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ABSTRACT 

Accessing the mortality of the trees following any disturbances is of great interest to 

researchers in forestry science. This thesis project assessed topographic factors to 

explain the patterns of tree mortality after Hurricane Hugo in 1989 and investigated 

continuous tree mortality in relationship to important covariates using long-term data. 

Aerial photographs were taken one year after Hurricane Hugo, and long-term 

monitoring plots were set up five years after the hurricane to collect multi-year data. 

Analysis and visualization showed higher mortality in concave areas near the marsh at 

approximately 1-2m elevation and 120-180m far from streams after Hurricane Hugo. 

A model was derived using the logistic regression analysis, and tree mortality after 

Hurricane Ian 2023 was predicted based on the model. The actual tree mortality map 

was generated using the Leaf Area Index change. Two maps were compared visually, 

and the model underestimated the mortality.  Using the data from the long-term 

monitoring plots, we performed a nonparametric Kaplan-Meier method to describe the 

effects of covariates (biotic, climatic and hydrologic) on the survival probability of 

trees.  The Kaplan-Meier Curve indicated that any tree has a survival probability of 

around 20% after 29 years or upon reaching a diameter at breast height (DBH) of 10 

cm. Understanding how various factors interact and contribute to tree mortality will 

enhance our capacity to evaluate the susceptibility of coastal forests to mortality due 

to periodic hurricane events and how they shape the growth and resilience of coastal 

forests. 
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CHAPTER 1 

INTRODUCTION 

Coastal forests are more vulnerable due to global warming and rising sea levels. Although 

coastal plant death has various causes, the impacts of climate change and sea-level rise are 

becoming more apparent (Sippo et al., 2018). While there is a lack of extensive long-term data, 

available site-specific records over significant durations indicate an increase in mortality rates 

over time (Lewis et al., 2016; Kirwan et al., 2016; Demopoulos et al., 2018; Noe et al., 2018; 

Schieder & Kirwan, 2019). Certain hotspots, like the eastern coast of North America, have 

emerged where rising sea levels, land subsidence, a weakening Gulf Stream, and flat topography 

have caused extensive plant death (Kirwan & Gedan, 2019; Sallenger et al., 2012; Schieder et al., 

2018; Smith, 2013; Smith et al., 2017, 2021; Smith & Kirwan, 2021; Ury et al., 2021). Extensive 

evidence from regional and global studies indicates that coastal plant death rates are rising. 

Moreover, variations in mortality rates among different species are significant factors of 

ecological succession (Kobe et al., 1995; Purves et al., 2008), species' geographical ranges 

(Loehle et al., 1998; Purves et al., 2009), stand structure (such as stem size distributions: 

(Muller-Landau et al., 2006; Coomes et al., 2003)   and how forests respond to climate change 

(van Mantgem et al., 2007). Understanding the factors and mechanisms driving coastal woody 

plant mortality in a changing climate is essential for predicting forest mortality (Kirwan & 

Gedan, 2019). Advanced measurements are needed to develop and evaluate models using these 

measurements (Collier et al., 2018; Dietze et al., 2018; Medlyn et al., 2015). 
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Obtaining precise information on the nature, magnitude, and causes of tree mortality in 

coastal forests is challenging. To better understand how woodland environments might respond 

to projected climate changes and rising sea levels, it is crucial to use all available information 

and analytical tools, including remote sensing (Allen et al., 2015). Remote sensing's unique 

ability to provide spatially explicit maps of tree mortality offers an invaluable foundation for 

studying potential mortality drivers (Anderegg et al., 2016). 

Since 1996, the southeastern United States has experienced a rise in the frequency of 

hurricane landfalls, a trend expected to persist in the coming years (Goldenberg et al., 2001; 

Emanuel, 2005; Webster et al., 2005). This heightened hurricane activity presents a valuable 

opportunity to systematically study how a series of hurricanes may create cumulative and 

potentially irreversible impacts on coastal ecosystems.  This thesis investigates the effects of 

these extreme events on the Hobcaw Barony Forest, focusing on tree mortality patterns and the 

factors influencing survival. By leveraging long-term monitoring data and advanced spatial 

analysis techniques, this research aims to enhance our understanding of how hurricanes and sea 

level rise shape coastal forest dynamics and inform future management frameworks. 

The first chapter of the thesis is “Spatial Patterns of Tree Mortality in a Coastal Forest of 

Hobcaw Barony After Hurricane Hugo.” It uses remote sensing, such as satellite imagery and 

aerial photographs, to analyze the spatial patterns of tree mortality following Hurricane Hugo. 

This chapter assesses topographic factors, including elevation, proximity to marshes, drainage 

capacity, and land curvature, to explain tree mortality patterns. A logistic regression model 

incorporating these variables was developed and used to predict tree mortality following 

Hurricane Ian. 
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The second chapter of the thesis is "Tree Mortality Due to Hurricanes and Associated 

Variables in the Coastal Forests of South Carolina."  It focuses on long-term tree mortality trends 

and the relationship between tree survival and biotic, climatic, and hydrologic variables. Data 

were collected from monitoring plots established in 1994 in the pine-dominated Hobcaw Barony 

Forest. This chapter employs simple graphical illustrations, a nonparametric survival analysis 

technique, and a Kaplan-Meier Estimator to assess the effects of covariates on survival 

probability. 

In conclusion, this thesis provides valuable insights into the complex interactions 

between hurricanes, sea level rise, and tree mortality in coastal forests. This could be helpful in 

developing effective management strategies for the sustainability of coastal forests in the face of 

ongoing sea level rise. 
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CHAPTER 2 

LITERATURE REVIEW 

 

Historical Overview of Sea Level Rise and Hurricanes in South Carolina 

Severe hurricanes are projected to increase due to human-induced climate change. 

(Knutson et al., 2010; Intergovernmental Panel on Climate Change [IPCC], 2012). Numerous 

studies also conclude that the increasing wind hazards from hurricanes along the eastern U.S. 

coastline and notable variations in hurricane frequencies, both annually and seasonally, may be 

attributed to climate change. (Lin et al., 2012; Mudd et al.,2014). Hurricanes, characterized by 

wind speeds exceeding 33 m s−1, impact 1.2 million hectares of U.S. land each year, leading to 

substantial ecological and economic damage to forests (Dale et al., 2001). Many hurricanes, 

such as Hugo, Irene, Floyd, Matthew, Irma, Florence, Dorian, and Ian, occurred in the recent 

few decades in South Carolina. (Figure 2.1) 

In addition to sea-level rise, hurricane-induced storm surges exacerbate coastal flooding. 

Hurricane Hugo landed just north of Charleston, SC, at Sullivan's Island around midnight on 

September 22, 1989, as a Category 4 storm. The hurricane caused massive wind and storm surge 

damage along the coast and significant wind damage far inland; Hugo then generated the highest 

storm tide heights recorded on the U.S. East Coast. In South Carolina, around 1.8 million 

hectares of forest land were damaged by wind and water (National Weather Service, n.d.-a). 

Hurricane Irene formed from a low-pressure area in the western Caribbean Sea, becoming a 

tropical storm on October 13 and a hurricane on October 15, 1999, in the Straits of Florida. It 

caused agricultural losses and long-term ecological impacts expected in the Everglades and 
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estuaries. (National Weather Service, n.d.-b). Hurricane Floyd landed on September 16, 1999, at 

Cape Fear, North Carolina, as a Category 2 storm on the Saffir-Simpson Hurricane Scale. The 

primary impact of Floyd was extensive flooding, with Southport receiving the highest rainfall 

total of 24.06 inches. (National Weather Service, n.d.-c). Hurricane Gaston led to a tropical 

storm warning and a hurricane watch from Little River Inlet, South Carolina (SC) on August 29, 

2004, causing heavy rains and strong winds and damaging many trees. (National Weather 

Service, n.d.-d) 

 

Hurricane Charley landed on Florida's southwest coast near Cayo Costa, just west of Ft. 

Myers, at approximately 3:45 p.m. EDT on August 13, 2004. The hurricane caused an estimated 

$14 billion in economic losses. On October 8, 2016, Hurricane Matthew made landfall, 

producing the third-highest tide levels ever recorded at Charleston Harbor since Hugo and 

surpassing the early October 2015 flood event by over a foot. The hurricane affected Florida, 

Georgia, North Carolina, and South Carolina. Hurricane Florence, initially a category four 

storm, was downgraded to a category 1 when it landed on September 17, 2018. Surge levels 

reached 3.75 feet in Beaufort, South Carolina, where local inundation typically occurs. (Runkle 

et al., 2018). Hurricane Dorian came across northeastern South Carolina and eastern North 

Carolina on Wednesday, September 5, 2019. Luckily, it kept its center offshore as it neared Cape 

Fear that evening. (National Weather Service. n.d.-e) 

 

Hurricane Isaias landed near Ocean Isle Beach, North Carolina, on August 3, 2020. The 

initial storm surge forecast predicted 2 to 4 feet of inundation from Edisto Beach, South 



  

  

 

10 

 

Carolina, to Cape Fear, North Carolina. Coastal South Carolina received 5-7 inches of rain. 

(National Hurricane Center, 2021). More recently, Hurricane Ian struck near Georgetown, SC, 

on September 30, 2022, as a Category 1 hurricane had high winds reaching 37 m s−1 near the 

area (Armstrong, 2022). The verified height of the tide was up to 2.35 m above mean sea level 

in the Springmaid Pier, Myrtle Beach (NOAA, 2024). It was the third most costly in U.S. 

history, following Hurricane Katrina in 2005 and Hurricane Sandy in 2012 (Bucci et al., 2023). 

In 2023, post-Hurricane Ian, mortality rates rose sharply in the mangrove. (Conservancy of 

Southwest Florida, 2024).  

 

 

 

Figure 2.1: Hurricanes near Georgetown, South Carolina, Since 1989. 

Hurricane Impacts in Coastal Forests 



  

  

 

11 

 

The impact of hurricane disturbances on tropical forests received significant interest 

from different researchers following Hurricane Hugo in 1989 (e.g., Walker, 1991a; Brokaw & 

Grear, 1991). Coastal and estuarine landscapes encompass a few of the world's most valuable 

and fragile ecosystems (Lotze et al., 2006; Barbier et al., 2011; Parker & Crichton, 2011). A rise 

in hurricane frequency and intensity likely exceeds the historical norms of southern forest 

ecosystems (Elsner et al., 2008; Pachauri et al., 2014; Kossin et al., 2020), raising concerns 

about the sustainability and future of coastal forests. In the southeastern United States, 

hurricanes are a significant natural disturbance affecting forest ecosystems. A powerful 

hurricane can dramatically alter these forests' composition, structure, and succession. (Foster, 

1988; Boutet & Weishampel, 2003) 

 

Storm surges and high winds from these storms can drastically affect the structure, 

growth, species makeup, and diversity of forests (Lugo, 2008). Rising sea levels lead to the 

gradual inward shift of shorelines and the forest-marsh boundary (Robichaud & Bégin, 1997; 

Kirwan et al., 2016). These stressors have resulted in decreased forest growth, regeneration 

failures, and dieback events (Mickler et al., 2012; Kirwan et al., 2016). For instance, the coastal 

forests in South Carolina saw increased mortality due to saltwater intrusion and severe wind 

damage from Hurricane Hugo in 1989 (Hook et al., 1991). Moreover, coastal forests on Florida's 

west coast have experienced regeneration failures due to rising sea levels (Williams et al., 1999). 

 

Hurricanes impact forest ecosystems in various ways, resulting in patches of tree 

mortality within the forest (Figure 2.2). Hurricane Ivan in 2004 severely affected around 1 

https://www.sciencedirect.com/science/article/pii/S0168192309002251#bib14
https://www.sciencedirect.com/science/article/pii/S0168192309002251#bib14
https://www.sciencedirect.com/science/article/pii/S0168192309002251#bib5
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million hectares of land in Alabama alone (Springer et al., 2004). More recently, Hurricanes 

Irma in 2017 and Michael in 2018 caused significant wind disturbance to forests in Florida and 

Georgia. Hurricanes also cause saltwater intrusion and storm surge flooding in coastal 

ecosystems (Bianchette et al., 2009). Saltwater intrusion can kill trees, alter forest composition, 

and expand marshes into forested coastal areas (Bianchette et al., 2009; Doyle, 2007; Kearney et 

al., 2019). 

 

Coastal ecosystems dominated by woody plants are undergoing significant mortality 

(Sippo et al., 2018). The emergence of 'ghost forests' due to inundation is becoming increasingly 

common globally for both halophytic and glycophytic woody plants (Kirwan & Gedan, 2019; 

Lovelock et al., 2017; Penfound & Hathaway, 1938; Shreve et al., 1910; Sippo et al., 2018; 

Wang et al., 2019). The rapid rise in relative sea levels and the growing frequency and intensity 

of storm surges are expected to continue (Vermeer & Rahmstorf, 2009; Jevrejeva et al., 2016). 

These changes are leading to increased coastal forest mortality (Schieder & Kirwan, 2019). 

Hurricanes can damage or remove fruits, flowers, and leaves for varying periods. 

Additionally, these disturbances may prevent mature forests from transitioning to late-

successional stages and can sometimes enhance ecosystem productivity and structural diversity 

(Conner et al., 1989). Forests disturbed by hurricanes can aid the growth of invasive species 

(Bhattarai et al., 2014; Besser et al., 2019). Consequently, hurricanes cause shifts in forest 

structure and composition. Understanding these structural and compositional changes over time 

is crucial for comprehending the complex ecological effects of hurricanes on forests (Shiels et 

al., 2014), which can inform forest management strategies to enhance forest resistance and 
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resilience. Several factors affect forest vulnerability and response to hurricane damage, with 

wind speed and forest structure particularly being crucial (Mitchell et al., 2013; Taylor et al., 

2019). In coastal regions, saltwater intrusion and storm surge flooding from hurricanes 

significantly impact forest stands (Bianchette et al., 2009). Numerous studies have examined 

forest damage and responses following major storm events in the southern United States (e.g., 

Gresham et al., 1991; Xi et al., 2008; Song et al., 2012; Williams et al., 2013; Zampieri et al., 

2020). Further research in this area is necessary to understand the risks of damage to coastal 

forests from severe hurricanes. 

 

Figure 2.2: Tree mortality patch in between the forest (Credit: Dr. Thomas Williams) 

 

Tree Mortality and Biotic factors 

Tree mortality is also influenced by the size and age of the tree (van Mantgem et al., 

2009; Peng et al., 2011). Mortality rates often exhibit a U-shaped, bimodal pattern relative to 

age, with high mortality among young trees due to competition and resource limitations and 

among old trees due to decreased physiological efficiency and higher susceptibility to damage 
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(Monserud & Sterba, 1999; Thurnher et al., 2016). Characteristics of individual trees, such as 

size, are expected to affect the likelihood of mortality and help infer the cause of death. 

Analyzing vegetation dynamics through comprehensive assessments of mortality, regeneration, 

and growth can enhance our understanding of the ecological mechanisms regulating plant 

communities (Phillips et al., 2011). Differences in the resilience of various plant species to 

inundation and saltwater exposure can lead to significant changes in vegetation structure and 

composition (Williams et al., 1999; Osland, 2016), which may become apparent long before a 

forest transition to a marsh (Field et al., 2016). Post-hurricane studies have revealed variations in 

tree resistance to damage and mortality rates (Walker, 1991b; Zimmerman et al., 1994). 

However, predicting such damage and mortality remains challenging due to the numerous factors 

influencing tree responses to hurricane winds, which operate at various spatial and temporal 

scales. The extent of damage to a tree may be related to its size (Lugo et al., 1983; Walker, 

1991b; Herbert et al., 1999) or biogeographical origin (MacDonald et al., 1991).  

 

Different tree species vary in sensitivity to hurricane events (Zimmerman et al., 1994; 

Canham et al., 2010) and their recovery pathways after the disturbances (e.g., Walker, 1991b; 

Canham et al., 2010). Resistance and responsiveness to hurricane disturbance differ among tree 

species (e.g., Gresham et al., 1991; Merrens & Peart, 1992; Zimmerman et al., 1994; Everham & 

Brokaw, 1996). Diameter at breast height (DBH) is an important variable in estimating tree 

growth and health. Larson et al. (2015) studied the spatial aspects of tree mortality in young and 

old-growth forests. They noted significant differences in mortality among the two forest types 

with different DBH classes. In young forests with smaller diameter trees, noncompetitive 
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mortality caused by insects, disease, or wind occurred in spatially aggregated patterns, increasing 

spatial heterogeneity. However, the relationship between sea level rise and DBH in coastal 

forests has received limited attention in the literature. 

 

The type of leaf habit, whether deciduous or evergreen, greatly affects trees' ecological 

and physiological characteristics, as well as their allocation of metabolic resources, which in turn 

influences their growth rate and ability to cope with stress (Singh & Kushwaha, 2016). 

Deciduous forests tend to be less vulnerable to hurricane damage than evergreen forests (Yu & 

Gao, 2020). Evergreen forests had a higher tendency to die during disturbances in the Amazon 

forest (Aleixo et al., 2019). 

 

Tree Mortality and Climatic Factors 

Instead of attributing tree deaths solely to hurricane-induced saltwater intrusion, 

incorporating local climatic variables into models enhances their ability to illustrate how 

multiple factors collectively affect tree survival. Tree survival is expected to change with 

ongoing climate change due to shifts in average climatic conditions and the frequency and 

intensity of extreme weather events (van Mantgem et al., 2009; Allen et al., 2010), as well as 

changes in disturbance patterns (Seidl et al., 2014; Seidl et al., 2017). Climate-related abiotic 

and biotic disturbances will increase in magnitude and intensity under future climate scenarios, 

leading to heightened tree mortality (Seidl et al., 2017). Annual temperature was a significant 

factor in models for six out of eight hardwood species in the United States, with higher 

temperatures correlating significantly with increased mortality risk (Yaussy et al., 2013). 
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Elevated temperatures lead to higher respiration costs, heat stress, and increased risk of 

cavitation, all contributing to elevated tree mortality rates (McDowell et al., 2008; Allen et al., 

2010). Mortality rates in trees have been associated with climate variations such as higher warm-

season temperatures (Park Williams et al., 2013), longer and more intense dry seasons (Adams et 

al., 2017), wetter rainy seasons (Mori & Becker, 1991), and storms (Nelson et al., 2010). 

 

Periods of extreme heat have been linked to mortality events, suggesting that rising 

temperatures exacerbate the effects of hypoxia and increased salinity (Allen et al., 2021; 

Lovelock et al., 2017). This trend aligns with observations and predictions for upland forests, 

indicating that higher temperatures contribute to increased tree mortality (Williams et al., 2013). 

Tree mortality may increase when high temperatures coincide with reduced summer 

precipitation (Bigler et al., 2006). However, in the western USA, precipitation-related variables 

did not predict tree mortality from any cause (McNellis et al., 2021). 

 

Tree Mortality and Hydrologic Factors 

Cyclones, tsunamis, high tides, and hurricanes frequently cause damage and mortality in 

coastal ecosystems (Lugo, 2008; Zeng et al., 2009). While flooding and saltwater intrusion often 

coincide during storms, they can also vary independently across space and time (Mulholland et 

al., 1997; Stanturf et al., 2007; Herbert et al., 2015). The frequency of tidal cycles and storm 

surges determines the overall impact of salinity on coastal lands. The direction and accumulation 

of water flow at lower elevations affect local moisture availability. Typically, saltwater 

accumulates in low-lying areas during and after hurricanes, increasing soil salinity and leading to 
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tree mortality. The inland reach of flooding and saltwater intrusion has expanded, affecting a 

larger area due to hurricanes and storm surges (Poulter & Halpin, 2008; Nicholls & Cazenave, 

2010; Church et al., 2013). 

 

Tree Mortality and Topographic Factors 

The topographic position, particularly the elevation relative to sea or freshwater levels, is 

significant as it determines the potential frequency and duration of inundation. (Fagherazzi et al., 

2019; Schieder & Kirwan, 2019; Smith et al., 2021; Smith & Kirwan, 2021; Taillie et al., 2019). 

Topographic variability impacts tree mortality rates as the sample plots are dispersed across 

varied topographic factors. Sea water clogged in concave areas after the storm surge, creating 

pools of standing water that can lead to increased salinity in the soil and hinder vegetation 

growth (Figure 2.3). Several research studies have examined how sea-level rise has influenced 

the distribution of upland forests along coastlines in the recent past (Clark, 1986; Ross et al., 

1994) and have delved into how the decline of forest stands is related to changes in elevation. 

While high-elevation vegetation faced more significant damage during hurricanes in the 

mangroves (Yu & Gao, 2020), this pattern might vary in other coastal forests. 

The curvature of the land, whether it is concave or convex, plays a role in directing the 

flow and collection of water (Ali & Roy, 2010; Gessler et al., 2000) and is assumed to contribute 

to the death of trees because it can lead to the accumulation of saltwater in the forest's path. 

Baguskas et al. (2014) included land curvature as one of the factors in their analysis of how 

drought-induced tree mortality is spatially distributed across the forest, noting that negative 

curvature values for most trees indicate they also grow in areas with convergent flow lines; 
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however, detailed research on tree mortality due to the curvature of the land is yet to be done in 

coastal forests.  

Given the strong connection between the structure of forests and their hydrology, which 

is particularly pronounced in the gently sloping southeastern coastal plains, it is crucial to 

understand how flow accumulation and runoff are generated. This understanding is important 

because disruptions to forest structure can occur suddenly, such as during hurricanes, or 

gradually over longer periods, as with climate change (Dai et al., 2011, 2013). Following the 

storm, collections of surge water remained in swales with inadequate drainage for several weeks 

after the Hurricane Hugo in 1989. (Gardner et al., 1991). Moreover, Yu & Gao (2020) 

emphasized the significance of drainage capacity for the recovery of coastal mangroves, 

suggesting that better drainage capacity reduces the likelihood and duration of inundation, 

causing less soil salinity and thus lowering tree mortality. Comprehensive investigations 

regarding tree mortality's relationship to drainage capacity in the coastal forest are very limited. 

Trees near the marsh area might face higher vulnerability to various stressors, potentially 

resulting in increased mortality rates (Kearney et al., 2019;  Osland et al., 2013; Langston et al., 

2017). Soon after the storm during Hurricane Hugo, the impact was severe, with trees and 

shrubs near the marsh's edge experiencing extensive leaf and needle damage due to salt and 

wind stress, while further inland, the spatial pattern of salt stress varied, vegetation showed less 

signs of stress (Garnder et al.,  1991). Generally, salt levels decreased further inland from the 

forest marsh boundary over time, and trees along this boundary and in swales between 

remaining beach ridges have experienced needle or leaf loss or browning (Garnder et al.,  1991). 

However, Field et al. (2016) mentioned that there is not sufficient evidence to strongly support a 
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significant recent rise in mortality rates near the marsh edge when considering the distance from 

the marsh in New England. These contrasting results brought more attention to our 

understanding of tree mortality and marsh transgression in the Hobcaw Barony of South 

Carolina. 

 

Figure 2.3: Seawater clogged in concave areas after the storm surge. (Pic credit: Dr. Thomas 

Williams) 

 

Remote Sensing and Quantify Hurricane Damage 

To understand how forests will react to climate change, it is important to use all available 

data and tools, like remote sensing technology (Allen et al., 2015). Satellite remote sensing 

methods have been used to detect and measure the effects of forest disturbances across local to 

global scales and at various time intervals (Chambers et al., 2007; Frolking et al., 2009; 

Mildrexler et al., 2009; Zhu et al., 2012; Baumann et al., 2014; Negrón-Juárez et al., 2014). 
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Remote sensing provides a unique capability to create detailed maps of tree mortality, 

essential for investigating potential drivers of mortality (Anderegg et al., 2016). There are two 

primary approaches for using remote sensing to quantify tree mortality: (1) individual tree-based 

mortality mapping, which requires high spatial resolution data (Clark et al., 2004; Garrity et al., 

2013; Guo et al., 2007; Waser et al., 2014); and (2) stand-level mortality mapping, which 

utilizes moderate spatial resolution data (Bullock et al., 2020; Coops et al., 2009; Fortin et al., 

2020; Fraser & Latifovic, 2005; Macomber & Woodcock, 1994; Meigs et al., 2011; Van Gunst 

et al., 2016). This technology enables the identification of patterns that may be challenging to 

detect through ground-based studies (Chambers et al., 2007) and has been used to assess 

hurricane damage in coastal ecosystems (Cablk et al., 1994; Ramsey et al., 1997, 1998, 2001; 

Boutet & Weishampel, 2003; Wang, 2004; Ayala-Silva & Twumasi, 2004; Kiage et al., 2005; 

Gillespie et al., 2006; Chambers et al., 2007). 

In satellite remote sensing, the Leaf Area Index (LAI) is typically derived from a 

spectral vegetation index (SVI), which combines multiple spectral bands into a single value 

(Franklin et al., 1997). Forest canopy characteristics are crucial when calculating LAI, as they 

directly influence physiological processes and contribute to vegetation dynamics models (Fang 

et al., 2019). The European Space Agency (ESA) operates Sentinel-2, consisting of two 

satellites, Sentinel-2A and Sentinel-2B. The LAI of loblolly pine was determined using Landsat 

8 satellites via the simple ratio (SR) index (Blinn et al., 2019). Compared to Landsat 8, Sentinel-

2 offers an advantage in forest management due to its four 10-meter spatial resolution bands 

sensitive to near-infrared (NIR), red, green, and blue electromagnetic radiation (Drusch et al., 

2012). LAI is critical for monitoring forest cover and is recognized as a key variable in climate 
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change studies (GCOS, 2021). This study analyzes changes in LAI pre- and post-Hurricane Ian 

to assess tree mortality in Hobcaw Barony. 

Survival Analysis. 

Survival analysis, originally developed for analysis in medical sciences, has been 

adapted as a new technique in forest mortality analysis (Harcombe, 1987; Zens & Peart, 2003). 

Survival analysis encompasses a variety of statistical methods used to study the timing and 

occurrence of events, particularly death (Berkson & Gage, 1950; Cox & Oakes, 1984; Allison, 

2010). The concept of applying survival analysis to forest mortality was initially proposed by 

Waters (1969), but its application has mainly focused on forest inventories in even-aged 

plantations (Morse & Kulman, 1984; Amateis et al., 1997; Volney, 1998; Wyckoff & Clark, 

2000), research plots (Reams et al., 1988; Burgman et al., 1994; Preisler & Slaughter, 1997), and 

stand table projections (Rose, 2004). Researchers have dedicated significant efforts to 

developing estimation techniques for survival and hazard functions in forest research plots 

(Preisler & Slaughter, 1997; Volney, 1998). Survival analysis methods are adept at incorporating 

time-dependent variables and handling non-normal distributions (Collett, 1994; Allison, 1995), 

as well as handling censored data where the exact time of an event is unknown (Collett, 1994). 

Types of censoring include left censoring (the event occurred before a certain time), right 

censoring (follow-up ended before the event occurred), and interval censoring (the event 

happened within a known time interval). In forestry, right and interval censoring are common 

due to periodic inventories. Survival in this context is described by the survival function (S(t)), 

the hazard function, and the cumulative hazard function. The survival function, S(t), represents 

the probability that a tree survives past time t and is a decreasing function between 0 and 1. 
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Preisler and Slaughter (1997) used the lognormal distribution to explore how tree 

characteristics and locations affect the survival of individual trees in stands impacted by 

annosum root disease. Survival analysis methods were employed to create a model for 

individual tree mortality to detect, monitor, and address widespread forest health concerns 

(Woodall et al., 2005b). This model used DBH increment as the driving variable instead of the 

traditional time variable.  More recently,  Maringer et al. ( 2021) used almost 100 years of data 

to model tree mortality using the climate data using the Kaplan Meier estimator and AFT 

model. 

Fan et al. (2006) investigated tree survival in oak forests by combining classification 

and regression tree analysis with survival analysis, employing the nonparametric Kaplan-Meier 

estimator. Burgman et al. (1994) applied a Cox model to create background mortality models 

for mountain ash (Eucalyptus regnans) and alpine ash (Eucalyptus delegatensis) in Australia, 

with the time scale defined as the difference between the age at study entry and the age at death 

or current age. Survival analysis has been successfully applied in forest research 

(e.g., Nothdurft, 2013; Neuner et al., 2015; Neumann et al., 2017).  Rose et al. (2006) also 

utilized survival analysis to derive the model and predict individual tree survival probability in 

loblolly pine plantations using data from permanent plots measured annually, with the stand's 

age as the driving variable. This model also considered the effects of silvicultural treatments 

and various tree and stand characteristics on survival. In these models, most fundamental 

covariates are time-dependent, such as DBH, height, basal area plotwise, relative density, etc. 

However, conventional logistic regression cannot incorporate time-dependent covariates; 

https://www.sciencedirect.com/science/article/pii/S0378112719316068?fr=RR-2&ref=pdf_download&rr=893c3072692d2db6#b0235
https://www.sciencedirect.com/science/article/pii/S0378112719316068?fr=RR-2&ref=pdf_download&rr=893c3072692d2db6#b0225
https://www.sciencedirect.com/science/article/pii/S0378112719316068?fr=RR-2&ref=pdf_download&rr=893c3072692d2db6#b0220
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instead, it uses the covariate values at the beginning of the interval and assumes they remain 

constant throughout the period. 

In contrast, survival analysis techniques can manage time-dependent and interval-

censored data, allowing for testing the assumption of a constant hazard function and modeling 

dynamic hazard functions (Collett, 2003). Survival analysis techniques are advantageous for 

studying key variables that change over time, such as the effects of periodic hurricanes, droughts, 

winds, thinning, extreme temperature periods, etc. Therefore, the likely benefits of using survival 

analysis techniques for modeling individual tree mortality appear substantial, and this research 

uses the nonparametric Kaplan-Meier estimator (Kaplan & Meier, 1958).  
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CHAPTER 3 

SPATIAL PATTERNS OF TREE MORTALITY IN A COASTAL FOREST OF 

HOBCAW BARONY AFTER HURRICANE HUGO. 

Abstract 

Remote sensing technologies like satellite imagery or aerial photographs can be used 

to elucidate the spatial patterns of tree mortality resulting from hurricanes. This 

project assessed topographic factors to explain the patterns of tree mortality. Post-

hurricane aerial photographs taken in October 1990 were processed in Arc GIS to 

derive the tree mortality areas map after Hurricane Hugo. Topographic variables such 

as elevation, proximity to the marsh, drainage capacity and curvature of the land data 

were acquired. Analysis and visualization showed higher mortality in concave areas 

close to the marsh at approximately 1-2m elevation and 120-180m far from streams. 

Variables were used to derive the model using the logistic regression analysis. All 

variables (water depth, curvature, distance from marsh and streams) were significant 

in the model, and the model has moderate accuracy. The predicted map for tree 

mortality after Hurricane Ian was derived based on the model, and the actual tree 

mortality map was generated using the Leaf Area Index change. Two maps were 

compared visually, and the model underestimated the mortality.  Understanding how 

various spatial factors interact and contribute to tree mortality will enhance our 

capacity to evaluate the susceptibility of coastal forests to mortality due to periodic 

hurricane events and how they shape the growth and resilience of coastal forests. 
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Introduction 

Hurricane Hugo of Category 4 came ashore across Sullivan's Island, South 

Carolina, at midnight Eastern Standard Time (EST) on September 21, 1989 (Hook et 

al., 1991). Supported by observation of watermarks in the field, Schuck-Kolben (1990) 

inferred that the Hurricane Hugo surge was up to 3.3 meters (m) above mean sea level 

at the North Inlet of the Hobcaw Barony. Further flood debris was discovered in the 

forest area at 3-4 m heights, indicating a tidal surge up to that height (Gardner et al., 

1991). This enabled seawater to penetrate the nearby coastal woodland up to 

approximately the 3.0-m elevation mark, and the water surge passed through almost 1.5 

kilometers (km) into the forest from the forest marsh edge (Gardner et al., 1992). 

A range of elements, including terrain characteristics such as elevation, topography, and 

the arrangement of drainage systems, can create variations in stress levels due to tidal surges 

across a landscape and subsequent mortality of trees (Gitlin et al., 2006). Several studies 

examined how sea-level rise influenced the distribution of upland forests along coastlines 

(Clark, 1986; Ross et al., 1994) and delved into how the decline of forest stands is related to 

changes in elevation. While high-elevation vegetation faced more significant damage during 

hurricanes (Yu & Gao, 2020), this pattern might vary within coastal forests. 

 

The curvature of the land, whether it is concave or convex, plays a role in directing the 

flow and collection of water (Ali & Roy, 2010; Gessler et al., 2000) and is assumed to 

contribute to the death of trees because it can lead to the accumulation of saltwater in the forest 

soil. Baguskas et al. (2014) included land curvature as one of the factors in their analysis of 
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how drought-induced tree mortality is spatially distributed across the forest; however, detailed 

research on tree mortality due to the curvature of the land is yet to be done in coastal forests. 

Water flows downhill and accumulates in areas with lower elevations, indicating higher 

moisture availability in those areas. Typically, saltwater tends to accumulate in the flow 

accumulation area longer during and after storm surges following hurricanes, which can lead to 

tree mortality due to increased soil salinity. Following the storm, collections of surge water 

remained in swales with inadequate drainage for several weeks after Hurricane Hugo in 1989 

(Gardner et al., 1991).   

However, Yu & Gao (2020) emphasized the significance of drainage capacity for the 

recovery of coastal mangroves, suggesting that better drainage capacity reduces the likelihood 

and duration of inundation, causing less soil salinity and thus lowering tree mortality. 

Comprehensive investigations regarding tree mortality's relationship to drainage capacity in the 

coastal forest are very limited. Given the strong connection between the structure of forests and 

their hydrology, which is particularly pronounced in the gently sloping southeastern coastal 

plains, it is crucial to understand how flow accumulation and runoff are generated. This 

understanding is important because disruptions to forest structure can occur suddenly, such as 

during hurricanes, or gradually over longer periods, as with climate change (Dai et al., 2011; 

Dai et al., 2013). 

Trees near the marsh area might face higher vulnerability to various stressors, 

potentially resulting in increased mortality rates (Kearney et al., 2019; Langston et al., 2017). 

Soon after the storm during Hurricane Hugo, the impact was severe, with trees and shrubs near 

the marsh's edge experiencing extensive leaf and needle damage due to salt and wind stress, 
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while further inland, the spatial pattern of salt stress varied, vegetation showed fewer signs of 

stress (Garnder et al., 1991). Generally, salt levels decreased further inland from the forest 

marsh boundary over time, and trees along this boundary and in swales between remaining 

beach ridges have experienced needle or leaf loss or browning (Garnder et al., 1991). However, 

Field et al. (2016) mentioned that there is not sufficient evidence to strongly support a 

significant recent rise in mortality rates near the marsh edge when considering the distance 

from the marsh in New England. These contrasting results brought attention to our 

understanding of tree mortality and marsh transgression in the Hobcaw Barony of South 

Carolina. 

The field of forestry has a rich history of utilizing aerial photography to support 

inventory programs (Thompson et al., 2007). Remote sensing techniques can be harnessed to 

detect and track changes in forests as a valuable tool for assessing the spatiotemporal variations 

in mortality events (Neumann et al., 2017). Satellite remote sensing methodologies offer the 

capacity to quantify the impacts of forest disturbances on various scales, ranging from local to 

global, and at varying temporal resolutions (Chambers et al., 2007; Zhu et al., 2012; Negrón-

Juárez et al., 2010). Many remote sensing damage assessments depend on variations in 

vegetation indices such as the normalized difference vegetative index (NDVI) (Hu et al., 2018; 

Lee et al., 2008; Parker et al., 2018), enhanced vegetation index (EVI) (Rossi et al., 2013), 

Leaf Area Index (LAI) (Bright et al., 2013; Wang et al., 2012; Rao et al., 2019), and 

normalized difference infrared index (NDII) (Wang et al., 2010). These indices are 

advantageous because they are extensively tested, easily accessible, and do not require external 

data such as field plots for analysis. Leaf Area Index (LAI) represents the proportion of green 
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leaf area to ground area. Cohrs et al. (2020) utilized Sentinel-2A imagery to determine the LAI 

for pine plantations in the southeastern United States.  

Knowledge regarding the occurrence and patterns of tree mortality events caused by sea 

level rise and hurricanes in coastal forests is very limited. In this study, we used multispectral 

images captured one year after Hurricane Hugo to quantify the spatial extent of tree mortality 

in forests in Hobcaw Barony and analyze landscape-scale variables that affect the spatial 

patterns in forest disturbance. Moreover, we also used the fragment LAI index from Sentinel-

2A to derive the tree mortality map after Hurricane Ian using the change in LAI in pre and 

post-hurricane Ian in 2022. 

We aim to derive a model to illustrate the relationship between patterns of tree mortality 

and topographic variables such as elevation, curvature, drainage capacity, and proximity to the 

marsh. The major objectives of this study are to a) map the spatial pattern of tree mortality 

observed after Hurricane Hugo, b) map the tree mortality areas after Hurricane Hugo in relation 

to variables such as concavity of land, drainage capacity,  distance to the marsh, and elevation, 

c) derive a model and predict the tree mortality areas for Hurricane Ian, and d) to derive and 

compare Hurricane Ian 2022 mortality maps using satellite imagery and model predictions. The 

findings have implications for predicting vegetation response patterns to future disturbances 

and highlight the need for targeted management interventions to mitigate the effects. 

Methodology 

Study area 

Hobcaw Barony has an area of around 6800 hectares and is situated at the southernmost 

point of the Waccamaw peninsula, north of Georgetown, South Carolina (33.33° N latitude, 



  

  

 

52 

 

79.20° W longitude) (Figure 3.1).  The Hobcaw Barony is known for its tidal freshwater 

forested wetlands, which play a crucial ecological role in the southeastern United States 

(Conner et al., 2007). There are approximately 129 flora species found across 114 genera in 48 

families (Stalter et al., 2018). The existence of nearby salt marshes impacts the distribution of 

salt marsh vascular plants in the clamshell middens of the tidal marsh (Stalter et al., 2018). 

Loblolly pine (Pinus taeda), longleaf pine (Pinus palustris), bald cypress (Taxodium 

distichum), swamp tupelo (Nyssa biflora), Southern live oak (Quercus virginiana), pond pine 

(Pinus serotina), laurel oak (Quercus laurifolia), water oak (Quercus nigra), and others are the 

major tree species found in the forest. Cypress and pine hardwood are present near the North 

Inlet salt marsh from where the saltwater intruded into the forest during Hurricane Hugo. 

During Hurricane Hugo in 1989, severe damage was reported for pond pine, laurel oak, water 

oak, loblolly pine, and longleaf pine (Heaton et al., 2023). Hobcaw Barony is approximately 

5.5 km inland from the coastline and lies 72 km east of the point of landfall of the center of 

Hurricane Hugo. 
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Figure 3.1: Study area map showing part of Hobcaw Barony Forest, South Carolina. 

 

Datasets 

We utilized multiple data sources to measure the spatial differences and the scale of tree 

mortality in the coastal regions of Hobcaw Barony. Variables used to explain the spatial 

patterns of tree mortality were derived from remotely sensed data. A digital elevation model 

(DEM) was obtained from the United States Geological Survey (USGS) and clipped to the area 

of interest. The concavity of the land was derived from the DEM data. The marsh area was 

demarcated manually using National Agriculture Imagery Program (NAIP) imagery. 
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ArcGIS Pro 10.2.1 was used to prepare the tree mortality maps and derive the variables 

for the data analysis. Aerial photographs taken one year after Hurricane Hugo in 1990 were 

georeferenced with the 2005 NAIP Imagery using the ground control points (GCP). GCPs were 

chosen from fixed and consistent features that remain unchanged over time, such as road 

intersections, marsh boundaries, rivers, stream channels, and buildings. After georeferencing, 

polygons were manually created for each image's mortality and healthy vegetation areas. 

Polygon contained multiple trees within them, and in each image, dying trees had a yellow-

brown or dark blue appearance, while the healthy trees appeared red and pink. 

We analyzed tree mortality during Hurricane Ian by comparing pre- and post-hurricane 

images from Sentinel-2A, taken in February 2022 and February 2024. These images were used to 

calculate the Leaf Area Index (LAI) for each year, which allowed us to analyze the relative 

change in LAI between the two years. The LAI was acquired using the Simple Ratio (SR) metric, 

following the formula: 

𝐿𝐴𝐼 = 0.310 ∗ 𝑆𝑅 − 0.098 (1) 

where SR is the simple ratio of the near-infrared (NIR) band (Band 8) and the red band 

(Band 4) calculated using Sentinel-2 Level-2A surface reflectance images (Cohrs et al., 2020). 

In ecological studies, changes in LAI are often correlated with tree health and vigor. 

Therefore, we calculated the change in LAI using the formula: 
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𝐶ℎ𝑎𝑛𝑔𝑒 =  
𝐿𝐴𝐼2024 − 𝐿𝐴𝐼2022

𝐿𝐴𝐼2022
 

(2) 

Only negative values, indicating a decrease in LAI, were retained for further analysis. 

Any change exceeding the 22% threshold was set to 1, indicating tree mortality. A significant 

reduction in LAI of more than 22% can indicate severe damage to trees, making it a relevant 

threshold for assessing mortality. In ecological analysis, thresholds are often used to differentiate 

between normal variability and significant ecological changes. The 22% threshold is set to 

identify significant drops in LAI that are more than just normal changes, showing that trees are 

not only stressed but are dead. 

February was determined to be the optimal month for comparison between 2022 and 

2024. This choice was made because most of the areas are dominated by evergreen loblolly pine, 

and it was assumed that understory growth was minimal during this month, enhancing the 

accuracy of our LAI change analysis focused on tree mortality. Additionally, clear-cut operations 

in some areas during this period were manually removed from the analysis to ensure the 

accuracy of our results. 

DEM and derived variables 

Four variables (elevation, concavity, drainage capacity of the land, and proximity to the 

marsh) were assumed to control the spatial patterns of tree mortality in the forest area. The 

DEM has a 1 m 1 m spatial resolution, which was resampled to 10 m 10 m to perform the 

curvature analysis. Each pixel's size for the curvature analysis was 100 m2, and the curvature 

output raster units are one over 100m units.  The drainage capacity of the land was derived 
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using hydrology tools in the ArcGIS Pro. Drainage capacity is defined by the distance to the 

cumulative drainage network of the flow accumulation inside the forest, which is connected to 

the marsh at the forest's edge. Proximity to the marsh is the absolute perpendicular distance of 

the point/patch of mortality to the boundary line of the marsh. 

The Hobcaw forest was inundated up to approximately 3 m during Hurricane Hugo 

(Gardner et al., 1992). Due to uncertainty in the precision of the 1990 estimates, Hugo's 

inundation depth was rounded to 3 m, and this height was used to outline the inundation area in 

ArcGIS Pro. Areas of healthy vegetation and tree mortality within that height were also 

digitized as multiple polygons. The nearest distance from any point to the marsh boundary or 

flow accumulation channel was calculated using the “Near” tool in ArcGIS Pro. 

We used the Fishnet tool in ArcGIS to create uniformly spaced points (10 meters apart), 

which allowed us to generate sample points for our study. The sample points comprised 

103,283 points, of which 36,927 were identified as being in the mortality class, and 66,356 

were in the healthy vegetation class. For each of these points from the mortality and healthy 

vegetation classes, we retrieved values from the variable raster datasets and utilized these 

values as input for the logistic regression analysis. The dataset was then split into the training 

and test data (3:1) to build and train the model and validate its accuracy using the test data. 

Pearson correlation test was performed on the independent variables before the analysis. 

We used the DEM for the visualization but used the water depth as a covariate for the 

logistic regression analysis. Using water depth as a variable in the model is justified because it 

directly measures the extent of water inundation in the forest, which influences soil infiltration 
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rates and subsequent changes in water salinity, as well as providing an indicator of drainage 

duration and overall hydrological dynamics than static DEM data. 

In this case, water depth is a function of the DEM and height of the water during a 

surge into the forest.  Water depth was determined as the absolute height above ground level for 

each pixel. 

• For each pixel during Hurricane Hugo, the water depth = 3- DEM (m) 

• For each pixel during Hurricane Ian, the water depth= 2.35- DEM (m) 

Logistic regression analysis 

Quantitative data analysis used R 1.2.5033 (R Core Team, 2019). Regression analysis 

was employed to develop the models. Bivariate logistic regression (glm() function, 

family=binomial) was used to assess the impact of topographic features on tree mortality in 

specific forest patches. In these models, tree mortality or healthy vegetation areas served as the 

binary response variable, indicating whether a pixel was classified as dead or dying (1) or as 

having healthy green vegetation (0) after the hurricane event. 

We used logistic regression to explore the relationship between tree mortality at each 

pixel (mortality or healthy class).  The equation gives our model: 

 

𝑃(𝑌 = 1|𝑋1, …𝑋𝑛) =
1

1 + 𝑒−(𝛽0+𝛽1𝑋1+...𝛽𝑛𝑋𝑛)
⬚

 

 

(3) 
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Where P is the conditional probability that a tree falls under the mortality area (Y = 1), 

given predictors X1, ..., Xn as water depth, concavity, distance from drainage network and 

distance from the marsh. 

Akaikes Information Criterion (AIC) (Anderson & Burnham, 2004) was used to 

determine the model best supported by mortality observations. We derived the AIC for models 

containing all possible combinations of the interactions among the predictors. The model most 

strongly supported by data was determined by the lowest AIC value (AICmin). 

Accuracy Estimation 

The Area Under the Curve (AUC) measures the area under the Receivers Operating 

Characteristics (ROC) curve, which is a graph showing the true positive rate versus the false 

positive rate. The ROC curve helps us see how well a model distinguishes between positive 

and negative cases at different thresholds. AUC is useful for model validation as it offers a 

single scalar value summarizing the model's performance across various decision thresholds. In 

binary classification, sensitivity (true positive rate) and specificity (true negative rate) are 

crucial metrics. Sensitivity indicates the proportion of actual positives the model correctly 

identifies, while specificity shows the proportion of actual negatives correctly identified. These 

metrics are vital for assessing a model's capability to classify positive and negative instances 

accurately. The cutoff point was established by choosing the threshold that optimizes the 

balance between sensitivity and specificity. 

Additionally, we utilized the F1 score to measure accuracy. The F1 score is a metric for 

assessing the performance of a classification model, especially when dealing with imbalanced 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5633074/#R6
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classes. It is the harmonic mean of precision and recall, effectively balancing both. The formula 

for the F1 score is: 

𝐹1 𝑆𝑐𝑜𝑟𝑒 =   2 ×  
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

(4) 

 

Precision is the ratio of true positive predictions to the total predicted positives, 

reflecting the accuracy of positive predictions. Recall, or sensitivity, is the ratio of true positive 

predictions to all actual positives, assessing the model's capability to identify positive instances. 

The F1 score, ranging from 0 to 1, with 1 indicating perfect precision and recall, is especially 

valuable for considering both false positives and false negatives in the evaluation. 

The model was then used to predict the mortality of Hurricane Ian by changing the 

water depth variable, and it was compared with the actual tree mortality map of Hurricane Ian. 

The whole steps of the methodology are illustrated in Figure 3.2. 
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Figure 3.2: Methodology layout showing the steps from acquiring images for analysis to 

comparing the mortality maps. 
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Results 

It was found that trees were dying/died in an approximately 7.01 km2 area in the Hobcaw 

Barony after Hurricane Hugo (Figure 3.3). 

 

Figure 3.2: Tree Mortality Areas after Hurricane Hugo in 1989 in the Hobcaw Barony Forest, 

South Carolina. 



  

  

 

62 

 

Maps in Figures 3.4, 3.5, 3.6 and 3.7 further illustrates tree mortality areas in Hurricane 

Hugo with regard to the curvature, distance from the marsh, distance from stream networks and 

DEM, respectively. For better visualization, curvature of the land was categorized into three 

categories: Concave (< -0.01), flat (-0.01 to +0.01), and convex (>0.01) and the elevation range 

was categorized into three categories: less than 1 m (<1 m), 1-2 m, and greater than 2 m above 

mean sea level. 
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Figure 3.4:Tree mortality by curvature classes after Hurricane Hugo (1989) in Hobcaw Barony, 

South Carolina, USA 

 

 



  

  

 

64 

 

 

Figure 3.3: Tree mortality by distance from stream networks after Hurricane Hugo (1989) in 

Hobcaw Barony, South Carolina, USA. 
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Figure 3.4: Tree mortality with distance from marsh after Hurricane Hugo (1989) in Hobcaw 

Barony, South Carolina, USA. 
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Figure 3.5: Tree mortality by elevation classes after Hurricane Hugo (1989) in Hobcaw Barony, 

South Carolina, USA. 

Looking at the density plot to understand the distribution of pixels for each variable, 

curvature did not differ much in their distribution in all three cases (Figure 3.8 a). Higher tree 

mortality areas were between 1-2m DEM in Hurricane Hugo and Hurricane Ian mortality areas; 
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however, it was evenly distributed in Hurricane Hugo healthy areas. (Figure 3.8 b). Moreover, 

the closer the distance from the marsh, the higher the distribution was seen in Hurricane Hugo 

and Ian mortality areas. It was relatively even distributed in the case of  Hurricane Hugo 

Healthy areas. (Figure 3.8 c). The density plot line graph for the distance from streams showed 

almost similar patterns in all three areas(Figure 3.8 d).  

 

Figure 3.6: Density plots of pixel distribution of independent variables for healthy areas after 

Hurricane Hugo and tree mortality areas in Hurricane Hugo and Ian. 
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The difference in the distribution of the pixels is positive for the concave curvature and 

negative for the convex curvature; higher in DEM 1-2m; positive for distance from marsh up to 

400m; and positive for distance from streams up to approximately 20 m and between 120-

180m.(Figure 3.9) 

 

Figure 3.7: Differences in the distribution of the pixels of independent variables for tree mortality 

and healthy areas after Hurricane Hugo in 1989 in the Hobcaw Barony forest, South Carolina, 

USA.  

Pearson correlation coefficient and plot indicated a low correlation between the 

independent variables used in the logistic regression (Figure 3.10 and Table A - 1). 
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Figure 3.8: Pearson correlation matrix plots among the variables used in the analysis.  

All the variables in the model were significant. The positive coefficient value for the 

concave curve and water depth implies that the log odds of any pixel falling into mortality areas 

(1) is higher with increasing concavity and water depth and vice versa for other variables. (Table 

3.1) 

Table 3.1: Summary of the final logistic regression analysis model tree mortality in the Hobcaw 

Barony Forest, South Carolina, USA 

Coefficients Estimate Std. 

Error 

Z value Pr(>|z|) 

Intercept -1.097 0.044 -24.532 < 0.0001 

Curvature (Concave) 0.052 0.022 2.275 0.0229* 
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Curvature (Convex) -0.094 0.023 -4.065 < 0.0001 

Distance From Stream -0.001 0.001 -3.898 < 0.0001 

Water Depth 0.793 0.027 29.377 < 0.0001 

Distance From Marsh -0.001 0.001 -44.232 < 0.0001 

Distance From Stream 

* Water Depth 

0.001 0.001 5.818 < 0.0001 

 

Receiver Operating Characteristic (ROC) Curve was used to validate the model using the 

true positive and false positive values. The ROC curve depicts the performance of a 

classification model across all classification thresholds.  The AUC was found to be 0.68. 

(Figure 3.11). However, the model with a higher AUC (>0.7) is recommended as a model with 

higher accuracy. The F1 score for the accuracy estimation was 0.74, which means the model is 

assumed to have a good performance for predictability. 
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Figure 3.9: ROC Curve for the accuracy estimation 

 

The predicted tree mortality map for Hurricane Ian, based on the logistic regression 

model, and the actual tree mortality area after Hurricane Ian, based on the LAI change, is 

illustrated in Figures 3.12 and 3.13, respectively. The model underestimated the tree mortality 

(Actual Mortality: 0.41 sq. km, Predicted Mortality: 0.17 sq. km); however, the spatial locations 

of tree mortality seem similar. Forty-one percent of the tree mortality after Hurricane Ian 

occurred within the same areas affected by Hurricane Hugo's mortality in 1990 (Figure 3.13).  
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Figure 3.10: Tree mortality areas were predicted after Hurricane Ian based on the logistic 

regression model prediction. 
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Figure 3.11: Actual tree mortality areas after Hurricane Ian based on the LAI change. Blue 

shades depict tree mortality areas after Hurricane Ian, which also fall inside the areas of tree 

mortality after Hurricane Hugo.  

Discussion 

A positive difference in the variable's histograms in the concave curvature shows a higher 

mortality in the concave curvature in the mortality areas than in the healthy areas during 

Hurricane Hugo (Figure 3.3). This also aligns with the model's findings, wherein the coefficient 

of convex curvature in the logistic regression model demonstrates a negative association with 

mortality (Table 3.1). This may be because concave terrain is a long-term water storage site with 

higher tree mortality due to salinity. 

 

The positive value (>0) in the graph of the difference in the distribution of the pixels in 

tree mortality and healthy areas after Hurricane Hugo found within the 0- 40 m and 120-180m 

range near the streams was noteworthy, suggesting a localized impact of distance from streams 

(Figures 3.9 d). The distance from the stream variable is also a significant factor in our model; 

however, the log odds values are less (Table 3.1). Yu and Gao (2020) highlighted the importance 

of drainage capacity in their study on tree mortality in mangrove forests near river channels. We 

may also consider further investigation into incorporating the combined influence of slope and 

aspect gradients along the stream networks rather than solely relying on linear distance from the 

stream network as a determinant. 

The observed higher tree mortality near marshland (Figure 3.6) and higher distribution of 

pixels closer to the marsh in mortality areas (Figure 3.8 c) aligns with our initial assumption that 
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these areas are more prone to seawater inundation, particularly during frequent hurricanes. This 

is also supported by an earlier study by Kearney et al. (2019). This increases the likelihood of 

seawater ingress, either directly through storm surges or indirectly through the dispersion of sea 

spray, contributing to the higher tree mortality in those areas. Furthermore, the possibility of a 

cumulative impact from previous hurricane events cannot be disregarded, which again 

exacerbates the adverse effects on vegetation. The confluence of saltier water, potentially 

intensified by repeated hurricane exposure, and the direct impact of salt spray within the adjacent 

forest zones emerge as a plausible explanation for the observed higher tree mortality rates in the 

areas close to the marsh. Moreover, Garnder et al. (1991) also highlighted that the trees near the 

marsh were more damaged during the Hurricane. 

Higher tree mortality areas within the elevation range of 1-2 m (Figure 3.7 and 3.8 b); this 

phenomenon can be attributed to the existing marshland in areas below 1 m, which already has 

naturally sparse tree populations within this height range. Consequently, the greater availability of 

trees within the 1–2m category contributed to higher tree mortality in this elevation. Water depth, 

used as a derivative of DEM for the model analysis, implies that the log odds of any pixel falling 

into mortality areas (1) is higher with increasing water depth and vice versa (Table 3.1). 

Validation after constructing the model using the training data and evaluating its accuracy 

on the independent test dataset quantified the model's discriminatory power. The AUC value of 

0.68 reflects the model's ability to distinguish between tree mortality and healthy vegetation 

areas (Figure 3.11). However, this value suggests a moderate discriminatory performance, urging 

caution in interpreting the model's predictive capabilities. A higher AUC, preferably exceeding 

0.70, is assumed to be an accurate prediction model; however, the model can still be used to 
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explore the significance of our independent variables and provide significant insights into the 

spatial variables affecting mortality.  Further, using the F1 score for validation, it was 0.74, 

which implies the model has a moderate predicting capacity. The validation process contributes 

valuable insights into the model's strengths and limitations, paving the way for future 

refinements and improvements to enhance its overall predictive accuracy. 

After deriving the actual tree mortality based on LAI change and the predicted map for 

Hurricane Ian using the model after the accuracy check, there are some visible discrepancies 

between the predicted and the actual tree mortality map (Figure 3.12 and 3.13). The predicted 

area of tree mortality after Hurricane Ian was 0.17 sq. km, but the actual tree mortality was 0.41 

sq. km. This difference may be due to the time of the data acquisition. The Hurricane Hugo data 

was collected one year after Hurricane Hugo, but the multispectral images acquired for LAI after 

Hurricane Ian were one and a half years after the event. LAI can rapidly recover following a 

disturbance from vegetation regrowth, including surviving trees and new growth (Templeton et 

al., 2015). Many forests can restore their leaf area after such events, provided that soil fertility is 

maintained or improved (Norton et al., 2015). The overlap of tree mortality from Hurricane Ian 

within the same areas impacted by Hurricane Hugo in 1990 (Figure 3.13) indicates that 41% of 

the areas of tree mortality in the recent Hurricane Ian were located in regions already affected by 

the earlier event. However, a significant 60% of tree deaths occurred in new areas, which could 

be attributed to the southern pine beetle infestation in the recent year rather than the hurricane 

itself. This discrepancy highlights a crucial limitation of the current model, which is designed to 

predict tree mortality specifically resulting from hurricane impacts based on the topographic. The 
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model does not account for additional factors, such as beetle infestations, which can 

independently contribute to significant tree mortality.  

Limitations of the study 

The research and model may have limitations due to the absence of various 

environmental, biological, and hydrological variables. These omissions could introduce errors, 

particularly concerning hydrologic factors like artesian freshwater from aquifers, environmental 

factors such as temperature and precipitation, and biological factors such as bark beetle 

infestation. 

Southern pine beetles (Dendroctonus frontalis) are causing tree mortality in the coastal 

forests. However, it is imperative to note that this hypothesis remains unexplored in the current 

research due to the absence of comprehensive data about the water table aquifer and the extent of 

pine infestation in the study area. This constraint represents a notable limitation of the present 

investigation, highlighting the need for future research endeavors to acquire detailed information 

on these critical variables. Furthermore, the observed lower value of the AUC value of the 

derived model may potentially be linked to the exclusion of information about these variables 

above. 

Another limitation of this research is that tree mortality after Hurricane Ian was 

calculated using changes in leaf area index change pre- and post-hurricane using Sentinel-2A 

imagery. However, the tree mortality areas were not validated using ground-truthing methods. 

Ground-truthing is necessary to ensure the accuracy and reliability of remote sensing data. 

 

Conclusion 
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The higher tree mortality was observed in the areas close to the marsh at an elevation 1-2 

m with concave curvature and around 120-180 m away from the stream networks. From the 

model, the probability that a certain patch/pixel of the forest belongs to a mortality class is 

influenced by the topographic variables: negatively by convex curvature, proximity to the marsh, 

water depth (a derivative of elevation), and positively by concave curvature, distance from 

stream networks. Moreover, there was an interaction effect between the variables. Considering 

the interaction effects between the distance from streams and water depth, the model had the 

lowest AIC value. The model had moderate accuracy and underestimated tree mortality areas 

after Hurricane Ian. Furthermore, the findings of this research may have broader implications for 

coastal regions globally, highlighting the role of topographic factors in the changing dynamics of 

coastal forests, which frequently experience hurricanes. A more robust analysis to derive 

integrated models using machine learning techniques and comparing the models is 

recommended. 
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CHAPTER 4 

TREE MORTALITY DUE TO HURRICANES AND ASSOCIATED VARIABLES IN 

THE COASTAL FOREST IN SOUTH CAROLINA. 

Abstract 

Assessing tree mortality after disturbances is a key area of interest for researchers in 

forestry science. Data were collected from long-term monitoring plots established in 1994 in 

the pine-dominated Hobcaw Barony Forest of South Carolina. We hypothesize that tree 

mortality on the coast is influenced by various factors, including biotic interactions, climatic 

variations, and hydrographic features, and that these covariates have a measurable impact on 

the survival rates of trees since the establishment of the plot. We use simple numerical analysis 

to estimate tree mortality and a nonparametric Kaplan-Meier method to describe the effects of 

covariates on survival probability. There was higher tree mortality in 2003-2007 and 2022-

2023 and higher for the evergreen species with less DBH values. The Kaplan-Meier Curve 

indicated that any tree has a survival probability of around 20% after 29 years or upon reaching 

a diameter at breast height (DBH) of 10 cm. The results can be incorporated into ecological 

simulations to evaluate the vulnerability of coastal tree species under different scenarios and 

thus can be used to inform management strategies. 
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Introduction 

Tree mortality is a critical ecological process within forest ecosystems. Therefore, early 

warning indicators that predict imminent mortality events are crucial for effective ecosystem 

management (Carpenter & Gunderson, 2001; Dakos et al., 2008).  Predicting tree death is 

challenging because it typically results from a combination of interconnected factors affecting 

the tree over varying periods and intensities rather than from a single cause (Waring, 1987). 

Tree mortality may result from the mutuality between external environmental conditions, such 

as climate, hydrology, and internal life-history strategies, reflected in traits such as DBH, leaf 

habits, etc. Rather than solely attributing tree fatalities to hurricane-induced saltwater intrusion, 

integrating local climatic variables into the model enhances its capacity to illustrate how 

diverse factors collectively impact tree survival. 

Studying the changes in vegetation over time, with a comprehensive evaluation of 

factors like tree mortality, growth, and regeneration/recruitment, can deepen our understanding 

of the ecological processes regulating plant communities (Phillips et al., 2011). Due to 

differences in how various plant species can be resilient to inundation and saltwater exposure, 

these stressors can lead to significant alterations in plant communities’ structure and 

composition (Williams et al., 1999; Osland, 2016), and it may become evident well in advance 

of a transition of forest to a marsh (Field et al., 2016). Post-hurricane investigations have 

revealed variations in tree resistance to damage and mortality rates (Walker, 1991; Zimmerman 

et al., 1994). The extent of damage incurred to a tree may be linked to its size (Walker, 1991; 

Herbert et al., 1999). The diameter at breast height (DBH) of the plant species is an important 

variable in assessing tree growth and health. Larson et al. (2015) studied the spatial aspects of 

tree mortality in young and old-growth forests. They noticed the significant distinctions in 
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mortality among the two forest types with different diameter classes. Deciduous trees shed 

their leaves periodically, resulting in a bare canopy for at least one month during the dry 

season. On the other hand, evergreen trees retain their leafy canopy throughout the entire year. 

The type of leaf habit in trees significantly impacts their ecological and physiological traits and 

their allocation of metabolic resources, influencing their growth rate and capacity to manage 

stress (Singh & Kushwaha, 2016). Deciduous forests are generally more resistant to hurricane 

damage compared to evergreen forests. (Yu & Gao, 2020). Basal areas in the stands are also an 

important predictor of the tree's survival. Timilsina and Staudhammer (2012) used the basal 

areas per hectare for the tree mortality analysis, and it was also a significant predictor of 

mortality.  Furthermore, Zhou et al. (2021) highlighted that basal area per hectare is a crucial 

continuous variable for comprehending forest dynamics and mortality, underscoring its 

importance in predicting and assessing tree survival within forest ecosystems. 

Forecasts related to climate change suggest an increased likelihood of droughts due to 

rising temperatures and greater fluctuations in precipitation patterns (Allen et al., 2015). In 

trees, increased temperature causes increased respiration costs, increased heat stress, and a 

greater risk of cavitation (McDowell et al., 2008; Allen et al., 2010), consequently leading to 

higher mortality with increasing temperature. The rise in tree mortality rates is linked with 

climatic variations, including increased warm season temperature (Park Williams et al., 2013), 

intensity and the period of dry season (Adams et al.; 2017) and rainy seasons (Mori & Becker, 

1991), as well as storms (Nelson et al., 2010), etc.  In six of the eight hardwood species in the 

United States, the annual temperature was significant in the model, and the mortality risk was 

considerably higher with higher temperatures (Yaussy et al., 2013). Tree mortality could rise 

when high temperatures coincide with low summer precipitation (Bigler et al., 2006). 
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However, in the western USA, none of the precipitation-related variables played a role in 

predicting dead trees from any mortality factor. (McNellis et al., 2021). 

 

By increasing salinity levels in the forest, tree mortality is also affected by various 

hydrologic factors like high tides, tide frequencies, etc. Due to rising sea levels, many coastal 

ecosystems face the threat of increased tidal flooding, which elevates soil salinity and 

significantly impacts their structure and function.  (Williams et al., 1999; Twilley et al., 2001;  

Morris et al., 2002, Thorne et al., 2018). The inland extent of flooding and the infiltration of 

saltwater have expanded, leading to a larger area impacted by hurricane and storm surge 

occurrences. (Poulter & Halpin, 2008; Nicholls & Cazenave 2010; Church et al., 2013). 

Prior studies have explored relationships between tree mortality and certain variables 

using logistic regression analysis, a commonly used statistical method (e.g., Fernández, 2008). 

This method relies on a binary response variable modeled over uniform time intervals, which 

often does not align with the nature of inventory data (Boeck et al., 2014; Hülsmann et al., 

2016). Individuals with unknown event times must be censored, meaning those who do not 

experience the event during the observation period. Such censored data necessitate the use of 

survival models, including the nonparametric Kaplan–Meier estimator (Kaplan & Meier, 

1958), the semi-parametric Cox model (Cox, 1995), and parametric models like the 

Accelerated Failure Time (AFT) Model. Parametric models offer the advantage of being based 

on a distribution and estimating the effect of predictors in absolute terms (e.g., years). Although 

initially developed for medical studies, these models are increasingly adopted in forest science 

(Staupendahl & Zucchini, 2011; Neuner et al., 2014; Neumann et al., 2017). In this study, we 
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utilized survival analysis, a method that enables the estimation of time-specific survival 

probabilities and the evaluation of covariate effects on survival. 

Survival analysis has been effectively used in forest research before (e.g., Nothdurft, 

2013; Neuner et al., 2015; Neumann et al., 2017). In this study, we utilized survival analysis, a 

method that enables the estimation of time-specific survival probabilities and the evaluation of 

covariate effects on survival.  For this, we used the following: (i) a comprehensive individual 

tree database from the long-term monitoring project, consisting of long-term detailed census 

records of trees in 4 sample plots in pine-dominated cover type in Hobcaw Barony  (Song et 

al., 2012;); (ii) a compilation climatic, hydrologic, and biotic database to establish a predictor 

variable to represent the tree by tree mortality and survival probability (iii) survival analysis 

model in which the attribute of tree mortality status (alive or dead) will be modeled as the 

response variable with time. Understanding how periodic hurricane events and other associated 

variables interact and contribute to tree mortality and survival will enhance our capacity to 

evaluate the susceptibility of coastal and how it shapes the growth and resilience of coastal 

forests; therefore, to address this issue, this study looked into the following hypotheses. 

Particularly, we hypothesize that 

• The mortality rates of trees in coastal forests have significantly increased over the years. 

• Climatic variables, such as temperature fluctuations and changes in precipitation 

patterns, significantly contribute to the mortality rates of trees in coastal forests. 

• Hydrologic factors, such as increased frequency and heights of storm surges, are critical 

determinants of tree mortality in coastal forests. 

• Biotic features, including size, leaf habits and competition among trees, determine the 

mortality of trees in coastal forests. 
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• A survival analysis model incorporating climatic, hydrologic, and biotic variables will 

provide a robust framework for the assessment of tree mortality in coastal forests. 

Methodology 

Study area: (Please refer to Chapter 3: Figure 3.1) 

Field data collection: 

Data was gathered in the four sample plots (46, 47, 48, and 49) of 20 m × 100 m, 

established in 1994. We collected tree DBH in 1994, 1997, 2000, 2003, 2007, 2010, 2013, 2016, 

2017, 2021 and 2022. In 2023, we only collected the data on the mortality of the tree, not the 

DBH. Consistent tree measurement methods, as outlined by Song et al., 2012, were followed 

throughout the study. All trees with a DBH ≥2.5 cm were given permanent identification tags, 

numbered, and measured at the diameter at the breast height of 1.3 meters. Plots were subdivided 

into subplots and marked by aluminum poles for ease of relocation of trees by their numbers. A 

systematic numbering process was implemented within each subplot to ensure an accurate count 

of all trees, starting from the southwest corner of the first subplot. A designated tally person from 

the previous measurement confirmed and cross-referenced the measurements of the two field 

technicians so that no tree was missed during the process. New aluminum tags were used to mark 

ingrowth, which reached 2.5 cm DBH in the field season cycle, while mortality was often 

confirmed by locating tags on dead trees. A dead tree is a broken or uprooted, or erect tree that is 

damaged and lacks leaves. However, the trees will be considered alive if they are found with 

resprouting leaves. At the end of the study, all data were reviewed to find missed trees and 

counted as “missing on arrival’ for the field season. Marked trees were categorized by species 

and assigned a damage class. Data collected during each field season consisted of DBH, the 

current damage class of trees, and regeneration (<2.5 cm DBH). Stems with a DBH ≥ 10 cm 
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were classified as trees, while stems with a DBH of 2.5 to 9.9 cm were classified as saplings. For 

some analysis, trees were classified based on DBH as Small (<5cm), Medium (5-10 cm) and 

Large (>10cm). 

Data Acquisition: 

Tree mortality is a slow process, so it is important to consider climatic and hydrologic 

data from the last three years and long-term trends (lagged). Field data are typically collected in 

the summer, which is already halfway through the year. Using data from earlier years rather than 

the current year's data gives a more accurate understanding of the factors affecting tree death and 

survival. 

Climatic data 

The climatic data from 1993 to 2023 was acquired from PRISM 

(https://prism.oregonstate.edu/). We used two important predictors to assess how climatic factors 

impact tree mortality in the coastal forest: a) mean annual temperature and precipitation of the 

past three years and b) lagged mean annual temperature and precipitation. Lagged data is the 

mean of the climatic data throughout the tree's observation period. For example, if the tree were 

observed from 2000 to 2013, the lagged climatic data is the mean of the annual climatic data for 

that period. Since tree mortality is a slow process and trees respond with delays (lag times), we 

analyzed data from the past three years and incorporated lagged climatic information into the 

analysis. The slow progression of tree dying suggests that prior years' stressors substantially 

influence current mortality rates. This approach acknowledges the cumulative impact of survival 

time climatic conditions on forests. 

Hydrologic Data 

https://prism.oregonstate.edu/
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Hydrologic variables included the highest tide and tide frequency in the plot in the past 

three years. Tide height data from 1994 to 2023 was acquired from the NOAA website 

(https://www.noaa.gov/).  The verified hourly tide data in datum NAVD was obtained from the 

website. The Oyster Land Creek weather station had the data from 2001 to 2020. The rest of the 

data was acquired from the Springmaid Pier in Myrtle Beach weather station. The center of the 

sample plot was taken as a reference to gather the data for tide frequency. If the height of the tide 

was greater than the elevation of the center of the plot, it was assumed that the tide inundated the 

trees in the plot. 

Biotic data 

We acquired the biotic data for the species, like species, size (DBH), mortality (dead or 

alive), etc., from the field data collection and leaf habit data from the secondary sources 

(published papers, books, internet, etc.). Over 29 years (beginning from 1994), 6,815 mature 

trees (DBH>2.5cm) of 18 species were monitored in different years for their basal growth 

(diameter at breast height 1.3m) and survivorship (dead or alive). There are many more plant 

species in the area; the chosen species were selected based on their abundance.  Trees are usually 

selected by a minimum diameter of 2.5 cm and continuously monitored, and new individuals are 

introduced in each new period through natural replacement (recruitment) (Lawrence et al., 2012; 

Sliver et al., 2013 ). Thus, the start date of monitoring varied between individuals as they were 

measured only after their DBH>2.5cm.  

Leaf habit data was obtained for species from the www.missouribotanicalgarden.org. The 

models included the stand structure variables to account for the possible effect of the study plot 

and the competition between trees in the same plot. Stand structure variables include total basal 

area (BA) per plot.  

https://www.noaa.gov/
http://www.missouribotanicalgarden.org/
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BA per plot =

(
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10,000
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……………………………………………………… . . . 𝐸𝑞𝑛 1 

Where d is the diameter at breast height for each tree species in the sample plot.  

Data Analysis 

R 1.2.5033 (R Core Team, 2019) was used for data analyses and visualization. Statistical 

significance for each test was determined on a 95% confidence interval. Survival analysis was 

done using the survival and coxed packages (R Core Team, 2019).  

Mortality Analysis 

We calculated the annual tree mortality rates for the time series of collected data as 

𝑁(𝑡+1) = 𝑁𝑡𝑒
−𝑟𝑡   ……………………………………………………………………….Eqn 2 

thus,  𝑟 = −ln (
𝑁(𝑡+1)

𝑁(𝑡)
) / t    …………………………………………………………….Eqn 3 

, where N(t) is the number of survivors at time t,  𝑁𝑡is the initial number of trees, r is the 

mortality rate, and 𝑁(𝑡+1) is the number of survivors at time t + 1 (Sheil et al., 1995). This annual 

mortality rate is used in subsequent graphical representations and analysis. 

We performed the exploratory data analysis using line graphs, bar charts, violin plots, etc.. 

We used the Kaplan-Meier estimator for the survival analysis, which models survival as a 

function of time and other covariates (Table 4.1). 

The variable "Time" (T) represents the number of years from when a tree was first measured 

until the year it died. Trees that lived past the 29-year observation period are treated as censored 

observations that are considered alive. 

Table 4.1: Biotic, climatic and hydrologic variables selected for the analysis and their units. 

https://www.sciencedirect.com/science/article/pii/S037811272031639X#b0225


 

93  

  

Variable Description Abbreviation Data source Units 

Time 

Variable 

Period of observation (years) 

for each tree 

Tree 

Field Data Years 

Biotic Dead(1) or Alive (0) Status Field Data  

 Tree Species Species Field Data  

 Diameter at Breast Height DBH Field Data cm 

 

Basal Area Per Plot for each 

year of the measurement 

Basal Area Per 

Plot 

Derived from 

DBH 
 

 

Leaf habit (Evergreen or 

Deciduous) 

Leaf Habit 

TRY database  

     

Climatic 

Mean Annual temperature of 

the last three years 

Past Three 

Years' 

Temperature 

PRISM Celsius  

 

Mean annual temperature 

throughout the period of 

observation for each tree 

Lagged 

Temperature PRISM Celsius 

 

Mean annual precipitation of 

the last three years. 

Past Three Years 

Precipitation 

PRISM mm 

 

Mean annual precipitation 

throughout the period of 

observation for each tree 

Lagged 

Temperature  PRISM mm 
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Hydrologic 

Highest Tide height in the 

past three years 

Past Three Years 

Highest Tide 

NOAA m 

 

Tide Frequency in the past 

three years  

Past Three Years 

Tide Frequency 

NOAA 3yr⁻¹ 

 

We used the nonparametric Kaplan-Meier estimator, implemented in the survival 

package (Therneau, 2018), to evaluate significant differences in observed survival probabilities 

among various tree species. Our analysis focused on the observation period up to 29 years, T, at 

the beginning (1994) and end of the observation interval (2023) to determine survival outcomes. 

Each tree's observation period was based on its dead (1) or alive (0) condition.  The observation 

period was considered the time variable in the analysis instead of other parameters, such as DBH  

or height, because this can be indirectly interpreted as tree age (Paul et al., 2019; Brandl et al., 

2020). The nonparametric Kaplan–Meier estimator of the survival function S'(T) of T is defined 

as (Kaplan & Meier, 1958): 

S ′(𝑇) = ∏ (1 −
𝑑𝑖
𝑛𝑖
)

𝑖:𝑇(𝑖)≤𝑇

……………………………… . . 𝐸𝑞𝑛 4 

where S′(0) = 1 , di is the trees that die at time T(i) , and ni represents the total number of 

subjects at risk at T(i).  

The Kaplan–Meier estimator was employed to provide a descriptive overview of a tree's 

survival probability based on a single predictor, with all models being individual-based and using 

the time variable (T) as the period (years) between the tree's introduction into the inventory and 

its death. Since continuous variables cannot be represented in a Kaplan-Meier curve, they were 
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split into ranges above and below their median. Some variables like leaf habit and DBH (small, 

medium and large) were kept in the categorical format. 

Results 

Mortality Analysis 

The annual tree mortality rate was lowest in the year 2000 (0.6%) and increased in 2007 (10.7%). 

There was a fluctuation in tree mortality from 2007 to 2023; however, it reached the highest of 

12.3 % in 2022-2023 (Figure 4.1 and Table A - 2).  

 

Figure 4.1: Annual tree mortality for a whole tree data set collected from 1994 to 2023 in the 

sample plots in Hobcaw Barony. Mean dashed line shows the mean annual mortality rate over the 

period of 29 years.  
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Overall, the mean annual tree mortality throughout 29 years was higher (7.01 %) in Plot 

47 (Figure 4.2 b). Interestingly, every other plot had increasing tree mortality in 2022- 2023, 

but not plot 46 (Figure 4.2 and Table A - 3) 

 

 

 

Figure 4.2: Annual mortality rates in the four sample plots in the Hobcaw Barony. Mean dashed 

line in each plot shows the mean annual mortality over the period of 29 years. 

Of the identified 18 taxa, Pinus taeda emerged as the dominant species, constituting 4950 

occurrences within the surveyed four sample plots. Following Pinus taeda, Morella cerifera 

exhibited a notable presence with 741 occurrences. Similarly, Ilex vomitoria,  Liquidambar 

styraciflua, Persea borbonia and Quercus virginiana were other major species in the area. 

(Figure 4.3). 
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Figure 4.3: Major species counts observed in the sample plots from 1994 to 2023. 

Among the species, the dominant species, Pinus taeda and the second dominant, Morella 

cerifera, showed a similar pattern of annual tree mortality. Pinus taeda had the highest mortality 

in the year 2007. Most of the species mortality increased in the year 2021 to 2022 while decreasing 

in the year 2023. Interestingly, Persea borbonia had the highest tree mortality of around 61% from 

2013 to 2016 (Figure 4.4 and Table A - 3). 



 

98  

  

 

Figure 4.4: The mortality rate of major species over 29 years in a coastal forest in Hobcaw 

Barony, South Carolina, USA. 

Evergreen plants, mostly Loblolly pine, highly dominated the area. We surveyed 6448 

evergreen and 361 deciduous plants in the sample plots (Figure 4.5). 
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Figure 4.5: Evergreen and Deciduous Species 

  Evergreen plants had a higher mortality rate between the years 2003 to 2021. However, the 

deciduous plant had higher annual mortality from 2021 onwards (Figure 4.6). 
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Figure 4.6: Mortality rate by year for Evergreen and Deciduous Species. 

Most of the trees that died were of DBH less than 10 cm. At the species level, 

Liquidambar styraciflua showed a bit different pattern than others (Figure 4.7). 

 

 

Figure 4.7: Violin plot for DBH distribution for all trees in the dataset and for trees of major 

species that have died. 

Mean annual temperature and precipitation varied throughout the period (Figure 4.8). The 

scatter plot shows higher annual tree mortality with an increase in the past three years' 

temperature and vice versa (Figure 4.9 a). Similarly, annual tree mortality patterns fluctuated 

throughout the mean precipitation range of the past three years  (Figure 4.9 b). 
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Figure 4.8: Patterns of mean annual temperature and precipitation from 1994 to 2023 in the 

Hobcaw Barony Forest, South Carolina, USA.  

 

Figure 4.9: Mortality rate by year for temperature and precipitation variables. 
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The highest tide occurred in 2022 during Hurricane Ian, and the trend line shows the tide 

height increasing over the years (Figure 4.10). By examining the graph of the highest tides from 

the past three years alongside annual tree mortality rates, we can identify a pattern: annual tree 

mortality tends to rise and fall in correlation with the increasing and decreasing tide heights from 

2017 to 2023. Moreover, there were higher tides after 2015 (Figure 4.11). 

 

 

Figure 4.10: Highest tides since 1994 and increasing trend of the tide heights.   
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Figure 4.11: Annual mortality rate and the highest tide in the past three years for the period of 29 

years from 1994-2003. 

Kaplan-Meier survival analysis indicated that the survival probability of trees rapidly 

decreased up to 10 cm DBH and tapered off thereafter (Figure 4.12 a). Furthermore, survival 

probability gradually decreased with time, and there was only a 20% probability that a tree 

would survive for 30 years (Figure 4.12 b).  
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Figure 4.12: Kaplan Meier curve for the tree mortality with DBH and period of observation in 

years (Time) as a time variable. 

The survival probability ranking of various major species is as follows: Live Oak 

(Quercus virginiana), Yaupon (Ilex vomitoria), Sweetgum (Liquidambar styraciflua), Loblolly 

Pine (Pinus taeda), Wax Myrtle (Morella cerifera), and Red Bay (Persea borbonia). 

Specifically, Loblolly Pine (Pinus taeda) exhibited a survival probability of approximately 15% 

over a span of 29 years. Interestingly, Red Bay (Persea borbonia) demonstrated highly 

fluctuating survival rates after the first 18 years  (Figure 4.13). 
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Figure 4.13: Kaplan Meier Survival Analysis for major species over the period of 29 years from 

1994 to 2023. 

Larger trees with a DBH greater than 10 cm exhibited a higher survival probability (Figure 

4.14 a). Deciduous trees also demonstrated a higher survival probability (Figure 4.14 b). 

Moreover, trees in plots with higher total basal areas had a lower survival probability (Figure 

4.14 c).  
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Figure 4.14: Kaplan-Meier Survival Analysis curve for the biotic variables for the period of 29 

years. Biotic variables included the DBH, leaf habit and total basal area in a plot. DBH is further 

categorized as small, medium and large.  

There was a higher survival probability when the mean annual temperature and 

precipitation in the past three years were below the median of 18.63 °C and 1164 mm, 

respectively. (Figure 4.15 a, c). Lagged climate (climate throughout the tree's survival period) 
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also influenced tree survival, and there was a higher survival probability in low lagged 

temperatures and precipitation (Figure 4.15 b, d). 

 

 

 

Figure 4.15: Kaplan-Meier Survival Analysis curve for the climatic variables for the period of 

29 years. Climatic variables included temperature and precipitation data for the past three years, 
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as well as for a lagged period corresponding to the observation duration during the survival of 

each tree. 

Hydrologic Variables 

The tree did not survive for a longer period when there were higher tide frequencies 

(Figure 4.16 a) and when the height of the tides was more than the median values (Figure 4.16 

b). The median value for the cumulative tide frequencies for sample plots was 7, implying that 

trees that faced more than 7 tides in the last three years are highly likely to die within 29 years. 

Moreover, if the tide height in the last three years was more than 1.47 m, there was a lower 

probability of survival.   

 

Figure 4.16: Kaplan-Meier Survival Analysis curve for the hydrologic variables for the period of 

29 years. Hydrologic variables included the tide frequency and the highest tide in the past three 

years in each tree.   
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Discussion 

This study assessed the mortality rates and the driving factors in the Hobcaw Barony 

Forest over the period of  29 years from 1994 to 2023. Annual mortality rates varied 

considerably across the years, with the lowest (0.6%) in 1997-2000 and the highest (12.2%) in 

2022-2023. (Figure 4.1). Our results further show that the mortality rates differed among the 

plots for different periods of time (Figure 4.2). For major species, tree mortality increased in the 

year period 2022-2023 (Figure 4.3). These results, with high tree mortality in this period, may be 

attributed to various variables and the exceptional storm, Hurricane Ian and the recent outbreak 

of Southern Pine beetle in the forest, which weakened trees after the hurricane. Bellingham et al. 

1996 observed species-level canopy changes in montane forests in Jamaica after Hurricane 

Gilbert.  

 

Our results show that most trees died at the younger stage within a DBH of 10 cm (Figure 

4.12 a). Jimenez et al. (1985) also found higher mortality in younger stands with small DBH than 

in mature stands in mangrove forests. Similarly, Langston et al. (2017) also underscored the 

harmful impact of saltwater intrusion caused by sea-level rise on the survival of young trees in 

coastal forests, stressing the necessity of preserving freshwater sources for the health and 

longevity of trees. The duration (years) after the establishment of the plot was taken as a time 

variable for the analysis. This duration, however, does not signify the exact tree age for most of 

the trees (because of right and left truncation) but can be used as a rough estimate of the tree age. 

This data type is common in forestry, and tree age is a significant factor influencing tree 

mortality (van Mantgem et al., 2009; Peng et al., 2011), with tree mortality rates in younger trees 
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more than double those of trees 100 years older. In this research, we also found a decreasing 

survival probability with time, with approximately 20% survival probability in the period of 30 

years. (Figure 4.12 b). As a result, our findings are significant for bio-economic studies, which 

aim to integrate survival probabilities into evaluating economic risks and returns for different 

species in coastal forests. 

Our results show that most trees died at the younger stage within a DBH of 10 cm (Figure 

4.7). In the Kaplan-Meier survival curve of biotic variables (Figure 4.14 a), the larger trees tend 

to have a higher survival probability, which aligns with other studies (Hämäläinen et al., 2016). 

This may be because larger trees have established root systems and greater access to resources to 

efficiently absorb nonsaline water and nutrients, even during environmental stress. Additionally, 

their greater height and canopy spread enable them to outcompete smaller trees for sunlight, 

ensuring sustained growth and resilience. 

Our research concludes that live oak has a higher survival probability and a lower 

survival probability for red bay. These results are comparable to those of Lucas & Carter 

(2013), who reported greater survival rates for live oak compared to pine species (slash pine) 

on Horn Island after Hurricane Katrina; however, we focused on the loblolly pine. 

Interestingly, Red Bay (Persea borbonia) exhibited significantly fluctuating survival rates, with 

a noticeable decline in survival after the 18-year period. Extensive mortality of Persea 

borbonia has been observed in the coastal plain counties of southeastern South Carolina 

(Fraedrich et al., 2008), with numerous studies identifying a trend of increased mortality in 

larger red bay stems (Shields et al., 2011; Spiegel & Leege, 2013). Kendra et al. (2013) 

discovered that red bay stems with larger DBH had more beetle entrance holes and advanced 
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disease stages than smaller stems, indicating that beetles preferentially target larger stems, 

possibly leading to increased tree mortality in these larger stems. 

 

Our data is highly dominated by evergreen plants, mostly Loblolly pine, which had a 

higher mortality rate overall than deciduous plants (Figure 4.6). The time-based Kaplan-Meier 

survival model also revealed significant differences in survival probabilities between evergreen 

and deciduous species (Figure 4.14 b). Deciduous species exhibited higher survival probabilities 

at various stages. This finding is consistent with the conclusions of Aleixo et al. (2019), who also 

observed variations in survival linked to the leaf habits of the species. This finding can also be 

attributed to the research done by Givnish (2002), who investigated the adaptive significance 

among species and found that deciduous species acquire substantial amounts of nutrients, such as 

phosphorus and nitrogen, which provide a competitive advantage when coexisting with 

evergreen species. 

Additionally, to refer to practical forest management, it is also necessary to show tree 

survival as a function of the basal area since it is also a component of silviculture. Woodall et al. 

(2005) discovered that the influence of covariates basal area in the plot was significant in the 

smaller diameter at breast height (DBH) classes.  We found a lower survival probability in the 

plots with higher basal area (Figure 4.14 c). Bradford & Bell et al. (2017) found lower mortality 

in the plot with the lower basal area and suggested reducing forest basal area to decrease the tree 

competition; however, it was the case of drought-induced tree mortality. An increase in basal 

area per hectare can lead to overcrowding, leading to intense competition that may raise the tree 

mortality rate in the forest (Wiegand et al., 2006; Moustakas et al., 2008; Zhang et al., 2015). 

Interestingly, after a 15-year period, the Kaplan-Meier curves for above and below the median 
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basal area per plot appear to converge (Figure 4.14 c), suggesting that the effect of basal area per 

plot on survival probability becomes relatively minor or decreases over time after a certain 

period. 

Annual tree mortality increased with higher temperatures in the past three years, though 

mortality patterns varied across different precipitation levels. (Figure 4.9 a, b). Moreover, the 

Kaplan-Meier curve analysis also depicts the varying results for climatic variables (Figure 4.15). 

Understanding the impact of climate variability on mortality is more challenging than just a 

straightforward relationship with temperature (Adams et al., 2009), and our result asserted this 

statement. Survival probability was higher at lower lagged temperatures. This is supported by 

studies on plant physiological processes, which indicate that higher temperatures lead to 

increased respiration costs and faster carbon starvation in trees, causing greater stress (Atkin et 

al., 2007). Neumann et al. (2017) also concluded that maximum temperatures significantly affect 

mortality, with extremely hot conditions increasing the likelihood of tree death. 

The trees sampled for this study were all subjected to varying degrees of hydrologic 

factors like tide height and frequency. The height of the tides has been increasing in recent years 

since 2015 (Figure 4.10). We also noticed trends linking increased annual tree mortality with the 

higher tide in the last three years in the period from 2017 to 2023. (Figure 4.11). Kaplan Meier 

survival curve analysis also showed a higher survival probability when there was lower tide 

frequency and low tide height in the last three years (Figures 4.16 a, b). The higher the tide 

frequency and the higher the tide in the storm surge, the higher the probability of salt stress in the 

plots, which might be the reason for such results. In the research done by Williams et al. (1999), 
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the plants in the plots had a high survival rate when there was less tidal flooding on the west 

coast of Florida. 

Limitations of the study 

Firstly, the absence of GPS coordinates for each tree species necessitated using the 

sample plot center to represent all trees when calculating distances from marshes and streams. 

This approach may have introduced spatial inaccuracies and limited the precision of our distance 

measurements. 

Secondly, we didn’t have data on freshwater aquifers and soil salinity, as well as critical 

hydrologic and edaphic factors influencing tree mortality, which is another significant limitation. 

Moreover, the tide heights and tide frequency data were not available at the nearest Oyster Creek 

station all the time. We had to gather the data from another station, Springmaid Pier, which is 

almost 20 miles far from the study site. This might also have brought some discrepancies in the 

analysis and results. 

Furthermore, the study did not encompass biological factors such as pest and pathogen 

infestations, which are known to play pivotal roles in tree mortality dynamics. The exclusion of 

these variables may have restricted our ability to fully elucidate the complex interactions 

between environmental stressors and tree mortality rates observed in the coastal forest 

ecosystem. 

Conclusion 

We found fluctuations in the years of tree mortality throughout the observation period of 

29 years. There were differences in mortality among species, which was obvious due to 
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differences in how each species responds to each variable. Despite some limitations due to the 

unevenly distributed data (pine-dominated), we could fit nonparametric and parametric survival 

models to the data. Survival models were applied using the R survival package, which enables 

the incorporation of time-varying covariates into the models.  

This approach allowed for the comparison of the impacts of various potential mortality 

drivers, including time-varying covariates that changed annually (such as temperature, 

precipitation, basal area plotwise, DBH, highest tide, and tide frequency) with those that 

remained constant throughout the study (such as leaf habit and species). Most variables showed 

obvious differences in the survival probabilities while looking at the Kaplan-Meier curves. 

Regarding the underlying data, it is crucial to highlight the importance of continuous observation 

programs and obtaining more precise information on tree age and location (GPS coordinates). 

We can monitor some sample seedlings for each species for the long term and estimate the age of 

the other trees of the same species to incorporate the exact age information in the data. The 

models can be integrated into ecological simulations to assess risk to coastal tree species under 

various future climate scenarios, and survival probability functions can inform species selection 

strategies in coastal areas. 

  



 

115  

  

 

REFERENCES 

1. Adams, H. D., Guardiola-Claramonte, M., Barron-Gafford, G. A., Villegas, J. C., Breshears, 

D. D., Zou, C. B., ... & Huxman, T. E. (2009). Temperature sensitivity of drought-induced tree 

mortality portends increased regional die-off under global-change-type drought. Proceedings 

of the national academy of sciences, 106(17), 7063-7066. 

2. Adams, H. D., Zeppel, M. J., Anderegg, W. R., Hartmann, H., Landhäusser, S. M., Tissue, D. 

T., ... & McDowell, N. G. (2017). A multi-species synthesis of physiological mechanisms in 

drought-induced tree mortality. Nature ecology & evolution, 1(9), 1285-1291. 

3. Aleixo, I., Norris, D., Hemerik, L., Barbosa, A., Prata, E., Costa, F., & Poorter, L. (2019). 

Amazonian rainforest tree mortality driven by climate and functional traits. Nature Climate 

Change, 9(5), 384-388. https://doi.org/10.1038/s41558-019-0458-0 

4. Ali, G. A., & Roy, A. G. (2010). Shopping for hydrologically representative connectivity 

metrics in a humid temperate forested catchment. Water Resources Research, 46(12). 

5. Allen, C. D., Macalady, A. K., Chenchouni, H., Bachelet, D., McDowell, N., Vennetier, M., ... 

& Cobb, N. (2010). A global overview of drought and heat-induced tree mortality reveals 

emerging climate change risks for forests. Forest ecology and management, 259(4), 660-684. 

6. Allen, T. D., Golden, T. D., & Shockley, K. M. (2015). How effective is telecommuting? 

Assessing the status of our scientific findings. Psychological science in the public 

interest, 16(2), 40-68. 

7. Atkin, O. K., Scheurwater, I., & Pons, T. L. (2007). Respiration as a percentage of daily 

photosynthesis in whole plants is homeostatic at moderate, but not high, growth temperatures. 

New Phytologist, 174(2), 367-380. 



 

116  

  

8. Bellingham, P. J., Tanner, E. V. J., Rich, P. M., & Goodland, T. C. R. (1996). Changes in light 

below the canopy of a Jamaican montane rainforest after a hurricane. Journal of Tropical 

Ecology, 12(5), 699-722. 

9. Bigler, C., Bräker, O. U., Bugmann, H., Dobbertin, M., & Rigling, A. (2006). Drought as an 

inciting mortality factor in Scots pine stands of the Valais, Switzerland. Ecosystems, 9, 330-

343. 

10. Boeck, A., Dieler, J., Biber, P., Pretzsch, H., & Ankerst, D. P. (2014). Predicting tree mortality 

for European beech in southern Germany using spatially explicit competition indices. Forest 

Science, 60(4), 613-622. 

11. Bradford, J.   B., & Bell, D. M. (2017). A window of opportunity for climate-change 

adaptation: Easing tree mortality by reducing forest basal area. Frontiers in Ecology and the 

Environment, 15(1), 11-17. https://doi.org/10.1002/fee.1445 

12. Brandl, S., Paul, C., Knoke, T., & Falk, W. (2020). The influence of climate and management 

on survival probability for Germany’s most important tree species. Forest Ecology and 

Management, 458, 117652. 

13. Carpenter, S. R., & Gunderson, L. H. (2001). Coping with Collapse: Ecological and Social 

Dynamics in Ecosystem Management: Like flight simulators that train would-be aviators, 

simple models can be used to evoke people's adaptive, forward-thinking behavior, aimed in 

this instance at sustainability of human–natural systems. BioScience, 51(6), 451-457. 

14. Church, J. A., Clark, P. U., Cazenave, A., Gregory, J. M., Jevrejeva, S., Levermann, A., ... & 

Unnikrishnan, A. S. (2013). Sea level change. PM Cambridge University Press. 



 

117  

  

15. Cox, R., Lowe, D. R., & Cullers, R. L. (1995). The influence of sediment recycling and 

basement composition on evolution of mudrock chemistry in the southwestern United 

States. Geochimica et Cosmochimica Acta, 59(14), 2919-2940. 

16. Dakos, V., Scheffer, M., Van Nes, E. H., Brovkin, V., Petoukhov, V., & Held, H. (2008). 

Slowing down as an early warning signal for abrupt climate change. Proceedings of the 

National Academy of Sciences, 105(38), 14308-14312. 

17. Fernández-Berrocal, P., & Aranda, D. R. (2008). La inteligencia emocional en la 

educación. Electronic Journal of Research in Education Psychology, 6(15), 421-436. 

18. Field, C. R., Gjerdrum, C., & Elphick, C. S. (2016). Forest resistance to sea-level rise prevents 

landward migration of tidal marsh. Biological Conservation, 201, 363-369. 

https://doi.org/10.1016/j.biocon.2016.07.035 

19. Fraedrich, S. W. (2008). California laurel is susceptible to laurel wilt caused by Raffaelea 

lauricola. Plant Disease, 92(12), 1469. 

20. Givnish, T. J. (2002). Adaptive significance of evergreen vs. deciduous leaves: solving the 

triple paradox. Silva fennica, 36(3), 703-743. 

21. Hämäläinen, A., Hujo, M., Heikkala, O., Junninen, K., & Kouki, J. (2016). Retention tree 

characteristics have major influence on the post-harvest tree mortality and availability of 

coarse woody debris in clear-cut areas. Forest Ecology and Management, 369, 66-73. 

https://doi.org/10.1016/j.foreco.2016.03.037 

22. Herbert, R. A. (1999). Nitrogen cycling in coastal marine ecosystems. FEMS microbiology 

reviews, 23(5), 563-590. 

23. Hook, D. D., Buford, M. A., & Williams, T. M. (1991). Impact of Hurricane Hugo on the South 

Carolina coastal plain forest. Journal of Coastal Research, 291-300. 

https://doi.org/10.1016/j.biocon.2016.07.035


 

118  

  

24. Hülsmann, L., Bugmann, H. K., Commarmot, B., Meyer, P., Zimmermann, S., & Brang, P. 

(2016). Does one model fit all? Patterns of beech mortality in natural forests of three European 

regions. Ecological applications, 26(8), 2465-2479. 

25. Jimenez, J. A., Lugo, A. E., & Cintron, G. (1985). Tree mortality in mangrove forests. 

Biotropica, 177-185. 

26. Kaplan, E. L., & Meier, P. (1958). Nonparametric estimation from incomplete 

observations. Journal of the American statistical association, 53(282), 457-481. 

27. Kendra, P. E., Montgomery, W. S., Niogret, J., & Epsky, N. D. (2013). An uncertain future for 

American Lauraceae: A lethal threat from red bay ambrosia beetle and laurel wilt disease (a 

review). American Journal of Plant Sciences, 4(5), 727–738. 

28. Langston, A. K., Kaplan, D. A., & Putz, F. E. (2017). A casualty of climate change? Loss of 

freshwater forest islands on Florida's Gulf Coast. Global Change Biology, 23(12), 5383-5397. 

https://doi.org/10.1111/gcb.13805 

29. Larson, A. J., Lutz, J. A., Donato, D. C., Freund, J. A., Swanson, M. E., HilleRisLambers, J., 

... & Franklin, J. F. (2015). Spatial aspects of tree mortality strongly differ between young and 

old‐growth forests. https://doi.org/10.1890/15-0628.1 

30. Lawrence, A. B., Escobedo, F. J., Staudhammer, C. L., & Zipperer, W. (2012). Analyzing 

growth and mortality in a subtropical urban forest ecosystem. Landscape and Urban Planning, 

104(1), 85-94. 

31. Lucas, K. L., & Carter, G. A. (2013). Change in distribution and composition of vegetated 

habitats on Horn Island, Mississippi, northern Gulf of Mexico, in the initial five years 

following Hurricane Katrina. Geomorphology, 199, 129-137. 

https://doi.org/10.1111/gcb.13805
https://doi.org/10.1890/15-0628.1


 

119  

  

32. McDowell, N., Pockman, W. T., Allen, C. D., Breshears, D. D., Cobb, N., Kolb, T., ... & Yepez, 

E. A. (2008). Mechanisms of plant survival and mortality during drought: why do some plants 

survive while others succumb to drought?. New phytologist, 178(4), 719-739. 

33. McNellis, B. E., Smith, A. M., Hudak, A. T., & Strand, E. K. (2021). Tree mortality in western 

US forests forecasted using forest inventory and Random Forest 

classification. Ecosphere, 12(3), e03419. 

34. Mori, S. A., & Becker, P. (1991). Flooding affects survival of Lecythidaceae in terra firme 

forest near Manaus, Brazil. Biotropica, 23(1), 87-90. 

35. Morris, J. T., Sundareshwar, P. V., Nietch, C. T., Kjerfve, B., & Cahoon, D. R. (2002). 

Responses of coastal wetlands to rising sea level. Ecology, 83(10), 2869-2877. 

36. Moustakas, A., Wiegand, K., Getzin, S., Ward, D., Meyer, K. M., Guenther, M., & Mueller, 

K. H. (2008). Spacing patterns of an Acacia tree in the Kalahari over a 61-year period: How 

clumped becomes regular and vice versa. acta oecologica, 33(3), 355-364. 

37. Nelson, R., Kokic, P., Crimp, S., Martin, P., Meinke, H., Howden, S. M., ... & Nidumolu, U. 

(2010). The vulnerability of Australian rural communities to climate variability and change: 

Part II—Integrating impacts with adaptive capacity. Environmental Science & Policy, 13(1), 

18-27. 

38. Neumann, M., Mues, V., Moreno, A., Hasenauer, H., & Seidl, R. (2017). Climate variability 

drives recent tree mortality in Europe. Global Change Biology, 23(11), 4788. 

https://doi.org/10.1111/gcb.13724 

39. Neuner, G. (2014). Frost resistance in alpine woody plants. Frontiers in plant science, 5, 654. 



 

120  

  

40. Neuner, S., Albrecht, A., Cullmann, D., Engels, F., Griess, V. C., Hahn, W. A., ... & Knoke, T. 

(2015). Survival of Norway spruce remains higher in mixed stands under a dryer and warmer 

climate. Global change biology, 21(2), 935-946. 

41. Nicholls, R. J., & Cazenave, A. (2010). Sea-level rise and its impact on coastal 

zones. science, 328(5985), 1517-1520. 

42. Nothdurft, A. (2013). Spatio-temporal prediction of tree mortality based on long-term sample 

plots, climate change scenarios and parametric frailty modeling. Forest ecology and 

management, 291, 43-54. 

43. Osland, M. J., Enwright, N. M., Day, R. H., Gabler, C. A., Stagg, C. L., & Grace, J. B. (2016). 

Beyond just sea‐level rise: Considering macroclimatic drivers within coastal wetland 

vulnerability assessments to climate change. Global Change Biology, 22(1), 1-11. 

44. Osland, M. J., Enwright, N., Day, R. H., & Doyle, T. W. (2013). Winter climate change and 

coastal wetland foundation species: salt marshes vs. mangrove forests in the southeastern 

United States. Global change biology, 19(5), 1482-1494. https://doi.org/10.1111/gcb.12126 

45. Park Williams, A., Allen, C. D., Macalady, A. K., Griffin, D., Woodhouse, C. A., Meko, D. M., 

... & McDowell, N. G. (2013). Temperature as a potent driver of regional forest drought stress 

and tree mortality. Nature climate change, 3(3), 292-297. 

46. Paul, R., & Elder, L. (2019). The miniature guide to critical thinking concepts and tools. 

Rowman & Littlefield. 

47. Peng, C., Ma, Z., Lei, X., Zhu, Q., Chen, H., Wang, W., ... & Zhou, X. (2011). A drought-

induced pervasive increase in tree mortality across Canada's boreal forests. Nature climate 

change, 1(9), 467-471. 

https://doi.org/10.1111/gcb.12126


 

121  

  

48. Phillips, O. L., Lewis, S. L., Baker, T. R., & Malhi, Y. (2011). The response of South American 

tropical forests to recent atmospheric changes. Tropical Rainforest Responses to Climatic 

Change, 343-358. 

49. Poulter, B., & Halpin, P. N. (2008). Raster modelling of coastal flooding from sea‐level 

rise. International Journal of Geographical Information Science, 22(2), 167-182. 

50. R Core Team. (2019). R: A language and environment for statistical computing. Vienna, 

Austria: R Foundation for Statistical Computing. Retrieved from https://www.R-project.org/ 

51. Sheil, D., Burslem, D. F., & Alder, D. (1995). The interpretation and misinterpretation of 

mortality rate measures. Journal of Ecology, 331-333. 

52. Shields, J., Jose, S., Freeman, J., Bunyan, M., Celis, G., Hagan, D., Morgan, M., Pieterson, E. 

C., & Zak, J. (2011). Short-term impacts of laurel wilt on red bay (Persea borbonia [L.] 

Spreng.) in a mixed evergreen-deciduous forest in northern Florida. Journal of Forestry, 

109(4), 828–838. 

53. Silver, E. J., D’Amato, A. W., Fraver, S., Palik, B. J., & Bradford, J. B. (2013). Structure and 

development of old-growth, unmanaged second-growth, and extended rotation Pinus resinosa 

forests in Minnesota, USA. Forest Ecology and Management, 291, 110-118. 

54. Singh, K. P., & Kushwaha, C. P. (2016). Deciduousness in tropical trees and its potential as 

indicator of climate change: A review. Ecological indicators, 69, 699-706. 

55. Song, B., Gresham, C. A., Trettin, C. C., & Williams, T. M. (2012). Recovery of coastal plain 

forests from Hurricane Hugo in South Carolina, USA, fourteen years after the storm. Tree For 

Sci Biotechnol, 6(Special Issue 1), 60-8. 

https://www.r-project.org/


 

122  

  

56. Spiegel, K. S., & Leege, L. M. (2013). Impacts of laurel wilt disease on red bay (Persea 

borbonia [L.] Spreng.) population structure and forest communities in the coastal plain of 

Georgia, USA. Biological Invasions, 15(11), 2467–2487. 

57. Staupendahl, K., & Zucchini, W. (2011). Estimating survival functions for the main tree species 

based on time series data from the forest condition survey in Rheinland-Pfalz, Germany. 

58. Therneau, T. (2018). Survival analysis (Version 2.42-6): CRAN R Development Team 

59. Thorne, K., MacDonald, G., Guntenspergen, G., Ambrose, R., Buffington, K., Dugger, B., ... 

& Takekawa, J. (2018). US Pacific coastal wetland resilience and vulnerability to sea-level 

rise. Science Advances, 4(2), eaao3270. 

60. Timilsina, N., & Staudhammer, C. L. (2012). Individual Tree Mortality Model for Slash Pine 

in Florida: A Mixed Modeling Approach. Southern Journal of Applied Forestry, 36(4), 211-

219. https://doi.org/10.5849/sjaf.11-026 

61. Twilley, R. R., Barron, E. J., Gholz, H. L., Harwell, M. A., & Zimmerman, R. J. (2001). 

Confronting climate change in the Gulf Coast region: Prospects for sustaining our ecological 

heritage. Union of Concerned Scientists and The Ecological Society of America. UCS 

Publication, Cambridge, MA. 

62. Van Gunst, K. J., Weisberg, P. J., Yang, J., & Fan, Y. (2016). Do denser forests have greater 

risk of tree mortality: A remote sensing analysis of density-dependent forest mortality. Forest 

Ecology and Management, 359, 19-32. https://doi.org/10.1016/j.foreco.2015.09.032 

63. Van Mantgem, P. J., Stephenson, N. L., Byrne, J. C., Daniels, L. D., Franklin, J. F., Fulé, P. Z., 

... & Veblen, T. T. (2009). Widespread increase of tree mortality rates in the western United 

States. Science, 323(5913), 521-524. 



 

123  

  

64. Walker, L. R. (1991). Tree damage and recovery from Hurricane Hugo in Luquillo 

experimental forest, Puerto Rico. Biotropica, 379-385. 

65. Waring, R. H. (1987). Characteristics of trees predisposed to die. Bioscience, 37(8), 569-574. 

66. Wiegand, T., Kissling, W. D., Cipriotti, P. A., & Aguiar, M. R. (2006). Extending point pattern 

analysis for objects of finite size and irregular shape. Journal of Ecology, 94(4), 825-837. 

67. Williams, K., Ewel, K. C., Stumpf, R. P., Putz, F. E., & Workman, T. W. (1999). Sea‐level rise 

and coastal forest retreat on the west coast of Florida, USA. Ecology, 80(6), 2045-2063. 

68. Woodall, C., Grambsch, P., & Thomas, W. (2005). Applying survival analysis to a large-scale 

forest inventory for assessment of tree mortality in Minnesota. Ecological Modelling, 189(1-

2), 199-208. https://doi.org/10.1016/j.ecolmodel.2005.04.011 

69. Yaussy, D. A., Iverson, L. R., & Matthews, S. N. (2013). Competition and climate affects US 

hardwood-forest tree mortality. Forest Science, 59(4), 416-430. 

70. Yu, M., & Gao, Q. (2020). Topography, drainage capability, and legacy of drought differentiate 

tropical ecosystem response to and recovery from major hurricanes. Environmental Research 

Letters, 15(10), 104046. 

71. Zhang, J., Huang, S., & He, F. (2015). Half-century evidence from western Canada shows 

forest dynamics are primarily driven by competition followed by climate. Proceedings of the 

National Academy of Sciences, 112(13), 4009-4014. 

https://doi.org/10.1073/pnas.1420844112 

72. Zimmerman, J. K., Everham III, E. M., Waide, R. B., Lodge, D. J., Taylor, C. M., & Brokaw, 

N. V. (1994). Responses of tree species to hurricane winds in subtropical wet forest in Puerto 

Rico: implications for tropical tree life histories. Journal of ecology, 911-922. 

 



 

124  

  

 

APPENDICES 

 

 

Table A - 1: Correlation among the variables  

Variables Water Depth Curvature DistanceFrmMarsh DistanceFrmStream 

Water Depth 1 -0.05903 -0.20953 -0.1632 

Curvature -0.05903442 1 -0.02238 0.00837 

Distance From Marsh -0.20952645 -0.02238 1 -0.01848 

Distance From Stream -0.16320335 0.008373 -0.01848 1 

 

Table A - 2: Annual mortality rate over the years for the period of 29 years (1994-2023) 

Year Annual Mortality Rate (%) 

1994 NA 

1997 1.90 

2000 0.62 

2003 0.75 

2007 10.77 

2010 9.39 

2013 7.30 

2016 9.63 
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2017 7.69 

2021 5.86 

2022 9.69 

2023 12.21 

 

Table A - 3: Plotwise annual mortality rate 

 

Plot Year Annual_Mortality_Rate Mean_Annual_Mortality 

46 1994 0 5.90 

46 1997 0.59 5.90 

46 2000 0.30 5.90 

46 2003 0.29 5.90 

46 2007 13.18 5.90 

46 2010 10.68 5.90 

46 2013 6.12 5.90 

46 2016 7.61 5.90 

46 2017 8.27 5.90 

46 2021 5.60 5.90 

46 2022 7.64 5.90 

46 2023 3.33 5.90 

47 1994 0.00 7.01 

47 1997 3.79 7.01 

47 2000 0.26 7.01 
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47 2003 0.28 7.01 

47 2007 8.12 7.01 

47 2010 6.89 7.01 

47 2013 6.23 7.01 

47 2016 12.03 7.01 

47 2017 6.71 7.01 

47 2021 7.32 7.01 

47 2022 16.97 7.01 

47 2023 29.36 7.01 

48 1994 0.00 6.13 

48 1997 1.38 6.13 

48 2000 1.14 6.13 

48 2003 1.70 6.13 

48 2007 12.72 6.13 

48 2010 9.65 6.13 

48 2013 9.46 6.13 

48 2016 7.12 6.13 

48 2017 5.45 6.13 

48 2021 3.69 6.13 

48 2022 5.23 6.13 

48 2023 10.12 6.13 

49 1994 0.00 6.65 

49 1997 2.31 6.65 
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49 2000 0.95 6.65 

49 2003 1.19 6.65 

49 2007 8.92 6.65 

49 2010 10.55 6.65 

49 2013 8.33 6.65 

49 2016 11.14 6.65 

49 2017 10.11 6.65 

49 2021 6.50 6.65 

49 2022 8.45 6.65 

49 2023 9.27 6.65 
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Table A - 4: Species-wise annual mortality rate (%) for major species 

 

Species/ 

Year 1994 1997 2000 2003 2007 2010 2013 2016 2017 2021 2022 2023 

Ilex 

vomitoria 0 2.47 1.852 1.143 2.14 0.96 2.87 0.27 1.39 1.25 2.35 3.89 

Liquidambar 

styraciflua 0 4.59 1.78 1.88 2.83 1.23 2.35 2.020 2.73 3.05 28.27 19.41 

Morella 

cerifera 0 5.28 2.37 2.68 7.84 10.67 11.85 12.62 12.51 14.26 27.76 15.41 

Persea 

borbonia 0 0 0 0.30 0.88 2.17 3.177 61.96 30.01 11.98 6.89 28.76 

Pinus taeda 0 0.81 0.35 0.52 12.72 11.36 8.52 9.49 8.62 6.28 7.6693 15.45 

Quercus 

virginiana 0 1.12 1.03 0.82 1.28 1.31 1.137 1.17 0.722 0.549 3.0077 1.53 
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Table A - 5: Species code, common name, scientific name, counts and leaf habits.  

Species code Common Name Scientific Name Count Leaf Habit 

Lobp loblolly pine Pinus taeda  4950 Evergreen 

Waxm wax myrtle Morella cerifera  741 Evergreen 

Live live oak Quercus virginiana  177 Evergreen 

Sgum Sweetgum Liquidambar styraciflua  225 Deciduous 

Pndp pond pine Pinus serotina  36 Evergreen 

Rbay Redbay Persea borbonia  193 Evergreen 

Yaup Yaupon Ilex vomitoria  322 Evergreen 

Tall Chinese tallow Triadica sebifera 66 Deciduous 

Hsug horse sugar Symplocos tinctoria 20 Deciduous 

Laur laurel oak Quercus laurifolia  13 Deciduous 

Bgum black gum Nyssa sylvatica  11 Deciduous 

Woak water oak Quercus nigra  3 Deciduous 

Blue Blueberry Vaccinium elliottii. 20 Deciduous 

Ahol American holly Ilex opaca  19 Evergreen 

Poak post oak Quercus stellata. 1 Deciduous 

Inkb Inkberry Ilex glabra  7 Evergreen 

Wlok willow oak Quercus phellos. 1 Deciduous 

Dhol deciduous holly Ilex decidua  1 Deciduous 

Unkn Unknown  3  
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Table A - 6: Temperature, Precipitation and Highest tide Variables from 1994 to 2023. 

Year Highest Tide (m) 

Temperature 

(Celsius)  

Precipitation 

(mm) 

1994 1.40 18.39 1651.88 

1995 1.33 18.08 1491.57 

1996 1.47 17.77 1272.97 

1997 1.39 18.02 1441.18 

1998 1.34 19.25 1659.83 

1999 1.34 18.55 1775.08 

2000 1.36 17.83 1373.47 

2001 1.38 18.49 940.05 

2002 1.32 18.80 1800.29 

2003 1.29 17.95 1452.57 

2004 1.18 18.42 1089.94 

2005 1.39 18.36 1391.74 

2006 1.31 18.72 997.90 

2007 1.31 19.13 884.80 

2008 1.30 18.14 1319.24 

2009 1.34 17.84 1054.57 

2010 1.41 17.46 1121.09 

2011 1.47 18.75 843.28 

2012 1.37 18.83 1175.76 
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2013 1.22 17.93 1224.64 

2014 1.30 17.83 1413.19 

2015 1.53 18.94 2048.51 

2016 2.17 18.98 1612.73 

2017 1.73 19.09 1267.22 

2018 1.70 18.63 1811.32 

2019 1.76 19.12 1321.32 

2020 1.78 19.03 1502.62 

2021 1.53 18.38 1410.49 

2022 2.32 18.47 1277.66 

2023 1.77 18.83 1596.86 
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