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Abstract

Bcc refractory high entropy alloys (HEAs) are a relatively new category of

metallic alloys that promise excellent irradiation resistance and strength retention

at high temperatures but exhibit brittle behavior at room temperatures limiting

their formability. Understanding the deformation mechanisms and predicting their

ductility at room temperature is a topic of interest in contemporary research.

In this work, multiple independent ductility criteria for quantifying the

ductility of these HEAs were studied, calculated and compared using Density

Functional Theory (DFT) calculations and continuum mechanics frameworks.

These ductility parameters were calculated for various W-Ta-Cr-V alloys and the

trends were analyzed for each criteria for dependence on the concentrations of

the alloying elements.

The correlations between the analytical Rice model with the other

approximate and phenomenological models were analyzed to investigate their

viability to serve as computationally inexpensive surrogate models for screening

potentially ductile HEAs from a large compositional space without performing DFT

intensive computations required by the Rice model.

In order to further improve computational efficiency, a predictive cluster

expansion model was developed using the DFT datasets generated for the

W-Ta-Cr-V alloys to predict the Ground state energies of the HEAs. This

framework is discussed for viability in accurately predicting the Free Surface

Energies (ƔSURF) , Unstable Stacking Fault Energies (ƔUSF) and elastic constants,

and by extension, the ductility of these alloys.
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Chapter 1

Introduction

1.1 Overview and history of High Entropy Alloys

High Entropy alloys (HEAs), also widely known as Multi-Principal Element

Alloys (MPEAs) are a relatively new category of metallic alloys which typically

consist of five or more elements in non-dilute proportions. The term high-entropy

alloys was first coined by Jien-Wei Yeh.[1] Generally, a typical metal alloy consists

of one or two elements in major proportions, with other elements in relatively

small proportions. High entropy alloys differ from traditional alloys when it comes

to these elemental proportions. Many definitions define HEAs as alloys with

multiple principal alloying elements in significant proportions. Other definitions try

to classify them based on the peculiar physical properties that are observed in

them. This means that there is no universally accepted definition for them,

although there are a few widely accepted ones.

One definition recognizes as multi-principal element alloys with 5 or more

elements with a concentration range of 5% - 35%[4] , although multiple alloys that

do not conform to this definition are accepted as HEAs in multiple research

studies.[6]

Another widely accepted definition is what defines HEAs as alloys that possess a

set of peculiar physical properties coined as the ‘Four core effects’[5]. According to

this definition, all HEAs exhibit these four peculiar properties :
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1) High entropy effect :

A typical solid solution has 3 competing solid states, i.e. elemental

phase, intermetallic compounds phase and solid-solution phase.[5]

The elemental phase is an infinite solid solution of one element.In

an intermetallic compound phase, the stoichiometric compound has

a specific lattice structure. Solid-solution phases are formed when

there is a random and complete mixing of the constituent elements

in significant proportions in any one of the crystal structures.

As the number of atomic species increases, the enthalpies of

mixing for solid solutions and for intermetallics start to get closer to

each other.[5] Also, as the atomic species increases, the entropy of

mixing gets higher for solid solutions as compared to intermetallics

due to the high number of microstates possible. This indicates that

the solid solution will have a lower Gibbs free energy than the

intermetallic phases, especially at elevated temperatures. This

results in a bias towards the formation of solid solution phases and

this phenomenon is called the high entropy effect.

It should be noted that this assumes the atomic radii as well

as the bonding energies to be roughly equal. However, many HEAs

tend to precipitate into multiple intermetallic phases and exhibit short

range ordering especially at lower temperatures.[34]

2) Sluggish diffusion effect :

Due to the nature of HEAs, each lattice site is surrounded by

different atomic species. This gives rise to a large fluctuation in the

potential energies of these lattice sites. It is theorized that the lattice

sites with low potential energies can act as traps for vacancy
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mobility and hence result in a sluggish diffusion and higher

activation energies[5].

This may not always be the case though as there are many

studies that show that refute this effect[35].

3) Severe lattice distortion :

Due to such differences in the atomic species, each lattice site has

an atom with a variety of bond energies and atomic radii. This along

with the tendency of phase separation gives rise to high degrees of

stresses within the crystal and causes it to become severely

distorted. This causes the material to undergo solid solution

hardening thus increasing the hardness and also results in a

reduction in the thermal conductivity.[5]

4) Cocktail effect :

Due to the large fluctuations in the occupancy of the lattice sites in

HEAs, both on the atomic and crystalline levels, the properties of

these alloys are often a concoction of many properties on the

microscale.[5] This inconsistent behavior of HEAs due to multiple

phase formations and atomic interactions even for very small

stoichiometric changes is coined as the ‘cocktail effect’.

There are other proposed classifications of HEAs that only consider the solid

solutions without any intermetallic phases as true HEAs as the intermetallics will

reduce the mixing entropy.[36] In this work, we consider a four element single

phase bcc quaternary HEA consisting of the refractory elements W, Cr, V and Ta.
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1.2 Overview of bcc High Entropy Alloys

Refractory Body Centered Cubic (BCC) HEAs which are also commonly

referred to as Refractory Multi-Principal Element Alloys (RMPEAs) are a class of

HEAs consisting mainly of W, Mo, Cr, Nb, V and Ta, and are known to show

desirable properties such as excellent strength retention at elevated

temperatures(1000℃ and above), outstanding irradiation resistance[37], high

melting temperatures and a weak dependence of their yield strength to the

temperature (about 400 GPA at 1600℃). This makes them desirable for high

temperature applications. However, many of these alloys are known to possess

poor ductility at room temperature, limiting their formability and applications.[6,7]

Most experimental work towards the ductility of HEAs has been done for

compression. These tests show low ductility in compression as well. This leads to

the conclusion that the mode of failure in this class of alloys is not related to

ductile mode of failure, but fracture. Also, the pure refractory bcc metals (W, Nb,

Mo, Ta, Cr, V) all show a sharp temperature brittle to ductile transition which

means that this behavior is not just peculiar to HEAs.[6]

These bcc refractory HEAs, known to show promising potential for excellent

mechanical performance at elevated temperatures both in computational and

experimental studies, have put forward a new challenge in the field of

computational material science due to their extremely large compositional space,

especially in the area of Density Functional Theory (DFT) methods which are

already computationally expensive even for pure elements and dilute alloys. The

main challenges in this domain of research are hence the limited datasets

available due to the inherently computationally expensive nature of DFT methods.

This along with the increasing industrial interest in the formability and
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machinability of these HEAs has given rise to an urgent need for developing

frameworks to predict the ductility of these alloys at room temperature.

In this work, we have compared 6 widely used ductility criteria for various

concentrations of W-Ta-Cr-V based bcc HEAs.Out of these, the Rice model is an

analytical solution that has a well defined theoretical basis. The other 5 models

are either an approximation of the Rice model or are phenomenological in nature.

These non-analytical models are much more computationally efficient but are

expected to have lower accuracy. The correlation between the concentrations of

the base elements and the ductility of the alloys is studied. The correlation

between the results from all the non-analytical criteria are also analyzed with

respect to the Rice model which is by far the most accurate but computationally

most expensive.This has been done in an attempt to formulate a surrogate model

for the screening of the potentially ductile alloys from a large compositional space

of HEAs which is much more computationally efficient than the Rice model

without a significant loss in accuracy. The idea is that the ductility of the screened

alloys can then be more accurately predicted using the Rice model which can

result in much higher computational efficiency overall. In order to further improve

the computational efficiency, a Cluster Expansion model is set up for predicting

the ground state energies using the DFT datasets generated. The potential for

this model to further predict other intrinsic properties such as the Free Surface

Energies (ƔSURF) , Unstable Stacking Fault Energies (ƔUSF) and elastic constants,

and by extension, the ductility of these alloys is also discussed to help set up a

ductility prediction model without carrying out the computationally expensive DFT

calculations.
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Chapter 2

Methodology

2.1 Density Functional Theory calculations

2.1.1 Generation of bcc HEA supercells

In this study, the crystal structures for performing DFT calculations were

generated using Atom, Molecule, Material Software Kit (Atomsk)[13]. Crystals

containing pure bcc refractory elements Tungsten (W), Tantalum (Ta), Chromium

(Cr) and Vanadium (V) as well as HEAs containing binaries, terneries and

quarternaries containing these four elements in varying concentrations were

generated. Moreover, for each concentration, multiple random configurations were

generated to simulate the randomness one might expect in nature.

Each crystal structure contains either 108 or 216 atoms in total and is

generated as a rectangular prism. The structure is generated in a non-standard

orthogonal basis vectors 6[111] x 2[-1-12] x 3[1-10] to make calculations in the

most active fracture planes easier. All the structures are generated starting with a

pure W crystal and then substituting W atoms with other atoms in a random

fashion. These bulk structures are then relaxed using DFT. A total of 33 different

alloys based on the concentrations of the base atoms were studied and for each

alloy, an average value of 10 random configurations was calculated and selected

to model for randomness in nature.
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2.1.2 Ground State Energies for the bulk structures :

This study made use of the Vienna Ab initio Simulation Package (VASP)[14,15,16,17,18]

to perform the DFT simulations. The structures are relaxed to the ground state by

using ISIF = 3 that allows for the deformation of the box to reach 0 pressure and

EDIFFG = -0.005 as the tolerance in the atomic forces. The energy of the ground

states is the energy of these relaxed structures.

2.1.3 Free Surface Energies (γSurf) :

The free surface energies for all the bulk structures was calculated. The free

surfaces that were studied were the [1-10] and [-1-12] planes. They were created

by adding a buffer of 10 A° normal to the plane in the relaxed bulk structure using

Atomsk. Then the new structure with free surfaces is relaxed to ground state

again, but this time using ISIF = 2 (The allowed degrees of freedom include

relaxation of the forces with the cell shape and volume). The global energy cut-off

was EDIFF = 0.0001 eV. This structure in its relaxed state will give us the energy

of the bulk structure with a free surface.

The free surface energies are the difference between the relaxed state

energies of the structure with a free surface and the bulk structure without the free

surface. This difference was averaged out for all the configurations for each

concentration to get an average value of free surface energy to simulate the

randomness expected in HEAs. The energies are then divided by the areas of the

free surfaces that are generated to give us free surface energies in the standard

units eV / A°2.
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The free surface energy is given by the following equation[7] :

γhkl = E(slab)hkl - n(slab) . E(bulk)hkl / 2 . A(slab) (i)

Where,

γhkl is the free surface energy of plane hkl

E(slab)hkl is the total slab energy

E(bulk)hkl is the energy per atom of the bulk structure

n(slab) is the number of atoms in the slab

A(slab) is the surface area of the slab

A total of 33 different alloys based on the concentrations of the base atoms were

studied and for each alloy, an average value of 10 random configurations was

calculated and selected to model for randomness in nature.

2.1.4 Unstable Stacking Fault energies (γUSF) :

The Unstable Stacking Faults energies for all the bulk structures were calculated.

The relaxed bulk structures with free surfaces were used. For each concentration,

a weighted Unstable Stacking Fault was added to the plane of the free surfaces at

the center of the structures. In the present work, for the sake of simplification, the

γUSF is treated as the GSF energy at a fixed shift distance that equals to the length

of 1/4 [111] instead of interpolating the maximum point of the GSF energy curve

as the function of the shift distance. Another measure taken for the sake of

simplification is that only one [110] plane was considered instead of the average

of all the different planes that exist parallel to that plane. To offset this, an average

of multiple planes was taken for at least 10 different configurations for each

composition.
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The γUSF is given by using the following equation :

E(γUSF) = E(bulk) - E(γUSF ¼[111]) (ii)

Where,

E(γUSF) is the unstable stacking fault energy

E(bulk) is the relaxed ground state energy of the bulk system

E(γUSF ¼[111]) is the relaxed energy of the system after inducing a stacking

fault of length ¼ [111]

The structure was then relaxed only in the direction normal to the free

surfaces using ISIF = 2 (The forces are relaxed but the cell shape and volume

remain fixed).The global energy cut-off was EDIFF = 0.0001 eV. Also, this

relaxation was only allowed in the direction normal to the plane of the free surface

which is perpendicular to the induced Unstable Stacking Fault. This was achieved

using the Selective Dynamics feature in VASP to fix the relaxation in the

directions in-plane of the free surface. The bulk structure with free surfaces was

used instead of the original bulk structure for the calculations because the buffer

added to generate the free surface makes sure that only one stacking fault was

added instead of 2 due to the intrinsic continuous boundary conditions of VASP. If

no buffer was added, there would be 2 stacking faults induced, one as intended at

the center of the supercell and another at the edge due to the continuous

boundary conditions in VASP.

The γUSF energy is then calculated by calculating the difference between

the bulk structure with the free surface and the stacking fault and the bulk

structure with only free surface. This energy was then divided by the areas of the

free surfaces that are generated to give us free surface energies in the standard

units eV / A°2. A total of 33 different alloys based on the concentrations of the

base atoms were studied and for each alloy, an average value of 10 random

18



configurations was calculated and selected to model for randomness in nature.

2.1.5 Elastic Constants

The Elastic constants calculations were carried out using VASPKIT[19]. The

relaxed bulk structures were used and VASPKIT was used to apply strains and

calculate the Elastic Constants using the strain energies. A total of 33 different

alloys based on the concentrations of the base atoms were studied and for each

alloy, an average value of 10 random configurations was calculated and selected

to model for randomness in nature.

Every relaxed bulk structure was approximated to a cubic bcc crystal

structure by applying symmetries in VASPKIT and hence only 3 independent

elastic constants were to be determined (C11 , C12 and C44). These structures were

subjected to normal and shear strains in the range of (-0.015, -0.01, -0.005, 0,

0.005, 0.010, 0.015) and the strained structures were relaxed again using ISIF = 2

and the ground state energies were fitted to the square of the applied strains to

calculate the elastic constants (C11 , C12 and C44). The elastic constants for the

pure elements were verified on the Materials Project[20] website and the results are

found to be accurate. The theoretical basis for the DFT calculations for calculating

the elastic constants is as follows :

For cubic crystals with all symmetries, we have 3 independent elastic

constants in the stiffness matrix. Since all alloys studied in this work are based on

a W lattice which is known to have a cubic lattice from experimental evidence[20],

we assume all of them to be cubic. Hence, we have a stiffness matrix with only

C11 , C12 and C44 .
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The generalized Hooke’s law is given by :

𝛔i = Cij . 𝝴j , (iii)

Where,

𝛔i = stresses in the Voigt notation

Cij = stiffness constant in Voigt notation containing only C11 , C12 and C44 for cubic

crystals

𝝴j = strains in Voigt notation

The Elastic Energy of a solid under strain under the harmonic approximation (no

thermal expansion) is given by :

ΔE(V,{𝝴i}) = E(V,{𝝴i}) - E(V0,0) = V0 / 2 . ∑6
i,j = 1 Cij . 𝝴j . 𝝴i , (iv)

Where,

V = volume after strain

V0 = original volume

ΔE(V,{𝝴i}) = elastic energy

E(V,{𝝴i}) = total energy after application of strain

E(V0,0) = total energy without any strain

Let 𝜹 be the strain value applied. First, a triaxial normal strain (𝜹, 𝜹, 0, 0, 0, 0) is

applied to the undeformed perfectly cubic crystal. The Elastic energy is therefore

given by :

ΔE = V0 / 2 . (C11𝝴1𝝴1 + C11𝝴2𝝴2 + C12𝝴1𝝴2 + C12𝝴2𝝴1) = V0 . (C11 + C12) . 𝜹2 (v)

Similarly,

On application of triaxial shear strain (0, 0, 0, 𝜹, 𝜹, 𝜹), the elastic energy is given

20



by :

ΔE = V0 / 2 . (C44𝝴4𝝴4 + C44𝝴5𝝴5 + C44𝝴6𝝴6) = 3 . V0 / 2 (C44) . 𝜹2 (vi)

Finally,

On application of triaxial shear strain (𝜹, 𝜹, 𝜹, 0, 0, 0), the elastic energy is given

by :

ΔE = 3 . V0 / 2 (C11 + 2 . C12) . 𝜹2 (vii)

For strain values 𝜹 in the range of (-0.015, -0.01, -0.005, 0, 0.005, 0.010, 0.015) ,

we can fit the elastic energies per unit volumes with the squares of the applied

strains to get the elastic constants C11 , C12 and C44 .

Here you have 2 equations for 3 unknowns. You are missing 1 equation.

2.1.6 Cluster expansion for predicting ground state energies :

The Alloy Theoretic Automated Toolkit (ATAT)[27] was used to develop a predictive

Cluster Expansion (CE) model for the ground state energies of the alloys. It takes

in the atomic species and positions from a perfect lattice file and predicts the

ground state energy after relaxation of the structure.

The CE is an analytical framework that correlates the energy of a

crystal structure with the atomic clusters through correlation functions. The

formulation is of the form :

Ȇ = J . X, (viii)

Where,

Ȇ is a vector representing the energies of the corresponding clusters
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in the vector X.

X is a vector containing information about the clusters that are taken

into account for the cluster expansion.

J is the correlation matrix that contains the correlation coefficients

between the vectors Ȇ and X.

Under ideal conditions, the vector X contains every possible cluster in the

supercell and Ȇ contains the corresponding energies. This would give a perfect

correlation functional matrix J that can accurately predict the energies of any

structure. However, since it is almost impossible to consider all the possible in

complex structures such as HEAs, the effective clusters chosen in X can result in

inaccurate predictions. To validate the effective clusters, ATAT has a built-in

algorithm that gives out the Cross Validation Score (CV score). The CV score is

calculated as :

CV = (1/n .⅀n
i=1 (Ei - Ȇi)2 )0.5 (ix)

Where,

n is the number of atoms per unit cell,

Ei is the energy of cluster i ,

Ȇi is the predicted energy of cluster i.

The key to setting up a good cluster expansion is to minimize the CV score by

selecting the optimum number of clusters as it is also quite susceptible to

overfitting. ATAT has built in algorithms that can generate new structures as well

as warn the user about overfitting.
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2.2 Ductility models

Many studies have been carried out in an attempt to set up a theoretical

framework for predicting the ductility of HEAs using computational techniques.

Most of them rely on intrinsic parameters calculated using DFT techniques. Some

of these criteria are used in this work to develop a CE model for the prediction of

the ductility of W-Ta-V-Cr based refractory HEAs. Following is a summary of all

the ductility criteria studied and used in this research :

1. Ductility index D using Rice model[6] :

Bcc HEAs are known to exhibit low ductility both in tension as

well as compression. This suggests that the mode of failure in these

alloys is connected to fracture and not the traditional ductile failure

mechanisms like necking. These alloys are also known to show a

relatively sharp brittle to ductile transition with increasing

temperature. This applies to pure bcc refractory metals like W, Ta,

Cr and V as well, suggesting that this brittle behavior exhibited by

the bcc HEAs have mechanisms unrelated to the typical HEA

characteristics like severe lattice distortions and the cocktail effect.

It is postulated that the intrinsic ductility in bcc refractory

elements is governed by the fracture behavior at crack tip during

fracture. This model assumes that the intrinsic fracture behavior of a

material is governed by the competition between the dislocation

emission and the brittle cleavage propagation at an atomistically

sharp crack tip. A material is intrinsically ductile if the dislocation
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emission at the crack tip occurs at stress intensity factor Ke at the

crack tip occurs prior to the cleavage occurring at stress intensity

factor Kcat crack tip. The dislocation emission blunts the sharp

crack tip and enables the onset of ductile mechanisms of failure

(void nucleation, growth and coalescence ahead of the crack tip). If

the cleavage occurs first, the crack remains sharp and continues to

propagate.

Most experimental studies of ductility of bcc HEAs are

conducted under compression due to the industrial interest in

formability of these alloys as well as due to the large number of

specimens required for performing tensile tests.There is also

research evidence suggesting that the primary mode of failure in

compression is tensile rather than shear (eg. Senkov et al. 2011).

The ductility in moderately ductile HEAs is slip dominated and

fracture is generally an outcome of the interaction between the

localization of deformation (normally expressed in the form of shear

bands) and grain boundaries. The ductility on the macroscopic scale

is thus related to mode I loading.

Based on the above postulate, we investigate the intrinsic

ductility and fracture of these HEAs within the Linear Elastic

Fracture Mechanics (LEFM) framework. The analysis takes into

consideration dislocation emission only and neglects twinning due to

experimental evidence suggesting that it can be neglected (Ohr,

1985). Bcc metals are also known for not exhibiting stable stacking

faults that would enable twinning mechanisms. A ductility index D is

hence defined as follows :
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D = KIe / KIc (x)

Where,

If D < 1, the material will be ductile

If D 1, the material will be brittle≥

Theory :

The LEFM solutions assume plane-strain condition (i.e. ezz = 0) and

small deformation.

The critical stress intensity factor for cleavage is given by Griffith

condition[23] :

KIc = (2.ƔSURF / 𝚲22)0.5 (xi)

Where,

ƔSURF = Energy of formation of free surface

𝚲22 = Anisotropic elasticity parameter (Appendix A)

The critical stress intensity factor for emission is given by using Rice

model[24] :

KIe= ( GIe . o(𝛗,𝛉) )0.5 / F12(𝛉) . cos(𝛉) (xii)

Where,

GIe = Critical energy release rate for dislocation emission.

o(𝛗,𝛉) , F12(𝛉) = Anisotropic elastic parameters (Appendix A)

The GIe is equated to the Unstable Stacking Fault energy (ƔUSF)for

25



the bcc metals and the ductility index D is hence reduced to :

D = 𝛘𝝲 , (xiii)

Where,

𝛘 = ( 𝚲22 . o(𝛗,𝛉))0.5 / ( . cos(𝛉) . F12(𝛉) )2  

𝝲 = ( ƔUSF / ƔSURF )

2. LLD metric[7] :

Bcc refractory HEAs are known to possess a weak yield-strength

dependence on Temperature and a sharp brittle to ductile transition

with increasing temperature. The strengthening mechanisms of

these refractory metals and alloys have been a subject of research

for a long time now. One of the more widely accepted mechanisms

is the solid-solution strengthening that is attributed to the local lattice

distortions in the crystal structures. For HEAs, this is accompanied

by the high degree of mismatch between the atomic sizes and the

large variation in the elastic modulus within the crystal that are

known to impede dislocation motion [25].

It is hypothesized that the ductility in bcc refractory HEAs can

be attributed to the quantum-mechanical phenomena like the

distortion of the crystal lattice in the local chemical environment and

the chemical disorder during the formation of these alloys. This will

increase the electronic band dispersion and cause disorder

broadening. Local lattice distortions which are caused due to the

mismatch in atomic sizes and elastic modulii result in the formation
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of multiple new dislocation pathways. There is also a correlation

between the electronegativity differences due to the complex

chemical environments and the change in the energies for vacancy

formation as well as the migration barriers within these HEA

crystals. Local lattice distortions also result in localized strains in the

crystal structure and impede dislocation motion.

This framework attempts to use the correlation between the

local lattice distortions and the Valence Electron Concentration

(VEC) for predicting the ductility of bcc refractory HEAs. A

dimensionless parameter of quantum-mechanical origin called LLD

was defined as follows :

LLD = ΔwVEC x Δux,y,z / [(Δux,y,z)2]0.5 (xiv)

Where,

If LLD < 0.3, the material will be ductile

If LLD 0.3, the material will be brittle≥

The parameter Δux,y,z is the average atomic displacement and

[(Δux,y,z)2]0.5 is the L2,1 norm of the atomic displacements calculated

by minimizing the Hellman-Feynman forces for a perfect crystal

supercell. ΔwVEC is the weighted average of the VEC for the specific

HEA. The initial perfect lattice coordinates before relaxing the bulk

structures are taken as the initial positions and the positions of

atoms in the ground state energies relaxed using DFT are taken as

the final atomic positions {3.1}. The distance moved by each atom is

averaged out to calculate Δux,y,z and the L1,2 norm of these

distances is calculated to find the [(Δux,y,z)2]0.5.
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The ΔwVEC is the weighted Valence electron concentration and is

calculated by taking the difference between the VEC of the HEA that

is studied and ( VECmax -VECmin ). For bcc alloys, ( VECmax -VECmin )

is the difference between the phase formation range , i.e. (6-4) = 2.

This component of the equation ensures that the electronegativity is

taken into account and it offsets the superficial dominance of the

atomic displacements.

3. Surrogate ductility index D[8] :

There are several well established ideas to tackle the problem of

ductility prediction in cc HEAs. One of the most widely accepted

criteria is based on the Rice criterion based on the failure by fracture

determined by the competition between the rate of dislocation

emission vs the rate of crack propagation for an atomistically sharp

crack[6,7]. This model is an approximation of the Rice model but is

relatively much more efficient.

This new parameter was defined to predict the approximate ductility

while retaining the basic idea of the Rice model that the competition

between the dislocation emission and the crack propagation can be

approximated by the energies required to form new surfaces vs

dislocation motion at the crack tip. This approximate ductility metric

is called the ductility index D is defined as :

D = γSurf / γUSF (xv)

Where,

As the value of D increases, the alloy is more likely to be

intrinsically ductile.
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This approximate D parameter has a much lower computational

expense as compared to the Rice criterion as it does not require the

calculation of the elastic constants and only needs the free surface

and unstable stacking fault energies. The accuracy of these

datasets can be improved by using statistical models to use

physics-informed descriptors alongside the approximate D

parameter. Either way, this approximate D parameter can be a

computationally effective method for forming ductility prediction

models in many cases.

4. Pugh’s ratio[10][11][12] :

The Pugh’s ratio is the most widely used ductility criteria for metals,

mostly due to how old and well established it is as well as the ease

of use as it needs just the stiffness matrix for the ductility prediction.

It is defined as :

Pugh ratio = G / K , (xvi)

Where,

G is the shear modulus of the material,

K is the bulk modulus of the material.

The Pugh ratio is an empirical model based on the competition

between plasticity and fracture. If plasticity is easier to occur, the

metal would be ductile and if fracture is easier, the material would be

brittle. Yield strength was assumed to be a parameter to measure
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the plasticity deformation. This yield strength is dependent on the

shear modulus using the Orowan Bowing equation[10] :

𝝈y = G . b / 𝝺 , (xvii)

Where,

𝝈y is the yield stress,

G is the shear modulus,

b is the Burger’s vector,

𝝺 is the size of the Frank-Read source.

Pugh associated this with the Brinell Hardness Number (B.H.N) :

B.H.N = G . b / c, (xviii)

Where,

G is the shear modulus,

b is the Burger’s vector,

c is a constant for a particular crystal, not explicitly defined.

The fracture stress, on the other hand, can be related to the elastic

constants as well. It was noted that the fracture stress is

proportional to the Young’s modulus, E. It was also noted that the

surface energy where a part of the fracture work gets converted,

also scales with E.

Pugh concluded that due to the constraints on the strain state

at the crack tip would cause the elastic onstants to switch between

two limiting cases, namely the Young’s modulus E and bulk modulus

K. Since both are related to the same 3 lastic constants, and by
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extension scale together, bulk modulus was selected for

convenience. The fracture stress hence obeys :

𝛔*∝ K . a,

(xix)

Where,

𝛔* is the fracture stress,

K is the bulk modulus,

a is the lattice parameter.

Using the equations defined above for the B.H.N and 𝛔* , we get :

B.H.N / 𝛔*∝ G . b / c . K . a

This formalism does not account for the thermal effects as well as

the effects of crystal imperfections. Also, assuming that the effects

of the crystal structure are neglected, i.e, b / a.c is assumed to be

constant, we get the relation :

B.H.N / 𝛔*∝ G / K (xx)

We defined the shear modulus as the Voigt shear modulus and is

given as[12] :

G = (3 * C44 + C11 - C12) / 5 (xxi)

And we defined the bulk modulus as[12] :

31



K = (2 * C11 + C12) / 3 (xxii)

It can hence be concluded that the left hand side of the equation will

have a higher value if the material is softer (hence more ductile) or if

the fracture stresses are very high (less tendency to fracture) and

hence it can be concluded that a material with a lower value of the

right hand side of the equation, i.e, the G/K will be more likely to be

ductile. Pugh did not propose a critical value of G/K for the ductile to

brittle transition of metals, but further investigation suggested the

value to be around 0.57 to 0.6[12].

5. Pettifor’s Criteria / Cauchy Pressure for predicting ductility[12][13] :

Cauchy pressure, also known as Pettifor’s criteria, is a ductility

criteria proposed for materials based on the independent elastic

constants C12 and C44. It is used to describe the nature of bonding in

a material. A material with directional bonding and hence a higher

resistance to bond bending such as covalent solids will have

negative Cauchy Pressure, i.e. C44 > C12 . In contrast, materials with

non-directional bonding and hence a lower resistance to bond

bending like metals will have a positive Cauchy Pressure. Since

metals are in general more ductile than non-metals, this criterion

can be used as a ductility metric defined as :

C” = C12 - C44 (xxiii)

Where,

If C” > 0 , bonding is likely to be metallic and ductile
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If C” < 0 , bonding is likely to be covalent and less ductile.

This formalism is based on the Quantum Mechanical analysis of

bond hybridization in intermetallics that the ductility of metallic alloys

can be predicted based on just two individual elastic constants in a

single crystal. It is derived using many body potentials that explicitly

include the angular character of the bonding orbitals.[11, 12]

6. Valence Electron Concentration (VEC) :

Bcc refractory metals are transition metals from groups V and VI of

the periodic table. These usually have a characteristic property of

having half-filled d-band electrons. These electrons generate strong

interatomic forces that create a considerable direction

dependence[8]. This gives these bcc metallic alloys very high melting

temperatures and substantial activation barriers for the dislocations

resulting in a weaker temperature dependent strength correlation.

This makes them ideal for high temperature applications where

strength retention is required. However, this comes at the cost of

being brittle at room temperatures due to the direction dependent

behavior seen in the metallic bonds due to the strong interatomic

forces between the half-filled d-band electrons. Hence, the ductility

is likely to have a strong correlation with these valence electrons of

these alloys.

Even though first principle DFT frameworks are widely accepted as

being the most reliable, the Valence Electron Concentration (VEC) is
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a quick and computationally inexpensive method to screen the

potentially ductile alloys. Research in the area of bcc HEAs using

electron theory has further confirmed the hypothesis that reduction

of VEC for these alloys improves their ductility[26] . Hence we define

a term VEC which is the Valence Electron Concentration and is the

weighted average of the valence electrons in the outer s and d

shells of the alloys as :

VEC = weighted average of the outermost s and d shell valence

electrons of the alloys,

If VEC has a low value, the material is likely to be ductile,

If VEC has a high value, the material is likely to be less ductile.
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Chapter 3

Results

3.1 Ductility predictions

3.1.1 Ductility parameter using Rice model assuming isotropic conditions in

the {110} fracture plane and the 1/2 <111>{112} slip system was calculated. This

slip system was chosen as it is known to be one of the two most active slip

systems in bcc crystals along with the 1/2 <111>{110} slip system. Also, {110}

crack plane was chosen as it along with the {100} are the typically favored

cleavage planes in bcc crystals. For the 110/112 system that we have considered,

the value of the parameter 𝛘 is calculated to be 1.95 for isotropic materials.[6] A

total of 33 different alloys with different compositions were studied.

35



Figure 3.1.1 A figure showing a bcc supercell oriented in the orthogonal axis system oriented such

that the x, y and z axis are directed in the [1 1 1] [-1 -1 2] [1 -1 0] directions respectively. This is

done to simplify the computational procedure to analyze the Rice model for the [110] slip plane

and [112] fracture plane. Figure generated using OVITO[33]

The ductility parameter plot as a function of the concentration of W, Ta, Cr and V

is given :
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Figure 3.1.2 A tetrahedron plotting the ductility determined by the Rice model with the alloying

elements as a decimal representation of the alloying elements W, Ta, Cr and V. The 4 vertices

represent the points of pure elemental concentrations and go from 100% to 0% as we move from

one point on any edge to the other. The edges represent binaries, the faces represent ternaries

and the points inside the tetrahedron represent quarternaries. The scale represents the degree of

ductility and as the color gets darker, the alloy is more ductile and as it gets lighter they get more

brittle.
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Figure 3.1.3 Pearson correlation between the concentration of W with the ductility predicted using

the Rice model.
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Figure 3.1.4 Pearson correlation between the concentration of Ta with the ductility predicted using

the Rice model.
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Figure 3.1.5 Pearson correlation between the concentration of Cr with the ductility predicted using

the Rice model.
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Figure 3.1.6 Pearson correlation between the concentration of V with the ductility predicted using

the Rice model.

As represented by figure 3.1.1, the ductility predictions for pure elements are in

good acceptance with experimental data. Pure elements V and Ta are predicted

to be ductile as observed experimentally as well. W and Cr are predicted to be

brittle which is also true experimentally.

The Pearson correlation plots in figures 3.1.2, 3.1.3, 3.1.4 and 3.1.5 show

that there is a good correlation between the concentration of V in the alloy and the

ductility. Increasing the V concentration is likely to increase the ductility of these

alloys. On the other hand, W and Cr concentrations seem to have a negative
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correlation with the ductility as increasing their concentrations makes the alloy

more brittle. Ta concentration is seen to have a weak effect on the ductility of

these alloys but it does slightly improve ductility.
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Composition W Ta Cr V Total D isotropic Degree of anisotropy a

1 27 27 27 27 108 1.310 1.21

2 37 32 23 16 108 1.294 1.37

3 32 27 16 33 108 1.544 1.43

4 34 35 4 35 108 1.258 1.63

5 34 35 34 5 108 1.756 1.08

6 32 32 33 11 108 1.378 1.07

7 32 32 11 33 108 1.305 1.57

8 30 29 29 20 108 1.343 1.10

9 21 22 22 43 108 1.275 1.56

10 11 11 11 75 108 1.164 1.42

11 36 36 36 0 108 1.397 1.11

12 36 36 0 36 108 1.220 1.80

13 0 108 0 0 108 1.046 1.10

14 0 0 108 0 108 1.35 0.53

15 0 0 0 108 108 0.799 1.15

16 88 88 20 20 216 1.355 1.16

17 216 0 0 0 216 1.458 1.15

18 54 54 0 0 108 1.336 1.13

19 54 0 54 0 108 1.395 0.95

20 54 0 0 54 108 1.332 0.89

21 0 54 54 0 108 1.349 1.02

22 0 54 0 54 108 1.008 0.82

23 0 0 54 54 108 1.310 0.33

24 0 36 36 36 108 1.253 1.16

25 36 0 36 36 108 1.396 1.20

26 76 32 0 0 108 1.364 1.01

27 97 11 0 0 108 1.414 0.50

28 76 0 32 0 108 1.395 0.97

29 97 0 11 0 108 1.419 0.99

30 32 0 76 0 108 1.407

31 11 0 97 0 108 1.426 0.98

32 32 76 0 0 108 1.402 1.01

33 97 11 0 0 108 1.470 0.90

Table 3.1.1 Summary of the concentrations of the alloys alongside the degrees of anisotropies and

the ductility parameter D for the system 110/112 where 110 represents the fracture plane and 112

represents the slip plane.
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3.1.2 Ductility parameter using the surrogate ductility index {section 2.2.3}

as a function of the concentration of W, Ta, Cr and V was calculated for 33

individual alloys. The calculations were carried out for the system 110/112 which

represent the fracture and slip planes respectively.

The ductility parameter plot as a function of the concentration of W, Ta, Cr and V

is given :

Figure 3.1.7 A tetrahedron plotting the ductility determined by the surrogate ductility index {section

2.2.3} with the alloying elements as a decimal representation of the alloying elements W, Ta, Cr

and V. The 4 vertices represent the points of pure elemental concentrations and go from 100% to

0% as we move from one point on any edge to the other. The edges represent binaries, the faces

represent ternaries and the points inside the tetrahedron represent quarternaries. The scale

represents the degree of ductility and as the color gets lighter, the alloy is more ductile and as it

gets darker they get more brittle.
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As represented by the plot, the ductility predictions for pure elements are in good

acceptance with experimental data. Pure elemental V is predicted to be ductile as

observed experimentally as well. W is also predicted to be brittle which is also

true experimentally.

The model predicts that higher concentrations of V and Ta are likely to be

more ductile. There is no direct correlation between the ductility and the varying

concentration of Cr, indicating that the ductility might not be greatly affected by the

concentration of Cr in the alloy.

45



Composition W Ta Cr V Total Approximate

1 27 27 27 27 108 2.19

2 37 32 23 16 108 2.26

3 32 27 16 33 108 1.59

4 34 35 4 35 108 2.40

5 34 35 34 5 108 1.23

6 32 32 33 11 108 2.00

7 32 32 11 33 108 2.22

8 30 29 29 20 108 2.08

9 21 22 22 43 108 2.33

10 11 11 11 75 108 2.80

11 36 36 36 0 108 1.94

12 36 36 0 36 108 2.54

13 0 108 0 0 108 3.47

14 0 0 108 0 108 2.35

15 0 0 0 108 108 5.95

16 88 88 20 20 216 2.07

17 216 0 0 0 216 1.78

18 54 54 0 0 108 2.12

19 54 0 54 0 108 1.95

20 54 0 0 54 108 2.14

21 0 54 54 0 108 2.08

22 0 54 0 54 108 3.21

23 0 0 54 54 108 2.21

24 0 36 36 36 108 2.42

25 36 0 36 36 108 1.95

26 76 32 0 0 108 2.04

27 97 11 0 0 108 1.89

28 76 0 32 0 108 1.95

29 97 0 11 0 108 1.88

30 32 0 76 0 108 1.91

31 11 0 97 0 108 1.86

32 32 76 0 0 108 1.93

33 97 11 0 0 108 1.75

Table 3.1.2 Summary of the concentrations of the alloys alongside the degrees of anisotropies and

the ductility parameter D for the system 110/112 where 110 represents the fracture plane and 112

represents the slip plane.
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3.1.3 Ductility prediction using the LLD criteria {section 2.2.2} as a function

of the concentration of W, Ta, Cr and V was made for 33 individual alloys.

The ductility parameter plot as a function of the concentration of W, Ta, Cr and V

is given :

Figure 3.1.8 A tetrahedron plotting the ductility determined by the LLD ductility criteria {section

2.2.2} with the alloying elements as a decimal representation of the alloying elements W, Ta, Cr

and V. The 4 vertices represent the points of pure elemental concentrations and go from 100% to

0% as we move from one point on any edge to the other. The edges represent binaries, the faces

represent ternaries and the points inside the tetrahedron represent quarternaries. The scale

represents the degree of ductility and as the color gets darker, the alloy is more ductile and as it

gets lighter they get more brittle.

As represented by the plot, the ductilities predicted for pure elements disagree

with the experimental data for pure elements, for instance, W is predicted to be

ductile and V is predicted to be brittle. Although no specific trends are observed,

higher concentrations of W and Ta seem to sometimes slightly improve the
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ductility of the alloy.

Composition W Ta Cr V Total Weighted VEC del LLD LLD

1 27 27 27 27 108 3.50 0.0901 0.31535

2 37 32 23 16 108 3.49 0.0905 0.31584

3 32 27 16 33 108 3.60 0.0889 0.32004

4 34 35 4 35 108 3.63 0.0880 0.32014

5 34 35 34 5 108 3.36 0.0888 0.29836

6 32 32 33 11 108 3.39 0.0891 0.30276

7 32 32 11 33 108 3.60 0.0892 0.32112

8 30 29 29 20 108 3.46 0.0898 0.31096

9 21 22 22 43 108 3.59 0.0896 0.32166

10 11 11 11 75 108 3.79 0.0881 0.33442

11 36 36 36 0 108 3.33 0.0895 0.29803

12 36 36 0 36 108 3.66 0.0879 0.32171

13 0 108 0 0 108 3.00 0.0891 0.26730

14 0 0 108 0 108 3.00 0.0905 0.27150

15 0 0 0 108 108 4.00 0.0912 0.36480

16 88 88 20 20 216 3.50 0.0642 0.22470

17 216 0 0 0 216 4.00 0.0647 0.25880

18 54 54 0 0 108 3.50 0.0908 0.31780

19 54 0 54 0 108 3.50 0.0904 0.31640

20 54 0 0 54 108 4.00 0.0900 0.36000

21 0 54 54 0 108 3.00 0.0902 0.27060

22 0 54 0 54 108 3.50 0.0900 0.31500

23 0 0 54 54 108 3.50 0.0904 0.31640

24 0 36 36 36 108 3.33 0.0900 0.29970

25 36 0 36 36 108 3.66 0.0903 0.33049

26 76 32 0 0 108 3.29 0.0909 0.29960

27 97 11 0 0 108 3.10 0.0905 0.28055

28 76 0 32 0 108 3.70 0.0901 0.33337

29 97 0 11 0 108 3.89 0.0902 0.35159

30 32 0 76 0 108 3.70 0.0900 0.33300

31 11 0 97 0 108 3.89 0.0901 0.35120

32 32 76 0 0 108 3.70 0.0909 0.33633

33 97 11 0 0 108 3.89 0.0891 0.34731

Table 3.1.3 Summary of the concentrations of the alloys alongside the weighted VEC, ratio Δux,y,z /
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[(Δux,y,z)2]0.5 and the predicted LLD parameter. Values of LLD below 0.3 predict ductile behavior.

3.1.4 Ductility prediction using the Pugh ratio {section 2.2.4} as a function

of the concentration of W, Ta, Cr and V was made for 33 individual alloys.

The ductility parameter plot as a function of the concentration of W, Ta, Cr and V

is given :

Figure 3.1.9 A tetrahedron plotting the ductility determined by the Pugh ratio {section 2.2.4} with

the alloying elements as a decimal representation of the alloying elements W, Ta, Cr and V. The 4

vertices represent the points of pure elemental concentrations and go from 100% to 0% as we

move from one point on any edge to the other. The edges represent binaries, the faces represent

ternaries and the points inside the tetrahedron represent quarternaries. The scale represents the

degree of ductility and as the color gets darker, the alloy is more ductile and as it gets lighter they

get more brittle.
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As represented by the plot, the ductility predictions for pure elements are in good

acceptance with experimental data. Pure elemental V is predicted to be ductile as

observed experimentally as well. W is also predicted to be brittle which is also

true experimentally.

The model predicts that higher concentrations of V and Ta are likely to be

more ductile. There is no direct correlation between the ductility and the varying

concentration of Cr, indicating that the ductility might not be greatly affected by the

concentration of Cr in the alloy.
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Composition W Ta Cr V Total Shear Modulus (GPa) Bulk Modulus (GPa) Pugh Ratio

1 27 27 27 27 108 53.68 252.63 0.2124

2 37 32 23 16 108 57.78 263.47 0.2193

3 32 27 16 33 108 59.48 256.94 0.2314

4 34 35 4 35 108 59.57 249.59 0.2386

5 34 35 34 5 108 87.72 297.30 0.2950

6 32 32 33 11 108 83.99 291.83 0.2878

7 32 32 11 33 108 59.53 252.40 0.2358

8 30 29 29 20 108 72.65 277.55 0.2617

9 21 22 22 43 108 51.22 242.69 0.2110

10 11 11 11 75 108 41.11 221.28 0.1857

11 36 36 36 0 108 86.08 300.40 0.2865

12 36 36 0 36 108 48.82 225.21 0.2167

13 0 108 0 0 108 59.48 231.33 0.2571

14 0 0 108 0 108 86.6 314.66 0.2752

15 0 0 0 108 108 32.18 190.07 0.1693

16 88 88 20 20 216 74.20 285.71 0.2597

17 216 0 0 0 216 137.39 399.02 0.3443

18 54 54 0 0 108 75.81 297.69 0.2546

19 54 0 54 0 108 115.48 357.53 0.3229

20 54 0 0 54 108 78.61 295.50 0.2660

21 0 54 54 0 108 57.54 251.42 0.2288

22 0 54 0 54 108 39.89 218.44 0.1826

23 0 0 54 54 108 77.65 266.07 0.2918

24 0 36 36 36 108 33.57 223.63 0.1501

25 36 0 36 36 108 73.9 267.53 0.2762

26 76 32 0 0 108 101.07 246.57 0.4099

27 97 11 0 0 108 147.05 380.03 0.3869

28 76 0 32 0 108 125.32 375.42 0.3338

29 97 0 11 0 108 138.38 397.78 0.3478

30 32 0 76 0 108

31 11 0 97 0 108 139.26 399.12 0.3489

32 32 76 0 0 108 117 354.55 0.3299

33 97 11 0 0 108 140 401.10 0.3490

Table 3.1.4 Summary of the concentrations of the alloys alongside the Shear modulus, bulk

modulus and the Pugh ratio. Lower values of Pugh ratio predict ductile behavior.
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3.1.5 Ductility prediction using the Cauchy Pressure {section 2.2.5} as a

function of the concentration of W, Ta, Cr and V was made for 33 individual alloys.

The ductility parameter plot as a function of the concentration of W, Ta, Cr and V

is given :

Figure 3.1.10 A tetrahedron plotting the ductility determined by the Cauchy pressure {section

2.2.5} with the alloying elements as a decimal representation of the alloying elements W, Ta, Cr

and V. The 4 vertices represent the points of pure elemental concentrations and go from 100% to

0% as we move from one point on any edge to the other. The edges represent binaries, the faces

represent ternaries and the points inside the tetrahedron represent quarternaries. The scale

represents the degree of ductility and as the color gets darker, the alloy is more ductile and as it

gets lighter they get more brittle.
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The model predicts that most alloys have bonding that is more metallic and

non - directional in nature resulting in ductile elements. However, one W-Ta binary

is predicted to possess directional bonding and is hence predicted to be brittle.

This model is not in very good acceptance with experimental data as pure W is

predicted to be ductile by this model but is actually brittle.
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Composition W Ta Cr V Total Cauchy Pressure (GPa)

1 27 27 27 27 108 +

2 37 32 23 16 108 +

3 32 27 16 33 108 +

4 34 35 4 35 108 +

5 34 35 34 5 108 +

6 32 32 33 11 108 +

7 32 32 11 33 108 +

8 30 29 29 20 108 +

9 21 22 22 43 108 +

10 11 11 11 75 108 +

11 36 36 36 0 108 +

12 36 36 0 36 108 +

13 0 108 0 0 108 +

14 0 0 108 0 108 +

15 0 0 0 108 108 +

16 88 88 20 20 216 +

17 216 0 0 0 216 +

18 54 54 0 0 108 +

19 54 0 54 0 108 +

20 54 0 0 54 108 +

21 0 54 54 0 108 +

22 0 54 0 54 108 +

23 0 0 54 54 108 +

24 0 36 36 36 108 +

25 36 0 36 36 108 +

26 76 32 0 0 108 +

27 97 11 0 0 108 -

28 76 0 32 0 108 +

29 97 0 11 0 108 +

30 32 0 76 0 108 +

31 11 0 97 0 108 +

32 32 76 0 0 108 +

33 97 11 0 0 108 +

Table 3.1.5 Summary of the concentrations of the alloys alongside the Cauchy pressure. Positive

values of Cauchy pressure predict ductile behavior.
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3.2 Screening for ductility using approximate and phenomenological models :

The Rice model is by far the only analytical and most physics informed ductility

prediction model discussed in this work. However, it is also computationally most

expensive due to the large number of DFT calculations involved. The extremely

large compositional space of HEAs makes it practically impossible to run all the

possible alloys through the Rice model as it would be extremely time consuming

and computationally expensive.

One way to tackle this problem is by setting up surrogate models for

screening the vast number of possible alloys to a manageable number which can

then be analyzed using the Rice model. The requirements for this method to

improve the computational efficiency is that these surrogate models need to be in

good agreement with the Rice model and they should be less expensive

computationally. Five ductility models are discussed in this work which are either

an approximation of the Rice model or are phenomenological in nature. This

makes them inherently less reliable and accurate. However, all of the models

require a significantly lower computational time and resources than the Rice

model to calculate which makes them relatively more efficient.

Following sections analyzes the viability of each framework as a surrogate model

for screening :

3.2.1 Rice model vs Approximate D parameter {Section 2.2.3} :
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Figure 3.2.1 Correlation between the D parameter for isotropic materials using the Rice model

(y-axis) vs the approximate D parameter (x-axis) using the surrogate model {Section 2.2.3}. The

area shaded in green is ductile according to the Rice model on the Y-axis and the higher values of

the Approximate D on X-axis predicts higher ductility.

It is evident from the plot that the surrogate model described in {section 2.2.3} is

in good agreement with the Rice model. It can be concluded that this approximate

formulation can be used as a surrogate model to predict the ductility from a large

pool of HEAs to screen out the alloys that are more likely to be ductile. This can

greatly help reduce the time and computational expense by limiting the number of

alloys to be studied using the Rice model.
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3.2.2 Rice model vs LLD {Section 2.2.2} :

Figure 3.2.2 Correlation between the D parameter for isotropic materials using the Rice model vs

the LLD parameter {Section 2.2.2}. The area shaded in green is ductile according to the Rice

model on the Y-axis and the values of LLD on the X-axis with values on the left of the blue line, i.e.

below 0.3 are predicted to be ductile.

It is evident from the plot that the phenomenological model described in {section

2.2.2} is not in a good agreement with the Rice model. Even though there is a

correlation, the two parameters disagree for multiple alloys. Even so, the

computationally inexpensive nature makes the LLD parameter much more

efficient than the Rice model. It can be concluded that this formulation can be
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used as a surrogate model to predict the ductility from a large pool of HEAs to

screen out the alloys that are more likely to be ductile. The poor correlation

however would suggest that the accuracy of the screening would not be very

reliable.

3.2.3 Rice model vs Pugh ratio {Section 2.2.4} :

Figure 3.2.3 Correlation between the D parameter for isotropic materials using the Rice model vs

the Pugh ratio {Section 2.2.4}. The area shaded in green is ductile according to the Rice model on

the Y-axis and the lower values of the Pugh ratio on the X-axis predicts higher ductility.
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The Pugh ratio described in {section 2.2.4} is not in a good agreement with the

Rice model. It can be concluded that this formulation cannot be used as a

surrogate model to predict the ductility as even if the method is computationally

less expensive , the accuracy of the screening would not be very reliable.

3.2.4 Rice model vs Cauchy pressure {Section 2.2.5} :

Figure 3.2.4 Correlation between the D parameter for isotropic materials using the Rice model vs

the Cauchy ratio {Section 2.2.5}. The area shaded in green is ductile according to the Rice model

on the Y-axis and the negative values of Cauchy pressure on the X-axis with values on the left of

the blue line, i.e. below 0 are predicted to be ductile.
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The Cauchy pressure described in {section 2.2.5} is not in a good agreement with

the Rice model. It can be concluded that this formulation cannot be used as a

surrogate model to predict the ductility as even if the method is computationally

less expensive, the accuracy of the screening would not be very reliable.

3.2.5 Rice model vs VEC{Section 2.2.6} :

Figure 3.2.5 Correlation between the D parameter for isotropic materials using the Rice model vs

the VEC {Section 2.2.6}. The area shaded in green is ductile according to the Rice model on the

Y-axis and the lower VEC values on the X-axis are predicted to be ductile.
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The VEC described in {section 2.2.6} is not in a good agreement with the Rice

model. It can be concluded that this formulation can not be used as a surrogate

model to predict the ductility as even if the method is computationally less

expensive, the accuracy of the screening would not be reliable.
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3.3 Cluster expansion for the prediction ground state energies :

In this work, we make use of ATAT to develop a CE model for predicting the bulk

energies of the HEAs. The ATAT uses a perfect crystal lattice structure as

reference and the ground state energies of a few structures along with the

structures themselves for calculating the correlation functions. For every added

structure, a corresponding CV score is calculated which is an indicator of the

accuracy of the correlation functions. Weights can be assigned to some specific

alloys during the calculations.

We make use of the datasets obtained in {section 2.2.1 and 2.1.2} to

train the CE model for calculating the correlation functions. Additional weights of

3x were assigned to the pure elements as it was found to improve the accuracy.

The enthalpies of mixing per unit atom[29] were computed as :

ΔHmix(𝝈) = Etotal(𝝈) - ( ∑k
p=1 cp . Etotal (p) ) (xxiv)

Where,

ΔHmix(𝝈) is the enthalpy of mixing per atom for alloy 𝝈,

Etotal(𝝈) is the energy per atom of the alloys 𝝈,

Etotal (p) is the total energy of pure element p,

cp is the concentration of the pure element p in alloy 𝝈.

The CV score obtained was 0.003 which is considered good and it can be

concluded that the CE model has good levels of predictive accuracy.
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Chapter 4

Limitations and future scope of the study

4.1 Rice model for anisotropic materials and for different crack systems :

The Rice model is an analytical model that makes use of the Stroh formalism for

the LEFM solutions. This formalism is defined well for cubic anisotropic systems.

However, due to the limited scope of this research which only studies W-Ta-Cr-V

based HEAs that are mostly found to be close to isotropic systems {see table

3.1.1}, the calculations were made assuming the alloys to be isotropic. In the

future, this work can be extended to study anisotropic systems as well to have a

more general framework for ductility prediction.

Also, due to the 110/112 crack system being the most active, this

was the only system studied. There are at least 15 other possibly active crack

systems[28] out of which the 100/110 system is significant[6]. These systems need

to be studied to obtain a holistic understanding of the ductility in these alloys.
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4.2 Calculations for pure Cr :

The DFT methodologies used in this research seem to be inconsistent with the

experimental data as well as data from other computational methods with a high

error. Due to this reason, the data sets for this particular alloy containing 100 % Cr

were not calculated and were taken from other works of research[20][30]. The

investigation for this anomaly and developing a DFT framework that successfully

gives out the correct data is an interesting problem that needs to be addressed in

the future.
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4.3 Cluster expansion for predicting γSurf , γUSF and elastic constants :

The current research successfully predicts the ground state energies using a CE

model using ATAT with high accuracies. However, the Rice model needs

additional parameters to predict the ductility of these alloys which are the γSurf ,

γUSF and elastic constants. Once we have a good CE framework for predicting all

these parameters, a holistic framework to predict the ductility of any similar HEA

can be developed that will greatly improve the efficiency in this research area.
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4.4 Verification of ductility predictions using state of the art experimental methods

Computational models like this are a cost effective way of predicting material

properties without actually manufacturing or performing experiments. But these

methods are never fully perfect and we always need experimental validation for

accepting the accuracy of these models as well as for verification of the predicted

results. Here we discuss a state of the art experimental method for manufacturing

and testing the ductility of Ti-W-Ta-Cr-V based HEAs.[38]

The fabrication procedure starts with 99.9% pure W (1.21 µm), Ti (45 µm),

V (< 75 µm), Cr (63 µm) and Ta (< 45 µm) powders. These are mixed using a

tubular shaker-mixer at 30 rpm for 3 hours. Steel balls in a ratio of 1:1 were added

for a better mixing. The system was insulated with carbon felt-covered graphite

mold to prevent heat loss. This mixture is then sintered at 1500 oC at an axial

pressure of 50 MPa applied in a vacuum of 10-3 torr for 10 minutes.

These disc shaped samples are then subjected to room temperature

compression tests on cylindrical samples with 6 mm in height and 4 mm in

diameter using an Instron 5982 (Instron, USA) machine with a strain rate of 10-3/s.

Additionally, micro-Vickers hardness tests (402MVD, Wolpert Wilson

Instruments, Germany) can be conducted for calculating the hardness of the

samples. For that, the Disk-shaped sintered samples need to be cut through their

cross sections for performing the tests.

This method can be used for manufacturing the W-Ta-Cr-V based HEAs studied

in this research and the hardness and the fracture strains given by the room

temperature compression tests can be used as measures of ductility. These

results can be then compared with the computational model for studying the

validation of the model as well as verification of the predicted results.
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Chapter 5

Conclusion

We analyzed the analytical Rice model to calculate the ductility predictions for

W-Ta-Cr-V based bcc HEAs and were successfully able to get results that seem

to be in accordance with the existing computational and experimental data. The

pure elements V and Ta were found to be ductile in nature whereas W and Cr

were predicted to be intrinsically brittle. The concentrations of V and Ta seem to

slightly improve the ductility and the concentrations of W tends to reduce the

ductility of the HEAs although the correlation seems to be weak. There seems to

be no correlation between the concentrations of Cr and the ductility.

Other approximate as well as phenomenological ductility prediction

frameworks were also investigated to check for their viabilities as surrogate

models for screening of the potentially ductile alloys before calculating the ductility

using the DFT intensive Rice model. Out of all the ductility parameters studied,

the D parameter {section 2.2.3} was the only parameter that shows a good

correlation with the Rice model and hence has a good potential to serve as a

relatively computationally inexpensive screening method for these alloys before

calculating the ductility using the Rice model.

Finally, a predictive CE with good accuracy of prediction of ground

states was set up to predict the ground state energies of W-Ta-Cr-V based bcc

HEAs. This takes us one step closer towards formulation of a holistic prediction

model for calculating the ductility of W-Ta-Cr-V based bcc HEAs.
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Appendices

A.1 LEFM solution for crack propagation :

This brief summary is based on the book Anisotropic elasticity in an elastic

medium[21] and related works[28]. It makes use of the Eshelby-Reid-Shockley

formalism and the Stroh formalism[21] to obtain a general solution for a sharp crack

tip propagation in an anisotropic, homogeneous elastic medium under uniform

stress. The solutions are for a 2-dimensional plane-strain assumption.

A.1.1 Eshelby-Reid-Shockley formalism :

The stress-strain relationship is given by :

𝛔ij = Cijks . εks (xxv)

Where,

𝛔ij is the stress applied on a material

Cijks is the stiffness matrix of the material

εks is the resulting strain on the material

The equation of equilibrium for a material is given by :

∇ . 𝛔ij + Fj = 0 (xxvi)

Where,

∇ . 𝛔ij is the divergence of the stress on the material

Fj is the external force on the system
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Assuming the stiffness matrix has all elastic symmetries,

Cijks = Cksij = Cjiks = Cjisk = Cskji = Cksji = Cskij (xxvii)

For plane-strain assumption, the solution is a linear equation in x1 and x2. Let z be

a linear function in x1 and x2 such that :

z = x1 + p.x2 (xxviii)

The displacement field is thus given by :

ui = ai . f(z) (xxix)

Where,

ui is the displacement field

ai is an arbitrary vector

f(z) is an arbitrary function of z

Taking the partial derivative of u with respect to s and then j give us the following

equations :

uk,s = ak . (𝜹1s + p.𝜹2s) f ’(z)

uk,sj = ak . (𝜹1s + p.𝜹2s) (𝜹1j + p.𝜹2j) f ”(z) (xxx)

Using equation (xxiv) and (xxix),

{ Ci1k1 + p(Ci1k2 + Ci2k1) + p2(Ci2k2) } . ak = 0 (xxxi)

From here on for simplification, we use the following notations : (xxxii)

69



Q = Ci1k1

R = Ci1k2

T = Ci2k2

Hence we can write equation (xxx) as follows :

{ Q + p(R + RT) + p2T } . ak = 0 (xxxiii)

This is an eigenvalue problem. For non-trivial solution,

| { Q + p(R + RT) + p2T } | = 0 (xxxiv)

Equation (xxxi) is a sextic equation in p. This equation will have 3 pairs of

complex conjugates as roots[21]. Let pa and aa be the eigenvalues and

eigenvectors respectively. Also, without the loss of generality, let Im pa be

positive. This shows that the roots are of the form :

pa+3= conjugate(pa) (xxxv)

aa+3= conjugate(aa) (xxxvi)

Superimposing all to form a general solution :

u = ∑3
a=1 { aa . fa(za) + conjugate(aa) . fa+3(conjugate(za)) } (xxxvii)

A.1.2 Stroh formalism :

Equation (xxxviii) can be rearranged to :
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-1/p { Q + p. R } . a = { RT+ p . T } = b (xxxviii)

We now define a stress function Φ :

Φ = bi f(z) (xxxix)

By using Hooke’s law in equation (xxiv), (xxix) and (xxxvii),

𝛔i1 = -p . bi . f ’(z) (xl)

𝛔i2 = bi . f ’(z) (xli)

Using symmetry of the stress tensor, i.e. 𝛔12 = 𝛔21 ,

Φ1,1 + Φ2,2 = 0 (xlii)

This gives us the equation,

b1 + p . b2 = 0 (xliii)

Writing the cumulative general solution for u and Φ,

u = ∑3
a=1 { aa . fa(za) } + { conjugate(aa) . fa+3(conjugate(za)) } (xliv)

Φ = ∑3
a=1 { ba . fa(za) } + { conjugate(ba) . fa+3(conjugate(za)) } (xlv)

For most applications, fawill have the same functional form[21]. We assume that

form to be as follows, without the loss of generality :

fa (za) = f (za) . qa (xlvi)
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fa+3 (conjugate(za)) = conjugate(f (conjugate(za)) . conjugate(qa) (xlvii)

Where,

qa and conjugate(qa) are complex conjugates.

Hence, we now have the following solutions for u and Φ.

u = 2 . Re { A <f(z*)> } (xlviii)

Φ = 2 . Re { B <f(z*)> } (xlix)

Where,

A and B are Stroh matrices such that :

A = [a1 a2 a3 ] (l)

B = [b1 b2 b3 ] (li)

The function <f(z*)> is given by :

<f(z*)> = diag[ f(z1) f(z2) f(z3) ] (lii)

Since a and b are related by definition, for any problem, the unknowns to be

determined are function f(z*) and vector q. (liii)

A.1.3 Solution for a crack tip under uniform loading in a 2-D anisotropic

homogeneous elastic medium :

Using the Stroh formalism, we formulate an LEFM solution for a crack tip under

uniform loading in a 2-D anisotropic homogeneous elastic medium. We assume

that the uniform stress is applied at infinity and is given by 𝞂ij
inf. Let the crack
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length be 2a, centrally located at x2 = 0, |x1| < a. The crack surfaces are assumed

to be traction free.

We define the stress function as follows[28] :

Φ = 0 , for |x| = inf

Φ = -x1 . tT , for x2 = 0 , |x1| < a

Where,

tT = [𝛔inf21 𝛔inf22 𝛔inf23 ]

According to these boundary conditions, the stress vanishes at infinity and a

uniform traction tT is applied to the upper crack surface and -tT is applied to the

lower crack surface. Hence, the solution is given for these boundary conditions as

:

u = Re{ A <f(za)> B-1 } tT (liv)

Φ = Re{ B <f(za)> B-1 } tT (lv)

f(za) = ( za2 - a2 )0.5 - za (lv)

Where,

A and B are normalized Stroh matrices defined in equations (xlvii) and

(xlviii).

Using equations (xxxix) and (xl), the stresses are given by :

t1 = [ 𝛔11 𝛔12 𝛔13 ]T

t1 = -Re { B <f,2(za)> B-1 } tT (lvi)

t2 = [ 𝛔21 𝛔22 𝛔23 ]T

t2 = Re { B <f,1(za)> B-1 } tT (lvii)
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The stress intensity factors at crack tips are :

K = ( π . a )0.5 tT (lviii)

Performing coordinate transformation at near crack tip solution to polar

coordinates and shifting the origin to (a,0,0),

za = r . (cos𝜃 + pa sin𝜃) + a (lix)

This gives us, as r approaches 0,

fa,1 (za) = ( a / 2 . r (cos𝜃 + pa sin𝜃))0.5 (lx)

fa,2 (za) = ( pa . a / 2 . r (cos𝜃 + pa sin𝜃))0.5 (lxi)

The 𝜃 dependence of the stress components in the cylindrical - polar coordinates

as r approaches 0 for pure mode Ka loading. We obtain the asymptotic limit for the

stress intensity factors from equation (lviii),

ta1 = -Re {B < pa / (cos𝜃 + pa sin𝜃)0.5 > B-1 } K (lxii)

ta2 = -Re {B < 1 / (cos𝜃 + pa sin𝜃)0.5 > B-1 } K (lxiii)
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