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ABSTRACT 

 

This thesis addresses the complex challenge of path planning for Unmanned 

Ground Vehicles (UGVs) in areas where traditional navigation systems are inadequate, 

such as unstructured or off-road military zones. Recognizing the limitations of current path 

planning algorithms, which primarily focus on optimizing for the shortest path and often 

fail to account for variability and risks, this research proposes an enhanced Hyperstar 

algorithm. This  approach not only considers the fastest route but also integrates maximum 

delays and visibility risks into its computation, ensuring a balance between swift mission 

completion and concealment from adversaries. 

Utilizing terrain maps and incorporating uncertainties in map data through Monte 

Carlo simulations, the study evaluates the algorithm's effectiveness across various 

scenarios, including different levels of visibility risk, maximum delay, and bidirectional 

navigation challenges. The algorithm's adaptability is demonstrated through numerical 

examples and terrain tests, highlighting its ability to offer multiple route choices so the 

vehicle can adjust to environmental changes. 
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CHAPTER 1 

 

INTRODUCTION 

 

Modern navigation systems have significantly evolved, thanks to the latest 

technology that assists in finding the quickest paths for journeys. These systems work well 

in cities and highways, where the roads are well-defined. But in places that do not have 

clear roads or any roads at all, such as military zones, unmanned ground vehicles (UGVs) 

are critically important as they can operate where manned vehicles cannot (Roy et al., 

2018). UGVs require planning to avoid delays and detection (Zhao et al., 2021). They 

perform tasks such as gathering intelligence, identifying enemy locations, transporting 

necessary supplies, safely handling bombs, discreetly detecting hazardous substances like 

chemicals or radiation, aiding in the rescue and evacuation of injured soldiers, and 

establishing communication in difficult areas (Chabini & Lan, 2002). The goal of this thesis 

is to develop path-planning techniques that balance between quick mission completion and 

avoiding being seen to boost the effectiveness and safety of UGVs. To navigate through 

complex and uneven terrains swiftly and safely, a global path planning strategy is essential. 

Some existing path planning algorithms focus on optimizing a single criterion, such as the 

shortest distance path; however, for effective navigation in off road environments, 

especially for military vehicles, a path planning approach that simultaneously considers 

travel time variability and visibility is required to ensure reliable and efficient traversal.  

Travel times were inputs to the path planning. The range of travel times were 

computed for different types of terrain under both dry and wet conditions, considering the 

variations in soil friction coefficients for these conditions. The longest and shortest times 
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it could take the vehicle to traverse a segment were then chosen for use in the planning. 

The difference between the longest time and the shortest time was the maximum delay. 

This information allows estimation of the best and worst-case scenarios for travel time and 

planning routes to minimize potential delays. 

  Another criterion was visibility risk, which combines how likely a vehicle is to be 

seen by adversaries with the potential consequences of destruction. The greater the risk of 

the vehicle being seen, the higher the chance of it being compromised. Thus, managing this 

risk in the path planning is crucial for a successful mission where the vehicle remains 

undetected. The offroad challenge is addressed through a framework that starts by 

discretizing the environment into a grid and leverages the key terrain classifications such 

as soil types, slope variations, and surface roughness, to estimate vehicle speeds across the 

terrain. Inaccuracies in elevation maps can introduce a level of uncertainty, particularly in 

assessing the likelihood of detection. This thesis uses a method for creating possible 

realizations of maps (based on reported map error rates) that show which areas are visible.  

The actual path planning is performed using a modified version of the Hyperstar algorithm. 

The modification incorporates the likelihood of being seen to the previously considered 

travel time while accounting for potential delays (Bell et al., 2012; Hosseinloo et al., 2012) 

(Spiess & Florian, 1989). Instead of just going for the fastest route, the Hyperstar algorithm 

offers the vehicle multiple route options. The modification prioritizes the vehicle's safety, 

allowing for decisions between these routes, giving the vehicle flexibility. This thesis 

outlines a methodology for generating a suite of potential routes with various deviations, 

aiming to enhance the adaptability of navigation systems within unstructured 
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environments. While the study stops short of demonstrating the significance of such 

adaptability, it lays the groundwork for future research that could transform navigation 

practices across diverse and challenging terrains. 

 

1.1 Research Objectives 

The essence of this research lies in enhancing the efficiency and safety of UGV operations, 

addressing challenges of navigating in unstructured environments. Recognizing the nature 

of this challenge, this study uses a methodology that not only seeks efficiency in travel but 

also prioritizes minimizing exposure to potential threats. The following objectives are 

designed to guide the exploration and development of advanced pathfinding solutions. This 

research aims to: 

• Develop a cost-effective path with options for UGVs from a starting point to a 

destination that minimizes travel time and visibility risk (detection by the enemy 

vehicle) in an unstructured environment, 

• Quantify the visibility risk,  taking into account the errors present in maps, and 

• Incorporate a method to assess delay in an unstructured environment. 

 

1.2 Contribution 

In our research, we found a path in an unstructured environment by modifying a path-

finding algorithm called the Hyperstar algorithm (Bell et al., 2012). Due to possible delays 

and the risk associated with the visibility of each link, there is a growing interest in 

algorithms that can provide several potentially optimal paths, collectively known as a 

hyperpath. Florian and Spiess‘s  algorithm (Spiess & Florian, 1989) for generating 



 4 

hyperpaths in transit networks is adapted in an unstructured environment by assuming that 

military vehicles follow the safest possible route whenever a choice of path arises. 

Traditional algorithms such as Dijkstra's (Saranya et al., 2016) and A*(Chabini & Lan, 

2002) emphasize finding the shortest path based on predefined criteria but do not preplan 

the potential need for route adaptability in response to environmental changes or 

inaccuracies. The challenge with these approaches is their inherent limitation in flexibility; 

they are designed to calculate the best route from start to finish without accounting for the 

possibility of needing to switch paths midway.  Having just a single path can be particularly 

problematic in scenarios where UGVs encounter unexpected obstacles or changes in the 

terrain that render the original path impractical or unsafe. Moreover, when multiple routes 

are considered by some algorithms (Eppstein, 1998), these alternatives are often not 

interconnected, restricting the UGV's ability to transition smoothly between paths. This 

limitation is noted by Sacramento et al. (2019), where the focus has been on improving the 

efficiency and reliability of single-route planning, with less emphasis on the flexibility 

required in complex or hazardous environments. This research seeks to address these gaps 

by implementing a modified version of the Hyperstar algorithm in an unstructured 

environment which not only plans multiple routes, but the paths are interconnected, 

allowing for the vehicle to switch in response to environmental changes.  Most existing 

literature considers visibility (detection) in a deterministic way, ignoring the errors in the 

terrain maps they rely on (Nackaerts et al., 1999). This thesis considers the errors in the 

maps in the determination of visibility risk.  
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1.3 Thesis Organization 

The structure of this thesis is as follows. Chapter 2 begins with the concept of path planning 

and its importance in various fields like autonomous vehicle and robot navigation as well 

as the idea guiding the establishment of these path planning algorithms. The chapter goes 

ahead to identify some gaps in literature with regards to path planning especially in 

handling uncertainties and considering multiple objectives. Chapter 3 explains how the 

environment was modelled and how risk was represented. The chapter also delves further 

into how we computed travel time for the paths to be generated. An approach for estimating 

maximum delays in travel time is also shown in this chapter with a description of how 

travel time, delay, and visibility were considered. Chapter 4 illustrates implementing the 

algorithm to generate multiple paths in the environment and analysis of the results. Chapter 

5 summarizes the research major findings and discusses the limitations. 
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CHAPTER 2 

 

LITERATURE REVIEW 

 

 

Path planning is a critical component in autonomous vehicles, and various other fields 

requiring navigation through space. It involves generating a viable route from a starting 

point to a destination while avoiding obstacles and optimizing for certain criteria (e.g., 

shortest distance, minimal time, or lowest energy consumption). Path planning in this 

context (movement through an off-road, adversarial environment) requires consideration 

of three interactive elements illustrated in Figure 1.  

 

                                                     Figure 1: Path Planning Problem Elements 

 

2.1 Environment Representation 

The initial stage in solving a path planning problem is to represent the environment 

geometrically or graphically. Several methods of representing the environment have been 

developed for use in path planning. These representations are classified into two 

groups(Hua et al., 2022) : 
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• Classical Approach  

• Reactive Approach 

2.1.1 Classical Approach 

The classical approach to path planning often involves creating a static model of the 

environment. In this model, all the obstacles and goals are mapped out in advance (Lv & 

Feng, 2017). The classical approach works well in predictable settings but can struggle 

with unexpected obstacles or changes (Zhang et al., 2020). Other challenges with respect 

to this approach are that it is highly computationally expensive, and it fails to respond to 

uncertainty in the environment (Marzouqi & Jarvis, 2006). The classical approach can also 

be further divided into Cell Decomposition, Roadmap, and Artificial potential field 

approaches (Adzhar et al., 2020). 

2.1.1.1 Cell Decomposition  

The cell decomposition method divides the region into non-overlapping cells. Pure cells 

are the cells without obstacles while corrupt cells are the cells that contain obstacles 

(Lingelbach, 2015). The cell decomposition method can be further divided into adaptive, 

approximate, and exact methods. 

• Adaptive method.  

Adaptive cell decomposition follows the basic idea of regular cell decomposition 

by using information from open areas (Wang et al., 2022). This method is designed 

to minimize the quantity of cells in an open space, capitalizing on the redundancy 

of free space information in standard cell decomposition (Wang et al., 2022). The 

adaptive method faces challenges, especially in changing environments. Whenever 
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there is a change in the surroundings, it often requires updating the entire map to 

reflect these changes accurately (Lingelbach, 2015). Also, the approach is 

computationally expensive (Lv & Feng, 2017). 

• Approximate cell decomposition.  

The approximate cell decomposition is when the grid is laid over a planning space. 

The cells are designed with predetermined shapes and sizes, making them simple 

to use. This method is termed approximate because the boundaries of physical 

objects do not always align with the predefined cell boundaries. However, the issue 

relating to this method is that an object smaller than the grid size will result in the 

entire grid being occupied and will be labelled as occupied leading to a conservative 

estimate of the free space and some space that is passable will be labelled as 

impassable (Zhu & Latombe, 1989). 

• Exact cell decomposition method.  

In this approach, the cells laid over the environment do not have a predefined shape 

and size, but they are determined based on the predefined shape and size of the 

obstacle within it (Zhu & Latombe, 1989). The boundaries of the cell correspond 

to the boundaries of the free space available. However, this method is quite difficult 

to apply in an off-road environment where there are no predefined obstacles (Zhu 

& Latombe, 1989). 

2.1.1.2 Roadmap approach  

In this approach, the links between the robot's free space are represented as a collection of 

one-dimensional curves (Varadhan et al., 2006). In comparison to cell decompositions, 
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roadmaps offer a significant advantage in terms of the quantity of nodes a planner must 

look through to identify a path (Hauser & Latombe, 2010). Some examples of the road map 

approach are explained below: 

• Voronoi Diagrams 

The method involves paths or edges that are equidistant from every point in the 

obstacle region. The paths are generated so they stay away from obstacles. This 

way, if the robot follows these paths, it will naturally avoid obstacles. However, 

most of the generated paths from this approach are inefficient (Hauser & Latombe, 

2010). 

• Probabilistic Roadmaps 

Probability road maps tend to generate paths in a large dimensional space. The 

approach randomly samples large space points and connects them into a roadmap. 

One issue with this method is its inefficiency in narrow, confined spaces due to the 

points are chosen randomly and the likelihood of capturing a random point in a 

small space is low, resulting in a lack of connectivity. (Kavraki et al., 1996). 

• Visibility Graphs 

The visibility graphs method comprises straight-line segments that connect the 

nodes of polygonal obstacles without crossing the interiors of the obstacles. These 

straight lines form the path which the vehicle will traverse (Kumar et al., 2022). 

This approach is not ideal because the calculated path is tangential to the obstacles, 

which can lead to the robot colliding with them. (Gao et al., 2019). 
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2.1.1.3 Artificial Potential Field Approaches 

Artificial potential fields are another major type of representation used in path planning. 

This approach applies a mathematical function over the entire area of the robot's travel. 

(Hwang & Ahuja, 1992). This method considers the robot as a point influenced by fields 

generated by goals and obstacles in the environment, like an electron in an electric field. 

(Sabudin et al., 2021). The closer the robot is to an obstacle or goal, the stronger these 

forces are. The robot moves in the direction these forces push or pull it (Agarwal & Akella, 

2022). This method can work in both simple and complex spaces. However, one issue with 

this method is that sometimes the robot might get stuck in a spot that is not the goal because 

of these forces (Loquercio et al., 2018). 

2.1.2 Reactive approach 

The reactive approach can handle uncertainty. The reactive approach is a type of motion 

planning that is designed to respond to changes in the environment in real time. It is 

typically used in robot navigation where the robot needs to navigate through a dynamic 

environment such as a warehouse or a manufacturing facility (Silva & Ribeiro, 2003). A 

reactive motion planner works on continuously monitoring the environment and the robot’s 

current state and generating a sequence of actions in response to any changes it detects. 

Reactive motion planners are often used in conjunction with other types of motion planning 

algorithms such as probabilistic or sampling-based planners to provide a more robust and 

flexible solution for navigating through dynamic environments (LaValle & Kuffner, 2001). 
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2.2 Cost Function and Optimization Criteria 

Path planning involves computing optimal paths for robots or vehicles to navigate from a 

starting point to a target location while considering various criteria such as path length, 

computational complexity, completeness, and specific cost functions (Liu et al., 2017). 

Cost functions play a significant role in evaluating the quality of paths and are often used 

to minimize certain parameters like path length, time, energy consumption, or threat 

potential (Vlaski & Sayed, 2019).  

Several studies have concentrated on optimization criteria and cost functions to either 

maximize or minimize specific objectives. For instance, Karaman and Frazzoli (2011) 

emphasize the significance of minimizing cost functions related to path length or execution 

time in their optimization criteria. Similarly, Shorakaei et al. (2014) focus on minimizing 

both path length and potential path threats in their optimization objectives for unmanned 

aerial vehicles. Additionally, path planning criteria often involve addressing challenges 

such as obstacle avoidance, energy optimization, and dynamic environments.  Karaman 

and Frazzoli (2011) investigated multiple destination path planning for mobile robots, 

aiming to find paths that pass through the fewest obstacles while optimizing the mobile 

node's trajectory.  

 Another form of cost criteria that is considered in off-road path planning is risk. Risk 

management is a vital factor that must be considered for safe and effective (Revela, 2001). 

One aspect of this risk management involves stealth, where minimizing exposure to 

potential observers or other hazards becomes essential. Stealth is important in off-road 

navigation because it considers the unique and potentially difficult circumstances 
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encountered in an off-road environment (Revela, 2001). Marzouqi and Jarvis (2006) 

consider the risk of interaction with unfriendly agents and model the area in the line of 

sight of enemy towers as risky. However, the enemy movements and behavior are likely 

dynamic. Carr (2014) discusses the usefulness of visibility analysis for calculating 

intervisibility and zones of visual influence across various application areas. Revela (2001) 

introduced a novel approach for stealth navigation of a mobile robot in a cluttered 

environment. The robot must plan a covert path to reach a specified destination while 

minimizing its exposure to hostile sentries.Roy et al. (2018) uses a binary risk 

representation, but the areas deemed risky may need to be travelled anyway (in certain 

circumstances) and the area deemed safe might have some risk associated with it.  

Risk is usually a product of the consequence and its probability (Hosseinloo et al., 2012). 

In path planning, risks are typically categorized as 'Low-Probability-High-Consequence' 

(LPHC) or 'High-Probability-High-Consequence' (HPHC) (Hosseinloo et al., 2012). LPHC 

risks are those where the chance of occurrence is low, but the consequences, like 

destruction, are severe. Due to their rarity, quantifying the incident probability of LPHC 

risks is challenging, so the focus is more on minimizing the consequences (Chen et al., 

2021). HPHC risks, on the other hand, have both a high chance of occurrence and severe 

consequences. Depending on available data, efforts may aim to minimize either the 

incident probability, the consequences, or both.  

2.3 Path Planning Algorithms 

Various path planning algorithms have been developed to address the challenges in 

unstructured environments. Examples of these challenges include the presence of 



 13 

obstacles, rough terrain, and unknown surroundings leading to uncertainty in the 

environment. With these considerations, the selection of a suitable algorithm is a key for 

successful operation. Path planning algorithms can be divided into traditional algorithms 

and modern intelligent algorithms (Wang et al., 2022). Traditional path planning 

algorithms such as Dijkstra, and A* rely on precomputed paths based on static maps of the 

environment (Wei & Ren, 2018). On the other hand, modern intelligent path planning 

algorithms incorporate advanced techniques like machine learning and neural networks to 

allow for real time learning in dynamic environments with changing conditions (Albizu et 

al., 2020). Another way of grouping path planning approaches is global path planning and 

local path planning (Wei & Ren, 2018). Global path planning involves planning paths in a 

completely known environment (position and shape of obstacles) (Wei & Ren, 2018). 

Global path planning first needs to establish an abstract global environment map model 

based on known global environment information and then uses the search algorithm to 

obtain the global optimal path on the whole region (Hua et al., 2022). At present, commonly 

used methods for global path planning include genetic algorithms, fast random search tree 

algorithm and bee colony algorithm (Hua et al., 2022). There are other heuristic algorithms 

such as the A* and Rapidly exploring Random Tree (RRT), which explores the search 

space by randomly building a space-filling tree (Xu et al., 2022), and Probabilistic 

Roadmap Method (PRM) which constructs a network of randomly sampled points in the 

free space of the environment (Xu et al., 2022). Local path planning is real time dynamic 

path planning based on local information collected by sensors during the navigation of the 

off-road vehicle (Xu et al., 2022). The positions of obstacles in the environment are 
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completely unknown so the robot/vehicle moves about the environment with sensors (Xu 

et al., 2022).  Local path planning algorithms are designed to react to changes in the 

immediate surroundings (Lv & Feng, 2017). These algorithms focus on making fast 

decisions using current data from sensors like LIDAR, radar, and cameras. This data helps 

the system quickly understand what's around it (Hodson, 2022).   

In the area of robotic and autonomous navigation, there is a growing interest in developing 

new ways for vehicles to find their paths. Researchers are creating hybrid algorithms that 

mix different path planning strategies to better handle unpredictable spaces with moving 

obstacles (Sabudin et al., 2021). These hybrid algorithms aim to combine the strengths of 

global and local path planning strategies to navigate complex environments efficiently 

while considering dynamic obstacles and other constraints (Chen et al., 2019; Dinelli et al., 

2023). Furthermore, Chen et al. (2019) proposed a hybrid path planning algorithm tailored 

for unmanned surface vehicles operating in complex environments with dynamic obstacles. 

Yan et al. (2021) conducted an analysis of a hybrid global path planning algorithm for 

different environments, emphasizing the importance of hybrid algorithms in achieving safe 

and efficient path planning for automated guided vehicles and enhancing traffic safety. Yan 

et al. (2021) introduced a hybrid PSO-GSA path planning algorithm that combines the local 

search capability of the gravitational search algorithm (GSA) with the social thinking 

ability of the particle swarm optimization (PSO) algorithm for robot path planning in static 

environments with danger zones. The development of hybrid path planning algorithms has 

also shown a significant advancement in the field of robotics, enabling efficient navigation 

in complex and dynamic environments. By combining global and local planning strategies, 
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these algorithms offer enhanced adaptability and performance for various robotic 

applications (Chen et al., 2019; Bell et al., 2012).  

Zhao et al. (2021) uses various techniques in creating alternate paths for navigation. These 

paths have been generated using two main types of algorithms: the k-shortest path 

algorithms, as introduced by Eppstein (1997), and the completely disjoint path algorithms, 

as proposed by Chen et al. (2019). Nonetheless, these approaches exhibit certain limitations 

for navigational purposes. Specifically, k-shortest path algorithms require an extra step of 

path validation to ensure they meet certain criteria, which becomes cumbersome and less 

efficient with a large set of paths (Guo et al., 2022).  Furthermore, these paths often have 

significant overlap. In contrast, disjoint path algorithms may exclude the most direct path 

or produce alternatives that are too lengthy to be practical (Guo et al., 2022). More recent 

studies have focused on identifying k partially disjoint paths that adhere to specific 

constraints, with the link penalty method by Chen et al. (2021) being a notable example in 

this area. Yan et al. (2021)  developed a method to identify distinct path sets by evaluating 

the spatial differences between paths, choosing those that maximize dissimilarity based on 

the shortest distance between them. Zhao et al. (2021) offered a solution to give vehicles 

different route options by incrementally increasing link impedance, a concept further 

refined by Guo et al. (2022). through an algorithm that minimizes the sharing of links, 

utilizing Dijkstra’s algorithm and a logarithmic link penalty approach.  

Additionally, the challenge of creating multiple paths is crucial for analyzing vehicles’ 

route selection behaviors, as reviewed by Ding et al. (2023). The ideal route set should 

filter out improbable routes that vehicles are unlikely to choose and highly similar routes 
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that are indistinguishable to travelers (Wagner & Choset, 2015). To address this, both 

deterministic and probabilistic methods for route creation have been adopted. 

The routing approach used in our study is related to the prior literature on multiple paths 

and global planning. Table 1 illustrates some of the most closely related literature on global 

path planning algorithms. Some key criteria of path planning algorithms include risk 

aversion, path optimality generation, heuristics, adaptability to terrain and robustness. 

• Risk aversion in path planning involves considering uncertainties and potential 

hazards in the environment to ensure safe navigation. By incorporating risk-averse 

strategies, robots can avoid dangerous situations and prioritize safety during path 

traversal (Wagner & Choset, 2015). 

• Path optimality is crucial for identifying the most efficient route from the start to 

the destination. Optimal path planning aims to minimize certain criteria such as 

distance traveled, time taken, or energy consumption while ensuring the robot 

reaches its destination successfully (Ziebart et al., 2009). 

• Heuristics play a significant role in guiding the search process during path planning. 

Heuristic functions provide estimates of the cost to reach the goal from a given 

state, aiding in decision-making, and enhancing computational efficiency (Helmert, 

2006). 

• Adaptability to terrain is essential for robots to navigate diverse environments 

effectively. Path planning algorithms that can adapt to different terrains, such as 

rough terrain or dynamic environments, enable robots to adjust their paths based on 

the surrounding conditions (Qian et al., 2020). 
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• Robustness in path planning ensures that the planned path remains viable even in 

the presence of uncertainties or changes in the environment. Robust path planning 

algorithms can handle variations in terrain, obstacles, or other factors without 

significant degradation in performance (Duan & Qiao, 2014). 

Risk aversion in path planning is crucial, as it involves formulating strategies against 

uncertainties and potential hazards to ensure safe navigation. Algorithms like A* 

incorporate this principle by balancing risk and safety. Specifically, the A* algorithm 

shows medium risk-averse performance, operates with a forward search direction, and 

provides medium path optimality while incorporating heuristics for high adaptability to 

terrain and robustness, as noted by Karaman and Frazzoli (2011) and supported by other 

sources (Tian et al., 2021; Ganganath et al., 2015).Yen’s algorithm, in contrast, delivers a 

similar level of risk aversion and path optimality without relying on heuristics and 

maintains a forward search direction, indicating its efficiency in pathfinding (Chen et al., 

2021). The Spiess and Florian approach, on the other hand, is characterized by a high-risk 

aversion and a reverse search direction (Spiess & Florian, 1989). This approach achieves 

high path optimality and demonstrates significant robustness, even though it lacks 

adaptability (Spiess & Florian, 1989). The Genetic algorithm can be combined with 

approaches like the Probabilistic Road Map to achieve medium risk aversion and high path 

optimality. This combination shows promise due to its forward search direction even 

though it does not apply heuristics within its process (Alam et al., 1996). The RRT 

algorithm exemplifies a medium stance on risk aversion and path optimality, prioritizing 

robustness in unpredictable terrains without the use of heuristic functions (Liu et al., 2017). 
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This robustness is a key feature of the Spiess and Florian algorithm as well, which 

guarantees reliable performance amidst environmental changes. Overall, these algorithms 

demonstrate a spectrum of capabilities in path planning, from high adaptability and 

robustness to effective risk (uncertainty) management. Each has its unique approach to 

handling the complexities of path planning in diverse environments, underscoring the 

importance of choosing the right algorithm based on the specific requirements of the task 

at hand. 

Table 1: The criteria for some existing path planning algorithm 

 

2.3.1  Hyperstar Algorithm  

Traditional path planning algorithms, such as Dijkstra's algorithm and the A* algorithm, 

have been foundational in the development of navigation systems. Dijkstra's algorithm is 

celebrated for its simplicity in finding the shortest path in a weighted graph (Javaid, 2013). 

Algorithm 

Type 

Literature Risk-Averse 

Performance 

Search 

Direction 

Path 

Optimality 

Heuristic  Adaptability  

to terrain 

Robust 

A* (Foead et al., 2021; 

Hong et al., 2021; 

Yan, 2023) 

Medium Forward Medium Yes High High 

Dijkstra (Javaid, 2013) Low Forward High No Medium Medium 

Hyperstar (Bell, 2009; Bell et 

al., 2012; Ma et al., 

2013; Verbas & 

Mahmassani, 2015) 

High Reverse High Yes High High 

Yen’s 

Algorithm 

(Yen, 1971) Medium Forward High No High Medium 

Spiess 

and 

Florain 

(Bell, 2009; Spiess 

& Florian, 1989) 

High Reverse High No N/A High 

Genetic  (Alam et al.,1996 ) Medium Forward High No High High 

RRT (Ding et al., 2023) Medium Forward Medium No Medium High 
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The A* algorithm introduces heuristics to improve on Dijkstra’s approach by prioritizing 

paths that are seemingly closer to the goal, enhancing efficiency (Chen et al., 2021). 

However, both algorithms primarily focus on path generation and do not inherently account 

for the management of navigation-related risks (Chen et al., 2021). 

In contrast, the Hyperstar algorithm is a global path planning algorithm that emerges as a 

solution designed to address the limitations of traditional path planning algorithms by 

incorporating  risk (uncertainty) directly into its computational framework.  The algorithm 

was first developed by Spiess and Florain to be used in transit networks (Spiess & Florian, 

1989). In their model it was assumed that with a fixed set of transit lines, travelers can 

choose an optimal path known as a hyperpath that will allow them to reach their destination 

at a minimum cost while considering delay time. Spiess and Florian (1989) found that the 

choice of path can be determined by finding the fastest path on average. This type of 

problem is solved using linear programming and this ended up with a method like a well-

known pathfinding method (Dijkstra's algorithm) to find the best path, starting from the 

destination and working backward. Spiess and Florian’s study  considered  a similarity 

between how often a link operates over a given route (frequency) and the longest waiting 

(maximum delay) (Spiess & Florian, 1989).  Spiess and Florian’s method was improved 

by considering additional factors in choosing the path such as the node potential which 

helps guide the search of the algorithm from start to finish, making the approach like the 

A* algorithm. This method was called the Hyperstar algorithm (Bell et al., 2012).  The 

original routing strategy problem formulated by Bell et al. (2012) has a service frequency 

for each link that may be subjected to delay. The service frequency is defined as the inverse 
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of maximum delay. Vehicles are assumed to be interested in all potentially optimal paths 

when adopting a minmax exposure to delay strategy. Hosseinloo et al. (2012) also modified 

the Hyperstar algorithm in generating paths for transporting hazardous materials. They 

addressed the risk associated with transporting hazardous materials by focusing on Low- 

Probability-High consequences (LPHC) events. Their strategy focused on reducing the 

consequences rather than the incident probability (Hosseinloo et al., 2012). The advantage 

of the Hyperpath algorithm over single route algorithms is that reasonable detours are 

considered at the route generation stage. If routes are only planned assuming no delays, the 

vehicle might end up choosing a path that is the fastest under perfect conditions but could 

easily experience delay. On the flip side, if an assumption is made for the worst-case 

scenario for every part of the journey (maximum delays everywhere), the vehicle might 

miss out on faster routes because it is overly focused on avoiding delay. The Hyperstar 

algorithm, as previously developed, balances these two extremes. It does not just pick the 

fastest route under ideal conditions, nor does it avoid delay at all costs. Instead, it plans for 

the possibility of delays and considers alternate routes (detours) that might become 

preferable if there are delays or other issues on the main route. This way, when the vehicle 

is on the road and learns about problems ahead, it already has a plan for a good alternative 

route, making the journey more flexible and potentially quicker and less subject to delay. 

As the delays within the network grow, the algorithm devises alternative routes for the 

vehicle. This ensures that the vehicle can still reach its destination efficiently, despite any 

unexpected hold-ups along the way (Bell et al., 2012).  



 21 

In this thesis, the Hyperstar algorithm is adopted specifically for navigating UGVs in 

unstructured environments where visibility risk plays a role in path selection. Prior research 

has explored the use of risk assessment models in autonomous navigation, but often these 

models do not directly influence path planning decisions (Wagner & Choset, 2015). In 

sum, while traditional path planning algorithms provide a solid foundation for navigation 

system development, their limitations in adaptability and risk management are evident in 

the context of unstructured environments. Integrating visibility risk into the Hyperstar 

algorithm for path planning process represents a contribution to the field, potentially 

offering a more holistic solution to the challenges faced by UGVs.  
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 CHAPTER 3 

 

 METHODS 

 

This chapter explains the framework used in this study. Given the complexity of navigating 

in unstructured environments, a comprehensive approach combining quantitative analysis, 

simulation techniques, and a shortest path-based algorithm was adopted. This includes a 

representation of the environment, estimation of potential visibility by an opposition, 

estimation of travel time and maximum delay time for each link in the network, and 

modification of the Hyperstar algorithm. Figure 2 presents a structured overview of the 

framework employed in the thesis. 

  
                                                        Figure 2: An Overview of the Framework 
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Step 1: Environment Representation 

This step translates the environment into a graph structure. The environment is discretized 

into identically sized cells, with each cell centroid acting as a node and adjacent cells are 

connected by a link. This technique was chosen primarily because it offers UGVs a well-

defined map, breaking down the area of spaces into structured units. In our approach, a 

hexagonal grid was created to represent our environment in ArcGIS Pro version 3.0.3 using 

the hexagon tessellation tool. The hexagon grid provides more alternate maneuvers from a 

centroid(node) than a rectangular grid.  

Characteristics of the environment are associated with the hexagons. These characteristics 

include the terrain elevation, slope, and soil type - from which we determine the soil 

coefficient of friction in both dry and wet state. The soil map and elevation were extracted 

from the US web soil database (U.S. Geological Survey, 2013). The slope map was 

generated from ArcGIS Pro version 3.0.3 using the slope tool. 

Step 2: Risk Representation                                                                                               

Visibility risk is a combination of the relative visibility (see equation 1) and the assumption 

that being seen could lead to the maximum consequence of mission failure (consequence 

value of 1) (Hosseinloo et al., 2012).                                                                            

      

The incident probability which is known as visibility probability for this study was 

computed using equation 2.  

The path-planning methodology includes consideration of potential visibility to an 

opposition. Leveraging elevation data and utilizing the viewshed function tool from 
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ArcGIS Pro version 3.0.3, we assess visibility for our study area. The visibility is 

categorized on a scale, ranging from the least to the most detectable locations, based on 

how frequently a node is visible to observers. The digital elevation models (DEMs) used 

in the visibility calculation and path planning can be derived from aerial photographs or 

digitizing contour maps (U.S. Geological Survey, 2013). For any DEM, the recorded 

elevation value of a point may differ from the actual elevation due to an error that might 

have been generated. These errors could stem from factors such as outdated information, 

data collection methods, or rapidly changing environmental conditions (Hodson, 2022).  A 

primary source of elevation data is the U.S. Geological Survey (USGS) and Defense 

Mapping Agency (U.S. Geological Survey, 2013). Both provide the users a statistical 

measure of the level of accuracy of a map in the form of Root Mean Square Error (RMSE) 

(Hodson, 2022). Much of the current literature approaches visibility deterministically, 

overlooking the inaccuracies present in the terrain maps (Fisher, 1998). A probabilistic 

perspective on visibility, considering the errors within these maps offers a more thorough 

evaluation of visibility in navigation. 

To account for these uncertainties, we produced several elevation maps (perturbed maps) 

based on the original map’s reported RMSE using Monte Carlo simulation. Each of these 

maps represents a plausible scenario considering the known uncertainties in the map data. 

For each perturbed map generated, the visibility was computed using the viewshed 

function. The visibility distribution provided the data to identify the maximum visibility 

from observers, which was then used to calculate the visibility probability, which is 

adopted as the incident probability in our analysis. Maximum visibility across all perturbed 
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DEMs was selected to prepare for the worst-case scenario concerning visibility risk (given 

that consequences are equal). The incident probability was computed using equation 2. 

 

                                                          

Step 3: Quantify Travel time and Maximum Delay  

 Rehrer et al. (2022) developed a cross-country mobility (CCM) model that generates the 

speeds of vehicles in both dry and wet environment conditions. However, their approach 

failed to incorporate the vehicle characteristics and dynamics which can greatly affect the 

movement of the vehicle in an unstructured environment. In discretization of the 

environment with a set of nodes (centroids of hexagon grids) connected by edges, a vehicle 

may be able to move freely between those nodes. Graph based path search algorithms are 

constrained by the grid structure and this may result in paths that seem unrealistic 

(Khatiwada et al., 2023). A new model was developed by the vehicle dynamics research 

team we partnered with. This model utilizes vehicle properties and the categorization of 

terrain features, including the type of soil, variations in slope, and the roughness of the 

surface, for estimating the speed over a given area. The model assigns travel time cost 

based on the vehicle maneuver (M), and this was achieved by comparing the slopes of the 

preceding edges and successive edges to determine the turning maneuver (ß) and assign a 

maximum speed to the maneuver link.  
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Generating maneuver links 

The Hyperstar algorithm relies on travel times of links to compute its optimal path. To get 

the travel time for each link, we adopted a function created by the vehicle dynamics team 

known as the speed maneuver function. The function gives the maximum speed the vehicle 

would take to make a particular maneuver. To generate all the possible maneuvers with 

their speeds associated to them, the following steps were followed. 

1. We put a hexagonal grid over the study area and find the center of each hexagon. 

Using the Euclidean distance formula, we calculate the distance between nodes in 

the environment. This distance shows the minimum distance a vehicle travels 

between nodes in the network (Keogh et al., 2001). 

 

           Where (p,q) are the nodes in the network. 

2. Based on these distances, we create connections between nodes to show which links 

a vehicle can use to reach a specific node. Figure 3 illustrates these connections. 

 

 

                                                               Figure 3:  Node connection 
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3. Each connection represents a possible entry link (from node i to j) that a vehicle 

can use to reach a particular node. For example, in Figure 4, the entry link to node 

A is link E-A, and the adjacent links in the forward direction are AC, AB, AI, AD, 

AU, AH, and AG.  

 

                                                   Figure 4 :  Entry link E-A and its adjacent links. 

 

4. With this concept, a link-to-link matrix was created using the link ID of the entry 

link and the adjacent links as shown in Table 2. This matrix ensures that there is a 

connection between the entry links and adjacent links in the network hence forming 

a maneuver between the entry link and adjacent links. Figure 5 illustrates the 

diagram of some possible maneuvers (mn)  represented with broken lines within a 

network.  
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Table 2: Sample from link-to-link adjacency matrix 

 

 
        

 

                                                               Figure 5: Some possible maneuvers 

 

 

5. Travel times from the maximum speeds for each maneuver are recorded in matrix 

form using the link IDs. This approach reduces computation time and data storage.  

Each row corresponds to the link ID for an entry link in the network. Each column 

corresponds to the link ID for the adjacent links. The elements of the matrix 

represent the travel times recorded for the connection between the entry link (row) 

and the adjacent link (column). These values indicate the travel times from the entry 

link to its adjacent links. They show how long it takes a vehicle to travel from the 

entry link to each of the adjacent links. 
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6. For example, link E-A has an ID of 1 and link A-B has an ID of 2. The elements of 

the matrix show the travel time for maneuvering from E through A to node B. 

Figures 6 and 7 illustrate an example of how the travel times were compiled to be 

used in the Hyperstar algorithm. These data were compiled for both maximum 

delay time and undelay travel time. Figures 6 and 7 represent the matrices of the 

travel times used in the Hyperstar algorithm. 

 

                                                        Figure 6: Data representation of maximum delay 

 

 

 

                                                         Figure 7: Data representation of undelay travel time 

 

From each perturbed DEM, the slope and maneuver angle for each maneuver link were 

computed based on the elevation values. With the elevations values and the soil coefficient 

of friction in both dry and wet soil states (U.S. Geological Survey, 2013), vehicle speeds 

in dry and wet conditions were computed for each maneuver link based on the direction. 
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Travel times were computed from the vehicle speeds that were generated. From the set of 

travel times generated for each maneuver, the minimum travel time is the undelayed travel 

time (Cij). The maximum delay (Dij) a vehicle can experience on a maneuver was computed 

as the difference between the maximum and minimum travel time from the distribution. 

The maximum delay, undelayed travel time and visibility risk were used as input for the 

Hyperstar algorithm to generate paths that minimize travel time with potential delays and 

visibility risk.  

3.2 Concept of Modified Hyperstar Algorithm 

We adapted the Hyperstar algorithm for use in identifying the optimal path for vehicles in 

off-road environments by adding visibility as a criterion. Each link in the discretized 

environment may be subjected to delay and visibility. A high link preference (Fij) 

corresponds to low maximum delay and low visibility risk and vice versa. This approach 

ensures that vehicles are interested in all potentially optimal paths when adopting a 

minimax exposure to delay and visibility risk strategy to ensure efficient traversal and 

safety from detection. The algorithm is structured into two sections. In the first section, 

from the destination node to the origin, the optimal strategy (hyperpath) and expected total 

travel time (Ui) from each node i ϵ V to the destination node are computed (Spiess & 

Florian, 1989). In the second part from the origin to the destination, the proportion of link 

preference for each potentially used link (based on visibility risk and maximum delay) is 

computed and assigned to each optimal path. 
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Notation 

The following notation (L,Q,h,y,U,s,r,C,H,D) are consistent with Bell et al. (2012) whilst 

(x,R,P,v) are not: 

 

 

 

 

 



 32 

Modified Hyperstar Algorithm 

 

 

Part 1 

Step A 

a) Node labels Ui representing the travel cost to reach the destination are initially 

assigned a value of infinity except the destination node, which is set to zero (Bell 

et al., 2012). 

b) The variable fi , i ϵ V , representing the combined link preference of all selected 

links at node i is initially set to zero (Bell et al., 2012). 
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The link preference variable , which is the product of our two criteria, is 

determined for all links in the network using equation (9).  

   (9) 

This principle indicates that routes with longer delays are less favored for use within the 

network, and likewise, those with higher visibility risk are less favored. Evaluating links 

based on these two criteria, maximum delay and visibility, ensures that the most timely and 

discreet routes are prioritized. 

c) Node probability labelled as yi, is initialized as 0 for all the nodes in the network 

except the start node which is initialized as 1. 

d) ‘L’ denotes the set of links that has not been evaluated and H denotes the set of links 

in the hyperpath. 

Step B 

Each link in the network is sorted in ascending order of (hi+Uj+Cij) (Bell et al., 2012; 

Hosseinloo et al., 2012).  

The variable ‘Cij’ denotes the minimum travel time (undelayed travel time) from node i to 

node j. This was obtained from our travel time distribution that was generated. 

a) The travel cost from node j to the destination node in a network, accounting for 

maximum delay and visibility risk, is denoted by ‘Uj’. 

b) ‘hi’ denotes the heuristic travel cost from a node i to the start node. This was 

computed from the Euclidean distance between the current node and the end node 

and the ideal speed (vehicle’s top speed without considering the terrain) of the 

vehicle. 
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Step C 

a) Select a link with the minimum (hi+Uj+Cij) (Bell et al., 2012; Hosseinloo et al., 

2012). 

b) Check if the travel cost (Uj +Cij) from node j of a link to the destination and the 

minimum travel time for the selected link, is smaller than the current travel time 

Ui. If this condition is true, then ‘Ui’ and ‘fi’ must be updated based on both 

maximum delay and visibility risk. This means traversing on that selected link ‘will 

potentially allow a faster arrival at the destination than any previously considered 

link through node i. Therefore, the selected link is regarded as a better link than all 

the links analyzed so far based on time. Ui is improved to a new value (smaller 

value) to improve path to the destination. 

c) This step is repeated for all the links in the network or when a link sorting value 

(hi+Uj+Cij) of a selected link is greater than U(start node). Then this part of the 

algorithm will terminate (Bell et al., 2012; Hosseinloo et al., 2012)  

Part 2  

a) This part computes the proportion of link preference for a link to be used by the 

vehicle. This process is done by sorting all the links in the optimal strategy (H) in 

ascending order of (hi+Uj+Cij). Once sorted, the algorithm computes the proportion 

of link preference (Pij). 

b) After computing the proportion of link preference and assigning it to each link, the 

vehicle is expected to follow the link with the highest probability.. However, in 
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unexpected delays and disruptions, the vehicle has several alternate links to choose 

from to get to the destination. 
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CHAPTER 4 

 

 RESULTS AND DISCUSSION 

 

The preceding chapter presented the modified Hyperstar algorithm and overall path 

planning approach for offroad contexts. In this chapter, the focus shifts from theoretical 

exploration to the application. The new modified Hyperstar algorithm was tested on 

numerical examples and terrain maps to illustrate how the algorithm operates under 

potential delays and visibility risk.  

 

3.1 Numeric Examples 

To showcase the proposed method, the approach underwent testing on a small-scale 

network as well as on a detailed terrain map. Numerical examples are presented to illustrate 

the trade-offs faced by the vehicle. Table 3 shows the cases that were considered for the 

new modified Hyperstar algorithm.  

Table 3: Cases considered for modified Hyperstar algorithm 

Case Test Reason 

 

1 

Evaluate how different levels of 

visibility risk affect the preferred 

paths when the maximum delay for 

each path remains a constant value 

for each link in a network.  

To verify that the link preference 

formula presented in equation (10) 

produces reasonable outcomes such that 

the lower the visibility risk, the higher 

link preference. 

 

2 

Evaluate how different levels of 

maximum delay time affect the 

preferred paths when the visibility 

risk remains a constant value for 

each link in a network. 

To reproduce Bell et al.’s (2012) results 

to make sure that the link preference 

equation in (12) yields a reasonable 

result when visibility risk is held 

constant. 
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3 

Compare scenarios of low medium, 

medium and high visibility risk and 

scenarios of low, medium and high 

delay to determine whether the 

number of optimal paths changes  

This case examines the algorithm's 

range in providing multiple route 

choices under different combinations 

from the most favorable to the most 

adverse environment. 

4 Test the relationship between the 

link preference (maximum delay 

and visibility risk) and the actual 

proportion of link preference that 

each link receives in specially 

designed networks. In essence, it 

seeks to clarify if the preferred 

links are selected based on their 

maximum delay and visibility risk 

parameters. 

To understand the limitations in the new 

modified Hyperstar algorithm, 

providing insights into areas where its 

performance may fall short or where it 

may not meet specific criteria. 

5 Test on terrain maps (Idaho, 

Nevada) 

To assess how well the modified 

Hyperstar algorithm would perform in 

offroad scenarios. 

6 To evaluate the new modified 

Hyperstar algorithm in a 

bidirectional scenario 

To search for limitations in the 

algorithm 

 

3.1.1 Case 1 

 If the maximum delay (D) is constant across all links, then the link preference in the 

modified Hyperstar algorithm will be a function of visibility risk (Rij) for each link. The 

link preference initially presented in equation 9 becomes equation 10 below:  

                                                                        (10) 
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Where k is a constant that represents   .  

When updating the cost ( ) at node i, the constant part ( ) of the link preference 

will not influence the order in which nodes are updated since it is the same for every link. 

Only the visibility risk  and its relation to the link preference will impact the node 

updating process, as it affects the value of  as shown equation 11. This means that the 

decision to select a particular path within the network is influenced primarily by how likely 

it is to be visible, rather than potential maximum delay. 

                                                                                                        (11) 

The calculation will prioritize links with lower visibility risks, as the factor will 

be higher for links with lower visibility risks, making larger and thus the link more 

preferred. A small network shown in Figure 8 shows the network used by Bell et al. (2012)  

as a numeric example in generating multiple paths in minimizing the consequences of 

hazardous material using the Hyperstar algorithm. Every link has three parameters: 

undelayed travel time (C), maximum delay time (D) and visibility risk (R) as shown in 

Table 4.  The average speed on all links is assumed to be 50 km/h, which influences the 

undelayed travel time. (C) for each link Bell et al. (2012).  The start and destination node 

for this network are 1 and 4, respectively. 
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Table 4: Link Parameters 
Links  C R D 

   1-2 8 0.5 1 

2-4 16 0.8 1 

1-3 24 0.7 1 

2-3 10 0.6 1 

3-4 16 0.2 1 

                                                                                   

                                                                                                                              Figure 8 Example network 

 

 

 

 
 

 

 

 
Figure 9: Optimal route based on undelay travel time   

                                                                                  Figure 10: Optimal route based on proportion of    

link preference 

                          

Figures 9 and 10 display optimal path results from node 1 to 4 for a network diagram shown 

in Figure 8 considering undelayed travel time and link preference, respectively. In Figure 

9, the direct path (1-2-4) is optimal when only considering the fastest route, as typically 

calculated by standard algorithms like Dijkstra and A*. However, Figure 10 reveals a 

different optimal path (1-2-3-4) when applying equation (10) which factors in a constant 

maximum delay alongside visibility risk. This equation prioritizes links with a higher 

preference ratio, indicating a lower visibility risk. At the first decision point, node 1, 

vehicles face a choice between links (1,2) and (1,3). The choice falls on link (1,2) due to 

its higher link preference ratio. At node 2, the undelayed travel would have normally 

directed vehicles to use link (2,4), but with the visibility risk, the route shifts the preference 
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to link (2,3). Consequently, the route progresses to node 3 and finally to node 4, adopting 

the path (1-2-3-4) based on a balance of travel time and low visibility. 

The chosen route (1-2-3-4) illustrates selecting the paths with a higher link preference that 

offer reduced visibility risk, showcasing a balance between travel time and visibility risk. 

Although path 1-2-4 might be quicker, the alternative 1-2-3-4 is chosen to better conceal 

the vehicle’s movement.  

3.1.2 Case 2 

This case evaluates the maximum delay across network links under a specific assumption: 

the visibility risk  for all links is constant. If the visibility risk  is constant across 

all links, then the link preference in the modified Hyperstar algorithm will be based on the 

maximum delay  for each link. The link preference initially presented in equation 9 

becomes equation 12: 

                                                                                                                                      (12) 

Where k is a constant that represents  .  

When updating the cost (Ui) at node i , the constant part ( ) of the link preference will not 

influence the order in which nodes are updated since it is the same for every link. Only the 

maximum delay and its relation to the link preference will impact the node updating 

process, as it affects the value of as shown in equation 13. This means that the decision 

to select a particular path is influenced primarily by maximum delay.   
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                                                                                                  (13)                                                                                                                                                                                                                                                 

 

In determining the proportion of link preference, the calculation will prioritize links with 

shorter maximum delays, as the factor  will be higher for links with lower maximum 

delays, making the link preference  larger and thus the link more preferred. 

The network diagram in Figure 8 was used for case 2 with varying maximum delay (D) 

and a constant visibility risk (R). The link parameters are provided in Table 5 with the 

speed of the vehicle as 30km/h. Both the undelayed travel time (C) and maximum delay 

time (D) were the same as used by Hosseinloo et al. (2012). 

Table 5: Network parameters for case 2 
Links  C R D 

   1-2 13 0 6 

2-4 16 0 10 

1-3 19 0 4.5 

2-3 15 0 3 

3-4 24 0 6 
                                                                                   Figure 11: Optimal route based on undelay travel time. 

 

 

 

 

 

 

 

Figure 12: Proportion of link preference for varying maximum delay 
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From Figure 11, the optimal path from the network diagram in Figure 8 based on undelayed 

travel time would be (1-2-4). With the visibility risk held constant, the optimal path is now 

based on maximum delay and undelayed travel time only. The higher the percentage of 

link preference, the more favorable the link is because it has a lower maximum delay. From 

Figure 12, at node 1 the vehicle has a choice of links (1,2) and (1,3) to move to the next 

node and to get to the destination node. Route (1-2-3-4) is the route that the vehicle is 

inclined to choose because it has a high percentage of link preference in terms of maximum 

delay, similar to what Bell et al. (2012) produced using an 8 node by 8 node grid network. 

3.1.3 Case 3 

This evaluation utilized a 5 by 5 node square grid network as shown in figure 13 with 

undelayed travel times (C) as 1+M, where M is a random number as used by Bell et al. 

(2012).  The maximum delay time (D) and visibility risk (R) were random numbers 

generated in the range of 0 – 1 inclusive (Bell et al., 2012). The undelayed travel time and 

the link parameters such as maximum delay and visibility risk for all the three cases are 

shown in Table A in the appendix. Three cases were considered, and the undelayed travel 

time is the same for all three scenarios. The start and destination nodes were chosen as 1 

and 20, respectively. The maximum delay and visibility risk for all the scenarios are shown 

in appendix A.  For scenario A, high maximum delay and high visibility risk are assigned 

to all links, simulating conditions with maximum delay time and visibility risk. Scenario 

B, with a medium maximum delay and visibility risk (R), represents a moderate level of 

operational challenge. The final scenario (scenario C) imposed low maximum delay and 

visibility risk on all network links.  
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                                                                       Figure 13: Square grid structure 

 

Scenario A 

In this scenario, each link has two factors: high maximum delays and high visibility risk. 

Specifically, a high maximum delay and visibility risk were both assigned a random 

number "B" and “K,” respectively, as shown in Table A in the appendix.  

 

 
                                                    Figure 14: Optimal links for scenario A 

 
 

This resulted in the generation of a hyperpath with 27 links as shown in figure 14. The high 

number of optimal links enhances the vehicle’s ability to adapt to unexpected changes. As 

shown in figure 14, each link has a proportion of link preference associated with it. From 

its starting position at node 1, the vehicle assesses two potential links, each characterized 
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by a unique proportion of link preference. In moving towards its destination node, the 

vehicle selects the link that has the highest proportion of link preference.  

Scenario B 

In this case, each link has medium maximum delays and visibility risks. The random 

numbers "B" and “K” representing the maximum delay and visibility risk were scaled down 

by multiplying them by a factor of 0.5 as shown in the appendix. This adjustment means 

that while maximum delays and visibility risk still exist, they are less severe compared to 

scenario A.  

 

                                                      Figure 15: Optimal routes for scenario B 

 

As observed from Figure 15, a hyperpath with 19 optimal links was generated. In Figure 

15, each link is annotated with a numerical value representing its proportion of link 

preference. Links with higher proportions are deemed more favorable, directly influencing 

the vehicle's route selection as it progresses from the starting node toward its destination. 

Scenario C 

In this network, each link is marked by low maximum delays and visibility risks. However, 

to reflect their low severity, the random numbers "B" and “K” representing the maximum 

delay and visibility risk were scaled down by multiplying by a factor of 0.3 as shown in 
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the appendix. Consequently, each link's maximum delay and visibility risk are now less 

than before, maintaining their low levels.  

 

                                                   Figure 16: Optimal routes for scenario C 

 

As observed from Figure 16, 15 preferred links were generated. This outcome illustrates 

that as maximum delay and visibility risk decrease across the network, the total number of 

preferred links tends to become less. This reduction occurs because the algorithm 

prioritizes finding the most direct and quick paths from one point to another, with little 

maximum delay and risk of detection. With maximum delays and risks being low across 

all routes, these factors become less critical in differentiating between paths. Consequently, 

the algorithm can more easily identify the fastest routes, as there is no significant delay or 

risk to avoid. This reduces the need for alternative routes since the primary ones are already 

optimal in terms of speed. In such environments, the Hyperstar algorithm functions 

similarly to traditional shortest-path algorithms, focusing mainly on minimizing travel 

time. Hence, in scenarios where delays and visibility risks are minimal, the algorithm 

simplifies its selection process to a smaller set of preferred routes.   

Table 6 below shows the number of optimal paths generated for the three scenarios (A,B,C) 

considered in Case 3. As the maximum delay and visibility risk increase, so too does the 

number of optimal links within the hyperpath. 



 46 

Table 6: Number of optimal links produced based on the level of criteria 
Scenarios Level of Criteria  Number of optimal links 

A High 25 

B medium 19 

C Low 15 

 

3.1.4 Case 4 

This analysis was considered to determine the relationship between the link preference, 

determined by parameters such as maximum delay and visibility risk, and the actual 

proportion of link preference. The case was considered for both visibility risk and 

maximum delay by doubling some of the links with respect to the criteria as shown in 

Figures 17 and 18. The link preference formula from equation (9),  was used considering 

visibility risk with a fixed maximum delay time set to 1 for the first scenario, and for the 

second scenario, the visibility risk was constant and the maximum delay for some links 

were double. The question was whether this would lead to a proportional increase in the 

preference metric. Travel times were computed as 1+M, adhering to Bell et al.'s (2012) 

approach, with 'M' representing a random variable from 0 to 1 a shown in Table 7. The 

start node and end node for the network were assigned to be 1 and 4 respectively. 

                                            Table 7: link parameters for Case 4 
Links C(mins) 

1-2  1.42 

2-3 1.87 

3-4 1.86 

1-8 1.10 

1-7 1.09 

7-5 1.95 

5-4 1.14 

6-5 1.96 

1-6 1.46 

8-3 1.78 
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             Figure 17: Network with visibility risk                              Figure 18: Network with maximum delay 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 19: Link preference by visibility risk.                         Figure 20: Link preference by maximum delay 
 

In the analysis, both scenarios showed an unexpected outcome: the proportion of link 

preference remained the same for all links, as depicted in Figure 19 and 20. For instance, 

Link (2-3) was anticipated to have half the link preference of Link (7-5), yet their 

preferences ended up being identical. This outcome explains the limitation of the link 

preference formula as shown in equation (9) - that it is not just influenced by visibility risk 

or maximum delay. One factor is the number of available link options at each node for 

continuing the path. When a node (let's call it "i") has multiple outgoing links, the link 

preference for incoming links to "i" gets divided among the outgoing links based on their 

preferences. However, if node i has only a single outgoing link, the entire link preference 

from the incoming links transfers directly to this lone outgoing link.  
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3.1.5 Case 5 

Case 5 concentrates on assessing the newly modified Hyperstar algorithm when 

bidirectional links are present.   Figure 21 presents a bidirectional network diagram from 

Figure 13. The blue lines indicate the forward direction from start to target while the red 

lines indicate the reverse direction from finish to start. Table 8  details the link parameters 

used in Case 5, providing a basis for this bidirectional testing. Start and end nodes for this 

case were 1 and 20, respectively. 

 
Figure 22: Example network for Bi- direction Network 

 
 

 

Table 8: Link parameters for Case 5 

Links C(mins) R D(mins) 

1 2 1.94 0.28 0.51 

1 6 1.01 0.93 0.32 

2 3 1.53 0.03 0.26 

2 7 1.58 0.75 0.86 

3 4 1.70 0.09 0.39 

3 8 1.17 0.28 0.11 

4 5 1.13 0.53 0.56 

4 9 1.31 0.21 0.54 

6 7 1.32 0.52 0.56 

6 11 1.10 0.27 0.41 

7 8 1.67 0.68 0.63 
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7 12 1.16 0.20 0.92 

8 9 1.48 0.95 0.52 

8 13 1.91 0.75 0.05 

9 10 1.72 0.43 0.19 

9 14 1.08 0.79 0.33 

11 12 1.03 0.67 0.47 

11 16 1.82 0.37 0.16 

12 13 1.04 0.95 0.12 

12 17 1.20 0.57 0.16 

13 14 1.01 0.42 0.91 

13 18 1.55 0.15 0.25 

14 15 1.02 0.37 0.84 

14 19 1.60 0.58 0.74 

15 20 1.09 0.50 0.06 

16 17 1.66 0.66 0.50 

16 21 1.76 0.74 0.88 

17 22 1.81 0.90 0.13 

17 18 1.72 0.26 0.41 

18 23 1.51 0.65 0.36 

18 19 1.83 0.52 0.96 

19 20 1.70 0.67 0.36 

19 24 1.26 0.43 0.56 

21 22 1.15 0.81 0.52 

22 23 1.81 0.31 0.81 

23 24 1.67 0.18 0.68 

24 25 1.70 0.30 0.10 
                                                                                                                   

 

 

 
 

                      Figure 22: Optimal routes for Bi-direction network based on undelayed travel time 

 
                                                                                                                          

Figure 22 illustrates the results of generating the optimal path using a bidirectional 

approach based on undelayed travel time. The optimal path, selected solely based on 
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undelayed travel time, consists of 7 optimal links. Due to the bidirectional nature of the 

network, some links have lower costs in one direction than in the other. Starting from node 

1, the vehicle uses link 1-6 in the forward direction because it has the lowest cost. The 

undelayed travel times are indicated on top of each link in Figure 22.  

 

 
 

                                            Figure 23: Optimal routes for Bi-direction network 

 

However, when additional criteria such as visibility risk, maximum delay, and undelayed 

travel time are considered, the high cost of link 14-15 results in a lower link preference. 

Consequently, the vehicle avoids this link and takes  link 14-9 instead. This new route is 

depicted in Figure 23 indicated by arrows, along with the proportion of link preference. 

This detour adds extra links, making the route longer. 

                                                 Table 9: list of links and link cost 
Forward direction links Reverse Direction links 

Links Link cost Links Link cost 

1-6 20.23 6-7 21.32 

6-11 21.03 12-7 22.24 

11-12 21.67 13-8 23.24 

12-13 23.01 14-9 22.24 

13-14 20.13 10-5 20.63 

14-15 23.57 2-1 21.23 
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15-20 21.21 3-2 20.21 

10-15 20.20 4-3 19.46 

2-7 20.10 5-4 20.32 

3-8 19.34 19-14 22.23 

4-9 20.20 20-19 23.42 

9-10 20.12 19-18 20.67 

13-18 20.10                 - - 

 

3.2 Test on Terrain Map 

The approach was evaluated using two distinct terrain maps: an off-road environment in 

Nevada, specifically near the Churchill County Area, and another in Idaho, close to Foxtail 

Lake and Elmore County Area. Idaho and Nevada maps are of areas approximately 309,341 

square meters and 994,798 square meters, respectively. The elevation for the Idaho map 

(Figure 24) ranges from 820 meters to 900 meters. The elevation for the Nevada map 

(Figure 25) ranges from 1194 meters to 1207 meters.      

                                                    
 Figure 24: Elevation map for Idaho                                                      Figure 25: Elevation map for Nevada 

 

 

The areas were segmented into hexagonal grids, with each hexagon covering an area of 

779.4 square meters and centroids distanced 30 meters apart as shown in figure 32. The 

High Mobility Multipurpose Wheeled Vehicle (HMMWV) was selected for the test 

vehicle. The vehicle has a base width of 3.80 meters, a track width of 1.819 meters, a 
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maximum road wheel angle of 36 degrees, a gradeability of 60%, and a top speed of 50 

km/h (Hosseinloo et al., 2012).  

Using a Monte Carlo simulation approach, multiple maps were generated based on the 

elevation data provided by the maps of Idaho and Nevada, with Root Mean Square Error 

(RMSE) values of 0.3m and 0.35m (U.S. Geological Survey, 2013).  These simulations 

aided in computing risk visibility.  

 

  

 

 

 

 

 

 

 

 
Figure 26: Perturbed Elevation for Idaho                                                Figure 27:Visibility results for Idaho   

   

                                                                                           

                                                          

                             

 
 

Figure 28: Perturbed elevation for Nevada                                   Figure 29: Visibility risk results for Nevada                                                                    
 

 

In the visibility analysis conducted for both Nevada and Idaho maps, it was determined 

that the visibility risk stabilizes after the generation of a certain number of elevation maps. 

viewshed 

viewshed 
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Each graph in Figure 30 and 31 illustrates some evolutions of maximum visibility risk at 

sampled nodes.  This value stabilizes approximately between 35 to 50 simulations. Forty 

DEMs were then created to generate the visibility risk for both terrain maps. 

 

 

 

 

 

 

 

 

 

 

        

 

 

 

        Figure 30: A plot of visibility risk against number of perturbed DEMs for Idaho map 
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                      Figure 31: A plot of visibility risk against number of perturbed DEMs for Nevada map 

 

 
                                                   Figure 32: Environment representation 

 

                 
     Figure 33: Terrain map: Idaho                               Figure 34: Optimal path with link preference for Idaho 

 

                                                                                                                                                          

  

                           
      Figure 35: Terrain map: Nevada                           Figure 36: Optimal path with link preference for Nevada 
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Figures 34 and 36 utilize color-coded links to differentiate between those with high link 

preference and those with low link preference. Selecting routes with high link preference 

(marked in green, red, and blue) is strategically important to minimize delays and avoid 

detection.  These preferred routes are designed based on the terrain, ease of navigation, and 

visibility. However, in situations such as poor soil quality or any other factors that could 

potentially delay or increase the risk of detection, the vehicle has alternate routes to follow 

to get to its destination. In such scenarios, alternative routes marked in yellow are 

identified. This approach ensures that the vehicle has flexible routing options, enhancing 

both the effectiveness and safety of operations in challenging off-road environments. 
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CHAPTER 5 

 

CONCLUSIONS AND FUTURE WORK  

 

5.1 CONCLUSION 

 

This thesis presented a study on path planning for unmanned ground vehicles (UGVs). The 

modification of  Hyperstar algorithm (Bell et al., 2012; Hosseinloo et al., 2012) addresses 

the challenge of path planning for offroad conditions, which is helpful in military 

applications and other applications with incomplete information (e.g., during and after 

disasters). By considering the errors in maps, the proposed methodology allows for more 

reliable and safe planning of UGVs in an unstructured environment where traditional 

commercial navigation systems are inadequate. By applying the model developed by the 

vehicle dynamics team, several travel times were generated based on soil conditions in both 

wet and dry states and a variety of perturbed DEMs. Both maximum delay and undelayed 

travel times were estimated from these travel times which were assigned to each maneuver 

link in the network. A link preference function (used in the modified Hyperstar algorithm) 

was developed to incorporate both visibility risk and maximum delay for each maneuver.   

The modified Hyperstar algorithm was tested on 6 cases with different conditions including 

terrain maps. In Case 1, the test focused on the impact of varying visibility risks while 

keeping the maximum delay constant across all network links. It was observed that links 

with lower visibility risks were prioritized. Case 2 analyzed how changes in the maximum 

delay affected path preferences when visibility risks remained constant. This case 

confirmed that links with shorter maximum delays were preferred when visibility risk was 

not a variable. Case 3 compared low, medium, and high visibility risk scenarios with 
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corresponding delay levels to check the number of optimal paths. This case illustrated the 

algorithm's ability to offer multiple route choices from the most to the least favorable 

conditions. It was found that as maximum delay and visibility risk decreased, the number 

of preferred links also reduced, showing the algorithm's tendency to simplify its route 

selection to the fastest paths when risks were minimal. Case 4 was to determine the 

relationship between link preference (defined by maximum delay and visibility risk) and 

the proportion of link preference each link receives. Surprisingly, despite variations in 

these parameters, the link preference proportion remained constant in special network 

conditions, showing a limitation of the modified Hyperstar algorithm. This highlighted that 

the number of available link options at a node and the distribution of preferences across 

these links were significant factors.  Case 5 evaluated the bidirectional capabilities of the 

modified Hyperstar algorithm, showing its adaptability to conditions requiring movement 

not necessarily directly toward the target node. The test involved links with  different 

parameters for each direction, providing a basis for the ability of the algorithm to handle 

such scenarios. Case 6 tested the overall approach on terrain maps in Idaho and Nevada. 

The analysis demonstrated the algorithm's ability to adapt to varying terrain and visibility 

risks. 

For the test on terrain maps, multiple realizations of the environment using Monte Carlo 

simulations allowed computation of multiple visibility risks, which stabilized after 35-50 

simulations. These maps also allowed generation of a variety of travel times. In conclusion, 

the enhanced Hyperstar algorithm showed competence in handling different risk levels and 

making strategic route choices, although some limitations were noted. 
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The visibility risk was considered by taking the maximum number of observers who could 

see the point across all the DEMs divided by the total observers. By moving beyond 

deterministic models, this thesis addresses the inherent uncertainties within environment 

modeling. Despite these approaches, there remain limitations that need to be 

acknowledged. For instance, the algorithm's performance is dependent on the accuracy of 

input data, such as terrain and visibility information. While the use of Monte Carlo 

simulation offers a framework for accounting for visibility risk, the quality of the output 

paths is only as good as the data and models used.  Also, the method employed to allocate 

link preference proportions for vehicle navigation might not accurately reflect the actual 

maximum delay and visibility risk for some links. This may result in an over or 

underestimation of some paths' suitability. 

 

5.2 FUTURE WORK 

 

Future research could extend this work in several directions. Firstly, exploring the 

integration of real-time data such as congestion levels, average speeds, and weather data 

like rain, smoke, or fog into the Hyperstar algorithm could enhance its adaptability, 

allowing for more dynamic path planning as conditions change. Moreover, the link 

preference equation, which combines the two criteria, could be improved by incorporating 

a weighting method. This would dynamically weigh the two criteria, ensuring a proper 

balance between them and accurately reflecting the proportion of link preference. With 

advancements in sensor technology and data analytics, there is a scope for UGVs to learn 

from past missions to navigate through complex environments more efficiently.  
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APPENDIX A 

 

Table A  link parameters case 3 

 Scenario A Scenario B Scenario C 

Link C R D R D R D 
 1 2 1.37 0.94 0.41 0.47 0.21 0.28 0.12 

1 6 1.32 0.46 0.009 0.23 0.004 0.14 0.002 

2 7 1.40 0.13 0.87 0.06 0.44 0.03 0.26 

2 3 1.96 0.30 0.99 0.15 0.49 0.092 0.298 

3 8 1.44 0.77 0.73 0.39 0.37 0.23 0.219 

3 4 1.25 0.07 0.25 0.035 0.13 0.02 0.078 

4 9 1.23 0.18 0.39 0.091 0.19 0.056 0.12 

4 5 1.00 0.76 0.55 0.38 0.28 0.23 0.17 

5 10 1.82 0.03 0.68 0.02 0.34 0.0098 0.21 

6 11 1.04 0.70 0.13 0.35 0.069 0.21 0.041 

6 7 1.44 0.89 0.71 0.45 0.35 0.27 0.215 

7 12 1.87 0.70 0.58 0.35 0.29 0.21 0.17 

7 8 1.37 0.81 0.37 0.41 0.19 0.24 0.11 

8 13 1.20 0.45 0.94 0.35 0.48 0.14 0.28 

8 9 1.03 0.10 0.01 0.05 0.0062 0.032 0.0037 

9 14 1.99 0.23 0.003 0.12 0.0018 0.071 0.001 

9 10 1.51 0.72 0.36 0.36 0.18 0.18 0.05 

10 15 1.87 0.07 0.78 0.03 0.39 0.022 0.109 

11 16 1.60 0.67 0.76 0.33 0.38 0.20 0.13 

11 12 1.88 0.26 0.34 0.13 0.17 0.081 0.24 

12 17 1.77 0.55 0.85 0.27 0.42 0.17 0.23 

12 13 1.30 0.61 0.15 0.30 0.075 0.18 0.045 

13 18 1.16 0.91 0.36 0.45 0.18 0.27 0.109 

13 14 1.92 0.74 0.44 0.37 0.22 0.22 0.13 

14 19 1.62 0.70 0.89 0.35 0.44 0.21 0.27 

14 15 1.85 0.62 0.21 0.31 0.10 0.18 0.062 

15 20 1.67 0.16 0.54 0.079 0.27 0.04 0.16 

16 21 1.71 0.087 0.38 0.043 0.19 0.026 0.11 

16 17 1.39 0.28 0.038 0.143 0.01 0.08 0.011 

16 24 1.34 0.29 0.966 0.145 0.48 0.087 0.29 

17 22 1.12 0.79 0.76 0.39 0.38 0.23 0.22 

17 18 1.27 0.87 0.16 0.43 0.078 0.26 0.047 

18 23 1.79 0.49 0.40 0.24 0.20 0.15 0.12 

18 19 1.71 0.60 0.73 0.30 0.37 0.18 0.22 

19 24 1.26 0.59 0.83 0.29 0.42 0.17 0.24 

19 20 1.34 0.85 0.81 0.42 0.40 0.25 0.23 

21 22 1.57 0.98 0.87 0.49 0.44 0.29 0.26 

23 24 1.88 0.43 0.54 0.21 0.27 0.13 0.16 

24 25 1.35 0.56 0.95 0.28 0.47 0.17 0.28 
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