic factors and regulations; and finally, the continuous 

demand for interoperable platforms and cloud computing has resulted in increasing the 

volume, velocity, variety, and veracity of data in the construction industry (Bilal et al., 

2016; Blanco et al., 2023; Davila Delgado et al., 2020; Munawar et al., 2022; Ngo et al., 

2020). The construction industry is experiencing digitization primarily owing to the ease 

of technology accessibility, increased investment in technology with favorable economic 

regulations, and demand for interoperability across the project stakeholders with rising 

numbers of one-stop-shop virtual platforms like openBIM (Blanco et al., 2023). 

In comparison to other sectors of the data in the construction industry, the volume 

of data could be lesser by some orders of magnitude. However, the data’s dynamic, 

heterogeneous, complex, and diverse nature is undeniable (Davila Delgado et al., 2020; 

Yousif et al., 2021). 40% or more of the firms in North America and Europe have analyzed 

big data and are benefitting from the analyses – 69% increase in strategic decisions, 54% 

better control of operations, 52% greater customer absorption, 47% lower costs and 8% 

increase in revenue (Yousif et al., 2021). Analysis and integration of data in the 

construction sector have numerous benefits, such as assisting in smart, fast and right 

decisions, design optimization, automation, decreasing risk and boosting productivity – 

crucial interest and support for the industry (Davila Delgado et al., 2020; Yousif et al., 

2021). 
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The abundance of data available in the construction sector offers the opportunity to 

derive valuable insights and a data-driven approach to organizing and managing 

construction projects (Bilal et al., 2016; Munawar et al., 2022; Ngo et al., 2020).  In many 

instances, construction companies do not make the most of the chance provided by the 

availability of this data. Instead, they tend to rely on traditional risk analysis methods, 

which heavily rely on subjective data sources and may overlook the interconnections 

among variables in the data (Gondia et al., 2019). The construction industry has 

traditionally been termed a laggard in technology adoption (Munawar et al., 2022). 

Multiple factors contribute to the sector’s commonly acknowledged attribute of slow-paced 

adoption of emerging technologies compared to other industries, such as the uniqueness of 

each project’s budget, timeline, specifications, and stakeholders (Radzi et al., 2019). 

Simultaneously, the construction technology landscape is gradually evolving towards 

integrated software platforms to meet customer needs more effectively (Bartlett et al., 

2020).  

Translating big data into effective insights requires embracing computational 

interventions, data analytical techniques, statistical analysis, algorithm development, and 

machine learning (Bilal et al., 2019; Munawar et al., 2022).  The advent of big data in the 

construction sector has piqued interest in comprehending and utilizing the extensive 

database through sophisticated statistical, computational, and visualization techniques 

(Ahmed et al., 2022; Bilal et al., 2019). Machine learning has been experiencing increased 

adoption within the construction sector. This technology is bringing transformations across 
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various aspects of construction project management, such as risk assessment and 

mitigation, safety management on construction sites, cost estimation and forecasting, 

schedule management, and the prediction of building energy demand (Nguyen Van & 

Nguyen Quoc, 2021). The construction sector lacks comprehensive predictive analytics 

solutions for projects or industry-wide applications - a significant portion of descriptive 

analytics tools rely on trade association surveys or dashboards constructed from collected 

company data, suffering from infrequent updates or limited detail  (Bartlett et al., 2020). 

There has been an increase in global investment in architecture-engineering-construction 

(AEC) between the years 2020 and 2022 by 85% (Blanco et al., 2023), with a forecasted 

increase in the global market for construction analytics from the years 2020 to 2025 from 

6.5 billion dollars to 16.8 billion dollars (Enterprise Solutions, 2023). As per a study 

conducted by Ngo et al., 2020, 43% of construction firms interviewed claimed that their 

data volume was 10 – 100 terabytes (TB), where in perspective, 1 TB is equivalent to 1,000 

gigabytes (GB). 

Research Motivation 

The idea of developing a prediction model originated from one of the deliverables 

of broader research developed by the Construction Industry Institute (CII), Clemson 

University, and six (6) federal agencies - the Federal Facilities Data Analytics Research 

Application Program (FF-DARAP). The participating federal agencies include the 

Department of Energy (DoE), Department of Commerce, Department of State, Naval 

Facilities Engineering Systems Command (NAVFAC), Ontario Power Generation (OPG), 
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and the Smithsonian Institution. To achieve the goal of finding commonalities among 

participating federal agencies, comparing cost and schedule data and making informed 

decisions, FF-DARAP is focused on developing “a better way to track data and extract 

business intelligence from federal facilities.” (Clemson News, 2022) 

As illustrated in Fig. 2, the FF-DARAP study was a three-year project divided into 

three (3) phases with the intent to automate the construction industry data management and 

analytical systems through the deployment of a computing system and ML algorithms to 

develop an advanced data warehouse and analytics platform for federal agencies.  

 

Figure 2: Point of departure and scope of the research 

The first phase focused on creating a framework for benchmarking, including 

performance metrics for cost, schedule, change, rework, safety, best practices 

implementation, etc. Phase 2 of the study focused on automating data acquisition and 

integration in the data warehouse with project analytics functionality. The final phase of 

the FF-DARAP study included the development of ML algorithms, simulations and 
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prediction models, and visualization dashboards for federal agencies to deliver data-driven 

insights. 

Challenge or Opportunity 

 A prediction model for project success for the FF-DARAP study – posed multiple 

challenges for the successful deliverable. As illustrated in Fig. 3, it can be observed that 

with multiple types and sources of input variables in a prediction model, there can be 

myriad options to choose from in statistical and/or machine learning (ML) algorithms.   

 

Figure 3: Prediction Model – Challenge 

This resulted in two essential queries – identifying challenges encountered while 

engaging in predictive analytics of construction-specific data and delineating factors that 

need consideration for selecting the most suited prediction model for a given dataset. For 

example, construction safety data distribution is unique to its metrics, rendering it non-

parametric. However, most studies on safety have used traditional statistical methods. ML 

algorithms recently used for such studies provide conflicting contexts on the use of various 

computational paradigms.  
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To define the challenge and discuss the opportunity, Fig. 4 illustrates the multiple 

aspects of a prediction model architecture, including input data, statistical model and ML-

based model. 

  

Figure 4: The IDEA - An expanded look 

 As shown in Fig. 4, multiple parameters must be considered while designing the 

architecture of a prediction model for both statistical and ML-based approaches. For the 

development of statistical prediction models in the construction industry, studies have 

evaluated the constraints for input data (nature of variables and the relationship between 

the variables), transformations performed to comply with essential assumptions, and 

finally, evaluate the performance of the model, documenting the errors (Kim et al., 2008; 

Ling et al., 2004; Love & Teo, 2017). Various transformations pose multiple challenges of 

interpretation and generalizability. While developing ML-based prediction models, 

existing literature has begun to discuss the nature of input data (dimensionality, non-linear 

relationship between variables), data pre-processing requirements, selection of suitable 
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model with its advantages and limitations, and finally, the evaluation of the model’s 

prediction accuracy and performance metrics (Chandanshive & Kambekar, 2019; Davila 

Delgado et al., 2020; Gondia et al., 2019; Poh et al., 2018; Tixier et al., 2016). However, 

there is a lack of comprehension of the applicability of such approaches to the data from 

the construction domain. For example, Poh et al., 2018 investigated safety concerning ML 

algorithms. However, the study did not account for the shape or the skewness of the safety 

data distribution. Also, Sanni-Anibire et al., 2022 assess the prediction of the risk for delay 

with multiple ML methods – relying on developing a dataset from subjective data without 

considering the nature of the data distribution, making it unsuitable for generalization. 

Thus, a guide with a decision-making framework will be useful in the landscape of 

multiple models. The current study quantifies the inherent bias and impact of the nature 

and distribution of construction-specific data on the generalization of results. Future 

research, when conducted with a refined understanding of the nature of the dataset and 

distribution along with the goal of prediction before implementing statistical/ML methods, 

will genuinely benefit in increasing the accuracy and generalization of predictions in the 

construction industry. 

Research Gap 

The methods used to construct the prediction model can be classified into two main 

parts: (1) statistical-based methods and (2) machine learning (ML)-based methods. 

Although the statistical-based method can accomplish superior performance for 

forecasting, strict statistical assumptions, such as multivariate normality and independent 



 

 

 

23 

predictor variables, must be complied with to impede practical utilization. Considering the 

dataset's distinct, heterogeneous, and dynamic nature in the construction industry, ML-

based methods are increasingly being adopted for prediction modeling. It can be observed 

that multiple studies have used varying permutations and combinations of algorithms and 

methods or techniques for pre-processing the data, training, testing and validation. Multiple 

methods have been adopted to improve the model's performance, treat the imbalance in 

datasets, and mitigate the overfitting of the model. However, there is no study to assist in 

selecting the most suited, appropriate combination for a given dataset. The dataset's source 

defines the features and how the data must be pre-processed, as well as different strategies 

required to tackle the nature of data and ensure that the algorithm’s output meets the 

prediction objectives. Researching the relationship between datasets and algorithms could 

provide valuable guidance based on dataset characteristics, thereby reducing time spent on 

trial and error (Li et al., 2018). Thus, norms need to be developed that can assist in selecting 

the method or approach most suited for developing a prediction model for the given dataset. 

Aim of the Research 

 The study proposes developing a framework of norms that assist in identifying the 

most suitable prediction model for a non-parametric dataset specific to customer 

satisfaction in the construction coatings industry. These norms could be utilized to develop 

the decision-making matrix in which input parameters are definitive for prediction model 

architecture. Its output would be the most suitable model for the given data set. The data 

used for the current study is sourced from Customer Satisfaction Data for Coating projects.  
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Figure 5: Goal of the study 

As illustrated in Fig. 5, the study aims to develop a decision-making framework 

with norms on various challenges and opportunities for prediction model architecture 

tailored to construction-specific data between traditional or statistical and new-world or 

machine learning (ML) based computational algorithms.  
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CHAPTER TWO - RESEARCH OBJECTIVES AND QUESTIONS 

The research objectives of the study are to assess the efficacy of statistical models 

(ST) vis-à-vis machine learning (ML) based approaches for prediction modeling in the 

construction industry by the following: 

Research Objective 1 - MEASURE the outcomes of the “customer satisfaction” (for 

the construction coatings sector) prediction model for both ST and ML approaches.  

Research Question 1 

What are the outcomes of ST and ML-based models for predicting customer 

satisfaction with a dataset having non-parametric distribution and limited dimensionality 

specific to the construction coatings sector?  

Driven by literature review and input data, the first step is to measure the accuracy 

of each prediction method individually for prediction outcomes within construction-

specific domains, such as customer satisfaction scores of construction coating projects. 

This objective entails the evaluation of the performance of the prediction model through 

statistical and ML-based algorithmic approaches. The performance of models is inferred 

using metrics from the R2 value for statistical models and Mean Square Error, Mean 

Absolute Error, and Confusion matrix (CM) for ML-based algorithmic models.  

Research Objective 2 - COMPARE ST vis-à-vis ML-based models predicting 

customer satisfaction in the construction coatings sector for non-parametric dataset 

with limited dimensions. 
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Research Question 2 

What are the limitations and advantages of ST vis-à-vis ML approaches while 

predicting customer satisfaction in the construction coatings sector for a non-parametric 

dataset with limited dimensions? 

This entails comparing the prediction model outcomes of traditional statistical 

models and ML-based algorithms by inferring each prediction method's limitations, 

advantages, techniques, and data pre-processing strategies. The comparison between the 

two approaches would require documenting the parameters defining each approach under 

the unique common conditions of a dataset with non-parametric distribution and limited 

IVs.  

Research Objective 3 - DEVELOP a norm for handling non-parametric data with 

limited dimensions for the construction coatings sector. 

Research Question 3 

Can a set of parameters, such as constraints on input data, variable relationships, 

and the goal of prediction, be leveraged to develop a norm for non-parametric datasets 

with limited predictors specific to customer satisfaction for the coating sector? 

The study aims to develop norms on various challenges and opportunities in the 

selected prediction approaches. The documentation of the norms will depend on 

construction-specific data used in the study. This will pave the way for a methodology that 

assists decision-making when selecting a method for prediction models. Initial literature 

review suggests various factors play a crucial role in the performance of the – ST or ML-
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based models, such as the nature of the dataset, nature of independent variables, nature of 

dependent variables, nature of interdependence of variables, nature of factors contributing 

to the outcome, the goal of analysis and prediction. Fig. 6 illustrates the mapping of the 

objectives with the study's primary research questions.  

 

Figure 6: Research Objectives and Questions 
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CHAPTER THREE - METHODOLOGY 

The methodology for the study has been developed by mapping the study’s 

objectives and research questions. Fig. 7 below illustrates the overall research framework 

divided into four phases, namely, (1) Research development, (2) Synthesis, (3) Analysis, 

and (4) Research Outcome.  All the phases, except for the first, are mapped to the three 

research questions and labeled as “MEASURE” for Research Question 1, “COMPARE” 

for Research Question 2, and “DEVELOP” for Research Question 3. 

 

Figure 7: Overall Research Framework 

M1 – Research Development  

After formulating the idea and study objectives, the first essential step of the study 

was a literature review. A literature review needs to assess the studies already published 

for architecture and applications of prediction models in the construction industry. The 
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literature review will document features of statistical and ML-based approaches toward 

developing prediction tools or models. Advantages, limitations, and findings unique to the 

prediction models and performance metrics adopted for each model will also be 

documented. Additionally, there is a need to understand and interpret constructions-

specific input data – its distribution, size, source, nature of variables, the relationship 

amongst the independent variables or the predictors, etc. 

 

Figure 8: Methodology - Research Development and Synthesis 

RQ1 – MEASURE/EVALUATE – Synthesis 

 The “Synthesis’ phase in the methodology, as illustrated in Fig. 8, answers the first 

research question, evaluating the outcomes generated using prediction models adopting 

both the statistical and ML-based approach for a given dataset. The input data source is 

from the construction coatings sector, documenting customer satisfaction for projects 

across the country. Based on the literature review, the next step is to select the 
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model/approach/technique/algorithm for running the prediction model. Data pre-

processing and transformations, if required to comply with prerequisites for the 

computational techniques or to meet the analysis objective, are conducted right after. This 

is followed by the most critical step in this stage, i.e., the implementation of the model – 

statistical or ML. This step produces the outcomes for a given dataset, which is evaluated 

for prediction accuracy. The outcomes of the prediction model are a source of feedback for 

the interpretation of input data since it will allow defining parameters of input data that 

potentially impact the outcome. Further, the performance evaluation of the outcomes 

generates a feedback loop for the model selection since it serves as a benchmark for 

acceptance of the model architecture or tuning and optimizing the model design to improve 

performance.  

RQ2 – COMPARE – Analysis 

 Fig. 9 illustrates the succeeding stages in the methodology in which the “Analysis” 

stage works towards comparing the outcomes generated by research question 1 - running 

different models in the previous step. Further, the advantages and limitations of the selected 

model/approach are compared, and the performance metrics appropriate for the selected 

approach are documented. All the observations recorded by comparing the outcomes assist 

in identifying parameters that define the architecture of the prediction model and are stored 

in a “repository.” This repository also receives the feedback loop from the literature review, 

in which similar findings were documented from existing scholarly literature. 
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Figure 9: Methodology - Analysis and Research Outcome 

RQ3 – DEVELOP – Research Outcome 

The final stage of the research methodology is the “Research Outcome” phase (Fig. 

9), which is mapped to the third research question of developing the norms for ST and ML 

approaches for non-parametric datasets with limited predictors specific to customer 

satisfaction for the coating sector. Based on the repository developed in the previous stage, 

the lessons learned about the parameters governing the architecture of the prediction model 

are tabulated and categorized, correlating the requirements of the non-parametric dataset 

with steps to execute the ST and ML approaches. This exercise constitutes the framework 

with norms on various challenges and opportunities for the selected prediction approaches. 

In the future, the framework could result in formulating a tool that can assist in selecting 

the appropriate computational technique – statistical and ML- along with other parameters 

for datasets in the construction coatings sector.  
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CHAPTER FOUR - LITERATURE REVIEW- M1 

As a first step of the research methodology, a literature review was conducted to 

understand the big picture and study the existing peer-reviewed publications for prediction 

models in the construction industry.  

Predictions in the Construction Industry 

Prediction models in the construction sector demand greater scrutiny due to their 

unique attributes and the substantial capital required to commence and sustain projects, 

making it a high-risk category of projects necessary for reliable predictions (Tayefeh 

Hashemi et al., 2020). Project characteristics such as low margin, low productivity, and the 

fragmented and dynamic nature of the construction industry translate into concerns that 

need addressing, which is challenging (Tariq & Gardezi, 2023). Multiple criteria for 

success in a construction project have been identified in existing literature, considering the 

perspectives of all stakeholders, that include but are not limited to compliance with the 

baseline schedule and stipulated budget, the satisfaction of specified quality parameters, 

safety, client satisfaction, employees’ satisfaction, profitability, cash-flow management, 

impact on end-user and future-readiness (Caldas & Gupta, 2017; Gunduz & Tehemar, 

2020; Shenhar et al., 2001; Silva et al., 2016; Tariq & Gardezi, 2023). Interestingly, 

researchers have acknowledged the potential influence of early planning processes on 

project outcomes and laid more emphasis on the criticality of the project pre-planning 

processes for construction projects (Gibson et al., 2006; Kolltveit & Grønhaug, 2004; 
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Wang et al., 2012a). Thus, predictions of the project’s cost and schedule overruns, safety 

management, risk identification and assessment, and overall project performance in the 

early phases of the project’s lifecycle are critical for construction projects’ successful 

execution (Assaad et al., 2020; Jaber et al., 2020; Nguyen Van & Nguyen Quoc, 2021a; 

Tariq & Gardezi, 2023; Tayefeh Hashemi et al., 2020; Tixier et al., 2016; Wang et al., 

2012). 

Data and Predictive Analytics 

 Data can be analyzed using four different types of methods, namely, (1) descriptive, 

(2) diagnostic, (3) predictive, and (4) prescriptive. Descriptive analytics categorize and 

classify data, identifying and understanding existing patterns and trends, essentially 

presenting the current scenario. Diagnostic analytics try to find the root cause of the 

situation: predictive analytics forecast and estimate by interpreting historical data, 

identifying dominant patterns, and extrapolating the relationships. Prescriptive analytics 

uses algorithms, optimization models, and insights from descriptive and predictive 

analytics to evaluate potential decisions with complex and high-volume objectives (Davila 

Delgado et al., 2020; Ngo et al., 2020). As illustrated in Fig. 10 below, the focus of the 

study is predictive analytic methods adopted for factors of construction project 

management across the project lifecycle. The use of predictive analytical techniques has 

witnessed a significant increase in the construction sector with abundant data, increased 

digitization of the industry and demand for insightful forecasts by stakeholders (Ngo et al., 

2020).  
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Figure 10: Categories of data analytics with factors and project’s lifecycle. 

 Predictive data analytics use statistical, data mining or machine learning 

approaches (Munawar et al., 2022). The current scope of the study is limited to the 

statistical and machine-learning approaches discussed in the following sections. 

Prediction Modeling in the Construction Industry 

Among the many analytical solutions, the prediction models are the holy grail of 

various sectors for informed decision-making through data. Prediction models deploy 

statistical and ML techniques to analyze historical data, identify hidden patterns, and 

extrapolate the relationships to inform decisions that can impact the future of project 

performance (Bilal et al., 2019; Ngo et al., 2020). The prediction model is illustrated in 

Fig. 11 below, wherein it can be observed that data collected from real-world construction 

projects is inferred with statistical methods, which then becomes the foundation for 
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developing the model. Further, the model delivers predictions analyzing phenomena with 

uncertain outcomes via ML algorithms.  

 

Figure 11: Framework for Prediction Model 

Various studies have employed numerous computational methods for prediction 

modeling from the traditional statistical realm. Further, multiple studies have attempted to 

predict critical factors as the dependent variable with newer ML models.  

Statistical Prediction Techniques in the Construction Industry 

Statistics is the study of collecting, analyzing, and interpreting conclusions from 

data, focusing on selecting the right tools and techniques at every analysis stage (Bilal et 

al., 2016). Multiple studies have implemented statistical techniques to develop prediction 

models and have applications in the construction industry (Bilal et al., 2016; Munawar et 

al., 2022; Poh et al., 2018). Statistical methods formulating prediction models allow the 

translation of a significant amount of data through analysis to identify patterns and trends. 

The selection of the proper tool/technique in statistical analysis is the key to critical 

inferences, conclusions, and forecasts (Bilal et al., 2016; Kim et al., 2008). Fig. 12 below 
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highlights the primary statistical techniques that can be adopted depending on the nature 

of the independent variables, dependent variables, and the goal of the analysis.  

 

Figure 12: Statistical Prediction Techniques 

Studies have evaluated parameters such as delays in construction projects (Kim et 

al., 2008), classification of best practices for project cost and schedule performance (Lee, 

2001), identifying actions critical for site safety (J. Gong et al., 2011), cost, time and quality 

performance of design-bid-build and design-build projects (Ling et al., 2004), construction 

costs (Hwang, 2009; Lowe et al., 2006) and detection of structural damage (X. Jiang & 

Mahadevan, 2008) using statistical models. The techniques employed by studies for 

developing statistical prediction models include but are not limited to factor analysis, 

Bayesian networks and correlation matrix (Kim et al., 2008), discriminant function analysis 

(Lee, 2001), bag-of-words and Bayesian network (J. Gong et al., 2011), multivariate 
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regression analysis (Ling et al., 2004; Lowe et al., 2006), dynamic regression (Hwang, 

2009) and Bayesian probabilistic assessments (X. Jiang & Mahadevan, 2008). Table 1 

below summarizes the studies that have adopted statistical techniques for predicting critical 

factors for construction projects. The table also delineates the study's goal, focus factors, 

and references.  

Table 1: Summary of Statistical Predictive Analytic Methods 

Statistical technique/s 

employed 
Objective of the analysis Focus factor Study Reference 

Factor Analysis 
Identify the main factors of 

construction delays 
Schedule Kim et al., 2008 Bayesian network 

Correlation matrix 

Discriminant Function 

Analysis 

Cost and schedule 

performance 

Cost 
Lee, 2001 

Schedule 

Bag-of-words Categorize actions of 

construction workers and 

equipment 

Safety J. Gong et al., 2011 
Bayesian network 

Multivariate regression 

Analysis 

Cost, time, quality, 

satisfaction – overall project 

performance 

Cost 

Ling et al., 2004 
Schedule 

Quality 

Owner Satisfaction 

Cost per square meter Cost Lowe et al., 2006 

Linear regression 

Construction Cost Index Cost Hwang, 2009 Categorical regression 

Dynamic regression 

Bayesian network 
Structural responses for 

damage detection 
Safety 

X. Jiang & 

Mahadevan, 2008 

Link Analysis Key knowledge areas from 

post-project reviews  

(text-mining) 

Owner Satisfaction Carrillo et al., 2011 Dimensional matrix 

analysis 

Poisson Model Accident occurrences 

Safety 

Chua & Goh, 2005 

Principal Factor Analysis 
Total recordable incident rate 

(TRIR); Severity rate (SR) 

Salas & Hallowell, 

2016 Multiple Linear 

Regression 
Negative binomial 

regression model 
Construction injuries Safety Love & Teo, 2017 
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However, the traditional techniques, which are more suited for structured data in 

smaller sample sizes, are not ideal for processing massive volumes of big data generated 

on construction projects with increasing integration of technology (Bilal et al., 2019; Yu et 

al., 2020).  

ML Prediction Techniques in the Construction Industry 

Data in the construction industry entails a massive, extensive amount of 

information collected from diverse sources in different formats and at a rapid pace. This 

cannot be typically analyzed efficiently using traditional data analysis tools or technologies 

that rely primarily on a relational database and centralized computing methods, generally 

suited to structured data with limited sample sizes (Yu et al., 2020). Statistical models are 

deficient in predictive performance when datasets feature many variables, and their 

effectiveness is constrained by the statistical assumptions on which they are based (Poh et 

al., 2018). In contrast to statistical modeling, machine learning (ML) holds a significant 

advantage due to its adaptability to function without the constraints of statistical 

assumptions and yield higher accuracy in predictions using optimization techniques that 

reduce the instances of incorrect predictions (Aggarwal, 2015; Gondia et al., 2019; Kim et 

al., 2008). Moreover, the potential of ML techniques to handle uncertainty and missing 

data while analyzing voluminous, complicated datasets with interdependent variables of 

differing structures is undeniable (Gondia et al., 2019; Hashemi et al., 2020). Furthermore, 

ML can capture linear and non-linear relationships within the phenomenon under 

investigation (Poh et al., 2018). Thus, with the surge in the amount of big data generated 
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in the construction sector and the growing popularity of ML-based models in the industry 

– increased adoption of ML-based predictive analytical techniques has been observed in 

the sector (Gondia et al., 2019; Nguyen Van & Nguyen Quoc, 2021).  

 
Figure 13: Overview of AI, ML and DL 

Artificial Intelligence (AI) refers to the set of algorithms that imitate human 

intelligence to perform actions such as learning, predicting, classifying, and reasoning – it 

is a broad term comprising the theory and application of computer systems performing 

such tasks (Cali et al., 2021). ML is the subset of AI in which algorithms and statistical 

models are trained to analyze and draw conclusions from data patterns and is the scope of 

the current study as illustrated in Fig. 13 below (Cali et al., 2021; Duarte & Ståhl, 2018; 

Shaveta, 2023). Deep learning (DL) is a further subcluster of ML that employs a specific 

category of ML algorithms called artificial neural networks (ANNs) to solve more 

challenging problems and learn from data features giving output in the form of time series 

forecasting, image and audio-video (AV) classification or recognition (Cali et al., 2021).  
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Before discussing studies that have employed machine learning (ML) algorithms 

for predictive analytics, it is essential to briefly understand the categorization of ML 

models and algorithms as illustrated in Fig. 14. ML models can be broadly divided into 

four (4) types: supervised, unsupervised, reinforcement and ensemble learning (Bilal et al., 

2016; Cali et al., 2021). 

 

Figure 14: Categories of ML Models and Algorithms  

Cost estimation and prediction (Chandanshive & Kambekar, 2019; Q. Jiang, 2020; 

Mahalakshmi & Rajasekaran, 2019; Tijanić et al., 2020), schedule compliance (Gondia et 
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al., 2019; Wang et al., 2012a), potential risks (Ajayi et al., 2020; Kifokeris & Xenidis, 

2019; Sanni-Anibire et al., 2022), safety concerns (P. Gong et al., 2020; S. et al., 2021; Poh 

et al., 2018; Tixier et al., 2016) and building energy consumption (Mocanu et al., 2016; 

Rahman et al., 2018; Rahman & Smith, 2018) have been forecasted with the assistance of 

ML-based algorithmic prediction models. Table 2 below summarizes the literature review 

conducted to study ML algorithms deployed to conduct the analysis, along with the goal 

of the prediction model, factors, and the publication reference. The table further delineates 

the studies' focus areas depending on the ML algorithm category integrated into the 

prediction model's design and architecture. 

Table 2: Summary of Machine Learning Predictive Analytic Methods 

ML algorithms employed 
Objective of the 

predictive analysis 
Factor Study Reference 

Focus Area 1 - Artificial Neural Networks (ANN) 

Multilayer perceptron, 

general regression neural 

network, radial basis function 

neural network 

Costs at different stages 

of the project lifecycle 

Cost 

Tijanić et al., 2020 

Multi-perceptron network 

with backpropagation 

algorithm 

The construction cost of 

the highway at an early 

stage 

Mahalakshmi & 

Rajasekaran, 2019 

Multilayer feed-forward 

neural network model trained 

along with a backpropagation 

algorithm 
Building/construction 

cost 

Chandanshive & 

Kambekar, 2019 

Backpropagation neural 

network (BPNN) 
Q. Jiang, 2020 

Radial basis function neural 

network 

ANN Hashemi et al., 2019 

NN 
Construction project 

costs 
Gu, 2023 

NN Estimation of S Curve Chao & Chien, 2009 

ANN 
Delay and Cost overrun 

percentages 
Wang et al., 2012 

Schedule 
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ML algorithms employed 
Objective of the 

predictive analysis 
Factor Study Reference 

ML Regression techniques 

Cost Performance Index 

(CPI) & To Complete 

CPI 

Cost 

Jaber et al., 2020 

Schedule Performance 

Index 
Schedule 

ANN (PCA, Modular Neural 

Network, PNN/TLRNs) 

Cost overrun 

percentage 
Cost 

El-Kholy, 2021 
Delay overrun 

percentage 
Schedule 

Multilayer perceptron (MLP) Risk of delay Risk 
Sanni-Anibire et al., 

2022 

NN Estimation of S Curve Schedule Chao & Chien, 2009 

3-layer MLP 
Time-series forecasting 

of thermal load 

Energy 

Rahman & Smith, 2018 

Recurrent Neural Network 

(RNN) 

Power and energy 

consumption 
Mocanu et al., 2016 

Conditional Restricted 

Boltzmann Machines 

(CRBMs) 

Factored conditional 

restricted Boltzmann 

machine (FCRBM) 

ANN trained by: 

1. Levenberg-Marquardt 

algorithm 

2. Bayesian regularization 

Yearly total energy 

demand 

Geyer & 

Singaravel, 2018 

ANN Customer Satisfaction Satisfaction* Li et al., 2018 

Focus Area 2 – Support Vector Machines (SVM) 

Soft-margin SVMs 
 

Class of 

constructability from 

identified risk sources Risk 

Kifokeris & Xenidis, 

2019 

Sequential minimal 

optimization (SMO) – SVM 
Risk of delay 

Sanni-Anibire et al., 

2022 

SVM 
Cost Growth Cost 

Wang et al., 2012 
Schedule Growth Schedule 

SVM 

Aggregated Active 

Power (kW) 
Energy Mocanu et al., 2016 

Energy sub-metering 

(Wh) 

SVM 
Occurrence and severity 

of accidents 
Safety Poh et al., 2018 

SVM 
Customer Satisfaction Satisfaction* 

Pandey et al., 2023 

SVM Li et al., 2018 

Focus Area 3 – Logistic Regression (LogR) 
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ML algorithms employed 
Objective of the 

predictive analysis 
Factor Study Reference 

LogR 
Cost Growth Cost 

Wang et al., 2012 
Schedule Growth Schedule 

LogR 
Occurrence and severity 

of accidents 
Safety Poh et al., 2018 

LogR Customer Satisfaction Satisfaction* Pandey et al., 2023 

Focus Area 4 – Decision Tree (DT) 

DT 
Construction project 

costs 
Cost Gu, 2023 

DT 
Occurrence and severity 

of accidents 
Safety 

Poh et al., 2018 

DT 
Weight carried by 

construction workers 
Lee & Son, 2021 

DT Project delay risk 

Schedule 

Gondia et al., 2019 

C4.5 DT 

Identification of 

construction delay 

factors 

Kim et al., 2008 

Focus Area 5 – Naïve-Bayes Classifier (NBC) 

NBC 

Project delay risk  

<30% Time Overrun 

(TO) 

Schedule 

Gondia et al., 2019 Project delay risk  

30-60% TO 

Project delay risk 

>60% TO 

Bayesian Networks 
Factors of construction 

delays 
Kim et al., 2008 

NBC Customer Satisfaction Satisfaction* Pandey et al., 2023 

Focus Area 6 – K-Nearest Neighbor (KNN) 

KNN (IBk) Risk of delay Risk 
Sanni-Anibire et al., 

2022 

KNN 
Occurrence and severity 

of accidents 

Safety 

Poh et al., 2018 

KNN 

Degree of possibility 

and degree of damage 

of risk factors for deep 

foundation construction 

safety 

P. Gong et al., 2020 

Focus Area 7 – Random Forest (RF)  

RF 
Occurrence and severity 

of accidents 
Safety 

Poh et al., 2018 

RF 
Weight carried by 

construction workers 
Lee & Son, 2021 
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ML algorithms employed 
Objective of the 

predictive analysis 
Factor Study Reference 

RF 

Construction injury 

type, energy type, and 

body part 

Tixier et al., 2016 

RF 
Green building 

construction cost 

Cost 

Alshboul et al., 2022 

Random Forest Regressor 

(RFR) 

Construction accident 

cost 
Xia et al., 2024 

RF 
Construction project 

costs 
Gu, 2023 

Random Forest Classifier Customer Satisfaction Satisfaction* Pandey et al., 2023 

Focus Area 8 – Deep Neural Network (DNN) 

DNN Risk-relevant factors Risk Ajayi et al., 2020 

DNN 
Green building 

construction cost 
Cost Alshboul et al., 2022 

DNN 
Complexity of accident 

chains or networks 
Safety Zhou et al., 2014 

Deep RNN 
Time-series forecasting 

of thermal load 
Energy 

Rahman & Smith, 2018 

Deep RNN 
Medium to long-term 

Electric Load 
Rahman et al., 2018 

Focus Area 9 – Gradient Boosting Model/Machine (GBM) 

GBM Risk-relevant factors Risk Ajayi et al., 2020 

GBM Weight carried by 

construction workers 
Safety Lee & Son, 2021 

Light GBM 

Extreme gradient boosting 

(XGBOOST) 

Green building 

construction cost 
Cost Alshboul et al., 2022 

XGBoost Customer Satisfaction Satisfaction* Pandey et al., 2023 

XGBoost Customer Satisfaction Satisfaction* Li et al., 2018 

Focus Area 10 – Stochastic Gradient Tree Boosting (SGTB) 

SGTB 

Construction injury 

type, energy type, and 

body part 

Safety Tixier et al., 2016 

Focus Area 11 – Ensemble/Stacking 

ANN Ensemble 
Cost Growth Cost 

Wang et al., 2012 
Schedule Growth Schedule 

ANN (MLP) + SVM (SMO) 

– ANN combining classifier 
Risk of delay Risk 

Sanni-Anibire et al., 

2022 ANN (MLP) + SVM (SMO) 

– SVM combining classifier 

Binary Particle Swarm 

Optimization (BPSO) 
+AdaBoost+SVM 

Degree of possibility 

and degree of damage 

of risk factors for deep 

Safety P. Gong et al., 2020 

AdaBoost +SVM 
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ML algorithms employed 
Objective of the 

predictive analysis 
Factor Study Reference 

AdaBoost +KNN 
foundation construction 

safety 

Association Rule Mining + 

Bayesian Network + Swiss 

Cheese Model  

Risk of construction 

defects 
Risk Fan, 2020 

Multiple attribute decision-

making (MADM) algorithm 

+ Core Vector Machine 

(CVM) 

Risk of financial 

decision 
Risk Hsu, 2019 

Evolutionary Support 

Vector Machine Inference 

Model (ESIM) = hybrid of 

SVM and fast messy genetic 

algorithm (fmGA) 

Degrees of overall 

project success 
Success Cheng et al., 2010 

Recurrent neural networks 

(RNNs) with Long Short- 

Term Memory (LSTM) 

Customer Satisfaction Satisfaction* Pandey et al., 2023 

* Not specific to the construction industry but selected for reference of the current study’s dataset 

Reviewing publications and existing scholarly literature, there were exciting 

findings and interpretations. For ease of reference and distinction between features of 

datasets, a classification of studies was developed according to the primary factors being 

considered by the ML algorithmic prediction models as parameters of construction, which 

are (1) Cost and Schedule, (2) Risk and Safety, (3) Energy and Success.  

Cost & Schedule 

In a study conducted by Chandanshive & Kambekar, 2019, with ANN1, early 

stopping and Bayesian regularization approaches were implemented to improve the 

generalization competency of neural networks and mitigate the overfitting of the model. 

The performance of the Bayesian regularization approach was better at predicting the 

construction cost of the building at the early stage of construction. Then, in the study by Q. 

Jiang, 2020, the average error of the Backpropagation neural network (BPNN)2 model was 
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observed to be 5.54%, which was much lesser than that for Radial basis function neural 

network (RBFNN)2 at 11.08%. Further, Hashemi et al., 2019, deployed the Artificial 

Neural Network (ANN)3 model trained through the genetic algorithm (GA) application. 

GA was held accountable for selecting the best ANN architecture based on the evolution 

of computing capabilities. In a study by Wang et al., 2012, an ANN ensemble with 

bootstrap aggregating and adaptive boosting was developed for the prediction model to 

improve prediction accuracy. The overall prediction accuracy for cost success was highest, 

with SVMs at 92% and Adaptive Boosting ANNs at 84%. The overall prediction accuracy 

for schedule success was highest, with Adaptive Boosting ANNs at 80% and SVMs at 

76%. 

Risk & Safety 

In the study by Kifokeris & Xenidis, 2019, data was pre-processed with regularized 

stochastic gradient descent non-negative matrix factorization to manage missing values and 

factorize the data into vectors. The SVM5 model was trained and validated using the n-fold 

cross-validation method. Moreover, in a study by Sanni-Anibire et al., 2022, out of the 

ensemble methods and ANN and SVM6 models, the highest prediction accuracy was 

achieved with the ANN model at 93.75%. Ajayi et al., 2020, employ certain techniques to 

boost the success rate of DNN7, which include Rectified Linear Unit (ReLU), Dropout 

technique – a DNN regularization scheme for preventing overfitting, and Cross-entropy 

objective with Softmax activation. A study by Lee & Son, 2021, evaluated the effectiveness 

of a weight-tracking system developed using smart safety shoes with sensors attached to a 
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mobile device for collecting initial sensing data and a web-based server computer for 

storing, preprocessing, and analyzing such data. The average accuracy classifying the 

weight by each classification algorithm showed similar but high accuracy in the following 

order: random forest8 (90.9%), light GBM (90.5%), decision tree (90.3%), and GBM 

(89%).  

In their study, Poh et al., 2018 compare the classification performance of risk of the 

degree of accident across models developed using a decision tree, random forest, logistic 

regression, KNN and SVM. It was observed that the random forest model had the best 

accuracy. Moreover, P. Gong et al., 2020, documented that mature classification methods, 

including decision tree, Bayesian, artificial neural networks, KNN, and SVM, show poor 

performance on imbalanced data sets and unsatisfactory classification results. Further, the 

study also deduces that selection is necessary before the formal evaluation of the model to 

reduce the redundant features and noise in the data set, preventing the risk of the minority 

samples being regarded as noise and improving the classification effect of minority groups. 

Infrequent occurrences of high-risk construction incidents and even rarer safety accidents 

contribute to a scarcity of recorded incidents, predominantly low or general-risk events 

(impossible, rare, or occasional). Consequently, the data imbalance ratio tends to exceed 

30 (maximum imbalance ratio = maximum sample number/least sample number) within 

the specific safety risk evaluation information system. Despite this imbalance, the primary 

objective of construction safety risk assessments is to prioritize the accuracy of high-risk 

grade evaluations, mainly when dealing with a limited sample size. The conventional K-
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nearest neighbors (KNN) algorithm, which selects K samples closest to the classification 

object and relies on majority voting based on class labels, introduces significant bias 

toward the majority in its classification outcomes. Thus, this study conducted an integrated 

algorithmic experiment that used SVM as the base classifier, AdaBoost as the integrated 

framework, and BPSO9 for feature selection to ensure that the machine learning effect of 

the imbalanced data set was suitable for practical applications. In a study by Hsu, 2019 it 

was discussed that SVM10 was based on the statistical learning theory and the principle of 

structural risk minimization (SRM) among all the ML-based methods. As a method, SVM 

has been documented to have the following advantages: (1) it only has two free parameters 

to be decided; (2) its solution is optimal and unique; and (3) it performs well in a small 

dataset.  

Energy and Success 

In a study by Cheng et al., 2010, a hybrid project success prediction model is 

developed wherein the role of SVM11 is primarily with learning and curve fitting, while 

fast messy genetic algorithm (fmGA) deals primarily with optimization. 
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Statistical and ML-based Model Implementation 

 
Figure 15: Conceptual Quadrant Study Map for ST and ML Techniques 

Studying and reviewing peer-reviewed publications and books, it was deduced that 

the techniques used for prediction can be mapped on a conceptual quadrant illustrated in 

Fig. 15. This map documents the statistical and ML-based prediction modeling techniques 

across two axes – “regular” to “advanced” on the vertical axis and “traditional” to 

“modern” on the horizontal axis. When implemented for designing the prediction model, 

statistical methods and ML algorithms undergo a step-by-step process that remains similar 

primarily across different types and objectives of prediction. Fig. 16 below illustrates the 

methodology adopted for designing and developing a prediction model based on statistical 

and ML algorithms.  
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Figure 16: Methodology for ST and ML-based techniques for the prediction model 

Performance Evaluation of Statistical Prediction Models 

 The predictive power of statistical models is evaluated through the coefficient of 

determination (R2), which measures the goodness of fit for the model. It is also a measure 

of the strength of the correlation when more than two variables are part of the analysis. 

However, increasing the number of independent variables or predictors in the model 

decreases the Sum of Squared Errors (SSE), which increases the value of R2. Thus, for an 
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unbiased estimate, researchers suggest using adjusted R2 for model evaluation and 

selection (Ling et al., 2004; Meyers et al., 2017a).  

Performance Evaluation of ML Prediction Models 

The performance analysis of ML prediction models determines the model's efficacy 

in predicting the test/trial data by comparing the observed and the predicted values (Cali et 

al., 2021). The following terms are used for the evaluation of ML prediction models:  

1. Mean Absolute Error (MAE) is a model evaluation metric used for regression 

models.  MAE of a model concerning a test set is the meaning of the absolute 

values of the individual prediction errors on overall instances in the test set. 

Each prediction error is the difference between the true and predicted values for 

the instance (Sammut & Webb, 2011b). 

 
Figure 17: Equation for Mean Absolute Error 

In Fig. 17 above, where yi is the true target value for test instance xi, λ(xi) is the 

predicted target value for test instance xi, and n is the number of test instances. 

2. Mean Squared Error (MSE) is a model evaluation metric used for regression 

models concerning a test set. It is the mean of the squared prediction errors over 

all instances in the test set. The prediction error is the difference between an 

instance's true and predicted values (Sammut & Webb, 2011c). 
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Figure 18: Equation for Mean Squared Error 

In Fig. 18 above, yi is the true target value for test instance xi, λ(xi) is the 

predicted target value for test instance xi, and n is the number of test instances. 

3. Confusion Matrix summarizes the classification performance of a classifier 

model with respect to some test data. It is a two-dimensional matrix, indexed in 

one dimension by the true class of an object and in the other by the class the 

classifier assigns (Poh et al., 2018; Ting, 2011a). In this context, the four cells 

of the matrix are designated as true positives (TP), false positives (FP), true 

negatives (TN), and false negatives (FN), as indicated in Table 3. 

Table 3: Confusion Matrix 

  Predicted Condition 

  Positive (YES) Negative (NO) 

Actual Condition 
Positive (YES) True Positive (TP) False Negative (FN) 

Negative (NO) False Positive (FP) True Negative (TN) 

 

A few classification performance measures are defined in terms of these four 

classification outcomes:  

a. Specificity = True negative rate = TN / (TN + FP) 

b. Sensitivity = True positive rate = Recall   = TP/ (TP + FN) 

c. Positive predictive value = Precision = TP / (TP + FP) 

d. Negative predictive value = TN / (TN + FN) 
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4. Error rate refers to a measure of the degree of prediction error of a model 

made with respect to the true model applied in the context of classification 

models. In this context, error rate = P(λ(X)≠Y), where XY is a joint 

distribution, and the classification model λ is a function X → Y (Ting, 

2011b). Sometimes, this quantity is expressed as a percentage rather than a 

value between 0.0 and 1.0. The error rate of a classifier on test data may be 

calculated as several incorrectly classified objects/total number of objects. 

The error rate is directly related to accuracy, such that error rate = 1.0 − 

accuracy (or when expressed as a percentage, error rate = 100 − accuracy). 

5. Accuracy describes the probability of the correct prediction relative to the 

total number of predictions, and it can be used as a single measure to 

evaluate the overall performance of a model (Poh et al., 2018). refers to a 

measure of the degree to which the predictions of a model match the reality 

being modeled. The term accuracy is often applied in the context of 

classification models. In this context, accuracy = P(λ(X) = Y), where XY is 

a joint distribution, and the classification model λ is a function X → Y. 

Sometimes, this quantity is expressed as a percentage rather than a value 

between 0.0 and 1.0 (Sammut & Webb, 2011a). Accuracy is calculated 

below in Equation (A). 

𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 𝐴: 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =   
1

2
(

𝑇𝑃

𝑇𝑃 +  𝐹𝑁
 +  

𝑇𝑁

𝐹𝑃 +  𝑇𝑁
) 
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CHAPTER FIVE - RESULTS AND DISCUSSION 

Data Understanding 

 The construction coating sector is an integral sector of the construction industry 

wherein the coatings are applied to the finished surface, such as walls, roofs and floors, to 

improve surface properties. Considering the specialized skills required for executing the 

coating applications, Facility Managers (FMs) hire external vendors that are qualified and 

competent with a proven excellent customer satisfaction record (Gajjar et al., 2024). The 

dataset used for the study was sourced from one of the largest construction coating 

manufacturers, which gave a list of projects completed every month for four years. The 

manufacturer conducted a post-occupancy evaluation (POE) survey to collect information 

about the manufacturer’s product and the performance of the applicator assigned for the 

product installation (Gajjar et al., 2024). A total of 2,401 end users responded to the survey 

documenting the region, season, temperature at which the installation was completed and 

the overall customer satisfaction score (scale of 1 to 10; 1 being lowest – 10 being highest) 

for each project.   

Independent Variables 

 Region: After initial data sorting, factorial classification by region (the location of 

the installation job) was done. U.S. Census Bureau classifies the country into four regions: 

Midwest, Northeast, South, and West (United States Census Bureau, 2013) based on the 

Geographic Names Information System (GNIS) identifying its geographical location. 
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Table 4 below highlights the classification of the coating projects according to the different 

regions identified, reflecting the South region having the maximum total jobs. 

Table 4: Classification of Jobs per Region 

Job Region Total Jobs (#) 

(N = 2401) 

Percentage of Total Jobs Standard Deviation in 

Overall Customer 

Satisfaction 

Midwest 348 14.5% 1.76 

Northeast 319 13.3% 1.39 

South 999 41.6% 1.30 

West 735 30.6% 1.40 

 

Season: Based on the month in which the coating system was installed, the data 

was classified into four distinct seasons – jobs completed in December, January, and 

February were grouped under the “Winter” season; those in March, April, and May were 

categorized under “Spring” season; jobs in June, July, and August were categorized in 

“Summer,” and jobs installed in September, October, and November were categorized as 

“Fall.” Table 5 below highlights the categorization of seasons in the dataset. 

Table 5: Classification of Jobs per Season 

Job Season Total Jobs (#) 

(N = 2401) 

Percentage of Total Jobs Standard Deviation in 

Overall Customer 

Satisfaction 

Fall 773 32.2% 1.61 

Spring 483 20.1% 1.29 

Summer 784 32.7% 1.22 

Winter 361 15.0% 1.58 

 

Temperature: For each job, average temperatures were recorded based on the 

installation date of the job, assisting in the classification of factors according to the 

installation temperature (The Weather Company, 1995). The temperatures were 



 

 

 

56 

categorized into increments of 10 ℉ starting from 21-30 ℉ until 91-100 ℉, as seen in 

Table 6 below.  

Table 6: Classification of Jobs per Installation Temperature Range 

Temperature 

Range (℉) 

Total Jobs (#) 

(N = 2401) 

Percentage of Total Jobs Standard Deviation in 

Overall Customer 

Satisfaction 

20-30 36 1.5% 1.77 

31-40 137 5.7% 1.19 

41-50 266 11.1% 1.60 

51-60 400 16.7% 1.82 

61-70 608 25.3% 1.20 

71-80 627 26.1% 1.32 

81-90 293 12.2% 1.39 

91-100 34 1.4% 0.91 

Dependent Variables 

 Overall Customer Satisfaction: In the post-occupancy evaluation (POE), the data 

was collected with a customer satisfaction rating on a scale of 1 to 10 – with 1 (one) being 

the lowest and 10 being the highest. Fig. 19, 20, and 21 below illustrate the distribution of 

overall customer satisfaction ratings with respect to each of the independent variables: job 

region, job season and installation temperature. The nature of the variable is ordinal; hence, 

the distribution is investigated using boxplot distributions for each of the IVs (categorical). 

The DV was transformed to a categorical nature for the ST techniques and treated as a 

continuous IV with numeric coding.  
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Figure 19: Distribution of Overall Customer Satisfaction-Job Regions 

 
Figure 20: Distribution of Overall Customer Satisfaction-Seasons 

 
Figure 21: Distribution of Overall Customer Satisfaction-Temperature Ranges 

An outlier analysis was conducted on the dataset, with the upper and lower limits 

calculated using 1.5 times the interquartile range. This resulted in the dataset having 2355 
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observations, with a minimum overall customer satisfaction value of five (5). Figures 22, 

23, and 24 below represent the data distribution after removing the outliers. The IV of 

temperature range was transformed to a categorical variable of eight (8) levels to that of 

three (3) levels, namely, “High” for 71-100 ℉, “Medium” for 51-70 ℉ and “Low” for 20-

50℉ as illustrated in Fig. 25 Further, the DV, “Overall Customer Satisfaction” was 

transformed from ordinal nature of 1-10 to ordinal nature of three categories, “Good” for 

customer satisfaction rating of 10, “Neutral” for customer satisfaction rating of 8-9, and 

“Poor” for customer satisfaction rating of “5, 6, 7”.  

 
Figure 22: Distribution of Job regions 

 
Figure 23: Distribution of Seasons 

 
Figure 24: Distribution-Temperature Range Levels 

 

Figure 25: Distribution of Customer Satisfaction 

 The dataset presents challenges in its characteristics: a limited number of IVs in the 

equation and a visibly skewed/non-parametric distribution.  
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Statistical-Regular Prediction Modeling Techniques 

 The developed “Conceptual Quadrant Study Map for ST and ML Techniques,” as 

illustrated in Fig. 15, functioned as the guiding compass for the techniques available for 

formulating prediction models. The methods from the statistical-regular (top left quadrant) 

of the world of prediction modeling were tested for the dataset. Fig. 26 below delineates 

the ST techniques available for prediction modeling, and the methods highlighted in orange 

with a tick mark symbol next to them apply to the dataset considered. The methods in grey 

with an exclamation mark symbol next to them do not apply to the dataset.  

 
Figure 26: Statistical-Regular Prediction Modeling Methods 

The methods, namely, Structural equation modeling, Factorial discriminant 

function and Sequential factorial discriminant function, can be employed in datasets with 

multiple DVs. In contrast, for the present study, the dataset has one (1) DV, i.e., overall 

customer satisfaction. 
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Factor Analysis/Principal Component Analysis 

 Statistical techniques such as principal components analysis (PCA) and factor 

analysis (FA) can be used on a single set of variables to identify whether variables form 

coherent subsets that are comparatively independent of each other. The method of PCA/FA 

summarizes patterns of correlations among observed variables to reduce many observed 

variables to fewer factors with a minimum loss of information. It is thus often implemented 

for dimensionality reduction (Kim et al., 2008). The main objective of this technique is to 

provide a regression equation for an underlying process by using observed variables or to 

test a theory about the nature of underlying processes. FA/PCA creates linear combinations 

of observed variables to represent latent (hidden or unobserved) variables, also called 

factors (PCA produces components, while FA produces factors). The steps include the 

selection and measurement of a set of variables, preparing the correlation matrix followed 

by extracting a set of factors from the correlation matrix, determining the number of 

factors, (probably) rotating the factors to increase interpretability, and, finally, interpreting 

the results (Tabachnick & Fidell, 2013).  

Results: Firstly, Bartlett’s test of sphericity was conducted to evaluate whether the 

variables are correlated with one another and if this test is not statistically significant, FA 

cannot be employed. The result was p < 0.001; hence, this was followed by the Kaiser-

Meyer-Olkin (KMO) measure of sampling adequacy – which observes if the partial 

correlations within the dataset are approaching zero, suggesting at least one latent factor 

underlying the variables (Tabachnick & Fidell, 2013). The minimum acceptable value is 
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0.50, and in our result, it was 0.516. The code below was run on RStudio 2024.04.2 to 

conduct FA/PCA, detailed in Appendix A. 

As evident from the code excerpt in Appendix A, there is only one factor with 

eigenvalue > 1, which accounts for 29% of the total variance in the variables. Fig. 27 below 

also illustrates the scree plot and parallel analysis scree plots employed for understanding 

the number of factors that can be extracted from the dataset. The scree plots the eigenvalues 

for all the factors in the dataset, which measure the amount of variance accounted for by a 

factor (Meyers et al., 2017). The parallel analysis scree plots map the eigenvalues from the 

FA and a comparison of the eigenvalues from the random correlation matrices to that of 

the observed data.  

 

Figure 27: Scree plot and Parallel analysis scree plots for PCA and FA 

 Observed eigenvalues higher than their corresponding random eigenvalues are 

more likely to be from “meaningful factors” than observed eigenvalues below their 

corresponding random eigenvalue (Meyers et al., 2017). The code for running the analysis 
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is shown in Appendix A, and the details of the model developed for performing FA/PCA 

are tabulated in Table 7 below. 

Table 7: Results for model developed on FA/PCA 

Variables Nature of IV Results 

Region (coded as 1,2,3,4) Continuous 

Bartlett’s test of sphericity is significant, 

p < 0.001 

KMO Measure of Sampling Adequacy = 

0.516 

1 (one) component with an Eigenvalue 

greater than 1 (one) accounts for 29% of 

the variance. 

Pattern matrix could not be generated 

with only one component extracted.  

Factor loadings for each variable: 

Job region: 0.720 

Season: 0.541 

Average temperature: 0.580 

Season (coded as 1,2,3,4) Continuous 

Average Temperature at Installation (in ℉) Continuous 

Advantages: FA/PCA are preferred techniques for dimensionality reduction, 

primarily when visualizing high-dimensional data with no requirement for multivariate 

normality. Multivariate normality is assumed in FA when statistical inference is used to 

determine the number of factors, and the assumption is that the correlation matrix of the 

variables cannot be an identity matrix (Tabachnick & Fidell, 2013). 

Limitations: There are no readily available criteria against which to test the 

solution. After extraction, infinite rotations are available, accounting for the same amount 

of variance in the original data but with the factors defined slightly differently (Tabachnick 

& Fidell, 2013).  

Conclusions:  The squared loading determined from the standardized loadings is 

the correlation between each variable and each PC. Thus, the correlation between the Job 
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region and the first PC (PC1) is 0.72, the correlation between the Job season and PC1 is 

0.54, while the correlation between the Average Temperature and the PC1 is 0.58. This 

method can be applied to datasets with high dimensionality, i.e., a higher number of 

predictors or IVs, and it plays a crucial role in feature selection and determining critical 

IVs that contribute to the outcome or DV. 

Linear Regression 

The linear regression model describes a relationship between the DV or the 

response/outcome variable and one or more IVs or predictor variables by generalizing a 

straight line or a linear equation (Hwang, 2009). Assuming there is a vector of random 

variable X, a linear regression model can be represented in matrix terms as Eq. (1), where 

Y = [y1, …, yn]
T, e = [e1, …, en]

T, β = [β1, …, βn]
T 

𝒀 =  𝑿𝜷 +  𝒆            (1) 

If the model is valid and appropriate, then the observed value yi can be determined from 

the value of xi with the Eq (1), except for ei, the unknown random quantity of statistical 

error for the ith case that represents the failure of the model to determine the fitted value. 

Assumptions in the model include normality and equality of covariance for the errors 

(Tabachnick & Fidell, 2013). However, when the dataset is larger than the number of 

discriminating variables, and the sample size of each group is almost the same – the 

assumptions of normality and covariance can be relaxed (Sharma, 1995). The selected 

model minimizes the residual sum of squares of errors, and the strength of the established 

relationship is represented by the coefficient of determination R2, which represents the 
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proportion of the variability of response explained by regression on predictors (Hwang, 

2009).  

Results for Linear Regression with Ordinal DV (0, 1, 2): Given the three predictors, 

the study included developing six (6) types of models with different combinations of IVs 

and the transformed nature of IVs with results tabulated in Table 8 below. Partial F-tests 

were also conducted to understand if the addition of the predictors with each new model 

was statistically significant or not. The adjusted R2 value was found to be maximum for 

Model 6, with all the IVs being input in the model as categorical variables and the DV 

having three (3) possible outcomes and ordinal: 0 (Poor), 1 (Neutral), and 2 (Good). The 

code for linear regression with ordinal DV (0, 1, 2) is detailed in Appendix B.  

Table 8: Summary of Linear regression models with ordinal DV (0, 1, 2) 

Model# IVs in the Model 
Nature of 

IVs 
F-statistic p-value 

Adjusted 

R2 

p-value of 

partial F-

test 

Model1 
Region  

(coded as 1,2,3,4) 
Continuous 

F (1,2353) = 

15.98 
6.61e-05 0.0063 NA 

Model2 Region Categorical 
F (3, 2351) = 

7.667 
4.249e-05 0.0084 NA 

Model3 
Region and Season 

(coded as 1,2,3,4) 
Continuous 

F (2, 2352) = 

8.75 
0.00016 0.0065 0.2178 

Model4 Region and Season Categorical 
F (6, 2348) = 

4.949 
4.817e-05 0.001 0.0839 

Model5 

Region, Season 

(coded as 1,2,3,4) 

and Temperature 

Levels (coded 

0,1,2)  

Continuous 
F (3,2351) = 

5.852 
0.0005587 0.0061 0.7997 

Model6 

Region, Season 

and Temperature 

levels 

Categorical 
F (8, 2346) = 

4.154 
6.052e-05 0.0106 0.1724 
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 Parameter or predictor estimates in multiple linear regression are the 

unstandardized regression coefficients (β weights), which for the IV represent the change 

in the DV associated with a one-unit change in that IV if all the other IVs are kept constant 

(Tabachnick & Fidell, 2013). Table 9 below showcases the predictor estimates and the 

corresponding p-value from each of the models discussed above, which are statistically 

significant.  

Table 9: Predictor estimates (β) for LR models with ordinal DV (0,1,2) 

Model# IV 
IV/Predictor 

Estimate (β) 
Standard Error t-value p-value 

Model1 Job region code 0.05    0.01   3.997 6.61e-05 **** 

Model2 Region-South 0.17     0.04 4.276 1.98e-05 **** 

 Region-West 0.14    0.04    3.572 0.000361 **** 

Model3 Job region code 0.05 0.01 4.093 4.41e-05 **** 

Model4 Region-South 0.17 0.04    4.219 2.55e-05 **** 

 Region-West        0.15   0.04    3.615 0.000307 **** 

Model5 Job region code    0.05    0.01   4.099 4.29e-05 **** 

Model6 Region-South 0.18     0.04    4.467 8.33e-06 **** 

 Region-West 0.15     0.04 3.764 0.000171 **** 

 Season-Winter -0.09 0.04 -2.242 0.025055 ** 

 
Temperature Level-

Low 
0.08 0.04 1.875 0.06 * 

Significant codes: ‘****’ p < 0.001 ‘***’ p < 0.01 ‘**’ p < 0.05 ‘*’ p < 0.1  

Results for Linear Regression with Ordinal DV (5-10): In this linear regression 

model series, the DV was ordinal from five (5) to ten (10). Three (3) models were tested 

with the nature of IV retained as categorical for “region” and “season” and ordinal for 

“temperature.”  Table 10 below summarizes the results for the models developed and the 

F-statistic for each model. Table 11 displays the associated p-value of t-tests for each 

predictor estimate that was statistically significant. It is to be noted that the dataset was not 
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subject to any transformations. The code for linear regression with ordinal DV (5-10) is 

detailed in Appendix C. 

Table 10: Summary of LR models with ordinal DV (5-10) 

Model# IVs in the Model 
Nature of 

IVs 
F-statistic p-value 

Adjusted 

R2 

p-value of 

partial F-

test 

Model1 Region Categorical 
F (3, 2351) = 

5.977 
0.0004689 0.0063 NA 

Model2 Region and Season Categorical 
F (6, 2348) = 

5.382 
1.561e-05 0.01105 0.0026 *** 

Model3 
Region, Season and 

Temperature levels 
Categorical 

F (13, 2341) 

= 3.443 
2.597e-05 0.01331 0.089 * 

Significant codes: ‘****’ p < 0.001 ‘***’ p < 0.01 ‘**’ p < 0.05 ‘*’ p < 0.1  

Table 11: Predictor estimates (β) for LR models with ordinal DV (5 – 10) 

Model# IV 
IV/Predictor 

Estimate (β) 
Standard Error t-value p-value 

Model1 Region-South 0.27    0.07  3.971 7.39e-05 **** 

 Region-West 0.22 0.07 3.096   0.00198 *** 

Model2 Region-South 0.28    0.07 4.000 6.53e-05 **** 

 Region-West 0.23    0.07    3.195 0.00141 *** 

 Season-Winter -0.18 0.07 -2.594 0.00956 *** 

Model3 Region-South 0.30 0.07 4.169 3.17e-05 **** 

 Region-West 0.25 0.07 3.361 0.00079 **** 

 Season-Spring 0.12 0.07 1.771 0.07661 * 

 Season-Winter -0.24 0.08 -3.129 0.00178 *** 

Significant codes: ‘****’ p < 0.001 ‘***’ p < 0.01 ‘**’ p < 0.05 ‘*’ p < 0.1  

Advantages: Linear regression generates coefficients equivalent to contributing 

estimates of each predictor/IV towards the DV. This is the only method that does not 

predict the dataset's structure nor the outcome's group membership; instead, it supplies the 

researcher with an equation of coefficients with each IV. 
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Limitations: The relationships revealed employing linear/multiple linear regression 

techniques are not implied to be causal. The relationship is ideal when there is a strong 

correlation between each IV and the DV but uncorrelated with other IVs (Tabachnick & 

Fidell, 2013). As can be observed in the results summary above for both cases of DV, the 

regression solution is extremely sensitive to the combination of variables included in the 

model. For regression, there are some assumptions that the dataset is required to meet, 

which are listed below: 

1. Residuals (differences between obtained and predicted DV scores) are normally 

distributed for the predicted DV scores. 

2. Residuals have a horizontal-line relationship with predicted DV scores. 

3. The variance of the residuals about predicted DV scores is the same for all predicted 

scores across different groups. 

However, it needs to be noted that there are no distributional assumptions about the 

IVs other than their relationship with the DV. Further, a prediction equation is often 

enhanced if IVs are normally distributed, primarily because the linearity between the IV 

and the DV is enhanced (Tabachnick & Fidell, 2013). Residual scatterplots must be 

examined to test the assumptions of normality, linearity, and homoscedasticity between 

predicted DV scores and prediction errors (Meyers et al., 2017). For Model 2, a q–q plot 

was developed – in Fig. 28, quantiles of a theoretical distribution are plotted against the 

quantiles of the observed data. Extreme deviations from a straight line could indicate that 

the variable is not normally distributed. Variance inflation factor (VIF) is a statistical 
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measure that quantifies the degree of multicollinearity for each predictor variable in a 

regression model (Meyers et al., 2017). For Model 2, discussed above, none of the VIFs 

were more significant than 5 – thus, multicollinearity is not a concern for the fitted model.  

 
Figure 28: Q-Q Plot for Model 2 - Linear Regression 

Conclusions: The model with the highest adjusted R2 value would be considered 

the best-fitted model, highlighting the relationship between the IVs and the DV. Model2 

with DV in ordinal nature (5-10) was statistically significant, F (6, 2348) = 5.382 (p < 

0.001) with 1.1% of the variance explained by the model, with only South and West regions 

as well as Winter season having statistically significant predictor estimates.  

Discriminant Function Analysis 

 The main objective of Discriminant Function Analysis (DFA) is the classification 

of subjects into one of several categories – i.e., predict group memberships from the set of 

IVs (Lee, 2001; Tabachnick & Fidell, 2013). In this method, a discriminant score, Y, is 

calculated for maximizing the separation of groups and minimizing the errors in 



 

 

 

69 

classification, which represents the DV in multiple regression equations, and Xi’s 

corresponds to the values for the IVs as shown in Eq. (2). The performance metrics for 

DFA is the proportion of accurate classification (Lee, 2001).    

     𝒀𝒊  =  𝒃𝟎  + 𝒃𝟏𝑿𝟏𝒊  +  𝒃𝟐𝑿𝟐𝒊 + . . . ..                            (2) 

 DFA without Data Transformations in SPSS: DFA in IBM SPSS (Statistical 

Package for Social Sciences) 29 version, using the dataset with categorical IVs, region and 

season and ordinal IV, temperature range to predict the probability of the 

dichotomous/binary DV, overall customer satisfaction as 0: No, and 1: Yes.  

Results with DFA in SPSS: The detailed result output from SPSS is included in 

Appendix D. Since the objective of the method is to predict group membership, the results 

are examined for any significant differences between groups on each of the IVs using the 

Group Statistics and the Tests of Equality of Group Means tables. Appendix D shows no 

significant difference between the means of “yes” and “no” in the overall customer 

satisfaction groups for all IVs.  

DFA with Data Transformations in RStudio 2024.04.2: DFA, before being 

conducted on a dataset, requires two underlying assumptions to be satisfied: multivariate 

normality and equality of covariance matrices (Lee, 2001). DFA can be affected by the 

scale/unit in which the predictor variables are measured. Thus, it is generally recommended 

to standardize/normalize continuous predictors/IVs before the analysis (Meyers et al., 

2017b). In Fig. 29, the continuous IV – -average temperature’s q-q plot and histogram were 

plotted to see an approximately normal distribution.  
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Figure 29: Q-Q plot and histogram for IV - Average Temperature 

Data pre-processing: LDA assumes that predictors are normally distributed 

(Gaussian distribution) and that the different classes have class-specific means and equal 

variance/covariance (Meyers et al., 2017). Hence, inspecting each variable's univariate 

distributions and ensuring normal distribution is imperative. Outliers were removed from 

the data, and the variables were standardized to make their scale comparable. The data was 

split into training (80%) and testing (20%) sets. This was followed by data normalization, 

which included estimating the pre-processing parameters and transforming the data 

accordingly. Normalizing the variable entails that all variables are standardized, each with 

a mean of 0 and a standard deviation of 1. The code is written in RStudio 2024.04.2 for 

data pre-processing before DFA, detailed in Appendix E. 

Linear Discriminant Analysis (LDA): The LDA algorithm starts by finding 

directions that maximize the separation between classes and then uses these directions to 
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predict the class of individuals. These directions, called linear discriminants, are a linear 

combination of predictor variables. The intuition behind the method is to determine a 

subspace of lower dimension, compared to the original data sample dimension, in which 

the data points of the original problem are “separable.” As illustrated in Fig. 30, data 

samples in two dimensions are projected in a lower dimension, i.e., a line that must be 

selected so that projection maximizes the “separability” of the projected samples 

(Xanthopoulos et al., 2013).  

 

Figure 30: Conceptual schematic for intuition behind LDA 

Results for LDA (DFA) in RStudio: LDA determines group means and computes, 

for each data point, the probability of belonging to the different groups detailed in Table 

12 below. The data is affected by the group with the highest probability score. The code 

detailed in Appendix E outputs the following elements: 

• Prior probabilities of groups: The proportion of training observations in 

each group. 

• Group means: Group center of gravity, which shows the mean of each 

variable in each group. 
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• Coefficients of linear discriminants show the linear combination of 

predictor variables to form the LDA decision rule. 

Table 12: Summary of results for LDA with Binary DV (Yes/No) 

DV 
Prior Probabilities 

of Groups 

Group Means – 

Job Region Code 

Group Means - 

Season Code 

Group Means – 

Avg. Temp. 

No 0.072 -0.058 0.138 -0.048 

Yes 0.928 0.004 -0.011 0.004 

  
Figure 31: LDA Density Plot with Centroids for Binary DV - Yes/No 

In Fig. 31, the density plot for the LDA function is plotted for the scores, 

highlighting the centroids for each group of DV as dashed vertical lines. It can be observed 

that even though the accuracy of the model was approximately 93%, the centroids are not 

well-separated in the input space; thus, the LDA model is not effective in separating the 

groups. 

Advantages: DFA is a one-way analysis that allows sample sizes in groups to be 

unequal; however, with classification tasks, unequal sample sizes are used to modify the 

probabilities with which cases are classified. With sample sizes large enough, distortion of 
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results due to failure of multivariate normality is not expected. Moreover, classification 

tasks require fewer statistical demands than inference – with approximately 95% accuracy, 

the shape of distributions should not be a concern.  

Limitations: Typically, DFA is used to predict the group membership in groups 

occurring naturally instead of groups formed by random assignments – which leads to the 

question of reliability of prediction (Tabachnick & Fidell, 2013). The technique assumes 

linear relationships among all pairs of IVs within each group – violation of which leads to 

an increase in Type I error, with a tendency to overestimate the size of association with 

binary predictors. 

Conclusions: If the predictor variables are standardized before computing LDA, the 

discriminator weights can be used to measure variable importance for feature selection. 

The weights are 0.43 for the Job region code, -0.9 for the Season code and 0.27 for 

Average temperature, with the model accuracy turning out to be 92.78%. When calculating 

the CM for the function, the sensitivity (true positive rate) of the model was found to be 0. 

Logistic Regression 

The method of Logistic Regression (LogR) is an incredibly flexible technique that 

allows the prediction of a discrete outcome with no assumptions about the distributions of 

the IVs that need not be normally distributed, linearly related to the DV or of equal variance 

within each group (Tabachnick & Fidell, 2013). LogR operates based on the natural 

logarithm, following a logistic S-curve, while the classification of the DV is determined 

using the probability of the outcome based on the values of its attributes (Poh et al., 2018).  
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Results of LogR: The LogR was conducted in SPSS, the results of which are 

detailed in Appendix F. Firstly, the Omnibus Tests of Model Coefficients, which is used to 

test the goodness of fit of the model, was not statistically significant with p = 0.054; which 

if had been significant would imply that there is a significant improvement in the fit as 

compared to the null model. However, the Hosmer and Lemeshow Test of good fit was 

also not statistically significant, with p = 0.902, implying the model will adequately fit the 

data. The model's accuracy was 92.8%, with 0% correct prediction of “No’s.” 

Advantages: LogR is a more flexible technique since it has no assumptions about 

the normal distribution of the IVs, linear relationship to the DV, or equal variance within 

each group. Moreover, the IVs could be of any nature – continuous, categorical or binary. 

LogR is the beneficial method when the distribution of the DV is expected to be nonlinear 

with one or more IVs (Tabachnick & Fidell, 2013). In this method, the model developer 

can identify which IVs are most predictive of an outcome by examining the magnitude of 

the β coefficients (parameter estimates) and the corresponding odds ratios (Tu, 1996). 

Limitations: Linear regression is more powerful if the DV is continuous and 

assumptions are satisfied. Overfitting in logistic regression is more challenging to detect 

with small samples than multiple regression. This is because logistic regression lacks an 

"adjusted R-squared" metric. A significant difference between adjusted and unadjusted R-

squared in multiple regression indicates an insufficient sample size, a warning sign for 

overfitting. 
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Conclusions: The Nagelkerke R squared is the adjusted R2 value, equivalent to 

0.014. However, no significant predictor was obtained in the results. The model is also 

overly optimistic and experiences “overfitting” since it cannot predict any true negatives, 

only true positives. The model's specificity is 0%, but the sensitivity is 100%, which makes 

the overall accuracy of the model, i.e., 92.8%, unreliable.  

Ordinal Logistic Regression 

Ordinal Logistic Regression (OLR) is a statistical analysis technique employed to 

model the relationship between an ordinal DV and one or more IVs with either a continuous 

or categorical nature (Agresti, 2002). OLR is an extension of LogR where the log odds of 

the DV, assuming k levels, are linearly related to the IVs. One of the assumptions of the 

OLR is that of proportional odds, which entails that the effect of an IV is constant for each 

increase in the level of the DV (Agresti, 2002). The OLR was coded in RStudio 2024.04.2, 

details of which have been showcased in Appendix G. The IVs were added stepwise to the 

OLR model and with each formulation, the results outputs are tabulated in Table 13. The 

effects of each IV on the DV – Overall Satisfaction are illustrated in Fig. 32, while the 

coefficients for each IV for Model 7 are tabulated in Table 14.  

Table 13: Results for OLR models with Ordinal DV (Good, Neutral, Poor) 

Model# IV 
DV Rating-  

Good Prob. 

DV Rating- 

Neutral Prob. 

DV Rating-  

Poor Prob. 
Accuracy 

Model1 Region 46% in West    54% in Midwest 10% in Midwest 46% 

Model2 Season 48% in Spring 52% in Winter 9% in Winter 48% 

Model3 Temp. Range 
44% in High 

Temp 

50% in Medium 

Temp 

8% in Medium 

Temp 
48% 
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Model# IV 
DV Rating-  

Good Prob. 

DV Rating- 

Neutral Prob. 

DV Rating-  

Poor Prob. 
Accuracy 

Model4 
Region and 

Season 

50% in Spring  

& West 

57% in Winter & 

Midwest 

12% in Winter & 

Midwest 
48% 

Model5 
Region and 

Temp. Range 

48% in West & 

Low Temp. 

55% in Midwest 

& Medium Temp. 

11% in Midwest 

& Medium Temp. 
45% 

Model6 
Season and 

Temp. Range 

50% in Spring & 

Low Temp. 

53% in Winter & 

Medium Temp. 

9% in Winter & 

Medium Temp 
48% 

Model7 

Region, Season, 

High Temp. 

51% in Spring & 

West 

57% in Winter & 

Midwest 

12% in Winter & 

Midwest 
49% 

Region, Season, 

Medium Temp. 

49% in Spring & 

West 

58% in Winter & 

Midwest 

13% in Winter & 

Midwest 
49% 

Region, Season, 

Low Temp. 

54% in Spring & 

West 

56% in Winter & 

Midwest 

11% in Winter & 

Midwest 
49% 

 

Table 14: Coefficients summary for OLR Model7 

IV Value Std. Error t-value p-value 

Job Region-Northeast -0.1523 0.1928 -0.7898 0.4296 

Job Region-South -0.4105 0.1628 -2.5216 0.0117** 

Job Region-West   -0.4747 0.1656 -2.8665 0.0042*** 

Season-Spring   -0.1522 0.1547 -0.9836 0.3253 

Season-Summer 0.0409 0.1402 0.2919 0.7704 

Temperature levels-Low -0.1082 0.1809 -0.5978 0.5500 

Temperature levels-Medium 0.0906 0.1253 0.7234 0.4694 

Good | Neutral -0.5757 0.1798 -3.2021 0.0014 

Neutral | Poor 2.2187 0.1954 11.3552 0.0000 

Significant codes: ‘****’ p < 0.001 ‘***’ p < 0.01 ‘**’ p < 0.05 ‘*’ p < 0.1  

 The assumptions required for Ordinal LogR include a check for multicollinearity 

and proportional odds assumption. The check for multicollinearity is by calculating the 

VIF, which was less than 10; hence, it is not a concern, and the assumption is not violated. 

Brant test was conducted on Model 7 to find that the Omnibus test with p = 0.05 was 

borderline significant, suggesting a potential overall violation; however, none of the IVs 

show a significant violation, suggesting potential issues with the proportional odds 

assumption shall not be a problem for the model.  
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Figure 32: Effect of IVs on Overall Customer Satisfaction 

Advantages: The OLR model allows the interpretation of datasets with ordered 

categorical DV and the IVs being either continuous or categorical. Normality in the 

distribution of IVs is not a requirement. However, the model assumes the relationship 

between each pair of DV groups is the same (unlike the Multinomial Logistic Regression, 

which does not preserve the ordered formation in the DV when returning the information 

on the contribution of each IV).  

Limitations: A fundamental assumption of OLR is the proportional odds 

assumption, which means that the effect of an IV remains consistent across each level 

increase in the DV. OLR models can be parameterized in various ways, and different 
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statistical software packages may use different parameterizations. Therefore, it is crucial 

to be cautious when interpreting the results from ordinal regression models (Agresti, 2002). 

Conclusions: With region as IV in the OLR model, the overall accuracy of the 

model was 46%; with the only season as IV, the accuracy was 48%, and with only 

temperature range as the IV, the model's accuracy was 47.5%. The maximum accuracy was 

achieved with all the IVs in the model, which was 49% - which is, however, dismal. 

Challenges in Dataset with ST Techniques 

 There were challenges when employing ST techniques for developing prediction 

models on the dataset for the study. The non-parametric distribution and non-linear 

relationship between the variables violated the assumption for conducting the ST 

techniques primarily. Even attempts at data transformation and pre-processing, like 

standardization or scaling, could not mitigate the concerns discussed in the limitations for 

each ST technique above.  

 Investigating the assumptions data needs to adhere to ST techniques of developing 

prediction models; the primary one is the normality of data distribution. For IVs of a 

categorical nature, univariate normality does not apply; hence, for conducting a check for 

assumptions, the frequency distributions can be examined. Furthermore, for the given 

study, the DV being ordinal, the categorical IVs were used to construct boxplot frequency 

distributions (Meyers et al., 2017b). For IVs continuous in nature, e.g., for the given 

dataset, “Average Temperature (℉)” can be investigated using histogram plots as well as 

“q-q plot” that maps the quantiles of theoretical distribution against the quantiles of the 
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observed data (Fox & Weisberg, 2019). Fig. 33 is the q-q plot for Average Temperature 

(IV) and the histogram exhibiting almost normal distribution. Furthermore, in the q-q plot, 

the observed data almost follows the theoretical distribution with few extreme deviations, 

indicating that the variable is normally distributed.  

 

Figure 33: Q-Q plot and Histogram for Average Temperature (℉) 

 Investigating the DV, “Overall Customer Satisfaction,” though ordinal, was treated 

as a continuous variable, assigning a numeric code for the outcome. Plotting the q-q plots 

and histogram for the DV, as illustrated in Fig. 34, depicts extreme deviations from the 

straight line in the q-q plot, exhibiting a distribution that is not normal and negatively 

skewed. Studies have considered that violation of normality of data distribution is not a 

significant concern when the sample size has 100 or more observations; however, for 

insightful conclusions, it should be followed (Lee, 2001; Mishra et al., 2019). This was 

followed by further confirmation using the Shapiro-Wilk normality test and the Anderson-

Darling normality test (Fox & Weisberg, 2019; Mishra et al., 2019; Tabachnick & Fidell, 
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2013). Both tests were significant, with p < 0.001, confirming that the variable does not 

follow a normal distribution.  

 
Figure 34: Q-Q Plot and Histogram for Overall Customer Satisfaction 

 The skewness and kurtosis of the data were investigated using the D'Agostino 

skewness test and the Anscombe-Glynn kurtosis test (Fox & Weisberg, 2019; Mishra et 

al., 2019). The results showed that the variable distribution has negative skewness with 

heavy-tailed distribution, with all results for the normality, skewness and kurtosis test 

detailed in Table 15.  

Table 15: Normality, Skewness and Kurtosis Test Results 

Skewness Kurtosis Normality 

Value p-value Finding Value p-value Finding 
SW Test 

Value1 

AD Test 

Value2 
Finding 

-1.42 < 2.2e-16 
Negative 

skew 
5.30 < 2.2e-16 

higher 

peak & 

heavy-

tailed 

0.78 

p < 0.001 

170.66 

p < 0.001 

Not normal 

distribution 

1 SW Test – Shapiro-Wilk Normality Test 
2 AD Test – Anderson-Darling Normality Test 
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If a variable is not approximately normal, a transformation could be helpful to meet 

the assumptions of statistical tests better since failure to meet statistical assumptions can 

result in decreased power and inflated Type I error (false positive) rates (Tabachnick & 

Fidell, 2013). Transformations were implemented on the variable (Tabachnick & Fidell, 

2013), the results of which have been summarized in Table 16, reflecting the inability to 

create the desired outcome of normal distribution. Table 16 also includes the results 

recommended through the systemic approach of the Box-Cox family of transformations 

wherein, given a strictly positive variable, a power transformation λ can be determined that 

normalizes the DV (Daimon, 2011). 

Table 16: Summary of transformations for Overall Customer Satisfaction 

Transformation SW Test1 AD Test2 DA Test3 AG Test4 Conclusion 

subtract data from largest 

score (+1), then take 

logarithm 

p < 0.001 p < 0.001 p < 0.001 p < 0.001 

Positively skewed 

with kurtosis; not 

normal distribution 

subtract data from largest 

score (+1), then take 

reciprocal 

p < 0.001 p < 0.001 p = 0.997 NA*   

Skewness not a 

concern; not 

normal distribution 

subtract data from largest 

score (+ 1), then take 

square root 

p < 0.001 p < 0.001 p < 0.001 p = 0.2084 

Kurtosis not a 

concern; positively 

skewed, not normal 

distribution 

Box-Cox Power: 5.25 

(data raised to power) 
p < 0.001 p < 0.001 p < 0.001 p < 0.001 

Negatively skewed 

with kurtosis; not 

normal distribution 
1 SW Test – Shapiro-Wilk Normality Test 
2 AD Test – Anderson-Darling Normality Test 
3 DA Test – D’Agostino Skewness Test 
4 Anscombe-Glynn Kurtosis Test 

* Value could not be computed for the test since the data could have become invalid 
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Since all attempts to transform the DV to conform to a normal distribution were 

unsuccessful, the study was directed towards the modern, coming-of-age ML algorithms 

that did not require the data to follow the parametric distribution and could have complex 

relationships amongst the variables, not necessarily linear. It is critical to note that though 

the applied transformations did not yield satisfactory results, the study aimed to document 

the approach of implementing data transformations for a non-parametric dataset for 

customer satisfaction in the construction industry. 

Machine Learning Prediction Modeling Techniques 

ML Algorithms Selection 

 ML techniques have been proven to have an advantage over ST techniques in the 

ability to work with uncertainty, manage and perform with incomplete data, and 

unmistakably the ability to predict new cases based on learning from existing complex 

datasets (Gondia et al., 2019; Hashemi et al., 2020). ML algorithms do not assume that the 

data has been generated by any parametric model prescribed by the user; however, ST 

techniques would require formal model structures and data frequency distributions to 

comply with assumptions (Gondia et al., 2019). However, construction datasets are 

complex, with a rarity of tractable model structures and distributions adhering to 

assumptions, and ML models outperform traditional techniques (Poh et al., 2018). ST 

techniques could result in inaccurate representations of the actual phenomena due to the 

imposition of assumptions. In contrast, ML techniques are more effective in dealing with 
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variables with linear or non-linear relationships and complex high-order relationships 

(Gondia et al., 2019). 

 During the literature review for studies implementing ML algorithms for prediction 

models, it was observed that neither any specific approach nor logical reasoning was 

provided for selecting a given ML algorithm. Therefore, in the current study, a framework 

was developed for selecting the ML algorithm in the given order, frequency of use of the 

ML technique, the goal of the study, i.e., the outcome being predicted, accuracy or 

performance of the technique and finally the complexity of nature of the relationship 

between the variables.  

While developing classification prediction models, Decision Tree (DT), Naïve-

Bayesian (NB) Classifier, Artificial Neural Network (ANN), Support Vector Machine 

(SVM) and Ensemble Method are employed (Li et al., 2018). Further, DT and NB have 

been used by researchers previously for small-sized datasets with a recorded history of 

satisfactory results (Gondia et al., 2019). In Fig. 35, the frequency of use of each category 

of ML technique was documented, which was employed to predict one of the listed DVs 

for a construction-specific scenario. Considering the study's dataset investigating the 

development of prediction models for customer satisfaction, the most used algorithms are 

Support Vector Machines and Artificial Neural Networks. Ensemble methods require 

selecting appropriate ML techniques followed by stacking, which was listed as a future 

path for the study; hence, the traditional Naïve-Bayes classifier was considered while 

forecasting customer satisfaction (Pandey et al., 2023). 
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Figure 35: Frequency Table - ML Algorithms - Construction DVs 

Studies have documented the performance of the NB Classifier for assessment and 

anticipation of time performance of projects (Gondia et al., 2019), for identification of main 

factors for construction delays (Kim et al., 2008), and for predicting customer satisfaction 

for an e-commerce dataset (Pandey et al., 2023). In Gondia et al., 2019, the NB classifier 

outperformed Decision Tree algorithms in both training and testing capabilities, along with 

more consistent predictions, across the three different categories of the DV.  

A study predicting customer satisfaction for a retail dataset noted that SVM 

exhibited higher testing accuracy than the NB classifier, Random Forest and LogR models 

(Pandey et al., 2023). In another study by Li et al., 2018, ANN, SVM and XGBoost 

algorithms were used to predict customer satisfaction in the banking sector. These studies 

from other sectors were considered since not many studies predict customer satisfaction 

for the construction coatings sector or the construction industry. While examining SVMs 

predicting DVs from the construction industry, compared to ANNs, they offer several 
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benefits, including efficient use of high-dimensional feature space, a uniquely solvable 

optimization problem, and the capability for theoretical analysis through computational 

learning theory (Wang et al., 2012). 

Recurrent neural networks (RNNs) with Long Short-Term Memory (LSTM) were 

used to predict customer satisfaction for an e-commerce retail dataset that is categorized as 

a type of neural network that outperformed all other models (Pandey et al., 2023). 

Considering the utilization of ANN algorithms in the construction industry, predictive 

accuracy was highest for the estimation of project S-curves (Chao & Chien, 2009), highest 

while estimating construction costs (Gu, 2023), and excellent performance assessing the 

risk of delays in tall building projects (Sanni-Anibire et al., 2022). Another study tested 

multiple ANN-based paradigms to predict highway project delays and cost overrun 

percentages (El-Kholy, 2021).  

Naïve-Bayes Classifier 

 This algorithm is transitioning from the traditional statistical quadrant to the 

advanced statistical techniques, which qualify as an early ML algorithm technique since 

the algorithm is based on Bayes’ theorem to quantify the conditional probability of random 

variables. This algorithm aims to identify categories for new data input by calculating joint 

conditional probabilities of training dataset’s IV given their DV classification (Gondia et 

al., 2019). The NB classifier requires an assumption for the conditional independence of 

the variable’s values with respect to the class, which implies that a particular feature in a 

class is unrelated to the presence of any other feature (Kononenko & Kukar, 2007). 
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Furthermore, the NB classifier is more suited for small-size datasets since it converges 

more quickly and requires considerably less training data with excellent performance for 

real-world problems (Gondia et al., 2019; Kononenko & Kukar, 2007). 

 The NB classifier is derived from the Bayes rule (Kononenko & Kukar, 2007) as 

shown in Eq. (3), where P(Ck) are the prior probabilities of classes Ck, k = 1,2,…, mo, V = 

{v1, …,va} is the vector of values of attributes describing an example, d(V) is the classifier 

mapping from example description V to the class, t(V) is the true class for an example 

described with V, P(V) is the prior probability of an example described with V, and P(V|Ck) 

is the conditional probability of an example described with V given the class Ck. 

    𝑃(𝐶𝑘 | 𝑉)  =  𝑃(𝐶𝑘) 
𝑃(𝑉 | 𝐶𝑘)

𝑃(𝑉)
             (3) 

 Thus, the NB classifier’s objective is to use learning examples to approximate both 

conditional and unconditional probabilities on the right-hand side of Eq. (4), written below.  

             𝑃(𝐶𝑘 | 𝑉)  =  𝑃(𝐶𝑘) ∏
𝑃(𝐶𝑘 | 𝑣𝑖)

𝑃(𝐶𝑘)

𝑎
𝑖 = 1              (4) 

 Data pre-processing: The character IVs were converted to factors, and integer IVs 

were converted to numeric variables, as explained in the code in Appendix H. This was 

followed by splitting the dataset into training and testing datasets in the ratio of 70-30. 

Results for NB Classifier with Ordinal DV (5-10): The NB Classifier was applied 

to the dataset of customer satisfaction (code in Appendix H), with outputs including A-

priori probabilities referring to the probabilities of each class occurring in the dataset before 

any evidence (i.e., IVs) is considered. These probabilities are estimated directly from the 
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training data. In an NB classifier, conditional probabilities refer to the probabilities of 

observing a particular value of a feature given a specific class. These probabilities are 

estimated from the training data and are crucial for making predictions. Table 17 highlights 

the algorithm's output as class conditional probabilities for job region and season. Table 18 

details the class conditional probabilities for temperature range levels. In both the tables, 

the IV with the maximum probability in the given class of DV has been marked in bold. 

Fig. 36 illustrates the CM heatmap for the NB classifier, enabling us to visually assess the 

algorithm's performance across multiple classes, which are customer satisfaction scores 

from 5 to 10 in the study's dataset. The accuracy of the model was 46.95%. 

Table 17: Class Conditional Probabilities-Region & Season-Ordinal DV (5-10) 

Class 

of DV 

Job Region Season 

Midwest Northeast South West Fall Spring Summer Winter 

5 0.17 0.10 0.50 0.23 0.23 0.23 0.20 0.33 

6 0.00 0.13 0.63 0.25 0.44 0.19 0.31 0.06 

7 0.18 0.07 0.42 0.33 0.30 0.19 0.37 0.14 

8 0.21 0.18 0.28 0.32 0.35 0.14 0.35 0.16 

9 0.15 0.16 0.41 0.29 0.31 0.21 0.34 0.14 

10 0.10 0.12 0.45 0.33 0.32 0.22 0.32 0.14 

 

Table 18: Class Conditional Probabilities-Temperature Range-Ordinal DV (5-10) 

Class 

of DV 
20-30℉ 31-40℉ 41-50℉ 51-60℉ 61-70℉ 71-80℉ 81-90℉ 91-100℉ 

5 0.03 0.07 0.17 0.13 0.13 0.33 0.13 0.00 

6 0.00 0.06 0.06 0.13 0.19 0.44 0.13 0.00 

7 0.00 0.01 0.12 0.16 0.23 0.32 0.14 0.01 

8 0.02 0.06 0.08 0.17 0.27 0.28 0.11 0.02 

9 0.01 0.07 0.12 0.14 0.28 0.25 0.12 0.01 

10 0.01 0.04 0.11 0.17 0.25 0.27 0.13 0.02 
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Figure 36: CM Heatmap-NB Classifier-Ordinal DV (5-10) 

Results for NB Classifier with Ordinal DV (0,1,2): The NB Classifier was applied 

to the dataset of customer satisfaction (code in Appendix H), with outputs of conditional 

probabilities detailed in Tables 19 and 20. Fig. 37 visualizes the CM for the model as a 

heatmap with an accuracy of 49.45%. 

Table 19: Class Conditional Probabilities-Region & Season-Ordinal DV (0,1,2) 

Class of 

DV 

Job Region Season 

Midwest Northeast South West Fall Spring Summer Winter 

Good (2) 0.10 0.12 0.45 0.33 0.32 0.22 0.32 0.14 

Neutral (1) 0.16 0.17 0.36 0.30 0.32 0.19 0.34 0.15 

Poor (0) 0.15 0.08 0.47 0.29 0.30 0.20 0.32 0.18 

 

Table 20: Class Conditional Probabilities-Temperature Range-Ordinal DV (0,1,2) 

Class of DV 
High 

(71-100℉) 

Medium 

(51-70℉) 

Low 

(20-50℉) 

Good (2) 0.41 0.42 0.17 

Neutral (1) 0.39 0.42 0.19 

Poor (0) 0.48 0.35 0.17 
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Figure 37: CM Heatmap-NB Classifier-Ordinal DV (0,1,2) 

Results for NB Classifier with Binary DV (0,1): The NB Classifier was applied to 

the dataset of customer satisfaction (code in Appendix H), with outputs of conditional 

probabilities detailed in Tables 21 and 22. The model exhibited an accuracy of 92.94%, 

with 0 predictive power for “No,” as shown in Fig. 38, the heatmap of the CM for the 

model. 

Table 21: Class Conditional Probabilities-Region & Season-Binary DV (0,1) 

Class of 

DV 

Job Region Season 

Midwest Northeast South West Fall Spring Summer Winter 

No (0) 0.15 0.08 0.47 0.29 0.30 0.20 0.32 0.18 

Yes (1) 0.14 0.14 0.40 0.32 0.32 0.20 0.33 0.14 

 
Table 22: Class Conditional Probabilities-Temperature Range-Binary DV (0,1) 

Class of 

DV 
20-30℉ 31-40℉ 41-50℉ 51-60℉ 61-70℉ 71-80℉ 81-90℉ 91-100℉ 

No (0) 0.01 0.03 0.13 0.15 0.20 0.34 0.13 0.01 

Yes (1) 0.01 0.06 0.11 0.16 0.26 0.26 0.12 0.02 
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Figure 38: CM heatmap-NB Classifier-Binary DV (0,1) 

 Advantages: The NB classifier is more suited for small-sized datasets with quicker 

convergence and the requirement of less training data (Gondia et al., 2019). NB classifier 

can be applied to binary and ordinal DV scenarios and is widely regarded as a simple and 

fast-structured algorithm with high computational efficiency. Another advantage of the NB 

Classifier is that since it assumes the independence of variables, the entire covariance 

matrix is not required to estimate necessary parameters (Chen et al., 2021). 

 Limitations: NB classifier follows the laws of independent events’ probability; 

thus, in scenarios of correlated variables, allocation of the increased weight of influence of 

the IVs on the DV results in a decline in the accuracy of prediction (Chen et al., 2021; 

Gondia et al., 2019). 

 Conclusions: NB classifier was employed on the dataset with three variations in the 

ordinal nature of the DV – range of 5-10, range of 0,1,2 and the binary nature of 0,1. The 

model's accuracy improved marginally with the change, such as the DV, from 5-10 to a 

three-tiered range of 0-2, i.e., 47% to 50%. The region with the highest probability of 
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highest customer satisfaction was the South, and the seasons were Fall and Summer for 

both models. However, changing the DV to a dichotomous/binary nature increased the 

accuracy significantly, i.e., 93%, with none of the “No’s” accurately predicted. 

Support Vector Machine 

 Support Vector Machine (SVM) algorithms are one of the most widely used ML 

techniques for classification and regression tasks and are gaining popularity in construction 

research (Poh et al., 2018; Sanni-Anibire et al., 2022). This algorithm operates on vector 

algebra, placing an optimal class separating hyperplane in the space of original attributes 

of the dataset that forms the decision boundary to perform classification (Mansoor et al., 

2024). In this multi-criterion optimization method, the formed boundaries utilize a 

selection of a small number of critical boundary instances called support vectors that are 

then used to build a linear discriminant function to separate them as widely as possible 

(Kononenko & Kukar, 2007; Sanni-Anibire et al., 2022). However, certain classification 

tasks may not be linearly separable; the instance-based approach of SVM using “kernel 

function” transforms the IVs into high dimensional feature spaces, allowing the formation 

of quadratic, cubic and higher-order decision boundaries (Kononenko & Kukar, 2007; 

Sanni-Anibire et al., 2022).  

 The development of the SVM algorithm is training with a labeled training dataset 

X of n examples – each consisting of a pair, an input vector xi and the associated label yi as 

shown in Eq. (5).  

(x1, y1), (x2, y2), …, (xn, yn)                      (5) 
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i.e., 𝑋 =  {𝑥𝑖  , 𝑦𝑖}𝑖=1
𝑛  where x ∈ Rd and yi ∈ (+1, -1). Considering the case of two-

dimensional input for visualization, there can be infinite hyperplanes separating the input 

dataset. The “optimal separation hyperplane” decision level that separates the input space 

is defined by the location with maximum margin (Cervantes et al., 2020) as illustrated in 

Fig. 39 and defined by Eq. (6).  

     𝑤𝑇𝑥𝑖 +  𝑏 =  0            (6) 

Assuming the simplest case of SVM, with the geometric margin optimized with the linear 

classifier yi = 1, Eq. (7) becomes the combined set of inequalities. 

               𝑦𝑖 ( ⟨ 𝑤. 𝑥𝑖⟩  +  𝑏)  ≥  1 ∀ 𝑖                                (7)  

The geometric margin for x+ y x- is Eq. (8): 

𝛾𝑖 =  
1

2
 (⟨

𝑤

||𝑤||
. 𝑥+⟩ − ⟨

𝑤

||𝑤||
. 𝑥−⟩)  =   

1

2 ||𝑤||
 [⟨ 𝑤 . 𝑥+⟩  −  ⟨ 𝑤 . 𝑥−⟩]  =  

1

||𝑤||
       (8) 

Here, w is the optimal separation hyperplane, and b is the bias. Maximizing the 

generalization ability will result in selecting the optimal separation hyperplane, with the 

distance between the hyperplane and the training data closest to the hyperplane defined as 

the margin. In Fig. 39, the two parallel hyperplanes, namely, H1 and H2, are defined with 

the solution of quadratic programming, optimizing the geometric margin and minimizing 

the norm of the vector weights. On maximizing the distance between H1 and H2, some data 

points over H1 and some over H2 are called the support vectors (Cervantes et al., 2020; 

Shalev-Shwartz & Ben-David, 2014). This small set of support vectors thus gives the SVM 

solution since they participate directly in the definition of the separation hyperplane, and 
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removal or changing of other points without crossing the planes H1 and H2 will not modify 

in any way the generalization skill of the classifier. The objective of training an SVM model 

is to find the w and b so that the hyperplane separates the data and maximizes the margin. 

1

||𝑤||2
.  

 
Figure 39: SVM Model with "Red" and "Blue" classification 

 Data pre-processing: One-hot encoding is one of the most popular coding 

techniques adopted for categorical variables wherein each level of the categorical IV is 

compared to a fixed reference level (Potdar et al., 2017). Assuming x as a discrete 

categorical random variable with n distinct values x1, x2, . . . xn; then, the one-hot encoding 

of a particular value xi is a vector v where every component of v is zero except for the ith 

component, which has the value 1 (Hancock & Khoshgoftaar, 2020). For example, variable 

x that takes values from the set S = {a, b, c}, with x1 = a, x2 = b, and x3 = c, one-hot 

encoding for x will be (1, 0, 0), (0, 1, 0), and (0, 0, 1). This was followed by splitting the 
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dataset into training and testing datasets in the ratio of 70-30, as explained in the code 

detailed in Appendix I.  

 Results for SVM Classifier with Linear Kernel Function and Binary DV (Yes/No): 

The accuracy of the SVM classifier with the linear kernel function was 93%; however, the 

sensitivity of the classifier was 0, which entails that it could only accurately predict the 

“yes” and could not predict any “no.” The CM heatmap is illustrated in Fig. 40. 

 
Figure 40: CM Heatmap-SVM Classifier - Linear, Radial and PCA 

Results for SVM Classifier with Radial Kernel Function and Binary DV (Yes/No): 

The accuracy of the SVM classifier with the radial kernel function was also 93%, with the 

number of support vectors (254) higher just by one count than the count in the linear kernel 

(253) function result.   

Results for SVM Classifier with Principal Components and Binary DV (Yes/No): 

The next option for training the SVM classifier was after performing PCA on the training 

data since the one-hot encoding technique had increased the dimensionality. In this method, 

too, the results for accuracy and sensitivity were similar to the previous two techniques, 



 

 

 

95 

i.e., 93% with 0% sensitivity. In this method, the decision boundary was plotted for the 

training and testing datasets, as shown in Fig. 41 and Fig. 42.  

 
Figure 41: SVM Classifier for Training Dataset on PC1 and PC2 

 

 
Figure 42: SVM Classifier for Testing Dataset on PC1 and PC2 

Results for SVM Classifier with Radial Kernel and Ordinal DV 

(Good/Neutral/Poor): The SVM classifier was then applied to the dataset with the DV 

categorized into three (3) classes instead of two (2). The accuracy of this model was only 
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49% with the CM heatmap illustrated in Fig. 43. The code in RStudio 2024.04.2 has been 

detailed in Appendix I.  

 
Figure 43: CM heatmap-SVM Classifier-Radial Kernel and Ordinal DV 

Results for SVM Classifier with Balanced Dataset - Radial Kernel and Binary DV 

(Yes/No): It could be observed from data analysis conducted for previous classifiers that 

there was a strong inherent bias in the dataset with “Yes” datapoints count being 2185 and 

“No” datapoints being only 170. In this permutation, the imbalance was attempted to be 

addressed by randomly selecting cases so that a balanced dataset is generated to develop a 

more accurate classification model. The accuracy of this model was less than before, 

47.57%, with Fig. 44 illustrating the CM heatmap for this model. 
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Figure 44: CM heatmap-SVM-Balanced Dataset-Radial Kernel & Binary DV 

Results for SVM Classifier with Balanced Dataset - Linear Kernel and Binary DV 

(Yes/No): Training the SVM model on the balanced dataset with the linear kernel function 

generated a better accuracy of 50.49% with the CM heatmap for the model in Fig. 45.  

 
Figure 45: CM heatmap-SVM-Balanced Dataset-Linear Kernel & Binary DV 

 Advantages: SVM classifiers are computationally less expensive than other ML 

techniques and require less training data to learn patterns (Mansoor et al., 2024). For 

classification and regression tasks, separation is executed by selecting a small number of 
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critical boundary instances – and this instance-based approach encourages the use of non-

linear terms such as quadratic, cubic and higher-order decision boundaries, also referred to 

as the kernel function. This empowers the SVM to translate IVs into a higher feature space 

and work with complex relationships between IVs and DVs (Sanni-Anibire et al., 2022).  

 Limitations: The results for SVM classifiers lack transparency with sometimes high 

dimensionality in the dataset – it is a better classifier with binary DV than an ordinal nature 

DV. SVM lacks performance with datasets with overlapping DVs and higher noise, and 

there is no probabilistic explanation for the outcome/DV classification (Karamizadeh et al., 

2014). 

 Conclusions: The accuracy of SVM classifier models with binary DV with linear 

and radial kernel and PCA was equal to 93% with no predictive power for “No’s” in all 

three scenarios. The DV was then transformed to an ordinal nature (0,1,2) to render a model 

with an accuracy of 49%; however, failing again to predict the lowest rating of DV – Poor. 

It was noted that the imbalance in the proportion of No’s to Yes’ could lead to overfitting. 

Thus, to mitigate the same, the dataset was transformed by random selection of the majority 

class to match the minority class count. Employing the SVM classifier on the balanced 

dataset resulted in the linear kernel function rendering a higher accuracy of 50% compared 

to the radial kernel function model’s accuracy of 48%.  

 Observing a decline in the accuracy of the model after utilizing a balanced dataset, 

class-imbalance treatment strategies were investigated, such as Sampling Minority Over-

Sampling Technique (SMOTE) (Poh et al., 2018), Focal Loss, Weighted Random 
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Sampling (Shuang et al., 2024), and an increasing number of new minority samples (Zhang 

et al., 2020). Mitigating class imbalance is crucial to avoid the detrimental effect on the 

predictive performance of minority class labels in the dataset by the ML algorithm (Poh et 

al., 2018). Thus, it was noted that exploration of the performance of the model after 

implementing the strategies would be an insightful path forward for the study. 

Artificial Neural Network 

 Artificial Neural Networks are computational algorithms that are designed to 

imitate the behavior of biological neural networks, with the basic unit being neurons (value 

being x) and axons (weight being w) (Li et al., 2018; Sanni-Anibire et al., 2022). ANNs 

are arranged in a multi-layer network with an adaptive system of interconnected neurons 

(connections between neurons termed synapses) capable of simulating complex non-linear 

relationships by performing multiple parallel computations (Sanni-Anibire et al., 2022). 

The functionality of ANNs is implemented as a weighted sum of input signals xi, 

transformed with a threshold function f into an output signal xout, which may be active (1) 

or inactive (0 or -1) as written in Eq. (8) (Kononenko & Kukar, 2007) Fig. 46 further 

illustrates the ANN that computed the function defined in Eq. (8).  

    𝑥𝑜𝑢𝑡  =  𝑓 (∑ 𝑤𝑖𝑖 . 𝑥𝑖  +  𝑤𝑏𝑖𝑎𝑠)          (8) 

The threshold function may be executed as a threshold function, as shown in Eq. 

(9), or more frequently as a sigmoid function in Eq. (10) because it is continuous and 

continuously derivable.  
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     𝑓(𝑥) = {
1, 𝑥 > 0

−1, 𝑥 ≤ 0
           (9) 

     𝑓(𝑥) =  
1

1 + 𝑒−𝑋         (10) 

 
Figure 46: An artificial neuron with N number of incoming synapses 

The primary objective of the ANN algorithm is to assign weights in a way that the 

neural network calculates the desired target function, with several hidden layers and hidden 

neurons determining the modeling competence of the algorithm (Kononenko & Kukar, 

2007; Shalev-Shwartz & Ben-David, 2014). 

Data Pre-Processing: IVs for region, season and temperature levels were coded 

numerically, and the average temperature for job installation was considered as a 

continuous IV. This was followed by standardizing all the numeric IVs to 0-1. The data 

was then split into training and testing datasets, with 75% of the data assigned for training 

the algorithm, with code details in Appendix J. 
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 Results for ANN Models: The results for each of the permutations of six (6) ANN 

models are tabulated in Table 23 below. The model that showed the best output (Fig. 47) 

had 5 (five) hidden nodes with 1122 training steps and an R-squared value of 0.0089.  

Table 23: Results for ANN Model Trials 

Model # 
Nature of 

Temp. IV 

# Hidden 

Nodes 

# Steps for 

Training 

RMSE (Root Mean 

Square Error) 

R-squared 

Value 

Model1 

Temp. 

Code 

0 219 0.238 -0.011 

Model2 3 11789 0.249 -0.110 

Model3 5 1122 0.236 0.009 

Model4 

Avg. 

Temp. 

0 308 0.239 -0.021 

Model5 3 238 0.239 -0.019 

Model6 5 33919 0.237 -0.006 

 

Figure 47: Model3 Output for ANN in RStudio 

  Advantages: ANN algorithms can produce results with limited formal statistical 

training and detect complex non-linear relationships and all possible interactions between 

IVs. The hidden nodes implicitly enable ANN algorithms to learn any nature of the 
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relationship – complex and non-linear (Tu, 1996). It has been noted that a neural network 

can achieve superior performance with the appropriate arrangement and representation of 

training data and an optimal configuration (Chao & Chien, 2009). 

Limitations: ANN is sensitive to a range of input values, so data normalization as a 

pre-processing step is necessary (Li et al., 2018). ANN cannot identify causal relationships 

explicitly and does not quickly determine which IVs are significant contributors to DV (Tu, 

1996). Additionally, the training of ANN must account for the noise or randomness 

typically present in construction data to prevent overtraining, which would result in the 

neural network only recognizing training data and performing poorly during testing (Chao 

& Chien, 2009). 

Conclusions:  ANN was selected for the intended model because their structure of 

highly connected nodes with nonlinear transfer functions allows them to perform complex 

multi-attribute mapping, effectively handling inputs' combined and unknown effects on 

outputs (Chao & Chien, 2009). With six (6) trials, the final configuration of five (5) hidden 

nodes gave the maximum R-squared value and lowest RMSE.  

Summary of Prediction Modeling Techniques Results 

 For a holistic understanding of the varied techniques to develop the norms on 

challenges and opportunities in the selected prediction approaches, it is essential to 

summarize the results for all techniques. Table 24 below delineates the ST and ML world 

results to draw well-rounded conclusions. The performance of ML models was assessed 

using performance metrics derived from their respective confusion matrices. 
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Table 24: Results for ST and ML Prediction Modeling Techniques 

Nature of IV 
Nature 

of DV 

Assump. 

Check 

Data  

Pre-Pro* 

R2 

value 

Accuracy

/RMSE 
Findings 

Factor Analysis/Principal Component Analysis 

Continuous 

(Region & 

Season coded as 

1,2,3,4, Avg. 

Temp) 

Ordinal 

(5-10) 

KMO-MSA 

= 0.516 

Bartlett’s 

test of 

sphericity; 

p < 0.001 

NA NA NA 

Squared Loadings: 

Region: 0.720 

Season: 0.541 

Avg. Temp: 0.580 

 

Linear Regression 

Categorical 

(Region, 

Season, & 

Temp. Levels – 

High, Low, 

Medium) 

Ordinal 

(0,1,2) 

Not normal, 

negatively 

skewed 

- 0.0106 
RMSE = 

0.611 

F (8, 2346) = 4.154 

at p<0.001.  

South and West are 

significant at p < 

0.001. 

Winter season is 

significant at p < 

0.05. 

Categorical  

(Region & 

Season) 

Ordinal 

(5-10) 

Not normal, 

negatively 

skewed 

- 0.0110 
RMSE = 

1.081 

F (6, 2348) = 5.382 

at p<0.001. South 

and West regions 

are significant at p 

< 0.001. Winter 

season is 

significant at p < 

0.01. 

Categorical 

(Region, 

Season, Temp. 

Ranges) 

Ordinal  

(5-10) 
- 0.0133 

RMSE = 

1.078 

F (13,2341) = 

3.443 at p < 0.001. 

South and West 

regions are 

significant at p < 

0.001. Winter 

season is 

significant at p < 

0.01. 

Discriminant Function Analysis 

Categorical 

(Region & 

Season,  

Temp. Range) Binary 

(Yes/No) 

Factors 

correlated, 

not normal. 

- - NA 

Group Statistics 

and the Tests of 

Equality of Group 

Means – no 

significant 

difference. 

Continuous 

(Region & 

Season coded as 

Split  

(80-20), 

Standardiza

- 92.78% 

LD1 = 0.43 x Job 

Region Code  

– 0.9 x Season 

Code  
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Nature of IV 
Nature 

of DV 

Assump. 

Check 

Data  

Pre-Pro* 

R2 

value 

Accuracy

/RMSE 
Findings 

1,2,3,4, Avg. 

Temp) 

tion of IVs 

(0-1) 

+ 0.27 x Avg. 

Temp. Overfitting 

with 0% Sensitivity. 

Logistic Regression 

Categorical 

(Region, 

Season, Temp. 

Ranges) 

Binary 

(Yes/No) 

Hosmer and 

Lemeshow 

Test of good 

fit, p = 0.902 

- 0.014 92.8% 
Overfitting with 0% 

Specificity. 

Ordinal Logistic Regression 

Categorical 

(Region, 

Season, & 

Temp. Levels – 

High, Low, 

Medium) 

Ordinal 

(0,1,2) 

VIF < 10,  

Brant Test 

(p>0.05), 

not normal 

distribution  

- - 49% 

Prob. of Good 

rating: 

51% in Spring & 

West, High Temp. 

49% in Spring & 

West, Medium 

Temp. 

54% in Spring & 

West, Low Temp. 

Naïve-Bayes Classifier 

Categorical 

(Region, 

Season, Temp. 

Ranges) 

Ordinal 

(5-10) 

Each class 

within IV is 

independent 

of each 

other. 

Split  

(70-30) 
NA 

47% 

Rating-10: 44% in 

South; 32% in Fall 

& Summer; 27% 

for 71-80℉ 

Categorical 

(Region, 

Season, Temp. 

Ranges) 

Ordinal 

(0,1,2) 
50% 

Good Rating: 45% 

in South; 32% in 

Summer & Fall; 

42% in Medium 

Temp. Level 

Categorical 

(Region, 

Season, Temp. 

Ranges) 

Binary 

(Yes/No) 
93% 

Overfitting with 0% 

Sensitivity. 

Support Vector Machine – Linear Kernel Function 

Continuous 

(Region, 

Season, Temp. 

Range Codes) 

Binary 

(Yes/No) 
NA 

One-hot 

encoding, 

Split  

(70-30) 

NA 

93% 
Overfitting with 0% 

Sensitivity. 

Balanced 

DV,  

One-hot 

encoding, 

Split  

50% 
Sensitivity 46%          

Specificity 57%           
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Nature of IV 
Nature 

of DV 

Assump. 

Check 

Data  

Pre-Pro* 

R2 

value 

Accuracy

/RMSE 
Findings 

(70-30) 

Support Vector Machine – PCA and Radial Kernel Function 

Continuous 

(Region, 

Season, Temp. 

Range Codes) 

Binary 

(Yes/No) 
NA 

One-hot 

encoding, 

Split  

(70-30) 

NA 93% 
Overfitting with 0% 

Sensitivity. 

Support Vector Machine – Radial Kernel Function 

Continuous 

(Region, 

Season, Temp. 

Range Codes) 

Binary 

(Yes/No) 

NA 

One-hot 

encoding, 

Split  

(70-30) 

NA 

93% 
Overfitting with 0% 

Sensitivity. 

Balanced 

DV,  

One-hot 

encoding, 

Split  

(70-30) 

48% 
Sensitivity 39%             

Specificity 59%           

Continuous 

(Region, Season 

Codes, Avg. 

Temp.) 

Ordinal 

(0,1,2) 

Split  

(70-30) 
49% 

Sensitivity for 

Good: 52%         

Sensitivity for 

Poor: 0% 

Specificity for 

Good: 55%         

Specificity for 

Poor: 100% 

Artificial Neural Network 

Continuous 

(Region, 

Season, Temp. 

Range Codes) 

Ordinal 

(5-10) 
NA 

Split  

(75-25), 

Standardiza

tion of IVs 

(0-1) 

0.009 
RMSE = 

0.236 

The strength of the 

relationship is not 

significant. 

* Data Pre-Pro: Data Pre-processing including “Training” and “Testing” Dataset Split 
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CHAPTER SIX - CONCLUSIONS 

 In the study, the outcomes for both ST and ML prediction modeling techniques 

were measured and compared. The approach, when documented, supplied the researcher 

with specific parameters and solutions for improving the prediction accuracy and 

performance of the prediction model for a given dataset. While selecting a technique to 

develop a prediction model with, the dataset in hand and the goal of prediction are 

quintessentially the decision makers. The nature of the variables also plays an important 

role. However, the same could be transformed to meet the requirements of the technique 

being employed. 

Conclusions for Research Objective 1 

Research Objective 1: MEASURE the outcomes of the “customer satisfaction” (for 

the construction coatings sector) prediction model for both ST and ML approaches.  

Research Question 1: What are the outcomes of ST and ML-based models for 

predicting customer satisfaction with a dataset having non-parametric distribution and 

limited dimensionality specific to the construction coatings sector?  

 For the ST approach, five techniques: FA/PCA, LR, DFA, LogR and Ording LogR 

were employed. In each ST technique, the dataset underwent multiple trials with different 

permutations and combinations of the IVs while predicting the DV. For FA/PCA, DFA, 

and LogR, only one model was tested for each approach with DV binary in nature while 

the IVs were continuous. In LR, there were six (6) models tested with ordinal DV (0,1,2) 

nature and three (3) models tested with ordinal DV (5-10); while for the Ordinal LogR 



 

 

 

107 

method, seven (7) models were tested with ordinal DV (Good, Neutral, Poor). Furthermore, 

four (4) types of statistical transformations were carried out to mitigate the non-parametric 

nature and skewness in the dataset, which led the study to implement methods that could 

be employed on datasets with class imbalance. As a result of running these models, for the 

categorical/binary nature of DV, LogR and DFA models exhibited an accuracy of 93%. 

However, they had a 0% sensitivity towards the prediction of “No” – the minority class 

label. For the continuous nature of DV, the LR model with all IVs categorical and the 

ordinal nature of DV (5-10) had the maximum R-squared value of 0.0133. The reasons for 

the overfitting of the models could be attributed to the heavy negative skewness of the data. 

The study establishes the steps necessary to address negative skewness; however, it was 

identified that the limited dimensions (number of IVs) played a significant role in the 

predictive power.  

 For the ML approach, with the NB classifier, three models were tested with varying 

ordinal nature of DV, one with range 5-10 and another with range 0,1,2 and the final model 

was tested with binary nature of DV. While implementing the SVM classifier, six models 

were tested with different dataset transformations: linear and radial kernel function for 

binary DV (Yes/No) with imbalanced and balanced datasets, PCA and radial kernel 

function for binary DV (Yes/No), and radial kernel function for ordinal DV (0,1,2). Finally, 

ANN was conducted with six (6) trials, each with a varying number of hidden nodes – three 

(3) models were executed with Temperature range IV treated as a continuous IV 

numerically coded. In contrast, three (3) models were executed with Average Temperature 
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used as the IV continuous in nature. Amongst all ML techniques, 93% accuracy was 

achieved with the NB classifier, IVs categorical in nature and binary DV, and SVM with 

linear and radial kernel functions as well PCA + radial kernel function, IVs continuous in 

nature and binary DV. In the ANN method, an R-squared value of 0.009 was achieved with 

IVs of continuous nature and DV ordinal nature coded from 5-10. The study established 

the nature of ML algorithms adopted based on the nature of the dataset. It also establishes 

the importance of the nature of variables, steps, and data transformations needed for various 

scenarios applicable to the current dataset. Class imbalance in the DV resulted in seemingly 

high overall accuracy but poor predictive power of the minority label. The study 

investigated one of the strategies to address the class imbalance; however, the effects were 

unsatisfactory, and other measures were listed but not investigated, considering the scope 

of the study.  

Conclusions for Research Objective 2 

Research Objective 2 - COMPARE ST vis-à-vis ML-based models predicting 

customer satisfaction in the construction coatings sector for a non-parametric dataset with 

limited dimensions. 

Research Question 2 - What are the limitations and advantages of ST vis-à-vis ML 

approaches while predicting customer satisfaction in the construction coatings sector for 

a non-parametric dataset with limited dimensions? 

 FA/PCA are preferred techniques for dimensionality reduction, with no stringent 

requirement for multivariate normality; however, an infinite number of rotations are 
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available, resulting in no readily available criteria against which the model can be tested. 

This method is not a technique that develops a prediction model but rather a technique that 

predicts the dataset's structure. LR, LogR, and Ordinal LogR methods have a strong 

advantage in the outcome of the equation of coefficients with each IV, unlike any other ST 

or ML technique. This enables the quantification of each IV's contribution (statistically 

significant or otherwise) towards change in the response or the DV in the model. The DFA 

technique is employed to predict group membership in naturally occurring groups, as 

opposed to groups created through random assignments, which raises the question of the 

reliability of such predictions. Additionally, classification tasks with DFA impose fewer 

statistical requirements - with an accuracy rate of around 95%, the shape of the distributions 

is not a significant concern.  

 NB classifier’s advantage is in its fast structure and high computational efficiency. 

Since it assumes the independence of variables, the entire covariance matrix is not required 

to estimate necessary parameters, which is thus ideal for small-sized training datasets. 

However, if there is a correlation amongst the variables, allocating an increased weight of 

influence of the IVs on the DV could decline the prediction accuracy. With the SVM 

technique, the kernel function trick promotes the inclusion of non-linear terms like 

quadratic, cubic, and higher-order decision boundaries to handle complex relationships 

between IVs and DVs. However, SVM suffers in performance with datasets with 

overlapping DVs and high noise levels, further lacking transparency and not providing a 

probabilistic interpretation for the classification outcomes. Hidden nodes in ANN 
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algorithms allow implicit learning of any relationship, whether it is complex or non-linear. 

ANN is sensitive to varying input values, necessitating data normalization as a 

preprocessing step. It cannot explicitly identify causal relationships and struggles to 

pinpoint which independent variables (IVs) significantly influence the dependent variable 

(DV). Training an ANN must consider data's inherent noise or randomness to avoid 

overfitting. While ANNs aim to minimize empirical errors, SVMs focus on minimizing the 

generalization error's upper bound, allowing SVMs to generalize effectively even with 

unseen data.  

Conclusions for Research Objective 3 

Research Objective 3 - DEVELOP a norm for handling non-parametric data with 

limited dimensions for the construction coatings sector. 

Research Question 3 - Can a set of parameters, such as constraints on input data, 

variable relationships, and the goal of prediction, be leveraged to develop a norm for non-

parametric datasets with limited predictors specific to customer satisfaction for the coating 

sector? 

The observations from employing ST and ML techniques on the given dataset to 

predict the overall customer satisfaction for the construction coatings sector can be best 

examined through the lens of the following parameters. 
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Norms on ST and ML Approaches  

Attributes of Input Data 

 Each ST and ML technique investigated in the study has led to a greater 

understanding of the data pre-processing strategies and treatments that must be adopted for 

the prediction model to perform efficiently and accurately. ML techniques certainly have 

the upper hand compared to the ST techniques, necessitating that the data comply with 

specific assumptions. However, the normality of the data distribution assumption could be 

relaxed considering the large sample size, the skewness of the data, and the imbalance in 

the DV, leading to issues like overfitting the models.  

With ST techniques predicting the structure of a dataset like FA/PCA, it is ideally 

suited for a dataset with a high number (> 3) of IVs or predictors to determine IVs 

contributing significantly to the outcome and thus assist in the development of a prediction 

model after that only with the identified IVs. Multivariate normality was not a requirement 

for this method; correlation of factors was necessary. ST techniques predicting group 

membership, such as DFA and LogR, experienced the challenge of overlapping classes and 

boundaries that could not accurately predict the minority label of the DV. The fit for the 

model by the LogR method was not adequate and was corroborated by the visual 

interpretation of the classification of DV using DFA. LR and Ordinal LogR were the only 

ST techniques that exhibited statistical significance with the given set of IVs, along with 

the coefficients of estimates and proportional odds ratio, respectively. Amongst ST 

techniques, LR and Ordinal LogR successfully mitigate the class imbalance and generate 
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results. The primary limitation of ML is the range of the training data, implying that an ML 

model is only applicable to scenarios covered by the training data. Splitting the given 

dataset into training and testing was mandatory for all the ML techniques to validate the 

model’s performance. While implementing ML techniques, each required the dataset to be 

in a specific format; however, with the NB classifier, the dataset was not subjected to 

normalization, which was necessary for ANN, which is sensitive to a variation in the scale 

of all the variables. For SVM, one-hot encoding was performed for categorical variables to 

ensure more accurate predictive performance. Further, the dataset was balanced by random 

sampling of minority classes, which declined the SVM classifier’s performance. For the 

ANN model, it was noted that increasing the number of IVs could help identify complex 

interactions, which could help the model perform better.  

 
Figure 48: NORM 1-Attributes of Input Data 
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Fig. 48 illustrates the lessons learned documented for ST and ML approaches 

regarding the first norm–input data attributes. It can be observed that while selecting the 

ST or ML approach, it is critical to identify specific attributes of the input data being used 

for the prediction model that have been categorized as structure of the dataset, distribution 

of the dataset and pre-processing techniques that would be employed for the dataset for 

optimal performance of the model. 

Nature of Variables 

 Observing the performance and interpretation of both ST and ML prediction 

models, it can be concluded that the preferred nature of IVs would be continuous. This 

nature of IVs allows for more quantifiable explanations and makes it easy to visualize and 

formulate statistical inferences. Since the given dataset consisted of two categorical IVs, 

transformation using one-hot encoding and numerical coding was implemented. 

Temperature was a more flexible IV since the dataset consisted of values of “Average 

Temperature (℉)” and Temperature range, which was ordinal. For techniques such as LR 

and ANN, the prediction of a DV with a continuous nature would be more suited to the 

mechanics of the method. Techniques were also tested for performance with the DV 

transformed to binary/dichotomous and ordinal (with three levels instead of six) nature.  

 Amongst ST techniques, the transformation of the IV- “Temperature range” from 

an ordinal variable with eight tiers to that of three tiers – High, Medium, and low- allowed 

for better interpretation of the models. Since this ranking could only be preserved with 

Ordinal LogR, other methods mandated that the DV be transformed to binary. The NB 
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classifier performed better for ML techniques when DV was ordinal with only three tiers. 

The NB classifier and SVM models exhibited overfitting when the nature of DV was binary 

in contrast to the scenario when the DV was ordinal, or the dataset was balanced.  

 

Figure 49: NORM 2-Nature of Variables 

 In conclusion, in Fig. 49, the norm for the nature of the variable has been classified 

into three critical criteria: nature of DV, nature of IV/IVs and the relation between IV and 

DV. For selecting the prediction model, it is essential to consider the nature of the variables 

– both input and outcome and the relation between them.  

Goal of Prediction 

 The selection of the ST/ML technique for developing the prediction model is 

contingent upon the desired result and interpretability of the outcome. While FA/PCA is 

necessary for identifying factors that significantly contribute to the DV, DFA is an 

excellent tool that maximizes the separation between outcome categories – visual 
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interpretation for both techniques is more accessible. LR, LogR and Ordinal LogR are 

regression equations that present the most significant advantage, i.e., the generation of 

predictor estimates (β) that account for the contribution of change in DV by the 

corresponding IV (for logistic regressions, it is the predicted change in logarithmic odds).  

 

Figure 50: NORM 3-Goal of Prediction 

NB Classifier supplies results in conditional probabilities for each group of IV, 

whereas SVM and ANN results are not explanatory. Both SVM and ANN generate a CM 

exhibiting the model's predictive power for each class label of DV across all IVs. The 

architecture of the SVM model is visually interpretable through decision boundaries plotted 

to classify the DV. In contrast, the ANN model structure consists of hidden nodes and input 

and output layers. Artificial Neural Networks (ANNs) are powerful tools, but their 

parameters lack specific physical meanings related to the dataset, making them black boxes 

that are difficult to interpret. Support Vector Machines (SVMs) are effective for 
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classification, particularly for binary data, as they provide the optimal classifier by 

maximizing margins between classes. However, training SVMs is time-consuming, 

especially with large datasets.  

In summary, it can be observed in Fig. 50 that the norm for the prediction goal has 

been divided into three main objectives for developing prediction models: identification of 

significant IVs, classification and regression. As discussed above, depending on the goal 

of the prediction model, an appropriate ST or ML technique can be selected.  

Accuracy - Performance 

 Depending on the nature of the DV, the accuracy or performance of the model is 

evaluated. As illustrated in Fig. 51, the performance of the selected ST and ML techniques 

have been sorted according to the type of DV – continuous, ordinal and binary.  

 

Figure 51: NORM 4-Performance and Accuracy 
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For the prediction of continuous outcome, ANN outperformed LR with a much 

lower RMSE of 0.236. Examining the prediction of the ordinal or binary outcome of the 

DV, it is interesting to note that the accuracy of models both ST and ML was 93% while 

predicting the binary outcome with overfitting and 0% predictive power for minority class 

“No.” Nonetheless, the prediction of ordinal outcome resulted in accuracy ranging from 

48% - 50% for Ordinal LogR and ML techniques.  

Investigating the performance of algorithms applied to the dataset in the study, it 

was observed that the measure of accuracy depends on the type of the DV. It is essential to 

understand that each ML algorithm selected for the study was compared for its performance 

in predicting customer satisfaction. The literature review revealed that algorithms were 

selected in previous studies without any logical reasoning on a random basis. The current 

study thus developed an approach for selecting the ML technique that a future researcher 

can adopt to predict customer satisfaction in the construction industry with a dataset 

characterized by non-parametric distribution and a limited number of predictors. Moreover, 

with the implementation of the selected ST and ML techniques, it was noted that accuracy 

in prediction models is higher if the DV is binary or ordinal with fewer categories. Further, 

the performance of algorithms predicting a continuous DV is more quantifiable and easier 

to interpret and infer. 

Norms - Repository 

An Excel spreadsheet was populated to map different studies using ML algorithms 

to predict different DVs, documenting norms for each ML algorithm-based prediction 
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model. The sheet tabulated “name of the study,” “method/algorithm” deployed, “goal of 

prediction” of the study, ranking of the ML algorithm per “frequency of use,” “nature of 

IV,” “nature of DV,” and finally the “performance metrics” used to evaluate the model. 

Considering a scenario – understanding optimal ML techniques for predicting customer 

satisfaction, the factors/DV column is filtered to “Satisfaction,” as shown in Fig. 52. This 

instantly lists the algorithms used to predict customer satisfaction and the nature of DV. 

Further, a column ranks each of the ML algorithms based on their frequency of use for the 

nature of DV.  

 
Figure 52: Norms Sheet-Selection of DV-"Satisfaction" 

 

 

 
Figure 53: Norms Sheet-Performance metrics-ML techniques-“Satisfaction” 

As shown in Fig. 52, it can be immediately interpreted that continuous IVs, ANN, 

SVM and XGBoost have been utilized to predict the categorical nature of DV. To 

understand the performance accuracy of the ML techniques for the given DV, Fig. 53 

shows the screenshot of the metrics documenting the performance of each of the 
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techniques. As observed, Long Short-Term Memory and XGBoost have exhibited the 

highest accuracy or closer to 1 value of AUC-ROC (area under the ROC curve plotted 

between TPR and FPR).  

 XGBoost is based on the gradient boosting algorithm, which sequentially builds an 

ensemble of decision trees. At the same time, Long Short-Term Memory (LSTM) networks 

are a type of recurrent neural network (RNN) designed to model sequences and time-series 

data (Li et al., 2018; Pandey et al., 2023). Both the ML techniques were considered outside 

the scope of the study and listed as future paths.  

Limitations of the Study 

• The study is limited to evaluating and comparing prediction models for the 

given dataset and parameters. Future studies will be required to investigate 

whether the norms developed can be extended to factors other than customer 

satisfaction in the construction coatings sector.  

• The approach has been documented for a dataset exhibiting a non-parametric 

distribution that is negatively skewed.  

• The number of input predictors or IVs in the dataset was limited - increasing 

the number of IVs could improve the model's predictability and increase 

strength in the relationship between the IVs and the DV.  
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• The construction industry suffers from a significant lack of recorded and 

published data suitable for ML applications. Consequently, the study relied on 

data primarily subjective and validated by subject matter experts.  

• Overfitting makes ML much more difficult because a good performance on the 

training dataset does not mean a good performance on the test dataset.   

Path Forward 

Increasing number of predictors/IVs 

 Increasing the number of predictors or IVs in the dataset can increase the R-square 

value computed for a continuous DV scenario (Tabachnick & Fidell, 2013). This would 

also result in the improvement of the dimensionality of the dataset, becoming more 

coherent for prediction modeling since the performance of ML models is less influenced 

by the size of the dataset but depends on the interaction terms to perform well, which are 

present with a higher number of predictors (Bailly et al., 2022). 

 Mitigating Class Imbalance and Overfitting 

Overfitting experienced during the implementation of ML techniques results in 

increasing difficulty for the development of prediction models since ensuring a good 

performance on the training dataset does not imply a good performance on the test dataset 

(Li et al., 2018). Hence, one of the future paths for the study is exploring different class-

imbalance treatment strategies. There are two common strategies for balancing majority 
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and minority classes: under-sampling and over-sampling. Unlike under-sampling, over-

sampling avoids the risk of data loss (Shuang et al., 2024). 

Sampling Minority Over-Sampling Technique (SMOTE): Instead of duplicating 

cases, this technique works in the n-dimensional feature space, generating synthetic 

features for the underrepresented class near its decision boundary using the K-nearest 

neighbor (KNN) algorithm (Poh et al., 2018). This approach has the advantage of assisting 

ML models to generalize more effectively.  

Focal Loss (FL): The FL technique assigns greater attention to harder samples, 

which are difficult to discern, thus becoming liable to misclassification. A smaller number 

of hard samples can result in inadequate training of the ML algorithm, while increasing 

easy samples can also reduce the effectiveness of the training. FL strategizes by down-

weighting the loss assigned to well-classified samples to perform better in highly 

imbalanced datasets (Shuang et al., 2024). 

Weighted Random Sampling (WRS): WRS is an oversampling method – and with 

a put-back strategy, exposure of samples from the minority class of DV is enhanced during 

the training of the ML algorithm (Shuang et al., 2024). Three main components of this 

strategy include weights (probability of selection of each sample to be determined by 

inverse class frequency), replacement (minority class samples to be resampled to construct 

balance in the dataset) and generator (training samples are picked using the sampling 

indices with the WRS not being used in the validation and testing phase).  
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Contractor-Owner Information 

 On studying the results and understanding the dataset with its limitations, it could 

be prudent to include the contractor executing the job and the customer/owner for which it 

was executed in the dataset. Grouping cases from the same organization, i.e., projects 

executed by the same contractor for the same customer, could have an interaction or a 

relationship. This would result in predicting customer satisfaction utilizing multi-level 

regression, wherein random effect association from the same customer/same contractor 

independent of other jobs could contribute to predictive power. Moreover, the perspectives 

of both the customer and the contractor with the revised nested nature of data would 

account for the non-independence of the different jobs and accurate identification of 

significant contributors. 

ML techniques – XGBoost and LSTM 

 The dataset can be utilized for prediction, implementing ML algorithms of 

XGBoost (Extreme Gradient Boosting) and LSTM (Long Short-Term Memory) as a future 

path to the study.  

XGBoost employs an ensemble of decision trees to generate predictions. The 

architecture usually involves multiple decision trees, each trained on a weighted version of 

the dataset with varying depths. This approach helps to address problems caused by class 

imbalance (Alshboul et al., 2022; Li et al., 2018; Pandey et al., 2023). XGBoost trains 

faster than both ANN and SVM. Although XGBoost has numerous parameters, which can 

be both an advantage and a disadvantage, many of these parameters serve similar functions, 
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such as preventing overfitting. Fortunately, the shorter training time of XGBoost allows 

for quicker parameter adjustments. 

Recurrent neural networks (RNNs) with Long Short-Term Memory (LSTM) can 

identify long-term dependencies in sequential data. The name "long short-term memory" 

is abbreviated as LSTM. A typical architecture includes an embedding layer for 

transforming categorical data into continuous representations, LSTM layers with varying 

numbers of units, and a dense output layer for predictions (Pandey et al., 2023). 
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Appendix A - Code in RStudio - Factor Analysis/Principal Component Analysis 

#Conducting PCA test  

PCA_Test <- eigen(cor(pca_manu_new)) 

PCA_Test 

## eigen() decomposition 

## $values 

## [1] 1.1483684 0.9737754 0.8778562 

##  

## $vectors 

##            [,1]        [,2]       [,3] 

## [1,] -0.6718418  0.02101168  0.7403966 

## [2,] -0.5052741 -0.74390738 -0.4373784 

## [3,] -0.5415965  0.66795234 -0.5104047 

variance_pc1 <- (1.1483684/4)*100 

variance_pc1 

## [1] 28.70921 

 

#Principal Components Analysis 

PCA_Test1 <- principal(pca_manu_new, nfactors = 3, rotate = "none", 

                       scores = TRUE) 

PCA_Test1 

## Call: principal(r = pca_manu_new, nfactors = 3, rotate = "none", scores = TRUE) 

## Standardized loadings (pattern matrix) based upon correlation matrix 

##                  PC1   PC2   PC3 h2       u2 com 

## Job.region.code 0.72 -0.02 -0.69  1  2.2e-16 2.0 

## Season.code     0.54  0.73  0.41  1 -2.2e-16 2.5 

## Avg.temp...F.   0.58 -0.66  0.48  1  2.2e-16 2.8 

##  

##                        PC1  PC2  PC3 

## SS loadings           1.15 0.97 0.88 

## Proportion Var        0.38 0.32 0.29 

## Cumulative Var        0.38 0.71 1.00 

## Proportion Explained  0.38 0.32 0.29 

## Cumulative Proportion 0.38 0.71 1.00 

##  

## Mean item complexity =  2.4 

## Test of the hypothesis that three components are sufficient. 

##  

## The root mean square of the residuals (RMSR) is  0  

##  with the empirical chi-square  0  with prob <  NA  

##  

## Fit based upon off diagonal values = 1 
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Appendix B - Code in RStudio – Linear Regression with Ordinal DV (0, 1, 2) 

Model1: Region (Continuous – Categorical IV coded as 1,2,3,4) 

 

regionfit <- lm(Overall.Satisfaction.Code ~ Job.region.code, data = manudatav1) 

summary(regionfit) 

summary(regionfit)$r.sq 

## Call: 

## lm(formula = Overall.Satisfaction.Code ~ Job.region.code, data = manudatav1) 

 

## Residuals: 

##    Min      1Q  Median      3Q     Max  

##-1.4321 -0.3814 -0.2800  0.6186  0.7200  

 

##Coefficients: 

##                Estimate Std. Error t value Pr(>|t|)     

##(Intercept)      1.22929    0.03877  31.704  < 2e-16 *** 

##Job.region.code  0.05070    0.01268   3.997 6.61e-05 *** 

##--- 

##Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

##Residual standard error: 0.6138 on 2353 degrees of freedom 

##Multiple R-squared:  0.006744, Adjusted R-squared:  0.006322  

##F-statistic: 15.98 on 1 and 2353 DF,  p-value: 6.61e-05 

 

##[1] 0.006744148 

 
Model2: Region (Categorical IV) 

 

regionfit_cat <- lm(Overall.Satisfaction.Code ~ Job.Region, data = manudatav1) 

summary(regionfit_cat) 

summary(regionfit_cat)$r.sq 

regionfit_cat$terms 

## Call: 

## lm(formula = Overall.Satisfaction.Code ~ Job.Region, data = manudatav1) 

 

## Residuals: 

##    Min      1Q  Median      3Q     Max  

##-1.4205 -0.4205 -0.2545  0.5795  0.7455  

 

##Coefficients: 

##                   Estimate Std. Error t value Pr(>|t|)     

##(Intercept)          1.25449    0.03355  37.394  < 2e-16 *** 

##Job.RegionNortheast  0.05541    0.04823   1.149 0.250736     

##Job.RegionSouth      0.16598    0.03881   4.276 1.98e-05 *** 
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##Job.RegionWest       0.14495    0.04058   3.572 0.000361 *** 

##--- 

##Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

##Residual standard error: 0.6131 on 2351 degrees of freedom 

##Multiple R-squared:  0.009689, Adjusted R-squared:  0.008425  

##F-statistic: 7.667 on 3 and 2351 DF,  p-value: 4.249e-05 

 

Model3: Region and Season (Categorical IVs coded as 1,2,3,4) 

 
regionseasonfit <- lm(Overall.Satisfaction.Code ~ Job.region.code + Season.code, data = 

manudatav1) 

summary(regionseasonfit) 

summary(regionseasonfit)$r.sq 

##Call: 

##lm(formula = Overall.Satisfaction.Code ~ Job.region.code + Season.code,  

    data = manudatav1) 

 

##Residuals: 

##    Min      1Q  Median      3Q     Max  

##-1.4528 -0.4007 -0.2964  0.6139  0.7473  

 

##Coefficients: 

##                Estimate Std. Error t value Pr(>|t|)     

##(Intercept)      1.25888    0.04560  27.607  < 2e-16 *** 

##Job.region.code  0.05212    0.01274   4.093 4.41e-05 *** 

##Season.code     -0.01458    0.01183  -1.233    0.218     

##--- 

##Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

##Residual standard error: 0.6137 on 2352 degrees of freedom 

##Multiple R-squared:  0.007385, Adjusted R-squared:  0.006541  

##F-statistic:  8.75 on 2 and 2352 DF,  p-value: 0.0001637 

 

ANOVA test between Model1 and Model3 

 

summary(regionseasonfit)$r.sq - summary(regionfit)$r.sq 

anova(regionfit, regionseasonfit)  

##[1] 0.0006413373 

##Analysis of Variance Table 

 

##Model 1: Overall.Satisfaction.Code ~ Job.region.code 

##Model 2: Overall.Satisfaction.Code ~ Job.region.code + Season.code 

##  Res.Df    RSS Df Sum of Sq      F Pr(>F) 

##1   2353 886.40                            

##2   2352 885.83  1   0.57234 1.5196 0.2178  
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Model4: Region and Season (Categorical IVs) 

 

regionseasonfit_cat <- lm(Overall.Satisfaction.Code ~ Job.Region + Season, data = 

manudatav1) 

summary(regionseasonfit_cat) 

summary(regionseasonfit_cat)$r.sq 

##Call: 

##lm(formula = Overall.Satisfaction.Code ~ Job.Region + Season,  

##    data = manudatav1) 

 

##Residuals: 

##   Min      1Q  Median      3Q     Max  

##-1.4608 -0.4047 -0.2573  0.5868  0.8165  

 

##Coefficients: 

##                     Estimate Std. Error t value Pr(>|t|)     

##(Intercept)          1.254265   0.037154  33.759  < 2e-16 *** 

##Job.RegionNortheast  0.059877   0.048266   1.241 0.214889     

##Job.RegionSouth      0.167366   0.039673   4.219 2.55e-05 *** 

##Job.RegionWest       0.147417   0.040784   3.615 0.000307 *** 

##SeasonSpring         0.039195   0.036952   1.061 0.288930     

##SeasonSummer         0.003063   0.031522   0.097 0.922600     

##SeasonWinter        -0.070739   0.040106  -1.764 0.077899 .   

##--- 

##Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

##Residual standard error: 0.6126 on 2348 degrees of freedom 

##Multiple R-squared:  0.01249, Adjusted R-squared:  0.009966  

##F-statistic: 4.949 on 6 and 2348 DF,  p-value: 4.817e-05 

 

ANOVA test between Model2 and Model4 

 

summary(regionseasonfit_cat)$r.sq - summary(regionfit_cat)$r.sq 

anova(regionfit_cat, regionseasonfit_cat) 

##[1] 0.002800629 

##Analysis of Variance Table 

 

##Model 1: Overall.Satisfaction.Code ~ Job.Region 

##Model 2: Overall.Satisfaction.Code ~ Job.Region + Season 

##  Res.Df    RSS Df Sum of Sq      F  Pr(>F)   

##1   2351 883.77                               

##2   2348 881.27  3    2.4993 2.2197 0.08389 . 

##--- 

##Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
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Model5: Region, Season and Temperature Levels (Continuous IVs) 

 

allvarfit <- lm(Overall.Satisfaction.Code ~ Job.region.code + Season.code + Temperature.Code, 

data = manudatav1) 

summary(allvarfit) 

summary(allvarfit)$r.sq 

##Call: 

##lm(formula = Overall.Satisfaction.Code ~ Job.region.code + Season.code +  

    Temperature.Code, data = manudatav1) 

 

##Residuals: 

##    Min      1Q  Median      3Q     Max  

##-1.4539 -0.3972 -0.2968  0.6086  0.7423  

 

##Coefficients: 

##                 Estimate Std. Error t value Pr(>|t|)     

##(Intercept)       1.263387   0.048943  25.814  < 2e-16 *** 

##Job.region.code   0.052373   0.012777   4.099 4.29e-05 *** 

##Season.code      -0.014526   0.011833  -1.228     0.22     

##Temperature.Code -0.004411   0.017378  -0.254     0.80     

##--- 

##Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

##Residual standard error: 0.6138 on 2351 degrees of freedom 

##Multiple R-squared:  0.007413, Adjusted R-squared:  0.006146  

##F-statistic: 5.852 on 3 and 2351 DF,  p-value: 0.0005587 

 

ANOVA test between Model3 and Model5 

 

summary(allvarfit)$r.sq - summary(regionseasonfit)$r.sq 

anova(allvarfit, regionseasonfit) 

##[1] 2.71985e-05 

##Analysis of Variance Table 

 

##Model 1: Overall.Satisfaction.Code ~ Job.region.code + Season.code + Temperature.Code 

##Model 2: Overall.Satisfaction.Code ~ Job.region.code + Season.code 

##  Res.Df    RSS Df Sum of Sq      F Pr(>F) 

##1   2351 885.81                            

##2   2352 885.83 -1 -0.024272 0.0644 0.7997 

 

Model6: Region, Season and Temperature Levels (Categorical IVs) 

 

allvarfit_cat <- lm(Overall.Satisfaction.Code ~ Job.Region + Season + Temperature.levels, data 

= manudatav1) 

summary(allvarfit_cat) 

summary(allvarfit_cat)$r.sq 
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##Call: 

##lm(formula = Overall.Satisfaction.Code ~ Job.Region + Season +  

##    Temperature.levels, data = manudatav1) 

 

##Residuals: 

##    Min      1Q  Median      3Q     Max  

##-1.5227 -0.4217 -0.2424  0.5836  0.7980  

 

##Coefficients: 

##                         Estimate Std. Error t value Pr(>|t|)     

##(Intercept)               1.21443    0.04441  27.346  < 2e-16 *** 

##Job.RegionNortheast       0.05734    0.04835   1.186 0.235780     

##Job.RegionSouth           0.17950    0.04019   4.467 8.33e-06 *** 

##Job.RegionWest            0.15510    0.04121   3.764 0.000171 *** 

##SeasonSpring              0.04684    0.03717   1.260 0.207714     

##SeasonSummer              0.02772    0.03466   0.800 0.423906     

##SeasonWinter             -0.09438    0.04209  -2.242 0.025055 *   

##Temperature.levelsLow     0.08197    0.04372   1.875 0.060926 .   

##Temperature.levelsMedium  0.02799    0.03058   0.915 0.360164     

##--- 

##Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

##Residual standard error: 0.6124 on 2346 degrees of freedom 

##Multiple R-squared:  0.01397, Adjusted R-squared:  0.01061  

##F-statistic: 4.154 on 8 and 2346 DF,  p-value: 6.052e-05 

 

ANOVA test between Model4 and Model6 

 

summary(allvarfit_cat)$r.sq - summary(regionseasonfit_cat)$r.sq 

anova(allvarfit_cat, regionseasonfit_cat) 

##[1] 0.001478599 

##Analysis of Variance Table 

 

##Model 1: Overall.Satisfaction.Code ~ Job.Region + Season + Temperature.levels 

##Model 2: Overall.Satisfaction.Code ~ Job.Region + Season 

##  Res.Df    RSS Df Sum of Sq     F Pr(>F) 

##1   2346 879.96                           

##2   2348 881.27 -2   -1.3195 1.759 0.1724 
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Appendix C - Code in RStudio – Linear Regression with Ordinal DV (5 – 10) 

Model1: Region (Categorical IV) 

regionfit <- lm(Overall.Satisfaction ~ Job.Region, data = manudata1) 

summary(regionfit) 

## Call: 

## lm(formula = Overall.Satisfaction ~ Job.Region, data = manudata1) 

##  

## Residuals: 

##     Min      1Q  Median      3Q     Max  

## -4.1530 -0.1530  0.0032  0.8470  1.1198  

##  

## Coefficients: 

##                     Estimate Std. Error t value Pr(>|t|)     

## (Intercept)          8.88024    0.05938 149.555  < 2e-16 *** 

## Job.RegionNortheast  0.11657    0.08537   1.365  0.17225     

## Job.RegionSouth      0.27275    0.06869   3.971 7.39e-05 *** 

## Job.RegionWest       0.22240    0.07183   3.096  0.00198 **  

## --- 

## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

##  

## Residual standard error: 1.085 on 2351 degrees of freedom 

## Multiple R-squared:  0.007569,   Adjusted R-squared:  0.006302  

## F-statistic: 5.977 on 3 and 2351 DF,  p-value: 0.0004689 

 

Model2: Region and Season (Categorical IV) 

regionseasonfit <- lm(Overall.Satisfaction ~ Job.Region + Season, data = manudata1) 

summary(regionseasonfit) 

## Call: 

## lm(formula = Overall.Satisfaction ~ Job.Region + Season, data = manudata1) 

##  

## Residuals: 

##     Min      1Q  Median      3Q     Max  

## -4.2445 -0.2445  0.0819  0.8576  1.3121  

##  

## Coefficients: 

##                     Estimate Std. Error t value Pr(>|t|)     

## (Intercept)          8.87166    0.06565 135.129  < 2e-16 *** 

## Job.RegionNortheast  0.12973    0.08529   1.521  0.12838     

## Job.RegionSouth      0.28043    0.07010   4.000 6.53e-05 *** 

## Job.RegionWest       0.23029    0.07207   3.195  0.00141 **  

## SeasonSpring         0.09246    0.06530   1.416  0.15693     

## SeasonSummer         0.03085    0.05570   0.554  0.57976     

## SeasonWinter        -0.18381    0.07087  -2.594  0.00956 **  
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## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

##  

## Residual standard error: 1.083 on 2348 degrees of freedom 

## Multiple R-squared:  0.01357,    Adjusted R-squared:  0.01105  

## F-statistic: 5.382 on 6 and 2348 DF,  p-value: 1.561e-05 

 

ANOVA test between Model1 and Model2 

 

summary(regionseasonfit)$r.sq - summary(regionfit)$r.sq 

## [1] 0.005998202 

anova(regionfit, regionseasonfit) 

## Analysis of Variance Table 

## Model 1: Overall.Satisfaction ~ Job.Region 

## Model 2: Overall.Satisfaction ~ Job.Region + Season 

##   Res.Df    RSS Df Sum of Sq      F   Pr(>F)    

## 1   2351 2768.5                                 

## 2   2348 2751.8  3    16.733 4.7592 0.002599 ** 

## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

 

Model3: Region, Season and Temperature Levels (Categorical IVs) 

allvarfit <- lm(Overall.Satisfaction ~ Job.Region + Season +  

Temperature.range, data = manudata1) 

summary(allvarfit) 

## Call: 

## lm(formula = Overall.Satisfaction ~ Job.Region + Season + Temperature.range,  

##     data = manudata1) 

##  

## Residuals: 

##     Min      1Q  Median      3Q     Max  

## -4.3202 -0.4092  0.1004  0.8598  1.3388  

##  

## Coefficients: 

##                         Estimate Std. Error t value Pr(>|t|)     

## (Intercept)              9.04154    0.20016  45.171  < 2e-16 *** 

## Job.RegionNortheast      0.11899    0.08544   1.393  0.16383     

## Job.RegionSouth          0.30404    0.07293   4.169 3.17e-05 *** 

## Job.RegionWest           0.24620    0.07326   3.361  0.00079 *** 

## SeasonSpring             0.11730    0.06621   1.771  0.07661 .   

## SeasonSummer             0.07426    0.06344   1.171  0.24190     

## SeasonWinter            -0.23835    0.07618  -3.129  0.00178 **  

## Temperature.range31-40  -0.02306    0.20999  -0.110  0.91256     

## Temperature.range41-50  -0.08436    0.19872  -0.425  0.67122     

## Temperature.range51-60  -0.26095    0.19846  -1.315  0.18868     

## Temperature.range61-70  -0.14267    0.19840  -0.719  0.47213     

## Temperature.range71-80  -0.27967    0.20061  -1.394  0.16342     
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## Temperature.range81-90  -0.24420    0.21233  -1.150  0.25022     

## Temperature.range91-100 -0.09002    0.27477  -0.328  0.74323     

## --- 

## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

##  

## Residual standard error: 1.081 on 2341 degrees of freedom 

## Multiple R-squared:  0.01876,    Adjusted R-squared:  0.01331  

## F-statistic: 3.443 on 13 and 2341 DF,  p-value: 2.597e-05 

 

ANOVA test between Model2 and Model3 

summary(allvarfit)$r.sq - summary(regionseasonfit)$r.sq 

## [1] 0.005192761 

anova(regionseasonfit, allvarfit) 

## Analysis of Variance Table 

##  

## Model 1: Overall.Satisfaction ~ Job.Region + Season 

## Model 2: Overall.Satisfaction ~ Job.Region + Season + Temperature.range 

##   Res.Df    RSS Df Sum of Sq      F  Pr(>F)   

## 1   2348 2751.8                               

## 2   2341 2737.3  7    14.486 1.7698 0.08905 . 

## --- 

## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
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Appendix D - SPSS – Discriminant Function Analysis 

 

Table 25: DFA - Group Statistics Table 

Overall Customer Satisfaction Mean Std. Deviation 
Valid N (listwise) 

Unweighted Weighted 

No Region 2.85 1.042 170 170.000 

 Season 2.37 1.166 170 170.000 

 Temperature Range 5.87 1.474 170 170.000 

Yes Region 2.89 .994 2185 2185.000 

 Season 2.31 1.066 2185 2185.000 

 Temperature Range 5.94 1.496 2185 2185.000 

Total Region 2.89 .997 2355 2355.000 

 Season 2.31 1.074 2355 2355.000 

 Temperature Range 5.93 1.494 2355 2355.000 

 

Table 26: DFA - Tests of Equality of Group Means 

 Wilks' Lambda F df1 df2 Sig. 

Region 1.000 .247 1 2353 .619 

Season 1.000 .576 1 2353 .448 

Temperature Range 1.000 .336 1 2353 .562 
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Appendix E - Code in RStudio – Discriminant Function Analysis 

# Split the data into training (80%) and test set (20%) 

set.seed(123) 

training.samples <- manu_dfa$Overall.Satisfaction %>% createDataPartition(p = 0.8, list = 

FALSE) 

train.data <- manu_dfa[training.samples, ] 

test.data <- manu_dfa[-training.samples, ] 

 

# Estimate pre-processing parameters 
preproc.param <- train.data %>%  preProcess(method = c("center", "scale")) 

 

# Transform the data using the estimated parameters 

train.transformed <- preproc.param %>% predict(train.data) 

test.transformed <- preproc.param %>% predict(test.data) 

str(train.transformed) 

## 'data.frame':    1884 obs. of  4 variables: 

##  $ Job.region.code     : num  0.126 0.126 0.126 -1.874 -1.874 ... 

##  $ Season.code         : num  -1.22 -1.22 -1.22 -1.22 -1.22 ... 

##  $ Avg.temp            : num  0.552 0.552 0.552 0.281 0.281 ... 

##  $ Overall.Satisfaction: Factor w/ 2 levels "No","Yes": 2 2 2 2 2 1 2 2 2 2 ... 

str(test.transformed) 

## 'data.frame':    471 obs. of  4 variables: 

##  $ Job.region.code     : num  0.126 -1.874 -1.874 0.126 -1.874 ... 

##  $ Season.code         : num  -1.22 -1.22 -1.22 -1.22 -1.22 ... 

##  $ Avg.temp            : num  0.552 0.281 -0.666 0.146 1.229 ... 

##  $ Overall.Satisfaction: Factor w/ 2 levels "No","Yes": 2 1 2 2 2 2 2 2 1 2 ... 

Linear Discriminant Analysis 

# Fit the model 

model <- lda(Overall.Satisfaction ~., data = train.transformed) 

model 

## Call: 

## lda(Overall.Satisfaction ~ ., data = train.transformed) 

##  

## Prior probabilities of groups: 

##         No        Yes  

## 0.07218684 0.92781316  

##  

## Group means: 

##     Job.region.code Season.code     Avg.temp 

## No      -0.05802448  0.13804724 -0.048367227 
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## Yes      0.00451449 -0.01074052  0.003763125 

##  

## Coefficients of linear discriminants: 

##                        LD1 

## Job.region.code  0.4280086 

## Season.code     -0.9026584 

## Avg.temp         0.2735021 

 

# Make predictions 

predictions <- model %>% predict(test.transformed) 

 

# Model accuracy 

mean(predictions$class==test.transformed$Overall.Satisfaction) 

## [1] 0.9278132 
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Appendix F - SPSS – Logistic Regression 

 

Table 27: LogR - Omnibus Tests of Model Coefficients 

 Chi-square df Sig. 

Step 1 Step 13.824 7 .054 

 Block 13.824 7 .054 

 Model 13.824 7 .054 

 

Table 28: LogR - Hosmer and Lemeshow Test 

 Chi-square df Sig. 

1 3.462 8 .902 

 

Table 29: LogR - Model Summary 

Step -2 Log likelihood Cox & Snell R Square Nagelkerke R Square 

1 1207.287a .006 .014 

a: Estimation terminated at iteration number 6 because parameter estimates changed by less than .001. 

 

Table 30: LogR - Variables in the Equation 

 β 
Std. 

Error 
Wald df Sig. 

Exp 

(β) 

95% C.I for 

Exp (β) 

Lower Upper 

Step 

1a 
TempRangeCode -.078 .068 1.293 1 .255 .925 .810 1.058 

 JobRegionCode   4.286 3 .232    

 JobRegionCode(1) .652 .321 4.122 1 .042 1.920 1.023 3.602 

 JobRegionCode(2) .302 .241 1.570 1 .210 1.353 .843 2.171 

 JobRegionCode(3) .318 .245 1.676 1 .195 1.374 .849 2.222 

 SeasonCode   9.731 3 .021    

 SeasonCode(1) .336 .245 1.885 1 .170 1.400 .866 2.263 

 SeasonCode(2) .390 .226 2.974 1 .085 1.477 .948 2.302 

 SeasonCode(3) -.428 .241 3.144 1 .076 .652 .406 1.046 

 Constant 2.608 .411 40.239 1 <.001 
13.57

1 
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Appendix G - Code in RStudio – Ordinal Logistic Regression 

Dividing data into training and test sets 

#Random Sampling 

samplesize = 0.60*nrow(olsdat) 

set.seed(100) 

index = sample(seq_len(nrow(olsdat)), size = samplesize) 

 

#Creating training and test set  

datatrain = olsdat[index,] 

datatest = olsdat[-index,] 

Model1: Only Region as Predictor 

library(MASS) 

olsmodel_R = polr(Overall.Satisfaction ~ Job.Region, data = datatrain, Hess = TRUE) 

summary(olsmodel_R) 

## Call: 

## polr(formula = Overall.Satisfaction ~ Job.Region, data = datatrain,  

##     Hess = TRUE) 

##  

## Coefficients: 

##                       Value Std. Error t value 

## Job.RegionNortheast -0.1336     0.1917  -0.697 

## Job.RegionSouth     -0.3972     0.1566  -2.536 

## Job.RegionWest      -0.4424     0.1629  -2.716 

##  

## Intercepts: 

##              Value   Std. Error t value 

## Good|Neutral -0.5973  0.1353    -4.4134 

## Neutral|Poor  2.1894  0.1552    14.1097 

##  

## Residual Deviance: 2555.765  

## AIC: 2565.765 

 

#Compute confusion table and misclassification error 

predictcustsatR = predict(olsmodel_R,datatest) 

table(datatest$Overall.Satisfaction, predictcustsatR) 

##          predictcustsatR 

##           Good Neutral Poor 

##   Good       0     447    0 

##   Neutral    0     433    0 

##   Poor       0      62    0 
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mean(as.character(datatest$Overall.Satisfaction) != as.character(predictcustsatR)) 

## [1] 0.5403397 

 

#Plotting the effects  

library("effects") 

effect(focal.predictors = "Job.Region", olsmodel_R) 

## Job.Region effect (probability) for Good 

## Job.Region 

##   Midwest Northeast     South      West  

## 0.3549580 0.3861127 0.4501366 0.4613576  

##  

## Job.Region effect (probability) for Neutral 

## Job.Region 

##   Midwest Northeast     South      West  

## 0.5443353 0.5246539 0.4798572 0.4715249  

##  

## Job.Region effect (probability) for Poor 

## Job.Region 

##    Midwest  Northeast      South       West  

## 0.10070670 0.08923343 0.07000618 0.06711748 

 

# Compute confusion matrix 

conf_matrixR <- confusionMatrix(data = predictcustsatR,  

reference = datatest$Overall.Satisfaction) 

# Extract performance metrics 

accuracyR <- conf_matrixR$overall['Accuracy'] 

# Print performance metrics 

print(paste("Accuracy:", accuracyR)) 

## [1] "Accuracy: 0.459660297239915" 

Model2: Only Season as Predictor 

 

library(MASS) 

olsmodel_S = polr(Overall.Satisfaction ~ Season, data = datatrain, Hess = TRUE) 

summary(olsmodel_S) 

## Call: 

## polr(formula = Overall.Satisfaction ~ Season, data = datatrain,  

##     Hess = TRUE) 

##  

## Coefficients: 

##                 Value Std. Error t value 

## SeasonSpring -0.22519     0.1488 -1.5130 

## SeasonSummer  0.02017     0.1261  0.1599 

## SeasonWinter  0.15397     0.1668  0.9232 

##  

## Intercepts: 
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##              Value   Std. Error t value 

## Good|Neutral -0.2970  0.0926    -3.2062 

## Neutral|Poor  2.4816  0.1253    19.8054 

##  

## Residual Deviance: 2561.106  

## AIC: 2571.106 

 

#Compute confusion table and misclassification error 

predictcustsatS = predict(olsmodel_S,datatest) 

table(datatest$Overall.Satisfaction, predictcustsatS) 

##          predictcustsatS 

##           Good Neutral Poor 

##   Good     103     344    0 

##   Neutral   88     345    0 

##   Poor      10      52    0 

mean(as.character(datatest$Overall.Satisfaction) != as.character(predictcustsatS)) 

## [1] 0.5244161 

 

#Plotting the effects  

library("effects") 

Effect(focal.predictors = "Season", olsmodel_S) 

##  

## Season effect (probability) for Good 

## Season 

##      Fall    Spring    Summer    Winter  

## 0.4262796 0.4820432 0.4213546 0.3891194  

##  

## Season effect (probability) for Neutral 

## Season 

##      Fall    Spring    Summer    Winter  

## 0.4965658 0.4553857 0.5000424 0.5220244  

##  

## Season effect (probability) for Poor 

## Season 

##       Fall     Spring     Summer     Winter  

## 0.07715466 0.06257103 0.07860297 0.08885621 

 

# Compute confusion matrix 

conf_matrixS <- confusionMatrix(data = predictcustsatS, reference = datatest$Overall.Satisfacti

on) 

 

# Extract performance metrics 

accuracyS <- conf_matrixS$overall['Accuracy'] 

 

# Print performance metrics 

print(paste("Accuracy:", accuracyS)) 
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## [1] "Accuracy: 0.475583864118896" 

Model3: Only Temperature Range as Predictor 

library(MASS) 

olsmodel_T = polr(Overall.Satisfaction ~ Temperature.levels, data = datatrain, Hess = TRUE) 

summary(olsmodel_T) 

## Call: 

## polr(formula = Overall.Satisfaction ~ Temperature.levels, data = datatrain,  

##     Hess = TRUE) 

##  

## Coefficients: 

##                            Value Std. Error t value 

## Temperature.levelsLow    0.04603     0.1464  0.3145 

## Temperature.levelsMedium 0.08817     0.1139  0.7743 

##  

## Intercepts: 

##              Value   Std. Error t value 

## Good|Neutral -0.2353  0.0830    -2.8357 

## Neutral|Poor  2.5380  0.1192    21.2980 

##  

## Residual Deviance: 2565.376  

## AIC: 2573.376 

 

#Compute confusion table and misclassification error 

 

predictcustsatT = predict(olsmodel_T,datatest) 

table(datatest$Overall.Satisfaction, predictcustsatT) 

##          predictcustsatT 

##           Good Neutral Poor 

##   Good       0     447    0 

##   Neutral    0     433    0 

##   Poor       0      62    0 

mean(as.character(datatest$Overall.Satisfaction) != as.character(predictcustsatT)) 

## [1] 0.5403397 

 

#Plotting the effects  

library("effects") 

Effect(focal.predictors = "Temperature.levels", olsmodel_T) 

## Temperature.levels effect (probability) for Good 

## Temperature.levels 

##      High       Low    Medium  

## 0.4414515 0.4301334 0.4198360  

## Temperature.levels effect (probability) for Neutral 

## Temperature.levels 

##      High       Low    Medium  
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## 0.4853121 0.4934437 0.5007132  

##  

## Temperature.levels effect (probability) for Poor 

## Temperature.levels 

##       High        Low     Medium  

## 0.07323641 0.07642289 0.07945080 

 

# Compute confusion matrix 

conf_matrixT <- confusionMatrix(data = predictcustsatT, reference = datatest$Overall.Satisfacti

on) 

 

# Extract performance metrics 

accuracyT <- conf_matrixS$overall['Accuracy'] 

 

# Print performance metrics 

print(paste("Accuracy:", accuracyT)) 

## [1] "Accuracy: 0.475583864118896" 

Model4: Region and Season as Predictors 

 

library(MASS) 

olsmodelRS = polr(Overall.Satisfaction ~ Job.Region + Season, data = datatrain, Hess = TRUE) 

summary(olsmodelRS) 

## Call: 

## polr(formula = Overall.Satisfaction ~ Job.Region + Season, data = datatrain,  

##     Hess = TRUE) 

##  

## Coefficients: 

##                        Value Std. Error t value 

## Job.RegionNortheast -0.14127     0.1920 -0.7357 

## Job.RegionSouth     -0.38963     0.1605 -2.4278 

## Job.RegionWest      -0.44278     0.1638 -2.7025 

## SeasonSpring        -0.14040     0.1538 -0.9129 

## SeasonSummer         0.04913     0.1269  0.3871 

## SeasonWinter         0.22423     0.1698  1.3209 

##  

## Intercepts: 

##              Value   Std. Error t value 

## Good|Neutral -0.5756  0.1502    -3.8312 

## Neutral|Poor  2.2163  0.1687    13.1390 

##  

## Residual Deviance: 2551.619  

## AIC: 2567.619 

#Compute confusion table and misclassification error 
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predictcustsatRS = predict(olsmodelRS,datatest) 

table(datatest$Overall.Satisfaction, predictcustsatRS) 

##          predictcustsatRS 

##           Good Neutral Poor 

##   Good      92     355    0 

##   Neutral   72     361    0 

##   Poor       9      53    0 

 

mean(as.character(datatest$Overall.Satisfaction) != as.character(predictcustsatRS)) 

## [1] 0.5191083 

 

library("effects") 

Effect(focal.predictors = c("Job.Region", "Season"), olsmodelRS) 

##  

## Job.Region*Season effect (probability) for Good 

##            Season 

## Job.Region       Fall    Spring    Summer    Winter 

##   Midwest   0.3599549 0.3928948 0.3487155 0.3100695 

##   Northeast 0.3931014 0.4270507 0.3814438 0.3410703 

##   South     0.4536508 0.4886193 0.4415039 0.3988726 

##   West      0.4668530 0.5019043 0.4546468 0.4116819 

##  

## Job.Region*Season effect (probability) for Neutral 

##            Season 

## Job.Region       Fall    Spring    Summer    Winter 

##   Midwest   0.5417482 0.5205699 0.5485462 0.5698912 

##   Northeast 0.5204317 0.4969478 0.5281288 0.5530299 

##   South     0.4775909 0.4510860 0.4865246 0.5165476 

##   West      0.4677148 0.4407429 0.4768518 0.5077635 

##  

## Job.Region*Season effect (probability) for Poor 

##            Season 

## Job.Region        Fall     Spring     Summer     Winter 

##   Midwest   0.09829692 0.08653529 0.10273833 0.12003927 

##   Northeast 0.08646687 0.07600144 0.09042736 0.10589984 

##   South     0.06875826 0.06029471 0.07197154 0.08457980 

##   West      0.06543219 0.05735284 0.06850146 0.08055459 

 

# Compute confusion matrix 

conf_matrixRS <- confusionMatrix(data = predictcustsatRS,  

reference = datatest$Overall.Satisfaction) 

# Extract performance metrics 

accuracyRS <- conf_matrixRS$overall['Accuracy'] 

# Print performance metrics 

print(paste("Accuracy:", accuracyRS)) 

## [1] "Accuracy: 0.480891719745223" 



 

 

 

145 

Model5: Region and Temperature Range as Predictors 

library(MASS) 

olsmodelRT = polr(Overall.Satisfaction ~ Job.Region + Temperature.levels, data = datatrain, He

ss = TRUE) 

summary(olsmodelRT) 

## Call: 

## polr(formula = Overall.Satisfaction ~ Job.Region + Temperature.levels,  

##     data = datatrain, Hess = TRUE) 

##  

## Coefficients: 

##                             Value Std. Error t value 

## Job.RegionNortheast      -0.14562     0.1925 -0.7564 

## Job.RegionSouth          -0.40334     0.1576 -2.5588 

## Job.RegionWest           -0.46273     0.1644 -2.8146 

## Temperature.levelsLow    -0.01601     0.1492 -0.1073 

## Temperature.levelsMedium  0.09483     0.1158  0.8190 

##  

## Intercepts: 

##              Value   Std. Error t value 

## Good|Neutral -0.5708  0.1499    -3.8077 

## Neutral|Poor  2.2172  0.1683    13.1755 

##  

## Residual Deviance: 2554.862  

## AIC: 2568.862 

 

#Compute confusion table and misclassification error 

predictcustsatRT = predict(olsmodelRT,datatest) 

table(datatest$Overall.Satisfaction, predictcustsatRT) 

##          predictcustsatRT 

##           Good Neutral Poor 

##   Good      65     382    0 

##   Neutral   71     362    0 

##   Poor       8      54    0 

 

mean(as.character(datatest$Overall.Satisfaction) != as.character(predictcustsatRT)) 

## [1] 0.5467091 

 

library("effects") 

Effect(focal.predictors = c("Job.Region", "Temperature.levels"), olsmodelRT) 

## Job.Region*Temperature.levels effect (probability) for Good 

##            Temperature.levels 

## Job.Region       High       Low    Medium 

##   Midwest   0.3610629 0.3647643 0.3394864 

##   Northeast 0.3952891 0.3991221 0.3728608 
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##   South     0.4582451 0.4622220 0.4348132 

##   West      0.4730210 0.4770132 0.4494604 

##  

## Job.Region*Temperature.levels effect (probability) for Neutral 

##            Temperature.levels 

## Job.Region       High       Low    Medium 

##   Midwest   0.5407219 0.5384294 0.5535736 

##   Northeast 0.5186600 0.5160777 0.5333316 

##   South     0.4739280 0.4709563 0.4911128 

##   West      0.4628120 0.4597745 0.4804373 

##  

## Job.Region*Temperature.levels effect (probability) for Poor 

##            Temperature.levels 

## Job.Region        High        Low     Medium 

##   Midwest   0.09821516 0.09680636 0.10694006 

##   Northeast 0.08605089 0.08480017 0.09380760 

##   South     0.06782690 0.06682169 0.07407401 

##   West      0.06416699 0.06321234 0.07010236 

 

# Compute confusion matrix 

conf_matrixRT <- confusionMatrix(data = predictcustsatRT, reference = datatest$Overall.Satisf

action) 

 

# Extract performance metrics 

accuracyRT <- conf_matrixRT$overall['Accuracy'] 

 

# Print performance metrics 

print(paste("Accuracy:", accuracyRT)) 

## [1] "Accuracy: 0.453290870488323" 

Model6: Season and Temperature Range as Predictors 

 

library(MASS) 

olsmodelST = polr(Overall.Satisfaction ~ Season + Temperature.levels, data = datatrain, Hess = 

TRUE) 

summary(olsmodelST) 

## Call: 

## polr(formula = Overall.Satisfaction ~ Season + Temperature.levels,  

##     data = datatrain, Hess = TRUE) 

##  

## Coefficients: 

##                             Value Std. Error  t value 

## SeasonSpring             -0.22744     0.1510 -1.50652 

## SeasonSummer              0.03522     0.1398  0.25203 

## SeasonWinter              0.17046     0.1730  0.98509 

## Temperature.levelsLow    -0.01400     0.1753 -0.07985 
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## Temperature.levelsMedium  0.09505     0.1224  0.77647 

##  

## Intercepts: 

##              Value   Std. Error t value 

## Good|Neutral -0.2525  0.1313    -1.9230 

## Neutral|Poor  2.5274  0.1566    16.1365 

##  

## Residual Deviance: 2560.216  

## AIC: 2574.216 

 

#Compute confusion table and misclassification error 

 

predictcustsatST = predict(olsmodelST,datatest) 

table(datatest$Overall.Satisfaction, predictcustsatST) 

##          predictcustsatST 

##           Good Neutral Poor 

##   Good     103     344    0 

##   Neutral   88     345    0 

##   Poor      10      52    0 

 

mean(as.character(datatest$Overall.Satisfaction) != as.character(predictcustsatST)) 

## [1] 0.5244161 

 

library("effects") 

Effect(focal.predictors = c("Season", "Temperature.levels"), olsmodelST) 

## Season*Temperature.levels effect (probability) for Good 

##         Temperature.levels 

## Season        High       Low    Medium 

##   Fall   0.4372075 0.4406549 0.4139759 

##   Spring 0.4937342 0.4972335 0.4700075 

##   Summer 0.4285602 0.4319918 0.4054571 

##   Winter 0.3958088 0.3991613 0.3733179 

##  

## Season*Temperature.levels effect (probability) for Neutral 

##         Temperature.levels 

## Season        High       Low    Medium 

##   Fall   0.4888351 0.4863408 0.5052875 

##   Spring 0.4464536 0.4437366 0.4646062 

##   Summer 0.4950334 0.4925839 0.5111531 

##   Winter 0.5176782 0.5154256 0.5323564 

##  

## Season*Temperature.levels effect (probability) for Poor 

##         Temperature.levels 

## Season         High        Low     Medium 

##   Fall   0.07395738 0.07300436 0.08073655 

##   Spring 0.05981220 0.05902983 0.06538633 
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##   Summer 0.07640633 0.07542432 0.08338977 

##   Winter 0.08651295 0.08541306 0.09432577 

# Compute confusion matrix 

conf_matrixST <- confusionMatrix(data = predictcustsatST, reference = datatest$Overall.Satisfa

ction) 

 

# Extract performance metrics 

accuracyST <- conf_matrixST$overall['Accuracy'] 

 

# Print performance metrics 

print(paste("Accuracy:", accuracyST)) 

## [1] "Accuracy: 0.475583864118896" 

Model7: Region, Season and Temperature Range as Predictors 

#Build ordinal logistic regression model - region, season, temperature predictors 

library(MASS) 

olsmodel = polr(Overall.Satisfaction ~ Job.Region + Season + Temperature.levels , data = datatr

ain, Hess = TRUE) 

summary(olsmodel) 

## Call: 

## polr(formula = Overall.Satisfaction ~ Job.Region + Season + Temperature.levels,  

##     data = datatrain, Hess = TRUE) 

##  

## Coefficients: 

##                             Value Std. Error t value 

## Job.RegionNortheast      -0.15225     0.1928 -0.7898 

## Job.RegionSouth          -0.41053     0.1628 -2.5216 

## Job.RegionWest           -0.47475     0.1656 -2.8665 

## SeasonSpring             -0.15220     0.1547 -0.9836 

## SeasonSummer              0.04091     0.1402  0.2919 

## SeasonWinter              0.27099     0.1781  1.5215 

## Temperature.levelsLow    -0.10817     0.1809 -0.5978 

## Temperature.levelsMedium  0.09063     0.1253  0.7234 

##  

## Intercepts: 

##              Value   Std. Error t value 

## Good|Neutral -0.5757  0.1798    -3.2021 

## Neutral|Poor  2.2187  0.1954    11.3552 

##  

## Residual Deviance: 2549.835  

## AIC: 2569.835 
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#Compute confusion table and misclassification error 

 

predictcustsat = predict(olsmodel,datatest) 

table(datatest$Overall.Satisfaction, predictcustsat) 

##          predictcustsat 

##           Good Neutral Poor 

##   Good     121     326    0 

##   Neutral   91     342    0 

##   Poor      14      48    0 

 

mean(as.character(datatest$Overall.Satisfaction) != as.character(predictcustsat)) 

## [1] 0.5084926 

 

library("effects") 

Effect(focal.predictors = c("Job.Region", "Season", "Temperature.levels"), olsmodel) 

## Job.Region*Season*Temperature.levels effect (probability) for Good 

## , , Temperature.levels = High 

##  

##            Season 

## Job.Region       Fall    Spring    Summer    Winter 

##   Midwest   0.3599269 0.3956839 0.3505572 0.3001322 

##   Northeast 0.3956963 0.4326051 0.3859569 0.3330512 

##   South     0.4588062 0.4967626 0.4486668 0.3926620 

##   West      0.4747878 0.5128135 0.4645984 0.4080768 

##  

## , , Temperature.levels = Low 

##  

##            Season 

## Job.Region       Fall    Spring    Summer    Winter 

##   Midwest   0.3852057 0.4218191 0.3755641 0.3233329 

##   Northeast 0.4218317 0.4593254 0.4118875 0.3574968 

##   South     0.4857593 0.5237874 0.4755477 0.4187358 

##   West      0.5018092 0.5397749 0.4915827 0.4344421 

##  

## , , Temperature.levels = Medium 

##  

##            Season 

## Job.Region       Fall    Spring    Summer    Winter 

##   Midwest   0.3393242 0.3742311 0.3302142 0.2814472 

##   Northeast 0.3742432 0.4105104 0.3647132 0.3132341 

##   South     0.4364025 0.4741293 0.4263682 0.3712724 

##   West      0.4522558 0.4901612 0.4421429 0.3863818 

##  

##  

## Job.Region*Season*Temperature.levels effect (probability) for Neutral 

## , , Temperature.levels = High 
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##  

##            Season 

## Job.Region       Fall    Spring    Summer    Winter 

##   Midwest   0.5419885 0.5188965 0.5476792 0.5750637 

##   Northeast 0.5188882 0.4931432 0.5253770 0.5578475 

##   South     0.4739125 0.4449010 0.4814388 0.5209246 

##   West      0.4618505 0.4322792 0.4695682 0.5104465 

##  

## , , Temperature.levels = Low 

##  

##            Season 

## Job.Region       Fall    Spring    Summer    Winter 

##   Midwest   0.5258716 0.5008417 0.5321428 0.5632069 

##   Northeast 0.5008328 0.4735244 0.5078070 0.5434801 

##   South     0.4534381 0.4235421 0.4612712 0.5030171 

##   West      0.4409535 0.4106682 0.4489321 0.4918187 

##  

## , , Temperature.levels = Medium 

##  

##            Season 

## Job.Region       Fall    Spring    Summer    Winter 

##   Midwest   0.5542769 0.5329981 0.5594342 0.5835087 

##   Northeast 0.5329904 0.5087630 0.5390196 0.5685389 

##   South     0.4904011 0.4623521 0.4976113 0.5348863 

##   West      0.4787864 0.4500346 0.4862261 0.5250969 

##  

##  

## Job.Region*Season*Temperature.levels effect (probability) for Poor 

## , , Temperature.levels = High 

##  

##            Season 

## Job.Region        Fall     Spring     Summer     Winter 

##   Midwest   0.09808466 0.08541962 0.10176364 0.12480405 

##   Northeast 0.08541558 0.07425175 0.08866608 0.10910126 

##   South     0.06728128 0.05833642 0.06989441 0.08641344 

##   West      0.06336175 0.05490731 0.06583340 0.08147672 

##  

## , , Temperature.levels = Low 

##  

##            Season 

## Job.Region        Fall     Spring     Summer     Winter 

##   Midwest   0.08892263 0.07733919 0.09229313 0.11346016 

##   Northeast 0.07733550 0.06715019 0.08030551 0.09902316 

##   South     0.06080260 0.05267043 0.06318116 0.07824704 

##   West      0.05723734 0.04955685 0.05948526 0.07373920 

##  
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## , , Temperature.levels = Medium 

##  

##            Season 

## Job.Region        Fall     Spring     Summer     Winter 

##   Midwest   0.10639892 0.09277075 0.11035160 0.13504409 

##   Northeast 0.09276639 0.08072661 0.09626719 0.11822694 

##   South     0.07319636 0.06351866 0.07602051 0.09384132 

##   West      0.06895773 0.05980428 0.07163097 0.08852137 

# Compute confusion matrix 

conf_matrix <- confusionMatrix(data = predictcustsat,  

reference = datatest$Overall.Satisfaction) 

 

# Extract performance metrics 

accuracy <- conf_matrix$overall['Accuracy'] 

 

# Print performance metrics 

print(paste("Accuracy:", accuracy)) 

## [1] "Accuracy: 0.491507430997877" 

 

# Check for assumptions 

# Load necessary libraries 

library(MASS) 

library(car) 

library(brant) 

 

# Checking for multicollinearity 

# Calculating VIF 

vif_results = vif(olsmodel) 

print(vif_results) 

 
                       GVIF Df GVIF^(1/(2*Df)) 

Job.Region         1.173687  3        1.027051 

Season             1.642341  3        1.086202 

Temperature.levels 1.610699  2        1.126558 

 

# Brant test for proportional odds assumption 

brant_results = brant(olsmodel) 

print(brant_results) 

 

------------------------------------------------------------  

Test for   X2 df probability  

------------------------------------------------------------  

Omnibus  15.71 8 0.05 

Job.RegionNortheast 2.94 1 0.09 

Job.RegionSouth 0.51 1 0.48 
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Job.RegionWest 1.11 1 0.29 

SeasonSpring  0.08 1 0.78 

SeasonSummer  1.76 1 0.18 

SeasonWinter  2.13 1 0.14 

Temperature.levelsLow  1.29 1 0.26 

Temperature.levelsMedium 2.38 1 0.12 

------------------------------------------------------------  

 

H0: Parallel Regression Assumption holds  
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Appendix H - Code in RStudio – Naive-Bayes Classifier 

Model1: Naive-Bayes Classifier for Ordinal DV (5-10) 

#Division of dataset 

set.seed(2) 

nbdat1 <- nbdat[,-c(1,3,5,6,8)] 

id <- sample(2, nrow(nbdat1),prob = c(0.7,0.3),replace = T) 

nrow(nbdat1) 

## [1] 2355 

nbtrain <- nbdat1[id == 1,] 

nbtest <- nbdat1[id == 2,] 

summary(nbtrain) 

##      Job.Region     Season    Temperature.range Overall.Satisfaction 

##  Midwest  :226   Fall  :524   71-80  :436       Min.   : 5.000       

##  Northeast:229   Spring:332   61-70  :418       1st Qu.: 8.000       

##  South    :664   Summer:539   51-60  :261       Median : 9.000       

##  West     :514   Winter:238   81-90  :200       Mean   : 9.064       

##                               41-50  :182       3rd Qu.:10.000       

##                               31-40  : 88       Max.   :10.000       

##                               (Other): 48 

str(nbtrain) 

## 'data.frame':    1633 obs. of  4 variables: 

##  $ Job.Region          : Factor w/ 4 levels "Midwest","Northeast",..: 3 3 3 1 3 1 1 1 1 1 ... 

##  $ Season              : Factor w/ 4 levels "Fall","Spring",..: 1 1 1 1 1 1 1 1 1 1 ... 

##  $ Temperature.range   : Factor w/ 8 levels "20-30","31-40",..: 6 6 6 5 2 5 5 2 2 2 ... 

##  $ Overall.Satisfaction: num  10 10 10 5 9 9 8 9 10 10 ... 

#Build the Naive Bayes Model 

library(e1071) 

library(caret) 

## Loading required package: ggplot2 

## Loading required package: lattice 

nbmodel1 <- naiveBayes(Overall.Satisfaction ~ .,data = nbtrain) 

nbmodel1 

##  

## Naive Bayes Classifier for Discrete Predictors 

##  

## Call: 

## naiveBayes.default(x = X, y = Y, laplace = laplace) 

##  

## A-priori probabilities: 

## Y 

##           5           6           7           8           9          10  

## 0.018371096 0.009797918 0.044703001 0.179424372 0.312308634 0.435394979  
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##  

## Conditional probabilities: 

##     Job.Region 

## Y       Midwest  Northeast      South       West 

##   5  0.16666667 0.10000000 0.50000000 0.23333333 

##   6  0.00000000 0.12500000 0.62500000 0.25000000 

##   7  0.17808219 0.06849315 0.42465753 0.32876712 

##   8  0.20819113 0.18430034 0.28327645 0.32423208 

##   9  0.14509804 0.16078431 0.40784314 0.28627451 

##   10 0.10267229 0.11673699 0.44585091 0.33473980 

##  

##     Season 

## Y         Fall    Spring    Summer    Winter 

##   5  0.2333333 0.2333333 0.2000000 0.3333333 

##   6  0.4375000 0.1875000 0.3125000 0.0625000 

##   7  0.3013699 0.1917808 0.3698630 0.1369863 

##   8  0.3481229 0.1433447 0.3481229 0.1604096 

##   9  0.3058824 0.2117647 0.3411765 0.1411765 

##   10 0.3234880 0.2222222 0.3164557 0.1378340 

##  

##     Temperature.range 

## Y         20-30      31-40      41-50      51-60      61-70      71-80 

##   5  0.03333333 0.06666667 0.16666667 0.13333333 0.13333333 0.33333333 

##   6  0.00000000 0.06250000 0.06250000 0.12500000 0.18750000 0.43750000 

##   7  0.00000000 0.01369863 0.12328767 0.16438356 0.23287671 0.31506849 

##   8  0.01706485 0.06143345 0.08191126 0.16723549 0.26621160 0.27645051 

##   9  0.01568627 0.06666667 0.12352941 0.14313725 0.27647059 0.24509804 

##   10 0.01125176 0.04500703 0.11251758 0.17018284 0.24613221 0.26722925 

##     Temperature.range 

## Y         81-90     91-100 

##   5  0.13333333 0.00000000 

##   6  0.12500000 0.00000000 

##   7  0.13698630 0.01369863 

##   8  0.11262799 0.01706485 

##   9  0.11568627 0.01372549 

##   10 0.12939522 0.01828411 

 

summary(nbmodel1) 

##           Length Class  Mode      

## apriori   6      table  numeric   

## tables    3      -none- list      

## levels    6      -none- character 

## isnumeric 3      -none- logical   

## call      4      -none- call 
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prenb1 <- predict(nbmodel1, nbtest) 

confusionMatrix(table(prenb1, nbtest$Overall.Satisfaction)) 

## Confusion Matrix and Statistics 

##  

## prenb1   5   6   7   8   9  10 

##     5    0   0   0   0   0   0 

##     6    0   0   0   0   0   0 

##     7    0   0   0   0   0   0 

##     8    0   0   1   0   0   1 

##     9    2   2   8  21  43  47 

##     10  11   9  18 104 159 296 

##  

## Overall Statistics 

##                                            

##                Accuracy : 0.4695           

##                  95% CI : (0.4326, 0.5067) 

##     No Information Rate : 0.4765           

##     P-Value [Acc > NIR] : 0.6588           

##                                            

##                   Kappa : 0.0492           

##                                            

##  Mcnemar's Test P-Value : NA               

##  

## Statistics by Class: 

##  

##                      Class: 5 Class: 6 Class: 7 Class: 8 Class: 9 Class: 10 

## Sensitivity           0.00000  0.00000   0.0000  0.00000  0.21287    0.8605 

## Specificity           1.00000  1.00000   1.0000  0.99665  0.84615    0.2037 

## Pos Pred Value            NaN      NaN      NaN  0.00000  0.34959    0.4958 

## Neg Pred Value        0.98199  0.98476   0.9626  0.82639  0.73456    0.6160 

## Prevalence            0.01801  0.01524   0.0374  0.17313  0.27978    0.4765 

## Detection Rate        0.00000  0.00000   0.0000  0.00000  0.05956    0.4100 

## Detection Prevalence  0.00000  0.00000   0.0000  0.00277  0.17036    0.8269 

## Balanced Accuracy     0.50000  0.50000   0.5000  0.49832  0.52951    0.5321 

 

Model2: Naive-Bayes Classifier for Binary DV (0,1) 

#Division of dataset 

set.seed(2) 

nbdat2 <- nbdatcat[,-c(1,3,5,6,8,9,11)] 

id <- sample(2, nrow(nbdat2),prob = c(0.7,0.3),replace = T) 

nrow(nbdat2) 

## [1] 2355 
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nbtraincat <- nbdat2[id == 1,] 

nbtestcat <- nbdat2[id == 2,] 

summary(nbtraincat) 

##      Job.Region     Season    Temperature.range 

##  Midwest  :226   Fall  :524   71-80  :436       

##  Northeast:229   Spring:332   61-70  :418       

##  South    :664   Summer:539   51-60  :261       

##  West     :514   Winter:238   81-90  :200       

##                               41-50  :182       

##                               31-40  : 88       

##                               (Other): 48       

##  Overall.Satisfaction.Dichotomous 

##  No : 119                         

##  Yes:1514                         

##                                   

str(nbtraincat) 

## 'data.frame':    1633 obs. of  4 variables: 

##  $ Job.Region                      : Factor w/ 4 levels "Midwest","Northeast",..: 3 3 3 1 3 1 1 1 1 1 ... 

##  $ Season                          : Factor w/ 4 levels "Fall","Spring",..: 1 1 1 1 1 1 1 1 1 1 ... 

##  $ Temperature.range               : Factor w/ 8 levels "20-30","31-40",..: 6 6 6 5 2 5 5 2 2 2 ... 

##  $ Overall.Satisfaction.Dichotomous: Factor w/ 2 levels "No","Yes": 2 2 2 1 2 2 2 2 2 2 ... 

#Build the Naive Bayes Model-Categorical 

library(e1071) 

library(caret) 

nbmodel2 <- naiveBayes(Overall.Satisfaction.Dichotomous ~ .,data = nbtraincat) 

nbmodel2 

##  

## Naive Bayes Classifier for Discrete Predictors 

## Call: 

## naiveBayes.default(x = X, y = Y, laplace = laplace) 

##  

## A-priori probabilities: 

## Y 

##         No        Yes  

## 0.07287201 0.92712799  

##  

## Conditional probabilities: 

##      Job.Region 

## Y        Midwest  Northeast      South       West 

##   No  0.15126050 0.08403361 0.47058824 0.29411765 

##   Yes 0.13738441 0.14464993 0.40158520 0.31638045 

##  

##      Season 

## Y          Fall    Spring    Summer    Winter 

##   No  0.3025210 0.2016807 0.3193277 0.1764706 
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##   Yes 0.3223250 0.2034346 0.3309115 0.1433289 

##  

##      Temperature.range 

## Y           20-30       31-40       41-50       51-60       61-70       71-80 

##   No  0.008403361 0.033613445 0.126050420 0.151260504 0.201680672 0.336134454 

##   Yes 0.013870542 0.055482166 0.110303831 0.160501982 0.260237781 0.261558785 

##      Temperature.range 

## Y           81-90      91-100 

##   No  0.134453782 0.008403361 

##   Yes 0.121532365 0.016512550 

 

summary(nbmodel2) 

##           Length Class  Mode      

## apriori   2      table  numeric   

## tables    3      -none- list      

## levels    2      -none- character 

## isnumeric 3      -none- logical   

## call      4      -none- call 

 

prenb2 <- predict(nbmodel2, nbtestcat) 

confusionMatrix(table(prenb2, nbtestcat$Overall.Satisfaction)) 

## Confusion Matrix and Statistics 

##  

## prenb2  No Yes 

##    No    0   0 

##    Yes  51 671 

##                                           

##                Accuracy : 0.9294          

##                  95% CI : (0.9082, 0.947) 

##     No Information Rate : 0.9294          

##     P-Value [Acc > NIR] : 0.5372          

##                                           

##                   Kappa : 0               

##                                           

##  Mcnemar's Test P-Value : 2.534e-12       

##                                           

##             Sensitivity : 0.00000         

##             Specificity : 1.00000         

##          Pos Pred Value :     NaN         

##          Neg Pred Value : 0.92936         

##              Prevalence : 0.07064         

##          Detection Rate : 0.00000         

##    Detection Prevalence : 0.00000         

##       Balanced Accuracy : 0.50000         

##                                           

##        'Positive' Class : No     
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Appendix I - Code in RStudio – Support Vector Machine 

#Perform One Hot Encoding 

 

encoded_data <- model.matrix(~ . -1, data = svm1[, c(1,2)]) 

svm1E <- cbind(svm1[, -c(1,2)], encoded_data) 

str(svm1E) 

## 'data.frame':    2355 obs. of  9 variables: 

##  $ Temp.Code   : num  7 7 7 7 6 6 6 6 3 6 ... 

##  $ Sat.Code    : Factor w/ 2 levels "No","Yes": 2 2 2 2 2 2 1 1 2 2 ... 

##  $ Region.Code1: num  0 0 0 0 1 1 1 1 0 1 ... 

##  $ Region.Code2: num  0 0 0 0 0 0 0 0 0 0 ... 

##  $ Region.Code3: num  1 1 1 1 0 0 0 0 1 0 ... 

##  $ Region.Code4: num  0 0 0 0 0 0 0 0 0 0 ... 

##  $ Season.Code2: num  0 0 0 0 0 0 0 0 0 0 ... 

##  $ Season.Code3: num  0 0 0 0 0 0 0 0 0 0 ... 

##  $ Season.Code4: num  0 0 0 0 0 0 0 0 0 0 ... 

 

summary(svm1E) 

##    Temp.Code     Sat.Code    Region.Code1     Region.Code2     Region.Code3    

##  Min.   :2.000   No : 170   Min.   :0.0000   Min.   :0.0000   Min.   :0.0000   

##  1st Qu.:5.000   Yes:2185   1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:0.0000   

##  Median :6.000              Median :0.0000   Median :0.0000   Median :0.0000   

##  Mean   :5.935              Mean   :0.1418   Mean   :0.1329   Mean   :0.4191   

##  3rd Qu.:7.000              3rd Qu.:0.0000   3rd Qu.:0.0000   3rd Qu.:1.0000   

##  Max.   :9.000              Max.   :1.0000   Max.   :1.0000   Max.   :1.0000   

##   Region.Code4     Season.Code2     Season.Code3     Season.Code4    

##  Min.   :0.0000   Min.   :0.0000   Min.   :0.0000   Min.   :0.0000   

##  1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:0.0000   

##  Median :0.0000   Median :0.0000   Median :0.0000   Median :0.0000   

##  Mean   :0.3062   Mean   :0.2021   Mean   :0.3287   Mean   :0.1503   

##  3rd Qu.:1.0000   3rd Qu.:0.0000   3rd Qu.:1.0000   3rd Qu.:0.0000   

##  Max.   :1.0000   Max.   :1.0000   Max.   :1.0000   Max.   :1.0000 

 

set.seed(123) 

train_index <- sample(1:nrow(svm1E), 0.7 * nrow(svm1E)) 

train_svm <- svm1E[train_index, ] 

test_svm <- svm1E[-train_index, ] 

str(train_svm) 

## 'data.frame':    1648 obs. of  9 variables: 

##  $ Temp.Code   : num  4 6 7 4 7 7 8 6 6 6 ... 

##  $ Sat.Code    : Factor w/ 2 levels "No","Yes": 2 2 2 2 2 2 2 2 2 2 ... 

##  $ Region.Code1: num  0 0 0 0 0 0 0 0 0 0 ... 

##  $ Region.Code2: num  0 0 0 0 0 0 0 0 0 1 ... 

##  $ Region.Code3: num  0 1 1 1 1 1 1 1 0 0 ... 
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##  $ Region.Code4: num  1 0 0 0 0 0 0 0 1 0 ... 

##  $ Season.Code2: num  0 1 0 0 0 0 0 1 0 0 ... 

##  $ Season.Code3: num  0 0 0 0 1 1 1 0 0 1 ... 

##  $ Season.Code4: num  1 0 0 1 0 0 0 0 0 0 ... 

 

str(test_svm) 

## 'data.frame':    707 obs. of  9 variables: 

##  $ Temp.Code   : num  7 6 3 9 5 6 6 7 6 8 ... 

##  $ Sat.Code    : Factor w/ 2 levels "No","Yes": 2 2 2 2 2 2 2 2 2 2 ... 

##  $ Region.Code1: num  0 1 1 0 0 1 1 0 0 0 ... 

##  $ Region.Code2: num  0 0 0 0 0 0 0 0 0 0 ... 

##  $ Region.Code3: num  1 0 0 1 1 0 0 1 1 1 ... 

##  $ Region.Code4: num  0 0 0 0 0 0 0 0 0 0 ... 

##  $ Season.Code2: num  0 0 0 0 0 0 0 0 0 0 ... 

##  $ Season.Code3: num  0 0 0 0 0 0 0 0 0 0 ... 

##  $ Season.Code4: num  0 0 0 0 0 0 0 0 0 0 ... 

 

SVM classifier - Linear Kernel 

 

svmlinear <- svm(Sat.Code ~ . , data = train_svm, kernel = "linear", cost = .1, scale = FALSE) 

print(svmlinear) 

## Call: 

## svm(formula = Sat.Code ~ ., data = train_svm, kernel = "linear",  

##     cost = 0.1, scale = FALSE) 

##  

##  

## Parameters: 

##    SVM-Type:  C-classification  

##  SVM-Kernel:  linear  

##        cost:  0.1  

##  

## Number of Support Vectors:  253 

#Prediction and Accuracy 

# Predict on test data 

svmpredL <- predict(svmlinear, newdata = test_svm) 

 

# Evaluate performance 

accuracyL <- mean(svmpredL == test_svm$Sat.Code) 

cat("Accuracy:", accuracyL, "\n") 

## Accuracy: 0.9306931 

# Confusion matrix 

CM_linear <- confusionMatrix(svmpredL, test_svm$Sat.Code) 

print(CM_linear) 
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## Confusion Matrix and Statistics 

##  

##           Reference 

## Prediction  No Yes 

##        No    0   0 

##        Yes  49 658 

##                                            

##                Accuracy : 0.9307           

##                  95% CI : (0.9094, 0.9483) 

##     No Information Rate : 0.9307           

##     P-Value [Acc > NIR] : 0.5379           

##                                            

##                   Kappa : 0                

##                                            

##  Mcnemar's Test P-Value : 7.025e-12        

##                                            

##             Sensitivity : 0.00000          

##             Specificity : 1.00000          

##          Pos Pred Value :     NaN          

##          Neg Pred Value : 0.93069          

##              Prevalence : 0.06931          

##          Detection Rate : 0.00000          

##    Detection Prevalence : 0.00000          

##       Balanced Accuracy : 0.50000          

##                                            

##        'Positive' Class : No               

 

SVM classifier - Radial Kernel 

 

svm_model <- svm(Sat.Code ~ ., data = train_svm, kernel = "radial") 

summary(svm_model) 

## Call: 

## svm(formula = Sat.Code ~ ., data = train_svm, kernel = "radial") 

##  

##  

## Parameters: 

##    SVM-Type:  C-classification  

##  SVM-Kernel:  radial  

##        cost:  1  

##  

## Number of Support Vectors:  254 

##  

##  ( 133 121 ) 

##  

## Number of Classes:  2  



 

 

 

161 

##  

## Levels:  

##  No Yes 

#Prediction and Accuracy 

# Predict on test data 

svmpred <- predict(svm_model, newdata = test_svm) 

 

# Evaluate performance 

accuracy <- mean(svmpred == test_svm$Sat.Code) 

cat("Accuracy:", accuracy, "\n") 

## Accuracy: 0.9306931 

 

# Confusion matrix 

CM_SVM <- confusionMatrix(svmpred, test_svm$Sat.Code) 

print(CM_SVM) 

## Confusion Matrix and Statistics 

##  

##           Reference 

## Prediction  No Yes 

##        No    0   0 

##        Yes  49 658 

##                                            

##                Accuracy : 0.9307           

##                  95% CI : (0.9094, 0.9483) 

##     No Information Rate : 0.9307           

##     P-Value [Acc > NIR] : 0.5379           

##                                            

##                   Kappa : 0                

##                                            

##  Mcnemar's Test P-Value : 7.025e-12        

##                                            

##             Sensitivity : 0.00000          

##             Specificity : 1.00000          

##          Pos Pred Value :     NaN          

##          Neg Pred Value : 0.93069          

##              Prevalence : 0.06931          

##          Detection Rate : 0.00000          

##    Detection Prevalence : 0.00000          

##       Balanced Accuracy : 0.50000          

##                                            

##        'Positive' Class : No               

##  
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SVM classifier – Principal Component Analysis and Radial Kernel 

library(e1071) 

library(ggplot2) 

library(RColorBrewer) 

 

# Perform PCA on the training data (excluding the response variable) 

pca <- prcomp(train_svm[, -which(names(train_svm) == "Sat.Code")], scale. = TRUE) 

# Predict principal components for the training data 

pca_data_train <- data.frame(predict(pca, newdata = train_svm[, -which(names(train_svm) == "

Sat.Code")])) 

pca_data_train$Sat.Code <- train_svm$Sat.Code 

 

# Predict principal components for the test data 

pca_data_test <- data.frame(predict(pca, newdata = test_svm[, -which(names(test_svm) == "Sat.

Code")])) 

pca_data_test$Sat.Code <- test_svm$Sat.Code 

 

# Train SVM model using the first two principal components 

svm_model_pca <- svm(Sat.Code ~ PC1 + PC2, data = pca_data_train, kernel = "radial") 

 

# Summary of PCA data 

summary(pca_data_train) 

##       PC1               PC2               PC3               PC4          

##  Min.   :-3.3519   Min.   :-1.6264   Min.   :-1.8725   Min.   :-3.2482   

##  1st Qu.:-0.8641   1st Qu.:-1.1799   1st Qu.:-0.9077   1st Qu.:-1.1282   

##  Median :-0.0970   Median :-0.6315   Median :-0.3005   Median : 0.2432   

##  Mean   : 0.0000   Mean   : 0.0000   Mean   : 0.0000   Mean   : 0.0000   

##  3rd Qu.: 1.1817   3rd Qu.: 1.1730   3rd Qu.: 1.1180   3rd Qu.: 0.9214   

##  Max.   : 2.4213   Max.   : 2.3594   Max.   : 2.3884   Max.   : 1.7346   

##       PC5               PC6                PC7               PC8             

##  Min.   :-2.8634   Min.   :-1.90241   Min.   :-1.5044   Min.   :-2.259e-15   

##  1st Qu.:-0.4867   1st Qu.:-0.34058   1st Qu.:-0.3911   1st Qu.:-8.158e-16   

##  Median : 0.1262   Median : 0.01604   Median :-0.1198   Median :-3.076e-16   

##  Mean   : 0.0000   Mean   : 0.00000   Mean   : 0.0000   Mean   : 3.995e-17   

##  3rd Qu.: 0.7032   3rd Qu.: 0.50158   3rd Qu.: 0.4232   3rd Qu.: 3.167e-16   

##  Max.   : 2.3295   Max.   : 1.63340   Max.   : 1.7816   Max.   : 3.647e-15   

##  Sat.Code   

##  No : 121   

##  Yes:1527   

##             

summary(pca_data_test) 

##       PC1                 PC2                  PC3                PC4           

##  Min.   :-3.351898   Min.   :-1.6099616   Min.   :-1.87248   Min.   :-3.21279   

##  1st Qu.:-0.824024   1st Qu.:-1.1798881   1st Qu.:-0.67753   1st Qu.:-1.16356   
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##  Median :-0.037707   Median :-0.4177651   Median :-0.24041   Median : 0.27856   

##  Mean   :-0.002877   Mean   : 0.0005052   Mean   : 0.03377   Mean   :-0.03066   

##  3rd Qu.: 1.131876   3rd Qu.: 1.1729823   3rd Qu.: 1.11796   3rd Qu.: 0.88599   

##  Max.   : 2.421250   Max.   : 2.3593658   Max.   : 2.38838   Max.   : 1.73459   

##       PC5                PC6                PC7                PC8             

##  Min.   :-2.88493   Min.   :-1.90241   Min.   :-1.50440   Min.   :-2.259e-15   

##  1st Qu.:-0.48674   1st Qu.:-0.31932   1st Qu.:-0.47553   1st Qu.:-8.158e-16   

##  Median : 0.14397   Median : 0.02881   Median :-0.11979   Median :-3.076e-16   

##  Mean   : 0.01895   Mean   : 0.04381   Mean   :-0.04337   Mean   : 2.050e-17   

##  3rd Qu.: 0.72477   3rd Qu.: 0.55006   3rd Qu.: 0.35376   3rd Qu.: 3.931e-16   

##  Max.   : 2.32950   Max.   : 1.77820   Max.   : 1.78165   Max.   : 3.647e-15   

##  Sat.Code  

##  No : 49   

##  Yes:658   

##            

# Predict and evaluate the model on the test set 

pred <- predict(svm_model_pca, newdata = pca_data_test) 

 

# Confusion matrix to evaluate the model 

table(Predicted = pred, Actual = pca_data_test$Sat.Code) 

##          Actual 

## Predicted  No Yes 

##       No    0   0 

##       Yes  49 658 

CM_svmpca <- confusionMatrix(pred, pca_data_test$Sat.Code) 

print(CM_svmpca) 

## Confusion Matrix and Statistics 

##  

##           Reference 

## Prediction  No Yes 

##        No    0   0 

##        Yes  49 658 

##                                            

##                Accuracy : 0.9307           

##                  95% CI : (0.9094, 0.9483) 

##     No Information Rate : 0.9307           

##     P-Value [Acc > NIR] : 0.5379           

##                                            

##                   Kappa : 0                

##                                            

##  Mcnemar's Test P-Value : 7.025e-12        

##                                            

##             Sensitivity : 0.00000          

##             Specificity : 1.00000          
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##          Pos Pred Value :     NaN          

##          Neg Pred Value : 0.93069          

##              Prevalence : 0.06931          

##          Detection Rate : 0.00000          

##    Detection Prevalence : 0.00000          

##       Balanced Accuracy : 0.50000          

##                                            

##        'Positive' Class : No               

 

SVM classifier – Data Pre-processing for a Balanced Dataset  
 

#Load Data 

library(caret) 

## Loading required package: ggplot2 

## Loading required package: lattice 

library(e1071) 

svm1 <- read.csv("ManudataSVM1.csv", header = T) 

str(svm1) 

## 'data.frame':    2355 obs. of  4 variables: 

##  $ Region.Code: int  3 3 3 3 1 1 1 1 3 1 ... 

##  $ Season.Code: int  1 1 1 1 1 1 1 1 1 1 ... 

##  $ Temp.Code  : int  7 7 7 7 6 6 6 6 3 6 ... 

##  $ Sat.Code   : chr  "Yes" "Yes" "Yes" "Yes" ... 

 

summary(svm1) 

##   Region.Code    Season.Code     Temp.Code       Sat.Code         

##  Min.   :1.00   Min.   :1.00   Min.   :2.000   Length:2355        

##  1st Qu.:2.00   1st Qu.:1.00   1st Qu.:5.000   Class :character   

##  Median :3.00   Median :2.00   Median :6.000   Mode  :character   

##  Mean   :2.89   Mean   :2.31   Mean   :5.935                      

##  3rd Qu.:4.00   3rd Qu.:3.00   3rd Qu.:7.000                      

##  Max.   :4.00   Max.   :4.00   Max.   :9.000 

 

# Dependent variable column is named 'Sat.Code' 

class_counts <- table(svm1$Sat.Code) 

print(class_counts) 

##  

##   No  Yes  

##  170 2185 

 

# Identify the minority class 

minority_class <- names(which.min(class_counts)) 

minority_count <- min(class_counts) 

 

# Separate the data into two data frames based on class 



 

 

 

165 

minority_df <- svm1[svm1$Sat.Code == minority_class, ] 

majority_df <- svm1[svm1$Sat.Code != minority_class, ] 

 

# Randomly sample from the majority class to match the minority class count 

set.seed(1)  # For reproducibility 

majority_sampled_df <- majority_df[sample(nrow(majority_df), minority_count), ] 

 

# Combine the sampled majority class with the minority class 

balanced_df <- rbind(minority_df, majority_sampled_df) 

 

# Shuffle the data frame to mix the classes 

set.seed(1)  # For reproducibility 

balanced_df <- balanced_df[sample(nrow(balanced_df)), ] 

str(balanced_df) 

## 'data.frame':    340 obs. of  4 variables: 

##  $ Region.Code: int  3 4 1 4 1 4 3 4 3 3 ... 

##  $ Season.Code: int  4 4 3 3 3 2 3 2 1 4 ... 

##  $ Temp.Code  : int  4 6 8 5 7 7 9 6 4 7 ... 

##  $ Sat.Code   : chr  "Yes" "No" "No" "Yes" ... 

 

summary(balanced_df) 

##   Region.Code     Season.Code      Temp.Code       Sat.Code         

##  Min.   :1.000   Min.   :1.000   Min.   :2.000   Length:340         

##  1st Qu.:2.000   1st Qu.:1.000   1st Qu.:5.000   Class :character   

##  Median :3.000   Median :2.500   Median :6.000   Mode  :character   

##  Mean   :2.853   Mean   :2.362   Mean   :5.979                      

##  3rd Qu.:4.000   3rd Qu.:3.000   3rd Qu.:7.000                      

##  Max.   :4.000   Max.   :4.000   Max.   :9.000 

#Conversion to factors 

balanced_df$Region.Code <- as.factor(balanced_df$Region.Code) 

balanced_df$Season.Code <- as.factor(balanced_df$Season.Code) 

balanced_df$Temp.Code <- as.numeric(balanced_df$Temp.Code) 

balanced_df$Sat.Code <- as.factor(balanced_df$Sat.Code) 

 

str(balanced_df) 

## 'data.frame':    340 obs. of  4 variables: 

##  $ Region.Code: Factor w/ 4 levels "1","2","3","4": 3 4 1 4 1 4 3 4 3 3 ... 

##  $ Season.Code: Factor w/ 4 levels "1","2","3","4": 4 4 3 3 3 2 3 2 1 4 ... 

##  $ Temp.Code  : num  4 6 8 5 7 7 9 6 4 7 ... 

##  $ Sat.Code   : Factor w/ 2 levels "No","Yes": 2 1 1 2 2 2 2 1 2 2 ... 

 

summary(balanced_df) 

##  Region.Code Season.Code   Temp.Code     Sat.Code  

##  1: 52       1:106       Min.   :2.000   No :170   

##  2: 36       2: 64       1st Qu.:5.000   Yes:170   
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##  3:162       3:111       Median :6.000             

##  4: 90       4: 59       Mean   :5.979             

##                          3rd Qu.:7.000             

##                          Max.   :9.000 

#Perform One Hot Encoding 

encodeddata <- model.matrix(~ . -1, data = balanced_df[, c(1,2)]) 

svm_new <- cbind(balanced_df[, -c(1,2)], encodeddata) 

str(svm_new) 

## 'data.frame':    340 obs. of  9 variables: 

##  $ Temp.Code   : num  4 6 8 5 7 7 9 6 4 7 ... 

##  $ Sat.Code    : Factor w/ 2 levels "No","Yes": 2 1 1 2 2 2 2 1 2 2 ... 

##  $ Region.Code1: num  0 0 1 0 1 0 0 0 0 0 ... 

##  $ Region.Code2: num  0 0 0 0 0 0 0 0 0 0 ... 

##  $ Region.Code3: num  1 0 0 0 0 0 1 0 1 1 ... 

##  $ Region.Code4: num  0 1 0 1 0 1 0 1 0 0 ... 

##  $ Season.Code2: num  0 0 0 0 0 1 0 1 0 0 ... 

##  $ Season.Code3: num  0 0 1 1 1 0 1 0 0 0 ... 

##  $ Season.Code4: num  1 1 0 0 0 0 0 0 0 1 ... 

 

summary(svm_new) 

##    Temp.Code     Sat.Code   Region.Code1     Region.Code2     Region.Code3    

##  Min.   :2.000   No :170   Min.   :0.0000   Min.   :0.0000   Min.   :0.0000   

##  1st Qu.:5.000   Yes:170   1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:0.0000   

##  Median :6.000             Median :0.0000   Median :0.0000   Median :0.0000   

##  Mean   :5.979             Mean   :0.1529   Mean   :0.1059   Mean   :0.4765   

##  3rd Qu.:7.000             3rd Qu.:0.0000   3rd Qu.:0.0000   3rd Qu.:1.0000   

##  Max.   :9.000             Max.   :1.0000   Max.   :1.0000   Max.   :1.0000   

##   Region.Code4     Season.Code2     Season.Code3     Season.Code4    

##  Min.   :0.0000   Min.   :0.0000   Min.   :0.0000   Min.   :0.0000   

##  1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:0.0000   

##  Median :0.0000   Median :0.0000   Median :0.0000   Median :0.0000   

##  Mean   :0.2647   Mean   :0.1882   Mean   :0.3265   Mean   :0.1735   

##  3rd Qu.:1.0000   3rd Qu.:0.0000   3rd Qu.:1.0000   3rd Qu.:0.0000   

##  Max.   :1.0000   Max.   :1.0000   Max.   :1.0000   Max.   :1.0000 

#Splitting Data into Training and Testing Datasets 

set.seed(123) 

trainindex <- sample(1:nrow(svm_new), 0.7 * nrow(svm_new)) 

trainsvm1 <- svm_new[trainindex, ] 

testsvm1 <- svm_new[-trainindex, ] 

 

str(trainsvm1) 

## 'data.frame':    237 obs. of  9 variables: 

##  $ Temp.Code   : num  5 7 7 6 5 8 7 5 8 6 ... 

##  $ Sat.Code    : Factor w/ 2 levels "No","Yes": 2 2 2 1 2 1 1 2 2 2 ... 
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##  $ Region.Code1: num  1 0 0 0 0 0 0 0 0 0 ... 

##  $ Region.Code2: num  0 0 0 0 0 0 0 1 0 0 ... 

##  $ Region.Code3: num  0 0 0 0 1 0 1 0 1 1 ... 

##  $ Region.Code4: num  0 1 1 1 0 1 0 0 0 0 ... 

##  $ Season.Code2: num  0 1 0 0 0 0 0 0 0 1 ... 

##  $ Season.Code3: num  0 0 0 1 0 0 0 0 1 0 ... 

##  $ Season.Code4: num  0 0 0 0 1 0 0 0 0 0 ... 

 

str(testsvm1) 

## 'data.frame':    103 obs. of  9 variables: 

##  $ Temp.Code   : num  6 8 4 5 7 5 6 7 7 6 ... 

##  $ Sat.Code    : Factor w/ 2 levels "No","Yes": 1 1 2 1 1 2 1 1 1 2 ... 

##  $ Region.Code1: num  0 1 0 1 0 0 0 1 1 0 ... 

##  $ Region.Code2: num  0 0 1 0 0 0 1 0 0 0 ... 

##  $ Region.Code3: num  0 0 0 0 0 1 0 0 0 0 ... 

##  $ Region.Code4: num  1 0 0 0 1 0 0 0 0 1 ... 

##  $ Season.Code2: num  0 0 0 0 0 1 0 0 0 0 ... 

##  $ Season.Code3: num  0 1 0 0 0 0 0 1 1 1 ... 

##  $ Season.Code4: num  1 0 1 0 1 0 0 0 0 0 ... 

SVM classifier – Balanced Dataset, Linear Kernel and Binary DV 

#Train SVM classifier - Linear Kernel 

svmfit1 <- svm(Sat.Code ~ . , data = trainsvm1, kernel = "linear", cost = .1, scale = FALSE) 

print(svmfit1) 

##  

## Call: 

## svm(formula = Sat.Code ~ ., data = trainsvm1, kernel = "linear",  

##     cost = 0.1, scale = FALSE) 

##  

##  

## Parameters: 

##    SVM-Type:  C-classification  

##  SVM-Kernel:  linear  

##        cost:  0.1  

##  

## Number of Support Vectors:  214 

#Prediction and Accuracy 

# Predict on test data 

svmpredL1 <- predict(svmfit1, newdata = testsvm1) 

 

# Evaluate performance 

accuracyL1 <- mean(svmpredL1 == testsvm1$Sat.Code) 

cat("Accuracy:", accuracyL1, "\n") 

## Accuracy: 0.5048544 



 

 

 

168 

library(pROC) 

 

# Generate Confusion Matrix 

conf_matrix1 <- table(Predicted = svmpredL1, Actual = testsvm1$Sat.Code) 

print(conf_matrix1) 

##          Actual 

## Predicted No Yes 

##       No  27  19 

##       Yes 32  25 

 

CM_Bal_L <- confusionMatrix (svmpredL1, testsvm1$Sat.Code) 

CM_Bal_L 

## Confusion Matrix and Statistics 

##  

##           Reference 

## Prediction No Yes 

##        No  27  19 

##        Yes 32  25 

##                                            

##                Accuracy : 0.5049           

##                  95% CI : (0.4046, 0.6049) 

##     No Information Rate : 0.5728           

##     P-Value [Acc > NIR] : 0.93183          

##                                            

##                   Kappa : 0.0249           

##                                            

##  Mcnemar's Test P-Value : 0.09289          

##                                            

##             Sensitivity : 0.4576           

##             Specificity : 0.5682           

##          Pos Pred Value : 0.5870           

##          Neg Pred Value : 0.4386           

##              Prevalence : 0.5728           

##          Detection Rate : 0.2621           

##    Detection Prevalence : 0.4466           

##       Balanced Accuracy : 0.5129           

##                                            

##        'Positive' Class : No               

SVM classifier – Balanced Dataset, Radial Kernel and Binary DV 

svm_model1 <- svm(Sat.Code ~ ., data = trainsvm1, kernel = "radial") 

summary(svm_model1) 

## Call: 

## svm(formula = Sat.Code ~ ., data = trainsvm1, kernel = "radial") 

##  
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##  

## Parameters: 

##    SVM-Type:  C-classification  

##  SVM-Kernel:  radial  

##        cost:  1  

##  

## Number of Support Vectors:  203 

##  

##  ( 102 101 ) 

##  

##  

## Number of Classes:  2  

##  

## Levels:  

##  No Yes 

#Prediction and Accuracy 

# Predict on test data 

svmpred1 <- predict(svm_model1, newdata = testsvm1) 

 

# Evaluate performance 

accuracy1 <- mean(svmpred1 == testsvm1$Sat.Code) 

cat("Accuracy:", accuracy1, "\n") 

## Accuracy: 0.4757282 

 

library(pROC) 

 

# Generate Confusion Matrix 

conf_matrix <- table(Predicted = svmpred1, Actual = testsvm1$Sat.Code) 

print(conf_matrix) 

##          Actual 

## Predicted No Yes 

##       No  23  18 

##       Yes 36  26 

 

CM_Bal <- confusionMatrix (svmpred1, testsvm1$Sat.Code) 

CM_Bal 

## Confusion Matrix and Statistics 

##  

##           Reference 

## Prediction No Yes 

##        No  23  18 

##        Yes 36  26 

##                                            

##                Accuracy : 0.4757           

##                  95% CI : (0.3764, 0.5765) 
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##     No Information Rate : 0.5728           

##     P-Value [Acc > NIR] : 0.9813           

##                                            

##                   Kappa : -0.0183          

##                                            

##  Mcnemar's Test P-Value : 0.0207           

##                                            

##             Sensitivity : 0.3898           

##             Specificity : 0.5909           

##          Pos Pred Value : 0.5610           

##          Neg Pred Value : 0.4194           

##              Prevalence : 0.5728           

##          Detection Rate : 0.2233           

##    Detection Prevalence : 0.3981           

##       Balanced Accuracy : 0.4904           

##                                            

##        'Positive' Class : No               

 

SVM classifier – Radial Kernel and Ordinal DV 

 

## classification mode 

# default with factor response 

model <- svm(Overall.Satisfaction ~ ., data = svmdat) 

print(model) 

 

Call: 

svm(formula = Overall.Satisfaction ~ ., data = svmdat) 

 

Parameters: 

   SVM-Type:  C-classification  

 SVM-Kernel:  radial  

       cost:  1  

 

Number of Support Vectors:  2213 

 

# alternatively the traditional interface 

x <- subset(svmdat[, -4]) 

y <- svmdat$Overall.Satisfaction 

model <- svm(x, y)  

print(model) 

summary(model) 

 

Call: 

svm.default(x = x, y = y) 

Parameters: 

   SVM-Type:  C-classification  
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 SVM-Kernel:  radial  

       cost:  1  

 

Number of Support Vectors:  2213 

 

( 1005 1038 170 ) 

 

Number of Classes:  3  

Levels:  

 Good Neutral Poor 

 

# test with train data 

pred <- predict(model, x) 

# (same as:) 

pred <- fitted(model) 

 

# Check accuracy: 

table(pred, y) 

# Predict on training data 

pred <- predict(model, svmdat) 

 

# Calculate accuracy 

accuracy <- mean(pred == svmdat$Overall.Satisfaction) 

cat("Accuracy:", accuracy, "\n") 

Accuracy: 0.5227176  

 

# Load necessary libraries 

library(e1071) 

library(ggplot2) 

 

# Assuming svmdat is already loaded and prepared as described 

# Train SVM model 

model <- svm(Overall.Satisfaction ~ ., data = svmdat) 

 

# Predict on training data 

pred <- predict(model, svmdat) 

 

# Create confusion matrix 

conf_mat <- table(pred, svmdat$Overall.Satisfaction) 

print(conf_mat) 

 

         y 

pred      Good Neutral Poor 

  Good     754     653  106 

  Neutral  301     477   64 

  Poor       0       0    0  
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Appendix J - Code in RStudio – Artificial Neural Network 

#normalization of data 

normalize <- function(x) {return((x - min(x)) / (max(x) - min(x)))} 

 

#apply to our dataset 

ANN.norm <- as.data.frame(lapply(dataANN, normalize)) 

summary(ANN.norm) 

 

#splitting data into training and testing 

train_test_split_index <- 0.75 * nrow(ANN.norm) 

train_ANN <- ANN.norm[1:train_test_split_index,] 

test_ANN <- ANN.norm[(train_test_split_index + 1): nrow(ANN.norm),] 

summary(train_ANN) 

summary(test_ANN) 

 
#ANN Level 1 Model 

manu_model1 <- neuralnet(Overall.Satisfaction ~ Job.region.code + Season.code + 

                          Temperature.code, data = train_ANN) 

 

# Mean Absolute Error (MAE) 

mae1 <- mean(abs(predicted_sat1 - test_ANN$Overall.Satisfaction)) 

 

# Root Mean Squared Error (RMSE) 

rmse1 <- sqrt(mean((predicted_sat1 - test_ANN$Overall.Satisfaction)^2)) 

 

# Mean Absolute Percentage Error (MAPE) 

mape1 <- mean(abs((predicted_sat1 - test_ANN$Overall.Satisfaction) / 

test_ANN$Overall.Satisfaction)) * 100 

 

# Compute MAPE, excluding cases where actual value is zero or close to zero 

mape11 <- mean(abs((predicted_sat1 - test_ANN$Overall.Satisfaction) / 

pmax(test_ANN$Overall.Satisfaction, 1e-10))) * 100 

 

# R-squared (R2) 

r_squared1 <- 1 - sum((test_ANN$Overall.Satisfaction - predicted_sat1)^2) / 

sum((test_ANN$Overall.Satisfaction - mean(test_ANN$Overall.Satisfaction))^2) 

 

# Print the performance metrics 

print(paste("Mean Absolute Error (MAE):", mae1)) 

print(paste("Root Mean Squared Error (RMSE):", rmse1)) 

print(paste("Mean Absolute Percentage Error (MAPE):", mape1)) 

print(paste("Mean Absolute Percentage Error with no zeroes (MAPE):", mape11)) 

print(paste("R-squared (R2):", r_squared1)) 
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[1] "Mean Absolute Error (MAE): 0.176842892847017" 

[1] "Root Mean Squared Error (RMSE): 0.237904398353323" 

[1] "Mean Absolute Percentage Error (MAPE): Inf" 

[1] "Mean Absolute Percentage Error with no zeroes (MAPE): 26792805666.0472" 

[1] "R-squared (R2): -0.0109352488319885" 

 

#ANN Level 1 Model with Temp as continuous 

manu_model_V1 <- neuralnet(Overall.Satisfaction ~ Job.region.code + Season.code + 

                          Avg.temp, data = train_ANN) 

 

# Mean Absolute Error (MAE) 

mae_V1 <- mean(abs(predicted_sat_V1 - test_ANN$Overall.Satisfaction)) 

 

# Root Mean Squared Error (RMSE) 

rmse_V1 <- sqrt(mean((predicted_sat_V1 - test_ANN$Overall.Satisfaction)^2)) 

 

# Mean Absolute Percentage Error (MAPE) 

mape_V1 <- mean(abs((predicted_sat_V1 - test_ANN$Overall.Satisfaction) / 

test_ANN$Overall.Satisfaction)) * 100 

 

# Compute MAPE, excluding cases where actual value is zero or close to zero 

mape_V11 <- mean(abs((predicted_sat_V1 - test_ANN$Overall.Satisfaction) / 

pmax(test_ANN$Overall.Satisfaction, 1e-10))) * 100 

 

# R-squared (R2) 

r_squared_V1 <- 1 - sum((test_ANN$Overall.Satisfaction - predicted_sat_V1)^2) / 

sum((test_ANN$Overall.Satisfaction - mean(test_ANN$Overall.Satisfaction))^2) 

 

# Print the performance metrics 

print(paste("Mean Absolute Error (MAE):", mae_V1)) 

print(paste("Root Mean Squared Error (RMSE):", rmse_V1)) 

print(paste("Mean Absolute Percentage Error (MAPE):", mape_V1)) 

print(paste("Mean Absolute Percentage Error with no zeroes (MAPE):", mape_V11)) 

print(paste("R-squared (R2):", r_squared_V1)) 

 

[1] "Mean Absolute Error (MAE): 0.177678058993484" 

[1] "Root Mean Squared Error (RMSE): 0.239117009439303" 

[1] "Mean Absolute Percentage Error (MAPE): Inf" 

[1] "Mean Absolute Percentage Error with no zeroes (MAPE): 26973629870.8172" 

[1] "R-squared (R2): -0.0212670919025226" 

 

#ANN Level 2 Model 

manu_model2 <- neuralnet(Overall.Satisfaction ~ Job.region.code + Season.code + 

                          Temperature.code, data = train_ANN, hidden = 3) 

 

# Mean Absolute Error (MAE) 
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mae2 <- mean(abs(predicted_sat2 - test_ANN$Overall.Satisfaction)) 

 

# Root Mean Squared Error (RMSE) 

rmse2 <- sqrt(mean((predicted_sat2 - test_ANN$Overall.Satisfaction)^2)) 

 

# Mean Absolute Percentage Error (MAPE) 

mape2 <- mean(abs((predicted_sat2 - test_ANN$Overall.Satisfaction) / 

test_ANN$Overall.Satisfaction)) * 100 

 

# Compute MAPE, excluding cases where actual value is zero or close to zero 

mape22 <- mean(abs((predicted_sat2 - test_ANN$Overall.Satisfaction) / 

pmax(test_ANN$Overall.Satisfaction, 1e-10))) * 100 

 

# R-squared (R2) 

r_squared2 <- 1 - sum((test_ANN$Overall.Satisfaction - predicted_sat2)^2) / 

sum((test_ANN$Overall.Satisfaction - mean(test_ANN$Overall.Satisfaction))^2) 

 

# Print the performance metrics 

print(paste("Mean Absolute Error (MAE):", mae2)) 

print(paste("Root Mean Squared Error (RMSE):", rmse2)) 

print(paste("Mean Absolute Percentage Error (MAPE):", mape2)) 

print(paste("Mean Absolute Percentage Error with no zeroes (MAPE):", mape22)) 

print(paste("R-squared (R2):", r_squared2)) 

 

[1] "Mean Absolute Error (MAE): 0.182674518798517" 

[1] "Root Mean Squared Error (RMSE): 0.249282999626445" 

[1] "Mean Absolute Percentage Error (MAPE): Inf" 

[1] "Mean Absolute Percentage Error with no zeroes (MAPE): 27965345149.7684" 

[1] "R-squared (R2): -0.10995078012386" 

 

#ANN Level 2 Model with temperature as continuous 

manu_model_V2 <- neuralnet(Overall.Satisfaction ~ Job.region.code + Season.code + 

                          Avg.temp, data = train_ANN, hidden = 3) 

 

# Mean Absolute Error (MAE) 

mae_V2 <- mean(abs(predicted_sat_V2 - test_ANN$Overall.Satisfaction)) 

 

# Root Mean Squared Error (RMSE) 

rmse_V2 <- sqrt(mean((predicted_sat_V2 - test_ANN$Overall.Satisfaction)^2)) 

 

# Mean Absolute Percentage Error (MAPE) 

mape_V2 <- mean(abs((predicted_sat_V2 - test_ANN$Overall.Satisfaction) / 

test_ANN$Overall.Satisfaction)) * 100 

 

# Compute MAPE, excluding cases where actual value is zero or close to zero 
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mape_V22 <- mean(abs((predicted_sat_V2 - test_ANN$Overall.Satisfaction) / 

pmax(test_ANN$Overall.Satisfaction, 1e-10))) * 100 

 

# R-squared (R2) 

r_squared_V2 <- 1 - sum((test_ANN$Overall.Satisfaction - predicted_sat_V2)^2) / 

sum((test_ANN$Overall.Satisfaction - mean(test_ANN$Overall.Satisfaction))^2) 

 

# Print the performance metrics 

print(paste("Mean Absolute Error (MAE):", mae_V2)) 

print(paste("Root Mean Squared Error (RMSE):", rmse_V2)) 

print(paste("Mean Absolute Percentage Error (MAPE):", mape_V2)) 

print(paste("Mean Absolute Percentage Error with no zeroes (MAPE):", mape_V22)) 

print(paste("R-squared (R2):", r_squared_V2)) 

 

[1] "Mean Absolute Error (MAE): 0.178014897120367" 

[1] "Root Mean Squared Error (RMSE): 0.238887380435124" 

[1] "Mean Absolute Percentage Error (MAPE): Inf" 

[1] "Mean Absolute Percentage Error with no zeroes (MAPE): 26927387354.4251" 

[1] "R-squared (R2): -0.0193065459568953" 

 

#ANN Level 3 Model 

manu_model3 <- neuralnet(Overall.Satisfaction ~ Job.region.code + Season.code + 

                          Temperature.code, data = train_ANN, hidden = 5) 

 

# Mean Absolute Error (MAE) 

mae3 <- mean(abs(predicted_sat3 - test_ANN$Overall.Satisfaction)) 

 

# Root Mean Squared Error (RMSE) 

rmse3 <- sqrt(mean((predicted_sat3 - test_ANN$Overall.Satisfaction)^2)) 

 

# Mean Absolute Percentage Error (MAPE) 

mape3 <- mean(abs((predicted_sat3 - test_ANN$Overall.Satisfaction) / 

test_ANN$Overall.Satisfaction)) * 100 

 

# Compute MAPE, excluding cases where actual value is zero or close to zero 

mape33 <- mean(abs((predicted_sat3 - test_ANN$Overall.Satisfaction) / 

pmax(test_ANN$Overall.Satisfaction, 1e-10))) * 100 

 

# R-squared (R2) 

r_squared3 <- 1 - sum((test_ANN$Overall.Satisfaction - predicted_sat3)^2) / 

sum((test_ANN$Overall.Satisfaction - mean(test_ANN$Overall.Satisfaction))^2) 

 

# Print the performance metrics 

print(paste("Mean Absolute Error (MAE):", mae3)) 

print(paste("Root Mean Squared Error (RMSE):", rmse3)) 

print(paste("Mean Absolute Percentage Error (MAPE):", mape3)) 
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print(paste("Mean Absolute Percentage Error with no zeroes (MAPE):", mape33)) 

print(paste("R-squared (R2):", r_squared3)) 

 

[1] "Mean Absolute Error (MAE): 0.175348475161211" 

[1] "Root Mean Squared Error (RMSE): 0.23555364550629" 

[1] "Mean Absolute Percentage Error (MAPE): Inf" 

[1] "Mean Absolute Percentage Error with no zeroes (MAPE): 26115010227.3766" 

[1] "R-squared (R2): 0.00894431571688448" 

 

#ANN Level 3 Model with temperature as continuous predictor 

manu_model_V3 <- neuralnet(Overall.Satisfaction ~ Job.region.code + Season.code + 

                          Avg.temp, data = train_ANN, hidden = 5) 

 

# Mean Absolute Error (MAE) 

mae_V3 <- mean(abs(predicted_sat_V3 - test_ANN$Overall.Satisfaction)) 

 

# Root Mean Squared Error (RMSE) 

rmse_V3 <- sqrt(mean((predicted_sat_V3 - test_ANN$Overall.Satisfaction)^2)) 

 

# Mean Absolute Percentage Error (MAPE) 

mape_V3 <- mean(abs((predicted_sat_V3 - test_ANN$Overall.Satisfaction) / 

test_ANN$Overall.Satisfaction)) * 100 

 

# Compute MAPE, excluding cases where actual value is zero or close to zero 

mape_V33 <- mean(abs((predicted_sat_V3 - test_ANN$Overall.Satisfaction) / 

pmax(test_ANN$Overall.Satisfaction, 1e-10))) * 100 

 

# R-squared (R2) 

r_squared_V3 <- 1 - sum((test_ANN$Overall.Satisfaction - predicted_sat_V3)^2) / 

sum((test_ANN$Overall.Satisfaction - mean(test_ANN$Overall.Satisfaction))^2) 

 

# Print the performance metrics 

print(paste("Mean Absolute Error (MAE):", mae_V3)) 

print(paste("Root Mean Squared Error (RMSE):", rmse_V3)) 

print(paste("Mean Absolute Percentage Error (MAPE):", mape_V3)) 

print(paste("Mean Absolute Percentage Error with no zeroes (MAPE):", mape_V33)) 

print(paste("R-squared (R2):", r_squared_V3)) 

 

[1] "Mean Absolute Error (MAE): 0.176767969040936" 

[1] "Root Mean Squared Error (RMSE): 0.237334927892811" 

[1] "Mean Absolute Percentage Error (MAPE): Inf" 

[1] "Mean Absolute Percentage Error with no zeroes (MAPE): 26516070439.1652" 

[1] "R-squared (R2): -0.00610130088159555" 
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