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Abstract

This project explores elasticity in quadratic rings of integers, specifically, those of the form

Z[pω] where p is a rational prime which remains prime in Z[w]. For these rings, we establish an

upper bound on the elasticity which is attained in many cases. We also prove that this upper bound

is an equality in the case when the ring of integers is a unique factorization domain. During this

process, we also prove theorems about the class group of quadratic rings of integers and develop a

useful method for calculating a constant similar to the Davenport constant.
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Chapter 1

Introduction

1.1 Motivation and Background

Understanding factorization in rings of integers has lead to surprising solutions to a number

of seemingly unrelated questions about the rational integers. For example, the primes which can

be expressed as a sum of two squares can be determined by looking at their factorizations in the

Gaussian integers. Also, Fermat’s Last Theorem was proven for many values of n by considering

factorizations in rings of integers of cyclotomic number fields.

The elasticity of all rings of integers was determined by Valenza [10] and Narkiewicz [6].

There proofs rely heavily on the fact that rings of integers are Dedekind domains. Hence, all ideals

in these rings factor uniquely into prime ideals. Looking at how the ideals generated by elements

factor into primes is very telling of how the elements themselves factor. A natural next step would

be to consider the elasticity of all orders in rings of integers. Unfortunately, apart from the ring of

integers itself, all other orders fail to be Dedekind. This follows immediately from the fact that they

fail to be integrally closed. Hence, we lose this desirable factorization property for ideals. However,

we can still take advantage of the overlying Dedekind domain by considering elements of a given

order as elements of their respective ring of integers. In this paper, we will see how the factorization

of an element in the overlying ring of integers can tell us a great deal about its factorization in the

order.
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1.2 Notation

· OK - The ring of integers of the number field K.

· Z[ω] - The ring of integers of Q[
√
d]. Where d is a square-free integer and

ω =


√
d d ≡ 2, 3 mod 4

1+
√
d

2 d ≡ 1 mod 4

· N(a + bω) = (a + bω)(a + bω̄) is the norm of an element in a quadratic ring of integers where

ω̄ is the complex conjugate.

· p is a rational prime unless otherwise stated.

· Z[nω] = {a + bnω|a, b ∈ Z} - the order of Z[ω] with conductor nZ[ω].

· ρ(R) - The elasticity of the domain R.

· F ∗ - The non-zero elements of a field F .

· Irr(R) - The irreducible elements of the domain R.

· U(R) - The units of the domain R

·
(
d
p

)
- The Legendre symbol

· Zp - The finite field of p elements.

1.3 Definitions

Let us start with an introduction to rings of integers and orders. While these theorem are

given for arbitrary rings of integers, this paper will focus exclusively on the quadratic case.

Definition 1.3.1. An algebraic number field is a field extension of the rationals of finite degree. A

quadratic field is a degree 2 field extension of the rationals.

Definition 1.3.2. [5] If R ⊆ T are rings, the ring R̄T = {t ∈ T | f(t) = 0 for some monic polynomialf(x) ∈

R[x]} is called the integral closure of R in T . If T = K is the quotient field of R, then R̄ := T̄K is

called the integral closure of R. If R = R̄, we say that R is integrally closed.
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Definition 1.3.3. The ring of integers of a number field K is the integral closure of Z in K.

Example 1.3.4. Z[i] is the ring of integers of the quadratic field Q(i).

Definition 1.3.5. [9] An order O of a ring of integers OK is a subring which is also a Z-module of

rank [K : Q].

It is important to note that orders are often equivalently defined as subrings with the same

quotient field as the ring of integers — sometimes referred to as the maximal order. Thus, as

Z ⊆ O ⊆ OK , we see that the integral closure of any order must be Ok. Hence, an order is integrally

closed if and only if it is the entire ring of integers. Notably, this implies an order is Dedekind if and

only if it is the entire ring of integers.

Definition 1.3.6. The conductor of an order O ⊆ OK is the set {α ∈ OK|αOK ⊆ O}. Notably,

the conductor is also the largest ideal shared by O and OK .

It is important to note that the conductor of an arbitrary ring extension may be zero, but

the conductor of an order is always non-zero. The conductor is has great import with respect to

factorization as ideals relatively prime to the conductor retain unique factorization into primes in

the order. As we will see, this allows us to put an upper bound on the elasticity of elements outside

the conductor.

Definition 1.3.7. [4] Let R be a domain with quotient field K. An R − submodule I ⊆ K is a

fractional ideal if there exists a nonzero a ∈ R such that aI ⊆ R. The ideal {x ∈ K|xI ⊆ R} is

called the inverse of I and is denoted I−1. A fractional ideal is called invertible if II−1 = R.

Example 1.3.8. Consider the domain Z with quotient field Q. The ideal 3Z ⊆ Z has inverse 1
3Z,

and (3Z)( 1
3Z) = Z, so we conclude it is invertible.

Definition 1.3.9. [5] Let R be a domain with quotient field K. We define Inv(R) := {I | I is an invertible ideal of R}

and Prin(R) := {xR |x ∈ K \ {0}}. Then, the quotient group Cl(R) := Inv(R)/Prin(R) is called

the class group of R. If |Cl(R)| = n ⩽ ∞, then n is called the class number of R.

We will often consider a specific prime ideal P in a given class. Multiplication by the ideal’s

”conjugate” P̄ (defined below) can be a very useful technique.

Definition 1.3.10. If P = ⟨xα⟩α∈∆ is an ideal of Z[ω], then P̄ = ⟨ᾱ⟩α∈∆ where α = a + bω ⇒ ᾱ =

a + bω̄.

3



Now, factorization in rings of integers is intimately related to the class group of the ring.

Understanding this relationship motivates the following definition.

Definition 1.3.11. Let G be a finite, abelian group. We call a G−sequence {g1, g2, . . . , gn} of (not

necessarily distinct) elements of G a 0−sequence if g1 + g2 + · · · + gn = 0.

Definition 1.3.12. The Davenport Constant of a group G is the smallest n s.t. any G−sequence

of length n must have a 0−subsequence. Equivalently, we may define the Davenport Constant as

the length of the longest 0−sequence with no proper 0 − subsequence.

Finally, we give the definition of elasticity.

Definition 1.3.13. [4] Let R be an atomic domain. The elasticity of a nonzero, nonunit r ∈ R is

defined as

ρ(r) = sup
{ n

m
| r = α1α2 · · ·αn = β1β2 · · ·βm

}
where αi, βj ∈ Irr(R) for all i, j.

Similarly, the elasticity of the domain R is defined as

ρ(R) = sup
{ n

m
|α1α2 · · ·αn = β1β2 · · ·βm

}
where αi, βj ∈ Irr(R) for all i, j.

1.4 Theorems

We begin with some theorems on the Davenport constant.

Theorem 1.4.1. If G is a finite, abelian group, then D(G) ⩽ |G|.

Proof. Let |G| = n and {g1, . . . , gn} be a G−sequence of length n. Consider the n partial sums

g1 = k1

g1 + g2 = k2
...

g1 + g2 + · · · gn = kn

4



If the ki ̸= kj whenever i ̸= j, then n = |G| implies 0 = ki = g1 + g2 + · · · + gi for some

1 ⩽ i ⩽ n, so {g1, . . . , gn} has a 0−subsequence. If not, ki = kj for some i ̸= j. without loss of

generality assume i < j. Subtracting the ith equation from the jth yields gi+1 + · · ·+ gj = 0, so once

again {g1, . . . , gn} has a 0−subsequence.

It is natural to ask if this bound is sharp, and if so, under what conditions is it achieved?

The following theorem answers both of these questions.

Theorem 1.4.2. If G is a finite abelian group, D(G) = |G| ⇐⇒ G is cyclic.

Proof. (⇒ ) Assume D(G) = |G| = n. Then, there exists a G−sequence {g1, . . . , gn−1} of length

n with no 0−subsequence. We want to show gi = gj for all 1 ⩽ i, j ⩽ n − 1. Note, by possible

reordering, it is sufficient to show g1 = g2. Assume for the purpose of contradiction that g1 ̸= g2.

Consider the n− 1 partial sums

g1 = k1

g1 + g2 = k2
...

g1 + g2 + · · · gn−1 = kn−1

Because {g1, . . . , gn−1} has no 0−subsequence, it must be the case that ki ̸= 0 for all

1 ⩽ i ⩽ n−1. For the same reason, we must have ki ̸= kj for all i ̸= j. Otherwise, assuming without

loss of generality that i < j, kj − ki = ki+1 + · · · + kj = 0 would be a 0−subsequence. Thus, each

non-zero value of G must be attained by some ki. Now, by our assumption, k1 = g1 ̸= g2. This

implies ki = g1 + g2 + · · · + gi = g2 for some 2 ⩽ i ⩽ n− 1, but then g1 + g3 + · · · + gi = 0. ⇒⇐ So

we conclude gi = gj for all 1 ⩽ i, j ⩽ n− 1.

Therefore, we have a G−sequence {g, g, . . . , g} of length n − 1 with no 0−subsequence.

Hence, the element g must have order at least n = |G|, so G is cyclic.

(⇐ ) Let G be a cyclic group of order n, and let α be a generator of G. Then, the G−sequence

{α, α, . . . , α} of n copies of α has no proper 0−subsequence. Thus, D(G) ⩾ n = |G|, so by Theorem

1.4.1., D(G) = |G|.

We proceed with some important theorems related to rings of integers and their orders.
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Theorem 1.4.3. Let R be an integral domain that is not a field. TFAE:

1. All (fractional) ideals of R are invertible.

2. R is integrally closed, Noetherian, and 1-dimensional.

3. All ideals of R can be uniquely factored into prime ideals.

A domain satisfying one, hence all, of these conditions is called Dedekind.

The following result is due to Narkiewicz and relies heavily on the fact that rings of integers

are Dedekind domains. With respect to factorization theory, the key property of Dedekind domains

is that all ideals factor uniquely into prime ideals. By scrutinizing how principal ideals factor in

these domains, we can learn a lot about how the elements which generate these ideals factor as well.

Theorem 1.4.4. [6] Let OK be a ring of integers with class group G. Then

ρ(OK) =


D(G)

2 ⩽ |G|
2 if |G| ≠ 1

1 if |G| = 1

In this paper we will exclusively consider quadratic rings of integers. As we will see, these

rings are especially well-behaved. One of the key features of these rings of integers which will prove

useful is that the conductors of their orders are always principal.

Theorem 1.4.5. [5] Any quadratic field is of the form Q(
√
d) where d is a square-free integer.

Proof. Let F be a quadratic ring of integers, that is, [F : Q] = 2. Take some α ∈ F \ Q. Then,

Q ⊊ Q(α) ⊆ F and [F : Q] = 2 implies Q(α) = F . Now, [Q(α),Q] = 2 implies α is the root of

a an irreducible quadratic polynomial over Q. Hence, α = −b±
√
b2−4ac
2a for some a, b, c ∈ Q where

b2 − 4ac ̸= 0 as α /∈ Q. Thus,

F = Q(α) = Q(
−b±

√
b2 − 4ac

2a
) = Q(

√
b2 − 4ac) = Q(

√
d)

where d = b2 − 4ac. We may also assume without loss of generality that d is squarefree because if

d = n2 · k, then Q(
√
d) = Q(

√
n2k) = Q(n

√
k) = Q(

√
k)

6



Theorem 1.4.6. [9] If Z[ω] is a quadratic ring of integers, any order is of the form Z[nω] with

conductor nZ[ω] for some n ∈ Z.

Theorem 1.4.7. [3] For a ring of integers OK and a given order O with conductor f , there is an

isomorphism between the invertible ideals of O relatively prime to f and the ideals of OK relatively

prime to f .

Remark: For a ring of integers OK and a given order O with conductor f , the ideals relatively

prime to the conductor in both domains form multiplicatively closed sets. We denote the subgroup

of Cl(OK) generated by these ideals as IK(f). Similarly, we write I(O, f) to denote the subgroup

of the class group of O generated by the invertible ideals relatively prime to the conductor in O.

Theorem 1.4.8. [3] The map a 7→ a∩O induces an isomorphism IK(f)
∼=−→ I(O, f), and the inverse

map is given by a 7→ aOK .

This theorem is extremely important because it tells us that ideals relatively prime to the

conductor have unique factorization. As a consequence, by the same construction as [10], in the

order Z[nω] ⊆ Z[ω], the elasticity of the elements away from the conductor is bounded above by

D(Cl(Z[nω]))
2 .

Finally, the following theorems hold for Dedekind domains in general. They will be very

useful in constructing examples and proving theorems in the results section of this paper.

Theorem 1.4.9. [5] Let Z[ω] be the ring of integers of Q(
√
d) where d is square-free in Z. Then an

odd prime 0 ̸= p ∈ Z remains prime in Z[ω] ⇐⇒
(
d
p

)
= −1.

Theorem 1.4.10. [5] Let Z[ω] be the ring of integers of Q[
√
d] - d a square-free integer. Note,

f(x) = x2−d is the minimal polynomial of
√

(d) over Z[x]. In Fp[x], suppose f(x) = f̄1(x)e1 ·f̄2(x)e2 .

Then, if Pi = (p, f̄i(
√
d)), pZ[ω] = P e1

1 P e2
2 .

Theorem 1.4.11. [7] Let R be a Dedekind domain and A,B ⊆ R ideals. Then, A ⊆ B ⇐⇒ B|A.

Proof. (⇒ ) If A ⊆ B, then AB−1 ⊆ BB−1 = R. Thus, AB−1 = P1P2 · · ·Pn for some Pi ∈

Spec(R), 1 ⩽ i ⩽ n. Multiplying by B, we get A = P1P2 · · ·Pn ·B, so B|A.

(⇐ ) If B|A, then there is some ideal C ⊆ R such that A = BC ⊆ B.

7



Chapter 2

Results

2.1 UFDs

In this section, we consider orders Z[nω] ⊆ Z[ω] where the overlying quadratic ring of

integers is assumed to be a UFD. This is extremely useful because any element β ∈ Z[nω] is also

an element of Z[ω] and thus has a unique factorization into primes: β = π1 · · ·πk, πi ∈ Z[ω]. Thus,

given any factorization of β = γ1 · · · γm, γj ∈ Z[nω], by uniqueness, each γj = πi1 · · ·πir . That

is, every factorization of β in Z[ω] can be attained by grouping together elements of the prime

factorization in Z[ω] to form irreducibles in Z[nω]. Hence, we can determine the elasticity of β in

Z[nω] by grouping these primes as coarsely and finely as possible. The theorems presented in this

section prior to the ultimate result (Theorem 2.1.7.) should be viewed with this goal in mind.

As a motivating example, consider the Gaussian integers Z[i] and the order Z[7i] ⊆ Z[i]. Z[i]

is a UFD, so the element 490 factors uniquely into primes as 490 = 7 · 7(1 + i)(1− i)(1 + 2i)(1− 2i).

Now, we want to group these elements to form irreducibles of Z[7i]. One possible grouping is

[7][7][(1+ i)(1− i)][(1+2i)(1−2i)] = 7 ·7 ·2 ·5. Another option is [7(1+ i)(1−2i)][7(1− i)(1+2i)] =

(21 − 7i)(21 + 7i). The fact that these elements are all irreducible in Z[7i] follows from the fact

that the prime factorization in Z[i] is unique, and there is no way to partition the primes we

have grouped together to give a factorization in Z[7i]. For example, looking at [7(1 + i)(1 − 2i)],

(1 + i)(1− 2i) = 3− i /∈ Z[7i]. Also, despite 7(1 + i) and 7(1− 2i) being in Z[7i], this leaves us with

a factor which is not — 1 + i or 1 − 2i. Thus, we have irreducible factorizations of lengths 2 and 4,

so ρ(490) ⩾ 4
2 = 2 in Z[7i].
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Lemma 2.1.1. Let Z[ω] be a quadratic ring of integers and p prime. If π1 = a + pbω ∈ Z[pω] and

π2 = c + dω ∈ Z[ω] \Z[pω], then π1π2 ∈ Z[pω] ⇐⇒ π1 ∈ pZ[ω].

Proof.

π1π2 = (a + pbω)(c + dω) = ac + adω + p(bω(c + dω))

= ac + adω + p(x + yω) = ac + px + (ad + py)ω ∈ Z[pω]

⇐⇒ p|(ad + py)

⇐⇒ p|ad (in Z)

⇐⇒ p|a or p|d

⇐⇒ a + pbω = π1 ∈ pZ[ω] or c + dω = π2 ∈ Z[pω]

But we assumed π2 /∈ Z[pω]. Hence, π1π2 ∈ Z[pω] ⇐⇒ π1 ∈ pZ[ω].

Remark: For the remainder of this section, we will assume Z[ω] is the ring of integers of Q[
√
d]

(d < −3), and p prime such that
(
d
p

)
= −1.

The assumption d < −3 is made to guarantee that the only units in our ring of integers are

±1. This ensures that U(Z[nω]) = U(Z[ω]) for any order. Also, Theorem 1.4.9. tells us that the

assumption
(
d
p

)
= −1 is equivalent to assuming p remains prime (and thus irreducible) in our ring

of integers. This is desirable in its own right, but we will also take advantage of the fact that this

implies Z[ω]/(p) is a field.

Theorem 2.1.2. Assume Z[ω] is a UFD and β ∈ Z[pω] with prime factorization pnπ1 · · ·πk such

that (πi, p) = 1 in Z[ω]. For a fixed j, assume πj ∈ Z[pω]. Then, if γ1 · · · γm is an irreducible

factorization of β in Z[pω], πj = γt for some 1 ⩽ t ⩽ m.

Proof. without loss of generality we will prove the statement for π1 ∈ Z[pω].

Assume π1 ∈ Z[pω]. Note, π1 /∈ pZ[ω] as (π1, p) = 1.

Let β = α1α2 · · ·αn be an irreducible factorization of β in Z[pω]. As π1 is prime and

π1|β, without loss of generality π1|α1 as an element of Z[ω]. Thus, by the uniqueness of the prime

factorization of β in Z[ω], α1 = π1 · (prπi1 . . . πil)u where u ∈ U(Z[ω]) = U(Z[pω]) = {±1}.

If r ⩾ 1, then (prπi1 · · ·πil)u ∈ Z[pi], and thus α1 is not irreducible. Hence, we assume

r = 0.

9



So we consider α1 = π1 · (πi1 . . . πil)u. If (πi1 · · ·πil)u /∈ Z[pω], by Lemma 2.1.1, π1 /∈

pZ[i] ⇒ π1 · (πi1 . . . πil)u = α1 /∈ Z[pi]. ⇒⇐

So, (πi1 . . . πil)u ∈ Z[pω], but α1 = π1 ·(πi1 · · ·πil)u is irreducible in Z[pω], so (πi1 . . . πil)u ∈

U(Z[pω]).

Thus, π1 = α1 up to a unit, so π1 appears in every irreducible factorization of β.

The importance of this is as follows. To determine the elasticity of Z[pω], Theorem 2.1.2.

tells us we need only consider elements in the conductor - pZ[ω]. This is because ideals relatively

prime to the conductor retain unique factorization into prime ideals due to Theorem 1.4.6.—in

particular, principal ideals generated by elements not in the conductor. Thus, these elements be-

have in the order as they do in the ring of integers. That is, their elasticity is bounded above by

D(Cl(Z[pω]))
2 ⩽ |Cl(Z[pω])|

2 = (p+1)·|Cl(Z[ω])|
2 = p+1

2 when
(
d
p

)
= −1. The inequality and equality are due

to Theorem 2.1 and [2] respectively. As we will soon see, elements in the conductor will achieve an

upper bound which exceeds this value. Theorem 2.1.2. allows us to narrow our search even further.

Take any γ ∈ pZ[ω] with prime factorization γ = prπ1π2 · · ·πm, r ⩾ 1 in Z[ω] where

(p, πi) = 1. If π1 ∈ Z[pω], we let δ = prπ2 · · ·πm which is also in pZ[ω] as r ⩾ 1. We may write

ρ(δ) = n1

n2
where n1 and n2 are the lengths of the longest and shortest irreducible factorizations of β

in Z[pω] respectively. Theorem 2.1.2. implies that every irreducible factorization of γ is of the form

π1δ1 · · · δt where δ1 · · · δt is an irreducible factorization of δ. Thus, ρ(γ) = n1+1
n2+1 ⩽ n1

n2
= ρ(δ).

Therefore, we only need to consider elements of pZ[ω] of the form prπ1 · · ·πN where the πi’s

are irreducibles of Z[ω] not in Z[pω]. To do this, we will need the following definitions.

Definition 2.1.3. Let OK be a ring of integers and O ⊆ OK an order. We say define an Ok −

sequence to be a sequence {π1, . . . , πn} of (not necessarily distinct) elements in Irr(OK). We say

an Ok−sequence {π1, . . . , πn} is an O − sequence if π1 · · ·πn ∈ O.

Definition 2.1.4. We define the generalized Davenport constant of an order O ⊆ OK to be the

largest n such that there exists an O−sequence of length n with no O−subsequence. We denote the

generalized Davenport constant of an order O as D̄(O).

The language used in these definitions is very similar to that of the Davenport constant,

and that is no coincidence. Not only are these constants similarly defined, but they are intimately

related for the orders we are studying as we will see in the proof of the following theorem.
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Theorem 2.1.5. D̄(Z[pω]) = p

Proof. We begin by noting Z[ω]/(p) ∼= Fp[ω] via the map [a+ bω] −→ â+ b̂ · ω̂, where the coefficients

and ω are reduced mod (p), and Fp is the finite field of p elements (note: they must be isomorphic

because they are both finite fields of order p2). Z[ω]/(p) is a field because p is prime and thus (p) is

prime, and prime ideals in Z[ω] are maximal because rings of integers are Dedekind — in particular,

1-dimensional. Also, Fp[ω̂] is the splitting field of ω̂ over Fp because
(
d
p

)
= −1.

Now, considering Z[ω]/(p), the elements of Z[pω] comprise the cosets of (p) of the form

[a + 0 · ω], which have isomorphic image Fp under the map defined above. Thus, we can identify

Z[pω] ⊆ Z[ω] with Fp ⊆ Fp[ω̂]. Reducing coefficients mod p, we see that π1 · · ·πN has no O-

subproduct iff π̂1 · · · π̂n has no subproduct in Fp. In other words, D̄(Z[pω]) is the largest N such

that there is a product in Fp[ω̂] with no subproduct in Fp. Also, because Fp[ω̂] has no zero-divisors,

this is equivalent to finding the largest N such that there is a product in Fp[ω̂]∗ with no subproduct

in F∗
p.

Now, Fp[ω̂] and Fp are finite fields, so Fp[ω̂]∗ and F∗
p are abelian, multiplicative groups with

F∗
p ⊆ Fp[ω]∗. Thus, G = Fp[ω̂]∗/F∗

p forms a finite, abelian group. Hence, finding the longest

product in Fp[ω]∗ with no subproduct in F∗
p is equivalent to finding the longest G−sequence with no

0−subsequence. Notice, this is just D(G)− 1. By the primitive element theorem, we know Fp[ω]∗ is

cyclic, so G is also cyclic. Thus, by Theorem 2.2,

D(G) − 1 = |G| − 1 =
|Fp[ω̂]∗|
|F∗

p|
− 1 =

p2 − 1

p− 1
− 1 = p

So we conclude the generalized Davenport constant constant of Z[pω] ⊆ Z[ω] is p.

Theorem 2.1.6. If β ∈ pZ[ω] has prime factorization pπ1 · · ·πN in Z[ω], then β is irreducible in

O = Z[pω] ⇐⇒ {π1, π2 . . . , πN} has no O−subsequence.

Proof. (⇒) We proceed by contraposition. Assume π1 · · ·πN has a O−subproduct. without loss of

generality say π1 · · ·πk ∈ Z[pω]. Then, β = (π1 · · ·πk) ·(pπk+1 · · ·πN ) where π1 · · ·πk, pπk+1 · · ·πN ∈

Z[pω] are both non-zero, non-units. Thus, β is not irreducible in Z[pω].

(⇐) Assume π1 · · ·πN has no O−subproduct. Assume for the purpose of contradiction that

β is not irreducible. Then, by the uniqueness of the prime factorization, β factors non-trivially in

11



Z[pω] as (u1 · pπi1 · · ·πin)(u2 · πj1 · · ·πjm) where u1, u2 ∈ U(Z[pω]). But this implies πj1 · · ·πjm is a

O−subproduct of π1 · · ·πN which is a contradiction. Thus, β is irreducible in Z[pω]

The following is the central result of this paper.

Theorem 2.1.7. Let Z[ω] be the ring of integers of Q[
√
d] where d < −3 and p be a prime such

that
(
d
p

)
= −1. If Z[ω] is a UFD, ρ(Z(pω)) ⩽ 1 + p

2 .

Proof. Let α ∈ pZ[ω] with prime factorization pkπ1 · · ·πM (k ⩾ 1) in Z[ω]. Recall, by Theo-

rem 2.1.2. we may assume without loss of generality πi /∈ Z[pω], (πi, p) = 1. Because of this

assumption, we know the finest irreducible factorization of α possible in Z[pω] would have the form

pk(π1π2) · · · (πM−1πM ) if M is even, and pk(π1π2) · · · (πM−2πM−1πM ) if M is odd. So we get a

factorization of length k + ⌊M
2 ⌋.

Case 1: M < kp. We know that every irreducible factor of α can contain at most one factor

of p. Thus, every irreducible factorization has length at least k, so

ρ(α) ⩽
k + ⌊M

2 ⌋
k

⩽
k + M

2

k
<

k + kp
2

k
= 1 +

p

2

Case 2: M ⩾ kp. Now, any irreducible factorization of α must take the form

(pπ1,1 · · ·π1,n1) · · · (pπk,1 · · ·πk,nk
)(πk+1,1 · · ·πk+1,nk+1

) · · · (πt,1 · · ·πt,nt)

By Theorems 2.1.5. and 2.1.6., ni ⩽ p for 1 ⩽ i ⩽ k. Also, each β = (πj,1 · · ·πj,nj ) ∈

Z[pω]\pZ[ω]. So,

ρ(β) ⩽
D(Cl(Z[pω]))

2
⩽

|Cl(Z[pω])|
2

=
p + 1

2

Using the factorizations (πj,1 · · ·πj,nj )(π̄j,1 · · · π̄j,nj ) = (πj,1π̄j,1) · · · (πj,nj π̄j,nj ), we find

nj

2 ⩽ ρ(β) ⩽ p+1
2 ⇒ nj ⩽ p + 1 for k + 1 ⩽ j ⩽ t. This is sufficient to determine that the

length of any given factorization is at least k + ⌈M−kp
p+1 ⌉. Hence,

ρ(α) ⩽
k + ⌊M

2 ⌋
k + ⌈M−kp

p+1 ⌉
⩽

k + M
2

k + M−kp
p+1

=
2k + M

2k + 2M−2kp
p+1

= (p + 1)
2k + M

2k + 2M

which is maximized when M is minimized. So M ⩾ kp implies

12



ρ(α) ⩽ (p + 1)
2k + kp

2k + 2kp
=

p + 1

2
· 2 + p

1 + p
= 1 +

p

2

So ρ(α) ⩽ 1 + p
2 . As we have noted, the elasticity of elements away from the conductor is

bounded above by D(Cl(Z[pω]))
2 ⩽ |Cl(Z[pω])|

2 = p+1
2 ⩽ 1 + p

2 (see [2]). Thus, ρ(Z[pω]) ⩽ 1 + p
2 .

We strongly suspect that this inequality is in fact equality.

Proposition: If each class of Z[ω]/(p) contains an irreducible element, ρ(Z(pω)) = 1 + p
2 .

If this is the case, we can construct an element which achieves the upper bound as follows.

Let γ ∈ Z[ω] such that it’s image γ̂ is a primitive element of Fp[ω̂]. Then, [γ̂] generates Fp[ω̂]∗/F∗
p,

so γp has no O-subproduct. Because all the elements of [γ] ∈ Z[ω]/(p) have this property, we may

assume γ is irreducible. Let δ = (pγp)(pγ̄p) = p2(γγ̄)p. Then, ρ(δ) ⩾ 2+p
2 = 1 + p

2 , so we achieve

our upper bound.

Example 2.1.8. It is well known that there are only finitely many imaginary quadratic UFDs.

This statement dates back to Gauss. Let us consider Z[ 1+
√
−7

2 ] = Z[ω] and Z[5ω] ⊆ Z[ω] (p = 5).

This ring is actually a Euclidean domain with its norm being a Euclidean function [8]. It is easy

to verify that
(−7

5

)
= −1. Now, we are interested in finding a prime α ∈ Z[ω] such that [α̂]

generates F5[ω̂]∗/F∗
5. Note, |F5[ω̂]∗/F∗

5| = 6, so this is equivalent to finding an α ∈ Z[ω] such

that α̂n /∈ F∗
5 for 1 ⩽ n ⩽ 5. By Lagrange’s theorem, it is sufficient to check up to n = 3. In

this case, ω = 1+
√
−7

2 satisfies these conditions. First, N(ω) = ω · ω̄ = 2, so ω is irreducible

and thus prime as Z[ω] is a UFD. Also, ω̂2 = −2 + 1+
√
−7

2 ≡ 3 + 1+
√
−7

2 mod 5Z[ω] /∈ F∗
5, and

ω̂3 = −2 − 1+
√
−7

2 ≡ 3 + 4 1+
√
−7

2 mod 5Z[ω] /∈ F∗
5. Therefore, the element [5 · ω5][5 · ω̄5] = 52 · 25

has elasticity 2+5
2 = 1 + 5

2 achieving the upper bound from Theorem 2.1.7.

Before we move on to some more general results, we give a few notes on the assumptions in

Theorem 3.7. As we noted, the reason for the assumption d < −3 is that we want the units of the

ring of integers and the order to be the same. This is because the proof relies in many instances on

the uniqueness of the prime factorization of elements in Z[ω]. If Z[ω] contains units that Z[pω] does

not, our analysis changes. The following example illustrates how.

Example 2.1.9. Consider the Guassian integers Z[i] and the order Z[19i] which have units {±1,±i}

and {±1} respectively. Note Z[i] is a UFD. Now, 2 + 3i generates F19[i]∗, so as an element of Z[i],
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(2 + 3i)19 has no O-subproduct. However, 19 · (2 + 3i)19 is not irreducible in Z[19i] as Theorem

2.1.6. would seem to imply. This is because, considering the coefficients mod 19, (2 + 3i)10 ∈ iF19,

so 19 ·(2+3i)19 factors non-trivially in Z[19i] as [i(2+3i)10] · [19(2+3i)9(−i)]. This happens because

±i are units in Z[i] but not Z[19i]. The same can be said for any primitive element γ because γ10

will always be in iF∗
19 as this subgroup contains all elements of order 2. Regardless, with some minor

modifications to the proof above, one can show that ρ(Z[pi]) = p+3
4 for p ≡ 3 mod 4. The details

are left as an exercise to the reader.

2.2 Non-UFDs

Now that we no longer have unique factorization of elements, the approach from the previous

section is obviously inappropriate, but many of the techniques remain helpful here. This is because

while losing unique prime factorization of elements, we retain it for ideals. This is a principal reason

why the study of rings of integers is so rich - the fact that they are Dedekind. Unfortunately, while

orders conserve a number of properties of rings of integers, they fail to be Dedekind as they are not

integrally closed (omit of course the maximal order OK). So we need to be careful about making

distinctions between ideals of OK and O.

Conjecture 2.2.1. Let Z[ω] be the ring of integers of Q[
√
d] where d < −3 and p prime such that(

d
p

)
= −1. If Z[ω] is a non-UFD, ρ(Z(pω)) = 1 + p · D(Cl(Z[ω]))

2 = 1 + p · ρ(Z[ω]).

Note that the first equality is identical to the UFD case as D(Cl(Z[ω])) = 1, and thus

we recover 1 + p
2 from Theorem 3.7. The second equality, which once again is due to Narkiewicz

[6], holds only in the non-UFD case. We now endeavour to motivate this conjecture, starting with

1 + p · ρ(Z[ω]) as an upper bound.

One of the major difficulties presented in the non-UFD case is the elasticity of elements

away from the conductor. Theorem 1.4.10. tells us that the ideals generated by these elements can

be factored into prime ideals. Thus, using the same techniques as [10], we know that the elasticity

of these elements is bounded above by D(Cl(Z[pω]))
2 . We would like to get this bound in terms of

D(Cl(Z[ω])). However, without knowing anything about the structure of Cl(Z[pω]), the best we

can do is D(Cl(Z[pω]))
2 ⩽ |Cl(Z[pω])|

2 = (p+1)·|Cl(Z[ω])|
2 . In the UFD case, this is not an issue because

(p+1)·|Cl(Z[ω])|
2 = 1+p

2 which is exceeded by elements in the conductor. However, in the non-UFD

case where |Cl(Z[ω])| ⩾ 2 (see [1]), (p+1)·|Cl(Z[ω])|
2 ⩾ 1 + p·|Cl(Z[ω])|

2 ⩾ 1 +p ·ρ(Z[ω]) , so the elasticity
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of elements away from the conductor may exceed that of those in the conductor depending on the

structure of Cl(Z[pω]). In the cases where D(Cl(Z[pω]))
2 does not exceed 1 + p · ρ(Z[ω]), it can be

shown using similar techniques to the proof of Theorem 2.1.7. that the latter is an upper bound on

the elasticity of the order. The proof is excluded here for brevity.

Now, the second question is if or when this upper bound is achieved. In order to find an

element which achieves this upper bound, we would need an element in Z[ω] which has irreducible

factorizations

γ1γ2 = β1β2 · · ·βd

with the following properties:

1. d = D(Cl(Z[ω])

2. βi ∈ Z[pω] ∀ 1 ⩽ i ⩽ d

3. [γ1], [γ2] generate Fp[ω]∗/F∗
p

Property 1 can always be achieved by the following process. Let {[I1], . . . , [Id]} be a

0−sequence of Cl(Z[ω]) with no proper 0−subsequence, and let Pi, Qi be a prime ideals in classes

[Ii], [Ii]
−1 respectively for each i. Then, (γ1)(γ2) = P1P2 · · ·Pd·Q1Q2 · · ·Qd = P1Q1·P2Q2 · · ·PdQd =

(δ1)(δ2) · · · (δd). Thus, γ1γ2 = β1β2 · · ·βd are equivalent irreducible factorizations up to a unit. For

the details of the constructions, see [6].

This construction is especially encouraging because it does not rely on our choice of prime

ideals from each class. It is well known that there are infinitely many prime ideals in each class

for rings of integers, so our hope is that if we choose our primes wisely, we will be able to satisfy

conditions 2 and 3 as well. The following theorem, while being interesting in it’s own right, also

shows us that we will be able to achieve condition 2 without putting any further restrictions on our

choice of Pi in the case when d ≡ 2, 3 mod 4.

Theorem 2.2.2. Let P be a prime ideal in the quadratic ring of integers Z[
√
d]. Then, [P̄ ] = [P−1].

Proof. P is prime, so it lies over some rational prime p. That is, P ∩ Z = pZ. Hence, p ∈ P , so

pZ[
√
d] ⊆ P , and Z[

√
d] is Dedekind, so this implies P divides pZ[

√
d]. Now, if P = pZ[

√
d], then

we are done because P̄ = P , and P is principal, so [P̄ ] = [P ] = [P−1].

If P ̸= pZ[
√
d], then p is not prime in Z[

√
d] as it is Dedekind and thus 1-dimensional. Hence,

by Theorem 1.4.10.,
(
d
p

)
= 1, so x2−d splits over Fp into (x−a)(x+a) (note a2 = −d ⇒ (−a)2 = −d).
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Thus, by Theorem 1.4.10., pZ[
√
d] = (p, a −

√
d)(p, a +

√
d) = QQ̄. By the uniqueness of prime

factorization, P = Q without loss of generality. Thus, PP̄ = pZ[
√
d] is principal, so [P̄ ] = [P−1]

This is a wonderful result because it shows us that for any choice of P , there is a prime

ideal Q in [P−1] such that PQ is generated by an element of Z[p
√
d] - specifically of Z. Thus, in the

case when d ≡ 2, 3 mod 4, we can achieve conditions 1 and 2 without putting any restriction on our

choice of Pi.

Our last task is to show that we can choose Pi such that condition 3 is satisfied. It is

important to note first that if (γ1) = P1P2 · · ·Pd such that [γ1] generates Fp[ω]∗/F∗
p, then (γ2) =

P̄1P̄2 · · · P̄d = (γ̄1). Hence, [γ2] = [γ̄1] also generates Fp[ω]∗/F∗
p because (γ̄1)n ∈ F∗

p ⇒ ¯(γn
1 ) ∈ F∗

p ⇒

γn
1 ∈ F∗

p. Thus, we need only find primes such that [γ1] generates. To this point, we have been

unable to prove or disprove that this is possible in general. However, if we once again assume that

every class of Z[ω]/(p) contains an irreducible element, the three properties imply the the element

[p · γp
1 ][p · γp

2 ] = p2δp1δ
p
2 · · · δ

p
d has an elasticity of at least 2+p·d

2 = 1 + p · ρ(Z[ω]) – our desired upper

bound.

Example 2.2.3. Let us consider the ring Z[
√
−14] and the order Z[11 ·

√
−14] (p = 11). Now, the

Minkowski bound for this ring of integers is 2!
22 ( 4

π )1
√

(56) ≈ 4.764 < 5, so Cl(Z[
√
−14] is generated

by the prime factors of (2) and (3). Now,
(−14

2

)
= 0 and

(−14
3

)
= −1, so 2 ramifies and 3 splits

in Z[
√
−14]. Let (2) = P2

2 and without loss of generality (3) = P3P̂3. Note, P2 and P3 are not

principal as they have norms 2 and 3, and N(α) = a2 + 14b2 = 2, 3 have no integral solutions. Thus,

[P2] has order 2 in Cl(Z[
√
−14]).

Now, consider the equation (2+
√
−14)(2−

√
−14) = 2 ·32. Thus, as ideals, (2+

√
−14)(2−

√
−14) = P2

2P2
3 P̂2

3 . Now, as 2 and 3 clearly do not divide (2±
√
−14), without loss of generality we

have (2 +
√
−14) = P2P2

3 by the uniqueness of the prime factorization. Hence, [P3]2 = [P2]−1, so

Cl(Z[
√
−14]) is generated by [P3], and [P3]2 = [P2]−1 = [P2] is not principal, but [P3]4 = [P2]2 is,

so Cl(Z[
√
−14]) ∼= Z4 and D(Cl(Z[

√
−14])) = 4.

Now, to find a candidate element, we need to find an element in [P3]. The most natural

choice would be P3 itself. Now, x2 + 14 factors as (x + 1)(x − 1) over F3, so by Theorem 1.4.10.,

(3) = (3,
√
−14 + 1)(3,

√
−14 − 1) = (3, 1 +

√
−14)(3, 1 −

√
−14). Thus, without loss of generality

P3 = (3, 1 +
√
−14). Now, (5 + 2

√
−14)(5 − 2

√
−14) = (3)4 = P4

3 P̂4
3 , and clearly 3 ∤ (5 ±

√
−14), so

without loss of generality (5 + 2
√
−14) = P4

3 . However, this will not yield an element of elasticity
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1+11·ρ(Z[
√
−14]) because [5+2

√
−14] has order 6 in F11[

√
−14]∗/F∗

11 (note: (5+2
√
−14)3 = −715+

38
√
−14 ≡ 0 + 5

√
−14 mod 11). Thus, we need to find another prime ideal in [P3]. Fortunately, for

rings of integers, we know there are infinitely many primes in each class.

Consider the equation (1 +
√
−14)(1−

√
−14) = 3 · 5. Now, x2 + 14 factors as (x+ 1)(x− 1)

over F5 as well, so (5) = (5, 1+
√
−14)(5, 1−

√
−14) = P5P̄5. Thus, (1+

√
−14)(1−

√
−14) = 3 ·5 =

P3P̂3P5P̄5. Now, neither 3 nor 5 divide, so without loss of generality (1 +
√
−14) = P3P5. Hence,

[P5] = [P3]−1. Note, as [P3] and [P3]−1 have the same order, the distinction is insignificant for our

purposes.

Using an identical argument and the equation (9 +
√
−14)(9 −

√
−14) = 19 · 5 we find

that the prime factors (19) also have order 4. Now, x2 + 14 factors as (x − 9)(x + 9) over F19, so

(19) = (19, 9+
√
−14)(19, 9−

√
−14) = P19P̄19. Finally, we know P4

19 is principal, and the generator

has norm 194, so we solve a2 +14b2 = 194 to find (325+42
√
−14)(325−42

√
−14) = (19)4 = P4

19P̄4
19.

As, 19 ∤ (325 + 42
√
−14), we conclude (325 + 42

√
−14) = P4

19, and a direct calculation shows that

[325+42
√
−14] generates F11[

√
−14]∗/F∗

11. Therefore, the element [11 ·(325+42
√
−14)11][11 ·(325−

42
√
−14)11] = 112 ·1944 has elasticity 2+44

2 = 1+11 · 42 = 1+11 · D(CL(Z[
√
−14]))

2 = 1+11 ·ρ(Z[
√
−14])

achieving our desired upper bound.
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Chapter 3

Conclusion

We have analyzed what happens when we relax the UFD assumption. A natural next step

is to consider what happens when we relax the assumption that our order is of prime index. While

calculating the generalized Davenport constant in this case appears to be a relatively tame problem,

analyzing elements in the conductor becomes much more difficult. This is because Theorem 2.1.1.

fails to hold in general, so we will have to develop some new techniques to analyze this case further.

Beyond the quadratic case, the problem becomes even harder as conductors fail to be principal in

general. Thus, to explore elasticity in such orders, we would likely need to take a more ideal-driven

approach.

There is a deep connection between factorization and cryptography. For example, RSA, a

very famous cryptosystem, relies on the difficulty of factoring the product of two large primes. It

would also be interesting to explore if this work can be used to create a cryptosystem..
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