Data from: Biomechanical factors influencing successful self-righting in the pleurodire turtle, Emydura subglobosa
Description
Self-righting performance is a key ability for most terrestrial animals, and has been used as a metric of fitness, exhaustion, and thermal limits in a variety of taxa. However, there is little understanding of the underlying mechanisms that drive variation in self-righting performance. To evaluate the mechanical factors that contribute to success versus failure when animals attempt to self-right, we compared force production and kinematic behavior in the rigid-bodied, pleurodire turtle Emydura subglobosa between successful and unsuccessful self-righting efforts. We found that the moment exerted during efforts to roll the body, and the velocity of that roll, are the primary drivers behind self-righting success (i.e., turtles that self-righted successfully produced both larger moments and faster rolls than turtles that failed). In contrast, the angle at which the head was directed to lever the body, and the extent of yaw that was incorporated in addition to roll, had little impact on the likelihood of success. These results show that specific performance metrics can predict the ability of animals to self-right, providing a framework for biomimetic applications as well future comparisons to test for differences in self-righting performance across animals from different environments, sexes, populations, and species.,Data used in statistical analysisData used for statistical analysis.Rubinetal_data.csv
Publication Date
1-1-2018
Publisher
DRYAD
DOI
10.5061/dryad.fh319v3
Language
en
Document Type
Data Set
Recommended Citation
Mayerl, Christopher J.; Blob, Richard W. (2018), "Data from: Biomechanical factors influencing successful self-righting in the pleurodire turtle, Emydura subglobosa", DRYAD, doi: 10.5061/dryad.fh319v3
https://doi.org/10.5061/dryad.fh319v3
Identifier
10.5061/dryad.fh319v3
Embargo Date
1-1-2018
Version
1